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States in Deformation Quantisation:
Hopes and Difficulties

Jaromir Tosiek

Abstract. A notion of the state in classical and in quantum physics is dis-
cussed. Several classes of continuous linear functionals over different algebras
of formal series are introduced. The condition of nonnegativity of functionals
over the ∗ algebra is analysed.
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1. Introduction

One of the most fundamental features of physics is that it proposes transformation
of the real world into numbers. From this point of view one can say that physical
reality consists of two main ingredients: the quantities which are measured called
observables and the characteristics of a system under consideration known as a
state. These two components are then combined to give results.

There exist several possible realisations of this scheme. In classical statistical
physics observables are identified with smooth real functions f on a phase space
M, states are represented by densities of probability � and results are mean values
calculated as the functional action 〈�, f〉.

At the quantum level in the Hilbert space model observables are self adjoint

operators f̂ acting in a spaceH, states are density operators �̂ and results are traces

Tr(�̂ · f̂). The reader interested in a systematic discussion of these postulates is
encouraged to see [1].

However, our expectations in physics are bigger. We not only need a suitable
mapping of reality into numbers but we would also like to be able to predict new
phenomena. This process of prediction is based on logic and involves mathematical
structures in which the sets of observables and of states can be equipped.
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We start our contribution with a sketch of connections between a class of
functions representing classical observables and functionals being densities of prob-
ability. Then we introduce formal series with respect to a deformation parameter
λ, substitute a nonabelian ∗ product for the ‘usual’ multiplication of series and
finally build linear functionals representing states. We do that in order to deal
with quantum problems in frames of deformation quantisation formalism [2–4].

This formalism of deformation contains some difficulties. First of all, it usu-
ally involves infinite number of terms. Thus even elementary calculations for flat
systems become rather complicated. Moreover, infinite sums appearing in some
expressions may not be convergent.

But on the other hand deformation quantisation works well in every reference
system. It thus seems to be a remedy for difficulties present in description of
quantum phenomena in gravitational fields. In addition, from the conceptual point
of view, it enlightens relationship between classical (undeformed) and quantum
(deformed) physics.

2. Classical statistical mechanics

As we have already mentioned, in classical physics we assume that observables are
smooth real functions defined on a phase space M of a system being a symplec-
tic manifold. Thus all observables are elements of a wider structure: the ring of
complex-valued smooth functions (C∞(M),+, ·) which form an algebra over the
field of complex numbers C. The constant function equal to 1 at every point of
the manifoldM is the identity element of this algebra.

A definition of convergence in the set C∞(M) has been adapted from theory
of generalised functions (see [5]). We say that the sequence {fn}∞n=1 is convergent
to a function f0, if on every compact subset of the manifoldM, dimM = 2r, every

sequence of partial derivatives
{

∂m1+m2+···+m2r

∂m1q1···∂m2r q2r fn

}∞

n=1
is uniformly convergent to

the derivative ∂m1+m2+···+m2r

∂m1q1···∂m2r q2r f0.

States are represented by the functionals called densities of probabilities �.
They are elements of the space of linear continuous functionals E ′(M) over the set
of functions C∞(M). Every density of probability � is a real functional

∀ C∞(M) % f = f ⇒ 〈�, f〉 ∈ R. (1)

Moreover, the density � has to be nonnegative

∀ C∞(M) % f 〈�, f · f〉 ≥ 0 (2)

and normalised

〈�,1〉 = 1. (3)

A sequence of densities {�n}∞n=1 tends to a functional �0 if

∀ C∞(M) % f lim
n→∞

〈�n, f〉 = 〈�0, f〉. (4)
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The postulate saying that every density of probability belongs to the space E ′(M)
implies that � is of compact support. Many widely used distributions of probability
do not belong to E ′(M), e.g., the Gaussian distribution. We accept this limita-
tion because the richness of mathematical properties of functionals from E ′(M)
provides a perfect opportunity to apply them in modeling of reality.

3. Physical background of formal series calculus

The fundamental difference between classical and quantum physics arises from
the fact that observables and states in quantum mechanics depend on a special
parameter – the Planck constant �. Its crucial role is illustrated by the Heisenberg
uncertainty principle for the position x and the canonically conjugated momentum
p, which for series of independent measurements in classical physics is of trivial
form

ΔxΔp ≥ 0

while in quantum mechanics one obtains

ΔxΔp ≥ �
2
.

By Δ we denote the mean square deviation.
For technical reasons in quantum calculations it is convenient to represent

observables by their expansions in power series with respect to �

f ∼
∞∑

l=−z

�lfl.

Notice that at this stage we accept only a finite set of negative powers of �.
This series representation usually simplifies considerations but it is the source

of two serious problems. The first one is that there is no one to one mapping
between smooth functions and their respective power series. The second difficulty
is the loss of convergence. Therefore to deal with power series we need to develop
a special method known as the formal series calculus.

