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F. Dı́az Garćıa and E. Wagner
Dirac Operator on a Noncommutative Toeplitz Torus . . . . . . . . . . . . . . . 103

Part III: Quantization

F. Kheirandish
Field Quantization in the Presence of External Fields . . . . . . . . . . . . . . . 113

A.G. Sergeev
Quantization of Mathematical Theory of Non-Smooth Strings . . . . . . . 119

D. Sternheimer
The Reasonable Effectiveness of Mathematical
Deformation Theory in Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

J. Tosiek
States in Deformation Quantisation: Hopes and Difficulties . . . . . . . . . . 139

N.A. Tyurin
Exact Lagrangian Submanifolds and the Moduli Space
of Special Bohr–Sommerfeld Lagrangian Cycles . . . . . . . . . . . . . . . . . . . . . 147

A. Yoshioka
Star Exponentials in Star Product Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Part IV: Integrable Systems

Y. Kosmann-Schwarzbach
Beyond Recursion Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

G. Meng
Kepler Problem and Jordan Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

A.E. Mironov and G.S. Mauleshova
On Rank Two Algebro-Geometric Solutions
of an Integrable Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189



Contents vii

Part V: Differential Geometry and Physics

J. Attard
The Dressing Field Method of Gauge Symmetry Reduction:
Presentation and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

E.M. Babalic, D. Doryn, C.I. Lazaroiu and M. Tavakol
A Differential Model for B-type Landau–Ginzburg Theories . . . . . . . . . 207

B. Balcerzak
On the Dirac Type Operators on Symmetric Tensors . . . . . . . . . . . . . . . . 215

M. Fecko
Surfaces Which Behave Like Vortex Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

C.I. Lazaroiu and C.S. Shahbazi
On the Spin Geometry of Supergravity and String Theory . . . . . . . . . . . 229

F. Pelletier
Conic Sub-Hilbert–Finsler Structure on a Banach Manifold . . . . . . . . . . 237

N. Sadeghzadeh
On Spherically Symmetric Finsler Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Part VI: Topics in Spectral Theory

J. Derezinski
Homogeneous Rank One Perturbations and
Inverse Square Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

A. Mostafazadeh
Generalized Unitarity Relation for Linear Scattering Systems
in One Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

A. Shafarevich
Differential Equations on Polytopes: Laplacians and
Lagrangian Manifolds, Corresponding to Semiclassical Motion . . . . . . . 273

Part VII: Representation Theory

D. Beltiţă and A. Zergane
Coadjoint Orbits in Representation Theory of pro-Lie Groups . . . . . . . 281



viii Contents

T. Kobayashi
Conformal Symmetry Breaking on Differential Forms
and Some Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

E. Lytvynov
Representations of the Anyon Commutation Relations . . . . . . . . . . . . . . . 309

Part VIII: Special Topics

H. Baumgärtel
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Preface

This book contains a selection of papers presented during the Thirty-Sixth “Work-
shop on Geometric Methods in Physics” (WGMPXXXVI) and abstracts of lec-
tures given during the Sixth “School on Geometry and Physics”, both of which
took place in Bia�lowieża, Poland during the summer of 2017. These two coor-
dinated activities constitute an annual event. Information on previous and up-
coming schools and workshops, and related materials, can be found at the URL:
http://wgmp.uwb.edu.pl.

The volume opens with a chapter containing papers presented at the special
session organized by A. Odzijewicz, G. Goldin, J.-P. Antoine, T. Bhattachryya,
J.P. Gazeau, J. Harnad, and F. Schroeck, dedicated to the memory of S. Twareque
Ali. Professor Ali, who died suddenly in 2016, was an active member of the Or-
ganizing Committee of our workshop for many years. There follow chapters on
“Noncommutative Geometry”, “Quantization”, “Integrable Systems”, “Differen-
tial Geometry and Physics”, “Topics in Spectral Theory”, “Representation The-
ory” and “Special Topics”, with papers based on the talks and posters presented
at the workshop. The final chapter contains extended abstracts of the lecture series
given during the “Sixth School on Geometry and Physics”.

The WGMP is an international conference organized each year by the De-
partment of Mathematical Physics in the Faculty of Mathematics and Computer
Science of the University of Bia�lystok, Poland. The main subject of the workshops,
consistent with their title, is the application of geometric methods in mathematical
physics. They frequently include studies of noncommutative geometry, Poisson ge-
ometry, completely integrable systems, quantization, infinite-dimensional groups,
supergroups and supersymmetry, quantum groups, Lie groupoids and algebroids,
and related topics. Participation in the workshops is open; the participants typi-
cally consist of physicists and mathematicians from countries across several conti-
nents, who have a wide spectrum of interests.

The Workshop and School are held in Bia�lowieża, a village located in the east
of Poland near the border with Belarus. Bia�lowieża is situated in the center of the
renowned Bia�lowieża Forest. This forest, shared between Poland and Belarus, is
one of the last remnants of the primeval forest that covered the European Plain
before human settlement. It has been designated a UNESCO World Heritage Site.
The peaceful atmosphere of a small village, together with natural beauty, affords
a unique environment for learning, cooperation, and creative work. As a result the

c© Springer Nature Switzerland AG 2019
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core participants in the WGMPs have become a strong scientific community, as
reflected in this series of Proceedings.

The Organizing Committee of the 2017 WGMP gratefully acknowledges the
financial support of the University of Bia�lystok and the Centre de Recherche
Mathématique (Canada). Last but not least, credit is due to early-career scholars
and students from the University of Bia�lystok, who contributed limitless time and
effort to setting up and hosting the event as well as participating actively in the
scientific activities.

The Editors

Participants of the XXXVI WGMP
(Photo by Tomasz Goliński)
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In Memory of S. Twareque Ali

Gerald A. Goldin

Abstract. We remember a valued colleague and dear friend, S. Twareque Ali,
who passed away unexpectedly in January 2016.

Prefatory note
I wrote the following tribute in 2016 to my close friend and colleague S. Twareque Ali, for
publication in the Proceedings of the 35th Workshop on Geometric Methods in Physics.
It seems appropriate to reprint it here, in connection with the Special Session at the 36th
Workshop devoted to his memory. – Gerald Goldin

S. Twareque Ali in Bia�lowieża.

c© Springer Nature Switzerland AG 2019
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4 G.A. Goldin

1. Remembering Twareque

Syed Twareque Ali, whom we all knew as Twareque, was born in 1942, and died
in January 2016. This brief tribute is the second one I have prepared for him in
a short period of time. With each sentence I reflect again on his extraordinary
personality, his remarkable career – and, of course, on the profound influence he
had in my life. Twareque was more than a colleague – he was a close friend, a
confidant, and a teacher in the deepest sense.

When I remember Twareque, the first thing that comes to mind is his laugh-
ter. He found humor in his early changes of nationality: born in the British Empire,
a subject of George VI, Emperor of India, he lived in pre-independence India, be-
came a citizen of Pakistan, and then of Bangladesh – all without moving from
home. Eventually he became a Canadian citizen, residing with his family in Mon-
treal for many years.

Twareque’s laughter was a balm. In times of sadness or disappointment, he
was a source of optimism to all around him. His positive view of life was rooted
in deep, almost unconsciously-held wisdom. Although he personally experienced
profound nostalgia for those lost to him, he knew how to live with joy. He could
laugh at himself, never taking difficulties too seriously.

And he loved to tell silly, inappropriate jokes – which, of course, cannot be
repeated publicly. He introduced me to the clever novels by David Lodge, Changing
Places, and Small World, which satirize the academic world mercilessly. In Lodge’s
characters, Twareque and I saw plenty of similarities to academic researchers we
both knew in real life – especially, to ourselves.

Twareque was fluent in several languages, a true “citizen of the world.” He
loved poetry, reciting lengthy passages from memory in English, German, Italian,
or Bengali. In Omar Khayyam’s Rubaiyat, translated by Edward Fitzgerald, he
found verses that spoke to him. These are among them:

. . .

Come, fill the Cup, and in the Fire of Spring
The Winter Garment of Repentance fling:

The Bird of Time has but a little way
To fly – and Lo! the Bird is on the Wing.
. . .

A Book of Verses underneath the Bough,
A Jug of Wine, a Loaf of Bread – and Thou

Beside me singing in the Wilderness
Oh, Wilderness were Paradise enow!
. . .

The Moving Finger writes, and, having writ,
Moves on; nor all your Piety nor Wit

Shall lure it back to cancel half a Line,
Nor all your Tears wash out a Word of it.
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2. A short scientific biography

Twareque obtained his M.Sc. in 1966 in Dhaka (which is now in Bangladesh). He
received his Ph.D. from the University of Rochester, New York, USA, in 1973,
where he studied with Gérard Emch. Professor Emch remained an inspiration to
him for the rest of his life, and Twareque expressed his continuing gratitude. In
2007, together with Kalyan Sinha, he edited a volume in honor of Emch’s 70th
birthday [1]; and in 2015, he organized a memorial session for Emch at the 34th
Workshop on Geometric Methods in Physics in Bia�lowieża.

After earning his doctorate, Twareque held several research positions: at
the International Centre for Theoretical Physics (ICTP) in Trieste, Italy; at the
University of Toronto and at the University of Prince Edward Island in Canada;
and at the Technical University of Clausthal, Germany in the Arnold Sommerfeld
Institute for Mathematical Physics with H.-D. Doebner. He joined the mathematics
faculty of Concordia University in Montreal as an assistant professor in 1981,
becoming an associate professor in 1983 and a full professor in 1990.

During his career as a mathematical physicist, Twareque achieved wide recog-
nition for his scientific achievements. He was known for his studies of quantization
methods, coherent states and symmetries, and wavelet analysis. A short account
cannot do justice to his accomplishments; the reader is referred for more detail to
two published obituaries from which I have drawn [2, 3], and asked to forgive the
many omissions. I cannot do better than to quote the summary in another tribute
I wrote [4]:

“During the 1980s, Twareque worked on measurement problems in phase
space, and on stochastic, Galilean, and Einsteinian quantum mechanics [5,6] Then
he began to study coherent states for the Galilei and Poincaré groups, and col-
laborated with Stephan de Bièvre on quantization on homogeneous spaces for
semidirect product groups.

“There followed his extensive, long-term, and indeed famous collaboration
with Jean-Pierre Antoine and Jean Pierre Gazeau, focusing on square integrable
group representations, continuous frames in Hilbert space, coherent states, and
wavelets. Their joint work culminated in publication of the second edition of their
book in 2014 – a veritable treasure trove of mathematical and physical ideas [7–10].

“Twareque’s work on quantization methods and their meaning is exemplified
by the important review he wrote with M. Englĭs [11], and his work on reproducing
kernel methods with F. Bagarello and Gazeau [12].”

Twareque’s contributions of time and effort helped bring a number of scien-
tific conference series to international prominence. Foremost among these was the
Workshop on Geometric Methods in Physics (WGMP) in Bia�lowieża (organized
by Anatol Odzijewicz). Twareque attended virtually every meeting from 1991 to
2015, where we would see each other each summer. He was a long-time member of
the local organizing committee, and co-edited the Proceedings volumes. Other con-
ference series to which he contributed generously of his energy included the Univer-
sity of Havana International Workshops in Cuba (organized by Reinaldo Rodriguez
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Ramos), and the Contemporary Problems in Mathematical Physics (Copromaph)
series in Cotonou, Benin (organized by M. Norbert Hounkonnou).

He was also an active member of the Standing Committee of the Interna-
tional Colloquium on Group Theoretical Methods in Physics (ICGTMP) series.
Twareque and his wife Fauzia came together to the 29th meeting of ICGTMP in
Tianjin, China in 2012. She attended the special session where Twareque (to his
surprise) was honored on the occasion of his 70th birthday. Their son Nabeel, of
whom he always spoke with great pride, practices pediatric medicine in Montreal.

Twareque was a deep thinker, who sought transcendence through ideas and
imagination. The truths of science and the elegance of mathematics in the quantum
domain were part of the mysterious beauty for which he longed – a longing shared
by many great scientists, a longing that we, too, share.

S. Twareque Ali in thought at WGMP XXXIII,
July 2, 2014. Photograph by G.A. Goldin.

As profoundly as Twareque cared about understanding the meanings of sci-
entific ideas, he cared equally about inspiring his students to succeed. He helped
them with personal as well as professional issues. As Anna Krasowska and Renata
Deptula, two of his more recent students who came from Poland to work with
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him, wrote [2], “If anything in our lives became too complicated it was a clear sign
we needed to talk to Dr. Ali. Every meeting with him provided a big dose of en-
couragement and new energy, never accompanied with any criticism or judgment.”
This was Twareque’s gift – to understand, to inspire, to give of himself.

Twareque died suddenly and unexpectedly January 24, 2016 in Malaysia, af-
ter participating actively in the 8th Expository Quantum Lecture Series (EqualS8)
– indeed, doing the kind of thing he loved most.

3. Concluding thoughts

Twareque believed passionately in world peace, in service to humanity, and in
international cooperation. He understood the broad sweep of history. His tradition
was Islam, as mine is Judaism, and although neither of us adhered to all the rituals
of our traditions, we shared an interest in their history, their commonalities, and
their contributions to world culture. We even researched correspondences between
the roots of words in Arabic and Hebrew. On a first visit to Israel for a conference in
1993, we visited Jerusalem together. Twareque did much to aid the less privileged
and less fortunate – in the best of our traditions, often anonymously.

Often one closes a retrospective on someone’s life with a sunset, marking the
ending of day and the beginning of night. My choice for Twareque is different. He
is someone who joined a scientific mind with a spiritual heart, and for Twareque,
the park and the forest in Bia�lowieża were at the center of his spirituality. So I
imagine him looking at us, even now, and marveling at the beauty of heavenly
clouds reflected in the water.

Reflection of the heavens in Bia�lowieża Park, July 4, 2013.
Photograph by G.A. Goldin.
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Two-dimensional Noncommutative Swanson
Model and Its Bicoherent States

Fabio Bagarello, Francesco Gargano and Salvatore Spagnolo

This paper is dedicated to the memory of Syed Twareque Ali

Abstract. We introduce an extended version of the Swanson model, defined on
a two-dimensional noncommutative space, which can be diagonalized exactly
by making use of pseudo-bosonic operators. Its eigenvalues are explicitly com-
puted and the biorthogonal sets of eigenstates of the Hamiltonian and of its
adjoint are explicitly constructed. We also show that it is possible to construct
two displacement-like operators from which a family of bi-coherent states can
be obtained. These states are shown to be eigenstates of the deformed lower-
ing operators, and their projector allows to produce a suitable resolution of
the identity in a dense subspace of L2(R2).

Mathematics Subject Classification (2010). 81Q12; 81R30.

Keywords. Pseudo-bosons; coherent states; Swanson model.

1. Introduction

In the past twenty years or so a lot of interest arose on the so-called PT -quantum
mechanics. This was mainly due to the paper in [1] where the authors introduced a
manifestly non self-adjoint, but PT -symmetric, Hamiltonian with purely real (and
discrete) eigenvalues. Here P and T are the parity and the time-reversal operators.
The main point was that having a physical, rather than a mathematical, condition
which guarantees the reality of the spectrum would be quite interesting and more
natural for the physicists community. One of the very famous examples of this
situation was later introduced in [2], with the Hamiltonian

Hν =
1

2

(
p2 + x2

)
− i

2
tan(2ν)

(
p2 − x2

)
.

c© Springer Nature Switzerland AG 2019
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Here ν is a real parameter taking value in
(
−π

4 , π
4

)
\ {0}. This model has relevant

mathematical and physical implications, and was discussed in terms of the so-
called D-pseudo bosons, [3, 4]. Here we consider a two-dimensional version of this
model living in a noncommutative plane, and we show how this model can again
be understood in terms of pseudo-bosons. Also, we briefly discuss what changes
if we do not assume ν to be strictly real. Finally, we construct bicoherent states
associated to the model and we check some of their properties.

2. Noncommutative two-dimensional harmonic oscillator
with linear terms

The Hamiltonian we want to consider here, depending on two parameters ν and
θ, is the following

Hν,θ =
1

2 cos(2ν)

{
p̂21

(
e−2iν +

θ2

4
e2iν

)
+ x̂2

1e
2iν + p̂22

(
e−2iν +

θ2

4
e2iν

)
+ x̂2

2e
2iν + 2θ (x̂1p̂2 − x̂2p̂1)

}
,

(1)

where the operators x̂j and p̂j satisfy the following commutation rules:

[x̂j , p̂k] = iδj,k11, [x̂1, x̂2] = iθ11, [p̂j , p̂k] = 0. (2)

The Hamiltonian Hν,θ can be seen as a reasonable two-dimensional version of the
one-dimensional Swanson model discussed in [2, 3, 5], defined in a noncommutative
two-dimensional plane. Here θ is the noncommutativity parameter, while ν is a real1

non self-adjointness parameter, taking values in I :=
(
−π

4 , π
4

)
. Whenever ν ∈ I is

not zero, Hν,θ �= H†
ν,θ. On the other hand, Hν=0,θ = H†

ν=0,θ. Moreover, if we take
θ = 0, i.e., if we go back to a commuting plane, we see that

Hν,θ =
1

2 cos(2ν)

{
p̂21e

−2iν + x̂2
1e

2iν + p̂22e
−2iν + x̂2

2e
2iν
}

,

which is exactly the two-dimensional version of the Hamiltonian considered in
[3, 5]: removing the noncommutativity (by sending θ to zero) returns the standard
Swanson model, in two dimensions and without interactions. Finally, if we take
ν = θ = 0, Hν,θ is nothing but the Hamiltonian of a two-dimensional harmonic
oscillator.

Despite of its apparently complicated expression, the operator Hν,θ can be
diagonalized in a rather simple way, by making use of the D-pseudo bosons intro-
duced by one of us (F.B.), and widely analyzed in [4]. In fact, let:{

A1 = 1√
2

(
x̂1e

iν + θ
2 p̂2e

iν + ip̂1e
−iν

)
, A2 = 1√

2

(
x̂2e

iν − θ
2 p̂1e

iν + ip̂2e
−iν

)
B1 = 1√

2

(
x̂1e

iν + θ
2 p̂2e

iν − ip̂1e
−iν

)
, B2 = 1√

2

(
x̂2e

iν − θ
2 p̂1e

iν − ip̂2e
−iν

)
.

(3)

1In some part of the paper we will remove the assumption of ν being real, and see what happens
when we put an imaginary part in it.
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First of all, it is clear that, for ν �= 0, Bj �= A†
j , j = 1, 2. Moreover, it is easy to

check using (2) that

[Aj , Bk] = δj,k11, [Aj , Ak] = [Bj , Bk] = 0. (4)

Then these operators satisfy the two-dimensional pseudo-bosonic rules, [4]. More
important, in terms of them our Hamiltonian Hν,θ in (1) acquires a much simpler
form:

Hν,θ =
1

cos(2ν)
(B1A1 + B2A2 + 11) , (5)

which is manifestly non self-adjoint for ν �= 0. Indeed we have

H†
ν,θ =

1

2 cos(2ν)

(
A†

1B
†
1 + A†

2B
†
2 + 11

)
, (6)

which is different from Hν,θ when ν �= 0.
Once the Hamiltonian has been written as in (5), we can use the general

settings described in details in [4]: we have to look first for the vacua ϕ0,0 and

Ψ0,0 of Aj and B†
j , j = 1, 2, and identify a set D, dense in the Hilbert space,

such that ϕ0,0,Ψ0,0 ∈ D and D is left stable under the action of Aj , Bj and their

adjoints. Then, we act on ϕ0,0 and Ψ0,0 with Bj and A†
j , respectively, producing two

biorthogonal sets of eigenstates of Hν,θ and H†
ν,θ. The procedure here is particularly

simple if we adopt the so-called Bopp shift to represent the commutation rules in
(2). In fact, let us introduce two pairs of self-adjoint operators (xj , pj), j = 1, 2,
satisfying [xj , pk] = iδj,k11, [xj , xk] = [pj , pk] = 0. Then (2) are recovered if we
assume that

x̂1 = x1 −
θ

2
p2, x̂2 = x2 +

θ

2
p1, p̂1 = p1, p̂2 = p2. (7)

In terms of these operators Aj and Bj can be rewritten as⎧⎨⎩A1 = 1√
2

(
x1e

iν + e−iν d
dx1

)
, A2 = 1√

2

(
x2e

iν + e−iν d
dx2

)
B1 = 1√

2

(
x1e

iν − e−iν d
dx1

)
, B2 = 1√

2

(
x2e

iν − e−iν d
dx2

)
,

(8)

which shows that, in terms of (xj , pj), the two pairs (A1, B1) and (A2, B2) are
completely independent. Hence, the construction of the set of eigenvectors of Hν,θ,

Fϕ = {ϕn1,n2(x1, x2)}, and the set of eigenvectors of H†
ν,θ, FΨ = {Ψn1,n2(x1, x2)},

can be carried out simply considering tensor products of the one-dimensional con-
struction already considered in for instance in [3, 7]. In particular, the two vacua

of Aj and B†
j are easily found:

ϕ0,0(x1, x2) = ϕ0(x1)ϕ0(x2) = N1 exp

{
−1

2
e2iν (x2

1 + x2
2)

}
,

Ψ0,0(x1, x2) = Ψ0(x1)Ψ0(x2) = N2 exp

{
−1

2
e−2iν (x2

1 + x2
2)

}
,

where N1 and N2 are normalization constants satisfying N1N2 = (πe−2iν)−1, to
ensure that 〈ϕ0,0,Ψ0,0〉 = 1.
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Notice that, since �(e±2iν) = cos(2ν) > 0 for all ν ∈ I, both ϕ0,0(x1, x2) and
Ψ0,0(x1, x2) belong to S(R2), and therefore to L2(R2). Now, if we define

ϕn1,n2 =
1√

n1!n2!
Bn1

1 Bn2
2 ϕ0,0,

Ψn1,n2 =
1√

n1!n2!
(A†

1)
n1(A†

2)
n2Ψ0,0,

we get, see [3],⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϕn1,n2(x1, x2) =
N1√

2n1+n2 n1!n2!
Hn1

(
eiνx1

)
Hn2

(
eiνx2

)
× exp

{
− 1

2 e2iν (x2
1 + x2

2)
}

,

Ψn1,n2(x1, x2) =
N2√

2n1+n2 n1!n2!
Hn1

(
e−iνx1

)
Hn2

(
e−iνx2

)
× exp

{
− 1

2 e−2iν (x2
1 + x2

2)
}

,

(9)

where Hn(x) is the nth Hermite polynomial. We see from these formulas that, for
all nj ≥ 0, 1

N1
ϕn1,n2(x1, x2) coincides with

1
N2

Ψn1,n2(x1, x2), with ν replaced by

−ν. Moreover, they all belong to S(R2), and therefore to L2(R2), which is a clear

indication that ϕ0,0(x1, x2) ∈ D∞(Bj) and Ψ0,0(x1, x2) ∈ D∞(A†
j), j = 1, 2. Also,

they are biorthogonal 〈ϕn1,n2 ,Ψm1,m2〉 = δn1,m1δn2,m2 , for all nj ,mj ≥ 0, and the
following equations are satisfied:⎧⎪⎪⎪⎨⎪⎪⎪⎩

A1ϕn1,n2 =
√

n1ϕn1−1,n2 , A2ϕn1,n2−1 =
√

n2ϕn1,n2−1,

B†
1Ψn1,n2 =

√
n1Ψn1−1,n2 , B†

2Ψn1,n2 =
√

n2Ψn1,n2−1,

B1A1ϕn1,n2 = n1ϕn1,n2 , B2A2ϕn1,n2 = n2ϕn1,n2 ,

(B1A1)
†Ψn1,n2 = n1Ψn1,n2 , (B2A2)

†Ψn1,n2 = n2Ψn1,n2 .

(10)

Following the same arguments as in [4], it is possible to check that the norm
of these vectors, ‖ϕn1,n2‖ and ‖Ψn1,n2‖, diverge with nj . Then, Fϕ and FΨ are
not Riesz bases, and not even bases. We are still left with the possibility that
they are G-quasi bases, for a suitable set G dense in L2(R2), see below. Indeed,
this is the case, as we can check extending, once again, what was done in [4] in
the one-dimensional case. We don’t give the details here, since they do not differ
significantly from what is done in [3, 4]. We only stress that the crucial ingredient
is provided by the operator

Tν = e
i ν

2

(
x1

d
dx1

+ d
dx1

x1

)
e
i ν

2

(
x2

d
dx2

+ d
dx2

x2

)
,

which maps (except for a normalization constant) the orthonormal basis of a two-
dimensional harmonic oscillator, Fe, into Fϕ. In the same way (T−1)† maps (again,
except for a normalization constant) the same basis into FΨ. Then, calling De the
linear span of Fe, which is obviously dense in L2(R2), it turns out that Fϕ and
FΨ are De-quasi bases. This means that, for all f, g ∈ De, the following resolution
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of the identity holds true:

〈f, g〉 =
∑
n1,n2

〈f, ϕn1,n2〉 〈Ψn1,n2 , g〉 =
∑
n1,n2

〈f,Ψn1,n2〉 〈ϕn1,n2 , g〉 (11)

Notice that both Tν and T−1
ν are unbounded. This can be easily understood easily,

since both these operators are not everywhere defined on L2(R2).

Finally, the metric operator can now be explicitly deduced: Θ := 1
π |N1|2 T−2

ν ,

which is unbounded, with unbounded inverse. Moreover, (Aj , B
†
j ) are Θ-conjugate

in the sense of [8], and Hν,θ is similar to a self-adjoint Hamiltonian: hν,θf =
Tν Hν,θ T−1

ν f , for all f in a suitable dense domain of L2(R2), where

hν,θ =
1

cos 2ν

(
a†
1a1 + a†

2a2 + 11
)

, aj =
1√
2
(xj + ipj).

3. Bi-coherent states

We now consider the two pairs of pseudo-bosonic operators (Aj , Bj), j = 1, 2,
behaving as in the previous section, in order to construct a generalized version
of the canonical coherent states. First of all we introduce ∀z, w ∈ C the two
displacement-like operators

U(z, w) = ezB1−z̄A1ewB2−w̄A2 , V(z, w) = ezA
†
1−z̄B†

1ewA†
2−w̄B†

2 . (12)

Of course these operators are not unitary and they are possibly not even
bounded. Hence, at the moment, they should be understood as formal objects.

If we assume that the Baker–Campbell–Hausdorff relation can be applied to
U(z, w) and V(z, w), due to the commutation relations

[Aj , [Aj , Bj ]] = [Bj , [Aj , Bj ]] = 0, j = 1, 2,

we obtain the following alternative representations:

U(z, w) = e−
|z|2+|w|2

2 ezB1e−z̄A1ewB2e−w̄A2 = e
|z|2+|w|2

2 e−z̄A1ezB1e−w̄A2ewB2

V(z, w) = e−
|z|2+|w|2

2 ezA
†
1e−z̄B†

1ewA†
2e−w̄B†

2 = e
|z|2+|w|2

2 e−z̄B†
1ezA

†
1e−w̄B†

2ewA†
2,

(13)
so that

U(z, w)−1 = U(−z,−w) = V(z, w)†, V(z, w)−1 = V(−z,−w) = U(z, w)†,

Now, bi-coherent states could be constructed in the following way:

ϕ(z, w) = U(z, w)ϕ0,0, Ψ(z, w) = V(z, w)Ψ0,0, (14)
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where ϕ0,0,Ψ0,0 are the two vacua introduced in the previous section. However, it
is more convenient to define ϕ(z, w) and Ψ(z, w) via the following series represen-
tations:

ϕ(z, w) = e−
|z|2+|w|2

2

∑
n1,n2≥0

zmwn

√
n1!n2!

ϕn1,n2 , (15)

Ψ(z, w) = e−
|z|2+|w|2

2

∑
n1,n2≥0

zmwn

√
n1!n2!

Ψn1,n2 . (16)

This is because, if we are able to prove that the series converge, then we don’t need
to take care of all the mathematical subtleties appearing if U(z, w) and V(z, w)
are unbounded. On the other hand, it is not hard to prove that the above series
converge ∀z, w ∈ C, and that the states they define have interesting properties. For
that, it is convenient to prove first a rather general result on bi-coherent states,
which in a sense unifies and extend the results described in many papers recently,
[9–14].

3.1. A general theorem

Here we work with two biorthogonal families of vectors, Fϕ = {ϕn, n ≥ 0} and
FΨ = {Ψn, n ≥ 0} which are D-quasi bases for some dense subset of H, see (11).
Consider an increasing sequence of real numbers αn satisfying the inequalities
0 = α0 < α1 < α2 < · · · . We call α the limit of αn for n diverging, which coincides
with supn αn. We further consider two operators, a and b†, which act as lowering
operators respectively on Fϕ and FΨ in the following way:

aϕn = αnϕn−1, b†Ψn = αnΨn−1, (17)

for all n ≥ 1, with aϕ0 = b†Ψ0 = 0.

Theorem 1. Assume that four strictly positive constants Aϕ, AΨ, rϕ and rΨ exist,
together with two strictly positive sequences Mn(ϕ) and Mn(Ψ) for which

lim
n→∞

Mn(ϕ)

Mn+1(ϕ)
= M(ϕ), lim

n→∞

Mn(Ψ)

Mn+1(Ψ)
= M(Ψ), (18)

where M(ϕ) and M(Ψ) could be infinity, such that, for all n ≥ 0,

‖ϕn‖ ≤ Aϕ rnϕMn(ϕ), ‖Ψn‖ ≤ AΨ rnΨMn(Ψ). (19)

Then the following series:

N(|z|) =
( ∞∑

k=0

|z|2k
(αk!)2

)−1/2

, (20)

ϕ(z) = N(|z|)
∞∑
k=0

zk

αk!
ϕk, Ψ(z) = N(|z|)

∞∑
k=0

zk

αk!
Ψk, (21)
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are all convergent inside the circle Cρ(0) centered in the origin of the complex

plane and of radius ρ = αmin
(
1, M(ϕ)

rϕ
, M(Ψ)

rΨ

)
. Moreover, for all z ∈ Cρ(0),

aϕ(z) = zϕ(z), b†Ψ(z) = zΨ(z). (22)

Suppose further that a measure dλ(r) does exist such that∫ ρ

0

dλ(r)r2k =
(αk!)

2

2π
, (23)

for all k ≥ 0. Then, for all f, g ∈ D, calling dν(z, z) = dλ(r)dθ, we have∫
Cρ(0)

N(|z|)−2 〈f,Ψ(z)〉 〈ϕ(z), g〉dν(z, z)

=

∫
Cρ(0)

N(|z|)−2 〈f, ϕ(z)〉 〈Ψ(z), g〉dν(z, z) = 〈f, g〉
(24)

The proof of the theorem is simple and will not be given here. Rather than
this, there are few comments which are in order: first of all, we see from (19)
that the norms of the vectors ϕn and Ψn need not being uniformly bounded, as it
happened to be in [11]. On the contrary, they can diverge rather fastly with n. To
see this, we just consider rϕ, rΨ > 1 and Mn(ϕ) and Mn(Ψ) constant sequences.

To apply the above theorem to the Swanson model we need to construct a
two-dimensional version of it. This can be done in a natural way: suppose again
we have two biorthogonal families of vectors, Fϕ = {ϕn1,n2 , nj ≥ 0} and FΨ =
{Ψn1,n2 , nj ≥ 0} which are D-quasi bases for some dense subset of H. As we can
see, these vectors depend on two sequences of natural numbers. Let now {αn} and
{βn} be two sequences of real numbers such that 0 = α0 < α1 < α2 < · · · and
0 = β0 < β1 < β2 < · · · . We call α and β their limits. We further consider four

operators, aj and b†j , j = 1, 2, which act as lowering operators respectively on Fϕ

and FΨ
2 in the following way:

a1 ϕn1,n2 = αn1ϕn1−1,n2 , a2 ϕn1,n2 = βn2ϕn1,n2−1, (25)

b†1Ψn1,n2 = αn1Ψn1−1,n2 , b†2 Ψn1,n2 = βn2Ψn1,n2−1, (26)

for all nj ≥ 0. As before, we assume that the norms of the vectors are bounded in
a very mild way:

‖ϕn1,n2‖ ≤ Aϕrn1
1,ϕrn2

2,ϕMn1(1, ϕ)Mn2(2, ϕ), (27)

‖Ψn1,n2‖ ≤ AΨrn1

1,Ψrn2

2,ΨMn1(1,Ψ)Mn2(2,Ψ), (28)

for some real constants AΦ, rk,Φ and some sequences Mj(k,Φ), Φ is both ϕ or Ψ,
k = 1, 2, j ≥ 0. Then we require that

lim
j→∞

Mj(k,Φ)

Mj+1(k,Φ)
= M(k,Φ),

2For instance these operators can be those satisfying (10).



16 F. Bagarello, F. Gargano and S. Spagnolo

which can also be divergent. Hence, generalizing Theorem 1, we can define

ρ1 = αmin

(
1,

M(1, ϕ)

r1,ϕ
,
M(1,Ψ)

r1,Ψ

)
, ρ2 = β min

(
1,

M(2, ϕ)

r2,ϕ
,
M(2,Ψ)

r2,Ψ

)
,

and the two related circles Cρj (0), j = 1, 2, as well as the following quantities:

N(z, w) =

( ∞∑
k=0

|z|2k
(αk!)2

)− 1
2
( ∞∑

l=0

|w|2k
(βk!)2

)− 1
2

, (29)

ϕ(z, w) = N(z, w)
∑

n1,n2≥0

zn1wn2

αn1 !βn2 !
ϕn1,n2 , (30)

Ψ(z, w) = N(z, w)
∑

n1,n2≥0

zn1wn2

αn1 !βn2 !
Ψn1,n2 . (31)

They are all well defined for z ∈ Cρ1(0) and w ∈ Cρ2 (0), and satisfy, for all such
(z, w), the normalization condition 〈ϕ(z, w),Ψ(z, w)〉 = 1. Also:

a1ϕ(z, w) = zϕ(z, w), a2ϕ(z, w) = wϕ(z, w),

and

b†1Ψ(z, w) = zΨ(z, w), b†2Ψ(z, w) = wΨ(z, w).

Concerning the resolution of the identity, this time we have to solve two moment
problems: suppose that we can find two measures, dλj(r), j = 1, 2, such that∫ ρ1

0

dλ1(r)r
2k =

(αk!)
2

2π
,

∫ ρ2

0

dλ2(r)r
2k =

(βk!)
2

2π
.

for all k ≥ 0. Then, calling dν1(z, z) = dλ1(r) dθ and dν2(w,w) = dλ1(r
′) dθ′, we

can prove the following: for all f, g ∈ D we have, for instance,∫
Cρ1(0)

dν1(z, z)

∫
Cρ2(0)

dν2(w,w)N(z, w)−2 〈f,Ψ(z, w)〉 〈ϕ(z, w), g〉 = 〈f, g〉 ,

and a similar formula with Ψ(z, w) and ϕ(z, w) exchanged.

Remark. If, in particular, αn =
√

n = βn, as is the case for the Swanson model, it
is clear that α = β =∞ and, because of their definitions, ρ1 = ρ2 =∞. Moreover,

N(z, w) = e−
|z|2+|w|2

2 and ϕ(z, w),Ψ(z, w) reduce to (15) and (16). This means
that convergence of the bi-coherent states is guaranteed in all C2.

3.2. Back to Swanson

To apply the previous results to our modified Swanson model we need now to find
a relevant estimate for the norms of the vectors in Fϕ and FΨ. For that we use
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the formula ([15, pag. 502]):∫ ∞

0

∫ ∞

0

e−p(x2+y2)Hn1(ax)Hn1(bx)Hn2 (cy)Hn2(fy)dxdy

=
2n1+n2−2n1!n2!π

p(n1+n2+2)/2
(a2 + b2 − p)n1/2(c2 + f2 − p)n2/2

× Pn1

(
ab√

p(a2 + b2 − p)

)
Pn2

(
cf√

p(c2 + f2 − p)

)
,

where Pn is the Legendre polynomial of order n. The above formula is valid for all p
having a nonnegative real part, and in our context p = cos(2ν) > 0, ∀ν ∈ I \ {0} 3.
Straightforward computations finally lead to

‖ϕn1,n2‖2 =
π|N1|2
cos(2ν)

Pn1

(
1

cos(2ν)

)
Pn2

(
1

cos(2ν)

)
,

and using the estimate in [16] for Pn(x) we deduce that

‖ϕn1,n2‖2 ≤ Aνr
n1
ν tn2

ν , rν = tν =

√
1

cos(2ν)
+

(
1

cos(2ν)
− 1

)1/2

,

with Aν a non-relevant positive constant. Then, it is clear that the assumption in
(27) is satisfied, taking for instance Mn(1, ϕ) = Mn(2, ϕ) = 1, for all n ≥ 0. Similar
considerations can be repeated for Ψ(z, w), so that all the results deduced before
apply here. In particular ϕ(z, w) are eigenstates of Aj , Ψ(z, w) are eigenstates of

B†
j and, solving the above moment problems (which collapse to a single one), they

produce a resolution of the identity.

3.3. What if ν is complex?

In the literature on Swanson model, ν is always taken to be real. We will briefly
show now that this is not really essential, at least if its real part still belongs to
the set I introduced before. For that, let us assume that ν = νr + iνi, with ν ∈ I
and νi ∈ R. Then, formulas (1)–(5) are still valid. However, (6) should be replaced
with

H†
ν,θ =

1

cos(2ν)

(
A†

1B
†
1 + A†

2B
†
2 + 11

)
.

Also, while the analytic expression of ϕn1,n2(x1, x2) in (9) does not change, that of
Ψn1,n2(x1, x2) can be deduced from ϕn1,n2(x1, x2) by replacing ν with −ν. Again,
we deduce that ϕn1,n2(x1, x2) and Ψn1,n2(x1, x2) are all in S(R2), and therefore
in L2(R2). And again, also in this extended case, it is possible to check that Fϕ

and FΨ are not Riesz bases. In fact we find that

‖ϕn1,n2‖2 =
π|N1|2

e−2νi cos(2νr)
Pn1

(
1

cos(2νr)

)
Pn2

(
1

cos(2νr)

)
,

3We still assume that ν �= 0 as we are interested in the non-Hermitian case.
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where νi explicitly appears. A similar estimate, with N1 replaced by N2, also holds
for ‖Ψn1,n2‖2. Both these norms diverge when n1 and n2 diverge, see [6]. Hence,
see [4], Fϕ and FΨ cannot be Riesz bases, also for complex ν. For this reason, no
major differences are expected with respect to our previous results.

4. Conclusions

In this paper we have proposed a noncommutative, two-dimensional, version of the
Swanson model and we have shown that its Hamiltonian can be rewritten in terms
of D-pseudo-bosonic operators. In this way, the eigenvalues and the eigenvectors
can be easily deduced. We have also considered the bi-coherent states attached
to the model, analyzing some of their properties. In particular, the fact that they
resolve the identity has been proved.
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Università di Palermo
I-90128 Palermo, Italy

and

INFN, Sezione di Napoli
e-mail: fabio.bagarello@unipa.it

Francesco Gargano and Salvatore Spagnolo
DEIM – Dipartimento di Energia
Ingegneria dell’Informazione e Modelli Matematici
Scuola Politecnica
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Abstract. We prove the existence of a universal Markov kernel, i.e., a Markov
kernel μ such that every commutative POVM F is the smearing of a self-
adjoint operator AF with the smearing realized through μ. The relevance
of the smearing is illustrated in connection with the problem of the joint
measurability of two quantum observables. Also the connections with phase
space quantum mechanics is outlined.
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1. Introduction

In the modern formulation of quantum mechanics positive operator-valued mea-
sures play a key role since they are a very important tool for the mathematical
representation of quantum observables [11, 13, 15, 17]. For example, they are used
to define a localization observable for the photon [1] overcoming the problem of
the photon localization. They can also be used to define a time observable [11]
overcoming the problem of the existence of a time observable. Another very rele-
vant feature of POVMs is that two POVMs can be jointly measurable also if they
do not commute while it is well known that joint measurability and commutativ-
ity coincide in the case of self-adjoint operators [11]. That makes it possible to
describe, by means of a rigorous mathematical approach, the joint measurability
of two incompatible observables (see below) and is at the roots of the phase space
formulation of quantum mechanics [15, 17]. Before we focus on these topics, let us
recall some of the main definitions and properties of POVMs.

c© Springer Nature Switzerland AG 2019
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In what follows, B(X) denotes the Borel σ-algebra of a topological space X
and L+s (H) the space of all bounded positive self-adjoint linear operators acting
in a Hilbert space H with scalar product 〈·, ·〉.
Definition 1. A Positive Operator-valued measure (for short, POVM) is a map
F : B(X)→ L+

s (H) such that:

F

( ∞⋃
n=1

Δn

)
=

∞∑
n=1

F (Δn).

where, {Δn} is a countable family of disjoint sets in B(X) and the series converges
in the weak operator topology. It is said to be normalized if

F (X) = 1

where 1 is the identity operator.

Definition 2. A POVM is said to be commutative if[
F (Δ1), F (Δ2)

]
= 0, ∀Δ1 ,Δ2 ∈ B(X). (1)

Definition 3. A POVM is said to be orthogonal if Δ1 ∩Δ2 = ∅ implies

F (Δ1)F (Δ2) = 0 (2)

where 0 is the null operator.

Definition 4. A Spectral measure or Projection-Valued measure (for short, PVM)
is an orthogonal, normalized POVM.

Note that the image of an orthogonal POVMs are projection operators. In quan-
tum mechanics, non-orthogonal normalized POVMs are also called generalized or
unsharp observables while PVMs are called standard or sharp observables.

We recall that 〈ψ, F (Δ)ψ〉 is interpreted as the probability that a measure-
ment of the observable represented by F gives a result in Δ.

The following theorem gives a characterization of commutative POVMs as
smearings of spectral measures with the smearing realized by means of Markov
kernels.

Definition 5. Let Λ be a topological space. A Markov kernel is a map μ : Λ ×
B(X)→ [0, 1] such that,

1. μΔ(·) is a measurable function for each Δ ∈ B(X),
2. μ(·)(λ) is a probability measure for each λ ∈ Λ.

In the following the symbolAW (F ) denotes the von Neumann algebra generated by
the POVM F , i.e., the von Neumann algebra generated by the set {F (Δ)}B(X).
Hereafter, we assume that X is a Hausdorff, locally compact, second countable
topological space.

Theorem 6 ([4, 6]). A POVM F : B(X) → L+
s (H) is commutative if and only if

there exists a bounded self-adjoint operator A =
∫

λdEλ with spectrum σ(A) ⊂
[0, 1], and a Markov Kernel μ : Λ× B(X)→ [0, 1] such that
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1) F (Δ) =
∫
Λ

μΔ(λ) dEλ, Δ ∈ B(X).

2) AW (F ) = AW (A).

The operator A introduced in Theorem 6 is called the sharp version of F and
is unique up to almost everywhere bijections [4]. The POVM F is said to be a
smearing of the PVM E or equivalently a smearing of A. It can be interpreted as
a noisy version of E [6].

A characterization of POVMs not necessarily commutative is due to Ali [2]
who obtained a Choquet type of an integral representation for POVMs. In partic-
ular, F is represented as an integral over the space of PVMs endowed with a Baire
measure.

2. Joint Measurability

Now we outline the relevance of POVMs to the problem of joint measurability of
two quantum observables. First we need to recall Naimark’s dilation theorem and
the definition of joint measurability.

Definition 7. Two POVMs F1 : B(X1) → L+s (H), F2 : B(X2) → L+s (H) are
compatible (or jointly measurable) if they are the marginals of a joint POVM
F : B(X1 ×X2)→ L+s (H).

Theorem 8 (Naimark [14]). Let F be a POVM. Then, there exist an extended
Hilbert space H+ and a PVM E+ on H+ such that

F (Δ)ψ = PE+(Δ)ψ, ∀ψ ∈ H
where P is the operator of projection onto H.

Two PVMs are jointly measurable if and only if they commute. In particular,
two spectral measures are jointly measurable if and only if the corresponding self-
adjoint operators commute. The relationships between commutativity and joint
measurability is weaker in the case of POVMs: the first implies the second by the
converse is not true in general. A characterization of the joint measurability comes
from Naimark’s dilation theorem.

Theorem 9 ([5]). Two POVMs F1 : B(X1)→ L+s (H) and F2 : B(X2)→ L+s (H) are
compatible if and only if there are two Naimark extensions E+

1 : B(X1)→ L+s (H)
and E+

2 : B(X2)→ L+s (H) such that [E+
1 , E+

2 ] = 0.

In the case of commutative POVMs, the previous theorem can be expressed in
terms of the relationships between the sharp versions and their Naimark’s dilations.

Theorem 10 ([5]). Let F1 and F2 be two commutative POVMs such that the opera-
tors in their ranges are discrete. They are compatible if and only if the correspond-
ing sharp versions A1 and A2 can be dilated to two compatible self-adjoint operators
A+

1 , A+
2 such that PχΔ(A

+
i )P = Fi(f

−1
i (Δ)), i = 1, 2, with fi one-to-one.
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In order to illustrate the previous theorems and their connections with the
phase space formulation of quantum mechanics, we focus on the relevant physical
example of position and momentum observables,Q =

∫
q dQ(q) and P =

∫
p dP (p)

on the space H = L2(R). We recall that (Qψ)(q) = q ψ(q) while (Pψ)(q) =

−i∂ψ∂q (q).

Let us consider the POVM [15]

F η(Δ×Δ′) =

∫
Δ×Δ′

Uq,p η U∗
q,p dq dp =

∫
Δ×Δ′

Pq,p dq dp,

where, Uq,p = e−iqP eipQ, η := Pg is the projector on the subspace generated by
g ∈ L2(R), ‖g‖2 = 1 and Pq,p = Uq,p η U∗

q,p. The marginals

FQ
η (Δ) := F (Δ× R) =

∫ ∞

−∞
(1Δ ∗ |g|2)(q) dQ(q), Δ ∈ B(R), (3)

FP
η (Δ) := F (R×Δ) =

∫ ∞

−∞
(1Δ ∗ |ĝ|2)(p) dP (p), Δ ∈ B(R) (4)

are the unsharp position and momentum observables respectively ([5, 6]). Note that
the maps μΔ(q) := (1Δ ∗ |g|2)(q) and μ̂Δ(p) := (1Δ ∗ |ĝ|2)(p) define two Markov
kernels ([5–7]) so that FQ

η and FP
η are smearings of Q and P respectively. Now, we

can define the isometry

W η : H → L2(Γ, μ)

ψ �→ 〈Uq,p g, ψ〉
where, μ is the Lebesgue measure on Γ = R × R. The map W η embeds H as

a subspace of L2(Γ, μ). The projection operator P̃ η from L2(Γ, μ) to W η(H) is
defined as follows

(P̃ ηf)(q, p) =

∫
Γ

〈Uq,p g, Uq′,p′ g〉f(q′, p′) dq′dp′.

In the phase space formulation of quantum mechanics [17], the function fη
ψ(q, p) :=

|〈Uq,p g, ψ〉|2 is the phase space representation of the pure quantum state ψ while

F η(f) =

∫
R×R

f(q, p) |Uq,p g〉〈Uq,p g| dq dp

defines a quantization procedure since to any real measurable function f on the
phase space Γ associates a self-adjoint operator F η(f) which is positive whenever
f is positive. Moreover, the expectation value of the quantum observable corre-
sponding to f is

〈F η(f)〉ψ = 〈ψ, F η(f)ψ〉 =
∫
R×R

f(q, p) fη
ψ(q, p) dq dp

and

〈ψ, F η(Δq ×Δp)ψ〉 = 〈ψ, F η(χΔq×Δp)ψ〉 =
∫
Δq×Δp

fη
ψ(q, p) dq dp.
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Next, we prove the existence of two commuting Naimark’s dilations for FQ
η

and FP
η . It is sufficient to consider the following two PVMs

(Ẽ+
Q(Δ)f)(q, p) = χΔ(q)f(q, p), f ∈ L2(Γ, μ)

(Ẽ+
P (Δ)f)(q, p) = χΔ(p)f(q, p), f ∈ L2(Γ, μ)

They commute since they are multiplications by characteristic functions. Moreover,
for any f ∈W η(H),

(P̃ ηẼ+
Q(Δ)f)(q, p) =

∫
Γ

〈Uq,pg, Uq′,p′g〉χΔ(q
′)f(q′, p′) dq′dp′

= W η

∫
Δ×R

Uq′,p′ η U∗
q′,p′ψ dq′ dp′ = [W ηFQ

η (Δ)(W η)−1f ](q, p).

which proves that Ẽ+
Q is Naimark’s dilation of W η FQ

η (W η)−1. An analogous ar-

gument holds for Ẽ+
P and W η FQ

η (W η)−1.

Now, if we specialize ourselves to the case g = 1
l
√
2π

e(−
x2

2 l2
), l ∈ R− {0}, we

get, (see, e.g., Ref. [5])

P̃ η
(∫

t dẼ+
Q(t)

)
P̃ η = W η

∫
t dFQ

η (t) (W η)−1 = W η Q (W η)−1

P̃ η
(∫

t dẼ+
P (t)

)
P̃ η = W η

∫
t dFP

η (t) (W η)−1 = W η P (W η)−1.

Therefore, the compatible operators Q+ :=
∫

t dẼ+
Q(t) and P+ :=

∫
t dẼ+

P (t) are

dilations of W η Q (W η)−1 and W η P (W η)−1 respectively. All that is summarized
(up to isometry) in the following commutative diagram.

Q+

��

PH

���
��

��
��

��
��

��
��

��
�
�� �� E+

Q
�� c �� E+

P
�� �� P+

��

PH

����
��
��
��
��
��
��
��
��
�

compatibility�� FQ
η

		
PH

��

�� c �� FP
η

		
PH

��

phase space q.m.��



�������������

incompatible Q
		
μ

��

P
		

μ̂

��

quantum mechanics

c.m.

We can observe the following transitions: 1) from the position and momen-
tum operators to their compatible smearings. That corresponds to the transition
from incompatibility to compatibility and from quantum mechanics to phase space
quantum mechanics [15, 17], 2) the transition from the non-commuting position
and momentum operators in H to the commuting position and momentum op-
erators in H+. That corresponds to the transition from quantum mechanics to
classical mechanics [9, 10].
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Finally note that in the standard formalism of quantum mechanics, where
observables are represented by self-adjoint operators, it is nonsense to speak about
the joint measurement of Q and P since they do not commute. That is instead
possible once FQ

η and FP
η are introduced into the formalism.

3. Universal Markov kernel

In the previous sections we have shown the relevance of commutative POVMs in
the phase space approach and in the transition from incompatibility to compatibil-
ity. Such a transition is realized by the smearing procedure which, by Theorem 6,
is realized through a Markov kernel.

In the present section we analyze the structure of the smearing in general
and prove the existence of a Markov kernel μ such that for any real commutative
POVM F there is a sharp version EF of F such that F (Δ) =

∫
μΔ(λ) dE

F . In
other words, we prove the existence of a universal Markov kernel.
In the following, the set of commutative POVMs with spectrum in [0, 1] is denoted
by D.

We need some results obtained in References [3, 12] which we briefly re-
call. There exists an algorithmic procedure (which is an extension of a proce-
dure developed by Riesz, see Ref. [16, page 356]) for the construction of a fam-
ily of set functions {ω(·)(λ)}λ∈[0,1] with the property that, for any commutative

POVM F : B[0, 1]→ L+s (H), there exists a self-adjoint operator AF with spectrum
σ(AF ) ⊂ [0, 1] such that

F (Δ) =

∫
[0,1]

ωΔ(λ) dE
F
λ = ωΔ(A

F ), Δ ∈ B[0, 1], (5)

where, EF is the spectral resolution corresponding to AF . Moreover, there exists
a countable semi-ring S which generates the σ-algebra B[0, 1], such that, for each
λ ∈ σ(AF ), ω(·)(λ) is additive on the ring R(S) generated by S. For each Δ ∈
B[0, 1], the function ωΔ is Borel measurable.

Now we introduce some technicalities. In what follows we need the set I :=
∪F∈D σ(AF ) ⊂ [0, 1] to be measurable. Thus, if I is not a Borel set we enlarge the
Borel σ-algebra in order to include I. In particular, we consider the σ-algebra S
generated by I and B([0, 1]).

Since, ∀F ∈ D, [0, 1] \ I ⊂ [0, 1] \ σ(AF ) and EF ([0, 1] \ σ(AF )) = 0, the set
[0, 1]/I is a subset of a EF -null set for any F ∈ D. Then, each PVM EF can be

extended to S. The extension ẼF : S→ Ls(H) satisfies the following relations:

ẼF (σ(AF )) = ẼF (I) = 1

ẼF (I ∩Δ) = EF (Δ), ∀Δ ∈ B[0, 1]

AF =

∫
[0,1]

λdẼF
λ .
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The space ([0, 1],S) is a measurable space and I is a measurable subset of S.
Moreover, for each Δ ∈ B([0, 1]), the function ωΔ : ([0, 1],S) → ([0, 1],B[0, 1]) is
measurable and∫

[0,1]

ωΔ(λ) dẼ
F
λ =

∫
[0,1]

ωΔ(λ) dE
F
λ = F (Δ), ∀F ∈ D. (6)

Theorem 11. There is a Markov kernel μ̃ : ([0, 1],S) × B[0, 1] → ([0, 1],B[0, 1])
such that

F (Δ) =

∫
[0,1]

μ̃Δ(λ) dẼ
F
λ ,

for any Δ ∈ B[0, 1] and F ∈ D.
Proof. Let D be the set of the commutative POVMs with spectrum in [0, 1],
{ωΔ}Δ∈B(R) the family of functions whose existence is proved in Ref. [12] and

I := ∪F∈D σ(AF ) ⊂ [0, 1]. For each λ ∈ I, the set function ω(·)(λ) is additive on
R(S) [3]. Now, the map

ω̃ : ([0, 1],S)× B[0, 1]→ ([0, 1],B[0, 1])

ω̃Δ(λ) =

{
ωΔ(λ), if λ ∈ I,

0, if λ ∈ [0, 1]/I

is such that ω̃(·)(λ) is additive for any λ ∈ [0, 1] and ω̃Δ(·) is measurable for any
Δ ∈ B[0, 1]. Moreover, by the definition of the integral and by (6),∫

[0,1]

ω̃Δ(λ) dẼ
F
λ =

∫
[0,1]

ωΔ(λ) dẼ
F
λ = F (Δ), F ∈ D.

By Corollary 1 in [4]1, there is a Markov kernel μ̃ such that, for every F ∈ D,
μ̃Δ(λ) = ω̃Δ(λ), ẼF -a.e.. Therefore, for every pair (F,EF ), the triplet (F, ẼF , μ̃)
is a von Neumann triplet, i.e.,∫

[0,1]

μ̃Δ(λ) dẼ
F
λ = F (Δ)

and μ̃ does not depend on F . �
Note that μ̃Δ coincide with ωΔ up to null sets. Indeed,∫

[0,1]

μ̃Δ(λ) dẼ
F
λ = F (Δ) =

∫
[0,1]

ωΔ(λ) dẼ
F
λ

so that μ̃Δ(λ) = ωΔ(λ), ẼF -a.e.. Therefore, μ̃Δ(λ) = ωΔ(λ), EF -a.e. since EF is

the restriction of ẼF .

1Note that the proof of corollary 1 in Ref. [4] does not depend on the POVM F . It depends
only on the set functions ω(·)(λ). Moreover, the change from the function ωΔ : ([0, 1],B[0, 1]) →
([0, 1],B[0, 1]) to the function ω̃Δ : ([0, 1],S) → ([0, 1],B[0, 1]) does not affect the proof of the
corollary since it does not affect the set functions ω(·)(λ) : B[0, 1] → B[0, 1] for any λ ∈ I.
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Remark 12. The result in Theorem 11 holds also for the set of POVMs with
spectrum in R. Indeed, for every POVM F : B(R) → L+s (H), there is a POVM
F 0 : B([0, 1])→ L+s (H), F 0(Δ) = F (g(Δ)) where g : [0, 1]→ R is an arbitrary bi-
jective measurable map. Then, the Markov kernel μg−1(Δ)(λ) is a universal Markov
kernel, i.e.,

F (Δ) = F 0(g−1(Δ)) =

∫
μg−1(Δ)(λ) dẼ

F
λ , Δ ∈ B(R),

for every real commutative POVM F .

We then have the following generalization of Theorem 11.

Theorem 13. There is a Markov kernel μ̃ : ([0, 1],S)×B(R)→ ([0, 1],B[0, 1]) such
that

F (Δ) =

∫
R

μ̃Δ(λ) dẼ
F
λ , Δ ∈ B(R),

for any real commutative POVM F .
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Abstract. Coherent states are associated to the Jacobi group. The metric
obtained from the scalar product of coherent states based on the Siegel–Jacobi
ball is a balanced metric. Several geometric properties of the Siegel–Jacobi
ball are obtained via the methods of coherent states. We insist on geometric
properties of the Siegel–Jacobi ball specific to Berezin quantization.
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1. Introduction

The quantization problem is important for establishing a correspondence between
quantum and classical systems [1]. A quantization method was proposed by Berezin
[2–5]. Initially, Berezin applied his method to quantization of the Kähler manifolds
Cn and the Hermitian symmetric spaces, using the supercomplete set of vectors
verifying the Parceval overcompletness identity. We have investigated holomor-
phic discrete series representations based on hermitian symmetric spaces [6–8] and
then [9] on coherent state (CS) manifolds [10, 11], using Perelomov coherent state
method [12]. Loi and Mossa have extended Berezin quantization to homogeneous
bounded domains [13] and then to homogenous Kähler manifolds [14]. On the other
side, Rawnsley [15] and Rawnsley, Cahen and Gutt [16] have globalized Berezin
construction for homogeneous Kähler manifolds to non-homogeneous Kähler man-
ifolds. Using the so-called ε-function, it was underlined that Berezin quantization
via coherent states is a particular realization of geometric quantization [17], and
the manifold with ε = ct are quantizable manifolds. An essential object in this
approach is the notion of balanced metric, introduced firstly by Donaldson for

c© Springer Nature Switzerland AG 2019
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compact manifolds [18], and later extended to non-compact manifolds by Arezzo
and Loi [19].

We have constructed coherent states based on the Siegel–Jacobi ball DJ
n ≈

Cn × Dn [20–23], a homogeneous space associated to the Jacobi group GJ
n =

Hn � Sp(n,R)C [24, 25], where Dn denotes the Siegel ball, and Hn denotes the
(2n + 1)-dimensional Heisenberg group [22, 23, 26]. The relevance of the Jacobi
group for Physics and Mathematics was mentioned in the references [20, 22, 23].
Here are some more recent references on applications of the Jacobi group in Physics
and Mathematics [27–31]. It was underlined in [32] that the homogeneous Kähler
two-form ωDJ

n
calculated in [22, 23] it is associated with the balanced metric on

the Siegel–Jacobi ball.
In this paper we mention several geometric properties of the Siegel–Jacobi

ball obtained via the coherent state method, relevant for Berezin quantization. The
interest of this investigation comes from the fact that the Siegel–Jacobi ball is a
partially bounded domain [33, 34]. In Section 2 we collect several results on the bal-
anced metric of the Siegel–Jacobi ball, extracted from [21–23, 32]. The main results
of this article are contained in Remark 5 and Proposition 6 of Section 3. Prelimi-
nary results have been given in [35], while details on the proofs can be found in [32].

2. Balanced metric on the Siegel–Jacobi ball via coherent states

Let M = G/H be an n-dimensional homogeneous Kähler manifold endowed with
a G-invariant Kähler two-form obtained from a Kähler potential f

ωM (z) = i

n∑
α,β=1

hαβ̄(z) d zα ∧ d z̄β, hαβ̄ = h̄βᾱ = hβ̄α, hαβ̄ =
∂2f

∂zα∂z̄β
. (1)

The balanced metric corresponds to the Kähler potential equal with the logarithm
of the scalar product of two Perelomov coherent state vectors

f(z, z̄) = lnKM (z, z̄), KM (z, z̄) = (ez̄, ez̄). (2)

The ε-function [15, 16] is defined as

ε(z) = e−f(z)KM (z, z̄). (3)

The Jacobi algebra is the semi-direct sum gJn := hn � sp(n,R)C, where the
Heisenberg algebra hn is generated by the boson creation (respectively, annihi-

lation) operators a†
i (ai), while the symplectic algebra sp(n,R)C is generated by

K±,0
ij , i, j = 1, . . . , n, as in [22, 23].

Let g ∈ Sp(n,R)C be of the form (4), (5)

g =

(
p q
q̄ p̄

)
, p, q ∈M(n,C), (4)

pp∗ − qq∗ = �n, pqt = qpt; (5a)

p∗p− qtq̄ = �n, ptq̄ = q∗p, (5b)
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and let also α, z ∈ Cn. The (transitive) action (g, α) × (W, z) = (W1, z1) of the
Jacobi group GJ

n = Hn � Sp(n,R)C on the Siegel–Jacobi ball DJ
n ≈ Dn × Cn is

given by the formulas [22]

W1 = (pW + q)(q̄W + p̄)−1 = (Wq∗ + p∗)−1(qt + Wpt), (6a)

z1 = (Wq∗ + p∗)−1(z + α−Wᾱ). (6b)

The Siegel (open) ball Dn – the non-compact Hermitian symmetric space
Sp(n,R)C/U(n) – admits a matrix realization as the bounded homogeneous do-
main

Dn := {W ∈M(n,C) : W = W t, N > 0, N := �n −WW̄}. (7)

Perelomov coherent state vectors [12] associated to the group GJ
n, based on

the Siegel–Jacobi ball DJ
n, are [21, 22]

ez,W = exp(X)e0, X :=
√

μ
n∑

i=1

zia
†
i +

n∑
i,j=1

wijK
+
ij , z ∈ Cn;W ∈ Dn, (8)

where the extremal weight vector e0 is chosen such that

aieo = 0, K+
ije0 �= 0, K−

ije0 = 0, K0
ije0 =

k

4
δije0, i, j = 1, . . . , n. (9)

μ in (8) indexes representations of the Heisenberg group, while k in (9) parametrizes
the holomorphic discrete series representation of Sp(n,R)C.

Using the coherent state vectors (8), the reproducing kernel K(z,W ) =
(ez,W , ez,W )kμ, z ∈ Cn,W ∈ Dn was calculated in [21–23] as

K(z,W ) = det(M)
k
2 expμF,M = (�n −WW̄ )−1, (10a)

2F = 2z̄tMz + ztW̄Mz + z̄tMWz̄. (10b)

With formulas (1), (2), we have obtained in [21, 22]

Theorem 1. The Kähler two-form ωDJ
n
, GJ

n-invariant to the action (6), is

−iωDJ
n
(z,W )= k

2Tr(B ∧ B̄)+ μTr(AtM̄ ∧ Ā),

B = M dW, A = d z + dWη̄, η = M(z + Wz̄).
(11)

The fact that the Kähler two-form (11) is associated with the balanced metric
on DJ

n was underlined in [32], where we have split the matrix h of the metric into
four blocks. This allowed us to calculate a kind of inverse of h, which takes into
account the fact that W is a symmetric matrix, as in (7). As a consequence, we
were able to calculate in [32] the Ricci form, the scalar curvature, the determinant
G of the matrix h of the metric and the Laplace–Beltrami operator on DJ

n, while in
[36] we have studied geodesics on DJ

n. In [23] we have pointed out the significance
of the change of variables in (11) z → η in the context of coherent states and also
in the context of the fundamental conjecture of homogeneous Kähler manifolds
[37, 38]. We have proved:
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Proposition 2.

i) The Jacobi group GJ
n is a unimodular, non-reductive, algebraic group of

Harish-Chandra type.
ii) The Siegel–Jacobi domain DJ

n is a homogeneous reductive, non-symmetric
manifold associated to the Jacobi group GJ

n by the generalized Harish-Chandra
embedding.

iii) The Siegel–Jacobi ball DJ
n is not an Einstein manifold with respect to the

balanced metric attached to the Kähler two-form (11), but it is one with re-
spect to the Bergman metric corresponding to the Bergman Kähler two-form
i∂∂̄ ln(GDJ

n
).

iv) The scalar curvature of DJ
n is constant and negative.

