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Star Exponentials in Star Product Algebra
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Dedicated to the memory of Syed Twareque Ali

Abstract. A star product is an associative product for certain function space
on a manifold, which is given by deforming a usual multiplication of functions.
The star product we consider is given on Cn in non-formal sense. In the
star product algebra we consider exponential elements, which are called star
exponentials. Using star exponentials we construct star functions, which are
regarded as sections of star algebra bundle over a space of complex matrices.
In this note we give a brief review on star products.
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1. Star products

The origin of star products can be traced back to Weyl [8], Wigner [9], Moyal
[3], related to quantum mechanics. In 1970’s, Bayen–Flato–Fronsdal–Licherowicz–
Sternheimer [1] gave a concept of deformation quantization or star product, where
formal star products are discussed. Formal means that the deformation is con-
structed in formal power series with respect to the deformation parameter. Many
results are published with various applications by means of formal deformation
quantization, which is a very general concept and its existence on any Poisson
manifold is proved by M. Kontsevich ([2]).

A star product we consider in this note is a star product for certain functions
on Rn or Cn. The star product on Rn or Cn can be considered also in non-formal
sense, for example we can consider non formal star products for polynomials. We
introduce a family of star products which contains noncommutative star products,
and also commutative star products. This note is on this product and its extension.

1.1. Definition of star products

First we introduce a biderivation acting on functions as follows.

This work was supported by JSPS KAKENHI Grant Number JP15K04856.

c© Springer Nature Switzerland AG 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01156-7_17&domain=pdf


156 A. Yoshioka

Biderivation. Let Λ be an arbitrary n × n complex matrix. We then consider a
biderivation

←−
∂wΛ

−→
∂w = (

←−
∂w1 , . . . ,

←−−
∂wn)Λ(

−→
∂w1 , . . . ,

−−→
∂wn) =

n∑
k,l=1

Λkl
←−−
∂wk

−→
∂wl

where (w1, . . . , wn) are the coordinates of Cn. Here the over left (resp. right) arrow

means that the derivative
←−
∂ (resp.

−→
∂ ) acts to the left (resp. right) function,

namely,

f
←−
∂wΛ

−→
∂wg = f

⎛⎝ n∑
k,l=1

Λkl
←−−
∂wk

−→
∂wl

⎞⎠ g =

n∑
k,l=1

Λkl ∂wk
f ∂wl

g.

Since Λ is a constant matrix, we can easily calculate the power of the biderivation,
for example

f(
←−
∂wΛ

−→
∂w)

2g =

n∑
k1,k2,l1,l2=1

Λk1l1 Λk2l2 ∂wk1
∂wk2

f ∂wl1
∂wl1

g.

Star product. Now for functions f, g we define a star product f ∗
Λ
g by means of

the power series of the above biderivation such that

Definition 1.

f ∗
Λ
g = f exp i�

2

(←−
∂wΛ

−→
∂w

)
g = f

∞∑
k=0

1
k!

(
i�
2

)k (←−
∂wΛ

−→
∂w

)k

g

= fg + i�
2 f

(←−
∂wΛ

−→
∂w

)
g + · · ·+ 1

k!

(
i�
2

)k
f
(←−
∂wΛ

−→
∂w

)k

g + · · ·

where � is a positive parameter.

Then we see easily

Theorem 2. For an arbitrary Λ, the star product ∗
Λ
is well defined on polynomials,

and is associative.

Remark 3.

(i) The star product ∗
Λ
is a generalization of the well-known products in physics.

For example suppose n = 2m and if we put Λ =
(
0 −1
1 0

)
(blockwise), then

we have the Moyal product, and similarly we have the normal product for
Λ = ( 0 0

2 0 ), and the anti-normal product for Λ =
(
0 −2
0 0

)
, respectively.

(ii) If Λ is a symmetric matrix, the star product ∗
Λ
is commutative. Furthermore,

if Λ is a zero matrix, then the star product is nothing but a usual commutative
product.