Since foundations of the formal series calculus are purely mathematical, in-
stead of the Planck constant � we will use a parameter λ. We assume that this
parameter is real and positive.

At the beginning we extend the field of complex numbers C, namely we
introduce a field of formal series of complex numbers

C[λ−1, λ]] % c[[λ]] =

∞∑
l=−z

λlcl, ∀ l cl ∈ C, z ∈ N . (5)

A sequence {(
∑∞

l=−z λ
lcl)n}∞n=1 of elements from the field C[λ−1, λ]] is convergent

to an element
∑∞

l=−z λ
lcl0, if for every index l the sequence {(cl)n}∞n=1 of complex

numbers approaches cl0.
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The set of formal series of smooth functions C∞[λ−1, λ]](M) being a stage
for constituting the formal series calculus, consists of elements which are of the
form

ϕ[[λ]] =
∞∑

l=−z

λlϕl, ∀ l ϕl ∈ C∞(M), z ∈ N . (6)

In C∞[λ−1, λ]](M) we define multiplication by scalars from the field C[λ−1, λ]],
complex conjugation and multiplication of series. All of these operations are nat-
ural extensions of their C∞(M) counterparts. Hence we quote only a formula
expressing the product of series.

Multiplication of formal series being a straightforward generalisation of mul-
tiplication of functions can be written as

∞∑
l=−z

λlϕl •
∞∑

k=−s

λkψk =
1

λz+s

∞∑
l=0

λl
l∑

k=0

ϕk−zψl−k−s. (7)

The set of formal series with the • product constitutes a commutative ring
(C∞[λ−1, λ]](M), •).

Moreover, we say that the sequence {(
∑∞

l=−z λ
lϕl)n}∞n=1 tends to a series∑∞

l=−z λ
lϕl0, if for every l the sequence {(ϕl)n}∞n=1 is convergent to the function

ϕl0 in the sense of convergence in the space of functions C∞(M).
A partial derivative of a series

∑∞
l=−z λ

lϕl is calculated as

∂m1+m2+···+m2r

∂m1q1 · · ·∂m2rq2r

∞∑
l=−z

λlϕl :=

∞∑
l=−z

λl ∂m1+m2+···+m2r

∂m1q1 · · · ∂m2rq2r
ϕl

and its integral equals∫
M

( ∞∑
l=−z

λlϕl

)
ωr :=

∞∑
l=−z

λl

∫
M

ϕl ω
r

providing all functions ϕl are summable.

4. States over the commutative ring (C∞[λ−1, λ]](M), •)
Let us start from a generalisation of action of any element T ∈ E ′(M) on a formal
series

∑∞
k=−z λ

kϕk from C∞[λ−1, λ]](M). This generalisation is of the form〈
T,

∞∑
k=−z

λkϕk

〉
:=

∞∑
k=−z

λk
〈
T, ϕk

〉
∈ C[λ−1, λ]]. (8)

To be able to talk about the states the three properties have to be satisfied.
Reality of functional T means that implication holds

∞∑
k=−z

λkϕk =

∞∑
k=−z

λkϕk =⇒
〈
T,

∞∑
k=−z

λkϕk

〉
∈ R[λ−1, λ]].
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Normalisation is natural. It requires only extension of multiplication of functionals
by numbers to multiplication by series from C[λ−1, λ]].

The notion of nonnegativity is in conflict with the idea of formal series because
on one hand we deal with specific real numbers, on the other hand we avoid the
question about summability. We propose the following (compromising) definition
of nonnegativity.

A generalised function T ∈ E ′(M) is nonnegative if for every admissible
value of the parameter λ and every finite series

∑s
l=−z λ

lϕl〈
T,

s∑
k1=−z

λk1ϕk1
•

s∑
k2=−z

λk2ϕk2

〉
≥ 0. (9)

This formulation is stronger than the one proposed by Waldmann [6].

It seems to be natural that linear functionals over the ring (C∞[λ−1,λ]](M),•)
also may depend on λ. Let us first consider formal series of generalised functions
of the form

∑∞
l=−s λ

lTl. Their functional action is of the form〈 ∞∑
l=−s

λlTl,

∞∑
k=−z

λkϕk

〉
:=

1

λs+z

∞∑
u=0

λu
u∑

l=0

〈
Tl−s, ϕu−l−z

〉
. (10)

It is required that all supports are contained in a common compact set. Notions of
reality, nonnegativity and normalisation condition can be easily adapted to them.

Since we need the formal series calculus to deal with quantum problems, let
us consider another set of formal series of functionals.

For systems represented on the phase space R2r we know that quantum states
are represented by the Wigner functions which may contain arbitrary negative
powers of λ. Thus it seems to be natural that formal series of generalised functions

∞∑
k=1

λ−kT−k +

∞∑
k=0

λkTk

should be considered. Unfortunately, such extension is not possible because the
functional action 〈 ∞∑

k=1

λ−kT−k +

∞∑
k=0

λkTk,

∞∑
l=−z

λlϕl

〉
is not well defined. This observation is probably the weakest point of proposed
calculus.