The Harish-Chandra embedding of the Siegel–Jacobi ball is explained in [39].

3. Geometric characterization of DJ
n and Berezin quantization

Firstly we recall the mentioned new results about Berezin quantization obtained
in [13, 14], which we apply to Berezin quantization on the Siegel–Jacobi ball.

Theorem 3. Let (M,ω) be a simply-connected homogeneous Kähler manifold such
that the associated Kähler two-form ω is integral. Then there exists a constant
μ0 > 0 such that M equipped with μ0ω is projectively induced.

The notion of projectively induced manifolds in the context of coherent states
for compact manifolds is used in [40, 41], while [42] deals with projectively induced
noncompact manifolds. We recall that the proof of Theorem 3 in the case of com-
pact manifolds M was given in [41].

Using the results of Rosenberg-Vergne [43], the proof of the fundamental
conjecture of homogeneous Kähler manifolds of Vinberg and Gindikin [37] by
Dorfmeister–Nakajima [38] and the sufficient conditions of Berezin quantization
on bounded domains obtained by Englĭs [44], Loi and Mossa have proved [14] the
following:

Theorem 4. Let (M,ω) be a homogeneous Kähler manifold. Then the following are
equivalent:

a) M is contractible.
b) (M,ω) admits a global Kähler potential.
c) (M,ω) admits a global diastasis DM : M ×M → R.
d) (M,ω) admits a Berezin quantization.

The notion of diastasis was introduced in [45].

As a consequence of Theorem 3, it was proven in [32]:

Remark 5. Let M = G/H be a simply-connected homogeneous Kähler manifold.
Then the following assertions are equivalent:

A) M is a quantizable Kähler manifold.
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B) M admits a balanced metric.
C) M is CS-type manifold and G is a CS-type group.
D) M is projectively induced.

The notion of CS-group is explained in [10, 11].
Putting together Theorems 1, 3, 4, Remark 5, and Proposition 4 in [32], it

follows in the particular case of the Jacobi group:

Proposition 6.

i) The homogeneous Kähler manifold DJ
n is contractible.

ii) The Kähler potential of the Siegel–Jacobi ball is global. DJ
n is a Lu Qi-Keng

manifold, with nowhere vanishing diastasis.
iii) The manifold DJ

n is a quantizable Kähler manifold.
iv) The manifold DJ

n is projectively induced, and the Jacobi group GJ
n is a CS-

type group.

In [42] we have used the denomination Lu Qi-Keng manifold for manifolds
for which the polar divisor [40, 41] of all points of the manifold is zero, extending
to manifolds the notion introduced for domains in Cn [46].
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1D & 2D Covariant Affine
Integral Quantizations

Jean Pierre Gazeau and Romain Murenzi

Abstract. Covariant affine integral quantization of the half-plane R × R+
∗ is

presented. We examine the consequences of different quantizer operators built
from weight functions on the half-plane. One of these weights yields the usual
canonical quantization and a quasi-probability distribution (affine Wigner
function) which is real, marginal in both position and momentum vectors.
An extension to the phase space for the motion of a particle in the punctured
plane and its application to the quantum rotating frame are mentioned.

Mathematics Subject Classification (2010). 81S30; 83C45,81R30.

Keywords. Integral quantization, affine symmetry, wavelets, singularities.

This contribution is an outline of recent developments [1–4] of what we call affine
covariant integral quantization and its applications. This affine quantization is
useful in physics, for instance when we deal with the motion of a particle on the
half-line, more generally for the dynamics of a pair (q, p), q > 0, p ∈ R. The
origin of the half-line is a singularity and the phase space is the open half-plane,
which has the group structure of Aff+(R), with its two square integrable unitary
irreducible representations (UIR’s). Any consistent quantization must respect this
symmetry. Another example [4] concerns the motion in the punctured plane (i.e.,
deleted from its origin), for instance in a rotating plane frame, or an infinitely thin
solenoid perpendicular to the plane at the origin. In this case, the phase space
is R2

∗ × R2, which has the group structure of SIM(2), the group of similitudes
of R2, with its unique square integrable UIR. Again, any consistent quantization
must respect this symmetry. Respecting those symmetries yields an automatic
regularization of the singularity in the quantum model in the following sense

classical kinetic p2 −→ quantum kinetic P 2 +
K

Q2
, (1)

with K > 0 is issued from affine quantization and essentially self-adjointness is
insured if K ≥ 3/4. Here we restrict the presentation to the simplest Aff+(R)
quantization. For SIM(2) nothing really new except more elaborate formulae, and

c© Springer Nature Switzerland AG 2019
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details are found in [4]. For the motion in the punctured Rd
∗, d ≥ 3, the phase

space is in general a coset of SIM(d), and one can deal with square-integrable
representations of SIM(d) with respect to a subgroup [5].

1. Covariant integral quantization(s) for a group

Let G be a Lie group with left Haar measure dμ(g), and let g �→ U(g) be a unitary
irreducible representation of G in a Hilbert space H. Let M be a bounded operator
on H. Suppose that the operator

R :=

∫
G

M(g) dμ(g) , M(g) := U(g)MU †(g) , (2)

is defined in a weak sense. From the left invariance of dμ(g) the operator R com-
mutes with all operators U(g), g ∈ G, and so, from Schur’s Lemma, R = cMI.
Suppose that there exists a density (i.e., unit trace non-negative) operator ρ0 such
that the integral

∫
G

tr (ρ0 M(g)) dμ(g) := cM is convergent. Then the resolution of
the identity follows:∫

G

M(g) dν(g) = I , dν(g) := dμ(g)/cM . (3)

Now, suppose that the UIR U is square-integrable in the sense that there exists a
density operator ρ such that cρ =

∫
G dμ(g) tr

(
ρU(g)ρU †(g)

)
<∞. The resolution

of the identity is then obeyed by the family of U -transported density operators
ρ(g) = U(g)ρU †(g), and this allows covariant integral quantization of complex-
valued functions on the group

f �→ Af =
1

cρ

∫
G

ρ(g) f(g) dμ(g) . (4)

The covariance of this quantization is a straightforward consequence of the above
construction

U(g)AfU
†(g) = AU(g)f , (5)

where (U(g)f)(g′) := f(g−1g′) is the regular representation if f ∈ L2(G, dμ(g))).
Furthermore, the map (4) can be completed with a generalization of the

Berezin or heat kernel transform on G yielding a semi-classical portrait of Af .

f(g) �→ f̌(g) :=

∫
G

tr(ρ(g) ρ(g′)) f(g′) dν(g′) . (6)

2. Covariant affine integral quantization

2.1. The group framework

The above procedure is now implemented in the context of affine symmetry. As
the Euclidean plane is viewed as the phase space for the motion of a particle on
the line, the half-plane is viewed as the phase space for the motion of a particle on
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the half-line. One equips the upper half-plane Π+ := {(q, p) | q > 0 , p ∈ R} with
the measure dq dp. Together with

(i) the multiplication law

(q, p)(q0, p0) =

(
qq0,

p0
q

+ p

)
, q ∈ R∗

+, p ∈ R ,

(ii) the unity (1, 0),
(iii) and the inverse

(q, p)−1 =

(
1

q
,−qp

)
,

Π+ is viewed as the affine group Aff+(R) of the real line. The measure dq dp is
left-invariant with respect to this action. The affine group Aff+(R) has two non-
equivalent UIR U± (∼ carried on by Hardy spaces). Both are square integrable
and this is the rationale backing the continuous wavelet analysis resulting from
a resolution of the identity. The UIR U+ ≡ U is realized in the Hilbert space
H = L2(R∗

+, dx) as

U(q, p)ψ(x) = (eipx/
√

q)ψ(x/q) . (7)

Given a weight function �(q, p) on Π+, one defines the operator∫
Π+

C−1
DMU(q, p)C−1

DM �(q, p) dq dp := M . (8)

The following assumptions are imposed on �(q, p):

(i) The weight function �(q, p) is C∞ on Π+.
ii) It defines a tempered distribution with respect to the variable p for all q > 0.

(iii) The operator M is bounded self-adjoint on H.
The appearance of the positive self-adjoint and invertible Duflo–Moore operator
CDM :=

√
2π/Q is due to the non-modularity of the affine group. This operator is

needed to establish the square-integrability of the UIR U∫
Π+

dq dp〈U(q, p)ψ|φ〉 〈U(q, p)ψ′|φ′〉 = 〈CDMψ|CDMψ′〉 〈φ′|φ〉 , (9)

for any pair (ψ, ψ′) of admissible vectors, i.e., which obey ‖CDMψ‖<∞, ‖CDMψ′‖<
∞, and any pair (φ, φ′) of vectors in L2(R∗

+, dx). The operator M is symmetric

if �(q, p) obeys �(q, p) = (1/q)� (1/q,−qp).

2.2. Affine quantization

The corresponding integral quantization reads as

f �→ A
f =

∫
Π+

dq dp

cM�

f(q, p)M(q, p) , (10)

with M(q, p) = U(q, p)MU †(q, p), and where the constant cM� is given by

cM� =
√
2π

∫ +∞

0

dq

q
�̂p (1,−q) .
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Here, �̂p is the partial Fourier transform of � with respect to the variable p. The
resolution of the identity holds for cM� <∞, and the covariance reads as

U(q0, p0)A

f U †(q0, p0) = A�U(q0,p0)f .

The practical calculations rest on the following result.

Proposition 1. The action on φ in H of the operator A
f defined by the integral

quantization map is given by

(A
f φ)(x) =

∫ +∞

0

A
f (x, x′)φ(x′) dx′ , (11)

where the kernel A
f is defined as

A
f (x, x′) =

1

cM�

x

x′

∫ +∞

0

dq

q
�̂p

( x

x′ ,−q
)

f̂p

(
x

q
, x′ − x

)
. (12)

2.3. Some formulae

Having in hand Eqs. (11) and (12), one can easily derive the quantum counterparts
of some particular functions. For functions depending on q only, f(q, p) ≡ u(q),
one gets the multiplication operator

A
u(q) =

√
2π

cM�

∫ +∞

0

dq

q
�̂p(1,−q)u

(
Q

q

)
, (13)

i.e., the multiplication by the convolution on the multiplicative group R∗
+ of u(x)

with
√
2π �̂p(1,−x)/cM� . An interesting more specific case is when u is a simple

power of q, say u(q) = qβ . Then we have

A
qβ =

√
2π

cM�

∫ +∞

0

dq

q1+β
�̂p(1,−q)Qβ ≡ dβ

d0
Qβ , (14)

where dβ =
∫ +∞
0

dq
q1+β �̂p(1,−q)

For momentum-dependent functions f(q, p) ≡ v(p) one finds

A
v(p)(x, x′) =

1

cM�

v̂(x′ − x)
x

x′

∫ +∞

0

dq

q
�̂p

( x

x′ ,−q
)

≡ 1

cM�

v̂(x′ − x)
x

x′ Ω
( x

x′

)
.

(15)

As a simple but important example, let us examine the case v(p) = pn, n ∈ N.
From distribution theory

v̂(x′ − x) =
√
2π in δ(n)(x′ − x) , (16)

we derive the differential action of the operator A
pn in H as the polynomial in

P = −id/dx

A
pn =

√
2π

cM�

n∑
k=0

(
n

k

) (
−i d

dx′

)n−k
x

x′ Ω
( x

x′

)∣∣∣
x′=x

P k = Pn + · · · . (17)
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In particular,

A
p = P +

i

Q

[
1 +

Ω′(1)

Ω(1)

]
. (18)

This operator is symmetric but has no self-adjoint extension. The commutation
rule [Aq, Ap] =

d1

d0
iI is canonical up to a factor which can be easily put equal to

one through a rescaling of the weight function.

For the kinetic energy we have

A
p2 = P 2 +

2i

Q

[
1 +

Ω′(1)

Ω(1)

]
P − 1

Q2

[
2 + 4

Ω′(1)

Ω(1)
+

Ω′′(1)

Ω(1)

]
. (19)

This symmetric operator is essentially self-adjoint or not, depending on the
strength of the (attractive or repulsive) potential 1/x2. With the choice of a weight

function such that −2 − 4 Ω′(1)
Ω(1) −

Ω′′(1)
Ω(1) ≥ 3/4, it is essentially self-adjoint and so

quantum dynamics of the free motion on the half-line is unique. For separable
functions f(q, p) ≡ u(q) v(p)

A
u(q)v(p)(x, x′) =

1

cM�

v̂(x′ − x)
x

x′

∫ +∞

0

dq

q
�̂p

( x

x′ ,−q
)

u

(
x

q

)
. (20)

The elementary example is the quantization of the function qp which produces the
integral kernel and its corresponding operator

A
qp(x, x′) =

√
2π

cM�

i δ′(x′ − x)
x2

x′

∫ +∞

0

dq

q2
�̂p

( x

x′ ,−q
)

,

A
qp =

Ω1(1)

Ω(1)
D + i

[
3

2

Ω1(1)

Ω(1)
+

Ω′
1(1)

Ω(1)

]
, (21)

where D = 1
2 (QP + PQ) is the essentially self-adjoint dilation generator. Here

Ωβ(u) =

∫ +∞

0

dq

q1+β
�̂p (u,−q) , Ω0(u) = Ω(u) . (22)

2.4. Semi-classical portraits

Given a weight function �(q, p) yielding a symmetric unit trace operator M, we
define the semi-classical or lower symbol of an operator A in H as the function

Ǎ(q, p) := Tr
(
AU(q, p)M U †(q, p)

)
= Tr (AM(q, p)) . (23)

When the operator A is the affine integral quantized version of a classical f(q, p)
with the same weight �, we get the transform

f(q, p) �→ f̌(q, p) =

∫
Π+

dq′ dp′

cM�

f

(
qq′,

p′

q
+ p

)
Tr (M(q′, p′)M) . (24)
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Of course, this expression has the meaning of an averaging of the classical f if the
function

(q, p) �→ 1

cM�

Tr (M(q, p)M) (25)

=
1

cM�

1

2πq

∫ +∞

0

dx

∫ +∞

0

dy e−ip(y−x) �̂p

(
x

y
,−x

q

)
�̂p

(y

x
,−y

)
is a true probability distribution on the half-plane.

3. Affine Wigner integral quantization

With the specific weight �aW(q, p) = e−i
√

qp
√
q we obtain twice the affine inversion

operator (Iψ)(x) := (1/x)ψ(1/x), I2 = I,

MaW ≡ 2I =

∫
Π+

U(q, p)�aW(q, p) dq dp . (26)

This operator is the affine counterpart of the operator yielding the Weyl–Wigner
integral quantization when the phase space is R2, i.e., when one deals with Weyl–
Heisenberg symmetry.

Proposition 2. The integral kernel of the quantization of a function f(q, p) through
the weight function has the following expression,

AaW
f (x, x′) =

1√
2π

f̂p

(√
x′

x
, x′ − x

)
. (27)

The application of this procedure to particular cases gives the following results.

Proposition 3.

(i) The quantization of a function of q, f(q, p) = u(q) provided by the weight
�aW is u(Q).

(ii) Similarly, the quantization of a function of p, f(q, p) = v(p) provided by the
weight �aW is v(P ) (in the pseudo-differential sense).

(iii) More generally, the quantization of a separable function f(q, p) = u(q) v(p)
provided by the weight �aW is the integral operator(

AaW
u(q)v(p) ψ

)
(x) =

1√
2π

∫ +∞

0

dx′ v̂(x′ − x)u
(√

xx′
)

ψ(x′) .

(iv) In particular, the quantization of u(q) pn, n ∈ N, yields the symmetric oper-
ator,

AaW
u(q)pn =

n∑
k=0

(
n

k

)
(−i)n−ku(n−k)(Q)P k ,

and for the dilation, AaW
qp = D

Therefore, this affine integral quantization is the true counterpart of the
Weyl–Wigner integral quantization.
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4. Conclusion

The procedure presented here has been applied to questions pertaining to early
cosmology in its quantum aspects (see [6] and references therein), with the choice
of projector quantizer, M = |ψ〉〈ψ| (“affine coherent states”). It allowed us to
set up a consistent quantum dynamics of isotropic, anisotropic non-oscillatory
and anisotropic models, yielding singularity resolution for the pair volume-rate
through a smooth bouncing and a unitary dynamics without boundary conditions,
and offering a consistent semi-classical description of involved quantum dynamics.
Another recent application points up the possible existence of an extra quantum
centrifugal effect in rotating frame [4].

Remark. The ideas and opinions expressed in this article are those of the authors
and do not necessarily represent the view of UNESCO.
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Abstract. We explore the role played by the diffeomorphism group and its
unitary representations in relativistic quantum field theory. From the quantum
kinematics of particles described by representations of the diffeomorphism
group of a space-like surface in an inertial reference frame, we reconstruct the
local relativistic neutral scalar field in the Fock representation. An explicit
expression for the free Hamiltonian is obtained in terms of the Lie algebra
generators (mass and momentum densities). We suggest that this approach
can be generalized to fields whose quanta are spatially extended objects.
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1. Introduction

The focus of this article is on the role played by diffeomorphism groups and their
representations in relativistic quantum field theory (QFT).

We highlight the important fact that diffeomorphism group representations
arise naturally if one starts with the well-known Fock representation of the free,
neutral relativistic scalar field, describing non-interacting bosons [1, 2]. We show
how this occurs. The mass density and the momentum flux density obtained from
the relativistic quantum field are reference-frame-dependent constructs; they are
neither local in spacetime nor Lorentz covariant. However, they are essential to the
description of what one actually measures – particle locations at particular times,
and/or trajectories. Indeed, such measurements always take place in a specific
inertial reference frame.

c© Springer Nature Switzerland AG 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01156-7_6&domain=pdf


48

Our main idea is to reverse the direction of this construction. That is, we
propose to start with a fixed frame of reference, and with respect to that frame, to
obtain the quantum kinematics described by unitary representations of the group
of diffeomorphisms of space and its semidirect product with the group of scalar
functions. Then we identify hierarchies of such representations, and introduce in-
tertwining creation and annihilation fields. Only at that point do we introduce the
spacetime symmetry group (the Poincaré group in this case) which provides the in-
formation needed to construct local relativistic fields out of the intertwining fields.

In Section 2 of this article, we briefly review results on diffeomorphism group
representations in non-relativistic quantum theory. Section 3 highlights our ear-
lier characterization of hierarchies of representations. Section 4 is about obtaining
current algebra and the corresponding diffeomorphism group representations from
the field theory of relativistic neutral scalar bosons. In Section 5, we discuss more
generally how one can begin with “non-relativistic” representations of the diffeo-
morphism group and the current algebra, and obtain a relativistic quantum field
from them. We also express the free relativistic Hamiltonian explicitly in terms
of the original particle density and current operators. Section 6 mentions some
possible directions opened up by our approach.

2. Diffeomorphism groups in Galilean quantum theory

Diffeomorphism groups and their unitary representations play a fundamental role
in non-relativistic (Galilean) quantum theory [3]. To set the stage, we review this
briefly; for details, see [4] and references therein.

Let Σ be the manifold of physical space. Of course Σ can be regarded as
a submanifold of spacetime, with (for example) t = 0. In Galilean theory, Σ is
independent of the velocity of the observer. Let D = C∞

0 (Σ) be the group of
compactly-supported smooth real-valued functions on Σ, under pointwise addition,
and let K = Diff 0(Σ) be the group of compactly supported C∞ diffeomorphisms of
Σ, under composition. Let G = D ×K be the natural semidirect product of these
groups. Then the irreducible, continuous unitary representations of G describe the
quantum kinematics of a wide variety of physical systems.

For (f, φ) ∈ D×K, let us write a continuous unitary representation (CUR) of
G as U(f)V (φ). Under very general conditions, one may realize the representation
in a Hilbert space H = L2

μ(Γ,M), with

[U(f)Ψ](γ) = exp i〈γ, f〉Ψ(γ),

[V (φ)Ψ](γ) = χφ(γ)Ψ(φγ)

√
dμφ

dμ
(γ) ; (1)

where: Γ is a configuration space whose elements (denoted γ) are continuous linear
functionals on D; 〈γ, f〉 denotes the value of γ at f ;M is a complex inner product
space (accommodating vector-valued wave functions), and Ψ ∈ H takes values
in M; φγ denotes the natural group action of a diffeomorphism φ ∈ K on Γ; μ

G.A. Goldin and D.H. Sharp
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is a measure on Γ quasiinvariant under diffeomorphisms; dμφ/dμ is the Radon–
Nikodym derivative of the transformed measure with respect to the original one;
and χφ(γ) is a unitary 1-cocycle acting in M. Each of these has a fairly direct
physical interpretation in quantum mechanics.

The Lie algebra of self-adjoint local current operators is defined in a contin-
uous unitary representation U(f)V (φ) of G by:

ρ(f) = m lim
s→0

U(sf)− I

is
, J(g) = � lim

s→0

V (φg
s )− I

is
(2)

where: f ∈ D, g ∈ vect∞0 (Σ) [the Lie algebra of compactly-supported C∞ vector
fields on Σ], and φg

s is the flow generated by g under the real parameter s; m is
a unit mass, and � is Planck’s constant (over 2π). Here ρ describes the (space-
averaged) mass density, and J the (space-averaged) momentum flux density. Then:

[ρ(f 1), ρ(f 2)] = 0, [ρ(f), J(g)] = i�ρ(Lgf)

[J(g1), J(g2)] = −i�J([g1,g2]) ,
(3)

where Lg is the Lie derivative and [g1,g2] is the Lie bracket of vector fields.

This framework unifies descriptions of the quantum kinematics of a wide
variety of systems. Particular families of representations describe configuration
spaces and exchange statistics for N -particle systems, including systems of indis-
tinguishable particles satisfying Bose statistics, Fermi statistics, and parastatistics.
In two space dimensions one obtains anyon (braid group) statistics [5–9] and non-
abelian braid statistics [10]. Tightly-bound composite particles (quantum dipoles,
quadrupoles, etc.) are also described [11].

One further obtains configuration spaces of infinite but locally finite parti-
cle systems, as in statistical mechanics [12–14], as well as infinite systems with
accumulation points [15, 16]. Systems of extended configurations, such as vortex
patches, filaments, and tubes, are also described by diffeomorphism group repre-
sentations [17–19]. See also [20].

3. Hierarchies of representations

The irreducible unitary diffeomorphism group representations fall naturally into
hierarchies, whose intertwining operators (satisfying a natural commutator bracket
with the densities and currents) create and annihilate objects of the same kind.
These intertwining operators have an interpretation as “second-quantized” fields,
which are general enough to describe not only point particles but also extended
objects [21, 22].

For example, consider a family of N -particle representations, where N =
0, 1, 2, . . . . We have the Hilbert spaces HN , and the unitary representations
UN (f)VN (φ). We are entitled to call the family a hierarchy if for each N there
exists an operator-valued distribution ψ∗

N : HN → HN+1 (the creation field), such
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that for all h ∈ D, f ∈ D, and φ ∈ K,
UN+1(f)ψ

∗
N (h) = ψ∗

N (UN=1(f)h)UN (f) , (4)

VN+1(φ)ψ
∗
N (h) = ψ∗

N (VN=1(φ)h)VN (φ) . (5)

Physically, if we begin with an N -particle state, create a new particle in state h and
then transform the resulting (N +1)-particle state by the unitary group represen-
tation UN+1 (or respectively, VN+1), the result is the same as if we first transform
the N -particle state by UN (resp. VN ), and then create the new particle in the state
obtained by transforming the 1-particle state h by U1 (resp. V1). The construction
is nontrivial because creation and annihilation within a hierarchy must respect the
particle statistics (bosonic, fermionic, or anyonic). When H1 = L2(R3,C), as in
the 1-particle representation of D×K, we write ψ∗(h) =

∫
ψ∗(x)h(x)d3x. We call

ψ∗(x) an intertwining field for the hierarchy. In effect, ψ∗(x) creates a particle at
x ∈ Σ, and its adjoint ψ(x) annihilates a particle at x. We earlier used these ideas
to derive the q-commutation relations for anyon fields [21].

Consequently ψ∗ and ψ also obey natural brackets with the local current
algebra generating the group representations. Furthermore they obey a bracket
with each other: canonical commutation relations, when they intertwine N -particle
Bose representations; anticommutation relations when they intertwine N -particle
Fermi representations; and q-commutation relations when they intertwine N -anyon
representations (in 2-space), where q is the anyonic phase. They are non-relativistic
fields.

In terms of ψ∗ and ψ, we may write the current algebra generators (formally)
as operator-valued distributions:

ρ(x) = ψ∗(x)ψ(x), J(x) = (1/2i){ψ∗(x)∇ψ(x) − [∇ψ∗(x)]ψ(x)} . (6)

We thus have a rather beautiful unifying, current-algebraic description of a wide
variety of distinct non-relativistic quantum systems as representations of a local
symmetry group. It is then natural to ask if there is a role to be played by the
diffeomorphism group and its representations in relativistic quantum field theories.

4. The diffeomorphism group and the free relativistic
neutral scalar Bose field

Suppose we begin with the free neutral scalar relativistic field in the Fock repre-
sentation. We use the following notational conventions to write the main equations
of interest.

In Minkowski spacetime, xμ = (x0,x), with μ = 0, 1, 2, 3; and where x0 = ct;
the metric tensor gμν = diag [1,−1,−1,−1]. The covariant momentum 4-vector is
pμ = (p 0,p), where p 0 = E/c, E being the energy. The wave number 4-vector
is k = (k0,k), where E = �ω and k0 = ω/c = E/�c, and p = �k. Since E 2 =
p2c2 +m2c4, we have ω2 = k2c2 + (m2c4/�2). For a given value of k, we thus also

write k0 = ωk/c, where ωk =
√
k2c2 + (m2c4/�2) .
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Let a∗
k and ak be (respectively) creation and annihilation operators for the

free relativistic neutral scalar field in the Fock representation, for a particle with
energy E = �ωk and 3-momentum p = �k. Then we have,

[ak1 , a
∗
k2
] = ωk1δ

(3)(k1 − k2). (7)

From these (relativistic) operators, one constructs the (non-relativistic) fields from
which particle measurement operators are obtained [2]:

φ1(x) =

∫
k0>0

d3k

k0

1

(2π)3/2
(k0)

1/2 e−ikxak , (8)

and setting t = 0 and k0 = ωk, we have

φ1(x, 0) =

∫
d3k

ω
1/2
k

1

(2π)3/2
e−ik·xak . (9)

Then φ1 and φ∗
1 satisfy the equal-time canonical commutation relations of the

intertwining fields ψ and ψ∗ discussed above; i.e., without any coefficient in the
δ-function:

[φ1(x
0,x), φ∗

1(y
0,y)]x0=y0 = δ(3)(x − y). (10)

Next ρ and J can be defined in terms of these field operators on each N -
particle subspace of the Fock representation, using Eq. (6). They in turn satisfy
the local current algebra (3). When exponentiated, we obtain the N -boson rep-
resentations of the semidirect product group G – i.e., “non-relativistic” quantum
mechanics existing within relativistic quantum field theory. We also highlight the
remarkable fact that ρ and J (unlike the relativistic fields) are actually defined as
distributions over space at a fixed time.

This construction is the one whose direction we want to reverse. That is,
having obtained ψ and ψ∗ by intertwining diffeomorphism group representations
at t = 0 in a specific inertial reference frame, we write relativistic creation and
annihilation operators a∗

k and ak using the inverse transform of the equations
above. From these, we construct the relativistic quantum field.

5. Relativistic QFT from diffeomorphism group representations:
General approach

5.1. Motivation

The spacetime symmetry group informs us how to relate one inertial frame of
reference to another. Traditionally, relativistic QFT begins with the introduction
of fields assumed to be covariant with respect to the Poincaré group, encoding the
physics of special relativity into the theory right from the start.

But the group of diffeomorphisms of spacetime is, in a sense, incompatible
with the Poincaré symmetry. With the exception of (1 + 1)-dimensional space-
time, general diffeomorphisms disrupt the Minkowskian causal structure. More
specifically, call a diffeomorphism of Minkowski space M causal if for any pair of
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points x, y ∈ M , it preserves the sign (+, 0,−) of the Minkowskian “distance”
(x− y)2 := (x− y)μ(x− y)μ (summation convention, with the Minkowski metric).
In (1 + 1)-dimensional spacetime, an infinite-dimensional group of causal diffeo-
morphisms exists, defined by independent actions on each of the two light cone
coordinates. But in Minklowski spacetimes having more than one space dimension,
the causal diffeomorphisms are limited to the finite-dimensional group of Poincaré
transformations together with uniform dilations. In Galileian spacetime, on the
other hand, diffeomorphisms that act on spatial coordinates only (possibly in a
time-dependent way) are among those respecting the causal structure. Thus in the
Galilean case we have an infinite-dimensional group.

This incompatibility of general spacetime diffeomorphisms with special rela-
tivity, together with the value of the diffeomorphism group approach in describing
general quantum kinematics, leads us to the idea of describing measurements of
particles or other entities (field quanta) in a fixed inertial frame – the frame in
which the actual measurements occur. Then we need not worry about covariance;
the measurement operators can be noncovariant and nonlocal in the spacetime
(although local in space at a fixed time). Of course, the corresponding operators
for measurements taken in a different inertial reference frame will be different, and
not obtainable directly from the first set of operators until after covariant fields
(or some other way of encoding the spacetime symmetry) have been introduced.
We thus defer the construction of fields covariant under the spacetime symmetry
until later.

Our idea is natural if we focus on describing spatial configurations in a rel-
ativistic theory (with Poincaré symmetry). One must grapple with the fact that
the shapes of spacetime regions, the particular choices of spacelike surfaces such
as hyperplanes in Minkowskian spacetime, and the shapes of regions within those
surfaces, change with the reference frame of the observer. Therefore, since we are
forced at some stage to deal with noncovariant objects, it makes sense to begin with
them. This is why we specify a frame of reference before beginning the construc-
tions that lead to particle configuration spaces, and without having yet identified
the spacetime symmetry.

5.2. Anticipated steps

Thus we envision the following steps in the program.
1. Choose an inertial frame of reference F (the frame of the observer). We

have not yet built in how observations in one inertial frame are related to those in
another.

2. Call the spacetime as observed from F by the name MF . Introduce a coor-
dinate system for MF in which the coordinate x refers to space, and t to time. A
“spacelike” surface ΣF , coordinatized by x, is obtained by setting t = 0 in MF . We
postulate a Euclidean metric on ΣF , which is to play the role of the manifold Σ in
the earlier discussion. Evidently this approach is general enough to include spatial
manifolds ΣF having nontrivial topology, as well as higher-dimensional spacetimes
(e.g., 10- or 26-dimensional) with some of the spatial dimensions compactified.

G.A. Goldin and D.H. Sharp
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It is natural to regard the different spacetimes MF as fibers in a bundle
over a base space of inertial frames. Each fiber carries a copy of the theory. The
spacetime symmetry should eventually establish the isomorphism of the theories
(diffeomorphism group representations, etc.) in different fibers.

3. Define the group G = D×K with respect to ΣF and consider its continu-
ous unitary representations as discussed above. We remark that even in relativistic
QFT, we need to describe (spatial) configurations based on observable locations
and motions of entities (particles, excitations). Unitary representations of G(ΣF )
are natural because one-parameter groups of diffeomorphisms (i.e., flows) describe
possible smooth motions of configurations in physical space. The infinitesimal gen-
erators of such flows are local currents.

4. Identify one or more hierarchies of representations, describing configura-
tions consisting of entities of the same type (to be interpreted as quanta of the
same field). Introduce creation and annihilation fields as operators intertwining
the unitary representations in the hierarchy.

At this stage in the general development, we have a full description of the
field quanta, but we do not yet have the field – nor do we have a description of
the dynamics, which is to be provided as usual by a Hamiltonian operator.

5. The next step is to introduce a (covariant) relativistic field, defined mak-
ing use of the creation and annihilation fields intertwining the hierarchy of diffeo-
morphism group representations in inertial frame F . This is where the particular
choice of spacetime symmetry (relating different reference frames) is introduced.
The configuration-space entities in the hierarchy of diffeomorphism group repre-
sentations are interpreted as quanta of this field as observable in the reference
frame F .

6. Finally, write the Hamiltonian H describing the (relativistic) dynamics.
While H can be expressed in terms of the relativistic quantum field, the preceding
construction means that it can also be expressed explicitly in terms of the local
currents (the infinitesimal generators in the diffeomorphism group representations
with which we started), together with the (non-relativistic) intertwining fields.
At the end of the construction, the physics described by the relativistic field and
Hamiltonian should not depend on the particular reference frame F with which
we began.

5.3. Constructing the relativistic free neutral scalar field

Carrying out first four steps in (3 + 1)-dimensional Minkowski space, for the hi-
erarchy of N -particle Bose representations of G = D × K, we obtain the creation
and annihilation fields φ∗

1, φ in Fock space satisfying Eq. (10).

To construct the relativistic field φ(x), we use the three-dimensional inverse
transforms of φ1(x, 0) and φ∗

1(x, 0), corresponding to Eq. (9); thus,

1

(2π)3/2

∫
d3xφ1(x, 0)eik·x = ak/ω

1/2
k , (11)
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and correspondingly for the adjoint. This is precisely the point where relativistic
invariance has been put in “by hand” – the definitions of a∗

k and ak from the
intertwining fields φ∗

1 and φ1 are such as to satisfy a relativistic bracket.
Then the relativistic field is, as usual,

φ(x) =
1

(2π)3/2
√
2

∫
k0>0

d3k

k0
(ake−ikx + a∗

ke
ikx) . (12)

We stress that both φ1 and φ are operator-valued distributions in four dimensions
in the same Hilbert space, for any value of c – including the Galilean limit c→∞.

5.4. The free relativistic Hamiltonian in terms of local currents

We conclude by expressing the free relativistic Hamiltonian in terms of diffeomor-
phism group generators (i.e., local currents), in this representation. In a calculation
beginning with

H =

∫
d3k

k0
�ωk a∗

kak =
1

2

∫
d3x : π(x)2 +∇φ(x) · ∇φ(x) + m2φ(x)2 : (13)

where the colons : : denote normal ordering, we obtain the singular-looking expres-
sion,

H =

∫∫
d3x d3y F (x− y) ρ(x) exp

∫ y

x

1

2ρ(x′)
K(x′)dx′ , (14)

where K(x) = ∇ρ(x) + 2iJ(x), and F (x − y) =
∫

d3k ωk exp[ik · (x − y)]. One
can obtain the Galilean free Hamiltonian explicitly as a limiting case of the above
relativistic Hamiltonian.

We remark that there are ways to make mathematical sense of the apparently
singular expressions in Eq. (14) involving products and quotients of the (spatially)
local density and current operators.

6. Discussion and concluding remarks

The example of the free relativistic boson field serves as a model for more general
quantum field theories built up from hierarchies of diffeomorphism group repre-
sentations.

The relativistic fermion case is not quite as straightforward as the boson field.
Had we used the hierarchy of fermionic N -particle representations of the group, we
would have obtained fields satisfying equal-time canonical anticommutation rela-
tions acting in the Fock space of antisymmetric wave functions. But we must take
account of particle spin; in the spinless case, after introducing the Hamiltonian,
one cannot satisfy the important property of local causality.

Note, however, that ruling out spin 0 fermions does not mean that antisym-
metric N -particle representations of diffeomorphism groups are irrelevant. If we
consider spin 1 bosons, for example, we need to include both symmetric and an-
tisymmetric spatial wave functions in order to allow for all of the possible spin
symmetries under particle exchange.

G.A. Goldin and D.H. Sharp
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One natural direction in which to extend these ideas is to non-Fock repre-
sentations of G describing infinitely many particles. A second direction is toward
representations of G describing configurations of extended objects. Intertwining
such representations are fields that create vortex loops, strings, or more general
embedded manifolds. Fock-like representations of relativistic fields whose quanta
have spatial extent would be of great interest from this point of view.

We also anticipate the value of studying interacting relativistic quantum fields
constructed from diffeomorphism group representations.
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Abstract. A class of skew derivations on complex Noetherian generalized
down-up algebras L = L(f, r, s, γ) is constructed.
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Keywords. Generalized down-up algebra; generalized Weyl algebra; skew deri-
vation.

1. Motivation and introduction

Skew derivations, i.e., linear endomorphisms of an algebra that satisfy the Leibniz
rule twisted by algebra automorphisms or, more generally, endomorphisms play
an increasingly important role in classical ring theory (e.g., of Noetherian rings)
and in studies of classes of rings of particular interest in group and quantum group
theories; see, e.g., [19, 25]. Many of such rings have the form of Ore extensions or
skew-polynomial rings S = R[x;σ, δ] where σ is an endomorphism of R and δ is a
skew σ-derivation on R. In fact, S is often obtained through an iterated skew poly-
nomial construction k[x1][x2;σ2, δ2] · · · [xn;σn, δn] over a base field k; here each δi
is a σi-skew derivation of the preceding iterated extension (such an algebra is
sometimes termed an Ore algebra). A great deal of work has been done concerning
two “unmixed” cases, in which either σ = 1 or δ = 0, which provides one with
a thorough understanding of many of the classical iterated skew polynomial rings
such as Weyl algebras, enveloping algebras of solvable Lie algebras, group algebras
of polycyclic groups, and the enveloping algebra U(sl2(k)). Since 1980’s, the emer-
gence of quantum groups and quantized algebras has brought renewed interest in
Ore extensions, where σ and δ are nontrivial, since many of these quantized alge-
bras can be expressed in terms of iterated skew-polynomial rings. Basic examples
include the q-Weyl algebra Aq(k) and the quantized enveloping algebra Uq(sl2(k));
see, e.g., [26] and [18]. Of special interest here are q-skew derivations.

c© Springer Nature Switzerland AG 2019
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In classical ring theory, for instance Kharchenko [20] studied the algebraic
dependence problem on skew derivations of (semi-)prime rings and the skew dif-
ferential identities with automorphisms of (semi-)prime rings. In [12] and [13],
Chang considered the fixed power central skew derivations of prime rings and the
skew derivations with nilpotent values on semiprime rings. In [14] Chuang and
Lee investigated polynomial identities with skew derivations. The work of Bergen
and Grzeszczuk [5] connects existence of locally nilpotent derivations with the Ore
extension nature of rings.

With the emergence of noncommutative geometry or NCG [15] it has been
realized at least as far back as the seminal work of Woronowicz [31] that skew
derivations play the role of vector fields and can be used to construct differential
structures on noncommutative algebras; see, e.g., [24, Section 4.4]. The insistence
on preservation of the classical Leibniz rule for the exterior derivation (so that the
coordinate algebra of a noncommutative variety is a subalgebra of the differential
graded algebra of forms) forces one to abandon this rule for vector fields and
replace it by a weaker condition such as the skew derivation property.

Determining which classes of noncommutative algebras correspond to smooth
noncommutative varieties or manifolds is one of the outstanding problems of NCG.
In a recent proposal [9], which attempts to explore ideas of both algebraic geom-
etry, such as the homological smoothness of Van den Bergh [29] and differential
geometry, such as Connes’ spectral triples, it is argued that a possibility of con-
structing a suitable graded differential algebra or a differential structure should
determine smoothness of a noncommutative variety. This kind of smoothness is
referred to as differential. The proposal involves a strict Poincaré type duality
between differential and integral forms (the reader might like to consult [7] for a
concise explanation of terms involved) and is constructive in nature. Despite some
recent progress in uncovering functorial ways of checking differential smoothness [8]
one needs to study algebras on a case by case basis and construct suitable differ-
ential and integral complexes. In contrast to other approaches such as [16] or,
more recently using the deformation theory, [17, 21, 22], which are based on usual
derivations, in the background for such complexes one often finds skew derivations.

Motivated by the role skew derivations play in NCG, in particular in con-
structing smooth structures, in [1] we undertook a detailed study of skew deriva-
tions on generalized Weyl algebras [2]. Despite their almost näıve simplicity, gen-
eralized Weyl algebras include an astounding number of examples that have ap-
peared and still appear in NCG, and in other algebraic contexts. In this note we
concentrate on one such example in the latter class.

Generalized down-up algebras were introduced by Cassidy and Shelton in [11]
as a generalization of the down-up algebras of Benkart and Roby [4]. Significant,
classical examples of generalized down-up algebras include the enveloping algebra
of sl2, and the enveloping algebra of the 3-dimensional Heisenberg Lie algebra.
More recent examples are various algebras similar to the enveloping algebra of sl2
such as those introduced by Smith [28], Witten [30], Le Bruyn [23] and Rueda [27].
Generalized down-algebras are affine algebras of Gelfand–Kirillov dimension three,
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i.e., they can be interpreted as coordinate algebras of three-dimensional noncom-
mutative varieties, and in the case in which they are Noetherian domains (on which
we focus in this note), it is natural to ask whether they are differentially smooth.
In this note we do not attempt to answer this question, but rather provide the
first paving stones for a path that might lead to an answer by constructing a class
of skew derivations. It is also perhaps worth noting in passing that generalized
down-up algebras can themselves be understood as iterated Ore extensions.

2. Generalized down-up and Weyl algebras

Let k be an algebraically closed field of characteristic zero. Fix scalars r, s, γ ∈ k
and a polynomial f ∈ k[X ]. A generalized down-up algebra L := L(f, r, s, γ) [11]
is a unital associative k-algebra generated by d, u and h, subject to relations:

dh− rhd + γd = 0, hu− ruh + γu = 0, du− sud + f(h) = 0.

When f has degree one, we retrieve all down-up algebras of [4]. It was explained
in [11] that L has Gelfand–Kirillov dimension three and it is Noetherian if and
only if it is a domain, if and only if rs �= 0. From now on, we always assume rs �= 0,
and we also set k = C.

L is said to be conformal if there exists a polynomial g ∈ C[X ] such that
f(X) = sg(X)− g(rX − γ), e.g., L(0, r, s, γ) is conformal. By [11, Lemma 2.8], L
is conformal if s �= ri for all 0 ≤ i ≤ deg(f) (this is a sufficient, but not necessary
condition for conformality). If r �= 1, then, by [10, Propostion 1.7], any generalized
down-up algebra is isomorphic to one with γ = 0. A generalized down-up algebra
L(f, r, s, 0) is conformal if and only if r �= si for all i in the support of f (i.e., for
those i ∈ N, for which X i has a non-zero coefficient in the expansion of f(X)). In
this case the support of g can be assumed to be equal to that of f , and then g is
uniquely determined by f ; in particular deg(f) = deg(g).

Given an algebra R, an automorphism ϕ of R and a central element a ∈ R,
the generalized Weyl algebra R(a, ϕ) is a ring extension of R generated by x and
y, subject to the relations:

xy = ϕ(a), yx = a, xr = ϕ(r)x, yr = ϕ−1(r)y. (1)

Generalized Weyl algebras were introduced and studied by Bavula in [2]. Any
R(a, ϕ) is a Z-graded algebra with R contained in the degree-zero part and
deg(x) = 1, deg(y) = −1. If R is a Noetherian algebra which is a domain and
a �= 0 then R(a, ϕ) is a Noetherian domain. Noetherian generalized down-up al-
gebras can be presented as generalized Weyl algebras as follows. Set a = ud, let
R be the commutative polynomial algebra C[h, a] and define the automorphism ϕ
by the rules ϕ(h) = rh− γ and ϕ(a) = sa− f(h). Then

C[h, a] (a, ϕ) ∼= L(f, r, s, γ).

Henceforth we assume that r is not a root of unity, rs �= 0 and s �= ri, for all
i ∈ N. Thus L is Noetherian and conformal, and with no loss of generality (up to
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isomorphism) we can also assume that γ = 0. In this case there is a more convenient
presentation of L as a generalized Weyl algebra. Let g be the unique polynomial (of
the same degree and with the same support as f) such that f(X) = sg(X)−g(rX).
Let a = ud and k = a− g(h). Then C[a, k] = C[h, k] and the automorphism ϕ acts
on k by

ϕ(k) = ϕ(a− g(h)) = sa− f(h)− g(rh) = sa− sg(h) = sk.

Therefore, L is presented as the generalized Weyl algebra R(ϕ, k + g(h)), where
R = C[h, k] and ϕ is the automorphism of R defined by

ϕ(h) = rh, ϕ(k) = sk. (2)

The relations are thus:

xy = sk + g(rh), yx = k + g(h), (3a)

xp(h, k) = p(rh, sk)x, yp(h, k) = p(r−1h, s−1k)y, (3b)

for all p(h, k) ∈ C[h, k]. L(f, r, s, 0) is recovered from R(k + g(h), ϕ) by the iso-
morphism h �→ h, k �→ ud− g(h), x �→ d, y �→ u.

3. Skew derivations on generalized down-up algebras

For any algebra A, a (right) skew derivation or a σ-derivation is a pair (∂, σ)
consisting of an algebra endomorphism σ : A → A and a linear map ∂ : A → A
that satisfies the σ-twisted Leibniz rule, for all a, b ∈ A,

∂(ab) = ∂(a)σ(b) + a∂(b). (4)

A skew-derivation is said to be inner if it is given by a twisted commutator with
an element of A, i.e., for all a ∈ A, ∂(a) = bσ(a)− ab.

In [1, Theorem 3.1] we constructed a large class of skew derivations on arbi-
trary generalized Weyl algebras. The aim of this section is apply this construction
to Noetherian conformal generalized down-up algebras.

Let A = R(a, ϕ) be a generalized Weyl algebra. Any algebra automorphism
σ of R such that

σ ◦ ϕ = ϕ ◦ σ and σ(a) = a, (5)

can be extended to an automorphism σμ of A by setting,

σμ |R= σ, σμ(x) = μ−1x, σμ(y) = μy, (6)

where μ ∈ C×. The automorphism σμ is called a degree-counting extension of σ of
coarseness μ.

In [1], in addition to general inner skew derivations, two classes of elementary
σμ-skew derivation have been identified:

(1) c-type derivations: To any w ∈ Z and cw ∈ R, such that

bcw = cwϕw(σ(b)), for all b ∈ R, (7)
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one can associate a (unique if R is a domain) derivation ∂c
w on A of Z-degree

or weight w and such that ∂c
w (R) = 0, as follows:

∂w(x) =

⎧⎪⎨⎪⎩
cw xw+1, w > 0

c0 x, w = 0

−μ−1ϕ(acw) y
−w−1 w < 0

, (8a)

∂w(y) =

⎧⎪⎨⎪⎩
−μϕ−1(cw)a xw−1, w > 0

c̃0 y, w = 0

cw y−w+1 w < 0

, (8b)

where c̃0 is a solution to the equation (c̃0 + μϕ−1(c0))a = 0 that satisfy
the twisted-centrality condition (7) with w = 0 (this is the content of [1,
Lemma 3.3]).

(2) α-type derivations: For any w ∈ Z \ {0}, any ϕw ◦ σ-skew derivation αw of
R such that

αw ◦ ϕ = μϕ ◦ αw, (9)

can be (uniquely) extended to a σμ-skew derivation ∂α
w of A of Z-degree w

such that ∂α
w(x) = 0 if w > 0 and ∂α

w(y) = 0 if w < 0. For all r ∈ R, the
formulae are, respectively:

∂α
w(r) = αw(r)x

w , ∂α
w(y) = μαw(a)x

w−1, w > 0, (10a)

∂α
w(r) = αw(r) y

−w , ∂α
w(x) = ϕ (αw(a)) y−w−1, w < 0. (10b)

Also a σ-skew derivation α0 satisfying (9) and such that α0(a) = ca, for
some c ∈ R such that bc = cσ(b), for all b ∈ R, can be extended to a σμ-skew
derivation of A of the Z-degree or weight zero through

∂α
0 (r) = α0(r), ∂α

0 (x) = 0, ∂α
0 (y) = μϕ−1(c) y, (11)

for all r ∈ R (this is the content of [1, Lemma 3.2]).

All non-inner σμ-skew derivations on R(a, ϕ) which vanish either on R or on
x, or on y are necessarily linear combinations of elementary skew derivations listed
in (1) and (2).

We now specify to conformal Noetherian generalized down-up algebras L =
L(f, r, s, 0) viewed as generalized Weyl algebras C[h, k](ϕ, k+ g(h)). Our standing
assumptions are that the parameters r, s ∈ C are neither zero nor roots of unity
and s �= ri, for all i ∈ N.

The identity map is the only automorphism of C[h, k] that satisfies (5). Its
extension to the whole of L is thus given by:

σμ(h) = h, σμ(k) = k, σμ(x) = μ−1x, σμ(y) = μy. (12)

This automorphism is non-trivial if and only if μ �= 1, which we assume from
now on.

Since σ is the identity map, the w-fold self-composition of ϕ (2), ϕw, sends a
polynomial p(h, k) to p(rwh, swk), and since C[h, k] is commutative, the equations
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(7) can only be satisfied non-trivially if w = 0. Consequently, there are only weight
zero σμ-skew c-type derivations of L:

∂c
0(x) = c0(h, k)x, ∂c

0(y) = −μc0(r
−1h, s−1k)y, (13)

for any c0(h, k) ∈ C[h, k]; see [1, Lemma 3.3]. These derivations are inner, provided
there exist p(h, k) ∈ C[h, k] such that

c0(h, k) = μ−1p(h, k)− p(rh, sk). (14)

By comparing the coefficients at powers of h and k, one easily finds that (14) can
be solved if, and only if,

μ−1 �= rβsγ , for all (β, γ) ∈ supp(c0(h, k)),

where, for any polynomial π ∈ C[h, k], supp(π) denotes its support, defined as the
set of all pairs (m,n) ∈ N, for which π has a non-trivial hmkn-term. In view of the
above, this proves the following

Proposition 3.1. The Noetherian generalized down-up algebra L(f, r, s, 0) =
C[h, k](ϕ, k + g(h)) admits a non-inner skew derivation twisted by σμ (12) and
vanishing on C[h, k] if, and only if, μ = r−βs−γ for some β, γ ∈ N. This deriva-
tion is of the form (13), where c0(h, k) ∼ hβkγ .

To construct α-type derivations we need to consider skew derivations αw of
C[h, k] twisted by ϕw. Any such skew derivation is fully determined by its values
on generators of C[h, k], i.e., there exists a unique ϕw-skew derivation αw which
on h and k is equal to any chosen pair of elements of C[h, k], say

αw(h) =
∑
i,j

αw
h,i j hikj , αw(k) =

∑
m,n

αw
k,mn hmkn. (15)

The value of αw on any polynomial is then obtained by applying the ϕw-twisted
Leibniz rule. The resulting skew derivation αw satisfies condition (9) if and only
if this condition is satisfied for αw evaluated on generators of C[h, k]. This in turn
is equivalent to equations,

r
∑
i,j

αw
h,i j hikj = μ

∑
i,j

risjαw
h,i j hikj , (16a)

s
∑
m,n

αw
k,mn hmkn = μ

∑
m,n

rmsnαw
k,mn hmkn. (16b)

Equations (16) yield the following constraints:

risj =
r

μ
, (i, j) ∈ supp(αw(h)); rmsn =

s

μ
, (m,n) ∈ supp(αw(k)). (17)

Constraints (17) restrict the supports of αw(h) and αw(k) as well as possible values
of μ. Set

r = sb1 , μ−1 = sb2 , where b1 ∈ C× \ { 1q | q ∈ N×}, b2 ∈ C×. (18)

The removal of zeros and the fractions 1/q ensures that s is not a natural power of
r, which is one of our standing assumptions (needed for L to be both conformal and
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Noetherian), and that μ �= 1. Note that the vector b := (b1, b2) is not determined
uniquely by r, s and μ. Solving constraints (17) we obtain the following forms of
αw(h) and αw(k):

αw(h) =
∑
i∈I

αw
h,ih

ikb2+(1−i)b1 , αw(k) =
∑
m∈J

αw
k,mhmkb2−mb1+1, (19)

where I and J are any finite subsets of

Ib := {t ∈ N | b2 + (1− t)b1 ∈ N}, Jb := {t ∈ N | b2 − tb1 + 1 ∈ N}, (20)

respectively. In view of the above, these considerations lead to:

Proposition 3.2. Under standing assumptions on the Noetherian generalized down-
up algebra L and with b given by (18), the following formulae define σμ-skew
derivations of L of non-zero weight:

∂α
w(p(h, k)) =

{
αw(p(h, k))xw w > 0,

αw(p(h, k))y−w w < 0,
(21a)

∂α
w(x) =

{
0 w > 0,

μ−1αw(sk + g(rh))y−w−1 w < 0,
(21b)

∂α
w(y) =

{
μαw(k + g(h))xw−1 w > 0,

0 w < 0,
(21c)

for all p(h, k) ∈ C[h, k], where αw are given by (19) with I and J being finite
subsets of respectively Ib and Jb given in (20). The σμ-skew derivations (21) are
all (possibly non-inner) skew-derivations of L of positive weight that vanish on x
or of negative weight that vanish on y.

What Ib and Jb are depends on b = (b1, b2). For example if b1 is a negative
integer and b2 is a positive integer, then Jb = N, while Ib = N if b2 ≥ −b1 and
Ib = N \ {0} otherwise. If b1 is a positive integer or if b2 is negative, then the
indexing sets Ib or Jb could become finite or even empty. For example, if both b1
and b2 are positive, then

Ib=

⎧⎪⎨⎪⎩
{0, 1} b1 > b2,

{0, 1, 2} b1 = b2,

{0, . . . , q+1} b1 < b2,

Jb=

⎧⎪⎨⎪⎩
{0} b1 > b2 + 1,

{0, 1} b1 = b2, b2 + 1,

{0, . . . , q+δρ,b1−1} b1 < b2,

where q is the quotient and ρ the remainder of the division of b2 by b1.
If b1 is positive and b2 is negative such that b1 < |b2|, then Ib = ∅, hence

there are no solutions to (17).
The sets Ib and Jb may be non-empty even if the components of b are not

integral. For example, if b1 = b2, then 2 ∈ Ib and 1 ∈ Jb.
In the weight-zero case in addition to (17), one also needs to require that

α0(k + g(h)) contains factor k + g(h). In contrast to the non-zero weight case the
values of α0 on h and k depend heavily on the choice of g(h), and we take this as
an excuse for not including them here.
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[7] T. Brzeziński, Differential and integral forms on non-commutative algebras, [In:]
Geometric Methods in Physics XXXV, Workshop 2016, Birkhäuser, Basel, (2018),
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Sci. Paris, Ser. I 307 (1988), 403–408.

[17] E. Eriksen, O.A. Laudal & A. Siqveland,Noncommutative Deformation Theory, CRC
Press, Boca Raton, FL, 2017.

[18] K.R. Goodearl, Prime ideals in skew polynomial rings and quantized Weyl algebras,
J. Algebra 150 (1992), 324–377.

[19] K.R. Goodearl & R.B. Wakefield, Jr., An Introduction to Noncommutative Noether-
ian Rings, Cambridge University Press, Cambridge, 2004.

[20] V.K. Kharchenko, Automorphisms and Derivations of Associative Rings, Kluwer,
1991.



Skew Derivations on Down-up Algebras 67

[21] O.A. Laudal, Phase spaces and deformation theory, J. Gen. Lie Theory Appl. 5
(2011), Art. ID G110104, 18 pp.

[22] O.A. Laudal, Geometry of Time-Spaces. Non-commutative Algebraic Geometry, Ap-
plied to Quantum Theory, World Scientific Publishing, Hackensack, NJ, 2011.

[23] L. Le Bruyn, Conformal sl2-enveloping algebras, Comm. Algebra 23 (1995), 1325–
1362.

[24] J. Madore, An Introduction to Noncommutative Geometry and Its Physical Applica-
tions, 2nd ed., Cambridge University Press, Cambridge 1999.

[25] J.C. McConnell & J.C. Robson, Noncommutative Noetherian Rings, American Math-
ematical Society, Providence R.I., 2001.

[26] S. Montgomery & S.P. Smith, Skew derivations and Uq(sl(2)), Israel J. Math 72
(1990), 158–166.

[27] S. Rueda, Some algebras similar to the enveloping algebra of sl(2), Comm. Algebra
33 (2002), 1127–1152.

[28] S.P. Smith, A class of algebras similar to the enveloping algebra of sl(2), Trans.
Amer. Math. Soc. 322 (1990), 285–314.

[29] M. Van den Bergh, A relation between Hochschild homology and cohomology for
Gorenstein rings, Proc. Amer. Math. Soc. 126 (1998), 1345–1348; Erratum: Proc.
Amer. Math. Soc. 130 (2002), 2809–2810.

[30] E. Witten, Gauge theories, vertex models, and quantum groups, Nucl. Phys. B 330
(1990), 285–346.

[31] S.L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum
groups), Comm. Math. Phys. 122 (1989), 125–170.

Munerah Almulhem
Department of Mathematics
Swansea University
Swansea SA2 8PP, UK

and

Department of Mathematics
Imam Abdulrahman bin Faisal University
Dammam 34212, K.S.A.
e-mail: 844404@swansea.ac.uk

Tomasz Brzeziński
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Abstract. We unveil the geometric nature of the multiplet of fundamental
fermions in the Standard Model of fundamental particles as a noncommutative
analogue of deRham forms on the internal finite quantum space.
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1. Introduction

From the conceptual point of view the Standard Model (S.M.) of fundamental par-
ticles and their interactions is a particular model of U(1)× SU(2)× SU(3) gauge
fields (bosons) minimally coupled to matter fields (fermions), plus a Higgs field
(boson). After the second quantization with gauge fixing, spontaneous symmetry
breaking mechanism, regularization and perturbative renormalization it extremely
well concords with the experimental data. Even so (unreasonably) successful it
however does not explain (though somewhat constrains) the list of particles, in
particular the existence of 3 families, contains several parameters and does not
include the fourth known interaction: gravitation, with its own fundamental sym-
metry: general relativity or diffeomorphisms. There have been various attempts to
settle some of the above shortcomings: GUT based on a simple group SU(5) or
SO(10), modern variants of old Kaluza–Klein model with ‘compactified’ internal
dimensions, and others more recent and fashionable, that are still under extensive
massive study.
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Of our interest in this note is another distinct approach to the S.M. in the
framework of noncommutative geometry by A.Connes et al., see, e.g., [6], which is
not so widely known among physicists. It interprets the multiplet of fundamental
fermions as a field on a finite quantum space, on which the would be “coordinates”,
as well as the algebra of “functions” fail to commute. In this note we focus on its
deeper geometric structure, aiming to shed more light on the nature of this internal
quantum space. We shall review the key results of the two recent papers [7, 8],
explaining in more detail the classical (commutative) motivation behind them. For
that some well-known material in differential geometry will be presented from the
viewpoint of the so-called spectral triples; with the only new contribution in the
last part of Subsection 2.2 regarding their KO-dimension.

2. Introduction

The noncommutative formulation νS.M. of the Standard Model takes its cue from
its geometry which in mathematical terminology corresponds to a connection (lo-
cally a multiplet of vector fields) whose structure group is U(1)×SU(2)×SU(3) on
(a multiplet) of spinors, together with a doublet of scalar fields. Although it does
not renounce of groups, νS.M. is however based primarily on algebras. Moreover
to the 75 years-old Gelfand–Naimark (anti)equivalence:

topological spaces←→ commutative C∗-algebras

and to the Serre–Swan equivalence:

vector bundles←→ modules

it adjoins two other ingredients to encode such structures as smoothness, calculus
and (Riemannian) metric on a space M . The first one is a Hilbert space H that
carries a unitary representation of a (possibly noncommutative) ∗-algebra A, and
so obviously also of its norm completed C∗-algebra. The second one is an analogue
of the Dirac operator on H . Together with a ∗-algebra A they satisfy certain
analytic conditions: D is selfadjoint, [D, a] are bounded ∀a ∈ A and (D− z)−1 are
compact for z ∈ C \ R, so that they form the so-called spectral triple (S.T.) [5]

(A,H,D).

Such a S.T. is even if there is a Z2-grading χ of H , χ2 = 1, χ† = χ, with which
all a ∈ A commute and D anticommutes. Furthermore it is real if there is a C-
antilinear isometric operator J on H , such that denoting B′ the commutant of
B ⊂ B(H),

JAJ−1 ⊂ A′, (1)
which is often termed order 0 condition. We say that a real S.T. satisfies the order
1 condition if

JAJ−1 ⊂ [D,A]′ (2)
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and the order 2 condition1 if

J [D,A]J−1 ⊂ [D,A]′. (3)

The A-bimodule spanned by [D,A] is often called space of 1-forms, and the
algebra generated by A and [D,A] the space of all forms for the Dirac calculus
(with the exterior derivative given by the commutator with D). Motivated by the
classical examples (cf. the next subsections) slightly abusing the terminology we
will call, quite as in [10], Cliford algebra the complex ∗-algebra C�D(A) generated
by A and [D,A].

Note that for noncommutative A a priori there is no right action of A on H ,
but given J there is one:

ha := Ja∗J−1h,

that commutes with the left action due to the order 0 condition and so H be-
comes an A-A bimodule. Furthermore, if the order 1 condition holds H becomes
a C�D(A)-A bimodule, and if the 2nd-order condition holds H becomes even a
C�D(A)-C�D(A) bimodule.

Connes formulated few other important properties of real spectral triples.
One of them requires that the following identities are satisfied

J2 = ε id, (4)

DJ = ε′JD, (5)
and in even case

χJ = ε′′Jχ, (6)
where the three signs ε, ε′, ε′′ ∈ {+,−} specify the so-called KO-dimension mod-
ulo 8:

n 0 1 2 3 4 5 6 7
ε + + − − − − + +
ε′ + − + + + − + +
ε′′ + − + −

(7)

(If dimension n is even one can alternatively use χJ as a new real structure, which
changes the parameter ε′ to −ε′, and ε to εε′′.)

2.1. Canonical spectral triple
A prototype example is the canonical S.T. on a closed oriented spin manifold M
of dimension n equipped with a Riemannian metric g:

(C∞(M), L2(S), D/ ). (8)

Here C∞(M) is the algebra of smooth complex functions on M , S is the rankC =
2[n/2] bundle of Dirac spinors on M , whose sections carry a faithful irreducible
representation

γ : Γ(C�(M))
≈−→ EndC∞(M) Γ(S) ≈ Γ(S)⊗C∞(M) Γ(S)

∗, (9)

1While the order 1 condition means classically that D is order 1 differential operator, order
0 and 2 conditions don’t have such interpretation.
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of the algebra of sections of the (simple part of) complex Clifford bundle C�(M),
generated by v ∈ TM with relation v2 + g(v, v) = 0. Furthermore D/ is the usual
Dirac operator

D/ = γ ◦ ∇̃ =
n∑
j

γ(ej)∇̃ej , (10)

where ∇̃ is a lift to S of the Levi-Civita connection on M and ej, j = 1, . . . , n, is
a local oriented orthonormal basis of TM .

One has

[D/ , f ] = γ(df) , f ∈ C∞(M),

or, what is the same, the symbol of D/ is

σD/ (ξ) = −iγ(ξ), ξ ∈ T ∗M ,

where we have identified TM ≈ T ∗M , and so ∇f with df , using the metric g. Note
that the operators of that form together with functions generate an isomorphic
copy of the Clifford algebra Γ(C�(M)).

If dimM is even there is also a Z2-grading χS of L2(S), with which all
a ∈ A commute and D/ anticommutes. It should be mentioned that D/ is an elliptic
operator and its index, or more precisely the Fredholm index ofD/ |Γ(S+) : Γ(S

+)→
Γ(S−), where Γ(S±) are±1 eigenspaces of χS , plays an important role in geometry
and applications to physics. It can be expressed in terms of the characteristic class
called Â-genus, a topological invariant of M .