1.2. Equivalence, Star product algebra bundle and flat connection

Equivalence. Let Λ be an arbitrary n × n complex matrix. Then (C[w], ∗
Λ
) is an

associative algebra where C[w] is the set of complex polynomials of the coordinate
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system w = (w1, w2, . . . , wn). The algebraic structure of (C[w], ∗
Λ
) depends only

on the skewsymmetric part of Λ. Namely, let Λ1, Λ2 be n × n complex matrices
with common skew-symmetric part. Then we have the decomposition

Λ1 = Λ− +K1, Λ2 = Λ− +K2,

where Λ− is a skew-symmetric matrix and K1,K2 are symmetric matrices. Then
we have

Theorem 4. The algebras (C[u, v], ∗
Λ1
) and (C[u, v], ∗

Λ2
) are isomorphic with an

isomorphism IK2

K1
: (C[u, v], ∗

Λ1
) → (C[u, v], ∗

Λ2
) given by the power series of the

differential operator ∂w(K2 −K1)∂w such that

IK2

K1
(f) = exp

(
i�
4 ∂w(K2 −K1)∂w

)
(f) =

∞∑
n=0

1
n!

(
i�
4

)n
(∂w(K2 −K1)∂w)

nf

where ∂w(K2 −K1)∂w =
∑

kl(K2 −K1)kl∂wk
∂wl

.

For star products ∗
Λk
, k = 1, 2, 3 with common skew-symmetric part of Λk,

a direct calculation gives

Theorem 5. The isomorphisms satisfy the following chain rule:

(i) IK1

K3
IK3

K2
IK2

K1
= Id, (ii)

(
IK2

K1

)−1

= IK1

K2

Star product algebra bundle and flat connection. Let us fix a skew-symmetric
matrix Λ− and consider a family of matrices {Λ = Λ− +K} with common skew-
symmetric part Λ− where K denotes its symmetric part. Then, by the above
theorems we have a family of star products {∗

Λ
} parameterized by {K} whose

elements are mutually isomorphic, and since ∗
Λ
depends only on the symmetric

part K we write as ∗Λ = ∗K .
Here we regard this family of star products in the following way: we have an

associative algebra (P , ∗) determined by Λ− such that an each algebra (C[w], ∗
K
)

of the family is regarded as a local expression of (P , ∗) at K. Each element p ∈ P
has a polynomial expression at every K, which is denoted by : p :

K
. Due to the

previous theorem of the chain rules of IK2

K1
, we have a geometric picture: we have an

algebra bundle over the space of symmetric matrices π : ∪K(C[w], ∗
K
) → S = {K}

such that the fiber at K is the algebra π−1(K) = (C[w], ∗K ). The bundle has a
flat connection ∇ and the element p ∈ (P , ∗) is regarded as a parallel section of
the bundle and : p :

K
is the value at K.

This is a simple translation of the equivalence among the star product alge-
bras. However, this picture plays an important role when we consider star expo-
nentials and star functions below.

2. Star exponential

Now we consider general star product ∗
Λ
, and consider exponential elements of

polynomials in star product algebras.
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Idea of definition. For a polynomial H of the star product algebra (C[w], ∗
Λ
), we

want to define a star exponential

e
t
H
i �∗Λ =

∑
n

tn

n!

(
H
i �

)n
∗Λ

where
(
H
i �

)n
∗Λ

is an nth power of H
i � with respect to the star product ∗

Λ
. However,

the expansion
∑

n
tn

n!

(
H
i �

)n
∗Λ

is not convergent in general, and then we consider a

star exponential by means of a differential equation.

Definition 6. The star exponential e
t
H
i �∗Λ is given as a solution of the differential

equation
d
dtFt =

H
i� ∗

Λ
Ft, F0 = 1.

2.1. Star exponential of linear and quadratic polynomials

We are interested in the star exponentials of linear, and quadratic polynomials.
For these, we can solve the differential equation explicitly.
Linear case. We denote a linear polynomial by

∑n
j=1 ajwj = 〈a,w〉, aj ∈ C. This

case naive expansion
∑

n
tn

n!

(
〈a,w〉
i �

)n

∗Λ

is convergent. Actually we see directly that

the nth power with respect to ∗
Λ
is

〈a,w〉n∗Λ
=

[n/2]∑
k=0

1
k!