5. States over the algebra (C∞[λ−1, λ]](M), ∗)
One of the consequences of the Heisenberg uncertainty relation is the fact that
the product of quantum observables is noncommutative. Therefore to deal with
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quantum problems we need another method of multiplication of formal series. This
is the so-called ∗ product. Its general form is

ϕ ∗ ψ :=
∞∑
k=0

λkBk(ϕ, ψ), ∀ k Bk(ϕ, ψ) ∈ C∞(M). (11)

We omit here the list of axioms imposed on C[λ−1, λ]] – bilinear operators Bk(·, ·).
This information can be found, e.g., in [4, 7, 8]. An extension of the ∗ product on
formal series of functions is straightforward. The space of formal series equipped
with the ∗ multiplication constitutes an algebra denoted as (C∞[λ−1, λ]](M), ∗).

The trace in algebra (C∞[λ−1, λ]](M), ∗) is of the form

Tr

( ∞∑
k=−z

λkϕk

)
:=

1

λr

∫
M

( ∞∑
k=−z

λkϕk

)
• t[[λ]]ωr,

where the series t[[λ]] =
∑∞

k=0 λ
ktk is called trace density.

Since our goal is to introduce quantum states, i.e., some linear continuous
functionals over the algebra (C∞[λ−1, λ]](M), ∗), following Schwartz [5] we con-
sider first functionals which are of the integral form.

C[λ−1, λ]] % 〈ψ, ϕ〉∗ :=
1

λr

∫
M
(ψ ∗ ϕ) • t[[λ]]ωr.

Notice that in general 〈ψ, ϕ〉∗ �= 〈ψ, ϕ〉.
However one can see that this new functional calculus is equivalent to the

standard theory of generalised functions with an identification

ψ ∼ Tψ[[λ]] =
1

λr
t[[λ]] •

∞∑
l=0

λlTψ l ∈ E ′[λ−1, λ]](M), i.e.,

∀ϕ ∈ C∞(M) 〈ψ, ϕ〉∗ = 〈Tψ[[λ]], ϕ〉.
Let us see what might be the meaning of states in terms of the ∗ formal series
calculus.

Reality of a series
∑∞

l=−s λ
lTl means that if

∞∑
k=−z

λkϕk =

∞∑
k=−z

λkϕk

then there is 〈 ∞∑
l=−s

λlTl,
∞∑

k=−z

λkϕk

〉
∗

=

〈 ∞∑
l=−s

λlTl,
∞∑

k=−z

λkϕk

〉
∗

, (12)

To discuss nonnegativity we need the notion of nonnegativity of a formal series of
real numbers.

A formal series
∑∞

l=−z λ
lcl, ∀ l cl ∈ R of real numbers is nonnegative if

∀ λ > 0 ∃ k ∈ N ∀ m > k

m∑
l=−z

λlcl ≥ 0.
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It is disappointing that we again have to refer to values of sums but at this moment
we have no idea how to introduce the notion of nonnegativity for formal series
without a reference to numbers.

Applying this suggestion we say that the series
∑∞

l=−s λ
lTl is nonnegative if

for every formal series of functions
∑∞

m=−z λ
mϕm the inequality〈 ∞∑

l=−s

λlTl,

∞∑
m1=−z

λm1ϕm1
∗

∞∑
m2=−z

λm2ϕm2

〉
∗

≥ 0

holds.
Finally the normalisation condition states that

〈
∞∑

l=−s

λlTl,1〉∗ = 1.

What is amazing when we test this list of properties for the most popular
example of the ∗ product, i.e., the Moyal product at R2 [9, 10]

ϕ ∗M ψ :=

∞∑
n1,n2=0

1

n1!n2!

(
− iλ

2

)n1
(
iλ

2

)n2 ∂n1+n2ϕ

∂pn1∂qn2

∂n1+n2ψ

∂qn1∂pn2

we arrive at shocking conclusion that generalised functions with compact supports
cannot be positive! This observation probably remains true for any local ∗ prod-
uct. Therefore we deduce that states over formal series cannot be built in a way
analogous to classical statistical physics.

6. Conclusions

As we can see, it is extremely difficult to introduce a coherent formal series calculus
admitting quantum states. Two crucial facts – impossibility of building formal
series of functionals with arbitrary large negative powers of λ and necessity of
dealing with functionals with noncompact supports question whether formal series
calculus can be successfully incorporated in quantum physics.

Thus the best solution would be to apply convergent expressions. Unfortu-
nately, realisation of such a postulate requires a strict quantisation method which
has not been formulated yet.

On the other hand the formal series are frequently useful. Thus at this mo-
ment we suggest a compromise – let us use them but simultaneously let us watch
if calculations make sense.
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