Furthermore there is a real structure (known as charge conjugation) JS on
L2(S), that satisfies the order 0 condition (1) and the order 1 condition (2), but
not the order 2 condition (3). Indeed, JS and (8) obey a stronger version of (1) and
(2) which excludes (3). Namely the norm closure of C∞(M), that is the algebra
C(M) of continuous functions onM , is the maximal commutant in B(L2(S)) of the
norm closure of C�D/ (C∞(M)) = C∞(M)[D/ ,C∞(M)], which is just the algebra of
continuous sections Γ(C�(M)) of the (complexified) Clifford bundle C�(M) on M
in the Dirac representation. We can thus say that “the Dirac spinor fields provide
a Morita equivalence C(M)− Γ(C�(M)) bimodule”.

As a matter of fact for the latter property it suffices that M is spinc, that
can be defined by any of the following three equivalent statements:

i) there exist a principal Spinc(n)-bundle, such that the vector bundle associ-
ated with the representation ρ×� is isomorphic to the tangent bundle T (M);

ii) SO(n)-bundle of oriented orthogonal frames lifts to Spinc(n);
iii) the second Stiefel–Whitney class w2(M) is a modulo 2 reduction of a class
in H2(M,Z).

Here Spinc(n) is the quotient group of Spin(n) × U(1) by the subgroup Zdiag2 =
{(1, 1), (−1,−1)}, ρ : Spin(n) → SO(n) is the nontrivial double covering and
� : U(1)→ U(1) is the square map.
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Importantly however the property that an oriented Riemannian manifold M
is spinc is actually tantamount [12] to

∃ a Morita equivalence C�(M)−C(M) bimodule Σ. (11)

Indeed when (11) holds then automatically Σ ≈ Γ(S), where S is the C-vector
bundle of Dirac spinors on M .

Therefore spinc manifolds lend themselves to noncommutative generalization
via the algebraic property (11) by taking advantage of the definition of Clifford
algebra C�D(A). Next, the algebraic characterization of spin manifolds also admits
a noncommutative generalization as the condition (11) plus a real structure (charge
conjugation) J that implements it.

We remark that the canonical S.T. fully encodes the geometric data on M ,
that can be indeed reconstructed [4] from a commutative S.T. with certain few ad-
ditional properties. One of these properties requires that KO-dimension, defined by
(4), (5), (6), is equal for the operators D/ , χS , JS to the dimension of M modulo 8.

2.2. Hodge–deRham spectral triple
The canonical S.T. (8) is not the only natural S.T. On any oriented closed Rie-
mannian manifold M there is also

(C∞(M), L2(Ω(M)), d + d∗), (12)

where Ω(M) is the graded space of complex deRham differential forms on M , d
is the exterior differential and d∗ is its adjoint.

The operator d + d∗ is actually Dirac-type since

d + d∗ = λ ◦ ∇, (13)

where

λ : Γ(C�(M))→ EndC∞(M) Ω(M), λ(v) = v ∧ −v� , v ∈ T ∗M ≈ TM, (14)

is the (reducible) faithful complex representation on Ω(M) of the algebra of sec-
tions Γ(C�(M)) of the (complexified) Clifford bundle C�(M) over M . The formula
(13) means that

[d + d∗, f ] = λ(df) , f ∈ C∞(M), (15)
what is also the same as the symbol of d + d∗ being

σd+d∗(ξ) = −iλ(ξ), ξ ∈ T ∗M.

Note that as for the canonical D/ the operators of the form (13) together with
functions generate Γ(C�(M)), and thus indeed C�d+d∗(C∞(M)) ≈ Γ(C�(M)).

The representation λ is equivalent to the left regular self-representation of
Γ(C�(M)), via the isomorphism of vector bundles C�(M) ≈ Ω(M). There is also
an anti-representation

ρ : Γ(C�(M))→ EndC∞(M) Ω(M), λ(v) = (v ∧+v�)χΩ , v ∈ T ∗M ≈ TM, (16)

where
χΩ = ±1 (17)
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on even forms Ω(M)even, respectively odd forms Ω(M)odd. It is equivalent to the
right regular self-antirepresentation of Γ(C�(M)).

Furthermore, since the endomorphisms λ(v) and ρ(v′) commute, Ω(M) is
a Γ(C�(M))-Γ(C�(M)) bimodule, which is equivalent to Γ(C�(M)). Thus, Ω(M)
is actually a self-Morita equivalence Γ(C�(M))-Γ(C�(M)) bimodule, the property
which in fact provides its unambiguous characterization up to a tensor product
with sections of a complex line bundle.

The operator χΩ (17) always defines a Z2-grading of L2(Ω(M)) according
to the parity of forms. If dimM = n = 2m (even) there is also another grad-
ing χ′

Ω given by the normalized Hodge star operator, defined in terms of a local
orthonormal oriented basis ej , j = 1, . . . , n, n = 2m of T ∗M by

χ′
Ω(e

j1 ∧ · · · ∧ ejk) = ik(k−1)+mejk+1 ∧ · · · ∧ ejn , 0 ≤ k ≤ n, (18)

where j1, . . . , jn is an even permutation of 1, . . . , n.
Both the gradings χΩ and χ′

Ω commute with a ∈ C∞(M) and anticommute
with d + d∗. As is well known, they play an important role for the index of the
elliptic operator d + d∗. More precisely the Fredholm index of

(d + d∗)|Ω(M)even : Ω(M)even → Ω(M)odd

computes the Euler character of M , while the index of

(d + d∗)|Ω(M)s : Ω(M)s → Ω(M)a,

where Ω(M)s and Ω(M)a are respectively the ±1 eigenspaces of χ′
Ω, computes the

signature of M .
Furthermore there is also a real structure JΩ on L2(Ω(M)) given just by

the complex conjugation of forms. It satisfies the conditions (1) and (2) but defi-
nitely not (3) and therefore cannot implement the Γ(C�(M))-Γ(C�(M)) self-Morita
equivalence as above.

In order to implement this equivalence, we need another real structure J ′
Ω on

Ω(M), that interchanges the actions λ and ρ. It turns out that it can be defined as

J ′
Ω(e

j1 ∧ · · · ∧ ejk) = ejk ∧ · · · ∧ ej1, 0 ≤ k ≤ n, (19)

which corresponds to the main anti-involution on Γ(C�(M)) and can be simply
written on Ωk(M) as

J ′
Ω = (−)k(k−1)/2 ◦ c.c. (20)

This real structure satisfies all the order conditions (1), (2) and (3) and does
implement the Γ(C�(M))-Γ(C�(M)) self-Morita equivalence as above.

We mention that for the operators d+d∗, χΩ, JΩ one gets the signs ε = 1, ε′ =
1, ε′′ = 1 and so the KO-dimension is 0. Instead for the operators d + d∗, χ′

Ω, JΩ

the signs are ε = 1, ε′ = 1, ε′′ = (−1)m and so the KO-dimension is 0 if n=0 mod
4, and 6 if n=2 mod 4 [A. Rubin, MSc Thesis].

As far as the operators d + d∗, χΩ and J ′
Ω are concerned we get the signs

ε = 1, ε′′ = 1 but on Ωk(M) d and d∗ have different (anti) commutation relations
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with J ′
Ω. Instead for the operators d + d∗, χ′

Ω and J ′
Ω we get the sign ε = 1, but

again ε′ is not determined, while on Ωk(M) we obtain

J ′
Ωχ′

Ω = (−1)kχ′
ΩJ ′

Ω (21)

so the sign ε′′ depends on k. These features elude the usual notion of KO-dimension
which as known was tailored for the canonical spectral triple.

Closing this section we remark that it is not clear whether, and with which
additional conditions, this S.T. equipped with any combination of the gradings
and real structures as above may faithfully encode the geometric data on M , that
can be then reconstructed.

3. Noncommutative formulation of the Standard Model: νS.M.

Concerning the underlying arena of νS.M., see, e.g., [6], it is

(ordinary (spin) manifold M) × (finite quantum space F ),

described by the algebra C∞(M)⊗AF ≈ C∞(M,AF ), where

AF = C⊕H⊕M3(C).

Here H is the (real) algebra of matrices of the form[
α β
−β̄ ᾱ

]
, α, β ∈ C,

which is isomorphic to the algebra of quaternions.
The Hilbert space is

L2(S)⊗ HF ,

where
HF = C96 =: Hf ⊗ C3,

with C3 corresponding to 3 generations, and

Hf = C32 �M8×4(C).

The orthonormal basis of Hf is labeled by particles and antiparticles, that we
arrange as a 8× 4 matrix ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

νR u1
R u2

R u3
R

eR d1R d2R d3R
νL u1

L u2
L u3

L

eL d1L d2L d3L
ν̄R ēR ν̄L ēL
ū1
R d̄ 1

R ū1
L d̄ 1

L

ū2
R d̄ 2

R ū2
L d̄ 2

L

ū3
R d̄ 3

R ū3
L d̄ 3

L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the indices 1, 2, 3 correspond to the color quantum number.



76 L. Dąbrowski

The representation πF of AF is diagonal in generations and πF (λ, q,m) is
given on Hf by left multiplication by the matrix:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎣
λ 0
0 λ̄

0 0
0 0

0 0
0 0

q

⎤⎥⎥⎦ 04

04

⎡⎢⎢⎣
λ 0 0 0
0
0
0

m

⎤⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (22)

Note that πF (AF ) is a real ∗-algebra of operators, and to get its complexification
AF just replace λ̄ by an independent λ′ ∈ C, and take q ∈M2(C).

The grading (the chirality operator) is

χM ⊗ χF ,

where χF is diagonal in generations and on Hf reads:

χF =

⎡⎣12 −12
04

⎤⎦⊗ 14 +

[
04
−14

]
⊗
[
12
−12

]
. (23)

The real conjugation is

JM ⊗ JF ,

where JF is also diagonal in generations and on Hf reads:

JF

[
v1
v2

]
=

[
v∗2
v∗1

]
, (24)

that satisfies J2
F = 1, the order 0 condition:

[a, JF bJ−1
F ] = 0 ∀ a, b ∈ AF ,

and the order 1 condition:

[[D, a], JF bJ−1
F ] = 0 ∀ a, b ∈ AF (25)

(as in the classical case).
Finally, the Dirac operator is

D = D/M ⊗ id+ χM ⊗DF ,
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where DF employed by Chamseddine–Connes’ reads on HF

DF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Υ∗
ν Υ∗

R

Υ∗
e

Υν

Υe

ΥR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗ e11 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Υ∗
u

Υ∗
d

Υu

Υd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗ e⊥11

+ e55 ⊗

⎡
⎢⎢⎣

0 0
0 0

Υ∗
ν 0
0 Υ∗

e

Υν 0
0 Υe

0 0
0 0

⎤
⎥⎥⎦+ (e66 + e77 + e88)⊗

⎡
⎢⎢⎣

0 0
0 0

Υ∗
u 0
0 Υ∗

d

Υu 0
0 Υd

0 0
0 0

⎤
⎥⎥⎦ . (26)

Here the first tensor factor acts by the left matrix multiplication and the second
one by the right matrix multiplication, ejk are the usual matrix units, the empty
spaces stand for 0, and Υ’s are in Mat(N,C) with N equal to the number of
generations (N = 3 on the current experimental basis).

Concerning the data DF , χF and JF given above the KO-dimension comes
as 6.

3.1. Properties of νS.M.

With the ingredients as listed in the previous section one gets:

• the group G := {U = uJFuJ−1
F |u ∈ AF , det U = 1} turns out to be isomor-

phic (up to a finite center) with the gauge group U(1)×SU(2)×SU(3) of the
S.M. (also as functions on M);
• all the fundamental fermions in H have the correct S.M. charges with respect
to G broken to U(1)em × SU(3);

• the 1-forms a[DF , b], a, b ∈ C∞(M,AF ) yield the gauge fields Aμ, W±, Z,
Gμ of the S.M. (from the part DM of D), plus the weak doublet complex
scalar Higgs field (from the part DF of D).

The merits of the noncommutative formulation are:

• it treats discrete and continuous spaces (or variables) on the same footing;
• both the gauge and the Higgs field arise as parts of a connection;
• the appearance of solely fundamental representations of G in the S.M. gets
an explanation as the fact that they are the only irreducible representations
of simple algebras;
• there is an elegant spectral action Trf(D/Λ), that reproduces the bosonic
part of LS.M. as the lowest terms of asymptotic expansion in Λ, and the
matter action < φ,Dφ > for the (Wick-rotated) fermionic part;
• it couples in a natural way to gravity on M ;
• is claimed [2, 3] to predict new relations among the parameters of S.M.

Some of the shortcomings still present are as in the usual S.M.:
the 3 generations (families) put by hand, several free parameters, though most of
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them incorporated into a single geometric quantity: DF . Others are the unimodu-
larity condition to be posed on the gauge group G and a special treatment needed
for the two kinds of fermion doublings due to the presence of chirality ±1 and
particles/antiparticles both in L2(S) and HF .

3.2. The geometric nature of Hf

The above “almost commutative” geometry is described by a S.T.

(C∞(M), L2(S), D/ )× (AF , Hf , DF ),

that is mathematically a product of the “external” canonical S.T. on spin manifold
M with the “internal” finite S.T.

Few quite natural questions are in order concerning the geometric interpre-
tation of the internal S.T. (AF , Hf , DF ):

Does it also correspond to a (noncommutative) spin manifold?
Are the elements of Hf “spinors” in some sense?
In particular “Dirac spinors”?
Or does it correspond rather to deRham forms?
Or else?

To answer these questions, motivated by the classical case as in Section 2.1, the
following definition has been formulated for a general unital S.T.:

Definition ([7]). A real spectral triple (A,H,D, J) is called spin (and elements ofH
are quantum Dirac spinors) if H is a Morita equivalence C�D(A)-JAJ−1 bimodule
(i.e., after norm-completion the algebras C�D(A) and JAJ−1 are maximal one with
respect to the other).

Is then the internal S.T. of νS.M. spin, like the external one that is given by
the canonical S.T. on M?

Building on and extending the classifications of [9] and [11] the answer in [7]
is negative. In fact therein after a systematic search an element

X = e55 ⊗ (1 − e11)

has been found, such that X ∈ C�D(A)′ but X /∈ JAJ . A possible way to circum-
vent this “no go” has been suggested by employing a different grading and adding
two extra non-zero matrix elements of DF , the status of which however requires a
further scrutiny (since though desirable for the correct renormalized Higgs mass,
they would have unobserved couplings to fermions).

But then, without such additions, may be the internal S.T. of νS.M. is rather
an analogue of the other natural classical spectral triple, namely deRham forms?

To answer this question we have to formulate also these notions noncommu-
tatively using the algebraic description of the Hodge–deRham spectral triple with
the grading χΩ and real structure J ′

Ω as in Section 2.2.

Definition (cf. [8]). A spectral triple (A,H,D) is called complex Hodge (and vec-
tors in H complex quantum deRham forms) if H is a Morita equivalence C�D(A)−
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C�D(A) bimodule (i.e., after norm-completion these algebras are maximal one with
respect to the other).
A complex Hodge spectral triple (A,H,D) with real structure J is called Hodge
if J satisfies the order 2 condition and implements the right C�D(A)-action.

The following theorem provides the answer in the case of one generation and
thus for Υ′s ∈ C in (26).

Theorem ([8]). For the internal spectral triple of the νS.M. with one generation
the Hodge property holds whenever Υx �= 0, ∀ x ∈ {ν, e, u, d} and

|Υν | �= |Υu| or |Υe| �= |Υd| . (27)

In the rest of this section we will sketch the steps of the proof.
First by direct computation we find that the commutant of AF in M8(C) is

the algebra CF with elements of the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q11 q12

α

β12

q21 q22

δ13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (28)

where α, β, δ ∈ C, q = (qij) ∈ M2(C). Consequently the commutant of AF in
EndC(H) is A′

F = CF ⊗M4(C) �M4(C)⊕3 ⊕M8(C) of complex dimension 112.
Next JFAF JF ⊂ EndC(HF ) consists of elements of the form:

[
14 04
04 04

]
⊗

⎡⎢⎢⎣
λ 0 0 0
0
0
0

m

⎤⎥⎥⎦+

[
04 04
04 14

]
⊗

⎡⎢⎢⎣
λ 0
0 λ̄

0 0
0 0

0 0
0 0

q

⎤⎥⎥⎦ ,

where the first factors of the tensor product acts by left matrix multiplication and
the second factor by the right matrix multiplication.

Note that A and AC have the same commutant in EndC(HF ). The map
a �→ JF āJF gives an isomorphism AF → JFAFJF and of their complexifications,
and also the map x �→ JF x̄JF is an isomorphism between A′

F and (JFAF JF )
′.

Therefore the commutant (JFAFJF )
′ of JFAFJF has elements

a⊗ e11 +

[
b

c

]
⊗ e22 +

[
b

d

]
⊗ (e33 + e44) (29)

with a ∈M8(C), b, c, d ∈M4(C).
Furthermore A′

F ∩ (JFAFJF )
′ � C⊕10 ⊕M2(C). It follows that the complex

dimension of A′
F+(JFAFJF )

′ is 2·112−14 = 210. The (real) subspace of Hermitian
matrices has real dimension 210.
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Now we recall that any unital complex ∗-subalgebra of EndC(H), where
dimH < ∞, is a finite direct sum of matrix algebras: B �

⊕s
i=1 Mmi(C). The

units Pi, 1 ≤ i ≤ s of Mmi(C) are orthogonal projections and H decomposes as
H �

⊕s
i=1 Hi, with

Hi = Pi ·H � Cmi ⊗ Cki , (30)

where ki is multiplicity of the (unique) irreducible representation Cmi of Mmi(C)
in Hi, and Mmi(C) acts on the 1st factor of Cmi ⊗ Cki by matrix product. Then
one has the following lemma:

Lemma (A). The commutant of B in EndC(H) is B′ �
⊕s

i=1 Mki(C) and the
action of B′ on Hi � Cmi ⊗ Cki is given by matrix multiplication by Mki(C) of
the second factor in the tensor product.

We will also need:

Lemma (B). Let (A,H,D, J) be a finite-dimensional real spectral triple. Assume
that B ⊆ EndC(H) is a unital complex ∗-algebra satisfying:

C�D(A) ⊆ B and B′ = JBJ−1 .

The following are equivalent:

(a) C�D(A)′ = JC�D(A)J−1 (the Hodge property)
(b) C�D(A)′ ⊆ JBJ−1

(c) C�D(A) = B.

Proof of Lemma (B).

(a ⇒ b). The hypothesis C�D(A) ⊆ B implies JC�D(A)J−1 ⊆ JBJ−1; and thus
from (a) follows (b).

(b ⇒ c). C�D(A)′ ⊆ JBJ−1 = B′ implies B ⊆ C�D(A), and so using our assump-
tions: C�D(A) = B.

(c ⇒ a). If (c) holds then B′ = JBJ−1 translates to C�D(A)′ = JC�D(A)J−1. �

Now, proceeding with the proof of the theorem, we take

B := C⊕M3(C)⊕M4(C)⊕M4(C) (31)

with (λ,m, a, b) ∈ B represented on HF as[
λ 0
0 m

]
⊗ e22 ⊗ 1 + a⊗ e11 ⊗ e11 + b⊗ e11 ⊗ (1− e11) . (32)

Next we:

• check that C�DF (AF ) ⊂ B;
• check that B and JFBJ−1

F commute, and so JFBJ−1
F ⊆ B′;

• note that (32) is equivalent to the representation of B on:
(C⊗ C4)⊕ (C3 ⊗ C4)⊕ (C4 ⊗ C)⊕ (C4 ⊗ C3)

given by matrix multiplication on the first factors;
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• use Lemma (A) to infer that
B′ �M4(C)⊕M4(C)⊕ C⊕M3(C) � B

and so we have JFBJ−1
F = B′;

• find that C�DF (AF )
′ ⊆ JFBJ−1

F ;
• finish the proof by Lemma (B).

4. Conclusions

The Connes–Chamseddine noncommutative formulation of the Standard Model
interprets the geometry of the S.M. as gravity on the product of a spin manifold
M with a finite noncommutative ‘internal’ space F . The multiplet of fundamental
fermions (each one a Dirac spinor on M) defines fields on F that constitute HF .

We show that the geometric nature of the latter one is not a noncommuta-
tive analogue of Dirac spinors on F (unless > 2 new parameters are introduced in
the matrix DF , so fields on M with physical status under scrutiny) but rather of
deRham forms on F if the conditions (27) are satisfied (for one generation). Con-
versely, the geometric qualification of the internal spectral triple as being Hodge
constrains somewhat the parameters Υ occurring in the matrix DF .

What happens for 3 generations of particles and so 96× 96 matrices?
It can be seen (not easily) that then the spin property also does NOT hold, and
that as adverted in [1], indeed the order 2 condition C�D(A)′ ⊃ JC�D(A)J holds.
Whether the Hodge property is satisfied, or HF corresponds rather to three copies
of quantum deRham forms on F , is currently under investigation.
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Abstract. A recursion operator for a geodesic flow, in a noncommutative (NC)
phase space endowed with a Minkowski metric, is constructed and discussed
in this work. A NC Hamiltonian function Hnc describing the dynamics of a
free particle system in such a phase space, equipped with a noncommutative
symplectic form ωnc is defined. A related NC Poisson bracket is obtained.
This permits to construct the NC Hamiltonian vector field, also called NC
geodesic flow. Further, using a canonical transformation induced by a gener-
ating function from the Hamilton–Jacobi equation, we obtain a relationship
between old and new coordinates, and their conjugate momenta. These new
coordinates are used to re-write the NC recursion operator in a simpler form,
and to deduce the corresponding constants of motion. Finally, all obtained
physical quantities are re-expressed and analyzed in the initial NC canonical
coordinates.

Mathematics Subject Classification (2010). 37C10; 37J35.

Keywords. Noncommutative Minkowski phase space, recursion operator, geo-
desic flow, Nijenhuis torsion, constants of motion.

1. Introduction

In the last few decades there was a renewed interest in completely integrable
Hamiltonian systems, the concept of which goes back to Liouville in 1897 [14]
and Poincaré in 1899 [18]. They are dynamical systems admitting a Hamiltonian
description and possessing sufficiently many constants of motion, so that they can
be integrated by quadratures. Some qualitative features of these systems remain
true in some special classes of infinite-dimensional Hamiltonian systems expressed
by nonlinear evolution equations as, for instance, Korteweg–deVries and sine-
Gordon [25].

A relevant progress in the study of these systems with an infinite-dimensional
phase manifoldM was the introduction of the Lax Representation [13]. It played
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an important role in formulating the Inverse Scattering Method [1], one of the most
remarkable result of theoretical physics in last decades. This method allows the
integration of nonlinear dynamics, both with finitely or infinitely many degrees
of freedom, for which a Lax representation can be given [8], this being both of
physical and mathematical relevance [5].

Another progress, in the analysis of the integrability, was the important re-
mark that many of these systems are Hamiltonian dynamics with respect to two
compatible symplectic structures [9, 15, 25], this leading to a geometrical inter-
pretation of the so-called recursion operator [13]. For more details, see [20] and
references therein. A description of integrability working both for systems with
finitely many degrees of freedom and for field theory can be given in terms of in-
variant, diagonalizable mixed (1, 1)-tensor field, having bidimensional eigenspaces
and vanishing Nijenhuis torsion. A natural approach to integrability is to try to
find sufficient conditions for the eigenvalues of the recursion operator to be in
involution. Thereby, a new characterization of integrable Hamiltonian systems is
given by De Filippo et al through the following Theorem [6]:

Theorem 1. Let X be a dynamical vector field on a 2n-dimensional manifold M.
If the vector field X admits a diagonalizable mixed (1, 1)-tensor field T which is
invariant under X, has a vanishing Nijenhuis torsion and has doubly degener-
ate eigenvalues with nowhere vanishing differentials, then there exist a symplectic
structure and a Hamiltonian function H such that the vector field X is separable,
Hamiltonian vector field of H, and H is completely integrable with respect to the
symplectic structure.

Such a (1, 1)-tensor field T is called a recursion operator of X .
In a particular case of R2n, a recursion operator can be constructed as fol-

lows [22]:

Lemma 2. Let us consider vector fields

Xl = −
∂

∂xn+l
, l = 1, . . . , n

on R2n and let T be a (1, 1)-tensor field on R2n given by

T =
n∑

i=1

xi

(
∂

∂xi
⊗ dxi +

∂

∂xn+i
⊗ dxn+i

)
.

Then, we have that the Nijenhuis torsion NT and the Lie derivative LXl
of T are

vanishing, i.e.,

(NT )
h
ij := T k

i

∂T h
j

∂xk
− T k

j

∂T h
i

∂xk
+ T h

k

∂T k
i

∂xj
− T h

k

∂T k
j

∂xi
= 0, LXl

T = 0. (1)

That is the (1, 1)-tensor field T is a recursion operator of Xl, (l = 1, . . . , n).

On the other hand, this (1, 1)-tensor field T is used as an operator which
generate enough constants of motion [12]. Based on Theorem 1, a series of inves-
tigations was done (see, e.g., [6, 7, 10, 12, 17, 20–23, 26] and references therein).
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One of powerful methods of describing completely integrable Hamiltonian systems
with involutive Hamiltonian functions or constants of motion uses the recursion
operator admitting a vanishing Nijenhuis torsion.

Recently, in 2015, Takeuchi constructed recursion operators of Hamiltonian
vector fields of geodesic flows for some Riemannian and Minkowski metrics [21],
and obtained related constants of motion. Further, he used five particular solu-
tions of the Einstein equation in the Schwarzschild, Reissner–Nordstrøm, Kerr,
Kerr–Newman, and FLRW metrics, and showed that the Hamiltonian functions
of the associated corresponding geodesic flows form a system of variables separa-
tion equations. Then, he constructed recursion operators inducing the complete
integrability of the Hamiltonian functions. In the present work, we investigate the
same problem in a deformed Minkowski phase space.

This paper is organized as follows. In Section 2, we consider a noncommu-
tative Minkowski phase space, and define the NC Hamiltonian function and sym-
plectic form, as well as the corresponding NC Poisson bracket. In Section 3, we
construct the associated NC recursion operator for the NC Hamiltonian vector
field of the geodesic flow, and obtain related constants of motion. In Section 4, we
end with some concluding remarks.

2. Noncommutative Minkowski phase space

The noncommutativity between space-time coordinates was first introduced by
Snyder [19]. Later, Alain Connes developed the noncommutative geometry [3] and
applied it to various physical situations [4]. Since then, the noncommutative ge-
ometry remained a very active research subject in several domains of theoretical
physics and mathematics.

Noncommutativity between phase space variables is here understood by re-
placing the usual product with the β-star product, also known as the Moyal prod-
uct law between two arbitrary functions of position and momentum, as follows
[11, 16, 24]:

(f ∗β g)(q, p) = f(qi, pi) exp

(
1

2
βab←−∂ a

−→
∂b

)
g(qj, pj)

∣∣∣∣∣
(qi,pi)=(qj ,pj)

, (2)

where

βab =

(
αij δij + γij

−δij − γij λij

)
, (3)

α and λ are antisymmetric n× n matrices which represent the noncommutativity
in coordinates and momenta, respectively; γ is some combination of α and λ. The
∗β deformed Poisson bracket can be written as

{f, g}β = f ∗β g − g ∗β f. (4)

So, we can show that:

{qi, qj}β = αij , {qi, pj}β = δij + γij , {pi, qj}β = −δij − γij , {pi, pj}β = λij . (5)
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Now, consider the following transformations:

q′i = qi −
1

2

n∑
j=1

αijpj , p′i = pi +
1

2

n∑
j=1

λijqj , (6)

where q′i and p′j obey the same commutation relations as in (5), but with respect
to the usual Poisson bracket:

{q′i, q′j} = αij , {q′i, p′j} = δij + γij , {p′i, q′j} = −δij − γij , {p′i, p′j} = λij , (7)

with qi and pj satisfying the following commutation relations:

{qi, qj} = 0, {qi, pj} = δij , {pi, pj} = 0. (8)

In our framework, we consider the noncommutative Minkowski phase space
with the metric defined by

ds′2 = −dq′21 + dq′22 + dq′23 + dq′24 , (9)

where q′1 is time coordinate; q′2, q′3, q′4 are space coordinates. The tensor metric
is given by

g′ij = g′ij =

⎛⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , (10)

and the equation of geodesic is

d2q′μ

dt2
+ Γ′μ

νλ

dq′ν

dt

dq′λ

dt
=

d2q′μ

dt2
= 0, (μ = 1, 2, 3, 4), (11)

with the Christoffel symbols Γ′μ
νλ = 0.

Set:

q′i = qi −
1

2

4∑
j=1

αijpj , p′i = pi +
1

2

4∑
j=1

λijqj , λ1j = α1j = 0, p1 > 0. (12)

Then, the commutation relations (7) become:

{q′i, q′j} = αij , {q′i, p′j} = δij + γij , {p′i, q′j} = −δij − γij , {p′i, p′j} = λij . (13)

2.1. NC Hamilton function and NC symplectic form

The NC Hamiltonian function Hnc describing the dynamics of a free particle sys-
tem, in the considered NC Minkowski phase space is defined as follows:

Hnc :=
1

2

(
− p′21 +

4∑
k=2

p′2k

)
.

Using equations (12), we get

Hnc =
1

2

[
− p21 +

4∑
k=2

(
pk +

1

2

4∑
j=2

λkjqj

)2]
. (14)
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Proposition 3. The exterior derivative of the Hamiltonian function Hnc is given by

dHnc = −p1dp1 +

4∑
k=2

�kdpk +
1

2

4∑
k,i=2

λikΩidqk, (15)

where

�k =

(
pk +

1

2

4∑
j=2

λkjqj

)
and

Ωi =

(
pi +

1

2

4∑
j=2

λijqj

)
.

The NC symplectic form is now defined by

ωnc :=

4∑
i=1

dp′i ∧ dq′i = dp′1 ∧ dq′1 +
4∑

k=2

dp′k ∧ dq′k. (16)

Proposition 4. Considering the NC Minkowski phase space, the symplectic form
associated with the Hamiltonian function Hnc is given by

ωnc =

4∑
ν=1

θνdpν ∧ dqν , (17)

where

θν =

4∑
μ=1

(
δμν +

1

4
λμναμν

)
�= 0, δμν =

{
0, if μ �= ν

1, if μ = ν.
(18)

2.2. NC Poisson bracket and NC Hamiltonian vector field

Proposition 5. The bracket given by

{f, g}nc =
4∑

ν=1

θ−1
ν

(
∂f

∂pν

∂g

∂qν
− ∂f

∂qν

∂g

∂pν

)
(19)

is a Poisson bracket which respects the symplectic form ωnc, where f and g are
arbitrary differentiable coordinate functions on the NC Minkowski phase space.

Proposition 6. In the NC Minkowski phase space, the Hamiltonian vector field is
given by

XHnc = −p1
∂

∂q1
+

4∑
k=2

θ−1
k

(
�k

∂

∂qk
− 1

2

4∑
i=2

λikΩi
∂

∂pk

)
, (20)

where

�k =

(
pk +

1

2

4∑
j=2

λkjqj

)
and Ωi =

(
pi +

1

2

4∑
j=2

λijqj

)
.
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3. NC Recursion operator

In this section, we construct the recursion operator for the geodesic flow in the
NC Minkowski phase space, and derive the constants of motion. We consider the
Hamilton–Jacobi equation [2] for the Hamiltonian function (14), and introduce a
generating function W nc satisfying the following relations:

p =
∂W nc

∂q
and P = −∂W nc

∂Q
. (21)

This allows us to obtain a relationship between the (p, q) and (P,Q) coordinates.
Then, using Lemma 2, we build a recursion operator for the NC Hamiltonian
vector field XHnc .

3.1. NC Hamilton–Jacobi equation and generating function

The NC Hamilton–Jacobi equation is a nonlinear equation given by

Enc = Hnc

(
q,

∂W nc

∂q

)
. (22)

Thus,

Enc =
1

2

{
−
(

∂W nc

∂q1

)2

+

4∑
k=2

(
∂W nc

∂qk
+

1

2

4∑
j=2

λkjqj

)2}
,

where Enc is a constant. Setting W nc =
4∑

i=1

W nc
i (qi), where W nc

i (qi) = aiqi and ai

(i = 1, 2, 3, 4) are constants, not depending on qi, leads to ai =
∂W nc

i

∂qi
, and (22)

becomes

2Enc = −a2
1 +

4∑
k=2

(
ak +

1

2

4∑
j=2

λkjqj

)2

.

Assume now

[ 4∑
k=2

(
ak +

1

2

4∑
j=2

λkjqj

)2

− 2Enc

]
> 0. Then,

a1 = ±

√√√√ 4∑
k=2

(
ak +

1

2

4∑
j=2

λkjqj

)2

− 2Enc.

Considering the future domain yields

a1 =

√√√√ 4∑
k=2

(
ak +

1

2

4∑
j=2

λkjqj

)2

− 2Enc, (23)

and

W nc =

(√√√√ 4∑
k=2

(
ak +

1

2

4∑
j=2

λkjqj

)2

− 2Enc

)
q1 +

4∑
k=2

akqk. (24)
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Now, we introduce a generating function by using the above solution such that
W nc = W nc(q1, q2, q3, q4, Q1, Q2, Q3, Q4) becomes

W nc =

(√√√√ 4∑
k=2

Q2
k − 2Q1

)
q1 +

4∑
k=2

(
Qk −

1

2

4∑
j=2

λkjqj

)
qk, (25)

where ( 4∑
k=2

Q2
k − 2Q1

)
> 0, Q1 = Enc, (26)

and

Qk = ak +
1

2

4∑
j=2

λkjqj , (k = 2, 3, 4). (27)

Thanks to the canonical transformations (21), we obtain the following relationship
between the canonical coordinate system (P,Q) and the original coordinate system
(p, q) : ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 =

√√√√ 4∑
k=2

Q2
k − 2Q1

pk = Qk

q1 = P1

√√√√ 4∑
k=2

Q2
k − 2Q1

qk = −Pk −QkP1

;

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P1 =
q1
p1

Pk = −pkq1
p1
− qk

Q1 = Hnc

Qk = pk,

, (28)

where k = 2, 3, 4.

3.2. (1, 1)-tensor field T as recursion operator

In the (P,Q) coordinate systems, the Hamiltonian vector field is defined by

XHnc := {Hnc, .}nc =
4∑

ν=1

θ−1
ν

(
∂Hnc

∂Pν

∂

∂Qν
− ∂Hnc

∂Qν

∂

∂Pν

)
.

Setting Hnc = Q1 and θ1 = 1 transforms the NC Hamiltonian vector field XHnc

and symplectic form ωnc into the forms

XHnc = −
∂Hnc

∂Q1

∂

∂P1
= − ∂

∂P1
, (29)

and

ωnc =

4∑
ν=1

θνdPν ∧ dQν , (30)

respectively. A tensor field T of (1, 1)-type can then be expressed as:

T =
4∑

ν=1

Qν

(
∂

∂Pν
⊗ dPν +

∂

∂Qν
⊗ dQν

)
. (31)
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Letting xν = Qν and xν+4 = Pν , where ν = 1, 2, 3, 4, affords the tensor field

T =

8∑
i,j=1

T i
j

∂

∂xi
⊗ dxj ,

with x ≡ (Q1, . . . , Q4, P1, . . . , P4). The matrix (T i
j ) is given by

(T i
j ) =

(
tA O
O A

)
, (Ai

j) =

⎛⎜⎜⎝
Q1 0 0 0
0 Q2 0 0
0 0 Q3 0
0 0 0 Q4

⎞⎟⎟⎠ .

Then, by Lemma 2, T satisfies LXHnc
T = 0, the Nijenhuis torsion NT of T is

vanishing, i.e., NT = 0, and degQi = 2. Hence, T is a recursion operator of the
Hamiltonian vector field XHnc . The constants of motion Tr(T l), (l = 1, 2, 3, 4), of
the geodesic flow are:

Tr(T l) = 2(Ql
1 + Ql

2 + Ql
3 + Ql

4), l = 1, 2, 3, 4.

Proposition 7. Assume:

(1) λ1μ = α1μ = 0, μ = 1, 2, 3, 4;
(2) λνμθν = λμνθμ, for every ν, μ = 2, 3, 4.

Then, the geodesic flow has a recursion operator T given by

T =

4∑
μ,ν=1

(
Mμ

ν

∂

∂qν
⊗ dqμ+Nμ

ν

∂

∂pν
⊗ dpμ+Lμ

ν

∂

∂qν
⊗ dpμ+Rμ

ν

∂

∂pν
⊗ dqμ

)
, (32)

where

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Hnc
p2
p1

(
p2 −Hnc

)
p3
p1

(
p3 −Hnc

)
p4
p1

(
p4 −Hnc

)

q1Hnc

p21
S2 p2 0 0

q1Hnc

p21
S3 0 p3 0

q1Hnc

p21
S4 0 0 p4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Hnc 0 0 0

p2
p1

V2 p2 0 0

p3
p1

V3 0 p3 0

p4
p1

V4 0 0 p4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
q1p2

p2
1

[
p2

p1

(
Hnc − p2

)]
q1

p1

[
p3

p1

(
Hnc − p3

)]
q1

p1

[
p4

p1

(
Hnc − p4

)]

q1p2

p2
1

V2 0 0 0

q1p2

p2
1

V3 0 0 0

q1p2

p2
1

V4 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

Hnc

p1
S2 0 0 0

Hnc

p1
S3 0 0 0

Hnc

p1
S4 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with Vk = pk −Hnc −
Hnc

2pk

4∑
j=2

λkjqj and Sk = −1

2

4∑
i=2

λikΩi, (k = 2, 3, 4).

The constants of motion in the original coordinate system (p, q) are Tr(T l),
(l = 1, 2, 3, 4):

Tr(T l) = 2Hl
nc+2(pl2+ pl3+ pl4) =

1

2l−1

(
−p21 +

4∑
k=2

�2
k

)l
+2(pl2+ pl3+ pl4). (33)

4. Concluding remarks

In this paper, we have constructed a recursion operator of a Hamiltonian vector
field for a geodesic flow in a noncommutative Minkowski phase space, and com-
puted the associated constants of motion. For the vanishing deformation parameter
β, the NC Minkowski phase space turns to be the usual one, and all the results
displayed in this work are reduced to the particular cases examined in [21] and [22].
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Decompactifying Spectral Triples

Andrzej Sitarz

Abstract. We show that one can approximate different geometries, including
the locally compact ones using the approximation of their compactifications
with a suitably chosen conformal rescaling. We illustrate the idea showing
the family of Dirac operators on the “fuzzy circle” that approximate the flat
Dirac operator on the line.

Mathematics Subject Classification (2010). Primary 58B34; Secondary 46L85,
46L87, 81T75.
Keywords. Connes’ noncommutative geometry, spectral triples.

1. Introduction

One of the appealing features of noncommutative geometry is the possibility to
approximate the algebra of functions on a space by the finite-dimensional algebras,
which are not necessarily commutative. In contrast to the world of triangulations
of manifolds or approximation by lattices, in the noncommutative approximations
some of the symmetries might be preserved, as is the case for the fuzzy sphere [6].

Yet the algebras provide only part of the information about the space and it
is entirely wrong to interpret the algebra alone as the noncommutative space and
see it as already equipped with geometry, while in reality it corresponds only to
the topological space. For the same reason a space becomes indeed a sphere only
when equipped with the appropriate metric and compatible differential calculus.

Still, a difference between two topological spaces might be very small, as,
for example, happens for the infinite (hyper) planes and compact spheres. The
respective C∗ algebras of continuous functions differ only by a unit, which suggests
that a suitable variations of the metric might allow to cast some noncompact
models (like a plane) in the formalism of compact models (like a sphere).

Motivated by few classical examples we shall briefly present the idea how to
compactify some known noncompact noncommutative geometries as well as how to
decompactify some compact commutative and noncommutative geometries using

Supported by NCN grant 2016/21/B/ST1/02438.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01156-7_10&domain=pdf
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the tools of Connes’ noncommutative differential geometry [2] and spectral triple
approach [3, 4]. We shall illustrate the idea with a very simple object: the circle.

2. Compact spectral triples and the metric

Let us recall the simplest definition of a spectral triple.

Definition 1. The data for a compact spectral triple consist of a unital algebra A,
represented faithfully on a Hilbert space H as bounded operators π(a), a ∈ A and
a densely defined selfadjoint operator D satisfying the following conditions, here
A′ denotes the commutant of A in B(H)):
• ∀a ∈ A: [D,π(a)] ∈ B(H),
• for even spectral triples: ∃γ ∈ A′ : γ2 = 1, γ = γ†, γD + Dγ = 0,
• (D + i)−1 is compact.

The idea of a spectral triple comes from the spin geometry, where the algebra
are smooth functions over a compact spin manifold, the Hilbert space are all L2

section of the spinor bundle on which functions act by pointwise multiplication
and D is the usual spin Dirac operator.

There are some more conditions, which restrict possible constructions, like
the existence of reality structure and order-one condition.

2.1. Conformally rescaled spectral triples
Once we have a spectral triple with a Dirac operatorD, there exist two possibilities
to find a family of possible Dirac operators. The first way is to modify D by
bounded operators, which are one-forms in the differential calculus generated by
the commutators with D. Taking A =

∑
i ai[D, bi] and A=A∗, we can consider

a family of operators DA = D + A, which satisfy again conditions of a spectral
triple. Such modifications (fluctuations) correspond in the classical case to gauge
connections and in principle do not change the metric.

Another possibility is to modify the Dirac operator by a conformal rescaling,
assuming that the commutant A′ is big enough. Technically, taking h = h∗ ∈ A′

we can define:
Dh = hD h,

which, again, will be an admissible Dirac operator. In the classical case, where
A ⊂ A′ this corresponds to a conformal rescaling of the metric by h−2. The
properties of such conformally modified family of spectral triples were discussed
in [8]. A more detailed study of the reality structure and order-one condition for
conformally modified geometries was presented in [1].

Using the conformal rescaling one can modify the metric, also to the effect
of obtaining from locally compact spectral geometries the spectral triples with
a finite volume (compact). Such construction was successfully carried out for the
Moyal plane, which after unitization and a suitable choice of the rescaling function
was shown to provide a geometry with finite volume and the metric, that was a
Moyal counterpart of the Fubini–Study metric for the plane [5].
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In this note we want to demonstrate that such process could be also carried
in the other direction, thus giving a possibility to study finite approximations of
locally compact geometries like a hyperbolic plane, for instance. We test the ideas
on the simplest possible commutative example, given by the spectral triple over a
circle.

3. The circle

Let us consider the circle parametrized by z = e2πis, the algebra of smooth func-
tions C∞(S1) and the standard Dirac operator

D = −i
∂

∂s
,

so that (C∞(S1), L2(S1), D) is a spectral triple. It could be easily shown that this
Dirac operator corresponds to the circle of length 1 (so that its radius is 1

2π ).

3.1. How to decompactify a circle
If h ∈ C∞(S1) then Dh = hDh is the Dirac operator that, although conformally
rescaled, has the same spectrum, with the eigenfunction to the eigenvalue λ:

φλ(s) = C exp

(∫ s

0

iλ− h(ξ)h′(ξ)

h2(ξ)
dξ

)
.

If h is a smooth function on the circle, the continuity condition fixes λ to be:

λ

(∫ 1

0

1

h2(ξ)
dξ

)
∈ (2π)Z,

and therefore, up to the global rescaling by the volume, the spectrum of Dh is the
same as the spectrum of D.

Consider now, a particular choice of such rescaling function, with a family
parametrized by 0 ≤ r < 1:

hr(s) =
√

1− r cos(2πs).

For r = 0 we have Dr = D, whereas in the limiting case r = 1 we have the Dirac
operator, which is unitarily equivalent to the Dirac operator on the circle with the
metric

(1− r cos(2πs))−2ds2,

and this, in turn corresponds to the constant metric on the real line using the usual
projection from the circle onto R. The eigenvalues of this Dirac operator depend
only on r and we have:

λ ∈ (2π
√

1− r2)Z,

so they are the same as for the equivariant Dirac operator on the circle with a
volume (1 − r2)−1. What changes, however, is the distance, as one can easily see
(Fig. 1). Contrary to the case of rescaled radius, the distances do not change with
the same proportion but the ratio of growth depends on the position of the interval
on the circle.
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Figure 1. Distances between d(n, n + 1) as compared to distances for
interval on the circle for the families of conformally rescaled Dirac op-
erators Dr.

3.2. The “fuzzy” circle

Although the notion of a fuzzy circle is not as well established as that of the
fuzzy sphere, we can consider the following approximation based on the idea of
discretized version of the circle.

Let us fix N and take an algebra of functions on the set of N points, labeled
0, . . . , N−1 which we can visualize as sitting on the circle (that is point n has
neighbours n−1 mod N and n+1 mod N). Consider a shift operator T , which acts
on the functions as:

Tf(x) = f(x+ 1),

where the operation of addition is takenmodN . We propose to study the following
selfadjoint operator as the candidate for the Dirac,

D =
1

2i
(T − T ∗).

To argue that the above operator could be naturally taken as the Dirac operator
let us check the distance, which comes from the Connes distance formula.

Lemma 2. For the above operator D on the algebra of functions on N points the
Connes distance between neigbouring points is 1.

Proof. We have that the distance:

d(n, n+1) = sup
‖[D,f ]‖≤1

|f(n)− f(n+1)|.

First of all, let us compute the commutator [D, f ] for an arbitrary f as an
operator acting on a function Ψ

([D, f ]Ψ) (n) =
1

2i

(
(f(n+1)− f(n))Ψ(n+1) + (f(n)− f(n−1))Ψ(n−1)

)
.
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Now, this operator is a sum of a two components:

[D, f ]Ψ =
1

2i
((∂f)T + T ∗(∂f))Ψ,

where (∂f)(n) = f(n+1)− f(n). Since T is unitary then it is easy to see:

‖[D, f ]‖ ≤ sup
n
(∂f)(n),

and therefore:

d(n, n+1) ≥ 1.

On the other hand, if |f(n+1)− f(n)| > 1 for sume function f then the maximum
norm of the matrix [D, f ] is bigger than 1 and consequently, ‖[D, f ]‖ > 1, hence
such function f cannot be in the domain of functions that are taken to measure
the distance. �

Since independently of N the length of each smallest interval is 1, to have a
correct rescaling of the circle (independently of N we need to assume that it is the
same circle of radius 1) we must take as the Dirac operator not D alone but:

DN =
N

2π
D.

The spectrum of such Dirac operator is:

specDN =

{
N

2π
sin

(
2k

N
π

)}
, k = 0, 1, . . . , N−1,

and it is easy to see that in the limit N →∞ we have that the lowest eigenvalues
grow linearly with k as in the case of the usual Dirac operator on the circle.

3.3. Conformally rescaled fuzzy circle

Now, we shall use the same procedure as in the case of the circle and rescale the
Dirac operator on the fuzzy circle by a respective family of functions. We define
the function h so that it is an approximation of the rescaling we used,

h(n) =

√
1− r cos

(
2π

n

N

)
,

and we take

Dr,N = hDNh.

Now, the distribution of eigenvalues is completely different from the contin-
uous case, yet for small values it still is linear (Fig. 2):

To see that we indeed approximate the noncompact line, let us see the com-
parison of scaling of distances with r between the adjacent points for the fuzzy
circle with similar scaling for the intervals on the conformally rescaled circle.
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Figure 2. Eigenvalue distribution of Dr,N , for N = 300 and N = 450 case.

3.4. Conclusions and outlook

We have shown that using the conformal rescaling of the Dirac operator it is
possible not only to compactify some of the locally compact commutative and
noncomutative geometries but also do the inverse. In particular, all finite approx-
imations of geometries by functions on lattices or matrix algebras could be used
to introduce families of Dirac operators that in the limit give locally compact
geometries.

The presented toy model of a circle and its decompatified fuzzy version is
just a test-ground for further studies. One of the most used noncommutative ge-
ometries are fuzzy spheres [6]. Since the classical sphere could be modeled as a one
point compactification of a plane with the Fubini–Study metric, we could reverse
the process and describe the plane as a sphere without one point with a certain
degenerate metric.

If the fuzzy sphere is generated by three matrices X,Y, Z, such that X2 +
Y 2 + Z2 = const, then we suggest that the following family of operators:

Dr = (
√
1− rZ)D(

√
1− rZ),

approximates the flat Dirac operator on the plane (which is obtained in the r → 1
limit).

We conjecture that similarly as the fuzzy sphere converges in the Gromov–
Rieffel–Hausdorff distance to the classical sphere [7], the conformally modified
fuzzy spheres will converge to the respective conformal modification of the sphere
and in the r = 1 limit to the flat plane.
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Abstract. We construct a 1+-summable regular even spectral triple for a non-
commutative torus defined by a C*-subalgebra of the Toeplitz algebra.
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1. Introduction

In noncommutative geometry [1], a noncommutative topological space is presented
by a noncommutative C*-algebra. Usually definitions of such C*-algebras are mo-
tivated by imitating some features of the classical spaces. For instance, a noncom-
mutative version of any compact two-dimensional surface without boundary can
be found in [7], where the corresponding C*-algebras are defined as subalgebras of
the Toeplitz algebra.

The metric aspects of a noncommutative space are captured by the notation
of a spectral triple [2]. Given a unital C*-algebra A, a spectral triple (A,H, D)
for A consists of a dense *-subalgebra A ⊂ A, a Hilbert space H together with
a faithful *-representation π : A → B(H), and a self-adjoint operator D on H,
called Dirac operator, such that

[D,π(a)] ∈ B(H) for all a ∈ A, (1)

(D + i)−1 ∈ K(H). (2)

Here K(H) denotes the set of compact operators on H.
The purpose of the present paper is the construction of a spectral triple for

the noncommutative torus from [7]. The noncommutative torus was chosen because
the self-adjoint operator D from the spectral triple has a similar structure to the
Dirac operator on a classical torus with a flat metric. Our main theorem shows
that this spectral triple is even, regular, and 1+-summable.

c© Springer Nature Switzerland AG 2019
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For the convenience of the reader, we recall the definitions of the just men-
tioned properties of a spectral triple (see [4]). By a slight abuse of notation, we
will not distinguish between a densely defined closable operator and its closure.
A spectral triple (A,H, D) is said to be even, if there exists a grading operator
γ ∈ B(H) satisfying

γ∗ = γ, γ2 = 1, γD = −Dγ, γπ(a) = π(a)γ for all a ∈ A. (3)

We call (A,H, D) regular, if δk(a) ∈ B(H) and δk([D, a]) ∈ B(H) for all a ∈ A
and k ∈ N, where δ(x) := [|D|, x] for x ∈ B(H). The term 1+-summable means
that (1 + |D|)−(1+ε) is a trace class operator for all ε > 0 but (1 + |D|)−1 is not a
trace class operator.

Consider the polar decomposition D = F |D| of the Dirac operator. The
grading operator γ gives rise to a decomposition H = H+ ⊕ H− such that γ =(
1 0
0 −1

)
and F =

(
0 F+−

F−+ 0

)
. If the spectral triple satisfies the properties

of the previous paragraph, then F+− and F−+ are Fredholm operators and one
defines ind(D) := ind(F+−). The operator F is called the fundamental class of D
and it is said to be non-trivial if ind(D) �= 0.

2. Noncommutative Toeplitz torus

Let D := {z ∈ C : |z| < 1} be the open unit disc and D̄ := {z ∈ C : |z| ≤ 1}
its closure in C. Consider the Hilbert space L2(D) with respect to the standard
Lebesgue measure and its closed subspace A2(D) consisting of all L2-functions
which are holomorphic in D. We denote by P the orthogonal projection from
L2(D) onto A2(D). For all f ∈ C(D̄), the Toeplitz operator Tf ∈ B(A2(D)) is
defined by

Tf (ψ) := P (f ψ), ψ ∈ A2(D) ⊂ L2(D),

and the Toeplitz algebra T is the C*-algebra generated by all Tf in B(A2(D)).
It is well known (see, e.g., [6]) that the compact operators K(A2(D)) belong

to T and that the quotient T /K(A2(D)) ∼= C(S1) gives rise to the C*-algebra
extension

0 �� K(A2(D)) �� T σ �� C(S1) �� 0 , (4)

where σ : T −→ C(S1) is given by σ(Tf ) = f�S1 for all f ∈ C(D̄).
There are alternative descriptions for the Toeplitz algebra. For instance, con-

sider the Hilbert space L2(S1) with respect to the Lebesgue measure on S1 and
the orthonormal basis { 1√

2π
uk : k ∈ Z}, where u ∈ C(S1) ⊂ L2(S1) is the unitary

function given by u(ζ) = ζ, ζ ∈ S1. Let P+ denote the orthogonal projection from

L2(S1) onto span{un : n ∈ N} ∼= �2(N). For all f ∈ C(S1), define T̂f ∈ B(�2(N)) by

T̂f(φ) := P+(f φ), φ ∈ span{un : n ∈ N} ⊂ L2(S1). (5)
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Then T is isomorphic to the C*-subalgebra of B(�2(N)) generated by the set

{T̂f : f ∈ C(S1)}, and the C*-algebra extension (4) becomes

0 �� K(�2(N)) �� T σ �� C(S1) �� 0 (6)

with σ(T̂f ) = f .
Let us also mention that T may be considered as a deformation of the C*-al-

gebra of continuous functions on the closed unit disc D̄ (see [5]). From this point
of view, the equivalent C*-algebra extensions (4) and (6) correspond to the exact
sequence

0 �� C0(D) �� C(D̄) τ �� C(S1) �� 0 , (7)

where τ(f) = f�S1 .
Recall that the torus T2 can be constructed as a topological manifold by

dividing the boundary S1 = ∂D̄ into four quadrants and gluing opposite edges
together. Then the C*-algebra of continuous functions on T2 is isomorphic to

C(T2) := {f ∈ C(D̄) : f(eit) = f(−ie−it), f(e−it) = f(ieit), t∈ [0, π
2 ]}. (8)

Motivated by (8) and the analogy between (7) and (4) (or (6)), we state the
following definition of the noncommutative Toeplitz torus:

Definition 1. The C*-algebra of the noncommutative Toeplitz torus is defined by

C(T2
q) := {a∈T : σ(a)(eit)=σ(a)(−ie−it), σ(a)(e−it)=σ(a)(ieit), t∈ [0, π2 ]}.

That C(T2
q) is a C*-subalgebra of T follows from the fact that σ is a C*-al-

gebra homomorphism. Note that gluing the point eit ∈ S1 to −ie−it ∈ S1 and the
point e−it ∈ S1 to ieit ∈ S1 for all t∈ [0, π

2 ] yields a topological space homeomorphic

to the wedge sum S1∨ S1 of two pointed circles. Setting

C(S1∨ S1) := {f ∈ C(S1) : f(eit)=f(−ie−it), f(e−it)=f(ieit), t∈ [0, π2 ]}, (9)

we can write
C(T2

q) = {a ∈ T : σ(a) ∈ C(S1∨ S1)}. (10)

Moreover, (6) and (10) yield the C*-algebra extension

0 �� K(�2(N)) �� C(T2
q)

σ �� C(S1∨ S1) �� 0 .

3. Spectral triple on the noncommutative Toeplitz torus

The Dirac operator on a local chart in two dimensions with the flat metric, see [3],
up to constant and change of orientation is given by

D =

(
0 ∂

∂z

− ∂
∂z̄ 0

)
, ∂

∂z = 1
2

(
∂
∂x − i ∂

∂y

)
, ∂

∂z̄ = 1
2

(
∂
∂x + i ∂

∂y

)
. (11)

Since ∂
∂z acts on A2(D) in the obvious way, we want to use the same structure to

define a spectral triple for the noncommutative Toeplitz torus. Clearly, one can
construct a noncommutative version of any (orientable) compact surface without
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boundary by choosing appropriate boundary conditions in Definition 1 (see [7]).
However, by the Gauss–Bonnet theorem, only the (classical) torus admits a dense
local chart with a flat metric, therefore we restrict here our discussion to the
quantum analogue of the torus.

Our principal aim is to find a dense *-subalgebra A ⊂ C(T2
q) and an op-

erator ∂z, which should be closely related to ∂
∂z from (11), such that [∂z, a] is

bounded for all a ∈ A. Recall that an orthonormal basis for A2(D) is given by

{ϕn : n ∈ N}, where ϕn :=
√
n+1√
π

zn [6]. Complex differentiation yields ∂
∂z (ϕn) =√

n(n + 1)ϕn−1. If we define an operator ∂z on A2(D) by ∂z(ϕn) := nϕn−1, then
∂
∂z−∂z extends to a bounded operator on A2(D) since the coefficients

√
n(n + 1)−n

are uniformly bounded. As a consequence, the commutators [ ∂
∂z , a] are bounded

for all a ∈ A if and only if the commutators with ∂z are bounded.

In order to simplify the notation, we will use the description of the Toeplitz
algebra on �2(N) ∼= span{un : n ∈ N} ⊂ L2(S1). For m ∈ Z, set em := 1√

2π
um and

let ∂z be defined by

∂z(en) := nen−1 on dom(∂z) :=
{∑
n∈N

αnen ∈ �2(N) :
∑
n∈N

n2|αn|2 <∞
}
. (12)

Moreover, consider the number operator N on �2(N) determined by

N(en) := nen on dom(N) := dom(∂z). (13)

Let S be the unilateral shift operator on �2(N) so that we have

S(en) = en+1, n ∈ N, S∗(en) = en−1, n > 1, S∗(e0) = 0. (14)

Since N is a self-adjoint positive operator on dom(N) = dom(∂z) and since S∗ is
a partial isometry such that ker(S∗) = Ran(N)⊥, it follows that ∂z = S∗N is the
polar decomposition of the closed operator ∂z. Clearly, ∂ ∗

z = NS, so

∂ ∗
z (en) = (n + 1)en+1 and dom(∂ ∗

z ) = dom(N). (15)

Under the unitary isomorphism A2(D) ∼= �2(N) given by ϕn �→ en on the
bases described above, the operator ∂z on �2(N) is unitary equivalent to a bounded
perturbation of the Cauchy–Riemann operator ∂

∂z on A2(D). Therefore we take ∂z

on �2(N) as a replacement for ∂
∂z on A2(D).

Note that, in the commutative case and with functions represented by mul-
tiplication operators, one has [ ∂

∂z , f ] = ∂f
∂z for all f ∈ C(1)(D) but clearly not

all continuous functions are differentiable. In the following, we will single out a
dense *-subalgebra A ⊂ C(T2

q) ⊂ B(�2(N)) which can be viewed as an algebra

of infinitely differentiable functions. With C(S1 ∨ S1) ⊂ C(S1) defined in (9), set
C∞(S1 ∨ S1) := C(S1 ∨ S1) ∩ C∞(S1) and let

A0 := {T̂f : f ∈ C∞(S1 ∨ S1)} ⊂ C(T2
q).
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Using the obvious embedding End(span{e1, . . . , en}) ⊂ K(�2(N)) ⊂ C(T2
q), con-

sider

F0 :=
⋃
n∈N

End(span{e1, . . . , en}) ⊂ C(T2
q).

We will take A to be the *-subalgebra of C(T2
q) generated by the elements of A0

and F0, i.e.,

A := *-alg(A0 ∪ F0) ⊂ C(T2
q). (16)

Lemma 2. The algebra A defined in (16) is dense in C(T2
q) and its elements ad-

mit bounded commutators with ∂z and ∂ ∗
z . Furthermore, δkN (a), δkN([∂z , a]) and

δkN ([∂ ∗
z , a]) are bounded for all a ∈ A and k ∈ N, where δN (x) := [N, x] for

x ∈ B(�2(N)).

Proof. The set F0 contains all finite operators on span{en : n ∈ N}, therefore it is
dense in K(�2(N)). As a consequence, all compact operators K(�2(N)) belong to

the closure of A. From (5), it follows that ‖T̂f‖ ≤ ‖f‖∞. By the Stone–Weierstrass
theorem, C∞(S1∨S1) is dense in C(S1∨S1) with respect to the norm ‖ ·‖∞. Thus

each T̂g ∈ C(T2
q) can be approximated by elements from A0. Let a ∈ C(T2

q).

Writing a = a− T̂σ(a) + T̂σ(a), where T̂σ(a) ∈C(T2
q) and a − T̂σ(a) ∈K(�2(N)), we

conclude that a lies in the closure of A, so A is dense in C(T2
q).

By the Leibniz rule [A,BC] = [A,B]C +B[A,C] for the commutator [· , ·], it
suffices to prove the boundedness of the commutators for the elements belonging
to the generating set A0 ∪ F0. From the definitions of F0 and N , it follows that
Na ∈ F0 and aN ∈ F0 for all a ∈ F0. This immediately implies that δkN (a) ∈
B(�2(N)) for all k ∈ N since each term of the iterated commutators belongs to
F0 ⊂ B(�2(N)). Note also that aS∗ ∈ F0 and S∗a ∈ F0 for all a ∈ F0, therefore
[∂z, a] = S∗(Na)− (aS∗)N ∈ F0. In particular, [∂z , a] and δkN([∂z , a]) are bounded
for all k ∈ N.

Next consider T̂f ∈ A0. To determine the action of T̂f on �2(N), we represent
f by its Fourier series f =

∑
k∈Z

f̂(k)uk, where f̂(k) ∈ C. Since multiplication by

uk yields ukem = em+k, one obtains from (5)

T̂f (em) = P+

(∑
k∈Z

f̂(k)uk em

)
= P+

(∑
k∈Z

f̂(k)em+k

)
=
∑
n∈N

f̂(n−m)en . (17)

If f ∈ C∞(S1), then partial integration shows that f ′ ∈ C(S1) has the Fourier

series f ′ =
∑

k∈Z
ikf̂(k)uk. Therefore, for all m ∈ N,

[N, T̂f ](em) =
∑
n∈N

nf̂(n−m)en −
∑
n∈N

mf̂(n−m)en =
∑
n∈N

(n−m)f̂(n−m)en

= −iP+

(∑
k∈Z

i(k−m)f̂(k−m)ek

)
= −i T̂f ′(em) (18)
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by (17) and the Fourier series of f ′. Similarly,

[∂z , T̂f ](em) =
∑
n∈N

nf̂(n−m)en−1 −
∑
n∈N

mf̂(n− (m−1))en

=
∑
n∈N

(n−m + 1)f̂(n−m + 1)en = −iP+

(
ū
∑
k∈Z

i(k−m)f̂(k−m)ek

)
= −i T̂ūf ′(em). (19)

This yields [∂z, T̂f ] = −i T̂ūf ′ ∈ B(�2(N)), δkN (T̂f) = (−i)k T̂f(k) ∈ B(�2(N)),
and δkN ([∂z , T̂f ]) = (−i)k+1 T̂(ūf ′)(k) ∈ B(�2(N)), the latter because ūf ′ is a C∞-

function. The statement for ∂ ∗
z can be proven analogously or by using [∂ ∗

z , a] =

−[∂z, a
∗]∗ together with a∗ ∈ F0 for all a ∈ F0 and T̂ ∗

f = T̂f̄ for all f ∈ C(S1). �
Now we are in a position to construct our spectral triple and describe its

fundamental properties.

Theorem 3. Let A denote the dense *-subalgebra of C(T2
q) from Lemma 2. Set

H := �2(N) ⊕ �2(N) and define a *-representation π : A → B(�2(N)⊕ �2(N)) by
π(a) := a⊕ a. Consider the self-adjoint operator

D :=

(
0 ∂z

∂ ∗
z 0

)
on dom(D) := dom(N)⊕ dom(N).

Then (A,H, D) is a 1+-summable regular even spectral triple for C(T2
q) with

grading operator γ := id ⊕ (−id). The Dirac operator D has discrete spectrum
spec(D) = Z, each eigenvalue k ∈ spec(D) has multiplicity 1, and a complete set
of eigenvectors {bk : k ∈ Z} satisfying Dbk = kbk is given by

bk := 1√
2
(ek−1 ⊕ ek), b−k := 1√

2
(−ek−1 ⊕ ek), k > 0, b0 := 0⊕ e0.