(
i�
4 aΛa

)k n!

(n− 2k)!
〈a,w〉n−2k

where aΛa =
∑

ij Λijaiaj and the expansion is convergent. Then we have

Proposition 7. For
∑

j ajwj = 〈a,w〉

e
t〈a,w〉/(i�)
∗
Λ

= et
2aΛa/(4i�)et〈a,w〉/(i�) = et

2aKa/(4i�)et〈a,w〉/(i�)

where K is the symmetric part of Λ.

Thus the star exponentials are analytic and satisfy the exponential law with
respect to the parameter t. By direct calculation we see

Proposition 8. The star product of the star exponentials is convergent and it holds

e
〈a,w〉/(i �)
∗Λ ∗

Λ
e
〈b,w〉/(i �)
∗Λ = ea(Λ−)b/(2i�)e

〈a+b,w〉/(i �)
∗Λ .

Thus star exponentials of linear polynomials form a group.

For the linear case, the intertwiners are convergent. Namely, if we write the
decomposition as Λ = Λ− +K1 we have

Proposition 9. For any symmetric matrices K1, K2, the intertwiner

IK2

K1
=

∞∑
n=0

1
n!

(
i�
4

)n
(∂w(K2 −K1)∂w)

n
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is convergent for a star exponential of linear polynomial and satisfies

IK2

K1
(e

〈a,w〉/(i �)
∗Λ ) = e

〈a,w〉/(i �)
∗Λ′ , (Λ′ = Λ− +K2).

Remark 10. By the above propositions, similarly as polynomial case, for a fixed

Λ− the family of groups {e〈a,w〉/(i �)
∗
K

; a ∈ Cn}K∈S determines a group G. Also we

have a group bundle π : ∪K{e〈a,w〉/(i �)
∗
K

; a ∈ Cn} → S such that the each fiber is

the group π−1(K) = {e〈a,w〉/(i �)
∗
K

; a ∈ Cn}. And an element of G is regarded as a

parallel section denoted by e
〈a,w〉/(i �)
∗ of this bundle and a value at K is given by

: e
〈a,w〉/(i �)
∗ :

K
= e

〈a,w〉/(i �)
∗K = eaKa/(4i�)+〈a,w〉/(i�)

Quadratic case. For simplicity of formula, we consider the case where Λ is a 2m×
2m complex matrices with the skew symmetric part J =

(
0 −1
1 0

)
.

Proposition 11. For a quadratic polynomial Q = 〈wA,w〉 where A is a 2m× 2m
complex symmetric matrix, we have

e
t(Q/i�)
∗
Λ

=
2m√

det(I − κ+ e−2tα(I + κ))
e

1
i� 〈w 1

I−κ+e−2tα(I+κ) (I−e−2tα)J,w〉

where κ = KJ , α = AJ and K is the symmetric part of Λ.

Remark 12. The star exponentials of quadratic polynomials have branching, es-
sential singularities, and also satisfy exponential law with respect to the parameter
t whenever they are defined. From these singularities we are trying to derive rela-
tions for commutative or noncommutative algebras.

Proposition 13. We have an explicit formula of the product of star exponentials of
quadratic polynomials which contains a square root.

e
〈wA1,w〉/(i�)
∗
Λ

∗
Λ
e
〈wA2,w〉/(i�)
∗
Λ

=
1√

det(1− α(A1, A2))
e

1
i� 〈w 1

1−α(A1,A2))
A3(A1,A2),w〉

where α(A1, A2), A3(A1, A2) are certain matrix-valued functions of A1, A2 which
are explicitly written by means of Cayley transforms of A1, A2.

Hence the product is defined when det(1 − α(A1, A2)) �= 0 and associativity
holds when {A} are sufficiently small. Thus star exponentials of quadratic polyno-
mials form a group-like object, or local group.