Its fundamental class F =

(
0 S∗

S 0

)
is non-trivial and ind(D) = 1.

Proof. We have already mentioned that the operator ∂z = S∗N is closed. Hence D
is self-adjoint by its definition. Since [D,π(a)] has [∂z , a] and [∂ ∗

z , a] as its non-zero
matrix entries, the boundedness of these commutators for all a ∈ A follows from
Lemma 2. As ∂z = S∗N and ∂ ∗

z = NS = S(N +1), the polar decomposition of D
reads as

D = F |D| =
(
0 S∗

S 0

)(
N + 1 0

0 N

)
. (20)

In particular, the entries of the commutators with |D| are given by commutators
with N , thus the regularity can easily be deduced from Lemma 2. Clearly, γ,
D and π(a) satisfy (3), so the spectral triple is even. From (12) and (15), it
follows immediately that D(bk) = kbk for all k ∈ Z. Since {bk : k ∈ Z} is an
orthonormal basis forH, we have spec(D) = Z and each eigenvalue has multiplicity
1. The 1+-summability follows from the convergence behavior of the infinite sum∑

k∈Z
(1 + |k|)−(1+ε), ε ≥ 0. Finally, by the polar decomposition given in (20),

ind(D) = ind(S∗) = 1. �
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of External Fields

Fardin Kheirandish

Abstract. By quantizing a general field theory in the presence of anisotropic
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1. Introduction

Since the seminal paper of Casimir [1] on fluctuation induced force between two
parallel plates made of perfect conductors due to vacuum fluctuations of electro-
magnetic field and its generalization to the case of dielectric slabs by Lifshitz [2],
an extensive work has been done on fluctuation-induced forces [3–12].

Starting from a Lagrangian, we derive a general formula for fluctuation-
induced free energy for two separate anisotropic material objects interacting lin-
early with a general fluctuating field.

2. Model

Suppose A1 and A2 are two separate pieces of anisotropic matter interacting lin-

early with a general fluctuating field through coupling tensors g
(1)
ij and g

(2)
ij (i, j =

1, 2, 3), respectively, see Figure 1. The total Lagrangian can be described by

L = −1

2
F · ô · F− 1

2

∞∫
0

dν Xν · (∂2
t + ν2)Xν +

∞∫
0

dν F · ḡ · ∂tXν , (1)

where F(r, t) describes the fluctuating field and Xν(r, t) describes anisotropic mate-
rial. The coupling strength defined by the coupling tensor ḡ(ν, r), exists only inside

c© Springer Nature Switzerland AG 2019
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Figure 1. Regions A1 and A2 contain anisotropic matter interacting
linearly with the fluctuating environment described by general field F.

the regions A1 and A2, occupied with an homogeneous but anisotropic matter

gij(ν, r) =

⎧⎪⎨⎪⎩
g
(1)
ij (ν), r ∈ A1;

g
(2)
ij (ν), r ∈ A2;

0, otherwise.

(2)

For example when the fluctuating field is electromagnetic vacuum field, then
ô = ∂2

t + ∇ × ∇×, [11, 12]. The fluctuating field can be assumed as a scalar,
vector, tensor or a spinor field interacting linearly with material fields and the
only modification will be a rearrangement of indices on fields and coupling func-
tions in the total Lagrangian density. Here, the anisotropic matter is modeled by
bosonic fields as a continuum of quantum harmonic oscillators [13–18], but it can
also be modeled by fermionic fields like metallic objects, the form of the final re-
sults does not depend on these details and differences between media are included
in response tensors. From Heisenberg equations of motion, we find the following
equations for fluctuating and material fields, respectively

ô · F =

∞∫
0

dν ḡ(ν, r) · ∂tXν , (3)

(∂2
t + ν2)Xν = −ḡ(ν, r) · ∂tF. (4)

Equation (4) can be solved formally as

Xν = X(n)
ν −

∫ t

0

dt′ Gν(t− t′)ḡ · ∂t′F, (5)

where Gν(t− t′) is the retarded Green function that can be expressed in terms of
the Heaviside step function as

Gν(t− t′) = Θ(t− t′)
sin ν(t− t′)

ν
, (6)

and X(n)
ν , is the homogeneous solution (∂2

t + ν2)X(n)
ν = 0, or material quantum

noise field. By inserting the solution (5) into (3), we find the quantum Langevin
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equation for the fluctuating field in the presence of material fields

ô · F+ ∂t

∫ t

0

dt′ χ̄(r, t− t′) · ∂t′F =

∞∫
0

dν ḡ · ∂tX
(n)
ν , (7)

where the response or memory tensor is defined by

χ̄(r, t− t′) =

∞∫
0

dν ḡ · ḡGν(t− t′). (8)

For notational simplicity, in Eq. (8) we have assumed that the coupling tensors
are symmetric ḡ = ḡt [18], that is the imaginary part of the susceptibility tensor
is symmetric, see Eq. (9). One can proceed without this assumption and consider
ḡ · ḡt instead of ḡ · ḡ. Equation (8) is a sine transform and its inverse leads to the
following relation between coupling and memory tensor in the frequency space

ḡ(ν, r) =

√
2ν

π
Im[χ̄(r, ν)]. (9)

Therefore, if we are given a definite response tensor, we can adjust the coupling
tensor according to Eq. (9).

3. Partition function

To find the partition function, we first switch to the Euclidean Lagrangian LE ,
obtained by a Wick rotation on time coordinate it = τ, (∂t = i∂τ ), which implies

ô(∂2
t , ∂i)→ ô′(−∂2

τ , ∂i), (10)

and all fields are now functions of (r, τ). The total partition function is defined
by [11]

Z =

∫ ∏
ν≥0

D[Xν ]D[F] e−
1
2

∫
dr

∫
β
0

dτ [F·ô′·F+F·J]

× e
− 1

2

∫
dr

∫ β
0

dτ
∞∫
0

dν Xν ·(−∂2
τ+ν2)Xν

,

(11)

where β = 1/kB T , kB is the Boltzmann constant and T is the temperature of
the fluctuating medium described by the field F. The source term J in Eq. (11) is
defined by

J = i

∞∫
0

dν ḡ · ∂τXν . (12)
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To find the partition function, periodic boundary conditions on bosonic fields are
imposed

F(r, τ) = F(r, τ + β) =

∞ ′∑
n=0

[Fn(r)e
−iωnτ + c.c.],

Xν(r, τ) = Xν(r, τ + β) =

∞ ′∑
n=0

[Xν,n(r)e
−iωnτ + c.c.],

(13)

where ωn = 2πn/β are Matsubara frequencies and the prime over the summation
means the term corresponding to n = 0, should be given half weight. Note that
for fermionic fields antiperiodic boundary conditions should be applied. Inserting
Eqs. (13) into Eq. (11), we find

Z =

∫ ∏
n,ν≥0

D[Xν,n]D[X∗
ν,n]

∏
n≥0

D[Fn]D[F∗
n]

× e
− 1

2

∫
dr

∞′∑
n=0

(Fn·βôn·F∗
n+F∗

n·βôn·Fn+Fn·J∗n+F∗
n·Jn)

× e
− 1

2

∫
dr

∞∫
0

dν (X∗
ν,n·β(ω

2
n+ν2)Xν,n+Xν,n·β(ω2

n+ν2)X∗
ν,n)

,

(14)

where for convenience we have defined ôn = ô′(ω2
n, ∂i). By making use of the

well-known formula [19]∫
D[ϕ]D[ϕ∗] e−

∫
dr (ϕ∗Âϕ+ϕÂϕ∗+ρϕ∗+�∗ϕ) = (det Â)−1 e

∫
dr ρ∗Â−1ρ, (15)

we can integrate over fluctuating field and material degrees of freedom and find
the total partition function as

Z =

∞ ′∏
n≥0

(det[βôn])
−1

︸ ︷︷ ︸
ZF

∞ ′∏
n≥0

∞∏
ν≥0

(det[β(ω2
n + ν2)])−1

︸ ︷︷ ︸
Zm

×
∞ ′∏
n≥0

∞∏
ν≥0

(det[1 + ω2
n Gν(ωn) ḡ ·G0 · ḡ])−1

︸ ︷︷ ︸
Zeff

,

(16)

where G0 is the dyadic Green function of the fluctuating field in free space
ôn · G0 = I. In Eq. (16), the first product term is the partition function of the
fluctuating field (ZF ), the second product term is the partition function of the
material field (Zm) and the last term which is the relevant term for our purposes,
originates from interaction between the fluctuating field and material field (Zeff).

Using the identity ln[det Ô] = Tr ln[Ô], and definition of the relevant or effective
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free energy Feff = −kBT lnZeff, we find

Feff = kBT

∞ ′∑
n≥0

Tr ln[1 + ω2
n Gν(ωn) ḡ ·G0 · ḡ]. (17)

By making use of the expansion

ln(1 + x) =
∞∑

m=1

(−1)m−1 xm

m
, (18)

and Fourier transform of the memory or response tensor, Eq. (8)

χij(r, ω) =

∞∫
0

dν
gik(ν, r) gkj(ν, r)

ω2 + ν2
, (19)

we find the free energy in terms of the response tensor as

Feff = kBT
∞ ′∑
n=0

Tr|i,r〉 ln[1 + χ̄(iωn) · Ḡ0(iωn)], (20)

where Tr|i,r〉, means taking trace over position and internal degrees of freedom
(i = 1, 2, 3). Equation (20) is the elegant formula for the fluctuation-induced free
energy obtained for a general fluctuating field interacting linearly with anisotropic
media in finite temperature. By making use of the expansion (18) for the logarithm,
we obtain the following series in the susceptibility tensor

Feff = kBT

∞ ′∑
n=0

∞∑
m=1

(−1)m−1

m
Tr|i,r〉 (χ̄(iωn) · Ḡ0(iωn))

m, (21)

which is a generalization of the result reported in [11, 20] for the case of the
electromagnetic field in the presence of isotropic matter.

For the fermionic material fields we find the same formula and the details of
the material properties are included in the response tensor χ̄ of the medium. In
zero temperature, using the correspondence

∞∫
0

dζ

2π
↔ kBT

∞ ′∑
n=0

, (22)

we find

F =

∞∫
0

dζ

2π
Tr|i,r〉 [ln(1 + χ̄(iζ) · Ḡ0(iζ))]. (23)
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of Non-Smooth Strings
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Abstract. The mathematical problem of quantization of the theory of smooth
strings consists of quantization of the space Ωd of smooth loops taking values
in the d-dimensional Minkowski space Rd. The latter problem can be solved
in frames of the standard Dirac approach. However, a natural symplectic
form on Ωd may be extended to the Hilbert completion of Ωd coinciding with

the Sobolev space Vd := H
1/2
0 (S1, Rd) of half-differentiable loops with values

in Rd. So it is reasonable to consider Vd as the phase space of non-smooth
string theory and try to quantize it. We explain how to do it using ideas from
noncommutative geometry.
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The problem of quantization of the theory of smooth strings mathematically is
reduced to the quantization of the space Ωd of smooth loops taking values in the
d-dimensional Minkowski space. Here Ωd, provided with a natural symplectic form,
is treated as the phase space of smooth string theory. The problem of quantization
of Ωd may be solved in frames of the standard Dirac approach (cf., e.g., [6]).
We describe the main steps of this construction in the first part of this paper
Sections 1, 2).

However, the symplectic form of Ωd may be extended to the Hilbert com-

pletion of Ωd coinciding with the Sobolev space Vd := H
1/2
0 (S1, Rd) of half-

differentiable loops with values in Rd. So it is reasonable to consider Vd as the
phase space of non-smooth string theory and try to quantize it. There is a natural
group QS(S1) of quasisymmetric homeomorphisms of the circle associated with
this Sobolev space. This group acts on Vd by reparameterization and this action
preserves the symplectic form. If this action would be smooth we could quantize
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the space Vd along the same lines as in the case of the space Ωd of smooth loops.
However, this action is not smooth implying that we are not able to construct any
classical system associated with the phase space Vd provided with the action of
the group QS(S1). Nevertheless, we can define a quantum system associated with
Vd using the ideas from noncommutative geometry as in [8].

1. Classical system associated with the loop space Ωd

1.1. Phase space Ωd

The loop space Ωd is the space C∞
0 (S1, Rd) of smooth maps S1 → Rd with zero

average along the circle. The elements x ∈ Ωd have Fourier decompositions of the
form

x(θ) := x(eiθ) =
∑
k �=0

xke
ikθ

with coefficients xk ∈ Cd satisfying the relation: xk = x̄−k.
The standard symplectic form on Ωd is defined in terms of Fourier coefficients

by the formula

ω(ξ, η) = −i
∑
k �=0

k〈ξk, η−k〉 = 2 Im
∑
k>0

k〈ξk, η̄k〉

where we denote by 〈· , ·〉 the standard inner product in Rd.
We can also define a complex structure on Ωd in terms of Fourier coefficients

by the operator

ξ(θ) =
∑
k �=0

ξke
ikθ �−→ (J0ξ)(θ) = −i

∑
k>0

ξke
ikθ + i

∑
k<0

ξke
ikθ.

Both introduced structures are compatible with each other, in particular,
they determine a Riemannian metric on Ωd by the formula g0(ξ, η) := ω(ξ, J0η)
or in terms of Fourier coefficients

g0(ξ, η) = 2Re
∑
k>0

k〈ξk, η̄k〉 =
∑
k �=0

|k|〈ξk, η̄k〉.

In other words, Ωd has the structure of a Kähler–Fréchet space.

1.2. Algebra of observables Ad

The space Ωd is provided with the algebra of observables Ad given by the semi-
direct product heis(Ωd) � Vect(S1) of the Heisenberg algebra heis(Ωd) and Lie
algebra Vect(S1) of tangent vector fields on the circle.

In more detail, the Heisenberg algebra heis(Ωd) is a central extension of the
Abelian Lie algebra Ωd generated by the coordinate functions on Ωd. In other
words, it coincides with the vector space heis(Ωd) = Ωd⊕R provided with the Lie
bracket of the form

[(x, s), (y, t)] := (0, ω(x, y)) , x, y ∈ Ω, s, t,∈ R.
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The second component of Ad is given by the Lie algebra of the Lie group
Diff+(S

1) of orientation-preserving diffeomorphisms of the circle. It coincides with
the Lie algebra Vect(S1) of smooth tangent vector fields on the circle S1.

1.3. Definition of quantization

The quantization of the classical system, given by the pair (Ωd,Ad), consisting
of the phase space Ωd and the algebra of observables Ad, is an irreducible linear
representation

r : Ad −→ End∗(H)

of observables f ∈ Ad by selfadjoint operators r(f) acting in a complex Hilbert
space H called the quantization space.

This representation should satisfy the condition

r ({f, g}) = 1

i
(r(f)r(g) − r(g)r(f))

for any f, g ∈ Ad where {f, g} is the Poisson bracket of observables f, g determined
by the symplectic structure. It is also assumed that r(1) = id.

For infinite-dimensional algebra of observables Ad it is more natural to deal
with projective representations. Having such representation of Ad, we can con-

struct the quantization of the extended system (Vd, Ãd) where Ãd is an appropriate
central extension of Ad.

1.4. The action of the diffeomorphism group of the circle on Ωd

The diffeomorphism group of the circle Diff+(S
1) acts on Ωd by reparameteriza-

tion: f : x �→ x ◦ f , x ∈ Ωd, f ∈ Diff+(S
1). This action is symplectic, i.e., it

preserves symplectic form ω.

However, in general it does not preserve the complex structure J0. More
precisely, a diffeomorphism f ∈ Diff+(S

1) transforms the complex structure J0

into a new complex structure

Jf := f−1
∗ ◦ J0 ◦ f∗,

where f∗ is the tangent map to f . This new complex structure Jf coincides with
the original complex structure J0 if and only if f ∈ Möb(S1) where Möb(S1) is
the group of fractional-linear automorphisms of the unit disc restricted to S1.

We shall call the complex structures Jf on Ωd obtained from J0 by the action
of the diffeomorphism group Diff+(S

1) admissible.

The space of admissible complex structures on Ωd is identified with the
Kähler–Fréchet manifold

S := Diff+(S
1)/Möb(S1).
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2. Quantization of the classical system (Ωd,Ad)

2.1. Sobolev space Vd

Quantization of the first component of the algebra of observables Ad, given by
the Heisenberg algebra heis(Ωd), is realized in the Fock space associated with the

Sobolev space Vd := H
1/2
0 (S1, Rd) of half-differentiable loops with values in Rd.

Recall that the Sobolev space Vd := H
1/2
0 (S1, Rd) consists of the maps x ∈

L2(S1,Cd) with zero average along the circle, having Fourier decompositions of
the form

x(θ) := x(eiθ) =
∑
k �=0

xke
ikθ

with coefficients xk ∈ Cd satisfying the relation: xk = x̄−k, and having the finite
Sobolev norm of order 1/2

‖x‖2Vd
=
∑
k �=0

|k|‖xk‖2 = 2
∑
k>0

k‖xk‖2 <∞.

This space may be considered as a natural Hilbert completion of the Fréchet
space Ωd with respect to the Sobolev norm. In particular, the complex structure
operator J0 and symplectic form ω, introduced above for the space Ωd, extend to
Vd transforming it into a Kähler–Hilbert space with Riemannian metric

g0(ξ, η) = ω(ξ, J0η) = 2Re
∑
k>0

k〈ξk, η̄k〉 =
∑
k �=0

|k|〈ξk, η̄k〉.

This metric extends to a Hermitian inner product on the compexified Sobolev

space V C

d = H
1/2
0 (S1,Cd) given by the formula

〈ξ, η〉 =
∑
k �=0

|k|〈ξk, η̄k〉.

The form ω and complex structure operator J0 extend to V C

d complex-linearly.

The space V C

d decomposes into the direct sum

V C

d = W+ ⊕W− =: W0 ⊕W 0

of the subspaces W± being the (∓i)-eigenspaces of operator J0 given by

W± =

{
x ∈ V C

d : x(θ) =
∑
±k>0

xke
ikθ

}
.

2.2. Fock space associated with Vd

The Fock space F0 ≡ F (V C

d , J0) is the completion of the algebra of symmetric
polynomials on W0 with respect to a natural norm generated by < ·, · >.

In more detail, denote by S(W0) the algebra of symmetric polynomials in
variables z ∈W0 ≡W+ and introduce the inner product on S(W0) induced by the
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Hermitian inner product 〈·, ·〉 on V C

d . This inner product on monomials is given
by the formula

〈z1 ⊗ · · · ⊗ zn, z′1 ⊗ · · · ⊗ z′n〉 =
∑

{i1,...,in}

〈
z1, z

′
i1

〉
· · · · ·

〈
zn, z′in

〉
where the summation is taken over all permutations {i1, . . . , in} of the set
{1, . . . , n} (inner product of monomials of different degrees is set to 0 by defi-
nition).

Extend this inner product on monomials to the whole algebra S(W0) by

linearity. The completion Ŝ(W0) of the spaceS(W0) with respect to the introduced
norm is called the Fock space

F0 ≡ F (V C

d , J0)

over V C

d with respect to the complex structure J0.
In an analogous way, any admissible complex structure J on Vd yields the

decomposition

V C

d = W ⊕W

of the complexified Sobolev space V C

d into the direct sum of (∓i)-eigenspaces of
operator J on V C. These subspaces are isotropic with respect to ω and the above
decomposition is orthogonal with respect to the Riemannian metric 〈· , ·〉J on V C

d

determined by J and ω.
Using this decomposition, we define the Fock space

FJ ≡ F (V C

d , J)

as the completion of the algebra S(W ) of symmetric polynomials on W with
respect to the norm generated by 〈· , ·〉J .

If {wn}∞n=1 is an orthonormal basis of W one can take for the orthonormal
basis of the Fock space FJ the monomials of the form

PK(z) =
1√
k!
〈z, w1〉k1

J · · · · · 〈z, wn〉kn

J , z ∈ W,

where K = (k1, . . . , kn, 0, . . .) is a finite sequence of natural numbers ki ∈ N and
k! = k1! · · · · · kn!.

2.3. Heisenberg representation

There is a standard irreducible Heisenberg representation rJ of the Heisenberg
algebra heis(Vd) in the Fock space FJ = F (V C

d , J) which is constructed in the
following way.

The elements of the algebra S(W ) may be considered as holomorphic func-
tions on the space W by identifying z ∈W with the holomorphic function

W % w̄ �−→ 〈z, w〉J on W.

Respectively, the space FJ may be considered as a space of functions holomorphic
on W .
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The Heisenberg representation rJ of the Heisenberg algebra heis(Vd) in the
Fock space FJ is given by the formula

Vd % v �−→ rJ(v)f(w̄) = ∂vf(w̄) + 〈v, w〉J f(w̄) (1)

where ∂v is the derivative in direction of vector v. Extending rJ to the complexified
algebra heisC(Vd) by the same formula (1), we obtain that

rJ (z̄)f(w̄) = ∂z̄f(w̄) for z̄ ∈W,

rJ (z)f(w̄) = 〈z, w〉J f(w̄) for z ∈W.

The Heisenberg representation is conveniently described in terms of creation
and annihilation operators on the space FJ given by the formulas

a∗
J (v) =

rJ (v) + irJ (Jv)

2
, aJ (v) =

rJ (v)− irJ (Jv)

2

where v ∈ V C

d . It implies that

a∗
J(z)f(w̄) = 〈z, w〉J f(w̄) for z ∈W,

aJ(z̄)f(w̄) = ∂z̄f(w̄) for z̄ ∈W.

2.4. Quantization of the algebra Ad

To quantize the second component of the algebra of observables Ad, represented
by the algebra Vect(S1) of tangent vector fields on the circle, we should study
the action of the group Diff+(S

1) of diffeomorphisms of the circle on the Fock
spaces FJ .

If J = Jf is an admissible complex structure obtained from J0 by the action
of a diffeomorphism f ∈ Diff+(S

1) we denote by rJf ≡ rf the corresponding
representation of the Heisenberg algebra heis(Vd) in the Fock space FJf ≡ F f .

By the Goodman–Wallach theorem [3] the natural action of the group
Diff+(S

1) on the space S := Diff+(S
1)/Möb(S1) of admissible complex struc-

tures on Ωd by left translations may be pulled up to a projective unitary action

Uf : F0 −→ F f

of the group Diff+(S
1) on Fock spaces intertwining the representations r0 and rf :

rfUf (v) = Ufr0(v) for v ∈ F0.

Introduce the Fock bundle

F :=
⋃
J∈S

FJ −→ S = Diff+(S
1)/Möb(S1).

It is a holomorphic Hilbert bundle over the space S (cf., e.g., [6]).
The infinitesimal version of the action of the group Diff+(S

1) on the Fock
bundle yields a projective unitary representation ρ of the Lie algebra Vect(S1)
in the space F0. The cocycle of this representation was computed by Bowick and
Rajeev [1].
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In the basis {en := ieinθd/dθ} of the algebra VectC(S1) it is given by the
formula

[ρ(em), ρ(en)]− ρ ([em, en]) =
d
12 (m

3 −m)δm,−n.

This cocycle determines a central extension Ãd of the original algebra of

observables Ad together with the unitary representation of Ãd in the Fock space

F0 concluding the quantization of the classical system (Ω, Ãd).

3. Quantization of theory of half-differentiable strings

3.1. Motivation

Having quantized the classical system (Ωd,Ad) we may ask why in our approach
we have restricted ourselves to smooth strings?

The only “physical parameter” in the considered theory is the symplec-

tic form ω on Ωd which extends to the Sobolev space Vd = H
1/2
0 (S1, Rd) of

half-differentiable loops. In fact, Vd is the largest in the Sobolev scale of spaces
Hs

0(S
1, Rd), s > 0, on which this form is correctly defined.

So why not to take this Sobolev space, already “chosen by symplectic form
itself”, for the phase space of string theory? It seems that the only reason for
choosing Ωd as the phase space of this theory is that we prefer to deal with smooth
objects.

Motivated by these considerations, we shall assume from now on that the
phase space of our theory is the Sobolev space Vd of half-differentiable loops.

We should choose next a natural algebra of observables on this phase space.
The first component of the algebra Ad, coinciding with the Heisenberg algebra,
describing the pure kinematics, should be included into our algebra of observables
anyhow.

As for the second component of Ad, namely the Lie algebra Vect(S1), its
choice in the smooth case was explained by the fact that the corresponding Lie
group Diff+(S

1), consisting of diffeomorphisms of the circle, acts on the space Ωd

by reparameterization, i.e., change of variable. Such choice was evidently dictated
by the fact that we were dealing with smooth loops only.

Returning to the choice of the second component of the algebra of observables,
we can pose the following question: what is the natural group acting on the space
Vd by reparameterization? The answer to this question is given by the Nag–Sullivan
theorem below. However, before that we need to introduce some notions from the
theory of quasiconformal maps.

3.2. Quasisymmetric homeomorphisms

Recall that an orientation-preserving homeomorphism w : Δ→ Δ of the unit disc
Δ onto itself with locally integrable derivatives is called quasiconformal if there
exists a bounded measurable function μ ∈ L∞(Δ,C) with the norm ‖μ‖∞ =: k < 1
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such that the following Beltrami equation

wz̄ = μwz

holds almost everywhere in Δ. The function μ is called the Beltrami differential.
In the case when k = 0, i.e., μ = 0, the Beltrami equation coincides with the

Cauchy–Riemann equation so in this case the map w is conformal.
Recall some important properties of quasiconformal maps:

1. Quasiconformal homeomorphisms w : Δ → Δ extend continuously (in fact,
Hölder-continuously) to the boundary S1 = ∂Δ as homeomorphisms S1 →
S1.

2. The composition of quasiconformal maps Δ → Δ is again a quasiconformal
map. The same is true for the maps inverse to quasiconformal ones. Hence,
quasiconformal automorphisms of the disc Δ form a group with respect to
the composition.

An orientation-preserving homeomorphism f : S1 → S1 is called quasisym-
metric if it extends to a quasiconformal homeomorphism w : Δ → Δ of the unit
disc Δ onto itself. Since the quasiconformal automorphisms of the disc Δ form a
group the same is true also for quasisymmetric homeomorphisms of S1. The group
of quasisymmetric homeomorphisms of S1 is denoted by QS(S1).

3.3. Nag–Sullivan theorem

Let f be an orientation-preserving homeomorphism S1 → S1. Associate with it
an operator Tf acting on Vd by the formula

(Tfh(z) = h(f(z))− 1

2π

∫ 2π

0

h(f(eiθ))dθ, z = eiθ, h ∈ Vd.

Theorem 1 (Nag–Sullivan [4]). The operator Tf maps the space Vd into itself if
and only if f ∈ QS(S1). The action of the operator Tf : Vd → Vd with f ∈ QS(S1)
on the space Vd preserves the symplectic form ω, i.e., ω(Tfξ, Tfη) = ω(ξ, η) for
any ξ, η ∈ Vd.

This theorem implies that a natural group acting on the Sobolev space Vd is
the group QS(S1) of quasisymmetric homeomorphisms of the circle. If this group
would be a Lie group, acting smoothly on Vd then we could take for the second
component of our algebra of observables the Lie algebra of this group and construct
the quantization of the arising classical system in the same way as in the case of
smooth loops. However, neither the group QS(S1) nor its action on the Sobolev
space Vd are smooth. By this reason we cannot construct any classical system with
the phase space Vd provided with the action of the group QS(S1).

Instead, we shall construct directly a quantum system associated with Vd. In
other words, we change our original point of view on quantization and construct
first the quantum system, associated with the space Vd and the group QS(S1),
passing by the stage of construction of the classical system.

To do that we have to replace our original definition of quantization by the
one proposed by Connes.
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3.4. Connes quantization

In Dirac definition we are quantizing the classical systems (M,A) where M is the
phase space and A is a Lie algebra of observables, consisting of smooth functions
on M , provided with the Poisson bracket.

In Connes’ approach [2] a classical system is given by the pair (M,A) where
M is again the phase space and the algebra of observables A is an associative
involutive algebra of smooth functions on M provided with involution and exterior
derivative d.

The quantization of such system is given by an irreducible linear representa-
tion π of observables from A by closed linear operators acting in the quantization
space H . The involution in A under this representation is transformed into Her-
mitian conjugation while the derivative d is sent to the commutator with some
symmetry operator S where S is a selfadjoint operator on H with square S2 = I.
In other words,

π : df �−→ dqf := [S, π(f)], f ∈ A.

If all observables are smooth functions on M (as we have assumed up to this
point) then there is not much difference between these two approaches to quan-
tization. However, if we allow the algebra of observables A to contain nonsmooth
functions the Dirac definition looses its sense. In Connes’ approach the differential
of a nonsmooth observable f ∈ A is also not defined in the classical sense. However,
it may happen that its quantum analogue

dqf := [S, π(f)]

is correctly defined.
Before we switch to the construction of the quantum system, associated with

the Sobolev space Vd and the group QS(S1) consider the following simple example.
Take for the algebra of observables the algebra A = L∞(S1,C) of bounded

functions on the circle S1. Any function f ∈ A determines a bounded multiplication
operator Mf in the Hilbert space H = L2(S1,C) acting by the formula:

Mf : h ∈ H �−→ fh ∈ H.

The symmetry operator S on H is given by the Hilbert transform:

(Sh)(φ) =
1

2π
P.V.

∫ 2π

0

K(φ, ψ)f(ψ)dψ, f ∈ H,

where the integral is taken in the principal value sense, i.e.,

P.V.

∫ 2π

0

K(φ, ψ)f(ψ)dψ := lim
ε→0

[∫ φ−ε

0

+

∫ 2π

φ+ε

]
K(φ, ψ)f(ψ)dψ.

(Here and in the sequel we identify the functions f(z) on the circle S1 with the
functions f(φ) := f(eiφ) on the interval [0, 2π].) The Hilbert kernel in this formula
is given by the expression

K(φ, ψ) = 1 + i cot φ−ψ
2 .
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Note that for φ→ ψ it behaves like 1 + 2i
φ−ψ .

The differential of a general observable f ∈ A is not defined in the classical
sense but its quantum analogue

dqf := [S,Mf ]

is correctly defined as an operator in H (this operator is correctly defined even for
functions from BMO(S1)).

Namely, it is an integral operator given by the formula

(dqf)(h)(φ) =
1

2π

∫ 2π

0

kf (φ, ψ)h(ψ)dψ, h ∈ H,

where kf (φ, ψ) = K(φ, ψ)(f(φ) − f(ψ)). For φ → ψ the kernel kf (φ, ψ) behaves
like

const
f(φ) − f(ψ)

φ− ψ
.

The quasiclassical limit of this operator, established by restricting it to smooth
functions and taking the trace on the diagonal φ = ψ, coincides with the multipli-
cation operator h �→ f ′ · h.

In other words, the quantization procedure in this example essentially re-
duces to the replacement of the derivative by its finite-difference analogue. Such a
quantization, given by the correspondence

A % f �−→ dqf : H → H,

Connes [2] calls the “quantum calculus” by analogy with the finite-difference cal-
culus (cf. also [7]).

3.5. Quantization of the Sobolev space Vd

Returning to the quantization of the Sobolev space Vd, it would be more conve-
nient to switch from S1 to the real line R. Then Vd will be replaced by the Sobolev
space H1/2(R) of half-differentiable vector-functions on the real line (which we
continue to denote by Vd) and QS(S1) will be substituted by the group QS(R) of
quasisymmetric homeomorphisms of R, extending to quasiconformal homeomor-
phisms of the upper half-plane. Then for any h ∈ Vd we introduce the operator
dqh : V C

d → V C

d by the formula

(dqh)(v)(x) =

∫
R

h(x + t)− h(t)

t
v(t)dt, v ∈ V C

d .

According to [5], the tangent space to QS(R) at the origin coincides with the
Zygmund space Λ(R) of functions f(x) satisfying the condition

|f(x + t) + f(x− t)− 2f(x)| ≤ C|t|
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uniformly for x ∈ R, t > 0, and growing not faster than const · x2 for |x| → ∞.
This motivates the introduction of the following operator dqg for g ∈ QS(R)

dqg(v) =

∫
R

g(x+ t) + g(x− t)− 2g(x)

t
v(t)dt, v ∈ V C

d .

We define now the quantized infinitesimal action of QS(R) on V C

d as the
composition T q

g h := dqh(g) ◦ dqg of the introduced operators. The quasiclassical
limit of this operator is equal to the operator of multiplication by h′(g)g′.

This action extends to the whole Fock space F0 in the following way. We
define it first on the elements of the orthonormal basis of F0, given by monomials
PK(z), by the Leibniz rule. Then we extend this operator to the whole algebra
S(W+) of symmetric polynomials on W+ by linearity. The closure of the obtained
operator yields an operator T q

g h in the Fock space F0. In the same way the operator
dqh is extended to a closed operator dqh in F0.

The desired quantum algebra of observables Aq
d is the Lie algebra generated

by the constructed operators dqh and T q
g h in F0 with g ∈ QS(R), h ∈ Vd.
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Abstract. This is a brief reminder, with extensions, from a different angle and
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deformation theory applied to quantization and symmetries (of elementary
particles).
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1. Presentation

In 1960 Wigner [21] marveled about “the unreasonable effectiveness of mathemat-
ics in the natural sciences.” In 1963/64 appeared index theorems for pseudodiffer-
ential operators. I participated (exposé 23, [9]) in the Cartan–Schwartz seminar
that developed the announcement of the first result (a parallel seminar was held
in Princeton under Richard Palais, and different proofs and extensions were pub-
lished by Atiyah et al. a few years later). In 1964 appeared Gerstenhaber’s theory
of deformations of algebras [17]. [Murray Gerstenhaber is now 90 and still active.]
Soon after Gerstenhaber’s seminal work it was realized that, from the viewpoint
of symmetries, special relativity is a deformation.

The underlying idea is that new fundamental physical theories can, so far a
posteriori, be seen as emerging from existing ones via some kind of deformation.
The main paradigms are the physics revolutions from the beginning of the twen-
tieth century, special relativity (symmetry deformation from the Galilean to the
Poincaré groups) and quantum mechanics (via deformation quantization).

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01156-7_14&domain=pdf
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Indeed in the mid-seventies all this converged to explain quantum mechan-
ics as a deformation of classical mechanics [3], what is now called deformation
quantization. Quantum groups and noncommutative geometry can be considered
as avatars of that framework. In this very short paper (see [20], and references
therein, for more details on most of these ideas) I present these notions in general
terms, describe some results. and indicate some perspectives, including suggestions
to use the framework to put on “non-clay feet” the “colossal” standard model of
elementary particles, and maybe explain the “dark universe.”

1.1. The problem

“It isn’t that they can’t see the solution. It is that they can’t see the problem.”
That is a quote from a detective story by G.K. Chesterton (1874–1936) (“The
Point of a Pin” in “The Scandal of Father Brown” (1935)). The problem, in my
view, is that the Standard Model of elementary particles could be a colossus with
clay feet. Cf. in the Bible (Daniel 2:41–43), the interpretation by Belteshazzar
(a.k.a. prophet Daniel) of Nebuchadnezzar’s dream.

The physical consequences of the approach described here might be revolu-
tionary but in any case there are, in the mathematical tools required to jump start
the process, potentially important developments to be made.

1.2. Some motivating quotes

Albert Einstein: “The important thing is not to stop questioning. Curiosity has
its own reason for existing.”
“You can never solve a [fundamental, precision added by DS] problem on the level
on which it was created.”
Gerard ’t Hooft (about Abdus Salam) [18]: “To obtain the Grand Picture of the
physical world we inhabit [. . . ] courage is required. Every now and then, one has
to take a step backwards, one has to ask silly questions, one must question estab-
lished wisdom, one must play with ideas like being a child. And one must not be
afraid of making dumb mistakes. By his adversaries, Abdus Salam was accused of
all these things.”
Eugene Paul Wigner [21]: “Mathematical concepts turn up in entirely unexpected
connections. Moreover, they often permit an unexpectedly close and accurate de-
scription of the phenomena in these connections. Secondly, just because of this
circumstance, and because we do not understand the reasons of their usefulness,
we cannot know whether a theory formulated in terms of mathematical concepts
is uniquely appropriate.”
Sir Michael Atiyah (at ICMP London 2000, [2]): “Mathematics and physics are
two communities separated by a common language.”
Paul Adrien Maurice Dirac [11]: “Two points of view may be mathematically
equivalent [. . . ] But it may be that one point of view may suggest a future de-
velopment which another point does not suggest [. . . ] Therefore, I think that we
cannot afford to neglect any possible point of view for looking at Quantum Me-
chanics and in particular its relation to Classical Mechanics.”



The Reasonable Effectiveness of Deformation Theory in Physics 133

2. Headlines

A scientist should ask himself three questions: Why, What and How. Of course,
work is 99% perspiration and 1% inspiration. Finding how is 99% of the research
work, but it is important to know what one is doing and even more why one does
such a research.

What we call “physical mathematics” can be defined as mathematics inspired
by physics. While in mathematical physics one studies physical problems with
mathematical tools and (hopefully) rigor. [Theoretical physics uses mathematical
language without caring much about rigor.] In addition, as to “what” and “how” to
research there are important differences between mathematicians and physicists.
Indeed, even when taking their inspiration from physics (which fortunately is again
often the case now, see, e.g., [2]), mathematicians tend to study problems in as
general a context as possible, which may be very hard. But when the aim is to
tackle specific physical problems, and though generalizations may turn out to have
unexpected consequences, it is often enough to develop tools adapted to the desired
applications.

That is the spirit which inspired the approaches Moshe Flato and I developed
(with coworkers of course) since the mid 60s, and which I am continuing this
millennium. In what follows I give a flavor of two main topics we tackled, i.e.,
original applications both of symmetries to particle physics and of quantization
as a deformation, and of the combining program that I am now trying to push
forward for the coming generation(s).

2.1. Deformation quantization and avatars

As we said above the two major physical theories of the first half of the twentieth
century, relativity and quantization, can now be understood as based on deforma-
tions of some algebras. That is the starting point of Moshe Flato’s “deformation
philosophy”. Deformations (in the sense of Gerstenhaber [17]) are classified by co-
homologies. The deformation aspect of relativity became obvious in 1964, as soon
as deformation theory of algebras (and groups) appeared, since one can deform
the Galilean group symmetry of Newtonian mechanics SO(3) � R3 � R4 to the
Poincaré group SO(3, 1)�R4.

Though (when Moshe arrived in Paris) I studied in [9] the composition of
symbols of elliptic operators, and in spite of the fact that the idea that some
passage from classical to quantum mechanics had been “in the back of the mind” of
many, it took a dozen more years before quantization also could be mathematically
understood as a deformation, with what is now called deformation quantization,
often without quoting our founding 1978 papers [3]. (These have nevertheless been
cited over 1000 times if one includes the physics literature, and so far 271 times
for paper II in the mathematics literature, according to MathSciNet.)

Explaining the process in some detail would be beyond the scope of this short
overview, so we refer to [20] and references therein. In a nutshell the idea is that,
instead of a complete change in the nature of observables in classical mechanics
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(from functions on phase space, a symplectic or Poisson manifold, to operators
on some Hilbert space in quantum mechanics), the algebra of quantum mechanics
observables can be built on the same classical observables but with a deformed
composition law (what we called a “star product” since the deformed composition
law was denoted �). The main paradigm is the harmonic oscillator. That can be
extended to field theory (infinitely many degrees of freedom), and more.

Related representations of Lie groups can then be performed on functions on
orbits with deformed products, instead of operators. Similarly, though they arose
in quite different contexts in the 80s, based on previous works from the 70s by their
initiators (Faddeev’s Leningrad school for quantum groups coming from quantum
integrable models, and Alain Connes’ seminal works on von Neumann algebras for
noncommutative geometry), both can be (see, e.g., [10, 12]) considered as avatars
of our framework.

In particular, in the “generic case”, quantum groups are deformations of
an algebra of functions on a Poisson Lie group or of a dual algebra [5, 6]. The
idea was extended in the 90s to multiparameter deformations (with commuting
parameters), and (unrelatedly) to the case when the parameter is a root of unity –
in which case the deformed Hopf algebra is finite-dimensional, with finitely many
irreducible representations. That idea has not yet been extended to multiparameter
deformations at roots of unity, nor a fortiori to noncommutative parameters (a
notion which is not part of Gerstenhaber’s approach and is not yet defined).

2.2. Symmetries of elementary particles

A posteriori one can say that the geometric aspect of deformation theory was
known in physics since the antiquity, in particular when (in the fifth century B.C.)
Pythagoras conjectured that, like other celestial bodies, the earth is not flat; two
centuries later Aristotle gave phenomenological indications why this is true, and
ca. 240 B.C. Eratosthenes came with an experimental proof of the phenomenon,
giving a remarkably precise evaluation of the radius of the “spherical” earth. In
mathematics one had to wait for Riemann’s surface theory to get an analogue.

In another context, in the latter part of last century arose the standard model
of elementary particles, based on empirically guessed symmetries. The untold ra-
tionale was that symmetries are important to explain the spectra observed in
atomic and crystalline spectroscopy (as shown, e.g., in Moshe Flato’s M.Sc. thesis
under Racah [19]). There one knows the forces and symmetries make calculations
feasible. In nuclear spectroscopy, the subject of Moshe’s PhD thesis under Racah
(which he never defended because Racah died unexpectedly in Firenze on his way
to meet Moshe in Paris, and by then Moshe had already completed a D.Sc. in
Paris), symmetries can be used as “spectrum generating”.

That is also how symmetries were introduced empirically in particle physics,
starting with isospin SU(2) since the 30s, then with a rank 2 compact Lie group
(thoroughly studied in the less known [4]) after “strangeness”, a new quantum
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number, was introduced in the 50s (in particular thanks to people like Murray Gell-
Mann, who was then daring to tackle unpopular topics, before becoming a kind of
“guru” for at least a generation). That was quickly restricted to “flavor” SU(3).

A natural question was then what (if any) is the relation between such “in-
ternal” symmetries and the “external” symmetries like the Poincaré group, in
particular to explain the mass spectrum inside a multiplet. In 1965 we objected
[15] to a “no-go theorem” claiming to show that the connection must be a direct
sum, giving counterexamples shortly afterward. One should be careful with no-
go theorems in physics, which often rely on unstated hypotheses. [Another issue,
which was not so explicitly mentioned, is, e.g., how one can have the 3 octets of
the “eightfold way”, based on the same adjoint representation of SU(3), associated
with bosons of spin 0 and 1, and fermions of spin 1

2 .]
But what (if anything) to do with the basic 3-dimensional representations

of SU(3)? In 1964 Gell-Mann (and others) came with the suggestion to associate
them with “quarks”, hypothetical entities of fractional charge which (being “con-
fined” and of spin 1

2 ) cannot be directly observed nor coexist, e.g., in a hadron
(strongly interacting particle). Initially there were three “flavors” of quarks. Later
consequences of the quark hypothesis were observed and we now have 3 generations
(6 flavors) of quarks. To make possible their coexistence in a hadron they were
given (three) different colors, whence “color SU(3).” Soon, on the basis of that em-
pirically guessed symmetry, in a process reverse to what was done in spectroscopy,
dynamics were developed, QCD (quantum chromodynamics) with a non-abelian
gauge SU(3) on the pattern of QED (quantum electrodynamics, with abelian U(1)
gauge). The rest is history but not the end of the story.

Already in 1988 [13], Flato and Fronsdal explained how, if one deforms space-
time from Minkowski to Anti de Sitter (also a 4-dimensional space-time but with
tiny negative curvature) and as a consequence the Poincaré group to AdS SO(2, 3),
one can explain the photon as dynamically composite of two Dirac “singletons”
(massless particles in 1+2-dimensional space-time) in a way compatible with QED.
That was an instance of the AdS/CFT correspondence which we had detailed, e.g.,
in 1981 [1].

After numerous of papers on singleton physics, in Moshe’s last paper [14] we
described how the AdS deformation of Poincaré may explain the newly discovered
neutrino oscillations, which showed that neutrinos are not massless. Going one
step further, shortly afterward Fronsdal [16] explained how, on the pattern of the
electroweak model and on the basis of AdS deformation, the leptons (electron,
muon, tau, their antiparticles and neutrinos) can be considered as composites of
singletons, initially massless, massified by 5 Higgs. (This predicts, e.g., 2 new “W
and Z like” bosons.)

2.3. Combining both, and perspectives

In line with our deformation philosophy, the idea is that the question of connection
between symmetries could be a false problem: the “internal” symmetries on which
the Standard Model is based might “emerge” from the symmetry of relativity, first
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by “geometric” deformation (to Anti de Sitter, with singleton physics for photons
and leptons) followed (for hadrons) by a quantum group deformation quantization.

The program to deform Poincaré to AdS for particle symmetries was devel-
oped by Flato and coworkers since the 70s (see, e.g., [1, 13, 14] and references
therein), in parallel with deformation quantization. In the beginning of this mil-
lennium it dawned on me that the two could (maybe should) be combined by
deforming further AdS. The natural way to do so is within the framework of
quantum groups, possibly multiparameter since we now have 3 “generations” of
elementary particles, which as a fringe benefit might make room for the tradi-
tional (compact) internal symmetries. In view of their special properties, quantum
groups at roots of unity seem a promising structure, Of course such an approach
is at this stage merely a general framework to be developed, and would be only
part of the picture if one cannot “plug in” the present QCD dynamics.

In particular with for parameters the algebra of the Abelian group Z

3Z , at, e.g.,
sixth root of unity, one might be able to recover SU(3) and “put on solid ground”
the Standard Model. Or maybe replace its symmetry with a better one, requiring
to “go back to the drawing board” and re-examine half a century of particle physics
(from the theoretical, phenomenological and experimental viewpoints). The former
alternative is relatively more economical. The latter requires huge efforts, albeit
without having to build new machines, which Society is unlikely to give us.

That raises hard mathematical problems. (E.g., the tensor product of two
irreducible representations of a quantum group at root of unity is indecomposable.)
A solution to part of these has an independent mathematical interest. Combined
with the necessary detailed phenomenological study required, that might lead to
a re-foundation of half a century of particle physics.

There could also be implications in cosmology, including a possible expla-
nation of dark matter and/or of primordial black holes, which were introduced
already in 1974 by Hawking [8] and are now considered as a possible candidate for
“dark matter” (see, e.g., [7]). Since that is still an open question (in contradistinc-
tion with elementary particles for which there is a solution, even if the problem is
occulted) the community might be more receptive to try such ideas.
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States in Deformation Quantisation:
Hopes and Difficulties

Jaromir Tosiek

Abstract. A notion of the state in classical and in quantum physics is dis-
cussed. Several classes of continuous linear functionals over different algebras
of formal series are introduced. The condition of nonnegativity of functionals
over the ∗ algebra is analysed.
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1. Introduction

One of the most fundamental features of physics is that it proposes transformation
of the real world into numbers. From this point of view one can say that physical
reality consists of two main ingredients: the quantities which are measured called
observables and the characteristics of a system under consideration known as a
state. These two components are then combined to give results.

There exist several possible realisations of this scheme. In classical statistical
physics observables are identified with smooth real functions f on a phase space
M, states are represented by densities of probability � and results are mean values
calculated as the functional action 〈�, f〉.

At the quantum level in the Hilbert space model observables are self adjoint

operators f̂ acting in a spaceH, states are density operators �̂ and results are traces

Tr(�̂ · f̂). The reader interested in a systematic discussion of these postulates is
encouraged to see [1].

However, our expectations in physics are bigger. We not only need a suitable
mapping of reality into numbers but we would also like to be able to predict new
phenomena. This process of prediction is based on logic and involves mathematical
structures in which the sets of observables and of states can be equipped.

c© Springer Nature Switzerland AG 2019
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We start our contribution with a sketch of connections between a class of
functions representing classical observables and functionals being densities of prob-
ability. Then we introduce formal series with respect to a deformation parameter
λ, substitute a nonabelian ∗ product for the ‘usual’ multiplication of series and
finally build linear functionals representing states. We do that in order to deal
with quantum problems in frames of deformation quantisation formalism [2–4].

This formalism of deformation contains some difficulties. First of all, it usu-
ally involves infinite number of terms. Thus even elementary calculations for flat
systems become rather complicated. Moreover, infinite sums appearing in some
expressions may not be convergent.

But on the other hand deformation quantisation works well in every reference
system. It thus seems to be a remedy for difficulties present in description of
quantum phenomena in gravitational fields. In addition, from the conceptual point
of view, it enlightens relationship between classical (undeformed) and quantum
(deformed) physics.

2. Classical statistical mechanics

As we have already mentioned, in classical physics we assume that observables are
smooth real functions defined on a phase space M of a system being a symplec-
tic manifold. Thus all observables are elements of a wider structure: the ring of
complex-valued smooth functions (C∞(M),+, ·) which form an algebra over the
field of complex numbers C. The constant function equal to 1 at every point of
the manifoldM is the identity element of this algebra.

A definition of convergence in the set C∞(M) has been adapted from theory
of generalised functions (see [5]). We say that the sequence {fn}∞n=1 is convergent
to a function f0, if on every compact subset of the manifoldM, dimM = 2r, every

sequence of partial derivatives
{

∂m1+m2+···+m2r

∂m1q1···∂m2r q2r fn

}∞

n=1
is uniformly convergent to

the derivative ∂m1+m2+···+m2r

∂m1q1···∂m2r q2r f0.

States are represented by the functionals called densities of probabilities �.
They are elements of the space of linear continuous functionals E ′(M) over the set
of functions C∞(M). Every density of probability � is a real functional

∀ C∞(M) % f = f ⇒ 〈�, f〉 ∈ R. (1)

Moreover, the density � has to be nonnegative

∀ C∞(M) % f 〈�, f · f〉 ≥ 0 (2)

and normalised

〈�,1〉 = 1. (3)

A sequence of densities {�n}∞n=1 tends to a functional �0 if

∀ C∞(M) % f lim
n→∞

〈�n, f〉 = 〈�0, f〉. (4)
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The postulate saying that every density of probability belongs to the space E ′(M)
implies that � is of compact support. Many widely used distributions of probability
do not belong to E ′(M), e.g., the Gaussian distribution. We accept this limita-
tion because the richness of mathematical properties of functionals from E ′(M)
provides a perfect opportunity to apply them in modeling of reality.

3. Physical background of formal series calculus

The fundamental difference between classical and quantum physics arises from
the fact that observables and states in quantum mechanics depend on a special
parameter – the Planck constant �. Its crucial role is illustrated by the Heisenberg
uncertainty principle for the position x and the canonically conjugated momentum
p, which for series of independent measurements in classical physics is of trivial
form

ΔxΔp ≥ 0

while in quantum mechanics one obtains

ΔxΔp ≥ �
2
.

By Δ we denote the mean square deviation.
For technical reasons in quantum calculations it is convenient to represent

observables by their expansions in power series with respect to �

f ∼
∞∑

l=−z

�lfl.

Notice that at this stage we accept only a finite set of negative powers of �.
This series representation usually simplifies considerations but it is the source

of two serious problems. The first one is that there is no one to one mapping
between smooth functions and their respective power series. The second difficulty
is the loss of convergence. Therefore to deal with power series we need to develop
a special method known as the formal series calculus.

Since foundations of the formal series calculus are purely mathematical, in-
stead of the Planck constant � we will use a parameter λ. We assume that this
parameter is real and positive.

At the beginning we extend the field of complex numbers C, namely we
introduce a field of formal series of complex numbers

C[λ−1, λ]] % c[[λ]] =

∞∑
l=−z

λlcl, ∀ l cl ∈ C, z ∈ N . (5)

A sequence {(
∑∞

l=−z λlcl)n}∞n=1 of elements from the field C[λ−1, λ]] is convergent

to an element
∑∞

l=−z λlcl0, if for every index l the sequence {(cl)n}∞n=1 of complex
numbers approaches cl0.
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The set of formal series of smooth functions C∞[λ−1, λ]](M) being a stage
for constituting the formal series calculus, consists of elements which are of the
form

ϕ[[λ]] =
∞∑

l=−z

λlϕl, ∀ l ϕl ∈ C∞(M), z ∈ N . (6)

In C∞[λ−1, λ]](M) we define multiplication by scalars from the field C[λ−1, λ]],
complex conjugation and multiplication of series. All of these operations are nat-
ural extensions of their C∞(M) counterparts. Hence we quote only a formula
expressing the product of series.

Multiplication of formal series being a straightforward generalisation of mul-
tiplication of functions can be written as

∞∑
l=−z

λlϕl •
∞∑

k=−s

λkψk =
1

λz+s

∞∑
l=0

λl
l∑

k=0

ϕk−zψl−k−s. (7)

The set of formal series with the • product constitutes a commutative ring
(C∞[λ−1, λ]](M), •).

Moreover, we say that the sequence {(
∑∞

l=−z λlϕl)n}∞n=1 tends to a series∑∞
l=−z λlϕl0, if for every l the sequence {(ϕl)n}∞n=1 is convergent to the function

ϕl0 in the sense of convergence in the space of functions C∞(M).
A partial derivative of a series

∑∞
l=−z λlϕl is calculated as

∂m1+m2+···+m2r

∂m1q1 · · ·∂m2rq2r

∞∑
l=−z

λlϕl :=

∞∑
l=−z

λl ∂m1+m2+···+m2r

∂m1q1 · · · ∂m2rq2r
ϕl

and its integral equals∫
M

( ∞∑
l=−z

λlϕl

)
ωr :=

∞∑
l=−z

λl

∫
M

ϕl ω
r

providing all functions ϕl are summable.

4. States over the commutative ring (C∞[λ−1, λ]](M), •)
Let us start from a generalisation of action of any element T ∈ E ′(M) on a formal
series

∑∞
k=−z λkϕk from C∞[λ−1, λ]](M). This generalisation is of the form〈

T,
∞∑

k=−z

λkϕk

〉
:=

∞∑
k=−z

λk
〈
T, ϕk

〉
∈ C[λ−1, λ]]. (8)

To be able to talk about the states the three properties have to be satisfied.
Reality of functional T means that implication holds

∞∑
k=−z

λkϕk =

∞∑
k=−z

λkϕk =⇒
〈
T,

∞∑
k=−z

λkϕk

〉
∈ R[λ−1, λ]].
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Normalisation is natural. It requires only extension of multiplication of functionals
by numbers to multiplication by series from C[λ−1, λ]].

The notion of nonnegativity is in conflict with the idea of formal series because
on one hand we deal with specific real numbers, on the other hand we avoid the
question about summability. We propose the following (compromising) definition
of nonnegativity.

A generalised function T ∈ E ′(M) is nonnegative if for every admissible
value of the parameter λ and every finite series

∑s
l=−z λlϕl〈

T,

s∑
k1=−z

λk1ϕk1
•

s∑
k2=−z

λk2ϕk2

〉
≥ 0. (9)

This formulation is stronger than the one proposed by Waldmann [6].

It seems to be natural that linear functionals over the ring (C∞[λ−1,λ]](M),•)
also may depend on λ. Let us first consider formal series of generalised functions
of the form

∑∞
l=−s λlTl. Their functional action is of the form〈 ∞∑

l=−s

λlTl,

∞∑
k=−z

λkϕk

〉
:=

1

λs+z

∞∑
u=0

λu
u∑

l=0

〈
Tl−s, ϕu−l−z

〉
. (10)

It is required that all supports are contained in a common compact set. Notions of
reality, nonnegativity and normalisation condition can be easily adapted to them.

Since we need the formal series calculus to deal with quantum problems, let
us consider another set of formal series of functionals.

For systems represented on the phase space R2r we know that quantum states
are represented by the Wigner functions which may contain arbitrary negative
powers of λ. Thus it seems to be natural that formal series of generalised functions

∞∑
k=1

λ−kT−k +

∞∑
k=0

λkTk

should be considered. Unfortunately, such extension is not possible because the
functional action 〈 ∞∑

k=1

λ−kT−k +

∞∑
k=0

λkTk,

∞∑
l=−z

λlϕl

〉
is not well defined. This observation is probably the weakest point of proposed
calculus.

5. States over the algebra (C∞[λ−1, λ]](M), ∗)
One of the consequences of the Heisenberg uncertainty relation is the fact that
the product of quantum observables is noncommutative. Therefore to deal with
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quantum problems we need another method of multiplication of formal series. This
is the so-called ∗ product. Its general form is

ϕ ∗ ψ :=
∞∑
k=0

λkBk(ϕ, ψ), ∀ k Bk(ϕ, ψ) ∈ C∞(M). (11)

We omit here the list of axioms imposed on C[λ−1, λ]] – bilinear operators Bk(·, ·).
This information can be found, e.g., in [4, 7, 8]. An extension of the ∗ product on
formal series of functions is straightforward. The space of formal series equipped
with the ∗ multiplication constitutes an algebra denoted as (C∞[λ−1, λ]](M), ∗).

The trace in algebra (C∞[λ−1, λ]](M), ∗) is of the form

Tr

( ∞∑
k=−z

λkϕk

)
:=

1

λr

∫
M

( ∞∑
k=−z

λkϕk

)
• t[[λ]]ωr,

where the series t[[λ]] =
∑∞

k=0 λktk is called trace density.
Since our goal is to introduce quantum states, i.e., some linear continuous

functionals over the algebra (C∞[λ−1, λ]](M), ∗), following Schwartz [5] we con-
sider first functionals which are of the integral form.

C[λ−1, λ]] % 〈ψ, ϕ〉∗ :=
1

λr

∫
M
(ψ ∗ ϕ) • t[[λ]]ωr.

Notice that in general 〈ψ, ϕ〉∗ �= 〈ψ, ϕ〉.
However one can see that this new functional calculus is equivalent to the

standard theory of generalised functions with an identification

ψ ∼ Tψ[[λ]] =
1

λr
t[[λ]] •

∞∑
l=0

λlTψ l ∈ E ′[λ−1, λ]](M), i.e.,

∀ϕ ∈ C∞(M) 〈ψ, ϕ〉∗ = 〈Tψ[[λ]], ϕ〉.
Let us see what might be the meaning of states in terms of the ∗ formal series
calculus.

Reality of a series
∑∞

l=−s λlTl means that if

∞∑
k=−z

λkϕk =

∞∑
k=−z

λkϕk

then there is 〈 ∞∑
l=−s

λlTl,
∞∑

k=−z

λkϕk

〉
∗

=

〈 ∞∑
l=−s

λlTl,
∞∑

k=−z

λkϕk

〉
∗

, (12)

To discuss nonnegativity we need the notion of nonnegativity of a formal series of
real numbers.

A formal series
∑∞

l=−z λlcl, ∀ l cl ∈ R of real numbers is nonnegative if

∀ λ > 0 ∃ k ∈ N ∀ m > k

m∑
l=−z

λlcl ≥ 0.
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It is disappointing that we again have to refer to values of sums but at this moment
we have no idea how to introduce the notion of nonnegativity for formal series
without a reference to numbers.

Applying this suggestion we say that the series
∑∞

l=−s λlTl is nonnegative if

for every formal series of functions
∑∞

m=−z λmϕm the inequality〈 ∞∑
l=−s

λlTl,

∞∑
m1=−z

λm1ϕm1
∗

∞∑
m2=−z

λm2ϕm2

〉
∗

≥ 0

holds.
Finally the normalisation condition states that

〈
∞∑

l=−s

λlTl,1〉∗ = 1.

What is amazing when we test this list of properties for the most popular
example of the ∗ product, i.e., the Moyal product at R2 [9, 10]

ϕ ∗M ψ :=

∞∑
n1,n2=0

1

n1!n2!

(
− iλ

2

)n1
(

iλ

2

)n2 ∂n1+n2ϕ

∂pn1∂qn2

∂n1+n2ψ

∂qn1∂pn2

we arrive at shocking conclusion that generalised functions with compact supports
cannot be positive! This observation probably remains true for any local ∗ prod-
uct. Therefore we deduce that states over formal series cannot be built in a way
analogous to classical statistical physics.

6. Conclusions

As we can see, it is extremely difficult to introduce a coherent formal series calculus
admitting quantum states. Two crucial facts – impossibility of building formal
series of functionals with arbitrary large negative powers of λ and necessity of
dealing with functionals with noncompact supports question whether formal series
calculus can be successfully incorporated in quantum physics.

Thus the best solution would be to apply convergent expressions. Unfortu-
nately, realisation of such a postulate requires a strict quantisation method which
has not been formulated yet.

On the other hand the formal series are frequently useful. Thus at this mo-
ment we suggest a compromise – let us use them but simultaneously let us watch
if calculations make sense.
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Exact Lagrangian Submanifolds and the
Moduli Space of Special Bohr–Sommerfeld
Lagrangian Cycles

Nikolay A. Tyurin

Abstract. In previous papers we introduced the notion of special Bohr–Som-
merfeld Lagrangian cycles on a compact simply connected symplectic manifold
with integer symplectic form, and presented the main interesting case: com-
pact simply connected algebraic variety with an ample line bundle such that
the space of Bohr–Sommerfeld Lagrangian cycles with respect to a compati-
ble Kähler form of the Hodge type and holomorphic sections of the bundle is
finite. The main problem appeared in this way is singular components of the
corresponding Lagrangian shadows (or Weinstein skeletons) which are hard
to distinguish or resolve. In this note we avoid this difficulty presenting the
points of the moduli space of special Bohr–Sommerfeld Lagrangian cycles by
exact compact Lagrangian submanifolds on the complements X\Dα modulo
Hamiltonian isotopies, where Dα is the zero divisor of holomorphic section α.
This correspondence is fair if the Eliashberg conjecture is true, stating that
every smooth orientable exact Lagrangian submanifold is regular. In a sense
our approach corresponds to the usage of gauge classes of Hermitian connec-
tions instead of pure holomorphic structures in the theory of the moduli space
of (semi) stable vector bundles.

Mathematics Subject Classification (2010). 53D12, 53D50.

Keywords. Symplectic manifold, algebraic variety, ample divisor, Lagrangian
submanifold, Bohr–Sommerfeld condition, Weinstein structure.

1. General theory

Consider (M,ω) – a compact simply connected symplectic manifold of dimension
2n, endowed with a symplectic form of integer type, [ω] ∈ H2(M,Z). Then there
exists a prequantization datum – the pair (L, a), where L → M is a Hermitian
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line bundle and a ∈ Ah(L) is a Hermitian connection such that the curvature form
Fa = 2πiω (thus the first Chern class c1(L) = [ω]).

An n-dimensional submanifold S ⊂M is called Lagrangian iff the restriction
ω|S identically vanishes; S is called Bohr–Sommerfeld Lagrangian (or BS for short)
iff the restriction (L, a)|S admits a covariantly constant section σS ∈ Γ(L|S),
defined up to C∗. For any chosen smooth section α ∈ Γ(M,L) we say that S ⊂M
is special with respect to α Bohr–Sommerfeld Lagrangian cycles (or α-SBS for
short) iff it is Bohr–Sommerfeld Lagrangian and the restriction α|S = eicfσS ,
where c is a real constant and f is a strictly positive real function on S. In the
present paper we consider compact orientable Lagrangian submanifolds only.

It was already shown that the definition above can be reformulated in terms
of calibrated Lagrangian geometry. For any smooth section α ∈ Γ(M,L) we define
the complex-valued 1-form

ρα =
〈∇aα, α〉
〈α, α〉 ∈ Ω1

C(M\Dα)

where Dα = {α = 0} ⊂ M is the zeroset of α. This form satisfies the follow-
ing properties: its real part is exact being d(ln |α|), and the imaginary part is a
canonical 1-form on the complement M\Dα since d(Im ρα) = 2πω.

In these terms an n-dimensional submanifold S ⊂M is α-SBS Lagrangian if
and only if the restriction Im ρα|S identically vanishes (the proof and details can
be found in [1]).

Using this “calibrated reformulation” of the definition one proved that any
Weinstein neighborhood O(S0) of an α-SBS Lagrangian submanifold S0 cannot
contain any other α-SBS Lagrangian submanifold of the same type. It follows that
a fixed α admits a discrete set of α-SBS Lagrangian submanifolds of the same
topological type.

Recall that the situation stated above is the input of ALAG-program, pro-
posed by A. Tyurin and A. Gorodentsev in [2]: starting with such (M,ω) they
constructed certain moduli space of Bohr–Sommerfeld Lagrangian cycles of fixed
topological type, denoted as BS . Such a moduli space is a Fréchet smooth infinite-
dimensional real manifold, locally modeled by unobstructed isodrastic deforma-
tions of BS Lagrangian submanifolds. To define BS = BS(topS, [S]) one has to
fix the topological type of S and the homology class [S] ∈ Hn(M,Z) of the corre-
sponding BS submanifolds. Moreover, the BS-level can be shifted up, so one has
a series of the moduli space Bk

S (details see in [2]).
Therefore in the situation presented above we can consider in the direct

product BS×PΓ(M,L) certain subset USBS defined by the condition: pair (S, p) ∈
USBS iff S is α-SBS Lagrangian submanifold where α corresponds to point p in
the projectivized space (and of course it is possible to shift the BS-level, getting
the corresponding subset in the direct product Bk

S×PΓ(M,Lk), but in the present
text we leave aside the variation of BS-level).

This subset USBS was studied in [1]; the main result is that the canonical pro-
jection p : USBS → PΓ(M,L) has discrete fibers, has non degenerated differential in
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smooth points and projects USBS to an open subset of the last projective space. As
a corollary one establishes that USBS admits a Kähler structure at smooth points.
It seems to be interesting since we have started from pure symplectic situation
and came to an object from the Kähler geometry.

This construction can be exploited in the Lagrangian approach to Geometric
Quantization. The subset USBS covers the moduli space BS of BS Lagrangian
cycles, thus it can be regarded as a “complexification” of the last one which looks
like an alternative to the complexification Bhw

S given by the introduction of half
weights in [2].

2. The case of algebraic varieties

Let X be a compact smooth simply connected algebraic variety which admits a
very ample line bundle L; then it can be regarded as a special case of the situation
presented above.

Indeed, fixing an appropriate Hermitian structure h on L one induces the
corresponding Kähler form ω: any holomorphic section α ∈ H0(X,L) in the pres-
ence of h defines the function ψα = − ln |α|h on the complement X\Dα which is a
Kähler potential, therefore ω is given by dIdψα, and the very ampleness condition
ensures that whole X is covered by the complements to divisors from the complete
linear system |L| = PH0(X,L), so ω is globally defined in X , see [3].

Thus one can consider (X,L) as a symplectic manifold with integer symplectic
form, and L, the prequantization line bundle, is automatically endowed with a
prequantization connection a, compatible with the holomorphic structure on the
bundle, when h is fixed. For a holomorphic section α one has ∇aα = ∂aα and
consequently the form ρα has type (1, 0) with respect to the complex structure.
Then one can deduce that the SBS condition with respect to a holomorphic section
is equivalent to the following condition: a Lagrangian submanifold S ⊂ X is α-SBS
if and only if it is invariant under the flow generated by the gradient vector field
gradψα (see [4]).

It is well known in algebraic geometry fact: the complement X\Dα, described
above, is an example of the Stein variety, and since we would like to study La-
grangian geometry of these complements we must follow the key points of the pro-
gram “From Stein to Weinstein and back”, see [5]. The situation we are studying
here must be regarded in the framework of the Weinstein manifolds and Weinstien
structures, see [5] and [6]. Indeed, the gradient vector field gradψα, which is ob-
viously Liouville, and the function ψα give us a Weinstein structure (of course, it
just reflects the fact that X\Dα is Stein).

Since we claim that a Lagrangian S ⊂ X\Dα is α-SBS if and only if it is stable
with respect to the gradient flow of ψα it follows that such an S must be contained
by the base set Bα ⊂ X\Dα defined as the union of (1) finite critical points of ψα

and (2) finite trajectories of the gradient flow. Now we can translate our α-SBS
condition to the language of Weinstein manifolds and structures: a Lagrangian



150 N.A. Tyurin

submanifold S ⊂ X is α-SBS iff it is a component of the Lagrangian skeleton
defined by the Weinstein structure given by (gradψα, ψα) on the complement
X\Dα. Of course this Weinstein structure is special since it corresponds to a
holomorphic section.

Remark. In the previous texts [4] we use the term “Lagrangian shadow of ample
divisor” for the Lagrangian components of the Lagrangian skeleton (or Weinstein
skeleton), since we would like to emphasize the fact that the corresponding La-
grangian components arise for any very ample divisor; in the theory of Weinstein
manifolds which covers much wider situation than our complements X\Dα one
says that such a Lagrangian submanifold is regular. Below we use this parallel for
the modified definition of moduli space of special Bohr–Sommerfled Lagrangian
cycles.

The old definition (see [4]) we have tried to exploit for the construction of
certain moduli space of SBS Lagrangian cycles over algebraic varieties used to be
the following. Take the canonical projection p : USBS → PΓ(M,L) to the second
direct summand from Section 1. Then in the present situation when M = X – an
algebraic variety we have a finite-dimensional projective subspace PH0(X,L) ⊂
PΓ(X,L) which corresponds to holomorphic sections. It is not hard to see that
the preimageMSBS = p−1(PH0(X,L)) must be finite (and we have proved it for
smooth Bohr–Sommerfeld submanifolds in [4]), and we would like to understand
it as the “moduli space” of Special Bohr–Sommerfeld Lagrangian cycles.

But the great problem appears with this definition of the moduli space since
the components of the Lagrangian skeleton Bα are very far from being smooth La-
grangian submanifolds (or even cycles), and the best case of arboreal singularities
(see [9]) doesn’t help us in our program. It follows that strictly speaking our coarse
“moduli space” must be empty in major cases, and the framework of algebraic ge-
ometry does admit no variational freedom to resolve this trouble. In the simplest
case, when Hn(X\Dα,Z) = Z for generic smooth element Dα of the complete lin-
ear system |L| the moduli spaceMSBS can be however correctly defined, as it was
done in [4], but in more geometrically interesting cases we face great problem in
this way: we must either present a strong theory of desingularization of the com-
ponents of Lagrangian skeleta doing it however in concordance with the technical
details of ALAG or find a different definition of special Bohr–Sommerfeld cycles
with respect to holomorphic sections such that these new special submanifolds
should be automatically smooth.

Theory of Weinstein manifolds (see [6]) hints how one can avoid these diffi-
culties.

3. “Desingularizing” the definition

In the situation of the previous section the Kähler potential ψα defines the struc-
ture of the Weinstein manifold on X\Dα, given by 1-form λα = Idψα and ψα itself
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(see [5]); then we can study exact compact orientable Lagrangian submanifolds in
X\Dα. Recall that

Definition 1. A Lagrangian submanifolds S ⊂ X\Dα is exact if the restriction
λα|S is an exact form.

Remark that any such an exact S must be automatically Bohr–Sommerfeld
in whole X with respect to the corresponding prequantization data. Moreover, we
can introduce certain condition on Bohr–Sommerfeld Lagrangian submanifolds in
X which is equivalent to the exactness condition on the complement X\Dα.

Namely, let X ⊃ Dα be as above, and the corresponding symplectic form ω
evidently represents the cohomology class Poincaré dual to [Dα] ∈ H2n−2(X,Z).
Then we say that a Lagrangian submanifold S ⊂ X is D-exact with respect to Dα

(or simply D-exact if the submanifold is clear from the context) iff Dα∩S = 0 and
for any oriented loop γ ⊂ S and any compatible oriented disc Kγ ⊂ X , bounded by
γ, the topological sum of the intersection points Dα ∩Kγ equals to the symplectic
area of Kγ (note that if Kγ intersects Dα non transversally then we can deform
it to have transversal intersection).

Note that the last definition is rather universal: we don’t need any Hermitian
structure on L or complex structure on X , the property of D-exactness depends
on the symplectic form and 2n− 2-dimensional submanifold which represents the
homology class, Poincaré dual to [ω].

Now it is not hard to see that

Proposition 1. A Lagrangian submanifold S ⊂ X\Dα is exact with respect to λα

if and only if S is D-exact with respect to Dα.

Proof. The proof is straightforward: the calculation of the integral
∫
γ λα using the

Stocks formula in the presence of poles which correspond to the intersection points
in Dα∩Kγ leads to the desired result (note, that S is exact iff the integral vanishes
for any loop γ ⊂ S). �

In [6] one presents the list of open problems stated in the theory of Weinstein
manifolds; and one of these problems hints how the definition of special Bohr–
Sommerfeld Lagrangian submanifolds can be modified. Namely the Problem 5.1
from [6] asks: are there non-regular exact Lagrangian submanifolds in X\Dα?
The Eliashberg conjecture suggests the negative answer to this problem. If this
conjecture is true (at least not in general situation but in our special case X\Dα

when X is an algebraic variety and Dα is a very ample divisor) then it hints how
we can “desingularize” the definition of the “coarse” moduli space given above.
Moreover, even if the conjecture is not true we still have a correct definition of
certain moduli space which we still understand as modified moduli space of Special
Bohr–Sommerfeld cycles.

Definition 2. The space of pairs ({S}, Dα) where Dα ∈ |L| is an element of the
complete linear system |L| = PH0(X,L)), and {S} is a class of compact smooth
exact with respect to λα Lagrangian submanifolds modulo Hamiltonian isotopies
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in X\Dα, where one fixes the topological type topS and homology class [S] ∈
Hn(X,Z), we call the modified moduli space of SBS Lagrangian cycles and denote

as M̃SBS = M̃SBS(c1(L), topS, [S]).

For this modified moduli space we have the following

Proposition 2. The modified moduli space M̃SBS is a smooth open Kähler manifold.

Proof. The proof is straightforward: since the space M̃SBS admits the forgetful

map p : M̃SBS → |L|, we can describe the smooth structure of M̃SBS and the
desired Kähler structure as the lifting from the projective space |L|. Indeed, first
we prove that the fibers of p are discrete and that the differential of this map
is non degenerated (the arguments are essentially the same as in [1]: we study
the local picture over a Weinstein neighborhood of a fixed D-exact S ⊂ M).

Moreover, the standard neighborhoods covering of M̃SBS are given by Proposition
1 above: taking any D-exact S0 for certain Dα = D0 we can move the divisor
until the deformation Dt for some t = T “reaches” S0, so before we get non trivial
intersection DT ∩ S0 �= ∅ the exact Lagrangian submanifold S0 states to be exact
for all Dt, t < T . Thus the differential dp in this setup used to be identical map. �

The Eliashberg conjecture covers the following statement: every class from
the group Hn(X\Dα,Z) contains at most one realization by compact smooth exact
Lagrangian submanifold modulo Hamiltonian isotopies in X\Dα. It follows that

the map p : M̃SBS → |L| is not a ramification. The projective space |L| is stratified
by the rank of the group Hn(X\Dα,Z): over a generic point, for smooth Dα, the
rank is maximal, and the structure of the fibers over these points in |L| is the
same; then when Dα degenerates to a singular divisor Ds the group turns to be
smaller, and no fusion for the classes appears. We illustrate this phenomenon by
the simple example below.

Let us illustrate the story by the example which has appeared several times
in the previous texts, see [4]. Take X = CP1 and consider L = O(3). Study the
situation for certain concrete holomorphic section f.e. for the section defined by
the polynomial P3 = z30 − z31 . It vanishes at three roots of unity p1, p2, p3 which
become poles for the function ψ = − ln |P3|; the last one has exactly 5 finite
critical points – 2 local minima m1 = [1 : 0],m2 = [0 : 1], and three saddle points
s1, s2, s3 at the roots of −1. The base set consists of three lines γi each of which
joins m1 and m2 passing through si. Totally we get non smooth simple loops only
in the base set: each closed loop is formed by two lines γi, γj , and at the points
m1,m2 the loop has corners. Therefore if we are looking for the “old version” of
the moduli spaceMSBS we must specialize what singular loops are allowed in our
situation. However in this case the specialization can be done: we may say that
a singular loop is allowed if it can be transformed by a small deformation to a
smooth Bohr–Sommerfeld loop. Then one gets exactly three simple elements for
the moduli space.
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But our new “desingularized” definition of the moduli space works much bet-
ter: we claim that there are exactly three smooth exact closed loops on the com-
plement CP1\{p1, p2, p3} up to Hamiltonian isotopy. Indeed, for each zero pi we
can take a smooth loop γi surrounding pi only and then “blow” it to bound a disc
of symplectic area 1

3 , – it is the desired one. Therefore the moduli space of special

Bohr–Sommerfeld Lagrangian cycles M̃SBS(S
1, 0,O(3)) is organized as follows:

over generic point of PH0(CP1,O(3))\Q4 where Q4 is the discriminant of cubic
equation, so a hypersurface of degree 4, one has three preimages. But the ramifi-
cation doesn’t appear over the discriminant locus: if two points p1 and p2 collide
then the corresponding loops around these points collide as well but the resulting
loop γ12 is Hamilton isotopic to γ3! Therefore we don’t have any ramification. To-

tally the modified moduli space M̃SBS is isomorphic to the following open variety:
take in the direct product CP1×P(H0(CP1,O(3))) with homogeneous coordinates
[x0 : x1], [z0 : · · · : z3] the hypersurface Y = {z0x3

0 + z1x
2
0x1 + z2x0x

2
1 + z3x

3
1 = 0}

and cut off the ramification divisor Δ ⊂ Y with respect to the canonical projection

π : Y → P(H0(CP1,O(3))), then the moduli space M̃SBS is isomorphic to Y \Δ.
Note that we get as the moduli space again the familiar picture: algebraic variety
minus very ample divisor!

Now we have to explain why we understand the moduli space M̃SBS as a
refinement of the previous “coarse” moduli space MSBS? The relation is based
on the Eliashberg conjecture: if it is true then a class of exact compact smooth
Lagrangian submanifolds corresponds to a Lagrangian submanifold regular with
respect to a Weinstein structure on the same affine variety X\Dα. Suppose, that
the last Weinstein structure is defined by a smooth section α ∈ Γ(M,L), and
there is a family of Weinstein structures, which joins our given structure and
the structure defined by α. Then we should have a family of exact Lagrangian
submanifolds which starts at our given exact one and reaches the corresponding
component (singular, of course) of the Weinstein skeleta. This component presents
an element of the coarse moduli space MSBS, and totally it should give a one-

to-one correspondence between elements of MSBS and M̃SBS. Note that if the
Lagrangian shadow of Dα contains a smooth component, then it is automatically
exact and every its small isodrastic deformation lies in the corresponding class of
exact Lagrangian submanifolds.

In a sense the presented passage from the components of skeleton to exact
Lagrangian submanifolds looks like the standard reduction from ∂̄-operators to
Hermitian connections in the theory of stable holomorphic vector bundles, see
[7]. Indeed, since the quotient space of ∂̄ operators modulo locally non compact
gauge group is topologically extremely complicated one realizes the holomorphic
structures by the gauge classes of Hermitian connections.

The realization of special Bohr–Sommerfeld Lagrangian cycles presented here
via D-exact Lagrangian submanifolds modulo Hamiltonian isotopies makes it pos-
sible to realize the following “mirror symmetry dream”: in [8] one claimed that
Lagrangian submanifolds should correspond to vector bundles. This conjectured
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duality can be realized using the modified moduli space of SBS Lagrangian sub-
manifolds as follows: consider in our given algebraic variety another Lagrangian

submanifold S0 ⊂ X . Then for any point of the moduli space ({S}, D) ∈ M̃SBS

we can take the vector space HF (S0;S,C) of the Floer cohomology of the pair
S0, S, where S is a smooth D-exact Lagrangian submanifold, representing the class
{S}. Since the Floer cohomology is stable with respect to Hamiltonian isotopies,
the vector space doesn’t depend on the particular choice of S; moreover, since the

moduli space M̃SBS is locally generated by specified Hamiltonian isotopies this

implies that globally over M̃SBS the vector spaces are combined into a complex
vector bundle, which we denote as FS0 . The smoothness of the representative S is
important here.

Thus we get a functor from the space of Lagrangian submanifolds in X to

the set of complex vector bundles on M̃SBS; it is a particular realization of the
ideas from [8].
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Star Exponentials in Star Product Algebra
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Dedicated to the memory of Syed Twareque Ali

Abstract. A star product is an associative product for certain function space
on a manifold, which is given by deforming a usual multiplication of functions.
The star product we consider is given on Cn in non-formal sense. In the
star product algebra we consider exponential elements, which are called star
exponentials. Using star exponentials we construct star functions, which are
regarded as sections of star algebra bundle over a space of complex matrices.
In this note we give a brief review on star products.
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1. Star products

The origin of star products can be traced back to Weyl [8], Wigner [9], Moyal
[3], related to quantum mechanics. In 1970’s, Bayen–Flato–Fronsdal–Licherowicz–
Sternheimer [1] gave a concept of deformation quantization or star product, where
formal star products are discussed. Formal means that the deformation is con-
structed in formal power series with respect to the deformation parameter. Many
results are published with various applications by means of formal deformation
quantization, which is a very general concept and its existence on any Poisson
manifold is proved by M. Kontsevich ([2]).

A star product we consider in this note is a star product for certain functions
on Rn or Cn. The star product on Rn or Cn can be considered also in non-formal
sense, for example we can consider non formal star products for polynomials. We
introduce a family of star products which contains noncommutative star products,
and also commutative star products. This note is on this product and its extension.

1.1. Definition of star products

First we introduce a biderivation acting on functions as follows.

This work was supported by JSPS KAKENHI Grant Number JP15K04856.

c© Springer Nature Switzerland AG 2019
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Biderivation. Let Λ be an arbitrary n × n complex matrix. We then consider a
biderivation

←−
∂wΛ
−→
∂w = (

←−
∂w1 , . . . ,

←−−
∂wn)Λ(

−→
∂w1 , . . . ,

−−→
∂wn) =

n∑
k,l=1

Λkl
←−−
∂wk

−→
∂wl

where (w1, . . . , wn) are the coordinates of Cn. Here the over left (resp. right) arrow

means that the derivative
←−
∂ (resp.

−→
∂ ) acts to the left (resp. right) function,

namely,

f
←−
∂wΛ
−→
∂wg = f

⎛⎝ n∑
k,l=1

Λkl
←−−
∂wk

−→
∂wl

⎞⎠ g =

n∑
k,l=1

Λkl ∂wk
f ∂wl

g.

Since Λ is a constant matrix, we can easily calculate the power of the biderivation,
for example

f(
←−
∂wΛ
−→
∂w)

2g =

n∑
k1,k2,l1,l2=1

Λk1l1 Λk2l2 ∂wk1
∂wk2

f ∂wl1
∂wl1

g.

Star product. Now for functions f, g we define a star product f ∗
Λ

g by means of
the power series of the above biderivation such that

Definition 1.

f ∗
Λ

g = f exp i�
2

(←−
∂wΛ
−→
∂w

)
g = f

∞∑
k=0

1
k!

(
i�
2

)k (←−
∂wΛ
−→
∂w

)k
g

= fg + i�
2 f

(←−
∂wΛ
−→
∂w

)
g + · · ·+ 1

k!

(
i�
2

)k
f
(←−
∂wΛ
−→
∂w

)k
g + · · ·

where � is a positive parameter.

Then we see easily

Theorem 2. For an arbitrary Λ, the star product ∗
Λ
is well defined on polynomials,

and is associative.

Remark 3.

(i) The star product ∗
Λ
is a generalization of the well-known products in physics.

For example suppose n = 2m and if we put Λ =
(
0 −1
1 0

)
(blockwise), then

we have the Moyal product, and similarly we have the normal product for
Λ = ( 0 0

2 0 ), and the anti-normal product for Λ =
(
0 −2
0 0

)
, respectively.

(ii) If Λ is a symmetric matrix, the star product ∗
Λ
is commutative. Furthermore,

if Λ is a zero matrix, then the star product is nothing but a usual commutative
product.

1.2. Equivalence, Star product algebra bundle and flat connection

Equivalence. Let Λ be an arbitrary n × n complex matrix. Then (C[w], ∗
Λ
) is an

associative algebra where C[w] is the set of complex polynomials of the coordinate
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system w = (w1, w2, . . . , wn). The algebraic structure of (C[w], ∗
Λ
) depends only

on the skewsymmetric part of Λ. Namely, let Λ1, Λ2 be n × n complex matrices
with common skew-symmetric part. Then we have the decomposition

Λ1 = Λ− + K1, Λ2 = Λ− + K2,

where Λ− is a skew-symmetric matrix and K1,K2 are symmetric matrices. Then
we have

Theorem 4. The algebras (C[u, v], ∗
Λ1
) and (C[u, v], ∗

Λ2
) are isomorphic with an

isomorphism IK2

K1
: (C[u, v], ∗

Λ1
) → (C[u, v], ∗

Λ2
) given by the power series of the

differential operator ∂w(K2 −K1)∂w such that

IK2

K1
(f) = exp

(
i�
4 ∂w(K2 −K1)∂w

)
(f) =

∞∑
n=0

1
n!

(
i�
4

)n
(∂w(K2 −K1)∂w)

nf

where ∂w(K2 −K1)∂w =
∑

kl(K2 −K1)kl∂wk
∂wl

.

For star products ∗
Λk
, k = 1, 2, 3 with common skew-symmetric part of Λk,

a direct calculation gives

Theorem 5. The isomorphisms satisfy the following chain rule:

(i) IK1

K3
IK3

K2
IK2

K1
= Id, (ii)

(
IK2

K1

)−1

= IK1

K2

Star product algebra bundle and flat connection. Let us fix a skew-symmetric
matrix Λ− and consider a family of matrices {Λ = Λ− + K} with common skew-
symmetric part Λ− where K denotes its symmetric part. Then, by the above
theorems we have a family of star products {∗

Λ
} parameterized by {K} whose

elements are mutually isomorphic, and since ∗
Λ
depends only on the symmetric

part K we write as ∗Λ = ∗K .
Here we regard this family of star products in the following way: we have an

associative algebra (P , ∗) determined by Λ− such that an each algebra (C[w], ∗
K
)

of the family is regarded as a local expression of (P , ∗) at K. Each element p ∈ P
has a polynomial expression at every K, which is denoted by : p :

K
. Due to the

previous theorem of the chain rules of IK2

K1
, we have a geometric picture: we have an

algebra bundle over the space of symmetric matrices π : ∪K(C[w], ∗
K
)→ S = {K}

such that the fiber at K is the algebra π−1(K) = (C[w], ∗K ). The bundle has a
flat connection ∇ and the element p ∈ (P , ∗) is regarded as a parallel section of
the bundle and : p :

K
is the value at K.

This is a simple translation of the equivalence among the star product alge-
bras. However, this picture plays an important role when we consider star expo-
nentials and star functions below.

2. Star exponential

Now we consider general star product ∗
Λ
, and consider exponential elements of

polynomials in star product algebras.
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Idea of definition. For a polynomial H of the star product algebra (C[w], ∗
Λ
), we

want to define a star exponential

e
t
H
i �∗Λ =

∑
n

tn

n!

(
H
i �

)n
∗Λ

where
(
H
i �

)n
∗Λ

is an nth power of H
i � with respect to the star product ∗

Λ
. However,

the expansion
∑

n
tn

n!

(
H
i �

)n
∗Λ

is not convergent in general, and then we consider a

star exponential by means of a differential equation.

Definition 6. The star exponential e
t
H
i �∗Λ is given as a solution of the differential

equation
d
dtFt =

H
i� ∗Λ Ft, F0 = 1.

2.1. Star exponential of linear and quadratic polynomials

We are interested in the star exponentials of linear, and quadratic polynomials.
For these, we can solve the differential equation explicitly.
Linear case. We denote a linear polynomial by

∑n
j=1 ajwj = 〈a,w〉, aj ∈ C. This

case naive expansion
∑

n
tn

n!

(
〈a,w〉
i �

)n
∗Λ

is convergent. Actually we see directly that

the nth power with respect to ∗
Λ
is

〈a,w〉n∗Λ
=

[n/2]∑
k=0

1
k!

(
i�
4 aΛa

)k n!

(n− 2k)!
〈a,w〉n−2k

where aΛa =
∑

ij Λijaiaj and the expansion is convergent. Then we have

Proposition 7. For
∑

j ajwj = 〈a,w〉

e
t〈a,w〉/(i�)
∗
Λ

= et
2aΛa/(4i�)et〈a,w〉/(i�) = et

2aKa/(4i�)et〈a,w〉/(i�)

where K is the symmetric part of Λ.

Thus the star exponentials are analytic and satisfy the exponential law with
respect to the parameter t. By direct calculation we see

Proposition 8. The star product of the star exponentials is convergent and it holds

e
〈a,w〉/(i �)
∗Λ ∗

Λ
e
〈b,w〉/(i �)
∗Λ = ea(Λ−)b/(2i�)e

〈a+b,w〉/(i �)
∗Λ .

Thus star exponentials of linear polynomials form a group.

For the linear case, the intertwiners are convergent. Namely, if we write the
decomposition as Λ = Λ− + K1 we have

Proposition 9. For any symmetric matrices K1, K2, the intertwiner

IK2

K1
=

∞∑
n=0

1
n!

(
i�
4

)n
(∂w(K2 −K1)∂w)

n
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is convergent for a star exponential of linear polynomial and satisfies

IK2

K1
(e

〈a,w〉/(i �)
∗Λ ) = e

〈a,w〉/(i �)
∗Λ′ , (Λ′ = Λ− + K2).

Remark 10. By the above propositions, similarly as polynomial case, for a fixed

Λ− the family of groups {e〈a,w〉/(i �)
∗
K

; a ∈ Cn}K∈S determines a group G. Also we

have a group bundle π : ∪K{e〈a,w〉/(i �)
∗
K

; a ∈ Cn} → S such that the each fiber is

the group π−1(K) = {e〈a,w〉/(i �)
∗
K

; a ∈ Cn}. And an element of G is regarded as a

parallel section denoted by e
〈a,w〉/(i �)
∗ of this bundle and a value at K is given by

: e
〈a,w〉/(i �)
∗ :

K
= e

〈a,w〉/(i �)
∗K = eaKa/(4i�)+〈a,w〉/(i�)

Quadratic case. For simplicity of formula, we consider the case where Λ is a 2m×
2m complex matrices with the skew symmetric part J =

(
0 −1
1 0

)
.

Proposition 11. For a quadratic polynomial Q = 〈wA,w〉 where A is a 2m× 2m
complex symmetric matrix, we have

e
t(Q/i�)
∗
Λ

=
2m√

det(I − κ + e−2tα(I + κ))
e

1
i� 〈w 1

I−κ+e−2tα(I+κ) (I−e−2tα)J,w〉

where κ = KJ , α = AJ and K is the symmetric part of Λ.

Remark 12. The star exponentials of quadratic polynomials have branching, es-
sential singularities, and also satisfy exponential law with respect to the parameter
t whenever they are defined. From these singularities we are trying to derive rela-
tions for commutative or noncommutative algebras.

Proposition 13. We have an explicit formula of the product of star exponentials of
quadratic polynomials which contains a square root.

e
〈wA1,w〉/(i�)
∗
Λ

∗
Λ

e
〈wA2,w〉/(i�)
∗
Λ

=
1√

det(1− α(A1, A2))
e

1
i� 〈w 1

1−α(A1,A2))
A3(A1,A2),w〉

where α(A1, A2), A3(A1, A2) are certain matrix-valued functions of A1, A2 which
are explicitly written by means of Cayley transforms of A1, A2.

Hence the product is defined when det(1 − α(A1, A2)) �= 0 and associativity
holds when {A} are sufficiently small. Thus star exponentials of quadratic polyno-
mials form a group-like object, or local group.

For a quadratic case, since the intertwiner is a parallel transport of a section,
we can obtain the intertwiner by solving a certain differential equation. If we write
the decomposition as Λ = Λ− + K1 we have

Proposition 14. For any symmetric matrix K2, the intertwiner IK2

K1
for a star

exponential of quadratic polynomial is given as

IK2

K1
(e

〈wA,w〉/(i �)
∗Λ ) =

1√
det(1− β(A)(K2 −K1))

e

1
i� 〈w 1

1−β(A)(K2−K1)
β(A),w〉

∗Λ′

where β(A) is a certain matrix-valued function of A and Λ′ = Λ− + K2.
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Remark 15. By the above propositions, similarly as linear case, for a fixed Λ− the

family of group-like objects {e〈wA,w〉/(i �)
∗
K

;A symmetric}
K∈S determines a group-

like object Q.
Also we have a group-like object bundle π :∪K{e〈wA,w〉/(i�)

∗
K

;Asymmetric}→
S such that the each fiber is π−1(K) = {e〈wA,w〉/(i �)

∗
K

;A symmetric}. And an

element of Q is regarded as a parallel section denoted by e
〈wA,w〉/(i �)
∗ of this

bundle, and a value at K is given by : e
〈wA,w〉/(i�)
∗ :

K
= e

〈wA,w〉/(i �)
∗K

2.2. Star functions

By the same way as in the ordinary exponential functions, we can obtain several
noncommutative or commutative functions using star exponentials, which we call
star functions. As is stated in the previous sections, these star functions are given
as parallel sections G or Q of the group bundle or the group-like object bundle
over S, respectively. In this subsection we show some concrete examples of star
functions. For more details see Omori–Maeda–Miyazaki–Yoshioka [4, 5].

2.2.1. Linear case. Here we show examples of the simplest case using star product
of one variable. We consider functions f(w), g(w) of one variable w ∈ C and
consider a commutative star product ∗

τ
with complex parameter τ such that

f(w) ∗
τ

g(w) = f(w)e
τ
2

←−
∂ w

−→
∂ wg(w).

Applying the previous general formulas to the product ∗τ gives

Proposition 16. For a linear polynomial aw, a ∈ C, the star exponential and the
intertwiner satisfy

exp∗τ
aw = exp(aw + (τ/4)a2), Iτ

′
τ (exp∗τ

aw) = exp∗
τ′

aw,

respectively.

Hence we have the space of parallel sections G = {eaw∗ } of the bundles of
group over the parameter space C = {τ}.
Star Hermite function. Recall a naive expansion of star exponential for the linear
case is convergent, namely

: exp∗(
√
2tw) :τ=

∞∑
n=0

: (
√
2w)n∗ :τ

tn

n!
.

Note, that the explicit formula of star exponential evaluated at τ = −1 gives the
generating function of the Hermite polynomials Hn(w), namely

: exp∗(
√
2tw) :τ=−1= exp

(√
2tw − 1

2 t
2
)
=

∞∑
n=0

Hn(w) t
n

n! .

Then comparing the both expansions and we obtain

Hn(w) =: (
√
2w)n∗ :τ=−1 .
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We define star Hermite function (one-parameter deformation of Hn(w)) by using
parallel sections

Hn(w, τ) =: (
√
2w)n∗ :τ , (n = 0, 1, 2, . . . ).

Then the evaluation of the parallel section e
√
2tw

∗ at τ gives a generating function
of star Hermite functions, namely

: exp∗(
√
2 tw) :τ=

∞∑
n=0

Hn(w, τ) tn

n! .

Trivial identity d
dt exp∗(

√
2 tw) =

√
2w∗ exp∗(

√
2 tw) evaluated at τ yields the

identity

τ√
2
H ′

n(w, τ) +
√
2wHn(w, τ) = Hn+1(w, τ), (n = 0, 1, 2, . . . )

for every τ ∈ C, and the exponential law

exp∗(
√
2sw) ∗ exp∗(

√
2tw) = exp∗(

√
2(s + t)w)

yields the identity ∑
k+l=n

n!
k!l!Hk(w, τ) ∗τ Hl(w, τ) = Hn(w, τ).

Star theta function. We can express the Jacobi’s theta functions by using parallel
sections of star exponentials ∈ G. The formula

: exp∗ n i w :τ= exp(n i w − (τ/4)n2)

shows that for Re τ > 0, the star exponential : exp∗ ni w :τ is rapidly decreas-
ing with respect to integer n. Then we can consider summations for τ such that
Re τ > 0

:

∞∑
n=−∞

exp∗ 2ni w :τ =

∞∑
n=−∞

exp
(
2ni w − τ n2

)
=

∞∑
n=−∞

qn
2

e2ni w, (q = e−τ )

which is convergent and gives Jacobi’s theta function θ3(w, τ). Then the infinite
sums of parallel sections of G such as

θ1∗(w) = 1
i

∞∑
n=−∞

(−1)n exp∗(2n + 1)i w, θ2∗(w) =

∞∑
n=−∞

exp∗(2n + 1)i w,

θ3∗(w) =

∞∑
n=−∞

exp∗ 2ni w, θ4∗(w) =

∞∑
n=−∞

(−1)n exp∗ 2ni w

are called star theta functions. Actually the evaluation of : θk∗(w) :τ at τ with
Re τ > 0 gives the Jacobi’s theta function θk(w, τ), k = 1, 2, 3, 4 respectively. The
exponential law of star exponential yields trivial identities

exp∗ 2i w ∗ θk∗(w) = θk∗(w) (k = 2, 3),

exp∗ 2i w ∗ θk∗(w) = −θk∗(w) (k = 1, 4).
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Then using the evaluation formula : exp∗ 2i w :τ= e−τe2i w and the product
formula directly we see the above trivial identities are equivalent to the quasi
periodicity

e2i w−τθk(w + i τ) = θk(w) (k = 2, 3),

e2i w−τθk(w + i τ) = −θk(w) (k = 1, 4).

∗-delta functions. Since the star exponential : exp∗(itw) :τ= exp(itw − τ
4 t2) is

rapidly decreasing with respect to t when Re τ > 0. Then the integral of star
exponential evaluated at τ

:

∫ ∞

−∞
exp∗(it(w − a)∗) dt :τ=

∫ ∞

−∞
exp(it(w − a)− τ

4 t2)dt

converges for any a ∈ C. We put a star δ-function

δ∗(w − a) =

∫ ∞

−∞
exp∗(it(w − a)∗)dt,

which has a meaning at τ with Re τ > 0. It is easy to see for any parallel section
of polynomials p∗(w) ∈ P ,

p∗(w)∗ δ∗(w − a) = p(a)δ∗(w − a), w ∗ δ∗(w) = 0.

Using the Fourier transform we have

θ1∗(w) = 1
2

∞∑
n=−∞

(−1)nδ∗(w + π
2 + nπ), θ2∗(w) = 1

2

∞∑
n=−∞

(−1)nδ∗(w + nπ)

θ3∗(w) = 1
2

∞∑
n=−∞

δ∗(w + nπ), θ4∗(w) = 1
2

∞∑
n=−∞

δ∗(w + π
2 + nπ).

Now, we consider the τ satisfying the condition Re τ > 0. Then we calcultate the

integral and obtain δ∗(w − a) = 2
√
π√
τ
exp

(
− 1

τ (w − a)2
)
and we have

θ3(w, τ) = 1
2

∞∑
n=−∞

δ∗(w + nπ) =
√
π√
τ
exp

(
− 1

τ

) ∞∑
n=−∞

exp
(
−2n 1

τ w − 1
τ n2τ2

)
=

√
π√
τ
exp

(
− 1

τ

)
θ3∗(

2πw
iτ , π2

τ ).

We also have similar identities for other ∗-theta functions by the similar way.

2.3. Star exponentials of quadratic polynomials

Different from linear case, star exponentials of quadratic polynomials have singu-
larities which are moving, branching, and essential singularities.

Proposition 17. For a quadratic polynomial aw2
∗τ

= aw2 + aτ
2 , a ∈ C, the star

exponential and the intertwiner satisfy

exp∗τ
aw2

∗τ
=

1√
1− aτ

exp

(
1

1− aτ
aw2

)
, Iτ

′
τ (exp∗τ

aw2
∗τ
) = exp∗

τ′
aw2

∗τ′
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respectively, when the star exponential and the intertwiner contain terms of square
root then this equality includes a ± umbiguity.

We thus have the space of parallel sections Q = {eaw
2
∗∗ } of the bundles of

group-like objects over the parameter space C = {τ}, respectively. Hence the
star exponentials of quadratic polynomials, that is, parallel sections of Q behave
strangely, but are interesting. Here I will show several concrete examples for the
simple case, for more examples and details, see the references already cited above.

2.3.1. “Double covering” group. Let us consider a parallel section e
tw2

∗∗ ∈ Q. This
section has a singular point depending on the parameter τ , actually we see by the
evaluation formula at τ that the star exponential

: exp∗ tw2
∗ :τ=

1√
1− tτ

exp

(
1

1− tτ
tw2

)
has a singularity at t = 1/τ . Thus for small t, the section e

tw2
∗∗ satisfies the expo-

nential law for every τ , i.e., {etw
2
∗∗ , t ∈ C} forms a local group. On the other hand,

for each t, taking an appropriate path in τ ∈ C, the parallel transform Iτ
′

τ along

the path gives : e
tw2

∗∗ :τ �→: −e
tw2

∗∗ :τ . Hence the group-like object e
tw2

∗∗ ∈ Q looks
like a double covering group of C.

This also appears when we consider multi-variable case w = (w1, . . . , wn).
For example, if we assume that the number of variables is n = 2, and the skew-
symmetric part is fixed such that Λ− = J =

(
0 −1
1 0

)
, then for a complex matrix

Λ = J +K, (K symmetric), the associative algebra of polynomial parallel sections
P includes the Lie algebra of SL(2,C), which are given by quadratic polynomials.
Exponentiating these quadratic elements one obtains a set of parallel sections
˜SL(2,C) ⊂ Q of the bundle of group-like objects over the space of all symmetric

matrices {K}. The object ˜SL(2,C) also behaves like a “double covering” group of

SL(2,C), which is called a blurred Lie group ˜SL(2,C). (For more details, see [5]).

2.3.2. Vacuum. Consider a Weyl algebra W of two canonical generators u, v,
namely [v, u] = i�. An element � ∈ W satisfying the relation �� = � and
v� = �u = 0 is called a vacuum. Vacuum plays an important role in quantum
mechanics.

We can construct vacuums in the set of parallel sections Q. For example we
consider n = 2 and fix the skew-symmetric part of Λ to be J and we set Λ = J+K,
(K symmetric). We write the generators of P as w1 = u,w2 = v. Then we see
[v, u]∗ = v ∗ u − u ∗ v = i�. Then in the group-like parallel sections Q of star
exponentials, we can construct an element �00 ∈ Q having a property such that
�00 ∗�00 = �00 and v ∗�00 = �00 ∗ u = 0. We construct �00 in the following

way. We take a parallel section of star exponential such that e
2t

u∗v
i�∗ ∈ Q. Then we
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have �00 = limt→−∞ e
2t

u∗v
i�∗ . For example, for K = ( 0 κ

κ τ ), we see

: �00 :K= lim
t→−∞

: e
2t

u∗v
i�∗ :K=

2

1 + κ
exp

(
− 1

i�(1 + κ)
(2uv − τ

1+κu2)

)
.

Further using this vacuum we can construct generators of Clifford algebra in Q, so
we can construct Clifford algebra using parallel sections Q and P . (See for details,
H. Omori, Y. Maeda [6], T. Tomihisa, A. Yoshioka [7].)

Instead of taking a limit, we also obtain a vacuum by a contour integral of a
parallel section of Q around singularities. (For details, see [5].)

2.3.3. Contour integral around singularites. An element of Q, parallel section of
star exponential of quadratic polynomials, has branching, essential singularities.
Then it is natural to consider the derivation of meaningful relations from these
singularities as residues of elements of Q.

As an example, we can construct the Virasoro algebra by using residues. For
details, see H. Omori, Y. Maeda, N. Miyazaki, A. Yoshioka [4].
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Abstract. We briefly recall the history of the Nijenhuis torsion of (1, 1)-tensors
on manifolds and of the lesser-known Haantjes torsion. We then show how
the Haantjes manifolds of Magri and the symplectic Haantjes structures of
Tempesta and Tondo generalize the classical approach to integrable systems
in the bi-Hamiltonian and symplectic Nijenhuis formalisms, the sequence of
powers of the recursion operator being replaced by a family of commuting
Haantjes operators.

Mathematics Subject Classification (2010). Primary 58-03, 01A60, 17B70,
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1. Introduction. Haantjes tensors generalize recursion operators

The “Nijenhuis torsion” of a (1, 1)-tensor field was defined in 1951 by Albert Ni-
jenhuis, a student of the Dutch mathematician J.A. Schouten, while the “Haantjes
torsion” of a (1, 1)-tensor field was defined in 1955 by Johannes Haantjes, another
of Schouten’s students1. If the Nijenhuis torsion vanishes, the Haantjes torsion does
also, but the converse is not true in general. Since Nijenhuis tensors, i.e., (1, 1)-
tensors with vanishing Nijenhuis torsion, occur as recursion operators in the theory
of integrable systems, one can expect the Haantjes tensors, i.e., (1, 1)-tensors with
vanishing Haantjes torsion, to play a role “beyond recursion operators”.

1A (1,1)-tensor field on a manifold was called an “affinor of valence two” by Schouten and his
contemporaries. We find in the literature and we use indifferently the following expressions for a
field of (1, 1)-tensors: (1, 1)-tensor [field], mixed tensor [of valence 2], field of endomorphisms of

the tangent bundle, field of linear transformations, vector-valued [differential] 1-form, [differential]
1-form with values in the tangent bundle, operator [on vector fields] [on 1-forms].

c© Springer Nature Switzerland AG 2019
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2. The search for differential concomitants
and the Nijenhuis torsion

2.1. Schouten, Haantjes, Nijenhuis

The mathematician Jan A. Schouten (1883–1971) is best known for his contribu-
tions to the modern form of the tensor calculus2, in particular for the differential
concomitant that was later called “the Schouten bracket” which he defined in
an article that appeared in Indagationes Mathematicae in 1940 [22]. His doctoral
student, Johannes Haantjes (1909–1956), defended his thesis at the University of
Leiden in 1933. Albert Nijenhuis (1926–2015), also a student of Schouten, was
awarded a doctorate at the University of Amsterdam in 1951. His article, “Xn−1-
forming sets of eigenvectors”, appeared shortly thereafter in Indagationes [18], and
four years later he published an article in two parts entitled “Jacobi-type iden-
tities for bilinear differential concomitants of certain tensor fields” in the same
journal [19]. This second publication of Nijenhuis was preceded, only a few weeks
earlier, by an article by Haantjes, “On Xm-forming sets of eigenvectors”, which
also appeared in Indagationes [7].

2.2. The theory of invariants and the question of the integrability of eigenplanes

The discovery of the Nijenhuis torsion followed a search for differential concomi-
tants of tensorial quantities, which had its roots in the theory of invariants, going
back to J.J. Sylvester and Arthur Cayley in the mid-19th century. This theory
would make use of Sophus Lie’s continuous groups and infinitesimal methods, and
would later lead to the absolute differential calculus of Gregorio Ricci and Tullio
Levi-Civita. It was this search that was extensively carried out by Schouten from
the 1920s on. He wrote later [23] that he had “in 1940 succeeded in generalizing
Lie’s operator by forming a differential concomitant of two arbitrary contravariant
quantities”. Then he disclosed the method he used to discover his concomitant: it
was by requiring that it be a derivation in each argument, which is the essential
defining property of what is now called “the Schouten bracket” of contravariant
tensors.

Another field of inquiry was the search for conditions that ensure that, given
a field of endomorphisms of the tangent bundle of a manifold, assumed to have
distinct eigenvalues, the distributions spanned by pairs of eigenvectors are inte-
grable.

2.3. The Nijenhuis torsion

In 1951, Nijenhuis introduced a quantity defined by its components in local coor-
dinates, H ..κ

μλ , expressed in terms of the components h.κ
λ of a (1, 1)-tensor, h, and

of their partial derivatives,

H . .κ
μλ = 2h .ρ

[μ ∂|ρ|h
.κ
λ] − 2h.κ

ρ ∂[μh.ρ
λ].

2See the article by his former and best-known student, Nijenhuis [20].
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(The indices between square brackets are to be skew-symmetrized: the opposite
term with these indices exchanged is to be added.) He then proved the tensorial
character of this quantity [18]. Because of the factor 2, the H . .κ

μλ are actually the

components of twice what is called the Nijenhuis torsion of the (1, 1)-tensor h,
which is a skew-symmetric (1, 2)-tensor, i.e., a vector-valued differential 2-form.

Remark. The name “torsion” was adopted by Nijenhuis from the theory of complex
manifolds, where the “torsion” was defined for an almost complex structure by
B. Eckmann and A. Frölicher, also in 1951. However, in the literature, the name
“Nijenhuis tensor” is often used for the “Nijenhuis torsion”.

2.4. The Nijenhuis torsion without local coordinates

It was also in his 1951 article that Nijenhuis introduced the symmetric bilinear
form, depending on a pair of (1, 1)-tensors, associated by polarization to the qua-
dratic expression of the torsion. Then in 1955 [19], he introduced a bracket notation
[h, k] for this symmetric bilinear form, and he found a coordinate-independent
formula for this bracket. In particular, the Nijenhuis torsion, TR = [R,R], of a
(1, 1)-tensor, R, on a manifold, M , is the (1, 2)-tensor TR such that, for all vector
fields X and Y on M ,

TR(X ,Y ) = [RX ,RY ]− R[RX ,Y ]− R[X ,RY ] + R2 [X ,Y ],

Remark. We did not retain the Nijenhuis notation. Our notation is simply related
to his by R = h and TR = H .

2.5. The Frölicher–Nijenhuis bracket

In his 1955 article, Nijenhuis also defined what he called “a concomitant for dif-
ferential forms with values in the tangent bundle”, that is, a graded bracket on
the space of vector-valued differential forms of all degrees, extending the bilinear
form associated to the torsion, and he proved that this bracket satisfies a graded
Jacobi identity. (He also proved that Schouten’s brackets of contravariant tensors
satisfy a graded Jacobi identity.) This theory would soon be developed in a joint
article with A. Frölicher in 1956 [5], and this graded Lie bracket became known as
the “Frölicher–Nijenhuis bracket”.

In a modern formulation, the Frölicher–Nijenhuis bracket, [U, V ]FN, of a
vector-valued k-form, U , and a vector-valued �-form, V , is the vector-valued (k+�)-
form, [U, V ]FN, satisfying the equation

L[U,V ]FN
= [LU ,LV ].

Here the bracket [ , ] is the graded commutator of derivations of the algebra of
differential forms, and LW = [iW , d] is the graded commutator of the interior
product by a vector-valued form, W , and the de Rham differential.

Also in 1955, there appeared another, very different development of the theory
of the Nijenhuis torsion of (1, 1)-tensors, the Haantjes torsion of (1, 1)-tensors.
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3. The Haantjes torsion

3.1. Haantjes (1909–1956)

The Dutch mathematician Johannes Haantjes, after his doctoral defense in Lei-
den, was invited by Schouten to join him as his assistant in Delft. From 1934 to
1938, they published several articles in collaboration, on spinors and their role in
conformal geometry, and on the general theory of geometric objects, all in German
except for one in English, papers that have almost never been cited. After 1938,
Haantjes was a lecturer at the Vrije Universiteit in Amsterdam. He was elected
to the Royal Dutch Academy of Sciences in 1952, four years before his death at
the age of 46. He was among the “distinguished European mathematicians” whom
Kentaro Yano in 1982 recalled having met at the prestigious International Con-
ference on Differential Geometry organized in Italy in 1953 [27]. However, for half
a century, very few citations of his work appeared in the literature, and his name
was nearly forgotten.

3.2. Haantjes’s article of 1955

In “Xm-forming sets of eigenvectors” [7], Haantjes considered the case of a field
of endomorphims “of class A”, i.e., such that the eigenspace of an eigenvalue of
multiplicity r be of dimension r. He introduced, in terms of local coordinates, a new
quantity whose vanishing did not necessarily imply the vanishing of the Nijenhuis
torsion but was necessary and sufficient for the integrability of the distributions
spanned by the eigenvectors. From the Nijenhuis torsion H of a (1, 1)-tensor h,
with components H ..κ

μλ , he obtained the condition he sought as the vanishing of

H . .κ
νσ hν

.μhσ
.λ − 2H . .σ

ν[λ hν
.μ]h

κ
.σ + H . .ν

μλ hκ
.σhσ

.ν .

These are the components of a (1, 2)-tensor, twice the Haantjes torsion of the
(1, 1)-tensor h. The components of the Haantjes torsion of h are of degree 4 in the
components of h.

3.3. First citations of Haantjes’s article

The 1955 article of Haantjes did not attract the attention of differential geome-
ters or algebraists until the very end of the twentieth century. In fact, it was only
cited twice before 1996! In the twenty-first century, the “Haantjes tensor” (i.e., in
our terminology, the Haantjes torsion) started appearing, as an object of interest
in algebra, in the work of O.I. Bogoyavlenskij [1, 2], and, mostly, in the theory of
integrable systems. In 2007, in an article in Mathematische Annalen, E.V. Ferapon-
tov and D.G. Marshall presented the Haantjes tensor as a “differential-geometric
approach to the integrability” of systems of differential equations, and reformu-
lated the main result of Haantjes’s original paper as the theorem, “A system of
hydrodynamic type with mutually distinct characteristic speeds is diagonalizable
if and only if the corresponding Haantjes tensor [i.e., Haantjes torsion] vanishes
identically” [3].
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3.4. Haantjes torsion in coordinate-free form

Changing notations, we denote a (1, 1)-tensor by R, its Nijenhuis torsion by TR, and
the Haantjes torsion of R by HR. We now formulate an intrinsic characterization
of the Haantjes torsion of a (1, 1)-tensor.

The Haantjes torsion of a (1, 1)-tensor R is the (1, 2)-tensor HR such that,
for all vector fields X and Y ,

HR(X,Y ) = TR(RX,RY )−R(TR(RX, Y ))−R(TR(X,RY )) + R2(TR(X,Y )).

Explicitly,

HR(X,Y ) = [R2X,R2Y ]− 2R[R2X,RY ]− 2R[RX,R2Y ] + 4R2[RX,RY ]

+ R2[R2X,Y ] + R2[X,R2Y ]− 2R3[RX, Y ]− 2R3[X,RY ] + R4[X,Y ].

Next, we shall generalize the definitions of the Nijenhuis torsion and of the
Haantjes torsion of a (1, 1)-tensor field on a manifold to any vector space equipped
with a “bracket”.

4. Nijenhuis and Haantjes torsions associated to a “bracket”

4.1. Definition

Let μ : E × E → E be a vector-valued skew-symmetric bilinear map on a real
vector space E. For each linear map, R : E → E,

(i) the Nijenhuis torsion of R is the skew-symmetric (1, 2)-tensor on E, denoted
by TR(μ), such that, for all vectors X and Y in E,

TR(μ)(X,Y ) = μ(RX,RY )−R(μ(RX, Y ))−R(μ(X,RY )) + R2(μ(X,Y )),

(ii) the Haantjes torsion of R is the skew-symmetric (1, 2)-tensor on E, denoted
by HR(μ), such that, for all vectors X and Y in E,

HR(μ)(X,Y ) = TR(μ)(RX,RY )−R(TR(μ)(RX, Y ))

−R(TR(μ)(X,RY )) + R2(TR(μ)(X,Y )).

4.2. Lie algebroids

The general definitions of the Nijenhuis torsion and of the Haantjes torsion are
applicable when E is the module of sections of a Lie algebroid, A → M , and μ
is the Lie bracket of sections of A (or to a pre-Lie algebroid in which the bracket
of sections does not necessarily satisfy the Jacobi identity), and R is a section of
A⊗A∗. There are two important special cases:

(i) A = TM and E is the module of vector fields on a manifold M , μ is the Lie
bracket of vector fields and R is a (1, 1)-tensor, the case originally studied by
Haantjes in 1955,

(ii) E is a real Lie algebra with bracket μ, and R is a linear map.
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Remark. In the case of TM or, more generally, of a Lie algebroid A over M , the Lie
bracket of sections μ is only R-linear, not C∞(M)-linear. But the torsion TR(μ)
of any (1, 1)-tensor R is C∞(M)-linear, i.e., it is a (1, 2)-tensor.

4.3. Haantjes torsion as torsion of the Nijenhuis torsion

From the defining formula of the Haantjes torsion of a linear endomorphism R of
E in terms of its Nijenhuis torsion we obtain immediately:

Proposition. The Haantjes torsion is related to the Nijenhuis torsion by

HR(μ) = TR(TR(μ)).

This relation suggests the construction by iteration of higher Nijenhuis and
Haantjes torsions of a linear endomorphism.

4.4. Higher Nijenhuis torsions

Let R be a linear endomorphism of a vector space E. Then TR is the linear endo-
morphism of E ⊗ ∧2E∗ such that, for ν ∈ E ⊗ ∧2E∗,

TR(ν) = ν ◦ (R⊗R)−R ◦ ν ◦ (R ⊗ Id)−R ◦ ν ◦ (Id⊗R) + R2 ◦ ν.

For a vector space with bracket μ, set T (1)
R (μ) = TR(μ), which is, by definition,

the Nijenhuis torsion TR(μ) of R. Define

T (k+1)
R (μ) = TR(T (k)

R (μ)), for k ≥ 1.

The (1, 2)-tensors T (k)
R (μ) are of degree 2k in R. We call the skew-symmetric

(1, 2)-tensors, T (k)
R (μ), for k ≥ 2, the higher Nijenhuis torsions of R. For any

skew-symmetric (1, 2)-tensor μ, and for all k, � ≥ 1,

T (k+�)
R (μ) = T (k)

R (T (�)
R (μ)).

4.5. Higher Haantjes torsions

In the preceding notation, the Haantjes torsion of R is

HR(μ) = TR(TR(μ)) = T (2)
R (μ).

Set H(1)
R (μ) = HR(μ) and define

H(k+1)
R (μ) = TR(H(k)

R (μ)), for k ≥ 1.

The (1, 2)-tensors H(k)
R (μ) are of degree 2(k+1) in R. By definition, H(1)

R (μ) is the

Haantjes torsion HR(μ) of R. We call the skew-symmetric (1, 2)-tensors, H(k)
R (μ),

for k ≥ 2, the higher Haantjes torsions which satisfy the very simple relation

H(k)
R (μ) = T (k+1)

R (μ).

For any skew-symmetric (1, 2)-tensor μ, and for all k, � ≥ 1,

H(k+�+1)
R (μ) = H(k)

R (H(�)
R (μ)).
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4.6. A formula for the higher Haantjes torsions

To a (1, 1)-tensor, Bogoyavlenskij associated a representation of the ring of real
polynomials in 3 variables on the space of (1, 2)-tensors [1]. Expanding the poly-
nomial (xy−zx−zy+z2)k+1 = (z−x)k+1(z−y)k+1 furnishes the general formula
for the (k + 2)2 terms of the expansion of the kth Haantjes torsion of R,

H(k)
R (μ)(X,Y ) =

k+1∑
p=0

k+1∑
q=0

(−1)2(k+1)−p−qCp
k+1C

q
k+1R

p+qμ(Rk+1−pX,Rk+1−qY ).

It remains to be seen what roles, if any, the higher Haantjes torsions can play in
geometry and in the theory of integrable systems.

4.7. Properties of the Nijenhuis and Haantjes torsions

If a (1, 1)-tensor field, R, on a manifold, M , is diagonizable in a local basis,

(
∂

∂xi

)
,

i = 1, . . . , n, with eigenvalues λi(x
1, . . . , xn), its Nijenhuis torsion satisfies

TR(μ)
(

∂

∂xi
,

∂

∂xj

)
= (λi − λj)

(
∂λi

∂xj

∂

∂xi
+

∂λj

∂xi

∂

∂xj

)
.

Making use of the C∞(M)-bilinearity of TR(μ), it is easy to prove that, if R is
diagonizable, the Haantjes torsion of R vanishes.

If there exists a basis of eigenvectors of R at each point (in particular, if
all the eigenvalues of R are simple), the vanishing of the Haantjes torsion of R is
necessary and sufficient for R to be diagonalizable in a system of coordinates.

If R2 = α Id, where α is a constant, in particular, if R is an almost complex
structure, i.e., when R2 = −Id, then the Haantjes torsion is equal to the Nijenhuis
torsion, up to a scalar factor,

HR(μ) = 4αTR(μ),

and, more generally, H(k)
R (μ) = (4α)kTR(μ), for k ≥ 1.

5. Haantjes manifolds and Magri–Lenard complexes

5.1. From Nijenhuis to Haantjes manifolds

In a series of papers written since 2012, Franco Magri has defined the concept of
a Haantjes manifold, demonstrated how the concept of a Lenard complex on a
manifold extends that of a Lenard chain associated with a bi-Hamiltonian system,
related this theory to that of Frobenius manifolds, and developed applications to
the study of differential systems [11–14].

A Nijenhuis manifold is a manifold endowed with a Nijenhuis tensor, i.e.,
a tensor whose Nijenhuis torsion vanishes. In the theory of integrable systems,
Nijenhuis tensors have also been called Nijenhuis operators, since they map vec-
tor fields to vector fields, as well as 1-forms to 1-forms, or hereditary operators,
because they act as recursion operators. It is well known that every power of a
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Nijenhuis operator, R, is a Nijenhuis operator. Therefore, in a Nijenhuis manifold,
the sequence of powers of the Nijenhuis tensor, Id, R,R2, . . . , Rk, . . ., is a family
of commuting Nijenhuis operators.

In the new framework, the role of this sequence of powers is played by a family
of Haantjes tensors, i.e., (1, 1)-tensors whose Haantjes torsion vanishes. Haantjes
tensors are also called recursion operators. A Haantjes manifold is a manifold
endowed with a family of commuting Haantjes tensors, R1, R2, . . . , Rk, . . . In the
examples, the family of Haantjes tensors is usually finite, in number equal to the
dimension of the manifold, and R1 = Id. We shall adopt the definition in this
restricted sense.

5.2. Magri–Lenard complexes

A Magri–Lenard complex on a manifold, M , of dimension n, equipped with n
commuting (1, 1)-tensors, Rk, k = 1, . . . , n, with R1 = Id, is defined by a pair
(X, θ) such that

(i) the vector fields RkX , k = 1, . . . , n, commute pairwise,
(ii) the 1-forms, θRkR�, k, � = 1, . . . , n, are closed.

In particular, θ itself is assumed to be closed and each θRk is a closed 1-form.
The notation θR, where θ is a 1-form and R is a (1, 1)-tensor, stands for tRθ, the
(1, 1)-tensor acting on the 1-form by the dual map.

Magri proved that, under a mild additional condition, if these properties are
satisfied, the operators Rk, k = 1, . . . , n, are necessarily Haantjes tensors, so that
the underlying manifold of a Magri–Lenard complex is a Haantjes manifold [15].

5.3. Magri–Lenard complexes generalize Lenard chains

In order to show how the Magri–Lenard complexes generalize the Lenard chains
of bi-Hamiltonian systems that were already defined by Magri in 1978 [10], we
shall first recall how Nijenhuis operators appear in the theory of bi-Hamiltonian
systems.

If a vector field, X , leaves a (1, 1)-tensor, R, invariant, then,

0 = (LXR)(Y ) = LX(RY )−R(LXY ) = [X,RY ]−R[X,Y ],

for all vector fields Y . Therefore R, when applied to a symmetry Y of the evolution
equation, ut = X(u), yields a new symmetry, RY . If, in addition, R is a Nijenhuis
operator, applying the successive powers of R yields a sequence of commuting sym-
metries, RkX , k ∈ N, known as a “Lenard chain”3 and therefore R is a recursion
operator for each of the evolution equations in the hierarchy, ut = (RkX)(u).

The geometric structure underlying the theory of integrable systems is the
theory of Poisson–Nijenhuis manifolds, in particular the theory of symplectic Nijen-
huis manifolds. If P1 and P2 are compatible Hamiltonian operators, i.e., Poisson
bivectors such that their sum is a Poisson bivector, and if P1 is invertible, i.e.,

3For the story of how the hierarchy of higher Korteweg–deVries equations became known as a

“Lenard chain”, named after Andrew Lenard (b. 1927), in papers by Martin Kruskal et al., see
Lenard’s letter reproduced in [21].
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defines a symplectic structure, then R = P2 ◦ P−1
1 is a Nijenhuis operator. Thus,

(P2, R) is called a “Poisson–Nijenhuis structure” and (P1, R) is called a “symplectic
Nijenhuis structure”. The theory of compatible Poisson structures originated in
articles of Gel’fand and Dorfman [6], Fokas and Fuchssteiner [4], Magri and Morosi
[16], and was further developed in [8] and [9].

We can now show that there is a Magri–Lenard complex associated to a
bi-Hamiltonian system. Let P1 and P2 be compatible Hamiltonian operators. A
vector field X is called bi-Hamiltonian with respect to P1 and P2 if there exist
exact differential 1-forms α1 = dH1 and α2 = dH2 such that

X = P1(α1) = P2(α2).

Assume that P1 is invertible, then the Nijenhuis operator R = P2 ◦P−1
1 generates

a sequence of commuting bi-Hamiltonian vector fields, RkX , the so-called Lenard
chain. The sequence of powers of R, (Id, R,R2, . . . , Rk, . . .), is a family of commut-
ing Nijenhuis operators, and therefore a family of commuting Haantjes operators.
We set θ = α1. Then θR and all θRk are closed 1-forms. Therefore, the axioms of
a Magri–Lenard complex are satisfied. In addition, the 1-form θ and the recursion
operator R are invariant under X .

5.4. A Magri–Lenard complex on R3

We present an example of a Magri–Lenard complex described by Magri in [14].
On R3 with coordinates (u1, u2, u3), consider the matrices

K =

⎛⎝ 0 2 0
−u1 0 2
− 1

2u2 0 0

⎞⎠ and K2 + u1Id =

⎛⎝−u1 0 4
−u2 −u1 0
0 −u2 u1

⎞⎠ .

Matrices K0 = Id, K1 = K, K2 = K2 + u1Id commute.
Define θ0 = θ = du1. We write 1-forms as one-line matrices, and we consider

the 1-forms,

θ1 = θ01 = θK = 2du2, θ2 = θ02 = θK2 = −u1du1 + 4du3,

θ11 = θ1K = 2du1, θ12 = θ2K = −2(u2du1 + u1du2),

θ22 = θ2K2 = u2
1du1 − 4u2du2.

All the 1-forms, θKiKj , 0 ≤ i, j ≤ 2, are exact, and therefore closed. (Applying
the successive powers of K to θ does not yield a sequence of closed forms. While
θK2 and θK3 are exact, θK4 = −2u2du1 − 4u1du2 is not closed.)

Let X =
∂

∂u3
. The vector fields

X0 = X =
∂

∂u3
, X1 = KX = 2

∂

∂u2
, X2 = K2X = 4

∂

∂u1
+ u1

∂

∂u3
,

commute.

Therefore

(
R3, (Id,K,K2), θ = du1, X =

∂

∂u3

)
is a Magri–Lenard complex.

In addition, LXθ = 0 and LXK = 0.
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Computing the Nijenhuis torsion TK of K, we find that TK(e1, e2) = e2, while
TK(e1, e3) = e3, and TK(e2, e3) = 0. Thus, the vector-valued 2-form TK satisfies
iθTK = 0, where θ = du1, but TK does not vanish. For a vector X in R3, let TK(X)
be the endomorphism of R3 defined by Y �→ TK(X,Y ). Then

TK(e1) =

⎛⎝0 0 0
0 1 0
0 0 1

⎞⎠ , TK(e2) = −

⎛⎝0 0 0
1 0 0
0 0 0

⎞⎠ , TK(e3) = −

⎛⎝0 0 0
0 0 0
1 0 0

⎞⎠ .

We now compute the Haantjes torsion of K. Once we know the components of TK

and have computed K2 =

⎛⎝−2u1 0 4
−u2 −2u1 0
0 −u2 0

⎞⎠, we can compute the components

of HK :

HK(e1, e2) = TK(Ke1,Ke2)−KTK(Ke1, e2)−KTK(e1,Ke2) + K2TK(e1, e2)

= TK(−u1e2 − 1
2u2e3, 2e1)−KTK(−u1e2 − 1

2u2e3, e2)−KTK(e2, 2e1)

− 2u1e2 − u2e3 = 2u1e2 + u2e3 − 2u1e2 − u2e3 = 0,

and similarly, HK(e1, e3) = HK(e2, e3) = 0. Therefore HK = 0.