For a quadratic case, since the intertwiner is a parallel transport of a section,
we can obtain the intertwiner by solving a certain differential equation. If we write
the decomposition as Λ = Λ− +K1 we have

Proposition 14. For any symmetric matrix K2, the intertwiner IK2

K1
for a star

exponential of quadratic polynomial is given as

IK2

K1
(e

〈wA,w〉/(i �)
∗Λ ) =

1√
det(1− β(A)(K2 −K1))

e

1
i� 〈w 1

1−β(A)(K2−K1)
β(A),w〉

∗Λ′

where β(A) is a certain matrix-valued function of A and Λ′ = Λ− +K2.
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Remark 15. By the above propositions, similarly as linear case, for a fixed Λ− the

family of group-like objects {e〈wA,w〉/(i �)
∗
K

;A symmetric}
K∈S determines a group-

like object Q.

Also we have a group-like object bundle π :∪K{e〈wA,w〉/(i�)
∗
K

;Asymmetric}→
S such that the each fiber is π−1(K) = {e〈wA,w〉/(i �)

∗
K

;A symmetric}. And an

element of Q is regarded as a parallel section denoted by e
〈wA,w〉/(i �)
∗ of this

bundle, and a value at K is given by : e
〈wA,w〉/(i�)
∗ :

K
= e

〈wA,w〉/(i �)
∗K

2.2. Star functions

By the same way as in the ordinary exponential functions, we can obtain several
noncommutative or commutative functions using star exponentials, which we call
star functions. As is stated in the previous sections, these star functions are given
as parallel sections G or Q of the group bundle or the group-like object bundle
over S, respectively. In this subsection we show some concrete examples of star
functions. For more details see Omori–Maeda–Miyazaki–Yoshioka [4, 5].

2.2.1. Linear case. Here we show examples of the simplest case using star product
of one variable. We consider functions f(w), g(w) of one variable w ∈ C and
consider a commutative star product ∗

τ
with complex parameter τ such that

f(w) ∗
τ
g(w) = f(w)e

τ
2

←−
∂ w

−→
∂ wg(w).

Applying the previous general formulas to the product ∗τ gives

Proposition 16. For a linear polynomial aw, a ∈ C, the star exponential and the
intertwiner satisfy

exp∗τ
aw = exp(aw + (τ/4)a2), Iτ

′
τ (exp∗τ

aw) = exp∗
τ′
aw,

respectively.

Hence we have the space of parallel sections G = {eaw∗ } of the bundles of
group over the parameter space C = {τ}.
Star Hermite function. Recall a naive expansion of star exponential for the linear
case is convergent, namely

: exp∗(
√
2tw) :τ=

∞∑
n=0

: (
√
2w)n∗ :τ

tn

n!
.

Note, that the explicit formula of star exponential evaluated at τ = −1 gives the
generating function of the Hermite polynomials Hn(w), namely

: exp∗(
√
2tw) :τ=−1= exp

(√
2tw − 1

2 t
2
)
=

∞∑
n=0

Hn(w)
tn

n! .

Then comparing the both expansions and we obtain

Hn(w) =: (
√
2w)n∗ :τ=−1 .
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We define star Hermite function (one-parameter deformation of Hn(w)) by using
parallel sections

Hn(w, τ) =: (
√
2w)n∗ :τ , (n = 0, 1, 2, . . . ).

Then the evaluation of the parallel section e
√
2tw

∗ at τ gives a generating function
of star Hermite functions, namely

: exp∗(
√
2 tw) :τ=

∞∑
n=0

Hn(w, τ)
tn

n! .

Trivial identity d
dt exp∗(

√
2 tw) =

√
2w∗ exp∗(

√
2 tw) evaluated at τ yields the

identity

τ√
2
H ′

n(w, τ) +
√
2wHn(w, τ) = Hn+1(w, τ), (n = 0, 1, 2, . . . )

for every τ ∈ C, and the exponential law

exp∗(
√
2sw) ∗ exp∗(

√
2tw) = exp∗(

√
2(s+ t)w)

yields the identity ∑
k+l=n

n!
k!l!Hk(w, τ) ∗τ Hl(w, τ) = Hn(w, τ).