Next, we compute the Nijenhuis and Haantjes torsions of K2. After computing

(K2)
2 =

⎛⎝(u1)
2 −4u2 2u2u1

0 (u1)
2 −4u2

(u2)
2 0 (u1)

2

⎞⎠ ,

we evaluate the Nijenhuis torsion of K2 on the basis vectors and we obtain

TK2(e1, e2) = u2e3, TK2(e1, e3) = −2u1e3, TK2(e2, e3) = 4e2.

Then we compute the Haantjes torsion of K2 and we find that it vanishes. There-
fore,

(
R3, (Id,K,K2)

)
is a Haantjes manifold.

Why this example? The matrix K in the preceding example is that of the

integrable system of hydrodynamic type, Ut = KUx, where U =
(

u1
u2
u3

)
and u1, u2,

u3 are functions of two variables (t, x). Explicitly, this differential system is

∂u1

∂t
=

∂u2

∂x
,

∂u2

∂t
= −u1

∂u1

∂x
+ 2

∂u3

∂x
,

∂u3

∂t
= −1

2
u2

∂u1

∂x
.

Another case to which the geometric structure of Haantjes manifolds is ap-
plicable is that of the dispersionless Gel’fand–Dickey equations defined by the

(1, 1)-tensor, K =
(

0 1 0
u1 0 1
u2 u1 0

)
.



Beyond Recursion Operators 177

6. WDVV equations and Magri–Lenard complexes

Magri showed how the geometric structures on Haantjes manifolds are related to
the solutions of the WDVV equations4 which are the equations satisfied by the
partial derivatives of the Hessian, i.e., the matrix of second-order partial deriva-
tives, of a function F of n variables, (x1, x2, . . . , xn). Let the Hessian matrix of

F be denoted by h and assume that the matrix
∂h

∂x1
is invertible. The WDVV

equations can be written as the set of nonlinear equations,

∂h

∂xi

(
∂h

∂x1

)−1
∂h

∂xj
=

∂h

∂xj

(
∂h

∂x1

)−1
∂h

∂xi
, i, j = 1, . . . , n,

that express the pairwise commutativity of the matrices(
∂h

∂x1

)−1
∂h

∂xi
, i = 1, . . . , n.

Given a solution, F , of the WDVV equations, consider the 1-forms θij = daij ,

i, j = 1, . . . , n, where the aij =
∂2F

∂xi∂xj
are the entries of the Hessian matrix h of

F . Assume that the 1-forms θ1j , j = 1, . . . , n, are linearly independent, and define
operators Rk by the condition

θ1jRk = θjk.

Then R1 = Id and

θ11RiRj = θ1iRj = θij .

Proposition. Consider the commuting vector fields Xk =
∂

∂xk
. Then the operators

Rk satisfy the relation

Xk = Rk
∂

∂x1
.

Proof. On each of the linearly independent 1-forms θ1j = da1j , j = 1, . . . , n, the

vector fields Xk =
∂

∂xk
and Rk

∂

∂x1
take the same value,

∂a1j

∂xk
=

∂ajk

∂x1
. �

The operators Rk commute because F is assumed to be a solution of the

WDVV equations. In fact, Rk
∂h

∂x1
=

∂h

∂xk
. Therefore the operators Rk, the vector

field
∂

∂x1
and the 1-form θ11 define a Magri–Lenard complex.

Conversely, consider a Magri–Lenard complex (M,Rk, X, θ). Locally, on an
open set of the manifold M , the commuting vector fields Xk = RkX define coor-
dinates xk, and the closed 1-forms θij = θRiRj admit local potentials aij ,

θij = daij .

4This system of partial differential equations is named after E. Witten, R. Dijkgraaf, E. Verlinde
and H. Verlinde.
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For i, j, k = 1, . . . , n, consider the functions

cijk = 〈θij , Xk〉 = 〈θRiRj,RkX〉 = 〈θ,RiRjRkX〉.
In local coordinates,

cijk = 〈θij , Xk〉 =
〈
daij ,

∂

∂xk

〉
=

∂aij

∂xk
.

Because the operators Rk commute pairwise, functions cijk are symmetric. There-

fore the functions
∂aij

∂xk
are symmetric, which implies that the aij are the second-

order partial derivatives of a function F (x1, . . . , xn), aij =
∂2F

∂xi∂xj
. Then the Hes-

sian of F satisfies the WDVV equations.

7. Lenard–Haantjes chains

To conclude this survey of modern work based on the 1955 article of Haantjes, I
must mention recent work of Tempesta and Tondo [24–26].

A symplectic Haantjes manifold of dimension 2n is a symplectic manifold
(M,ω) endowed with a family of n linearly independent Haantjes tensors, K0 =
Id,K1, . . . ,Kn−1, such that:

(i) each map ω� ◦Ki : TM → T ∗M , i = 0, . . . , n− 1, is skew-symmetric,
(ii) the Ki’s, i = 0, . . . , n− 1, generate a C∞(M)-module of Haantjes tensors,
(iii) for all i, j = 0, . . . , n−1, KiKj has a vanishing Haantjes torsion, and KiKj =

KjKi.

“Lenard–Haantjes chains” are constructed from a given Hamiltonian H on a
symplectic Haantjes manifold by defining Hamiltonians Hj such that

dHj+1 = dH Kj .

Then the Poisson bracket of any two Hamiltonians Hj in the chain vanishes.
Among the examples given by Tempesta and Tondo are the generalized

Stäckel systems, where ω is the canonical symplectic form on T ∗(Rn) with co-
ordinates (qi, pi), and the Kj ’s are diagonal operators defined in terms of the
cofactors of a Stäckel matrix, an invertible matrix whose ith row depends only on
the coordinate qi.

Many other applications of the Haantjes tensors can be found in the publica-
tions and in the preprints of Tempesta and Tondo, as well as in Magri’s articles,
published or in progress. The comparison of the methods thus proposed to inves-
tigate the geometry of integrable systems remains to be done.
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Poincaré 53 (1990), 35–81.

[9] Y. Kosmann-Schwarzbach, V. Rubtsov, Compatible structures on Lie algebroids and
Monge–Ampère operators, Acta Appl. Math. 109 (2010), no. 1, 101–135.

[10] F. Magri, A simple model of an integrable Hamiltonian system, J. Math. Phys. 19
(1978), 1156–1162.

[11] F. Magri, Recursion operators and Frobenius manifolds, SIGMA Symmetry Integra-
bility Geom. Methods Appl. 8 (2012), paper no. 076, 7 pages.

[12] F. Magri, Haantjes manifolds, Journal of Physics: Conference Series (Physics and
Mathematics of Nonlinear Phenomena, 2013) 482 (2014), paper no. 012028, 10 pages.

[13] F. Magri, WDVV equations, Proceedings (Current Problems in Theoretical Physics:
Integrability and Nonlinearity in Field Theory, Vietri al Mare 2015), arXiv:
1510.07950.

[14] F. Magri, Haantjes manifolds and Veselov systems, Proceedings (Physics and Math-
ematics of Nonlinear Phenomena, Gallipoli 2015), Teor. Mat. Fiz. 189 (2016), no. 1,
101–114; translation in Theor. Math. Phys. 189 (2016), no. 1, 1486–1499.

[15] F. Magri, preprint (2017).

[16] F. Magri, C. Morosi, A geometrical characterization of integrable Hamiltonian sys-
tems through the theory of the Poisson–Nijenhuis manifolds, Quaderno S/19, Uni-
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Abstract. It is reported here that the Jordan algebra approach to the Kepler
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1. Introduction

The Kepler problem – a mathematical model for the simplest solar system or
the simplest atom – is a completely integrable model. The initial solution of this
model, at either the classical level (Newton, 17th century) or the quantum level
(Schrödinger, 1920s), was an epoch-making event in science.

The simplicity of the Kepler problem might have misled many people to
believe that nothing new about it is yet to be discovered. However, a host of past
mathematical discoveries reveals that the mathematical simplicity of this model is
quite deceptive. Here is a partial list of past discoveries:

1. Laplace–Runge–Lenz vector and O(4)-symmetry. This discovery/rediscovery
is associated with historical figures such as Jakob Hermann, Johann Bernoulli,
Pierre-Simon Laplace, Josiah Willard Gibbs, Carle Runge, Wilhelm Lenz,
Wolfgang Pauli, . . .

2. The S-duality. This discovery/rediscovery is associated with scientists such
as William Rowan Hamilton, Vladimir Fock, J. Moser, . . .

3. The curvature deformed versions. This discovery/rediscovery is associated
with scientists such as Erwin Schrödinger, Leopold Infeld, Peter Higgs, . . .

4. The SO(2,4)-dynamic symmetry. This discovery/rediscovery is associated
with names such as I.A. Malkin and V.I. Manko [1], A.O. Barut and
H. Kleinert [2], . . .
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16304014 and the Hong Kong University of Science and Technology under DAG S09/10.SC02.
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5. The magnetized versions. This discovery/rediscovery is associated with names
such as H. McIntosh and A. Cisneros [3], D. Zwanziger [4], T. Iwai [5], G.W.
Meng [6], . . .

In this talk, I will report that the Euclidean Jordan algebras capture the
essence of the Kepler problem. Some elaboration on this point is needed here. In
general, we say that A captures the essence of B if at least the following three
conditions are met: 1) A gives a new insight into B, 2) there is a general theory
based on A so that B is just a special example, 3) things become more unified: B
and C (something seemingly different from B) are just two different examples of
the general theory. In our case here, the Euclidean Jordan algebras is A and the
Kepler problem is B. Indeed,

1) The Jordan algebra approach to Kepler problem yields a new insight into
the Kepler problem and its magnetized version [7]: the elliptic oriented or-
bits of magnetized Kepler problems are related to each other via Lorentz
transformations and dilations.

2) There is a general theory [7] based on Jordan algebra in which the Kepler
problem is just an example associated with the Jordan algebra of complex
Hermitian matrices of order 2.

3) An n-dimensional isotropic oscillator is the bounded sector of a Kepler-type
problem associated with the Jordan algebra of real symmetric matrices of or-
der n, and the Fradkin tensor [8] of an isotropic oscillator is just the “Laplace–
Runge–Lenz vector”.

1.1. Motivations

Since the research on the Kepler problem is not topical, some motivations must be
provided. At the moment, the speaker can cite at least the following three reasons
for this research:

(1) Most mathematical physicists would agree that the Kepler problem is an
all-in-one mathematical model with beauty, simplicity, and truth.

(2) The Kepler problem is much deeper than most of us might have thought. In-
deed, the signatures of special relativity such as future light cone or Lorentz
transformation naturally appear [9] in this non-relativistic dynamical prob-
lem.

(3) The Kepler problem might provide some clues and hints for fundamental
physics. For example, in our study of this problem, we found that [9] i) a sec-
ond temporal dimension appears naturally, ii) the magnetic charge is relative.

F. Dyson [10] once pointed out that a research in mathematical physics is always
unfashionable, but it might turn out to be extremely fruitful and interesting many
years later. History is full of examples like that – from Hamilton’s work on New-
tonian mechanics to Weyl’s work on electromagnetism. This is another motivation
for our research on the Kepler problem.
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2. Review of the Kepler problem and the Lenz algebra

Recall that, for the Kepler problem, the phase space T ∗R3
∗ is a Poisson manifold,

and the Hamiltonian, angular momentum, and Lenz vector are

H =
1

2
p2 − 1

r
, L = r× p, A = L× p+

r

r

respectively. Here r ∈ R3
∗ is the position vector and p is the linear momentum.

In terms of the standard canonical coordinates x1, x2, x3, p1, p2, p3 on T ∗R3
∗,

the Poisson structure can be described by the following basic Poisson bracket
relations:

{xi, xj} = 0, {xi, pj} = δij , {pi, pj} = 0.

The fact that L and A are constants of motion can be restated as

{L,H} = 0, {A,H} = 0.

Theorem 1. Let Li (resp. Ai) be the ith component of L (resp. A). Then

{Li,H} = 0 ,

{Ai,H} = 0 ,

{Li, Lj} = εijkLk ,

{Li, Aj} = εijkAk ,

{Ai, Aj} = −2HεijkLk .

(1)

Here εijk = 1 (resp. −1) if ijk is an even (resp. odd) permutation of 123, and
equals to 0 otherwise. A summation over the repeated index k is assumed. So we
have {L1, L2} = L3, {L2, A3} = A1, and so on.

The Poisson algebra with generators H , L1, L2, L3, A1, A2, A3 and relations
in Eq. (2) is called the Lenz algebra.

3. Review of formally real Jordan algebras

Formally real Jordan algebras [11] were introduced by P. Jordan [12] in the 1930s
as the quantum version of the algebra of classical observables. For the finite-
dimensional ones, here is the definition.

Definition 2. A finite-dimensional formally real Jordan algebra is a finite-dimen-
sional real algebra V with unit e such that, for any two elements a, b in V , we
have

1) ab = ba (symmetry),
2) a(ba2) = (ab)a2 (weakly associative),
3) a2 + b2 = 0 =⇒ a = b = 0 (formally real).
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The simplest example is R. We shall use La: V → V to denote the multiplication
by a. It is a fact that condition 3) is equivalent to condition

3′) The “Killing form” 〈a, b〉 = 1
dimV trLab is positive definite.

So formally real Jordan algebras are also called Euclidean Jordan algebras.

3.1. The classification theorem

For the formally real Jordan algebras, the simplest example is the field of real
numbers, i.e., R. The more sophisticated example is the algebra Hn(R) which
consists of real symmetric matrices of order n, under the symmetrized matrix
multiplication. Next, we have the algebra Hn(C) (Hn(H) resp.) which consists of
complex (quaternionic resp.) Hermitian symmetric matrices of order n, under the
symmetrized matrix multiplication. However, the algebra Hn(O) which consists of
octonionic Hermitian symmetric matrices of order n is not a formally real Jordan
algebra unless n = 2 or 3. Finally, there is an infinite series of formally real Jordan
algebras which is associate with the Clifford algebra of the Euclidean vector spaces:

Γ(n) := R⊕ Rn

whose multiplication rule is given by formula

(α, �u)(β,�v) = (αβ + �u · �v, α�v + β�u).

Along with J. von Neumann and E. Wigner, P. Jordan [13] proved the following
classification theorem for finite-dimensional Euclidean Jordan algebras.

Theorem 3. Euclidean Jordan algebras are semi-simple, and the simple ones con-
sist of four infinite series and one exceptional:

R.
Γ(n) := R⊕ Rn, n ≥ 2.
Hn(R), n ≥ 3.
Hn(C), n ≥ 3.
Hn(H), n ≥ 3.
H3(O).

Some points are worth to mention:

• Γ(0) ∼= R, Γ(1) ∼= R ⊕ R, Γ(2) ∼= H2(R), Γ(3) ∼= H2(C), Γ(5) ∼= H2(H),
Γ(9) ∼= H2(O).

• Each but the exceptional one is associated with an associative algebra. This
is a result of A.A. Albert [14].
• R, Γ(3), and H3(O) are somewhat special.

3.2. The structure algebra

For a, b in the Jordan algebra V , we let

Sab := [La, Lb] + Lab, {abc} := Sab(c)

and str be the span of {Sab | a, b ∈ V } over R. Since
[Sab, Scd] = S{abc}d − Sc{bad},
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str becomes a real Lie algebra – the structure algebra of V . For example, (1)
str ∼= R for V = R, (2) str ∼= so(1, 3)⊕ R for V = Γ(3).

This Lie algebra is not simple, actually not even semi-simple, because it has
a non-trivial central element: See = Le. The good news is that this algebra can be
extended to a simple real Lie algebra provided that V is a simple Euclidean Jordan
algebra. From hereon V is assumed to be a simple Euclidean Jordan algebra.

3.3. The conformal algebra

Write z ∈ V as Xz and 〈w, 〉 ∈ V ∗ as Yw.

Definition 4 (J. Tits, M. Koecher, I.L. Kantor, 1960s). The conformal algebra
co is a Lie algebra whose underlying real vector space is V ⊕ str ⊕ V ∗, and the
commutation relations are

[Xu, Xv] = 0, [Yu, Yv] = 0, [Xu, Yv] = −2Suv,

[Suv, Xz] = X{uvz}, [Suv, Yz] = −Y{vuz},

[Suv, Szw] = S{uvz}w − Sz{vuw}

(2)

for u, v, z, w in V .

When V = Γ(3), str = so(3, 1) ⊕ R, co = so(4, 2). When V = R, str = R,
co = sl(2,R). In general, co is the Lie algebra of the bi-holomorphic automorphism
group of the complex domain V × iV+ ⊂ V ⊗R C.

4. The universal Kepler problems

Let T KK be the complexified universal enveloping algebra for the conformal alge-
bra, but with Ye being formally inverted (the formal two-sided inverse of Ye shall
be denoted by Y −1

e ).

Definition 5 (Ref. [15]). The universal angular momentum is

L : V × V → T KK
(u, v) �→ Lu,v := [Lu, Lv]. (3)

The universal Hamiltonian is

H :=
1

2
Y −1
e Xe − (iYe)

−1. (4)

The universal Lenz vector is

A : V → T KK
u �→ Au := (iYe)

−1[Lu, (iYe)
2H ]. (5)
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4.1. Universal Lenz algebra

Via the commutation relation for the conformal algebra, one can verify

Theorem 6. For u, v, z and w in V ,

[Lu,v, H ] = 0 ,

[Au, H ] = 0 ,

[Lu,v, Lz,w] = LLu,vz,w + Lz,Lu,vw ,

[Lu,v, Az ] = ALu,vz ,

[Au, Av] = −2HLu,v .

(6)

5. Examples

In view of Theorems 1 and 6 we conclude that

a concrete realization of the conformal algebra
⇓

a concrete model of the Kepler type

To be more precise, we have

a suitable operator realization =⇒ a quantum model.

a suitable Poisson realization =⇒ a classical model.

5.1. Kepler problem

The Jordan algebra is V := H2(C). An element in V can be written as

X =

[
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

]
.

If X has rank one and is semi-positive definite, then detX = 0, i.e.,

x2
0 − x2

1 − x2
2 − x2

3 = 0,

moreover x0 > 0. So the set of rank one, semi-positive elements in H2(C) is the
future light cone Λ+

∼= R3
∗ – the punctured 3D Euclidean space.

One can check that (C∞(T ∗Λ+), {, }) provides a suitable Poisson realization
of the conformal algebra of V for which the universal Hamiltonian, the univer-
sal angular momentum and the universal Lenz vector respectively becomes the
Hamiltonian, the angular momentum, and the Laplace–Runge–Lenz vector of the
Kepler problem.

5.2. Isotropic oscillator in dimension n

The Jordan algebra is V := Hn(R), i.e., the Jordan algebra of real symmetric
matrices of order n. We let C1 be the set of rank one, semi-positive elements in
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Hn(R). One can show that (C∞(T ∗C1), {, }) provides a suitable Poisson realization
of the conformal algebra of V , from which one obtains a Kepler-type problem whose
bounded sector is isomorphic to the isotropic oscillator in dimension n. Moreover,
the Lenz vector gets identified with the Fradkin tensor under the isomorphism.
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Abstract. In this paper we consider a differential-difference system which is
equivalent to the commutativity condition of two differential-difference oper-
ators. We study the rank two algebro-geometric solutions of this system.
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1. Introduction and main results

I.M. Krichever and S.P. Novikov [1, 2] proved the existence of the rank l > 0
algebro-geometric solution of the Kadomtsev–Petviashvili (KP) equation and the
Toda chain. For such solutions the common eigenfunctions of auxiliary commuting
operators (differential in the case of KP or difference in the case of the Toda chain)
form a rank l vector bundle over the affine part of the spectral curve. They also
proved that in the case of the rank two solutions of KP corresponding to elliptic
spectral curves there is a remarkable separation of variables. Such solutions are
expressed through the solutions of the 1 + 1 Krichever–Novikov (KN) equation
(see (6) below) and the solutions of an ODE [1] (see also [3, formula (22)]).

In this paper we study the rank two algebro-geometric solutions of the fol-
lowing equation

[∂y − T − fn(x, y), ∂x − bn(x, y)T−1 − dn(x, y)T−2] = 0, (1)

where fn, bn, dn are the 4-periodic functions, fn+4 = fn, bn+4 = bn, dn+4 = dn.
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Equation (1) is equivalent to the following 4-periodic chain

fn,x(x, y)− bn(x, y) + bn+1(x, y) = 0, (2)

fn−2(x, y)− fn(x, y) +
dn,y(x, y)

dn(x, y)
= 0, (3)

fn−1(x, y)− fn(x, y) +
bn,y(x, y)

bn(x, y)
+

dn(x, y)− dn+1(x, y)

bn(x, y)
= 0. (4)

Recall that if two difference operators

Lk =

K+∑
j=−K−

uj(n)T
j, Lm =

M+∑
j=−M−

vj(n)T
j, n ∈ Z,

where T is the shift operator, Tψn = ψn+1, commute, then there is a polynomial
R(z, w) such that R(Lk, Lm) = 0. The spectral curve Γ is defined by the equation
R = 0. The spectral curve parametrizes the common eigenvalues, i.e., if ψn is a
common eigenfunction of Lk, Lm

Lkψn = zψn, Lmψn = wψn,

then P = (z, w) ∈ Γ. The rank l of the pair Lk, Lm is

l = dim{ψn : Lkψn = zψn, Lmψn = wψn}
for the general P = (z, w) ∈ Γ. The maximal commutative ring of difference
operators is isomorphic to the ring of meromorphic functions on a spectral curve
(a closed Riemann surface) with poles q1, . . . , qs. Such operators are called s-
point operators. In the case of the rank one operators, the eigenfunctions (Baker–
Akhiezer functions) can be found explicitly in terms of theta-functions of the Jacobi
variety of spectral curves, and coefficients of such operators can be found using
eigenfunctions. The case of higher rank is very complicated (higher rank Baker–
Akhiezer functions are not found). The one-point rank two operators in the case
of elliptic spectral curves were found in [1]. The one-point rank two operators in
the case of the hyperelliptic spectral curve

w2 = Fg(z) = z2g+1 + c2gz
2g + c2g−1z

2g−1 + · · ·+ c0 (5)

were studied in [4]. In particular, examples of such operators were found for an
arbitrary g > 1 :

1) the operator

L
	

4 = (T + (r3n
3 + r2n

2 + r1n + r0)T
−1)2 + g(g + 1)r3n, r3 �= 0

commutes with a difference operator L
	

4g+2,
2) the operator

L�
4 = (T + (r1 cos(n) + r0)T

−1)2

− 4r1 sin
(
g
2

)
sin

(
g+1
2

)
cos

(
n + 1

2

)
, r1 �= 0

commutes with a difference operator L�
4g+2.
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Following [1, 2], we call the solution fn, bn, dn of (2)–(4) the algebro-geometric
solution of rank two, if there are one-point rank two commuting difference opera-
tors

L4 =

2∑
i=−2

uj(n, x, y)T j, L4g+2 =

2g+1∑
i=−(2g+1)

vj(n, x, y)T j

commuting with ∂x − bn(x, y)T−1 − dn(x, y)T−2 and ∂y − T − fn(x, y).
In the next theorem we show that in the case of an elliptic spectral curve

given by the equation

w2 = F1(z) = z3 + c2z
2 + c1z + c0 (6)

there is a separation of variables for rank two genus one solutions (similar to KP)
of (2)–(4).

Theorem 1. Let γn = γn(x) and ℘(y) satisfy the equations

γ′
n =

F1(γn)(γn−1 − γn+1)

(γn−1 − γn)(γn − γn+1)
, (7)

(℘′(y))2 = F1(℘(y)), (8)

and γn+4 = γn, then

bn(x, y) = − ℘′(y)γ′
n

(℘(y)− γn)2
,

dn(x, y) =
F1(γn−1)F1(γn)(℘(y) − γn−2)(℘(y)− γn+1)

(γn−2 − γn−1)(γn−1 − γn)2(γn − γn+1)(℘(y)− γn−1)(℘(y)− γn)
,

fn(x, y) = − ℘′(y)(γn − γn+1)

(℘(y)− γn)(℘(y)− γn+1)
+ gn(y),

gn(y) =
(−1)n
℘′(y)

(
(ns1 + s0)℘

2(y) + (nk1 + k0)℘(y) + (np1 + p0)
)

are rank two algebro-geometric solutions of (2)–(4) corresponding to the spectral
curve (6). Here sj , kj , pj are constants, j = 1, 2.

Equation (7) has the following Lax representation

[L4, ∂x − Vn−1(x)Vn(x)T
−2] = 0,

where L4 = (T + Vn(x)T
−1)2 + Wn(x),

Vn(x) =
F1(γn(x))

(γn(x)− γn−1(x))(γn(x)− γn+1(x))
, (9)

Wn(x) = −c2 − γn(x) − γn+1(x). (10)

The operator L4 commutes with an operator L6 and L4, L6 form a one-point rank
two pair of operators with the spectral curve (6). Equation (7) can be considered
a difference analogue of KN equation

Ut =
48F1(− 1

2 (c2 + U))− U2
xx + 2UxUxxx

8Ux
. (11)
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Equation (11), as well as (7), admits the Lax representation related to the rank
two (differential) operators corresponding to the elliptic spectral curve. Moreover,
(7), as well as (11), appears as an auxiliary equation for the separation variables in
the 2 + 1 system. For these reasons, we call (7) the Difference Krichever–Novikov
equation (DKN).

Difference chains of type (7) were studied in many papers (see, e.g., [5, 6]),
but we did not find (7) described in literature.

In Section 2 we study the rank two algebro-geometric solutions of the system

∂xVn = Vn(Wn−1 −Wn + Vn−1 − Vn+1), (12)

∂xWn = (Wn −Wn−1)Vn + (Wn+1 −Wn)Vn+1. (13)

This system admits a Lax pair (see (17) below). This system is reduced to DKN
under the reduction (9), (10) at g = 1.

In Section 3 we prove Theorem 1.

2. DKN equation

Let us consider one-point operators of rank two L4, L4g+2 corresponding to the
hyperelliptic spectral curve Γ given by (5). Common eigenfunctions of L4 and
L4g+2 satisfy the equation

ψn+1(P ) = χ1(n, P )ψn−1(P ) + χ2(n, P )ψn(P ),

where χ1(n, P ) and χ2(n, P ) are rational functions on Γ having 2g simple poles,
depending on n (see [1]). The function χ2(n, P ) has, in addition, a simple pole
at q = ∞. To find L4 and L4g+2 it is sufficient to find χ1 and χ2. Let σ be the
holomorphic involution on Γ, σ(z, w) = σ(z,−w).
In [4] it was proved that if

χ1(n, P ) = χ1(n, σ(P )), χ2(n, P ) = −χ2(n, σ(P )),

then L4 has the form

L4 = (T + VnT−1)2 + Wn, (14)

where

χ1 = −Vn
Qn+1

Qn
, χ2 =

w

Qn
, Qn(z) = zg + αg−1(n)z

g−1 + · · ·+ α0(n),

and the polynomial Q satisfies the equation

Fg(z) = Qn−1Qn+1Vn + QnQn+2Vn+1 + QnQn+1(z − Vn − Vn+1 −Wn). (15)

From (15) it follows that Q satisfies also linear equation

Qn−1Vn + Qn(z − Vn − Vn+1 −Wn)−Qn+2(z − Vn+1

− Vn+2 −Wn+1)−Qn+3Vn+2 = 0.
(16)
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At g = 1 we have Qn = z − γn, and equation (15) has the solution

Vn =
F1(γn)

(γn − γn−1)(γn − γn+1)
, Wn = −c2 − γn − γn+1.

At g > 1 it is a very difficult problem to solve equation (15). Moreover to find
examples of solutions of (15) is also difficult problem.

At the end of this section we study difference evolution equations related to
the operator L4 (14).

The system (12), (13) has the following Lax representation

[(T + Vn(x)T
−1)2 + Wn(x), ∂x − Vn−1(x)Vn(x)T

−2] = 0. (17)

The system (12), (13) is included in the hierarchy of evolution equations of the
form

[(T + Vn(tk)T
−1)2 +Wn(tk), ∂tk − P1(n, tk)T

−2 − · · · − Pk(n, tk)T
−2k] = 0. (18)

These evolution equations define symmetries of (12), (13). At k = 2 we have

∂tkVn = Vn

(
Vn−2Vn−1 + Vn−1Vn − VnVn+1 − Vn+1Vn+2 + V 2

n−1 − V 2
n+1

+ W 2
n−1 −W 2

n + 2(Vn−1 + Vn)Wn−1 − 2(Vn + Vn+1)Wn

)
, (19)

∂tkWn = Vn−1Vn(Wn−2 − 2Wn−1 + Wn)− Vn+1Vn+2(Wn − 2Wn+1 + Wn+2)

− Vn(Wn−1 −Wn)(2Vn + Wn−1 + Wn)

− Vn+1(Wn −Wn+1)(2Vn+1 + Wn + Wn+1). (20)

In the case of the algebro-geometric operator L4 at g = 1, i.e., Vn and Wn have the
form (9), (10) the system (12), (13) is reduced to the DKN equation and equation
(18) is reduced to the equation from the DKN hierarchy. For example, the system
(19), (20) is reduced to

∂tkγn = Vn

(
Vn+1(Wn−1 − 2Wn + Wn+1)

− Vn−1(Wn−2 − 2Wn−1 + Wn) + (Wn−1 −Wn)(2Vn + Wn−1 + Wn)
)
.

At g > 1 there is no explicit reduction of (12), (13) since there is no explicit form
of L4. Nevertheless one can find the evolution equation on the polynomial Qn

associated with the algebro-geometric operator L4. By direct calculation one can
check the following lemma.

Lemma 1. Equation

∂xQn = Vn(Qn+1 −Qn−1) (21)

together with (12), (13) defines a symmetry of (15) and (16).

At g = 1 equation (21) is equivalent to DKN.
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3. Proof of Theorem 1

In this section we explain how to obtain a rank two algebro-geometric solution
of (2)–(4) at g = 1. A similar method works for KP (see [3, 7]). The main idea
is to apply Darboux type transformation to L4. If Qn satisfies (15) we have the
following factorization (see [4])

L4 − z =

(
T + χ2(n + 1)− Vn−1Vn

χ1(n− 1)
T−1

)(
T − χ2(n)− χ1(n)T

−1
)
.

Let us assume that γn = γn(x) and z = z0(y). After the Darboux transfor-
mation we get

L̃4 =
(
T − χ2(n)− χ1(n)T

−1
)(

T + χ2(n + 1)− Vn−1Vn

χ1(n− 1)
T−1

)
+ z0(y).

Here Vn = Vn(x) has the form (9),

χ1(n) = −Vn(x)
z0(y)− γn+1(x)

z0(y)− γn(x)
, χ2(n) =

w(y)

z0(y)− γn(x)
, w2(y) = F1(z0(y)).

The operator L̃4 has the form

L̃4 = T 2 + A1(n, x, y)T + A0(n, x, y) + A−1(n, x, y)T−1 + A−2(n, x, y)T−2,

A1(n, x, y) =
(γn+2 − γn)z

′
0(y)

(z0(y)− γn)(z0(y)− γn+2)
,

A0(n, x, y) =
Vn(z0(y)− γn+1)

2 + Vn+1(z0(y)− γn)
2 − F1(z0(y))

(z0(y)− γn)(z0(y)− γn+1)
+ z0(y),

A−1(n, x, y) =
(γn−1 − γn+1)Vnz′0(y)

(z0(y)− γn)2
,

A−2(n, x, y) =
Vn−1Vn(z0(y)− γn−2)(z0(y)− γn+1)

(z0(y)− γn−1)(z0(y)− γn)
.

The operator L̃4 commutes with L̃6 and L̃4, L̃6 are operators of rank two
with the same spectral curve (6). By direct calculation one can check that if

bn = − z′0(y)γ
′
n

(z0(y)− γn)2
,

dn =
F1(γn−1)F1(γn)(z0(y)− γn−2)(z0(y)− γn+1)

(γn−2 − γn−1)(γn−1 − γn)2(γn − γn+1)(z0(y)− γn−1)(z0(y)− γn)
,

and γn(x) satisfies to DKN, then

[L̃4, ∂x − bn(x, y)T−1 − dn(x, y)T−2] = 0.

By direct calculation one also can check that if z0(y) = ℘(y) satisfies (8), γn+4 =
γn, and fn(x, y) has the form as in Theorem 1, then

[L̃4, ∂y − T − fn(x, y)] = 0.



On Rank Two Algebro-Geometric Solutions of an Integrable Chain 195

Moreover L̃6, ∂y−T −fn(x, y), ∂x− bn(x, y)T−1−dn(x, y)T−2 pairwise commute.
Theorem 1 is proved. �
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The Dressing Field Method of
Gauge Symmetry Reduction:
Presentation and Examples

Jeremy Attard

Abstract. This paper is a presentation of a recent method of gauge symmetry
reduction, distinct from the well-known gauge fixing, the bundle reduction
theorem or even the Spontaneous Symmetry Breaking Mechanism (SSBM).
Given a symmetry group G acting on a fiber bundle and its naturally asso-
ciated fields (Ehresmann (or Cartan) connection, curvature, . . . ) there are
situations where it is possible to erase (in whole or in part) the G-action by
just reconfiguring these fields, i.e., by making a mere change of field variables
in order to get new composite fields on which G (or a subgroup) does not act
anymore. Two examples are presented in this paper: the re-interpretation of
the BEGHHK (Higgs) mechanism without calling on a SSBM, and the top-
down construction of Tractor and Twistor bundles and connections in the
framework of conformal Cartan geometry.

Mathematics Subject Classification (2010). Primary 99Z99; Secondary 00A00.

Keywords. Gauge theory, symmetry reduction, spontaneous symmetry break-
ing, Higgs mechanism, twistors.

This paper stems from a joint work of the author and his colleague Jordan François
and his supervisors Serge Lazzarini and Thierry Masson.

1. Introduction

The fundamental interactions are described in the framework of gauge theories, the
geometric content of which is a principal fibre bundle P over a smooth (spacetime)
manifold M , with structure Lie group G, together with associated vector bundles
E = P ×ρ V where ρ is a representation of G on the vector space V. A (classical)
matter field is then represented by a section ξ of E, while the interacting bosons
fields are connections ω on P , and act on matter fields via the associated covariant

c© Springer Nature Switzerland AG 2019
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derivative Dξ = dξ + ρ(ω)ξ. The curvature associated to a connection ω will be
denoted Ω := dω + 1

2 [ω, ω]. These notations will be used throughout the paper.
The central notion of a gauge theory is that of local symmetry. The lat-

ter is implemented by the local action of G, i.e., by the action of the (infinite-
dimensional) gauge group G = {g : M → G}.

Fields ξ and connections ω transform under the action of g ∈ G as ωg =
g−1ωg + g−1dg and ξg = ρ(g)−1ξ. Knowing this, one can then write a physical
theory by choosing a functional integral S[ω, ξ] which has the property to be in-
variant under this action. The theory is said to be gauge invariant. The physical
meaning of this feature is that two fields in the same gauge orbit are physically
equivalent, i.e., are indistinguishable by any physical experiment. The gauge sym-
metry is the translation of an intrinsic mathematical redundancy of our formalism.

The description of fundamental interactions on which modern physics is built
reduces, then, to the choice of symmetry Lie groups. Electroweak and strong inter-
actions are ruled by the Lie group U(1)× SU(2)× SU(3). Regarding the gravita-
tional interaction, the fundamental symmetry group of General Relativity (GR) is
the group of diffeomorphisms of the base manifold. Let us remark that one can also
write GR under the form of a gauge theory1, in which is added a local symmetry
ruled by the local action of the Lorentz group SO(1,3). This can be done in the
framework of Cartan geometry.

Although the symmetry group G is central and unavoidable in the construc-
tion of a gauge theory, one often needs to reduce its action, i.e., passing to a
theory with less symmetry. There can be several reasons for that. For example,
for a quantization purpose: the gauge symmetry group produces infinities in the
path integral over all fields. Also, e.g., in the case of the electroweak sector of
the Standard Model (SM) (G = U(1) × SU(2)), the constraint imposed by the
symmetry group is such that mass terms are not allowed, a priori, in the action.
Thus, since massive particles are observed, one has to find a way to re-write the
same theory but with a smaller symmetry group.

There exist many well-known ways of reducing a symmetry. The simplest is
gauge fixing: since all fields in a given gauge orbit are equivalent, one just can
choose a particular one – which renders the computations easier, for example;
the physical results should be, by definition, independent of the choice of gauge.
Another one, which applies in the case of the electroweak sector, as one shall see,
is the spontaneous symmetry breaking. In this case, the symmetry reduction is
thought as a physical phenomenon, like a phase transition, induced by the fact
that the ground state has less symmetry than the theory of which it is a solution.

The recent method of symmetry reduction presented in this paper is called
the dressing field method. It is a systematic way of finding, if they exist, new fields
which are invariant under the action of the gauge group G or one of its subgroup.
This method turns out to be a mere change of field variables. This change is
performed with the help of a dressing field u which does not, in general, belong to

1In the sense of using a connection on a fibre bundle.
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the gauge group G. Thus, it is neither a gauge transformation nor a gauge fixing:
the new field variables, called composite fields, belong in general to representation
spaces – for the action of the remaining gauge (sub)group – different than the
original variables.

The aim of the present paper is first to present in a nutshell the formalism
of the method and then to give two examples of application. The first one is
the reinterpretation of the spontaneous symmetry breaking in the electroweak
sector of the SM as being a dressing field symmetry reduction. This gives a new
physical interpretation to the BEGHHK (Higgs) mechanism. The second one is
the reconstruction of Twistors (and Tractors), in the field of conformal geometry,
starting from the conformal Cartan geometry and applying the dressing field to
erase a part of the conformal group to end up with the transformations found
in the usual constructions. This offers a new insight into the geometric nature of
these objects. These are examples among many others. The interested reader will
find a more complete and detailed presentation of the dressing field method and
its applications in [4].

2. The dressing field method in a nutshell

The elements of the gauge group G can also be seen as G-valued fields defined on
P . Such an element g is then transformed under the action of another element h as
gh = h−1gh. Let K be a subgroup of G, possibly G itself. A dressing field is a locally
defined G-valued field u on P , which transforms under a gauge transformation
k ∈ K as uk = k−1u. Thus, u /∈ G.

The existence of such a field ensures that the following composite fields :

• ωu := u−1ωu + u−1du,
• Ωu := u−1Ωu,
• ξu := ρ(u)−1u,

are then K-gauge invariant as it can be checked by a straightforward computation.
The fact that these fields are now K-invariant is interpreted saying that actually,
the subgroup K does not act anymore on the fields.

Thus, if one re-writes the theory (i.e., the gauge invariant action S[ω, ξ]) in the
new variables, one gets a theory for which the K-symmetry has been erased. It is a
mere reconfiguration of the fields which redistributes the degrees of freedom of the
theory. The latter are computed as follows: let #TOT, #Φ, #G and #(Θ = 0) be
respectively the total number of degrees of freedom, the degrees of freedom related
to the fields (ω and ξ) of the theory, the dimension of the symmetry group G, and
the number of constraint equations. Then:

#TOT = #Φ–#G–#(Θ = 0).

For example, if the operation of dressing leaves invariant the constraint equa-
tions, in the new variables the theory will have less symmetry and then necessarily
“less fields”, i.e., less degrees of freedom coming from the fields.

Let us present now the two examples announced in the introduction.
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3. The Higgs mechanism of the SM as a dressing field reduction.

In the Standard Model, the electroweak sector is governed by the symmetry group
G = U(1) × SU(2). The SU(2)-symmetry prevents the action from having mass
terms for the weak bosons. Thus, one has to find a way to erase the SU(2)-
symmetry. Let us present first the usual version, as developed by many authors in
the 60s. Then, one presents another interpretation, developed in [1], based on the
dressing field method.

3.1. Usual viewpoint

The idea is to suppose the existence of a complex scalar field Φ : M → C2 embed-
ded in the potential V (Φ) = −μ2Φ†Φ−λ(Φ†Φ)2, with λ > 0, which spontaneously
gets the value Φmin which minimizes the potential V (Φ). This value depends on
the form of the potential, i.e., of the sign of μ2. For μ2 > 0, Φmin = 0 and the
choice Φ = 0 is unique, and viewed as a point in C2, it is still SU(2)-invariant.
However, for μ2 < 0, Φmin �= 0, and Φ has to “make a choice” (hence the term
spontaneous) between a subset of corresponding points in C2. It turns out that
a particular point is no more SU(2)-invariant, and this phenomenon breaks the
symmetry. The scalar field then reads Φ = Φmin + H , and the fluctuation H is
interpreted as a particle, the Higgs particle which has been discovered in the LHC
in 2012. The constant part Φmin couples with other fields, giving them mass.

Thus, the generation of masses in the usual viewpoint is deeply related to the
SU(2)-symmetry breaking. One shall see now that it is actually possible to reinter-
pret the Higgs mechanism without calling on a spontaneous symmetry breaking,
but merely by viewing it as a dressing.

3.2. SU(2)-erasing without symmetry breaking

Let us take the same initial data as in the usual viewpoint. We are going to show
that SU(2) is actually always erasable by a dressing, u, built out of the scalar
field Φ.

The first step is to write the polar decomposition of Φ as an element of C2:

there exists u ∈ SU(2) such that Φ = uη, with η =

(
0
‖Φ‖

)
, with ‖Φ‖2 := Φ†Φ ∈

R+. Due to the gauge transformation of Φ under SU(2) (as a scalar doublet), the
new variable η is invariant under SU(2), and u transforms as: u → β−1u, with
β ∈ SU(2). Thus, u is a dressing field. From this point, we already know that
it is possible to erase the SU(2)-symmetry by dressing, whatever the value of μ2

is. η = u−1Φ is the SU(2)-invariant composite field which takes the place of the
original scalar field.

Now, one can generate masses for the weak fields by making η fluctuating
around its value which minimizes V (η). For μ2 > 0, ηmin = 0 and mass terms
are identically zero. For μ2 < 0, ηmin �= 0, and moreover, there is no more actual
“choice”: η being a positive real number, V (η) is now a mere one-variable real-
valued function. Thus, the term “spontaneously” is no more relevant. Writing
η = ηmin + H leads to the same conclusions as in the usual viewpoint.
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The only difference is in the physical interpretation: here, one has seen that
the generation of masses is totally decorrelated from the symmetry breaking. The
latter is not seen as a physical phenomenon which historically occurred. Rather,
the original SU(2)-symmetry appears to be an artifact due to field variables in
which the theory is originally written, and can be structurally erased by using new
field variables. The dressing field method is a systematic way of finding such new
field variables which simplify the theory.

Let us now present another example for which the dressing field method
applies: the top-down construction of Twistor (and Tractor) bundles and connec-
tions.

4. Twistors as composite fields from conformal Cartan geometry

The whole construction being technical, one only sketches it. The interested reader
is highly recommended to take a look at [2] (Tractors) and [3] (Twistors).

4.1. The usual bottom-up construction

Twistors are for conformal geometry what spinors are for Lorenztian geometry.
These objects are usually obtained following a “bottom-up construction” over a
conformal manifold (M, [g]), where [g] = {λg, λ ∈ C∞(M,R+∗)}, for a Lorentzian
metric g. As in Penrose’s work, for example ([5, 6]), one takes a C2-valued field ωB

which satisfies the Twistor equation: ∇AA′ωB − 1
2δ

B
A∇CA′ωC = 0, and then con-

structs a closed system by introducing another C2-valued field πA′ := i
2∇CA′ωC :

• ∇AA′ωB + i 12δBAπA′ = 0,

• ∇AA′πB′ − iPAA′BB′ωB = 0,

with PAA′BB′ corresponding to the Schouten tensor Pab = − 1
2 (Rab− 1

6Rgab). One
then encompasses the whole construction in the new definitions:

• Zα := (ωB, πA′) ∈ C4,

• ∇T
AA′Zα = 0 with ∇T

AA′ := ∇AA′I4 +
(

0 iδBA
−iPAA′BB′ 0

)
,

where ∇T
AA′ is the Twistor connection and Zα is a C4-valued Twistor. By con-

struction, these equations are conformally invariant (i.e., well defined on (M, [g])).
Yet, the objects like ∇T

AA′ and Zα are conformally covariant, and one can compute
the corresponding transformation laws under a conformal rescaling of the metric.
One can then consider a general Twistor Zα, i.e., an object such that ∇T

AA′Zα

does not necessarily vanish, and which transforms with the same laws, which are:

Ẑα =

(
I2 0

iΥAA′ I2

)
Zα and ∇̂T

AA′Zα =

(
I2 0

iΥAA′ I2

)
∇T

AA′Zα

under gμν → z2gμν , with ΥAA′ corresponding to Υa = ∂aln(z).



204 J. Attard

Twistors are thus sections of a vector bundle with fibre C4, transforming
under the action of a certain group represented by elements of the form(

I2 0
iΥAA′ I2

)
.

One now presents another construction which is based on the dressing field method.

4.2. A top-down construction via dressing field method

A Cartan geometry over a manifold M is a way of implementing local external
symmetries (like Lorentz, projective, . . . ) in the form of usual internal ones. It is
used to write gravitation theories (i.e., theories in which the geometry of the base
manifold is dynamic) in the form of usual gauge theories. From a mathematical
point of view, a Cartan geometry expresses a given geometric structure over M into
the form a principal bundle endowed with a so-called Cartan connection, slightly
different from the usual notion of the Ehresmann connection.

For example, the data of a Lorentzian metric on a manifold M is equivalent
to the data of a torsion-free Cartan connection over a H-principal bundle, H being
the Lorentz group. Following the same idea, a conformal manifold (M, [g]) can be
seen as a normal conformal Cartan connection � over a H-principal bundle P ,
with H defined as follows. Let G := SO(2, 4)/(±I) be the conformal group, and
M0 := S1×S3/Z2 the conformal compactification of Minkowski spacetime, which
is homogeneous with respect to the action of G. The corresponding Lie group H is
then the stabilizer of a point of M0. One takes then the complex C4-representation
of these groups. A Twistor should be a section of the associated vector bundle
P ×H C4, where H is the complex representation of H . It turns out that as it
stands, the structure does not reproduce the Twistor space and connection, for it
does not imply the same transformation law.

To recover it, one has to apply the dressing field method, with dressing fields
built out of the conformal Cartan connection. In doing so, one can erase some
parts of the original structure group H , and end up with composite fields which
transform under a modified transformation law corresponding to the residual ac-
tion of H . Twistors as previously defined then appear from this construction, with
a slight modification: the residual symmetry group does not act (on the composite
fields) through a representation of the Weyl group R∗

+, but via something more
complicated called a 1-α-cocyle, see [3], Section 4.2.2.

The fact is that in our procedure, no arbitrary choice is made: one just takes
the “rigid” normal conformal Cartan geometry and applies to it the dressing field
method. Everything is “already there”. One is just playing with objects which
naturally belong to the geometry. On the contrary, in the usual construction, some
ansatz are taken to simplify the transformation laws, rendering the construction
more arbitrary, even if it remains, of course, totally coherent.

Finally, let us remark that the same thing has been done also for Tractors,
which appear to be merely the real version of Twistors ([2]).
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5. Conclusion

In this presentation of the dressing field method, it has been shown that it can
apply in a quite wide range of different cases. Once one works on a principal
bundle equipped with a connection (of Erhesmann or Cartan type), one can try
to investigate if it is possible to build a dressing field out of the fields to erase the
action of the symmetry group or one of its subgroups. A first hint can be given
by counting how are initially distributed the degrees of freedom, and how/if they
could be distributed differently. Then, if the answer is positive, one can start to
search for a field transforming on the right way to be a dressing field.

More than just giving a way of simplifying the writing of physical theories,
it often offers a new insight into some already known constructions. In the case
of the SM, it gives a natural and new interpretation of the generation of masses.
In the case of Twistors (or even Tractors), it offers a new view of the geometric
nature of these objects and of their underlying structure.
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A Differential Model for B-type
Landau–Ginzburg Theories

Elena Mirela Babalic, Dmitry Doryn, Calin Iuliu Lazaroiu and
Mehdi Tavakol

Abstract. We describe a mathematically rigorous differential model for B-type
open-closed topological Landau–Ginzburg theories defined by a pair (X,W ),
where X is a non-compact Kählerian manifold with holomorphically trivial
canonical line bundle andW is a complex-valued holomorphic function defined
on X and whose critical locus is compact but need not consist of isolated
points. We also show how this construction specializes to the case when X
is Stein and W has finite critical set, in which case one recovers a simpler
mathematical model.

Mathematics Subject Classification (2010). 81T45, 18Axx, 55N30.

Keywords. Topological field theory, category theory, sheaf cohomology.

1. Axiomatics of two-dimensional oriented open-closed TFTs

Classical oriented open-closed topological LG (Landau–Ginzburg) theories of type
B are classical field theories defined on compact oriented Riemann surfaces with
corners and parameterized by pairs (X,W ), where X is a non-compact Kählerian
manifold and W : X → C is a non-constant holomorphic function defined on X and
called the superpotential. Previous work in the Mathematics literature assumed
algebraicity of X and W , being mostly limited to very simple examples such as
X = Cd and generally assumed that the critical points of W are isolated, in which
case topological D-branes can be described by matrix factorizations. We do not
impose such restrictions since there is no Physics reason to do so. This leads to a
much more general description.1

1We use the results, notations and conventions of [1, 2]. In our terminology “off-shell” refers to

an object defined at cochain level while “on-shell” refers to an object defined at cohomology
level. The Physics constructions and arguments behind this work can be found in [3, 4].

c© Springer Nature Switzerland AG 2019
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A non-anomalous quantum oriented two-dimensional open-closed topological
field theory (TFT) can be defined axiomatically [5] as a symmetric monoidal func-
tor from a certain symmetric monoidal category Cobext2 of labeled 2-dimensional
oriented cobordisms with corners to the symmetric monoidal category vects

C
of

finite-dimensional supervector spaces defined over C. The objects of the category
Cobext2 are finite disjoint unions of oriented circles and oriented segments while
the morphisms are oriented cobordisms with corners between such, carrying ap-
propriate labels on boundary components (labels which can be identified with the
topological D-branes). By definition, the closed sector of such a theory is obtained
by restricting the monoidal functor to the subcategory of Cobext2 whose objects are
disjoint unions of circles and whose morphisms are ordinary cobordisms (without
corners). It was shown in [5] that such a functor can be described equivalently by
an algebraic structure which we shall call a TFT datum. We start by describing
certain simpler algebraic structures, which form part of any such datum:

Definition 1. A pre-TFT datum is an ordered triple (H, T , e) consisting of:

1. A finite-dimensional unital and supercommutative superalgebra H defined
over C (called the bulk algebra), whose unit we denote by 1H

2. A Hom-finite Z2-gradedC-linear category T (called the category of topological
D-branes), whose composition of morphisms we denote by ◦ and whose units

we denote by 1a ∈ EndT (a)
def.
= HomT (a, a) for all objects a ∈ ObT

3. A family e = (ea)a∈Ob T consisting of even C-linear bulk-boundary maps ea :
H → HomT (a, a) defined for each object a of T

such that the following conditions are satisfied:

• For any object a ∈ Ob T , the map ea is a unital morphism of C-superalgebras
from H to the endomorphism algebra (EndT (a), ◦)
• For any two objects a, b ∈ ObT and for any Z2-homogeneous elements h ∈ H
and t ∈ HomT (a, b), we have: eb(h) ◦ t = (−1)degh deg tt ◦ ea(h) .

Definition 2. A Calabi–Yau supercategory of parity μ is a pair (T , tr), where:

1. T is a Z2-graded and C-linear Hom-finite category
2. tr = (tra)a∈Ob T is a family of C-linear maps tra : EndT (a) → C of Z2-

degree μ

such that the following conditions are satisfied:

• For any two objects a, b ∈ Ob T , the C-bilinear pairing 〈·,·〉a,b :HomT (a, b)×
HomT (b, a)→ C defined through:

〈t1, t2〉a,b def.
= trb(t1 ◦ t2) , ∀t1 ∈ HomT (a, b) , ∀t2 ∈ HomT (b, a)

is non-degenerate
• For any a, b ∈ Ob T and any Z2-homogeneous elements t1 ∈ HomT (a, b) and

t2 ∈ HomT (b, a), we have:

〈t1, t2〉a,b = (−1)deg t1 deg t2〈t2, t1〉b,a .

E.M. Babalic, D. Doryn, C.I. Lazaroiu and M. Tavakol
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If only the second condition above is satisfied, we say that (T , tr) is a pre-Calabi–
Yau supercategory of parity μ.

Definition 3. A TFT datum of parity μ is a system (H, T , e,Tr, tr), where:

1. (H, T , e) is a pre-TFT datum
2. Tr : H → C is an even C-linear map (called the bulk trace)
3. tr = (tra)a∈Ob T is a family of C-linear maps tra : EndT (a)→ C of Z2-degree

μ (called the boundary traces)

such that the following conditions are satisfied:

• (H,Tr) is a supercommutative Frobenius superalgebra. This means that the
pairing induced by Tr on H is non-degenerate
• (T , tr) is a Calabi–Yau supercategory of parity μ
• The following condition (known as the topological Cardy constraint) is satis-
fied for all a, b ∈ Ob T :

Tr(fa(t1)fb(t2)) = str(Φab(t1, t2)) , ∀t1 ∈ EndT (a) , ∀t2 ∈ EndT (b) .

Here, str denotes the supertrace on the finite-dimensional Z2-graded vector
space EndC(HomT (a, b)) and:

– The C-linear boundary-bulk map fa : EndT (a) → H of Z2-degree μ is
defined as the adjoint of the bulk-boundary map ea : H → EndT (a)
with respect to the non-degenerate traces Tr and tra:

Tr(hfa(t)) = tra(ea(h) ◦ t) , ∀h ∈ H , ∀t ∈ EndT (a)

– For any a, b ∈ Ob T and any t1 ∈ EndT (a) and t2 ∈ EndT (b), the
C-linear map Φab(t1, t2) : HomT (a, b)→ HomT (a, b) is defined through:

Φab(t1, t2)(t)
def.
= t2 ◦ t ◦ t1 , ∀t ∈ HomT (a, b) .

2. B-type open-closed Landau–Ginzburg theories

Definition 4. A Landau–Ginzburg pair of dimension d is a pair (X,W ) where:

1. X is a non-compact Kählerian manifold of complex dimension d which is

Calabi–Yau in the sense that the canonical line bundle KX
def.
= ∧dT ∗X is

holomorphically trivial.
2. W : X → C is a non-constant complex-valued holomorphic function.

The signature μ(X,W ) of a Landau–Ginzburg pair (X,W ) is defined as the mod
2 reduction2 of the complex dimension d of X .

The critical set of W is defined as the set of critical points of W :

ZW
def.
= {p ∈ X |(∂W )(p) = 0} .

2We denote by k̂ ∈ Z2 the mod 2 reduction of any integer k ∈ Z.
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2.1. The off-shell bulk algebra

Let (X,W ) be a Landau–Ginzburg pair with dimC X = d. The space of polyvector-
valued forms is defined through:

PV(X) =
0⊕

i=−d

d⊕
j=0

PVi,j(X) =
0⊕

i=−d

d⊕
j=0

Aj(X,∧|i|TX) ,

where Aj(X,∧|i|TX) ≡ Ω0,j(X,∧|i|TX). The twisted Dolbeault differential in-

duced by W is defined through δW
def.
= ∂ + ιW : PV(X) → PV(X), where ∂

is the Dolbeault operator of ∧TX (which satisfies ∂(PVi,j(X)) ⊂ PVi,j+1(X)),

while ιW
def.
= −i(∂W )� is the contraction with the holomorphic 1-form −i∂W ∈

Γ(X,T ∗X) (which satisfies ιW (PVi,j(X)) ⊂ PVi+1,j(X)). Here i denotes the

imaginary unit. Notice that (PV(X),∂, ιW ) is a bicomplex since ∂
2
= ι2W =

∂ιW + ιW∂ = 0.

Definition 5. The twisted Dolbeault algebra of polyvector-valued forms of the
LG pair (X,W ) is the supercommutative Z-graded O(X)-linear dg-algebra
(PV(X), δW ), where PV(X) is endowed with the total Z-grading.

Definition 6. The cohomological twisted Dolbeault algebra of (X,W ) is the super-
commutative Z-graded O(X)-linear algebra defined through:

HPV(X,W ) = H(PV(X), δW ) .

An analytic model for the off-shell bulk algebra

Definition 7. The sheaf Koszul complex of W is the following complex of locally-
free sheaves of OX -modules3:

(QW ) : 0→ ∧dTX
ιW→ ∧d−1TX

ιW→ · · · ιW→ OX → 0 ,

where OX sits in degree zero and we identify the exterior power ∧kTX with its
locally-free sheaf of holomorphic sections.

Proposition 8. Let H(QW ) denote the hypercohomology of the Koszul complex QW .
There exists a natural isomorphism of Z-graded O(X)-modules:

HPV(X,W ) ∼=O(X) H(QW ) ,

where HPV(X,W ) is endowed with the total Z-grading. Thus:

Hk(PV(X), δW ) ∼=O(X) Hk(QW ), ∀k ∈ {−d, . . . , d} .

Moreover, we have Hk(QW ) =
⊕

i+j=k E
i,j
∞ , where (Ei,j

r ,dr)r≥0 is a spectral se-
quence which starts with:

Ei,j
0 := PVi,j(X) = Aj(X,∧|i|TX), d0 = ∂ , (i = −d, . . . , 0, j = 0, . . . , d) .

3We denote by OX the sheaf of holomorphic functions on X and by O(X) = Γ(X,OX) the ring

of holomorphic functions on X. Here Γ denotes taking holomorphic sections, while Γ∞ denotes
taking smooth sections.

E.M. Babalic, D. Doryn, C.I. Lazaroiu and M. Tavakol



A Differential Model for B-type LG Theories 211

2.2. The category of topological D-branes

Definition 9. A holomorphic vector superbundle on X is a Z2-graded holomorphic
vector bundle defined on X , i.e., a complex holomorphic vector bundle E endowed

with a direct sum decomposition E = E0̂⊕E1̂, where E0̂ and E1̂ are holomorphic
sub-bundles of E.

Definition 10. A holomorphic factorization of W is a pair a = (E,D), where

E = E0̂⊕E1̂ is a holomorphic vector superbundle on X and D ∈ Γ(X,End1̂(E)) is a

holomorphic section of the bundle End1̂(E)=Hom(E0̂,E1̂)⊕Hom(E1̂,E0̂) ⊂ End(E)
which satisfies the condition D2 = W idE .

2.3. The full TFT data

Definition 11. The twisted Dolbeault category of holomorphic factorizations of
(X,W ) is the Z2-graded O(X)-linear dg-category DF(X,W ) defined as follows:

• The objects of DF(X,W ) are the holomorphic factorizations of W
• Given two holomorphic factorizations a1 = (E1, D1) and a2 = (E2, D2), the

Hom spaces:

HomDF(X,W )(a1, a2)
def.
= A(X,Hom(E1, E2))

are endowed with the total Z2-grading and with the twisted differentials

δa1,a2

def.
= ∂a1,a2 + da1,a2 , where ∂a1,a2 is the Dolbeault differential of

Hom(E1, E2), while da1,a2 is the defect differential:

da1,a2(ρ⊗ f) = (−1)rkρρ⊗ (D2 ◦ f)− (−1)rk ρ+σ(f)ρ⊗ (f ◦D1)

• The composition of morphisms ◦ :A(X,Hom(E2,E3)) × A(X,Hom(E1,E2))
→ A(X,Hom(E1, E3)) is determined uniquely by the condition:

(ρ⊗ f) ◦ (η ⊗ g) = (−1)σ(f) rk η(ρ ∧ η)⊗ (f ◦ g)

for all pure rank forms ρ, η ∈ A(X) and all pure Z2-degree elements f ∈
Γ∞(X,Hom(E2, E3)) and g ∈ Γ∞(X,Hom(E1, E2)), where σ(f) is the degree
of f .

We have (omitting indices): δ2 = ∂
2
= d2 = ∂ ◦ d+ d ◦ ∂ = 0 .

Definition 12. The cohomological twisted Dolbeault category of holomorphic fac-
torizations of (X,W ) is the Z2-graded O(X)-linear category defined as the total
cohomology category of DF(X,W ):

HDF(X,W )
def.
= H(DF(X,W )) .

Theorem 13. Suppose that the critical set ZW is compact. Then the cohomol-
ogy algebra HPV(X,W ) of (PV(X), δW ) is finite-dimensional over C while the
total cohomology category HDF(X,W ) of DF(X,W ) is Hom-finite over C. More-
over, one can define4 a bulk trace Tr : HPV(X,W )→C, boundary traces tra1,a2 :

4Explicit expressions for Tr, tr, e can be found in [1].
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HomHPV(X,W )(a1, a2)→C and bulk-boundary maps ea:

HPV(X,W )→ EndHDF(X,W )(a)

such that the system:

(HPV(X,W ),HDF(X,W ),Tr, tr, e)

obeys the defining properties of a TFT datum except for non-degeneracy of the bulk
and boundary traces and for the topological Cardy constraint.

Conjecture 14. Suppose that the critical set ZW is compact. Then the quintuplet
(HPV(X,W ),HDF(X,W ),Tr, tr, e) is a TFT datum and hence defines a quantum
open-closed TFT.

3. B-type Landau–Ginzburg theories on Stein manifolds

When X is a Stein manifold, Cartan’s theorem B states that the higher sheaf
cohomology Hi(X,F) vanishes when i > 0 for any coherent analytic sheaf F .

3.1. An analytic model for the on-shell bulk algebra

Theorem 15. Suppose that X is Stein. Then the spectral sequence defined previously
collapses at the second page E2 and HPV(X,W ) is concentrated in non-positive

degrees. For all k = −d, . . . , 0, the O(X)-module HPVk(X,W ) is isomorphic with
the cohomology at position k of the following sequence of finitely-generated projec-
tive O(X)-modules:

(PW ) : 0→ H0(X,∧dTX)
ιW→ · · · ιW→ H0(X,TX)

ιW→ O(X)→ 0 ,

where O(X) sits in position zero.

Remark 16. Assume that X is Stein. Then the critical set ZW is compact iff it is
finite, which implies dimC ZW = 0 .

Let JW def.
= im (ιW :TX → OX) be the critical sheaf of W , JacW

def.
= OX/JW

be the Jacobi sheaf of W and Jac(X,W )
def.
= Γ(X, JacW ) be the Jacobi algebra of

(X,W ) .

Proposition 17. Suppose that X is Stein and dimC ZW = 0. Then HPVk(X) = 0
for k �= 0 and there exists a natural isomorphism of O(X)-modules:

HPV0(X,W ) �O(X) Jac(X,W ) .
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3.2. An analytic model for the category of topological D-branes

Definition 18. The holomorphic dg-category of holomorphic factorizations of W is
the Z2-graded O(X)-linear dg-category F(X,W ) defined as follows:

• The objects are the holomorphic factorizations of W
• Given two holomorphic factorizations a1 = (E1, D1), a2 = (E2, D2), let:

HomF(X,W )(a1, a2) = Γ(X,Hom(E1, E2))

be the space of morphisms between such, endowed with the Z2-grading:

Homκ
F(X,W )(a1, a2) = Γ(X,Homκ(E1, E2)) , ∀κ ∈ Z2

and with the differentials da1,a2 determined uniquely by the condition:

da1,a2(f)=D2◦f−(−1)κf ◦D1 , ∀f ∈ Γ(X,Homκ(E1,E2)) , ∀κ ∈ Z2

• The composition of morphisms is the obvious one.

Theorem 19. Suppose that X is Stein. Then HDF(X,W ) is equivalent with the

total cohomology category HF(X,W )
def.
= H(F(X,W )) of F(X,W ) .

Definition 20. A projective analytic factorization of W is a pair (P,D), where P

is a finitely-generated projective O(X)-supermodule and D ∈ End1̂O(X)(P ) is an

odd endomorphism of P such that D2 = W idP .

Definition 21. The dg-category PF(X,W ) of projective analytic factorizations of
W is the Z2-graded O(X)-linear dg-category defined as follows:

• The objects are the projective analytic factorizations of W
• Given two projective analytic factorizations (P1, D1) and (P2, D2) of W , set

HomPF(X,W )((P1, D1), (P2, D2))
def.
= HomO(X)(P1, P2) endowed with the ob-

vious Z2-grading and with the O(X)-linear odd differential

d := d(P1,D1),(P2,D2)

determined uniquely by the condition:

d(f) = D2 ◦ f − (−1)deg ff ◦D1 , ∀f ∈ HomO(X)(P1, P2)

• The composition of morphisms is the obvious one.

Definition 22. The cohomological category HPF(X,W ) of analytic projective fac-

torizations of W is the total cohomology category HPF(X,W )
def.
= H(PF(X,W )),

which is a Z2-graded O(X)-linear category.

Theorem 23. Suppose that X is Stein. Then HDF(X,W ) and HPF(X,W ) are
equivalent as O(X)-linear Z2-graded categories.

When X is Stein and ZW is compact, the category of topological D-branes of the
B-type Landau–Ginzburg theory can be identified with HPF(X,W ).
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Abstract. In the paper we define the Dirac type operators on anchored vector
bundles given by a skew-symmetric 2-tensor. The Weyl module structure is
defined in the case of the symmetric bundle. The decomposition of the sym-
metric Dirac operator into the sum of the symmetric covariant derivative and
symmetric coderivative is presented.
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1. Introduction and basic notions

An anchored vector bundle over a manifold M we call a vector bundle A over M
equipped with a homomorphism of vector bundles ρA : A→ TM over the identity,
called an anchor (see [9, 10]). In particular, any Lie algebroid in the sense of
Pradines [11] is an anchored vector bundle. Lie algebroids were introduced by
Pradines as infinitesimal objects associated with Lie groupoids. A Lie algebroid
over a manifold M is actually an anchored vector bundle A with an anchor ρA
equipped with a real Lie algebra structure [·, ·] in the module Γ(A) of sections of
A associated with the anchor by the following Leibniz identity:

[a, f · b] = f · [a, b] + (ρA ◦ a) (f) · b
for a, b ∈ Γ(A) and f ∈ C∞(M). For general theory of Lie algebroids we refer
to [7, 8].

The main purpose of the work is to define some the Dirac type operator Ds

induced by a skew-symmetric 2-tensor for an anchored vector bundle equipped
with two connections. The bundles considered here are equipped with the Weyl
module structure which comes from a skew-symmetric 2-tensor on A∗. In particular
case, it is considered the symmetric covariant derivative ds which is defined as the

c© Springer Nature Switzerland AG 2019
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symmetrization of the connection up to a constant. The operator ds can be written
in the Koszul form using the symmetric product for a given A-connection in A.
We show that, as in the classical case (cf. [2, 3]), Ds is the sum of the symmetric
derivative ds and the symmetric coderivative ds∗. The problem of ellipticity of Ds

is also mentioned.

Let us first introduce the concept of linear connections associated with the
given anchored vector bundle.

Now let A be an anchored vector bundle over a manifold M with an anchor
ρA and let E a vector bundle over M .

We denote by A(E) the Lie algebroid of the vector bundle E (cf. [7, 8]).
The module CDO(E) of sections of A(E) is the space of all R-linear operators
l : Γ(E) → Γ(E) such that there is (unique) X ∈ Γ(TM) such that l(f · ν) =
f · l(ν) + X(f) · ν for f ∈ C∞(M), ν ∈ Γ(E). By a linear A-connection in the
vector bundle E we mean C∞(M)-linear operator of modules

∇ : Γ(A) −→ CDO(E)

commuting (on the level of sections) with anchors. This definition extends usual
notion of linear connection in a vector bundle in the case where A is the tangent
bundle to M .

Denote the vector bundles
⊗k

A∗ and
⊗

A∗ by A∗⊗k and by A∗⊗, respec-

tively. Take two A-connections

∇ : Γ(A) −→ CDO(E)

and

∇A : Γ(A) −→ CDO(A).

Observe that ∇ and ∇A define in a natural way the A-connection ∇⊗∇A in the
bundle A∗ ⊗ E. Next, by the Leibniz rule we extend this connection to the whole
tensor bundle A∗⊗ ⊗ E. The extended connection will be denoted by the same
symbol ∇. Equivalently,

(∇aζ)(a1, . . . , ak) = ∇a(ζ(a1, . . . , ak))−
k∑

j=1

ζ(a1, . . . ,∇A
a aj , . . . , ak)

for ζ ∈ Γ(A∗⊗k ⊗ E), a, a1, . . . , ak ∈ Γ(A).

The connection ∇ can be treated as the operator

∇ : Γ(A∗⊗k ⊗ E)→ Γ(A∗⊗k+1 ⊗ E)

by the convention

(∇ζ) (a1, a2, . . . , ak+1) = (∇a1ζ) (a2, . . . , ak+1) ,

ζ ∈ Γ(A∗⊗k ⊗ E), a, a1, . . . , ak ∈ Γ(A).
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2. The notion of the Dirac type operator determined by
a skew-symmetric tensor

Let

π : Γ(A∗)× Γ(A∗)→ C∞(M)

be a skew-symmetric bilinear form and let

� : A∗ −→ A

be the homomorphism of the dual bundles determined by the contraction with
respect to π:

�(ω) = iωπ for ω ∈ Γ(A∗).

Observe that � is an isomorphism if and only if π is non degenerate.

Define the bundle of Weyl algebras with respect to π to be

W (A∗) = A∗⊗/I

where

I = 〈a∗ ⊗ b∗ − b∗ ⊗ a∗ + 2π(a∗, b∗) : a∗, b∗ ∈ A∗〉
(cf. [5]).

Let E be any vector bundle over M and let

W (ω) : E −→ E, ω ∈ Γ(A∗)

be the Weyl multiplication in the Weyl algebra – i.e.,

W (ω) W (η)−W (η) W (ω) = −2π(ω, η) for ω, η ∈ Γ(A∗).

In this way, we have the Weyl module:

W : W (A∗)⊗ E −→ E, W (ω, e) = W (ω)e.

Define the Dirac operator Ds as the composition

Ds = W ◦ ∇ : Γ(E) −→ Γ(E).

Let (e1, . . . , en) and (α1, . . . , αn) be local dual frames of A and A∗, respectively.
Since (cf. [1])

∇ζ =
n∑

j=1

αj ⊗∇ej ζ

for ζ ∈ Γ(A∗⊗k ⊗ E), the Dirac operator Ds is given by

Dsν =

n∑
j=1

W (αj) ∇ejν (1)

for ν ∈ Γ(E).
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3. The Weyl module of the bundle of symmetric tensors
with values in a vector bundle and the Dirac operator
on symmetric tensors

The main subject of this section is the Weyl module of the bundle of symmetric
tensors with vector bundle values. Here the Weyl action is a linear combination of
multiplication and substitution operators restricted to the symmetric bundle.

Let F be any vector bundle over M . Let S k(A,F ) denote the module of
sections of the tensor product E = SkA∗⊗F of the kth symmetric power SkA∗ of
A∗ and the bundle F , SA∗ =

⊕
k≥0

SkA∗,

S (A,F ) =
⊕
k≥0

S k(A,F ),

and let
S (A) =

⊕
k≥0

S k(A) =
⊕
k≥0

Γ(SkA∗).

Moreover, let
μ(ω) = ω ' (·)

be the operator of symmetric multiplication by ω ∈ S (A) and let

ia : S k(A,F )→ S k−1(A,F )

denote the substitution operator on S (A,F ) with respect to the first argument.
Define a family {Wt}t∈R

of operators

Wt : W (A∗)⊗S (A,F )→ S (A,F )

by the formulas:
Wt(ω, ζ) = μ(ω)ζ + t · i�(ω)ζ

for ω ∈ Γ(A∗) and ζ ∈ S k(A,F ).
By the following identities on S (A,F ):

ia ib = ib ia,

μ(ω) μ(η) = μ(η) μ(ω),

μ(ω) ia − ia μ(ω) = ia(ω)

for ω, η ∈ Γ(A∗), a, b ∈ Γ(A), we obtain the following useful

Lemma 1.

Wt(ω, ·) Ws(η, ·) −Ws(η, ·) Wt(ω, ·) = (t + s) π(ω, η) idS (A,F )

for any t, s ∈ R, ω, η ∈ Γ(A∗).

Consider two particular operators

W− = W−1, W+ = W+1

and use the notation

W−(η) = W−(η, ·), W+(η) = W+(η, ·) for η ∈ Γ(A∗).
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Then, for ω, η ∈ Γ(A∗) we have

W−(ω) W−(η) −W−(η) W−(ω) = −2 π(ω, η) idS (A,F ),

W+(ω) W+(η)−W+(η) W+(ω) = 2 π(ω, η) idS (A,F ),

W−(ω) W+(η) = W+(η) W−(ω).

The action

W− : W (A∗)⊗ (S(A∗)⊗ F ) −→ S(A∗)⊗ F

defines a Weyl module structure on S(A∗)⊗ F .

Now, let

∇ : Γ(A) −→ CDO(F )

and

∇A : Γ(A) −→ CDO(A)

be two A-connections, which tensor product we extend by the Leibniz rule to the
A-connection ∇ in the tensor bundle S(A∗)⊗ F of the symmetric bundle and F .

In view of (1), the local formula for the Dirac operator Ds determined by
W− and ∇ is of the form

Dsξ =
n∑

j=1

(
αj '∇ej ξ − i�(αj)∇ej ξ

)
for ξ ∈ Γ(SkA∗⊗F ), and where (e1, . . . , en) and (α1, . . . , αn) are local dual frames
of A and A∗, respectively.

4. The Dirac symmetric operator, the symmetric derivative
and coderivative

We will describe the Dirac type operator Ds in the language of the symmetric
covariant derivative and the symmetric coderivative.

In the module S (A,F ) we define the operator ds of degree +1 by

ds : S k(A,F ) −→ S k+1(A,F ),

(dsξ) (a1, . . . , ak+1) =
k+1∑
j=1

(
∇ajξ

)
(a1, . . . , âj , . . . , ak+1)

for ξ ∈ S k(A,F ), a1, . . . , ak+1 ∈ Γ (A). The operator ds is called the symmetric
covariant derivative for ∇. One can see that

ds = (k + 1) · (Sym ◦∇)|S k(A,F ),

where Sym is the symmetrizer defined by

(Sym ζ) (a1, . . . , ak) =
1

k!

∑
σ∈Sk

ζ(aσ(1), . . . , aσ(k)).
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The operator ds in the case of tangent bundles was introduced by Sampson in
[14], where a symmetric version of Chern’s theorem is considered. One can check
that ds can be described by the following Koszul type form:

(dsξ) (a1, . . . , ak+1) =
k+1∑
j=1

∇aj (ξ (a1, . . . , âj , . . . , ak+1))

−
∑
i<j

ξ (〈ai : aj〉 , a1, . . . , âi, . . . , âj , . . . , ak+1) ,

ξ ∈ S k(A,F ), a1, . . . , ak+1 ∈ Γ (A), and where

〈a : b〉 = ∇A
a b +∇A

b a

for a, b ∈ Γ (A). The symmetric R-bilinear form

〈· : ·〉 : Γ (A)× Γ (A) −→ Γ (A) , 〈a : b〉 = ∇A
a b +∇A

b a

is called the symmetric product defined by the connection ∇A. The symmetric
product in the case A = TM was first introduced by Crouch in [4]. Observe that

〈a : f · b〉 = f · 〈a : b〉+ (�A ◦ a) (f) · b
and

〈f · a : b〉 = f · 〈a : b〉+ (�A ◦ b) (f) · a
for a, b ∈ Γ (A) and f ∈ C∞(M). Therefore, 〈· : ·〉 is a symmetric bracket in Γ(A)
satisfying the Leibniz kind rules.

Lewis in [6] gives some interesting geometrical interpretation of the symmet-
ric product associated with the geodesically invariant property of a distribution. A
smooth distribution D on a manifold M with an affine connection ∇TM is geodesi-
cally invariant if for every geodesic c : I → M with the property c′(s) ∈ Dc(s)

for some s ∈ I, we have c′(s) ∈ Dc(s) for every s ∈ I. Lewis proved in [6] that

a distribution D on a manifold M equipped with an affine connection ∇TM is
geodesically invariant if and only if the symmetric product induced by ∇TM is
closed under D.

The symmetric bracket plays an important rule in research under mechanical
control systems. Respondek and Ricardo in [12, 13] examine mechanical control
systems with the geodesic accessibility property, i.e., mechanical control systems
for which the smallest distribution on the configuration manifold, containing the
input vector fields and closed under the symmetric product, is of full rank at each
point. They characterized the local mechanical state equivalence of two geodesi-
cally accessible mechanical systems using some families of structure functions de-
fined via the symmetric bracket.

By the symmetric coderivative ds∗ we mean the restriction of the coderivative
operator given in A∗⊗ ⊗ F to the space of symmetric tensors, i.e.,

ds∗ = ∇∗|S k(A,F ) : S k(A,F ) −→ S k−1(A,F ),

where

∇∗ : Γ(A∗⊗k ⊗ F ) −→ Γ(A∗⊗k−1 ⊗ F )
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is given by

∇∗ζ = − tr (∇ζ) = −
n∑

j=1

i�(αj)(∇ej ζ).

Since one can prove that

ds =
n∑

j=1

μ (αj) ◦ ∇ej

we see that the symmetric Dirac operator Ds is equal to

Ds=
n∑

j=1

W−(αj) ◦ ∇ej =
n∑

j=1

(
μ (αj)− i�(αj)

)
◦ ∇ej = ds + ds∗.

Let A be transitive Lie algebroid, i.e., the anchor ρA is surjective, x ∈ M ,
ν ∈ SkA∗

x ⊗ Fx, ξ ∈ S k(A,F ) and ω ∈ A∗
x such that ω = (dAf)(x) for some

f ∈ C∞(M) satisfying f(x) = 0 and ξ(x) = ν. Since symbols of ds and ds∗ are
respectively given by

σds(ω, ν) = ds(fξ)(x) =
(
dAf ' ξ + fdsξ

)
(x) = ω ' ν,

σds∗(ω, ν) = ds∗(fξ)(x) =
(
−i#(dAf)ξ

)
(x) = −i#(ω)ν,

we conclude that the symbol of Ds is the Weyl multiplication by ω:

σDs(ω, ν) = W−(ω)ν.

Therefore Ds is of elliptic type.
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Surfaces Which Behave Like Vortex Lines

Marián Fecko

Abstract. In general setting of theory of integral invariants, due to Poincaré
and Cartan, one can find a d-dimensional integrable distribution (given by a
possibly higher-rank form) whose integral surfaces behave like vortex lines:
they move with (abstract) fluid. Moreover, in a special case they reduce to
true vortex lines and, in this case, we get the celebrated Helmholtz theorem.
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1. Introduction

In hydrodynamics, vortex lines are field lines of the vorticity vector field ω, which
is curl of velocity field v.

A classical theorem due to Helmholtz says that, in the case of ideal and
barotropic fluid that is only subject to conservative forces, vortex lines “move
with the fluid” (see Ref. [1] and Refs. [2, 3]; one also says that the lines are “frozen
into the fluid” or that “vortex lines are material lines”).

Hydrodynamics of ideal fluid may be viewed, albeit it is not quite standard, as
an application of the theory of integral invariants due to Poincaré and Cartan (see
Refs. [4, 5], or, in modern presentation, Refs. [6–8]). Then, the original Poincaré
version of the theory refers to the stationary (time-independent) flow, described
by the stationary Euler equation, whereas Cartan’s extension embodies the full,
possibly time-dependent, situation.

In this picture, one can base a proof of the Helmholtz theorem upon the
concept of a distribution. Namely, first, vortex lines are identified with integral
surfaces of a 1-dimensional integrable distribution, defined in terms of the appro-
priate 2-form. Second, the structure of the (Euler) equation of motion immediately
reveals that the 2-form is Lie-invariant w.r.t. the flow of the fluid. So, third,
the corresponding distribution is invariant as well and, consequently, its integral

c© Springer Nature Switzerland AG 2019
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surfaces are invariant w.r.t. the flow of the fluid. And this is exactly what the
Helmholtz statement says.

Now, it turns out that the same reasoning may be repeated within the gen-
eral integral invariant setting (so beyond even the “n-dimensional Riemannian
hydrodynamics”, discussed, e.g., in [9]). What differs is that we have an inte-
grable distribution based upon a possibly higher-degree Lie-invariant differential
form, there. In particular, the distribution may be higher-dimensional and, con-
sequently, its integral surfaces become then higher-dimensional, too. Nevertheless,
they still obey the Helmholtz-like rule of “moving with the fluid” (i.e., the abstract
flow in the general theory translates the integral surfaces into one another).

2. Integral invariants – Poincaré and Cartan

Before considering the main subject of the paper, let us briefly recall key con-
cepts and state main results of Poincaré and Cartan on general theory of integral
invariants. See Ref. [8] in this volume or, for a more detailed account, Ref. [7].

2.1. Poincaré integral invariants

Following Poincaré, one starts from a manifold M endowed with dynamics (time
evolution) given by a vector field v (via its flow)

(M,Φt ↔ v) phase space (1)

Now, consider integrals of a k-form α over various k-chains (k-dimensional surfaces)
c on M . Compare the value of the integral of α over the original c and the integral
over Φt(c). If, for any chain c, the two integrals are equal, we call it (absolute)
integral invariant:∫

Φt(c)

α =

∫
c

α ⇔
∫
c

α is integral invariant. (2)

If we only restrict to k-cycles (i.e., chains whose boundaries vanish, ∂c = 0), we
speak of relative integral invariants. It turns out that one can recognize the relative
invariant by the differential equation

ivdα = dβ, (3)

i.e., the following statement is true

ivdα = dβ ⇔
∮
c

α = relative invariant. (4)

2.2. Cartan integral invariants

Cartan proposed to study dynamics on M × R (extended phase space; time co-
ordinate is added) rather than on M . Analogs of the forms α and β (from the
Poincaré theory) are combined into a single k-form

σ = α̂ + dt ∧ β̂. (5)
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Here, α̂ and β̂ are the most general spatial forms on M ×R. (In coordinate presen-
tation, they do not contain the dt factor. They may be, however, time-dependent,
i.e., their components may depend on time.) In a similar way, the dynamical vector
field v sits in the combination

ξ = ∂t + v. (6)

Then, according to Cartan, one has to replace the crucial equation of Poincaré,
viz. Eq. (3), with

iξdσ = 0. (7)

And the main statement of Poincaré, viz. Eq. (4), takes the form

iξdσ = 0 ⇔
∮
c

σ = relative invariant. (8)

It turns out that the proof of (8) does not use any details of the decomposition.
The structure of equation (7) is all one needs. One can check that

iξdσ = 0 ⇔ L∂t α̂ + ivd̂α̂ = d̂β̂ (9)

(the term L∂t α̂ is new w.r.t. (3)). Here d̂ denotes the spatial exterior derivative.
(In coordinate presentation – as if the variable t in components was constant.) So,
the equation

L∂t α̂ + ivd̂α̂ = d̂β̂ (10)

is the equation that (possibly) time-dependent forms α̂ and β̂ are to satisfy in
order that the integral of σ is to be a relative integral invariant.

3. Surfaces and their motion

3.1. Stationary case

Return back to equation (3). Application of d on both sides results in

Lv(dα) = 0, i.e., Φ∗
t (dα) = dα Φt ↔ v (11)

So, the form dα is invariant w.r.t. the flow Φt.
Let us define a distribution D in terms of dα:

D := {vectors w such that iwdα = 0 holds}. (12)

[Motivation for this definition comes from hydrodynamics. Namely, see Ref. [8] in
this volume, integral submanifolds of this distribution for the particular choice α =
ṽ ≡ g(v, · ), where v is the velocity field in hydrodynamics, are one-dimensional
and coincide with vortex lines.]

Due to the Frobenius criterion the distribution is integrable. Indeed, let
w1, w2 ∈ D, i.e., iw1dα = 0 and iw2dα = 0. Then, because of the identity

i[w1,w2] = [Lw1 , iw2 ] ≡ Lw1 iw2 − iw2Lw1 (13)

(see, e.g., Ref. [11]) plus Cartan’s formula

iud + diu = Lu (14)
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one immediately sees that

i[w1,w2]dα = 0, (15)

i.e., [w1, w2] ∈ D, too. So D is integrable. Since the distribution D is invariant w.r.t.
Φt ↔ v, its integral surfaces are invariant w.r.t. Φt ↔ v, too. But this means that
a “Helmholtz-like” theorem is true: whenever we encounter the general context
of the Poincaré integral invariants, the integral surfaces of the distribution D are
frozen into “the fluid”.

3.2. General, non-stationary case

Now, a question arises whether or not a similar statement is true in a much more
complex, time-dependent, situation. The answer turns out to be still positive, al-
though the proof is more involved.

Let us start with the application of d on (7). It results in

Lξ(dσ) = 0, i.e., Φ∗
τ (dσ) = dσ Φτ ↔ ξ. (16)

So, dσ is invariant w.r.t. the flow.
Define the distribution D (on M × R, now) in terms of annihilation of as

many as two exact forms:

D ↔ iwdσ = 0 = iwdt. (17)

So, we are interested in spatial vectors (iwdt = 0) which, in addition, annihilate
dσ.

The new distribution D is integrable as well. The Frobenius criterion shows
this easily, again: We assume

iw1dσ = 0 = iw1dt iw2dσ = 0 = iw2dt (18)

and, using (13) and (14), we see that

i[w1,w2]dσ = 0 = i[w1,w2]dt. (19)

So, our new distribution D (on M × R) defined via annihilation of dσ and dt is
integrable and invariant w.r.t. the flow. Consequently, its integral submanifolds
(surfaces) are frozen into “the fluid”.

What is not yet clear, however, is the exact relation of this result to the
result of the time-independent case from Section 3.1. (Recall that the distribution
considered there was spanned by vectors which annihilate dα rather than dσ.)

It is here where Eq. (7) comes to rescue again, now in a more subtle way.
Indeed, applying d on (5) and then using the decomposed version (10) of (7), we
can write

dσ = d̂α̂ + dt ∧ (L∂t α̂ + d̂β̂) always (20)

= d̂α̂ + dt ∧ (−ivd̂α̂) on solutions . (21)

Now, let w be arbitrary spatial vector. Denote, for a while, iwd̂α̂ =: b̂ (it is a spatial
1-form). Then, from (21),

iwdσ = b̂− dt ∧ iv b̂ (22)
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from which immediately

iw(dσ) = 0 ⇔ b̂ ≡ iwd̂α̂ = 0. (23)

This says that we can, alternatively, describe the distribution D as consisting of

those spatial vectors which, in addition, annihilate d̂α̂ (rather than dσ, as it is
expressed in the definition (17)). But this means that we speak of “the same”
distribution as in (12). (The language of σ is more advantageous for proving in-
variance of the distribution w.r.t. the flow as well as for its integrability, whereas

the “decomposed” language of α̂ and β̂ is needed for identification of the distribu-
tion as the one from the time-independent case.) So, the Helmholtz-like statement
from Section 3.1 is also true in the general, time-dependent, case. (Notice that
the system of the surfaces, if regarded as living on M , looks, in general, different

in different times. This is because its generating object, the form d̂α̂, depends on
time.)

[On solutions in Eq. (21) means on solutions of equation (7) or, equivalently, of
(10). In hydrodynamics, (7) turns out to be (see Ref. [8] in this volume) nothing
but the Euler equation, i.e., the equation of motion of ideal fluid. So, the fact
that vortex lines are frozen into the fluid is only true in the case of real dynamics
of the fluid. It is, unlike the Helmholtz statement on strength of vortex tubes, a
dynamical, rather than kinematical, statement.]

4. Conclusions

Theory of integral invariants due to Poincaré and Cartan enables one, when applied
to hydrodynamics, to get a simple and convincing proof of Helmholtz’ classical
theorem on motion of vortex lines. Moreover, this approach reveals that, actually,
there is a generalization of the phenomenon still in the original theory (prior to
application to hydrodynamics). In this case, vortex lines are to be replaced by
appropriate distinguished surfaces.
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On the Spin Geometry of Supergravity
and String Theory

C.I. Lazaroiu and C.S. Shahbazi

Abstract. We summarize the main results of our recent investigation of bun-
dles of real Clifford modules and briefly touch on some applications to string
theory and supergravity.
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1. Introduction

A full global understanding of real spinor fields in supergravity and string theories
requires a characterization of those real vector bundles S over the space-time (M, g)
of which such fields can be sections. Existence of a globally-defined Clifford multi-
plication on (M, g) is the minimal ingredient needed to construct a Dirac operator
and hence to formulate the fermion kinetic action. Hence, one can take Clifford
multiplication as the fundamental ingredient needed to describe the physics of
spinor fields. One has a choice between inner and outer Clifford multiplications1.
The former is a morphism TM ⊗ S → S obeying the Clifford property, while the
latter is a morphism TM ⊗ S → S′, where S′ is a vector bundle which need not
be isomorphic with S.

Below, we consider exclusively real vector bundles endowed with inner Clif-
ford multiplication, hence S will be a bundle of modules over the Clifford bundle
Cl(TM, g) of the space-time (M, g), which is assumed to be connected. In this
case, the fiber Sp of S at every point p of M carries a representation of the algebra
Cl(TpM, gp). This gives a unital morphism γ : Cl(TM, g)→ End(S) of bundles of
associative algebras, which we shall call the structure morphism of S. For technical
reasons, we also require that γ be weakly-faithful, which means that the restriction
of γ to the vector bundle TM ⊂ Cl(TM, g) is injective. For brevity of language,

1Outer Clifford multiplication arises, for example, in the theory of Pin structures, in which
situation it sometimes allows one to define a “modified” Dirac operator.

c© Springer Nature Switzerland AG 2019
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we define a real pinor bundle2 to be such a weakly-faithful bundle S of Clifford
modules. This leads us to consider the following mathematical questions:

• Is every real pinor bundle associated to a spin structure? If not, to what
principal bundle is it associated?
• What is the topological obstruction to existence of a pinor bundle on a pseudo-
Riemannian manifold (M, g) of arbitrary signature (p, q)?

These questions were answered in [1]. The results of loc. cit. show that, in gen-
eral, real pinor bundles are associated not to spin structures but to more general
spinorial structures, which we call real Lipschitz structures3. The second question
was completely solved in [1] for so-called elementary real pinor bundles, defined as
those real pinor bundles whose fiberwise Clifford representation is irreducible.

2. Real Lipschitz structures and their relation to real pinor bundles

Let (V, h) be a quadratic vector space which is isomorphic with each fiber of the
tangent bundle (TM, g). A representation η : Cl(V, h)→ EndR(S0) of the Clifford
algebra Cl(V, h) in a finite-dimensional real vector space S0 is called weakly-faithful
if the restriction of η to the subspace V of Cl(V, h) is injective. In this case, the
real Lipschitz group L(η) of η is defined as the group consisting of all invertible
operators a acting in S0 whose adjoint action preserves the subspace η(V ) of
EndR(S):

L(η)
def
= {a ∈ AutR(S0)|Ad(a)(η(V )) = η(V )} .

The vector representation of L(η) is the group morphism Ad0 : L(η) → O(V, h)
defined through:

Ad0(a)
def
= (η|V )−1 ◦Ad(a)|η(V ) ◦ (η|V ) .

A real Lipschitz structure of type η on (M, g) is an Ad0-reduction (Q, τ) of the prin-
cipal bundle P (M, g) of pseudo-orthogonal frames of (TM, g), i.e., a pair formed
of a principal L(η)-bundle Q over M and an Ad0-equivariant fiber bundle map
τ : Q → P (M, g). A bundle (S, γ) of Clifford modules over (M, g) is weakly-
faithful iff each fiberwise Clifford representation γp : Cl(TpM, gp) → End(Sp)
(where p ∈M) is weakly-faithful. Since M is connected, all fiberwise Clifford rep-
resentations γp are unbasedly isomorphic4 with each other and hence with some
fiducial weakly-faithful Clifford representation η : Cl(V, h)→ EndR(S0), where S0

is a vector space which models the fibers of S. The representation η (considered
up to unbased isomorphism of representations) is called the type of (S, γ). One has
the following key result:

2The word “pinor” refers to the fact that we consider bundles of modules over the fibers of
Cl(TM, g) rather than over the fibers of Clev(TM, g).
3This follows the terminology introduced by T. Friedrich and A. Trautman [2] for the case of
complex vector bundles with Clifford multiplication.
4This means that they are isomorphic in a certain category which is defined in [1] and which has
more morphisms than the usual category of representations.
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Theorem 1 ([1]). There exists an equivalence of categories between the groupoid of
real Lipschitz structures of type η and the groupoid of real pinor bundles of type
η defined over (M, g). In particular, the underlying vector bundle S of every real
pinor bundle (S, γ) of type η is associated to the principal bundle Q of a Lipschitz
structure (Q, τ) which has type η.

This implies that (M, g) admits a real pinor bundle of type η iff it admits a real
Lipschitz structure of type η, and that the classifications of these two kinds of
objects up to the corresponding notion of isomorphism agree.

One can show that any irreducible real Clifford representation is weakly-
faithful and that all such representations of Cl(V, h) belong to the same unbased
isomorphism class, which is determined by the signature (p, q) of (V, h). A real
pinor bundle (S, γ) is called elementary if its fibers are irreducible as real Clifford
representations, which amounts to the requirement that its type η is irreducible.
The real Lipschitz groups of irreducible Clifford representations are called elemen-
tary, as are the real Lipschitz structures whose type is given by such represen-
tations. For each quadratic vector space (V, h), there exists an essentially unique
elementary real Lipschitz group L, determined up to isomorphism by the signature
(p, q) of (V, h). Moreover, the nature of this group depends only on p− q mod 8.
One has L � R>0 ×L, where L is a natural subgroup called the reduced Lipschitz
group, which can be constructed using the so-called “Lipschitz norm”. Elementary
real Lipschitz groups were classified in [1], the result being summarized in Table 1.
A reduced elementary Lipschitz structure is defined like a Lipschitz structure, but
using the group L (and the restriction of Ad0 to L) instead of L. The groupoid of
elementary real Lipschitz structures is equivalent with that of reduced elementary
real Lipschitz structures, so the latter is also equivalent with the groupoid of ele-
mentary real pinor bundles. When pq �= 0, L is neither compact nor connected. It

p− q
mod 8

L G(p, q)

0, 2 Pin(p, q) 1

3, 7 Spino(p, q)
def
= Spin(p, q) · Pinαp,q

2 O(2,R)

4, 6 Pinq(p, q)
def
= Pin(p, q) · Sp(1) SO(3,R)

1 Spin(p, q) 1

5 Spinq(p, q)
def
= Spin(p, q) · Sp(1) SO(3,R)

Table 1. Reduced elementary Lipschitz groups in signature (p, q). The
sign factor αp,q equals −1 when p − q ≡8 3 and +1 when p − q ≡8 7

and we use the notation Pin+2
def
= Pin(2, 0) and Pin−2

def
= Pin(0, 2). The

last column lists the characteristic group. The symbol “·” denotes direct
product of groups divided by a central Z2 subgroup.



232 C.I. Lazaroiu and C.S. Shahbazi

is clear from Table 1 that the conditions for existence of an elementary real Lip-
schitz structure are generally weaker (and sometimes considerably so) than those
for existence of a spin structure. Every elementary Lipschitz group has a so-called
characteristic representation, which is naturally associated to it as explained in
[1]. The image of this representation is the so-called characteristic group G(V, h),
whose isomorphism type is listed in the last column of Table 1. Accordingly, an
elementary Lipschitz structure (Q, τ) induces a principal characteristic bundle E
(with structure group G(p, q)), which is associated to Q through the characteristic
representation of the corresponding Lipschitz group; this bundle can be non-trivial
only when p − q �≡8 0, 1, 2. For p − q ≡8 0, 1, 2, a Lipschitz structure is either a
Spin or Pin structure and hence is of the classical type studied for example in
[3]. When p − q ≡8 5, it is a Spinq structure in general signature (the positive-
definite case q = 0 of such was studied in [4]). The cases p − q ≡8 4, 6 lead to
Pinq structures, which are a slight extension of Spinq structures to non-orientable
pseudo-Riemannian manifolds. The cases p− q ≡8 3, 7 lead to what we call Spino

structures, which appear to be new.

The characteristic bundle of a Spino-structure is a principal O(2) bundle,
which suggests that it may be relevant to situations where spinors are charged
under a O(2) gauge group rather than under a U(1) group. This fact may be
relevant to understand the worldvolume theories of non-orientable D-branes. Let:

σ := σp,q
def
= (−1)q+[ d2 ] =

{
(−1) p−q

2 if d = even

(−1) p−q−1
2 if d = odd

=

{
+1 if p− q ≡4 0, 1

−1 if p− q ≡4 2, 3

Let w±
1 (M) be the modified Stiefel–Whitney classes of (M, g) introduced in [3];

these classes depend on g but we don’t indicate this in the notation. The topological
obstructions to existence of elementary real Lipschitz structures (and hence of
elementary real pinor bundles) on (M, g) are as follows [1]:

• In the “normal simple case” (p− q ≡8 0, 2), (M, g) admits an elementary real
pinor bundle iff (M,−σg) admits a Pin structure, which requires that the
following condition is satisfied:

w+
2 (M) + w−

2 (M) + wσ
1 (M)2 +w−

1 (M)w+
1 (M) = 0 .

• In the “complex case” (p − q ≡8 3, 7), (M, g) admits an elementary real
pinor bundle iff it admits a Spino-structure, which happens iff there exists a
principal O(2,R)-bundle E on M such that the following two conditions are
satisfied:

w1(M) = w1(E)

w+
2 (M) + w−

2 (M) = w2(E) + w1(E)(pw+
1 (M) + qw−

1 (M))

+
[
δα,−1 +

p(p + 1)

2
+

q(q + 1)

2

]
w1(E)2 ,

where α
def
= αp,q.
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• In the “quaternionic simple case” (p−q ≡8 4, 6), (M, g) admits an elementary
real pinor bundle iff (M,−σg) admits a Pinq-structure, which happens iff
there exists a principal SO(3,R)-bundle E on M such that the following
condition is satisfied:

w+
2 (M) + w−

2 (M) + wσ
1 (M)2 +w−

1 (M)w+
1 (M) = w2(E) .

• In the “normal non-simple case” (p − q ≡8 1), (M, g) admits an elemen-
tary real pinor bundle iff it admits a Spin structure, which requires that the
following two conditions are satisfied:

w1(M) = 0 , w+
2 (M) + w−

2 (M) = 0 .

• In the “quaternionic non-simple case” (p − q ≡8 5), (M, g) admits an ele-
mentary real pinor bundle iff it admits a Spinq-structure, which happens iff
there exists a principal SO(3,R)-bundle E over M such that the following
conditions are satisfied:

w1(M) = 0 , w+
2 (M) + w−

2 (M) = w2(E) .

3. Applications to string theory and supergravity

The results of reference [1] can be applied to study the spinorial structures needed
to formulate various supergravity theories. In this section, we sketch a simple ap-
plication to M-theory, obtaining a no-go result regarding the global interpretation
of its spinor fields.

Consider M-theory on an eleven-dimensional Lorentzian manifold of “mostly
plus” signature (p, q) = (10, 1). The low energy limit is given by eleven-dimensional
supergravity, whose supersymmetry generator is a 32-component real spinor ε. The
gravitino Killing spinor equation contains terms with an odd number of gamma
matrices acting on ε, implying that the whole Clifford algebra Cl(TxM, gx) at a
point x ∈ M must act on the value of ε at x. If one assumes that ε is a global
section of a vector bundle S endowed with inner Clifford multiplication, it follows
that each fiber Sp must carry a real irreducible representation of Cl(TpM, gp) and
hence that S is an elementary real pinor bundle. Since p−q = 9 ≡8 1, we are in the
normal simple case. Hence (M, g) admits an elementary real pinor bundle S if and
only if it is oriented and spin. Since w−

2 (M) = 0, the corresponding topological
obstruction can be written as follows:

w+
1 (M) = w−

1 (M) , w+
2 (M) = 0 .

We conclude that, in signature (10, 1), the supersymmetry parameter can be in-
terpreted as a global section of an elementary real pinor bundle iff the space-time
is orientable and spin. Of course, M-theory can in fact be defined on Lorentzian
eleven-manifolds admitting a Pin structure [5, 6], but that construction involves
a bundle with external Clifford multiplication, which leads to a modified Dirac
operator as in [7].
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4. Future directions

The results of [1] open up various directions for further research. Here we list some
questions which may be worth pursuing:

• Reference [1] classifies bundles of irreducible modules over Cl(M, g). It would
be interesting to classify bundles of faithful real Clifford modules over
Cl(M, g) and of irreducible or faithful real Clifford modules over the even
sub-bundle Clev(M, g), since such bundles may also be relevant to string the-
ory and supergravity.
• It would be interesting to study the index theorem for general bundles of real
Clifford modules, without assuming that (M, g) is spin.
• One could consider extending Wang’s classification [8] beyond the case of
spin manifolds, characterizing manifolds admitting sections of an elementary
real pinor bundle which are parallel w.r.t. a connection lifting the Levi-Civita
connection on (M, g) and a fixed connection on the characteristic bundle.

• Killing and generalized Killing spinors were studied in the literature [9–11],
usually on manifolds carrying a fixed Spin or Spinc structure. Using our
results, this could be extended to the most general pseudo-Riemannian man-
ifolds admitting elementary real pinor bundles.
• One could apply our results to the spin geometry of branes in string and M-
theory. As shown in reference [12], the worldvolume of orientable D-branes
in the absence of H-flux admits a Spinc-structure. In the unorientable case,
this may become a Lipschitz structure.
• Our results may be useful to globally characterize the local spinor bundles
appearing in exceptional generalized geometry [13], obtaining the topological
obstructions to their existence.
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Conic Sub-Hilbert–Finsler Structure
on a Banach Manifold

F. Pelletier

Abstract. A Hilbert–Finsler metric F on a Banach bundle π : E → M is a
classical Finsler metric on E whose fundamental tensor is positive definite.
Following [5], a conic Hilbert–Finsler metric F on E is a Hilbert–Finsler metric
which is defined on an open conic submanifold of E. In the particular case
where we have a (strong) Riemannian metric g on E, then

√
g is a natural

example of Hilbert–Finsler metric on E. According to [1], if, moreover, we
have an anchor ρ : E → TM we get a sub-Riemannian structure on M , that
is, g induces a “singular” Riemannian metric on the distribution D = ρ(E) on
M . By analogy, a sub-Hilbert–Finsler structure on M is the data of a conic
Hilbert–Finsler metric F on a Banach bundle π : E → M and an anchor ρ :
E → TM . Of course, we get a “singular” conic Hilbert–Finsler metric on D =
ρ(E). In the finite-dimensional sub-Riemannian framework, it is well known
that “normal extremals” are projections of Hamiltonian trajectories, and any
such extremal is locally minimizing (relatively to the associated distance).
Analogous results in the context of sub-Riemannian Banach manifold were
obtained in [1] by Arguillère. By an adaptation of his arguments, we generalize
these properties to the sub-Hilbert–Finsler framework.

Mathematics Subject Classification (2010). Primary 37K05, 53D30, 58B25.
Secondary 30C35.

Keywords. Banach manifold, Banach anchored bundle, Hilbert–Finsler metric,
sub-Riemannian, Hamiltonian field, normal extremal, geodesic.

1. Introduction

Finite-dimensional sub-Riemannian geometry is a large research domain which
concerns some variational problems in Physics and in control theory. Recall that,
classically, a sub-Riemannian structure on a manifold is a Riemannian bundle
(D, g), where D is a sub-bundle of the tangent bundle TM of a manifold M .
Therefore, for each horizontal curve, i.e., tangent to D, we can define its g-length.

c© Springer Nature Switzerland AG 2019
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When any two points can be joined by a horizontal curve, as in Riemannian ge-
ometry, we can define a distance dg which leads to the notion of geodesic for this
structure. On the opposite of Riemannian framework, in sub-Riemannian geome-
try, it is well known that not all such geodesics are the projections of Hamiltonian
trajectories (for a natural associated Hamiltonian on T ∗M). Such projections are
called normal geodesics and minimize dg locally (see for instance [6]).

These results were firstly extended ([9]) to the case where D is the range of
an almost injective anchor ρ : E → TM of a Riemannian bundle π : E →M , that
is the restriction ρx to a fiber Ex = π−1(x) is an injective linear map for each x in
an open dense set of M . A more large generalization called sub-Finsler structure
was introduced in [4]: the authors consider a bundle π : E → M provided with
a Finsler metric F and a morphism ρ : E → TM (the anchor). On the range
Dx = ρ(Ex), we obtain a Finsler metric Fx. We can look again for horizontal
curves and if any two points can be joined by a horizontal curve, we can associate
a semi-distance dF . By application of classical optimal control theory arguments,
the authors prove that geodesics which are projections of Hamiltonian trajectories
minimize dF locally.

The concept of sub-Riemannian geometry in an infinite-dimensional context
was introduced in [3] for a sub-bundle D of the tangent bundle TM of a Riemann-
ian “convenient manifold” M with application to Fréchet Lie groups. Essentially
motivated by mathematical analysis of shapes, the particular Banach context was
recently studied by S. Arguillère in his PhD thesis and, more precisely, formalized
in [1]. Essentially, he considers a Banach bundle π : E → M provided with an
anchor ρ : E → TM and a strong Riemannian metric g on E. In this situation,
we can again associate a “generalized” distance dg on M and a notion of geodesic.
Among all his results, the author proves that in this Banach framework, “the nor-
mal geodesics” are still projections of Hamiltonian trajectories and any such a
geodesic minimizes dg locally.

The concept of conic Finsler metric on the tangent bundle of a manifold
was firstly introduced by Bryant in [2] and, more recently, by Javaloyes and
M. Sanchez [5]. The purpose of this work is to propose a generalization of this
concept to the context of conic Hilbert–Finsler metric on an anchored Banach
bundle and show that Arguillère’s results in [1] can be adapted to this framework.

2. Conic sub-Hilbert–Finsler structure on a Banach manifold

2.1. Conic Minkowski norm on a Banach space

Let E be a Banach space. A conic domain K in E is an open subset of E such that
if u ∈ K, then λu belongs to K for any λ > 0 and any u ∈ K.

A weak conic Minkowski norm on E is a map F from a conic domain K in E
into [0,∞[ with the following properties:

(i) ∀u ∈ K \ {0}, F (u) > 0;
(ii) ∀λ > 0, ∀u ∈ K, F (λu) = λF (u);
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(iii) F is at least of class C2 on K\{0} so that the Hessian of
1

2
F 2 is well defined.

Note that if 0 belongs to K, then K = E. Now if Σ is a hypersurface of E
which does not contain 0, then K = {λv, v ∈ Σ, λ > 0} is a conic domain in E.

If g denotes the Hessian of 1
2F

2, it is defined by

gu(v, w) =
∂2

∂s∂t

(
1

2
F 2(u + sv + tw)

)
|s=t=0

for any u ∈ K and v, w in E.

Therefore gu is a positive definite bilinear map on E. In particular, g is a (weak)
Riemannian metric on the Banach manifold K and each gu defines an inner product
on E.

From the properties of F , we have the following properties:

• ∀λ > 0, gλu = gu

• gu(u,w) =
∂

∂s

(
1

2
F 2(u + sw)

)
s=0

.

Remark 1. In finite-dimensional Finsler geometry, the quantity
√

gu(u, u) is classi-
cally denoted by ||u||. This notation as a “norm” is not really appropriate because,
even if K = E, the definition does not imply that a conic Minkowski norm F is
a norm (in the usual sense) on E, since in general we will have F (u) �= F (−u)
(cf. Example 5 in the next subsection). However, in this paper, we will use this
abusive notation.

As in finite-dimensional Finsler geometry, we introduce:

Definition 2. A conic Minkowski norm on E is a weak conic Minkowski norm such
that its hessian g is a strong Riemannian metric on K.

When the domain K contains 0, then a conic Minkowski norm will be simply
called a Minkowski norm, even it is not a norm on E in the classical sense (cf.
Remark 1).

If we have a conic Minkowski norm on E, this implies that each inner product
gu on E provides E with a Hilbert structure. Conversely, if E is Hilbertizable,
consider such an inner product < , > on E and denote F its associated norm.
For any conic domain in K, the restriction F to K is a conic Minkowski metric.
More generally, given a non-zero vector ξ in E such that F (ξ) < 1, then F̄ (u) =
F (u)+ < ξ, u > in restriction to K is also a conic Minkowski. We will give more
original examples in Section 2.2.

Remark 3. Consider v, w ∈ K such that the set {tv + (1 − t)w, ∀t ∈]0, 1[} is
contained in K. Then we have the strict triangular inequality ||v+w|| ≤ ||v||+ ||w||
with equality if and only if v = λw. In particular, if K is convex then F is a convex
map. This situation occurs in particular for any Minkowski norm.



240 F. Pelletier

2.2. Conic sub-Hilbert–Finsler structure

Consider a Banach bundle π : E → M . The fiber over x will be denoted by Ex,
and the zero section of E will be denoted by 0E . An open submanifold K of E
will be called a conic domain if the restriction of π to K is a fibered manifold on
M whose typical fiber K is a convex conic domain in E. For example, consider a
hypersurface Σ in E such that Σ does not intersect the zero section 0E and π|Σ is a
surjective fibration. Then K = {(x, λu), (x, u) ∈ Σ, λ > 0} is a conic domain in E.

Definition 4. A conic Hilbert–Finsler metric on a bundle π : E →M is a contin-
uous map F from a conic domain K of E in [0,∞[ which is smooth on K \ {0E}
and such that the restriction of Fx to Kx is a conic Minkowski norm.

If V E denotes the vertical bundle of E, the Hessian of
1

2
F2

x gives rise to

a smooth field g of symmetric bilinear forms on K \ {0E}. In fact, g is a strong
Riemannian metric on V E in restriction to K \ {0E}

Example 5. Any strong Riemannian metric g on E is a conic Hilbert–Finsler metric
on E with F(x, u) =

√
gx(u, u) and whose domain is K = E. Moreover, assume

that there exists a global section X of E such that g(X,X) < 1. Then Fx(x, u) =√
gx(u, u) − gx(X,u) is also a conic Hilbert–Finsler metric whose domain is E

which is not a norm in restriction to each fiber.

Example 6. A Hilbert–Finsler metric on E is a conic Hilbert–Finsler on K = E
such that Fx is Minkowski norm on Ex for any x ∈M . Thus it is a particular case
of conic Hilbert–Finsler metric.

Example 7. Consider a Hilbert space H and denote its inner product by 〈 , 〉. On
E = M × H, we get a strong Riemannian metric gx(u, v) = 〈u, v〉. Fix some non
zero ξ ∈ H. For 0 < α < β < 1 we consider

K =

{
(x, u) ∈M ×H \ {0} : α <

| 〈ξ, u〉 |
〈ξ, ξ〉1/2 〈u, u〉1/2

< β

}
.

Then F(x, u) =
√

gx(u, u) in restriction to K is a conic Hilbert–Finsler metric.

For more general examples in finite dimension, the reader can see [5]. It is
clear that these examples can be also defined in our context.

An anchored bundle on a Banach manifold M is the data (M,E, ρ) of a
Banach vector bundle π : E → M over M provided with a bundle morphism
ρ : E → TM called the anchor. In this case, we get a weak distribution D = ρ(E)
on M which is not closed in general.

Definition 8. A conic sub-Hilbert–Finsler structure on M is the data of an an-
chored bundle (E,M, ρ) and a conic Hilbert–Finsler metric F on the bundle
E → M whose domain is a fibered open sub-manifold K of E. When K = E,
such a structure is called a sub-Hilbert–Finsler structure.
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3. Extremals and local geodesics for admissible curves in a
sub-Hilbert–Finsler structure

3.1. Set of admissible curves for an anchored bundle

Consider an anchored bundle on a Banach manifold (M,E, ρ) and denote the
associated weak distribution on M by D = ρ(E).

Definition 9.

1. A curve c : I = [a, b] → E is called regulated if, for any t ∈ [a, b[, the limits
lim
s→t+

c(s) and, for t ∈]a, b], lim
s→t−

c(s) exists.

2. A regulated curve c : [a, b]→ E is called admissible (cf. [7]) if we have:

d

dt
(π ◦ c) = ρ(c) a.e.

3. Any continuous curve γ : [a, b] → M is called horizontal, if there exists an
admissible curve c : [a, b]→ E such that π ◦ c = γ and γ̇ = ρ(c) a.e.. In this
case, c is called a lift of γ.

According to [7], recall that the set A(E) of regulated admissible curves de-
fined on [0, 1]1 has a structure of Banach manifold and the set Ax(E) of admissible
curves c ∈ A(E) such that π ◦ c(0) = x is a Banach sub-manifold of A(E). More-
over, the map Endx : Ax(E)→M defined by Endx(c) = π ◦ c(1) is smooth.

Fix some conic domain K in E. A curve c : [a, b]→ E is called K-admissible if
c is an admissible curve such that c([a, b]) is contained in K. A curve γ : [a, b]→M
is called K-horizontal if there exists a K-admissible curve c such that γ = π ◦ c.
Since K is an open set in E, it follows that the set A(K) of K-admissible curves
is an open Banach submanifold of A(E); the set Ax(K) of K-admissible curves
whose origin is in the fiber Kx is also a Banach manifold.

The K-orbit of x is the set OK(x) of points y ∈ M such that there exists a
K-admissible horizontal curve γ : [a, b]→M such that γ(a) = x and γ(b) = y.

3.2. Energy, length and semi-distance

We consider a conic sub-Hilbert Finsler metric F on an anchored bundle (E,M, ρ)
defined on a conic domain K.

Definition 10.

1. Let c : [a, b]→ K be a regulated K-admissible curve.

(i) The energy of c is E(c) =
∫ b

a

1

2
F2(c(t))dt.

(ii) The length of c is L(c) =

∫ b

a

F(c(t))dt

1Note that any admissible curve c : [a, b] → E can be reparametrized as an admissible curve c̃
defined on [0, 1].
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2. Let γ : [a, b]→M be a K-horizontal curve.
(i) The energy of γ is E(γ) = inf{E(c), c K-admissible lift of γ}.
(ii) The length of γ is L(γ) = inf{L(c), c K-admissible lift of γ}.

Note that, if γ : [a, b] → M is a K-horizontal curve, the quantity Fγ(t)(γ̇(t)) is
well defined outside a countable subset of [a, b]. Given any K-lift c : [a, b] → K,
since we have Fγ(t)(γ̇(t)) ≤ Fc(t)(c(t)) outside a countable of subset of [a, b], the

integrals

∫ b

a

Fγ(t)(γ̇(t))dt and
1

2

∫ b

a

F 2
γ(t)(γ̇(t))dt are well defined. However, there

is no reason that this value is exactly L(c) and E(c) respectively for some K-lift
c : [a, b]→ K.
If x and y belong to the same K-orbit, we define a pseudo distance dF by:

dF (x, y) = inf{L(c), c : [a, b]→ E is K-admissible, π ◦ c(a) = x, π ◦ c(b) = y};
Otherwise, we set dF(x, y) =∞.

From this definition, we always have the following properties:

• dF (x, y) ≥ 0 and dF (x, y) = 0 if x = y;

• the triangular inequality : dF (x, y) ≤ dF (x, z) + dF (z, y);

• y belongs to OK(x) if and only if dF (x, y) <∞.

In general, dF (x, y) = 0 does not imply x = y.
Now, according to [1], we introduce

Definition 11.

1. A K-admissible curve c : [a, b] → E is called a local minimizing geodesic if,
for any t0 ∈ [a, b[, there exists t1 > t0 with t1 − t0 small enough, there exists
a neighborhood U of π ◦ c([t0, t1]) such for any K-admissible c′ : [t0, t1]→ KU

with π ◦ c′(ti) = π ◦ c(ti), i = 0, 1, we have L(c|[t0,t1]) ≤ L(c′).
2. A K-admissible curve c : [a, b] → E is called a geodesic if for t0, t1 ∈ [a, b]

closed enough, we have

L(c|[t0,t1]) = dF (π ◦ c(t0), π ◦ c(t1)).

3. A K-admissible curve c : [a, b]→ E is called a minimizing geodesic if we have

L(c) = dF(π ◦ c(a), π ◦ c(b)).

As classically in Finsler geometry, a curve is a minimizing geodesic if and only if
it is a minimum of the map E : Ax(K) → R with the constraint Endx(c) = y for

some y ∈M such that End−1
x (y) ∩ Ax(K) �= ∅.

Finally, looking for geodesics is a classic problem of minimum with constraint
on a Banach manifold as previously described. Assume that such a minimum c
exists. A necessary condition is that the differential of the map E = (E ,Endx) :
Ax(K) → R × Tπ◦c(1)M is not onto at the point c. More generally, such a point
where TcE is not onto is called an extremal of Ax(K). Following the terminology
introduced in [1], we have three types of extremals:
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(i) The range of the differential TcE is a dense subspace of R × Tπ◦c(1)M : c is
called an elusive extremal. Note that this situation only occurs when M is
infinite-dimensional;

(ii) The range of the differential TcE is a closed codimension 1 subspace of R×
Tπ◦c(1)M : c is called a normal extremal;

(iii) the range of the differential TcE is a subspace whose closure is of codimension
at least 2 of R× Tπ◦c(1)M : c is called an abnormal extremal.

If T ∗
c E : R×T ∗

π◦c(1)M → T ∗
cAx(E) is the adjoint map of TcE, as in finite dimension,

the case (ii) and (iii) are respectively equivalent to

(ii′) There exists ξ �= 0 in T ∗
π◦c(1)M such that T ∗

c End(ξ) = dcE where T ∗
c End is

the adjoint map of Tc End;
(iii′) There exists ξ �= 0 in T ∗

π◦c(1)M such that T ∗
c End(ξ) = 0 which means that

in fact c is a singular point of End and so this situation does not depend on
the map E .

Note that this co-adjoint version does not work in case (i) since, in this situation,
the map T ∗

c E is injective, but from this view point, there is no difference between
the case of an elusive extremal and the case where the range of the differential TcE
is equal to R× Tπ◦c(1)M .

3.3. Hamiltonian characterization of normal extremal

Consider a conic Hilbert–Finsler metric F on an anchored bundle (E,M, ρ) defined
on a conic domain K. We denote simply π : K →M the restriction of π to the open
manifold K. After restriction if necessary, we assume that K does not meet the zero
section of E. The restriction LF of the differential d(12F) to the vertical bundle of
E defines a local diffeomorphism around any point (x, u) ∈ K into the dual bundle
E∗ of E. Since LF is an injective map, it follows that LF is an injective (weak)
immersion from K into E∗.

Consider the pull-back K×M T ∗M of T ∗M over K. We denote by π̃ : K×M

T ∗M → T ∗M the canonical bundle morphism over π : K → M and by q̃ the
natural projection of K ×M T ∗M on K. If ρ∗ : T ∗M → E∗ is the adjoint map of
ρ, we set

K̃ = {(x, u, ξ) ∈ K ×M T ∗M : ρ∗(x, ξ) = LF(x, ξ)} .
With these notations, we have at first:

Proposition 12. The set K̃ is a Banach submanifold of K ×M T ∗M modeled on
M∗ ×M. The map κ̃ : T ∗M → K̃ which maps (x, ξ) to (x,LF−1(x, ρ∗xξ), ξ) is a

diffeomorphism from T ∗M onto K̃. Let Ω be the (weak) symplectic canonical form

on T ∗M . Then there exists a symplectic form Ω̃ on K̃ such that κ̃∗(Ω) = Ω̃.

On K ×M T ∗M , consider the Hamiltonian

H(x, u, ξ) = 〈ξ, ρx(u)〉 −
1

2
F2(x, u).

The link between the Hamiltonian H and the normal extremals is given by the
following result:
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Theorem 13. Let H̃ be the restriction of H to K̃. Then the Hamiltonian field
XH̃ associated to H̃ is well defined (relatively to Ω̃) and a K-admissible curve

c : [0, 1]→ K is a normal extremal if and only if there exists a curve c̃ : [0, 1]→ K̃
which is an integral curve of XH̃ and such that q̃ ◦ c̃ = c. In particular, any
normal extremal is smooth. Moreover any normal extremal c : [0, 1]→ E is locally
minimizing.

The proof of this result is an adaptation, step by step, of the proof of the
corresponding result of Theorem 7 in [1]. A complete proof can be found in [8].
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Laboratoire de Mathématique, Campus scientifique
F-73376 Le Bourget-du-Lac Cedex, France
e-mail: fernand.pelletier@univ-smb.fr

mailto:fernand.pelletier@univ-smb.fr


Geometric Methods in Physics. XXXVI Workshop 2017

Trends in Mathematics, 245–250

On Spherically Symmetric Finsler Metrics

Nasrin Sadeghzadeh

Abstract. In this paper, we study spherically symmetric Finsler metrics in
Rn. We find equations that characterize the metrics of R-quadratic and Ricci
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1. Introduction

Spherically symmetric metrics form a rich and important class of metrics. In Rie-
mannian geometry these special spaces have been deeply studied by many authors
for example, [6] and [14]. The base of general relativity is (pseudo-) Riemannian
geometry, it is natural to consider its generalizations based on Finsler geometry. In
fact Finsler geometry has applications in physics, too [1]. These metrics are con-
sidered in physics. In fact, symmetries of the background geometry of space-time
are associated to different physical situations.

Similarly with the definition in general relativity, a spherically symmetric
Finsler metric is invariant under any rotations in Rn. In other words, the vector
fields generated by rotations are the Killing fields of the Finsler metric. From
calculation point of view the Finsler metrics with certain symmetry would greatly
simplify the computation. Recently many papers have been published investigating
the properties of these metrics, for example [16, 17] and [5].

Riemann curvature is a central concept in Riemannian geometry and was in-
troduced by Riemann in 1854. Berwald generalized it to Finsler metrics. A Finsler
metric is said to be R-quadratic if its Riemann curvature is quadratic [4]. R-
quadratic metrics were first introduced by Báscó and Matsumoto [2]. They form
a rich class in Finsler geometry. There are many interesting works related to this
subject [12, 15]. In this paper we are going to study R-quadratic spherically sym-
metric Finsler metrics in Rn. The necessary and sufficient conditions which the
metrics be R-quadratic are considered.

c© Springer Nature Switzerland AG 2019
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2. Preliminaries

Let F be a Finsler metric defined on a convex domain Ω ⊂ Rn. F is called spher-
ically symmetric if it is invariant under any rotations in Rn. According to the
equation of Killing fields, there exists a positive function φ depending on two vari-

ables so that F = |y|φ(|x|, 〈x,y〉
|y| ) where x is a point in the domain Ω, y is a tangent

vector at the point x and 〈 , 〉 and | . | are standard inner product and norm in
Euclidean space. One can see the details in [16]. F has the expression F = uφ(r, s)

where r = |x|, u = |y|, v = 〈x, y〉, s = 〈x,y〉
|y| . Projectively equivalent Finsler metrics

on a manifold, namely, geodesics are same up to a parameterization are studied in
projective Finsler geometry. A spray on a Finsler manifold is locally defined as

G = yi ∂

∂xi
− 2Gi ∂

∂yi
,

where Gi is called the Geodesic coefficient of the spray. In local coordinate system,
a Finsler space F is projective to another Finsler space F if and only if there exists
a one-positive homogeneous scalar field P on M satisfying

Gi = G
i
+ Pyi,

where Gi and G
i
are the Geodesic coefficients of F and F [13].

The Riemann curvature Ri
k of G is defined by

Ri
k := 2

∂Gi

∂xk
yj − ∂2Gi

∂xj∂yk
+ 2Gj ∂2Gi

∂yj∂yk
2
∂Gi

∂yj
− ∂Gj

∂yk
. (1)

The Riemann curvatures of two projectively related Finsler metrics F and F are
related by the following equation [13]

Ri
k = R

i

k + Eδik + τky
i, (2)

where E = P 2 − P|ky
K and τk = 3(P|k − PP.k) + E.k, E.k = ∂E

∂yk and P|k is the

horizontal derivative of P with respect to F .
With the Riemann curvature, we define the flag curvature K = K(P, y) by

K(P, y) :=
gijR

i
ku

juk

(gilyiyl)(gjkujuk)− [gijyiuj ]2
,

where y = yi ∂
∂yi and u = uj ∂

∂yj with P = span{y, u}.
A Finsler metric is of scalar flag curvature, K = K(x, y), if and only if [13]

Ri
k = K{F 2δik − FFykyi}.

A Finsler metric is said to be R-quadratic if its Riemann curvature is quadratic
in y ∈ TxM [12]. There are many non-Riemannian R-quadratic Finsler metrics.
For example, all Berwald metrics are R-quadratic. Indeed a Finsler metric is R-
quadratic if and only if the h-curvature of Berwald connection depends on position
only in the sense of Bácsó–Matsumoto [2]. The notion of R-quadratic Finsler met-
rics was introduced by Z. Shen [12].
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In the next section we try to calculate the Riemann curvature of the spher-
ically symmetric Finsler metric and find the condition(s) that the metric is R-
quadratic.

Ricci-quadratic are the weaker notions than R-quadratic metrics. In the fol-
lowing we obtain some theorems that characterizes Ricci-quadratic spherically
symmetric Finsler metrics in Rn.

3. R-quadratic Spherically Symmetric Finsler Metrics in Rn

In this section we study R-quadratic spherically symmetric Finsler metric in Rn.
First we calculate its Riemann curvature.

Lemma 1. The Riemann curvature of every spherically symmetric Finsler metric
in Rn is as follows

Ri
k = Axixk + Bxiyk + Hxky

i + Fyky
i + u2ηδik, (3)

where

A = −u

s
B = u2α, H = uh = u(t−Qs), η = 2Q+ e, F = −sh− η (4)

such that

α :=

{
2

r
Qr −

s

r
Qrs −Qss + (r2 − s2)(2QQss −Q2

s)− 2sQQs + 4Q2

}
,

e = p2 − s

r
pr − ps + 2sQp+ 2(r2 − s2)Qps,

t = 3(
1

r
pr − pps − (r2 − s2)Qsps − sQsp) + es.

Proof. In [16] it is shown that the geodesic coefficient of the spherically symmetric
Finsler metric is as follows

Gi = upyi + u2Qxi, (5)

where

p = − 1

φ
(sφ + (r2 − s2)φs)Q +

1

2rφ
(sφr + rφs), (6)

and

Q =
1

2r

−φr + sφrs + rφss

φ− sφs + (r2 − s2)φss
. (7)

Putting G
i
= u2Qxi and using (2) one gets after some calculations

Ri
k = R

i

k + Eδik + τky
i,

where

E = u2e,

and

τk = τ1xk + τ2yk,
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and we have

e = p2 − s

r
pr − ps + 2sQp+ 2(r2 − s2)Qps, (8)

τ1 = u.t = 3u(
1

r
pr − pps − (r2 − s2)Qsps − sQsp) + ues, (9)

τ2 = 3
(
ps − p2 + spps + s2Qsp− 2sQp

+ s(r2 − s2)Qsps − 2(r2 − s2)Qps
)
+ 2e− ses.