Star theta function. We can express the Jacobi’s theta functions by using parallel
sections of star exponentials ∈ G. The formula

: exp∗ n i w :τ= exp(n i w − (τ/4)n2)

shows that for Re τ > 0, the star exponential : exp∗ ni w :τ is rapidly decreas-
ing with respect to integer n. Then we can consider summations for τ such that
Re τ > 0

:

∞∑
n=−∞

exp∗ 2ni w :τ =

∞∑
n=−∞

exp
(
2ni w − τ n2

)
=

∞∑
n=−∞

qn
2

e2ni w, (q = e−τ )

which is convergent and gives Jacobi’s theta function θ3(w, τ). Then the infinite
sums of parallel sections of G such as

θ1∗(w) =
1
i

∞∑
n=−∞

(−1)n exp∗(2n+ 1)i w, θ2∗(w) =
∞∑

n=−∞
exp∗(2n+ 1)i w,

θ3∗(w) =
∞∑

n=−∞
exp∗ 2ni w, θ4∗(w) =

∞∑
n=−∞

(−1)n exp∗ 2ni w

are called star theta functions. Actually the evaluation of : θk∗(w) :τ at τ with
Re τ > 0 gives the Jacobi’s theta function θk(w, τ), k = 1, 2, 3, 4 respectively. The
exponential law of star exponential yields trivial identities

exp∗ 2i w ∗ θk∗(w) = θk∗(w) (k = 2, 3),

exp∗ 2i w ∗ θk∗(w) = −θk∗(w) (k = 1, 4).
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Then using the evaluation formula : exp∗ 2i w :τ= e−τe2i w and the product
formula directly we see the above trivial identities are equivalent to the quasi
periodicity

e2i w−τθk(w + i τ) = θk(w) (k = 2, 3),

e2i w−τθk(w + i τ) = −θk(w) (k = 1, 4).

∗-delta functions. Since the star exponential : exp∗(itw) :τ= exp(itw − τ
4 t

2) is
rapidly decreasing with respect to t when Re τ > 0. Then the integral of star
exponential evaluated at τ

:

∫ ∞

−∞
exp∗(it(w − a)∗) dt :τ=

∫ ∞

−∞
exp(it(w − a)− τ

4 t
2)dt

converges for any a ∈ C. We put a star δ-function

δ∗(w − a) =

∫ ∞

−∞
exp∗(it(w − a)∗)dt,

which has a meaning at τ with Re τ > 0. It is easy to see for any parallel section
of polynomials p∗(w) ∈ P ,

p∗(w)∗ δ∗(w − a) = p(a)δ∗(w − a), w ∗ δ∗(w) = 0.

Using the Fourier transform we have

θ1∗(w) =
1
2

∞∑
n=−∞

(−1)nδ∗(w + π
2 + nπ), θ2∗(w) =

1
2

∞∑
n=−∞

(−1)nδ∗(w + nπ)

θ3∗(w) =
1
2

∞∑
n=−∞

δ∗(w + nπ), θ4∗(w) =
1
2

∞∑
n=−∞

δ∗(w + π
2 + nπ).

Now, we consider the τ satisfying the condition Re τ > 0. Then we calcultate the

integral and obtain δ∗(w − a) = 2
√
π√
τ
exp

(
− 1

τ (w − a)2
)
and we have

θ3(w, τ) =
1
2

∞∑
n=−∞

δ∗(w + nπ) =
√
π√
τ
exp

(
− 1

τ

) ∞∑
n=−∞

exp
(
−2n 1

τw − 1
τ n

2τ2
)

=
√
π√
τ
exp

(
− 1

τ

)
θ3∗(

2πw
iτ , π2

τ ).

We also have similar identities for other ∗-theta functions by the similar way.

2.3. Star exponentials of quadratic polynomials

Different from linear case, star exponentials of quadratic polynomials have singu-
larities which are moving, branching, and essential singularities.

Proposition 17. For a quadratic polynomial aw2
∗τ

= aw2 + aτ
2 , a ∈ C, the star

exponential and the intertwiner satisfy

exp∗τ
aw2

∗τ
=

1√
1− aτ

exp

(
1

1− aτ
aw2

)
, Iτ

′
τ (exp∗τ

aw2
∗τ
) = exp∗

τ′
aw2

∗τ′
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respectively, when the star exponential and the intertwiner contain terms of square
root then this equality includes a ± umbiguity.

We thus have the space of parallel sections Q = {eaw
2
∗∗ } of the bundles of

group-like objects over the parameter space C = {τ}, respectively. Hence the
star exponentials of quadratic polynomials, that is, parallel sections of Q behave
strangely, but are interesting. Here I will show several concrete examples for the
simple case, for more examples and details, see the references already cited above.

2.3.1. “Double covering” group. Let us consider a parallel section e
tw2

∗∗ ∈ Q. This
section has a singular point depending on the parameter τ , actually we see by the
evaluation formula at τ that the star exponential

: exp∗ tw
2
∗ :τ=

1√
1− tτ

exp

(
1

1− tτ
tw2

)
has a singularity at t = 1/τ . Thus for small t, the section e

tw2
∗∗ satisfies the expo-

nential law for every τ , i.e., {etw
2
∗∗ , t ∈ C} forms a local group. On the other hand,

for each t, taking an appropriate path in τ ∈ C, the parallel transform Iτ
′

τ along

the path gives : e
tw2

∗∗ :τ �→: −e
tw2

∗∗ :τ . Hence the group-like object e
tw2

∗∗ ∈ Q looks
like a double covering group of C.

This also appears when we consider multi-variable case w = (w1, . . . , wn).
For example, if we assume that the number of variables is n = 2, and the skew-
symmetric part is fixed such that Λ− = J =

(
0 −1
1 0

)
, then for a complex matrix

Λ = J +K, (K symmetric), the associative algebra of polynomial parallel sections
P includes the Lie algebra of SL(2,C), which are given by quadratic polynomials.
Exponentiating these quadratic elements one obtains a set of parallel sections
˜SL(2,C) ⊂ Q of the bundle of group-like objects over the space of all symmetric

matrices {K}. The object ˜SL(2,C) also behaves like a “double covering” group of

SL(2,C), which is called a blurred Lie group ˜SL(2,C). (For more details, see [5]).

2.3.2. Vacuum. Consider a Weyl algebra W of two canonical generators u, v,
namely [v, u] = i�. An element � ∈ W satisfying the relation �� = � and
v� = �u = 0 is called a vacuum. Vacuum plays an important role in quantum
mechanics.

We can construct vacuums in the set of parallel sections Q. For example we
consider n = 2 and fix the skew-symmetric part of Λ to be J and we set Λ = J+K,
(K symmetric). We write the generators of P as w1 = u,w2 = v. Then we see
[v, u]∗ = v ∗ u − u ∗ v = i�. Then in the group-like parallel sections Q of star
exponentials, we can construct an element �00 ∈ Q having a property such that
�00 ∗�00 = �00 and v ∗�00 = �00 ∗ u = 0. We construct �00 in the following

way. We take a parallel section of star exponential such that e
2t

u∗v
i�∗ ∈ Q. Then we
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have �00 = limt→−∞ e
2t

u∗v
i�∗ . For example, for K = ( 0 κ

κ τ ), we see

: �00 :K= lim
t→−∞

: e
2t

u∗v
i�∗ :K=

2

1 + κ
exp

(
− 1

i�(1 + κ)
(2uv − τ

1+κu
2)

)
.

Further using this vacuum we can construct generators of Clifford algebra in Q, so
we can construct Clifford algebra using parallel sections Q and P . (See for details,
H. Omori, Y. Maeda [6], T. Tomihisa, A. Yoshioka [7].)

Instead of taking a limit, we also obtain a vacuum by a contour integral of a
parallel section of Q around singularities. (For details, see [5].)

2.3.3. Contour integral around singularites. An element of Q, parallel section of
star exponential of quadratic polynomials, has branching, essential singularities.
Then it is natural to consider the derivation of meaningful relations from these
singularities as residues of elements of Q.

As an example, we can construct the Virasoro algebra by using residues. For
details, see H. Omori, Y. Maeda, N. Miyazaki, A. Yoshioka [4].
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