(10)

One can easily check that
τ2 + st = −e. (11)

Using (1) one can calculate R
i

k as follows

R
i

k = Axixk + Bxiyk + Cyixk + Dyiyk + Gδik, (12)

where

A = u2α, B = −vα, C = −uQs, D = sQs − 2Q, G = 2u2Q, (13)

and

α :=

{
2

r
Qr −

s

r
Qrs −Qss + (r2 − s2)(2QQss −Q2

s)− 2sQQs + 4Q2

}
. (14)

Then the Riemann curvature tensor of the metric can be calculated as stated
as (3). �

Now we calculate Ri
k.j.l.p =

∂3Ri
k

∂yj∂yl∂yp to investigate the condition(s) for the

metrics to be R-quadratic.

Theorem 1. Every spherically symmetric Finsler metric in Rn is R-quadratic if
and only if there are the functions α(r), h1(r) and h2(r) such that

1. α = 2
rQr − s

rQrs −Qss + (r2 − s2)(2QQss −Q2
s)− 2sQQs + 4Q2 = α(r),

2. t1 = 1
rpr − pps − (r2 − s2)Qsps − sQsp = Qs + h1(r)s,

3. e = p2 − s
rpr − ps + 2sQp+ 2(r2 − s2)Qps = −2Q− h1(r)s

2 + h2(r).

Proof. In the previous lemma the Riemann curvature of the spherically symmetric
Finsler metric F = uϕ(r, s) is calculated. Then

Ri
k.j = αkjx

i + βkjy
i + 1γkδ

i
j +

2γjδ
i
k. (15)

where

αkj = uαsxkxj + (2α− sαs)xkyj − (α + sαs)xjyk +
s2

u
αsyjyk − vαδkj , (16)

βkj = hsxkxj +
1

u
(h− shs)xkyj −

1

u
(h + shs + ηs)

(
xj −

s

u
yj

)
yk

− (sh + η)δkj ,
(17)

1γk = uhxk − (sh + η)yk, (18)

2γj = uηsxj + (2η − sηs)yj . (19)



On Spherically Symmetric Finsler Metrics 249

Therefore we have

Ri
k.j.l = αkj.lx

i + βkj.ly
i + βkjδ

i
l +

1γk.lδ
i
j +

2γj.lδ
i
k. (20)

and

Ri
k.j.l.p = αkj.l.px

i + βkj.l.py
i + βkj.pδ

i
l + βkj.lδ

i
p +

1γk.l.pδ
i
j +

2γj.l.pδ
i
k. (21)

Note that αkj.l.p =
∂2αkj

∂yl∂yp , βkj.l.p =
∂2βkj

∂yl∂yp and so on.

For every R-quadratic Finsler metric we have Ri
k = Rj

i
kl(x)y

jyl, i.e.,

Ri
k.j.l.p = 0 and Ri

k.j.l is a function of x only. Then equation (20) yields that

if the metric be R-quadratic then we would have βkj.l = 0, i.e., βkj = βkj(x).
Again noting (20) yields

αkj.l = αkjl(x),
1γk.l =

1γkl(x),
2γk.l =

2γkl(x)

From (17) and βkj = βkj(x) one gets that h − shs = 0, i.e., there is a function
h(r) such that h = h1(r)s and h + shs + ηs = 0, i.e., ηs = −2h1(r)s. Then

η = −h1(r)s
2 + h2(r), for the scalar function h2(r). Then taking into account (4)

one gets

t = Qs + h1(r)s, e = −2Q− h1(r)s
2 + h2(r). (22)

But from (9) and above equation one easily gets t1 = Qs+h1. Also αkj.l = αkjl(x)
which noting (16) one concludes that αs = 0. Putting the above conditions in (3)
yields

Ri
k = {(α(r)(δpqxk − δkqxp)x

i + (h1xpxk − h2δkp)− (h1xpxq − h2δpq)δ
i
k)}ypyq.

�

4. Ricci-quadratic spherically symmetric Finsler metrics in Rn

In this section we characterize the Ricci-quadratic spherically symmetric Finsler
metrics in Rn.

Theorem 2. Every spherically symmetric Finsler metric in Rn is Ricci-quadratic
if and only if

(r2 − s2)(sαss − αs)− 4s2αs + (n− 1)[2(sQss −Qs) + (sess − es)] = 0. (23)

Proof. Noting 3 one can easily find the Ricci curvature of every spherically sym-
metric Finsler metric F = uϕ(r, s) on Ω ⊆ Rn as follows

Ric = u2{(r2 − s2)α + (n− 1)(2Q+ e)} = u2R = u2R,

where R := R(r, s) = (r2 − s2)α + (n− 1)(2Q + e).

One gets that the metric is Ricci-quadratic if and only if sRss − Rs = 0. It
completes the proof. �
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Homogeneous Rank One Perturbations
and Inverse Square Potentials

Abstract. Following [2, 3, 5], I describe several exactly solvable families of
closed operators on L2[0,∞[. Some of these families are defined by the theory
of singular rank one perturbations. The remaining families are Schrödinger
operators with inverse square potentials and various boundary conditions.
I describe a close relationship between these families. In all of them one can
observe interesting “renormalization group flows” (action of the group of di-
lations).

Mathematics Subject Classification (2010). 34L40, 33C10.

Keywords. Closed operators, rank one perturbations, one-dimensional Schrö-
dinger operators, Bessel functions, renormalization group.

1. Introduction

My contribution consists of an introduction and 3 sections, each describing inter-
esting families of exactly solvable closed operators on L2[0,∞[.

The first two sections seem at first unrelated. Only in the third section the
reader will see a relationship.

Section 2 is based on [3]. It is devoted to two families of operators, Hm,λ

and Hρ
0 , obtained by a rank one perturbation of a certain generic self-adjoint

operator. The operators can be viewed as an elementary toy model illustrating
some properties of the renormalization group. Note that in this section we do
not use special functions. However we use a relatively sophisticated technique to
define an operator, called sometimes singular perturbation theory or the Aronszajn–
Donoghue method, see, e.g., [1, 4, 9].

Section 3 is based on my joint work with Bruneau and Georgescu [2], and also
with Richard [5]. It is devoted to Schrödinger operators with potentials propor-
tional to 1

x2 . Both −∂2
x and 1

x2 are homogeneous of degree −2. With appropriate
homogeneous boundary conditions, we obtain a family of operators Hm, which we

c© Springer Nature Switzerland AG 2019
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call homogeneous Schrödinger operators. They are also homogeneous of degree −2.
One can compute all basic quantities for these operators using special functions –
more precisely, Bessel-type functions and the Gamma function.

The operators Hm are defined only for Rem > −1. We conjecture that they
cannot be extended to the left of the line Rem = −1 in the sense described in our
paper. This conjecture was stated in [2]. It has not been proven or disproved so far.

Finally, Section 4 is based on my joint work with Richard [5], and also on [3].
It describes more general Schrödinger operators with the inverse square potentials.
They are obtained by mixing the boundary conditions. These operators in general
are no longer homogeneous, because their homogeneity is (weakly) broken by their
boundary condition – hence the name almost homogeneous Schrödinger operators.
They can be organized in two families Hm,κ and Hν

0 .

It turns out that there exists a close relationship between the operators from
Section 4 and from Section 2: they are similar to one another. In particular, they
have the same point spectrum.

Almost homogeneous Schrödinger operators in the self-adjoint case have been
described in the literature before, see, e.g., [7]. However, the non-self-adjoint case
seems to have been first described in [5]. A number of new exact formulas about
these operators is contained in [2, 5, 10] and [3].

Let us also mention one amusing observation, which seems to be original,
about self-adjoint extensions of

−∂2
x +

(
− 1

4
+ α

) 1

x2
.

The “renormalization group” acts on the set of these extensions, as described in
Table 1 after Proposition 15. Depending on α ∈ R, we obtain 4 “phases” of the
problem. Some analogies to the condensed matter physics are suggested.

2. Toy model of renormalization group

Consider the Hilbert space H = L2[0,∞[ and the operator X

Xf(x) := xf(x).

Let m ∈ C, λ ∈ C ∪ {∞}. Following [3], we consider a family of operators
formally given by

Hm,λ := X + λ|xm
2 〉〈xm

2 |. (1)

In the perturbation |xm
2 〉〈xm

2 | we use the Dirac ket-bra notation, hopefully
self-explanatory. Unfortunately, the function x �→ x

m
2 is never square integrable.

Therefore, this perturbation is never an operator. It can be however understood
as a quadratic form. We will see below how to interpret (1) as an operator.

If −1 < Rem < 0, the perturbation |xm
2 〉〈xm

2 | is form bounded relatively
to X , and then Hm,λ can be defined by the form boundedness technique. The

´
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perturbation is formally rank one. Therefore,

(z −Hm,λ)
−1

= (z −X)−1 +

∞∑
n=0

(z −X)−1|xm
2 〉(−λ)n+1〈xm

2 |(z −X)−1|xm
2 〉n〈xm

2 |(z −X)−1

= (z −X)−1 +
(
λ−1 − 〈xm

2 |(z −X)−1|xm
2 〉
)−1

(z −X)−1|xm
2 〉〈xm

2 |(z −X)−1.

It is an easy exercise in complex analysis to compute

〈xm
2 |(z −X)−1|xm

2 〉 =
∫ ∞

0

xm(z − x)−1dx = (−z)m
π

sinπm
.

Therefore, the resolvent of Hm,λ can be given in a closed form:

(z−Hm,λ)
−1 = (z−X)−1+

(
λ−1−(−z)m

π

sinπm

)−1

(z−X)−1|xm
2 〉〈xm

2 |(z−X)−1.

The rhs of the above formula defines a function with values in bounded operators
satisfying the resolvent equation for all−1 < Rem < 1 and λ ∈ C∪{∞}. Therefore,
the method of pseudoresolvent [8] allows us to define a holomorphic family of closed
operators Hm,λ. Note that Hm,0 = X .

The case m = 0 is special: H0,λ = X for all λ. One can however introduce
another holomorphic family of operators Hρ

0 for any ρ ∈ C ∪ {∞} by

(z −Hρ
0 )

−1 = (z −X)−1 −
(
ρ + ln(−z)

)−1
(z −X)−1|x0〉〈x0|(z −X)−1.

In particular, H∞
0 = X .

Let R % τ �→ Uτ be the group of dilations on L2[0,∞[, that is

(Uτf)(x) = eτ/2f(eτx).

We say that B is homogeneous of degree ν if

UτBU−1
τ = eντB.

E.g., X is homogeneous of degree 1 and |xm
2 〉〈xm

2 | is homogeneous of degree 1+m.

The group of dilations (“the renormalization group”) acts on our operators
in a simple way:

UτHm,λU
−1
τ = eτHm,eτmλ,

UτH
ρ
0U−1

τ = eτHρ+τ
0 .

The essential spectrum of Hm,λ and Hν
0 is [0,∞[. The point spectrum is more

intricate, and is described by the following theorem:



256 J. Derezinski

Theorem 1.

1. z ∈ C\[0,∞[ belongs to the point spectrum of Hm,λ iff

(−z)−m = λ
π

sinπm
.

2. Hρ
0 possesses an eigenvalue iff −π < Im ρ < π, and then it is z = −eρ.

For a given pair (m,λ) all eigenvalues form a geometric sequence that lies on
a logarithmic spiral, which should be viewed as a curve on the Riemann surface
of the logarithm. Only its “physical sheet” gives rise to eigenvalues. For m which
are not purely imaginary, only a finite piece of the spiral is on the “physical sheet”
and therefore the number of eigenvalues is finite.

If m is purely imaginary, this spiral degenerates to a half-line starting at the
origin.

If m is real, the spiral degenerates to a circle. But then the operator has at
most one eigenvalue.

The following theorem about the number of eigenvalues of Hm,λ is proven
in [5]. It describes an interesting pattern of “phase transitions” when we vary the
parameter m. In this theorem, we denote by specp(A) the set of eigenvalues of an
operator A and by #X the number of elements of the set X .

Theorem 2. Let m = mr + imi ∈ C\{0} with |mr| < 1.

(i) Let mr = 0.

(a) If ln(|ς|)
mi
∈]− π, π[, then #specp(Hm,λ) =∞,

(a) if
ln(|λ π

sinπm |)
mi

�∈]− π, π[ then #specp(Hm,λ) = 0.

(ii) If mr �= 0 and if N ∈ N satisfies N <
m2

r+m2
i

|mr| ≤ N + 1, then

#specp(Hm,λ) ∈ {N,N + 1}.

3. Homogeneous Schrödinger operators

Let α ∈ C. Consider the differential expression

Lα = −∂2
x +

(
− 1

4
+ α

) 1

x2
.

Lα is homogeneous of degree −2. Following [2], we would like to interpret Lα as a
closed operator on L2[0,∞[ homogeneous of degree −2.

Lα, and closely related operators Hm that we introduce shortly, are interest-
ing for many reasons.

• They appear as the radial part of the Laplacian in all dimensions, in the de-
composition of Aharonov–Bohm Hamiltonian, in the membranes with conical
singularities, in the theory of many body systems with contact interactions
and in the Efimov effect.

´
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• They have rather subtle and rich properties illustrating various concepts of
the operator theory in Hilbert spaces (e.g., the Friedrichs and Krein exten-
sions, holomorphic families of closed operators).
• Essentially all basic objects related to Hm, such as their resolvents, spectral

projections, Møller and scattering operators, can be explicitly computed.
• A number of nontrivial identities involving special functions, especially from
the Bessel family, find an appealing operator-theoretical interpretation in
terms of the operators Hm. E.g., the Barnes identity leads to the formula for
Møller operators.

We start the Hilbert space theory of the operator Lα by defining its two naive
interpretations on L2[0,∞[:

1. The minimal operator Lmin
α : We start from Lα on C∞

c ]0,∞[, and then we
take its closure.

2. The maximal operator Lmax
α : We consider the domain consisting of all f ∈

L2[0,∞[ such that Lαf ∈ L2[0,∞[.

We will see that it is often natural to write α = m2. Let us describe basic
properties of Lmax

m2 and Lmin
m2 :

Theorem 3.

1. For 1 ≤ Rem, Lmin
m2 = Lmax

m2 .

2. For −1 < Rem < 1, Lmin
m2 � Lmax

m2 , and the codimension of their domains is
2.

3. (Lmin
α )∗ = Lmax

ᾱ . Hence, for α ∈ R, Lmin
α is Hermitian.

4. Lmin
α and Lmax

α are homogeneous of degree −2.

Let ξ be a compactly supported cutoff equal 1 around 0.

Let −1 ≤ Rem. It is easy to check that x
1
2+mξ belongs to DomLmax

m2 . We
define the operator Hm to be the restriction of Lmax

m2 to

DomLmin
m2 + Cx

1
2+mξ.

The operators Hm are in a sense more interesting than Lmax
m2 and Lmin

m2 :

Theorem 4.

1. For 1 ≤ Rem, Lmin
m2 = Hm = Lmax

m2 .

2. For −1 < Rem < 1, Lmin
m2 � Hm � Lmax

m2 and the codimension of the domains
is 1.

3. H∗
m = Hm̄. Hence, for m ∈]− 1,∞[, Hm is self-adjoint.

4. Hm is homogeneous of degree −2.
5. specHm = [0,∞[.
6. {Rem > −1} % m �→ Hm is a holomorphic family of closed operators.

The theorem below is devoted to self-adjoint operators within the family Hm.

Theorem 5.

1. For α ≥ 1, Lmin
α = H√

α is essentially self-adjoint on C∞
c ]0,∞[.
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2. For α < 1, Lmin
α is Hermitian but not essentially self-adjoint on C∞

c ]0,∞[.
It has deficiency indices 1, 1.

3. For 0 ≤ α < 1, the operator H√
α is the Friedrichs extension and H−

√
α is

the Krein extension of Lmin
α .

4. H 1
2
is the Dirichlet Laplacian and H− 1

2
is the Neumann Laplacian on a half-

line.
5. For α < 0, Lmin

α has no homogeneous selfadjoint extensions.

Various objects related to Hm can be computed with help of functions from
the Bessel family. Indeed, we have the following identity

x− 1
2

(
− ∂2

x +
(
− 1

4
+ α

) 1

x2
± 1

)
x

1
2 = −∂2

x −
1

x
∂x +

(
− 1

4
+ α

) 1

x2
± 1,

where the rhs defines the well-known (modified) Bessel equation.
One can compute explicitly the resolvent of Hm:

Theorem 6. Denote by Rm(−k2;x, y) the integral kernel of the operator (k2 +
Hm)−1. Then for Re k > 0 we have

Rm(−k2;x, y) =

{√
xyIm(kx)Km(ky) if x < y,
√

xyIm(ky)Km(kx) if x > y,

where Im is the modified Bessel function and Km is the MacDonald function.

The operators Hm are similar to self-adjoint operators. Therefore, they pos-
sess the spectral projection onto any Borel subset of their spectrum [0,∞[. In
particular, below we give a formula for the spectral projection of Hm onto the
interval [a, b]:

Proposition 7. For 0 < a < b <∞, the integral kernel of 1[a,b](Hm) is

1[a,b](Hm)(x, y) =

∫ √
b

√
a

√
xyJm(kx)Jm(ky)k dk,

where Jm is the Bessel function.

One can diagonalize the operators Hm in a natural way, using the so-called
Hankel transformation Fm, which is the operator on L2[0,∞[ given by(

Fmf
)
(x) :=

∫ ∞

0

Jm(kx)
√

kxf(x)dx . (2)

Theorem 8. Fm is a bounded invertible involution on L2[0,∞[ diagonalizing Hm,
more precisely

FmHmF−1
m = X2.

It satisfies FmA = −AFm, where

A =
1

2i
(x∂x + ∂xx)

is the self-adjoint generator of dilations.

´



Homogeneous Rank One Perturbations and Inverse Square Potentials 259

It turns out that the Hankel transformation can be expressed in terms of the
generator of dilations. This expression, together with the Stirling formula for the
asymptotics of the Gamma function, proves the boundedness of Fm.

Theorem 9. Set If(x) = x−1f(x−1), Ξm(t) = ei ln(2)t
Γ(m+1+it

2 )

Γ(m+1−it
2 )

.

Then

Fm = Ξm(A)I.
Therefore, we have the identity

Hm := Ξ−1
m (A)X−2Ξm(A). (3)

(Result obtained independently by Bruneau, Georgescu, and myself in [2],
and by Richard and Pankrashkin in [10].)

The operators Hm generate 1-parameter groups of bounded operators. They
possess scattering theory and one can explicitly compute their Møller (wave) op-
erators and the scattering operator.

Theorem 10. The Møller operators associated to the pair Hm, Hk exist and

Ω±
m,k := lim

t→±∞
eitHme−itHk = e±i(m−k)π/2FmFk = e±i(m−k)π/2 Ξk(A)

Ξm(A)
.

The formula (3) valid for Rem > −1 can be used as an alternative definition
of the family Hm also beyond this domain. It defines a family of closed operators
for the parameter m that belongs to

{m | Rem �= −1,−2, . . .} ∪ R. (4)

Their spectrum is always equal to [0,∞[ and they are analytic in the interior of (4).
In fact, Ξm(A) is a unitary operator for all real values of m. Therefore, for

m ∈ R, (3) is well defined and self-adjoint.
Ξm(A) is bounded and invertible also for all m such that Rem �= −1,−2, . . . .

Therefore, formula (3) defines an operator for all such m.
One can then pose various questions:

• What happens with these operators along the lines Rem = −1,−2, . . . ?
• What is the meaning of these operators to the left of Re = −1? (They are
not differential operators!)

Let us describe a certain precise conjecture about the family Hm. In order to
state it we need to define the concept of a holomorphic family of closed operators.

The definition (or actually a number of equivalent definitions) of a holomor-
phic family of bounded operators is quite obvious and does not need to be recalled.
In the case of unbounded operators the situation is more subtle, and is described,
e.g., in [8], see also [6].

Suppose that Θ is an open subset of C, H is a Banach space, and Θ %
z �→ H(z) is a function whose values are closed operators on H. We say that
this is a holomorphic family of closed operators if for each z0 ∈ Θ there exists a
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neighborhood Θ0 of z0, a Banach space K and a holomorphic family of injective
bounded operators Θ0 % z �→ B(z) ∈ B(K,H) such that RanB(z) = D(H(z)) and

Θ0 % z �→ H(z)B(z) ∈ B(K,H)
is a holomorphic family of bounded operators.

We have the following practical criterion:

Theorem 11. Suppose that {H(z)}z∈Θ is a function whose values are closed op-
erators on H. Suppose in addition that for any z ∈ Θ the resolvent set of H(z)
is nonempty. Then z �→ H(z) is a holomorphic family of closed operators if and
only if for any z0 ∈ Θ there exists λ ∈ C and a neighborhood Θ0 of z0 such that λ
belongs to the resolvent set of H(z) for z ∈ Θ0 and z �→ (H(z)− λ)−1 ∈ B(H) is
holomorphic on Θ0.

The above theorem indicates that it is more difficult to study holomorphic
families of closed operators that for some values of the complex parameter have
an empty resolvent set. We have the following conjecture (formulated as an open
question in [2]), so far unproven:

Conjecture 12. It is impossible to extend

{Rem > −1} % m �→ Hm

to a holomorphic family of closed operators on a larger connected open subset of C.

4. Almost homogeneous Schrödinger operators

For −1 < Rem < 1 the codimension of Dom(Lmin
m2 ) in Dom(Lmax

m2 ) is two. There-
fore, following [5], one can fit a 1-parameter family of closed operators in between

Lmin
m2 in Lmax

m2 , mixing the boundary condition x
1
2+m and x

1
2−m. These operators in

general are no longer homogeneous – their homogeneity is broken by the boundary
condition. We will say that they are almost homogeneous.

More precisely, for any κ ∈ C ∪ {∞} let Hm,κ be the restriction of Lmax
m2 to

the domain

Dom(Hm,κ) =
{
f ∈ Dom(Lmax

m2 ) | for some c ∈ C,

f(x)− c
(
x1/2−m + κx1/2+m

)
∈ Dom(Lmin

m2 ) around 0
}
, κ �=∞;

Dom(Hm,∞) =
{
f ∈ Dom(Lmax

m2 ) | for some c ∈ C,

f(x)− cx1/2+m ∈ Dom(Lmin
m2 ) around 0

}
.

The case m = 0 needs a special treatment. For ν ∈ C ∪ {∞}, let Hν
0 be the

restriction of Lmax
0 to

Dom(Hν
0 ) =

{
f ∈ Dom(Lmax

0 ) | for some c ∈ C,

f(x)− c
(
x1/2 lnx + νx1/2

)
∈ Dom(Lmin

0 ) around 0
}
, ν �=∞;

´
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Dom(H∞
0 ) =

{
f ∈ Dom(Lmax

0 ) | for some c ∈ C,

f(x)− cx1/2 ∈ Dom(Lmin
0 ) around 0

}
.

Here are the basic properties of almost homogeneous Schrödinger operators.

Proposition 13.

1. For any |Re(m)| < 1, κ ∈ C ∪ {∞}
Hm,κ = H−m,κ−1.

2. H0,κ does not depend on κ, and these operators coincide with H∞
0 .

3. We have

UτHm,κU−τ = e−2τHm,e−2τmκ,

UτH
ν
0 U−τ = e−2τHν+τ

0 .

In particular, only

Hm,0 = H−m, Hm,∞ = Hm, H∞
0 = H0

are homogeneous.

The following proposition describes self-adjoint cases among these operators.

Proposition 14.
H∗

m,κ = Hm̄,κ̄ and Hν∗
0 = H ν̄

0 .

In particular,

(i) Hm,κ is self-adjoint for m ∈] − 1, 1[ and κ ∈ R ∪ {∞}, and for m ∈ iR and
|κ| = 1.

(ii) Hν
0 is self-adjoint for ν ∈ R ∪ {∞}.

The essential spectrum of Hm,κ and Hν
0 is always [0,∞[. The following propo-

sition describes the point spectrum in the self-adjoint case.

Proposition 15.

1. If m ∈]− 1, 1[ and κ ≥ 0 or κ =∞, then Hm,κ has no eigenvalues.
2. If m ∈]− 1, 1[ and κ < 0, then Hm,κ has a single eigenvalue

at −4
( Γ(m)
κΓ(−m)

) 1
m .

3. If m ∈ iR and |κ| = 1, then Hm,κ has an infinite sequence of eigenvalues

accumulating at −∞ and 0. If m = imI and eiα = κΓ(−imI)
Γ(imI)

, then these

eigenvalues are −4 exp(−α+2πn
mI

), n ∈ Z.

It is interesting to analyze how the set of self-adjoint extensions of the Her-
mitian operator

Lmin
α = −∂2

x +
(
− 1

4
+ α

) 1

x2

depends on the real parameter α. Self-adjoint extensions form a set isomorphic
either to a point or to a circle. The “renormalization group” acts on this set by a
continuous flow, as described by Proposition 13. This flow may have fixed points.
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The following table describes the various “phases” of the theory of self-adjoint
extensions of Lmin

α . To each phase I give a name inspired by condensed matter
physics. The reader does not have to take these names very seriously, however I
suspect that they have some deeper meaning.

1 ≤ α “gas” point
Unique fixed point: Friedrichs
extension = Krein extension.

0 < α < 1 “liquid” circle

Two fixed points: Friedrichs and
Krein extension.
Ren. group flows from Krein to
Friedrichs.
On one semicircle of non-fixed
points all have one bound state;
on the other all have no bound
states.

α = 0
“liquid-solid
phase transition”

circle

Unique fixed point: Friedrichs
extension = Krein extension.
Ren. group flows from Krein to
Friedrichs.
Non-fixed points have one bound
state.

α < 0 “solid” circle

No fixed points.
Ren. group rotates the circle.
All have infinitely many bound
states.

Table 1

Table 1 can be represented by the picture shown in Figure 1, which is self-explan-
atory.

K=F

F

K

K=F

0 1

α

solid
phase

transition
liquid gas

Figure 1
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There exists a close link between almost homogeneous Schrödinger operators
described in this section and the “toy model of renormalization group” described in
Section 2. It turns out that the corresponding operators are similar to one another.

Define the unitary operator

(If)(x) := x− 1
4 f(2
√

x).

Its inverse is

(I−1f)(x) :=
(y

2

) 1
2

f
(y2

4

)
.

Note that

I−1XI =
X2

4
, I−1AI =

A

2
.

We change slightly notation: the operators Hm, Hm,κ and Hν
0 of this section

will be denoted H̃m, H̃m,κ and H̃ν
0 . Recall that in (2) we introduced the Hankel

transformation Fm, which is a bounded invertible involution satisfying

FmH̃mF−1
m = X2,

FmAF−1
m = −A.

Recall also that in Section 2 we introduced the operators Hm,λ and Hρ
0 .

The following theorem is proven in [3]:

Theorem 16.

1. If λ π
sin(πm) = κ Γ(m)

Γ(−m) , then the operators Hm,λ are similar to H̃m,κ:

F−1
m I−1Hm,λIFm =

1

4
H̃m,κ,

2. If ρ = −2ν, then the operators Hρ
0 are similar to H̃ν

0 :

F−1
m I−1Hρ

0 IFm =
1

4
H̃ν

0 ,
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[3] Jan Dereziński, Homogeneous Rank One Perturbations, Ann. Henri Poincaré (2017),
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Abstract. We derive a generalized unitarity relation for an arbitrary linear
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1. Introduction

The scattering phenomenon defined by a real scattering potential v(x) through
the time-independent Schrödinger equation,

−ψ′′(x) + v(x)ψ(x) = k2ψ(x), (1)

satisfies the unitarity relation:

|Rl/r(k)|2 + |T l/r(k)|2 = 1, (2)

where Rl/r(k) and T l/r(k) are respectively left/right reflection and transmission
amplitudes. The latter determine the asymptotic behavior of the scattering solu-
tions of (1) according to

ψl(k, x)→
{
N+(k)

[
eikx + Rl(k) e−ikx

]
for x→ −∞,

N+(k)T
l(k) eikx for x→ +∞,

(3)

ψr(k, x)→
{
N−(k)T

r(k) e−ikx for x→ −∞,

N−(k)
[
e−ikx + Rr(k) eikx

]
for x→ +∞.

(4)

These respectively correspond to scattering setups where left-/right-incident waves
of amplitude N+/−(k) are scattered by the potential v(x).

c© Springer Nature Switzerland AG 2019
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For a real scattering potential, one can show that [1]

|Rl(k)| = |Rr(k)|, (5)

T l(k) = T r(k). (6)

Therefore the unitarity relation takes the form

|Rl/r(k)|2 + |T (k)|2 = 1, (7)

where T (k) stands for the common value of T l(k) and T r(k).
Reciprocity in transmission (6) turns out to be a universal feature of all

real and complex scattering potentials [2, 3]. To see this we first recall that
the Wronskian of any pair of solutions ψ1,2(x) of (1), i.e., W [ψ1(x), ψ2(x)] :=
ψ1(x)ψ

′
2(x)− ψ′

1(x)ψ2(x), is independent of x. If we compute W [ψl(x), ψr(x)] for
x → −∞ and x → +∞ we respectively find 2ik/T l(k) and 2ik/T r(k). The fact
that these must be equal to the same constant implies (6) for k �= 0. This is actu-
ally the one-dimensional realization of the celebrated reciprocity theorem which is
for example proven for real potentials in Ref. [4].

Unlike (6), (5) is violated by generic complex scattering potentials. A strik-
ing demonstration of this fact is the existence of unidirectionally reflectionless
complex potentials [5]. These are potentials whose reflection amplitudes fulfill
either Rl(k) = 0 �= Rr(k) or Rr(k) = 0 �= Rl(k) for some k ∈ R+. It turns
out that these conditions are invariant under the combined action of parity and
time-reversal transformation (PT ), where T ψ(x) := ψ(x)∗ and Pψ(x) := ψ(−x)
respectively define the parity and time-reversal transformations [6]. This in turn
makes PT -symmetric potentials1 the principal examples of unidirectionally reflec-
tionless potentials. This together with the interesting properties of their spectral
singularities [7] have made PT -symmetric scattering potentials a focus of intensive
research activity during the past decade [8].

Among the outcomes of the research done in this subject is the discovery of
the following generalization of the unitarity relation (7) for PT -symmetric poten-
tials [9]:

|T (k)|2 ± |Rl(k)Rr(k)| = 1. (8)

Another curious observation is that reflection and transmission amplitudes of PT -
symmetric scattering potentials satisfy

|Rl(−k)| = |Rr(k)|, |T (−k)| = |T (k)|. (9)

These were initially conjectured in [10] based on evidence provided by the study
of a complexified Scarf II potential. They were subsequently proven as immediate
consequences of the following identities that hold for PT -symmetric scattering
potentials [1].

Rl/r(−k) = −e2iτ(k)Rr/l(k), T (−k) = T (k)∗, (10)

1These are potentials that satisfy v(−x)∗ = v(x).
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where eiτ(k) := T (k)/|T (k)|. In view of the second of these equations, we can write
the first in the form

Rl/r(−k)T (−k) + Rr/l(k)T (k) = 0. (11)

The analysis leading to the proof of (10) also reveals that the reflection
and transmission amplitudes of both real and PT -symmetric scattering potentials
fulfill [1]

Rl/r(k)Rl/r(−k) + |T (k)|2 = 1. (12)

It is not difficult to see that this reduces to (7) and (8) for real and PT -symmetric
potentials, respectively.

The purpose of the present article is to establish a generalization of (12) that
holds for every linear scattering system, even those that are not defined by a local
potential [11].

2. General scattering systems in one dimension

Consider a wave equation in 1+1 dimensions that admits time-harmonic solutions:
e−iωtψ(x), where ψ : R→ C solves a time-independent wave equation,

W [ψ, x] = 0. (13)

This equation, which may be nonlocal or even nonlinear, defines a meaningful
scattering phenomenon if for x→ ±∞ its solutions tend to those of

−ψ′′(x) = k2ψ(x). (14)

In other words, solutions of (13) satisfy the asymptotic boundary conditions:

ψ(x)→ A−(k)e
ikx + B−(k)e

−ikx for x→ −∞, (15)

ψ(x)→ A+(k)e
ikx + B+(k)e

−ikx for x→ +∞, (16)

where A± and B± are complex-valued coefficient functions. We call the 2 × 2
matrices M(k) and S(k) satisfying

M(k)

[
A−(k)
B−(k)

]
=

[
A+(k)
B+(k)

]
, (17)

S(k)

[
A−(k)
B+(k)

]
=

[
A+(k)
B−(k)

]
, (18)

the transfer and scattering matrices of the scattering system. If (13) is nonlinear,
their entries, Mij(k) and Sij(k), are respectively nonlinear functions of (A−, B−)
and (A−, B+). In the following we focus our attention to scattering phenomena
defined by linear wave equations.2

Because (A−, B−) and (A+, B+) determine the behavior of the solutions ψ(x)
at x = −∞ and x = +∞, the global existence and uniqueness of the solution of the

2A linear wave equation is an equation of the form (13) such that the linear combinations of its
solutions are also solutions of this equation.
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initial-value problem defined by (13) and (15) implies that M(k) is an invertible
matrix, i.e.,

detM(k) �= 0. (19)

Under this condition the scattering problem for the wave equation (13) is well
posed. We therefore assume that it holds true. The inverse of M(k) allows us to
specify the asymptotic expression for the solutions of (13) at x = −∞ in terms of
their asymptotic expression at x = +∞.

Let ψ±(k, x) be the solutions of (13) that satisfy

ψ±(k, x) = e±ikx for x→ ±∞. (20)

Then Eq. (17) implies

ψ−(k, x)→M22e
ikx + M12(k)e

−ikx for x→ +∞, (21)

ψ+(k, x)→ −M21(k)e
ikx + M22e

−ikx

detM(k)
for x→ −∞. (22)

ψ± are called the Jost solutions of the wave equation (13). Comparing (20)–(22)
with (3) and (4) and using the linearity of (13), we can respectively identify
ψl(k, x) and ψr(k, x) with N+(k)T

l(k)ψ+(k, x) and N−(k)T
r(k)ψ−(k, x). Further-

more, this identification implies

M11(k) =
D(k)

T r(k)
, M12(k) =

Rr(k)

T r(k)
,

(23)

M21(k) = −
Rl(k)

T r(k)
, M22(k) =

1

T r(k)
,

Rl(k) = −M21(k)

M22(k)
, T l(k) =

detM(k)

M22(k)
,

(24)

Rr(k) =
M12(k)

M22(k)
, T r(k) =

1

M22(k)
,

where

D(k) := T l(k)T r(k)−Rl(k)Rr(k) =
M11(k)

M22(k)
. (25)

We can similarly relate the entries of the scattering matrix to the reflection
and transmission coefficients by enforcing (18) for the coefficient functions of the
Jost solutions ψ±(k, x). In view of (20)–(22), this gives

S11(k) = T l(k), S12(k) = Rr(k), S21(k) = Rl(k), S22(k) = T l(k). (26)

In particular,
detS(k) = D(k). (27)

The above-mentioned requirements on the global existence of the solutions
of (13) that satisfy asymptotic boundary conditions (15), (16), and (20) restrict
the wave operator W . For example if W is the Schrödinger operator −∂2

x + v(x)
for a potential v : R → C, we can satisfy these requirements provided that v(x)
fulfills the Faddeev condition:

∫∞
−∞(1 + |x|)|v(x)|dx <∞, [12].
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3. Generalized unitarity relation

Let us make the k-dependence of the solutions of the wave equation (13) explicit
by using ψ(k, x) in place of ψ(x) in (15) and (16). Consider the implications of the
transformations:

ψ(k, x)
R−→ ψ̆(k, x) := (Rψ)(k, x) := ψ(−k, x), (28)

ψ(k, x)
P−→ ψ̃(k, x) := (Pψ)(k, x) := ψ(k,−x), (29)

ψ(k, x)
T−→ ψ(k, x) := (T ψ)(k, x) := ψ(k, x)∗, (30)

ψ(k, x)
PT−→ ψ̃(k, x) := (PT ψ)(k, x) := ψ(k,−x)∗. (31)

It is not difficult to see that the transformed wave functions, ψ̆(k, x), ψ̃(k, x),

ψ(k, x), and ψ̃(k, x) also tend to plane waves at spatial infinities. Therefore they
determine scattering phenomena. By analogy to the definition of the transfer
matrix M(k) for ψ(k, x), i.e., (17), we can introduce the transfer matrices for

ψ̆(k, x), ψ̃(k, x), ψ(k, x), and ψ̃(k, x). We respectively label them by M(−k), M̃(k),

M(k), and M̃(k). In view of (28)–(30), we can show that

M(−k) = σ1M(k)σ1, M̃(k) = σ1M(k)−1σ1, (32)

M(k) = σ1M(k)∗σ1, M̃(k) = M(k)−1∗, (33)

where σ1 := [ 0 1
1 0 ] is the first Pauli matrix.

Similarly we can introduce the reflection and transmission amplitudes for

ψ̆(k, x), ψ̃(k, x), ψ(k, x), and ψ̃(k, x), which by virtue of their relationship to

M(−k), M̃(k), M(k), and M̃(k) and Eqs. (32) and (33), take the form:

Rl(−k) = −Rr(k)

D(k)
, T l(−k) =

T l(k)

D(k)
,

(34)

Rr(−k) = −Rl(k)

D(k)
, T r(−k) =

T r(k)

D(k)
,

R̃l(k) = Rr(k), T̃ l(k) = T r(k),
(35)

R̃r(k) = Rl(k), T̃ r(k) = T l(k),

R
l
(k) = −Rr(k)∗

D(k)∗
, T

l
(k) =

T l(k)∗

D(k)∗
,

(36)

R
r
(k) = −Rl(k)∗

D(k)∗
, T

r
(k) =

T r(k)∗

D(k)∗
,
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R̃
l

(k) = −Rl(k)∗

D(k)∗
, T̃

l

(k) =
T r(k)∗

D(k)∗
,

(37)

R̃
r

(k) = −Rr(k)∗

D(k)∗
, T̃

r

(k) =
T l(k)∗

D(k)∗
,

respectively.

Next, we invert (34) to express Rr(k) and T r(k) in terms of Rl(−k), T r(−k),
and D(k). Substituting the result in (25), we find

D(k)
[
T r(−k)T l(k) + Rl(−k)Rl(k)− 1

]
= 0. (38)

Similarly, we can solve (34) for Rl(k) and T l(k) in terms of Rr(−k), T l(−k), and
D(k), and use (25) to establish:

D(k)
[
T l(−k)T r(k) + Rr(−k)Rr(k)− 1

]
= 0. (39)

Equations (38) and (39) imply that whenever D(k) �= 0,

T l/r(−k)T r/l(k) + Rl/r(−k)Rl/r(k) = 1. (40)

This is a generalized unitarity relation that reduces to (12) whenever the scat-
tering system has reciprocal transmission and D(k) �= 0 for all k ∈ R+. Both of
these conditions are satisfied for scattering systems determined by the Schrödinger
equation for a local time-reversal invariant (real) or PT -symmetric potential. Ac-
cording to the reciprocity theorem they have reciprocal transmission, and as we
show in the sequel they satisfy |D(k)| = 1. To see this, first we note that according
to (33) the transfer matrix for time-reversal-invariant and PT -symmetric systems3

respectively fulfill

M(k)∗ = σ1Mσ1, (41)

M(k)∗ = M(k)−1. (42)

We can use these equations to show that

T -symmetry ⇒ M11(k)
∗ = M22(k), (43)

PT -symmetry ⇒ M11(k)
∗ =

M22(k)

detM(k)
. (44)

For time-reversal-invariant systems, Eqs. (25) and (43) imply:

|D(k)| =
∣∣∣∣M11(k)

M22(k)

∣∣∣∣ = ∣∣∣∣M11(k)
∗

M22(k)

∣∣∣∣ = 1. (45)

3By definition, time-reversal invariance and PT -symmetry of a scattering system respectively

mean that its reflection and transmission amplitudes, and consequently its transfer and scattering
matrices are invariant under time-reversal and PT transformations.
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In light of (25) and (44), we also find the following result for PT -symmetric
scattering systems.

|D(k)| =
∣∣∣∣M11(k)

M22(k)

∣∣∣∣ = ∣∣∣∣ M11(k)

detM(k)

∣∣∣∣ ∣∣∣∣detM(k)

M22(k)

∣∣∣∣ = ∣∣∣∣M22(k)
∗

M11(k)∗

∣∣∣∣ = 1

|D(k)| , (46)

which means |D(k)| = 1.
Note that the proof of the identity |D(k)| = 1 we have just presented does not

make use of the transmission reciprocity. Therefore it holds for every scattering
system possessing time-reversal invariance or PT -symmetry. In view of (39), it
implies that the reflection and transmission amplitudes of these systems fulfill
(40) for all k ∈ R+.

For scattering systems that are neither time-reversal-invariant nor PT -sym-
metric, there may exist values of k for which D(k) = 0, in which case (40) may be
violated for these values of k. According to (27), these are the real and positive
zeros k0 of detS(k). Clearly detS(k0) = 0 means that S(k0) has a vanishing
eigenvalue, i.e., there are complex numbers A0− and B0+ such that

S(k0)

[
A0−
B0+

]
=

[
0
0

]
. (47)

In light of (15), (16), and (18), this equation proves the existence of a solution
ψin(k, x) of the wave equation that satisfies purely incoming asymptotic boundary
conditions for k = k0, i.e.,

ψin(k0, x)→
{

A0−eik0x for x→ −∞,

B0+e−ik0x for x→ +∞.

This solution describes a rather remarkable situation where the system absorbs a
pair of incident waves traveling towards it in opposite directions. This phenomenon
is called coherent perfect absorption or antilasing [13–17].

The above analysis shows that for every scattering system and k ∈ R+, ei-
ther k is a wavenumber at which the system acts as a coherent perfect absorber
or its reflection and transmission amplitudes satisfy the generalized unitarity re-
lation (40).

Let us conclude by noting that the term ‘generalized unitarity relation’ refers
to the fact that for a real scattering potential where the wave operator is a Her-
mitian Schrödinger operator, this relation reduces to the unitarity relation (7).
This follows from the reciprocity theorem and Eqs. (34) and (36), which for time-
reversal-invariant systems imply

Rl/r(−k) = Rl/r(k)∗, T l/r(−k) = T l/r(k)∗.
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Laplacians and Lagrangian Manifolds,
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Abstract. The aim of this work is to describe certain constructions and re-
sults concerning differential operators on polyhedral surfaces. In particular,
we study properties of Laplacians as well as behavior of localized solutions of
wave equations.
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1. Introduction

Differential operators on polyhedral surfaces were intensively studied during last
decades (see, e.g., [1] and references therein). Many papers are devoted to such
topics as spectral theory, determinants, trace formulas etc. Nice properties of such
operators are due to the fact that polyhedra are almost everywhere flat; from the
other hand, there appear interesting effects, caused by singularities (vertices). Fur-
ther we announce certain results concerning properties of Laplacians and behavior
of solutions to wave equations.

2. Laplacians on polyhedra

2.1. Polyhedral surfaces

We will consider polyhedral surfaces – compact 2D oriented surfaces M , glued
from a finite number of flat polygons in a usual manner. The surfaces will be not
necessary embedded in R3; the total angles β1, . . . , βM at the vertices can be less

The work was supported by the Russian Scientific Foundation (grant 16-11-10069).
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or greater than 2π – the unique condition is the Gauss-Bonnet relation

M∑
j=1

(
1− βj

2π

)
= χ(M),

where χ denotes Euler characteristics.
In the last part of the paper we will consider wave equations on the simplest

noncompact polyherdon – infinite pyramid.

Remark 1. Each polyhedron admits a natural complex structure. Namely, if P is a
point of a face, then the natural complex coordinate is z = x1+ ix2, where (x1, x2)
are standard Euclidean coordinate on R2. The same states for the points, lying on
edges – one can unfold the vicinity of such a point to the plane and then introduce
the same coordinate. If P is a vertex with total angle β then the vicinity of P can
be unfolded to the plane angle of volume β; the natural coordinate on M near P is
ζ = z2π/β, where z = x1+ ix2 is a standard coordinate on the plane. This complex
structure, in particular, induces the smooth structure of each polyhedral surface.

Remark 2. The natural metric on a polyhedral surface has the form ds2 = dzdz̄
outside the vertices; near the vertex it has the form

ds2 =

(
β

2π

)2

|ζ|2(
β
2π −1)dζdζ̄

and has singularities at vertices. In particular, the wave equation in coordinates
(y1, y2), ζ = y1 + iy2 has the form

∂2u

∂t2
=

2π

β
(y2

1 + y2
2)

1− β
2π

(
∂2u

∂y2
1

+
∂2u

∂y2
2

)
.

The velocity of waves vanishes (if β < 2π) or becomes infinite (if β > 2π) at ver-
tices; such a situation appear, in particular, when long waves meet small obstacles
(islands or narrow hollows).

2.2. Definitions of Laplacians

Further we discuss properties of Laplacians and wave equations on polyhedral
surfaces; in order to define the corresponding operators, one has to state bound-
ary conditions in singular points (vertices of polyhedra). These conditions can be
defined by the following natural arguments.

1. The Laplacian must be self-adjoint.
2. On the “regular” part of the surface the Laplacian must coincide with the

usual one.

The formal definition has the following form. Consider the non-compact
smooth Riemannian manifold

M0 = M\{P1, . . . , PM}, where Pj are vertices. Consider the usual Laplace–

Beltrami operator Δ̃ on C∞
0 (M0) and let Δ0 denote the closure of this operator

with respect to the graph norm ‖ ◦ ‖Δ: ‖u‖2Δ = ‖u‖2+ ‖Δ̃u‖2, where ‖ ◦ ‖ denotes
the L2-norm. Clearly, Δ0 is a symmetric operator in L2(M).
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Definition 3. The Laplace operator on a polyhedral surface M is a self-adjoint
extension of Δ0.

Remark 4. The Laplacian is not unique; different operators are defined by dif-
ferent boundary conditions at vertices. Namely, the explicit description of the
corresponding domains has the following form. For each vertex P with total angle
β consider the set of functions

F+
0 = 1, F−

0 = log r,

F±
k =

(
2π|k|

β

)−1/2

r±
2π|k|

β e
2πikθ

β , k ∈ Z\{0}, |k| < β

2π
.

Here r, θ are polar coordinates near P (r is a geodesic distance, θmodβ is angle
coordinate on the unfolding). Functions u from the domain of Δ have the following
asymptotics near each vertex:

u =
∑
k

α+
k F+

k + α−
k F−

k + O(r), k ∈ Z, |k| < β

2π
.

Now we collect all the coefficients α+
j and α−

j for all vertices and form an even-

dimensional vector α = (α+, α−) ∈ CM ⊕ CM . Let us fix in the latter space a
plane L, Lagrangian with respect to the standard skew-Hermitian form

[α, λ] =

M∑
j=1

(α+
j λ̄−

j − α−
j λ̄+

j ).

The boundary conditions have the form α ∈ L; they can be written explicitly in
terms of unitary matrix U , defining L:

i(E + U)α− + (E − U)α+ = 0,

where E is the M ×M unit matrix.

Remark 5. General boundary conditions match all the vertices together; sometimes
it is more natural to consider local boundary conditions which deal with each
vertex separately; formally it means that the plane L is a direct sum of planes,
corresponding to vertices (the matrix U is formed by the corresponding diagonal
blocks).

3. Spaces of harmonic functions

Now we describe the kernel of the Laplacian ΔL, corresponding to the Lagrangian
plane L.

Theorem 6. The kernel of the operator ΔL is isomorphic to the intersection L∩L0

where Lagrangian plane L0 is defined by the polyhedron itself.

Remark 7. In general position the intersection is zero, so there are no nontrivial
harmonic functions.
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Remark 8. The plane L0 can be expressed in terms of the Mittag-Leffler problem,
corresponding to the Riemannian surface M .

Remark 9. The kernel of the Friedrichs extension (α− = 0) is one-dimensional and
is formed by constants.

Remark 10. For convex polyhedra in R3 with N vertices and Laplacians with local
boundary conditions, harmonic functions can be described explicitly. Namely, in
this case the polyhedron is isomorphic to the Riemann sphere; let z be a global
coordinate on this sphere and let eiϕj be 1×1 unitary matrices, defining boundary
conditions. Arbitrary harmonic function has the form

f = c0 +

N∑
j=1

cj log |z − zj |,

where constants cj satisfy the following linear system of equations

cos θj(c0 +
∑
i�=j

ci log |zi − zj |) + sin θjcj = 0,

N∑
j=1

cj = 0.

4. Trace formulas

Recall the classical McKean–Singer formula for smooth compact closed d-dimen-
sional Rimannian manifold M

(4πt)d/2 tr(etΔ) = vol(M) +
t

3

∫
M

Rdσ +
πt2

180

∫
M

P2(R)dσ + . . . .

Here vol(M) is the Riemannian volume of M , R is the scalar curvature, P2 is
a polynomial in the derivatives of a Riemann tensor. For a smooth compact 2D
surface M this formula has the form

tr(etΔ) =
Area(M)

4πt
+

1

6
χ(M) + O(t).

Here we obtain the analogous formulas for a compact polyhedron.

Theorem 11. Let α− = 0 (Friedrichs Laplacian). Then

tr(etΔ) =
Area(M)

4πt
+

1

12

∑
k

(
2π

βk
− βk

2π

)
+ O(e−c/t).

For arbitrary Laplacian

tr(etΔ) =
Area(M)

4πt
+

1

12

∑
k

(
2π

βk
− βk

2π

)
+

∞∑
j=1

tj/2qj(log t),

qj(log t) =

∞∑
s=0

gjs
(log t)s

.

Here all the series are asymptotical.
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5. Localized solutions of the wave equation

Finally, let us consider the Cauchy problem for the wave equation on a polyhedron
with δ-type initial function.

utt = Δu, u|t=0 =
1

ε2
u0

(
z − z0

ε

)
, ut|t=0 = 0, ε→ 0. (1)

Here z0 is a point of a face Q, u0(y) ∈ C∞
0 (Q). For small ε the initial function

has the form of narrow peak, concentrated near the point z0; the weak limit of
this function is the delta-function supported at z0. We will consider the simplest
noncompact polyhedron – an infinite pyramid with one vertex (evidently, such a
polyhedron is isometric to an infinite cone). Further we describe the set which is
a natural analog of the support of singularities for distributions.

Definition 12. The asymptotic support of the solution u is the set Qt:

u(x, t) = O(1), x /∈ Qt.

The following assertion is almost evident.

Proposition 13. For sufficiently small t

Qt : |z − z0| = t.

Remark 14. This assertion means that for small times the initial localized per-
turbation propagates along geodesics – straight lines, starting from z0. Now we
describe scattering on the vertex of the pyramid.

Theorem 15. Let M be an infinite pyramid. Then for sufficiently large t

Qt = Q1 ∪Q2,

where Q1 is the geodesic sphere with the center at z0 and radius equal to t, while
Q2 is the geodesic sphere with the center at the vertex and radius t− d, where d is
the distance between z0 and the vertex.

6. Lagrangian manifolds, corresponding to localized solutions

It is well known, that propagation of singularities of solutions for hyperbolic equa-
tions on a smooth Riemannian manifold M is connected with Lagrangian sub-
manifolds in T ∗M – solutions can be represented via Maslov canonic operators
on these submanifolds. The same situation is valid for polyhedra; namely, for the
Cauchy problem under consideration the following proposition holds.

Proposition 16. Main term of asymptotic solution of the Cauchy problem (1) can
be expressed in terms of Maslov canonic operator on the union of two Lagrangian
submanifolds in T ∗M :

Λ = Λ1 ∪ Λ2,
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where

Λ1 : ζ = λ
2π
β , p =

β(ζ − z0)

2π(λ̄)
2π
β −1|λ− z0|

, λ ∈ C,

Λ2 : ζ = λ
2π
β , p =

β|λ|
2π(λ̄)

2π
β

, λ ∈ C.

Here ζ is a global complex coordinate on M ∼= C, (ζ, p) are the corresponding
coordinates on T ∗M ∼= C2.

Remark 17. For the simplest case β = π the previous formulas have the form

Λ1 : ζ = λ2, p =
λ− z0

2|λ− z0|λ̄
,

Λ2 : ζ = λ2, p =
λ2

2|λ|3 .
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Abstract. We present a one-to-one correspondence between equivalence clas-
ses of unitary irreducible representations and coadjoint orbits for a class of
pro-Lie groups including all connected locally compact nilpotent groups and
arbitrary infinite direct products of nilpotent Lie groups.
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1. Introduction

In this paper we sketch an approach to unitary representation theory for a class of
projective limits of Lie groups, in the spirit of the method of coadjoint orbits from
representation theory of Lie groups. (See [2] for more details.) The importance
of this method stems from the fact that the groups under consideration here are
not locally compact in general, hence they may not have a Haar measure, and
therefore it is not possible to model their representation theory in the usual way,
using Banach algebras or C∗-algebras.

By way of motivation, we discuss a simple example (cf. [2, Ex. 4.10]), which
shows that the usual C∗-algebraic approach to group representation theory does
not work for topological groups which are not locally compact. Let G = (RN,+) be
the abelian group which is the underlying additive group of the vector space of all
sequences of real numbers. Since the linear dual space (RN)∗ = R(N) is the vector
space of all finitely supported sequences of real numbers, it easily follows that there

exists a bijection ΨG : Ĝ→ R(N) (compare also Corollary 9). Specifically, for every
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λ = (λj)j∈N ∈ R(N), Ψ−1
G (λ) ∈ Ĝ is the equivalence class of the one-dimensional

representation

χλ : G→ U(1), χλ((xj)j∈N) := exp

(
i
∑
j∈N

λjxj

)
where U(1) := {z ∈ C | |z| = 1}. However, as the vector space R(N) is infinite-
dimensional, it is not locally compact, hence it is not homeomorphic to the spec-
trum of any C∗-algebra. Consequently, the irreducible representation theory of G
cannot be exhaustively described via any C∗-algebra.

2. Preliminaries

Lie theory

We use upper case Roman letters to denote Lie groups, and their corresponding
lower case Gothic letters to denote the Lie algebras. We will also use the notation L
for the Lie functor which associates to each Lie group its Lie algebra, hence for any
Lie group G one has L(G) = g. We denote the exponential map of a Lie group G by
expG : g→ G, and if this map is bijective, then we denote its inverse by logG : G→
g. For any morphism of Lie groups q : G→ H , its corresponding morphism of Lie
algebras is denoted by L(q) : g→ h, hence one has the commutative diagram

g
L(q)−−−−→ h

expG

⏐⏐K ⏐⏐KexpH

G
q−−−−→ H

as is well known. The coadjoint action of a Lie group is denoted by Ad∗
G : G ×

g∗ → g∗, and its corresponding set of coadjoint orbits is denoted by g∗/G or
L(G)∗/G. If q : G → H is a surjective morphism of Lie groups, then one has a
map L(q)∗ : h∗ → g∗ such that for every coadjoint H-orbit O ∈ h∗/H its image
L(q)∗(O) is a coadjoint G-orbit, and one thus obtains a map

L(q)∗Ad∗ : h∗/H → g∗/G, O �→ L(q)∗(O).

Representation theory

For any topological group G we denote by Ĝ its unitary dual, that is, its set of
unitary equivalence classes [π] of unitary irreducible representations π : G→ B(H).
If q : G → H is a continuous surjective morphism of topological groups, then we
define

q̂ : Ĥ → Ĝ, [π] �→ [π ◦ q].

Proposition 1. Let G be any connected nilpotent Lie group with its universal cov-

ering p : G̃→ G, and denote Γ := Ker p ⊆ G̃. We define

g∗
Z := {ξ ∈ g∗ | (ξ ◦ L(p) ◦ logG̃)(Γ) ⊆ Z}.

Then the following assertions hold:
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1. The set Γ is a discrete subgroup of the center of G̃.
2. The set g∗

Z
is invariant with respect to the coadjoint action of G.

3. There exists an injective correspondence ΨG : Ĝ → g∗/G, whose image is
exactly the set of all coadjoint G-orbits contained in g∗

Z
, such that if H is any

other connected nilpotent Lie group with a surjective morphism of Lie groups
q : G→ H, then the diagram

Ĝ
ΨG−−−−→ g∗/G

q̂

L⏐⏐ L⏐⏐L(q)∗Ad∗

Ĥ
ΨH−−−−→ h∗/H

is commutative.

Proof. See [2, Prop. A.3]. �

3. Pro-Lie groups and their Lie algebras

The main results that we give below (see Theorem 7 and its corollaries) are appli-
cable to pro-Lie groups and are stated in terms of Lie algebras and coadjoint orbits
of these groups. Therefore we discuss these notions in this section. Our general ref-
erence for pro-Lie groups is the monograph [6], and we also refer to the paper [7]
for the relation between pro-Lie groups and infinite-dimensional Lie groups.

Any topological group in this paper is assumed to be Hausdorff by definition.
A Cauchy net in a topological group G is a net {gj}j∈J in G with the property
that for every neighborhood V of 1 ∈ G there exists jV ∈ J such that for all
i, k ∈ J with i ≥ jV and k ≥ jV one has gig

−1
k ∈ V . A topological group G

is called complete if every Cauchy net in G is convergent. Every locally compact
group is complete by [6, Rem. 1.31].

For any topological group G we denote by N (G) the set of its co-Lie sub-
groups, that is, the closed normal subgroups N ⊆ G for which G/N is a finite-
dimensional Lie group. We say that G is a pro-Lie group if it is complete and for
every neighborhood V of 1 ∈ G there exists N ∈ N (G) with N ⊆ V (cf. [6, Def.
3.25]). If this is the case, then N (G) is closed under finite intersections, hence it
is a filter basis (cf. [6, page 148]).

Pro-Lie groups can be equivalently defined as the limits of projective systems
of Lie groups, by [6, Th. 3.39].

Definition 2. For any pro-Lie group G, its set of continuous 1-parameter subgroups

L(G) := {X ∈ C(R, G) | (∀t, s ∈ R) X(t + s) = X(t)X(s)}

is endowed with its topology of uniform convergence on the compact subsets of R.
Then the topological space L(G) has the structure of a locally convex Lie alge-
bra over R, whose scalar multiplication, vector addition and bracket satisfy the
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following conditions for all t, s ∈ R and X1, X2 ∈ L(G):

(t ·X1)(s) = X1(ts);

(X1 + X2)(t) = lim
n→∞

(X1(t/n)X2(t/n))
n;

[X1, X2](t
2) = lim

n→∞
(X1(t/n)X2(t/n)X1(−t/n)X2(−t/n))n

2

,

where the convergence is uniform on the compact subsets of R. (See, for instance,
[1, Ex. 2.7(4.)].) One also has the dual vector space

L(G)∗ := {ξ : L(G)→ R | ξ is linear and continuous}
endowed with its locally convex topology of pointwise convergence on L(G). The
adjoint action is AdG : G × L(G) → L(G), (g,X) �→ AdG(g)X := gX(·)g−1, and
this defines by duality the coadjoint action

Ad∗G : G× L(G)∗ → L(G)∗, (g, ξ) �→ Ad∗G(g)ξ := ξ ◦AdG(g−1).

We denote by L(G)∗/G the set of all coadjoint orbits, that is, the orbits of the
above coadjoint action.

In the following proposition we summarize a few basic properties of Lie alge-
bras of connected locally compact groups. A pro-Lie group G is called pronilpotent
if for every N ∈ N (G) the finite-dimensional Lie group G/N is nilpotent. (See
[6, Def. 10.12].)

Proposition 3. If G is a connected locally compact group, then the following asser-
tions hold:

1. G is a pro-Lie group and its Lie algebra L(G) is the direct product of a
finite-dimensional Lie algebra, an abelian (possibly infinite-dimensional) Lie
algebra, and a (possibly infinite) product of simple compact Lie algebras.

2. The following conditions are equivalent:
(a) The group G is pronilpotent.
(b) The Lie algebra L(G) is the product of a finite-dimensional nilpotent

Lie algebra and an abelian (possibly infinite-dimensional) Lie algebra.
(c) The Lie algebra L(G) is nilpotent (possibly infinite-dimensional).
(d) The group G is nilpotent.

Proof. The first assertion follows by [5, Th. 4] or [8, Cor. 4.24]. See also [4,
Th. 2.1.2.2].

For the second assertion, we first recall from [6, Th. 10.36 and Def. 7.42] that
the group G is pronilpotent if and only if its Lie algebra L(G) is pronilpotent,
that is, every finite-dimensional quotient algebra of L(G) is nilpotent. Therefore,
in view of Assertion 1, one has

(2a) ⇐⇒ (2b) ⇐⇒ (2c).

Moreover, one clearly has (2d) =⇒ (2a).

We now prove (2b) =⇒ (2d). To this end let πG : G̃ → G be the universal

morphism defined in [8, Def. 4.20] and [6, page 259]. Then L(πG) : L(G̃)→ L(G)
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is an isomorphism of Lie algebras and the image of πG is dense in G by [6, Th. 6.6
(i) and (iv)]. It follows at once by condition (2b) and [8, Th. 4.23] that the group

G̃ is nilpotent. Then, as the image of πG is dense in G, we obtain (2d), and this
completes the proof. �

4. Main results

Theorem 7 below provides an exhaustive description of the unitary dual of a class
of topological groups that are not locally compact. As we discussed in the intro-
duction, unitary dual spaces of non-locally compact groups in general cannot be
described in terms of representation theory of C∗-algebras.

For the following definition we recall that if X is an arbitrary nonempty set,
then a filter basis on X is a nonempty set B whose elements are nonempty subsets
of X having the property that for any X1, X2 ∈ B there exists X0 ∈ B with
X0 ⊆ X1 ∩X2. If X is moreover endowed with a topology, then one says that the
filter basis B converges to a point x0 ∈ X if for every neighborhood V of x0 there
exists X ∈ B with X ⊆ V .

Example 4. Here are some basic examples of filter bases.

1. Every neighborhood basis at any point of a topological space is a filter basis
converging to that point.

2. If G is a group endowed with the discrete topology and B is a set of subgroups
of G such that the trivial subgroup G0 := {1} is an element of B, then B
is a filter basis on G converging to 1 ∈ G since for any G1, G2 ∈ B one has
G0 ⊆ G1 ∩ G2 and on the other hand G0 is contained in any neighborhood
of 1 ∈ G.

3. If G is a topological group with the property that for every neighborhood V
of 1 ∈ G there exists a co-Lie subgroup N ∈ N (G) with N ⊆ V , then N (G) is
a filter basis on G converging to 1 ∈ G since in fact for every N1, N2 ∈ N (G)
one has N1 ∩ N2 ∈ N (G). (See [6, page 148].) In particular, this holds true
for pro-Lie groups.

Definition 5. An amenable filter basis on a topological group G is a filter basis
N ⊆ N (G) converging to 1 ∈ G such that every topological group N ∈ N is
amenable.

Example 6. Here are two examples of amenable filter basis that are needed in
Corollaries 8–9:

1. If G is a connected locally compact group, then N (G) is an amenable filter
basis. In fact, every N ∈ N (G) is compact hence amenable, and on the other
hand N (G) converges to 1 ∈ G by the theorem of Yamabe. (See for instance
[4, Th. 0.1.5].)

2. Let {Gj}j∈J be an infinite family of nilpotent Lie groups with their direct
product topological group G :=

∏
j∈J Gj . Denote by N the set of all sub-

groups of G of the form NF :=
∏

j∈J Nj associated to any finite subset F ⊆ J ,
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with Nj = {1} ⊆ Gj if j ∈ F and Nj = Gj if j ∈ J \F . It is clear that every
NF of this form has the following properties: NF is a closed normal subgroup
of G that is isomorphic to

∏
j∈J\F Gj hence NF is amenable by [2, Prop.

3.8], and moreover G/NF is isomorphic to
∏

j∈F Gj , which is a Lie group

since F is a finite set, hence NF ∈ N (G). For any finite subsets F1, F2 ⊆ J
one clearly has NF1 ∩ NF2 = NF1∪F2 , where F1 ∪ F2 is again a finite subset
of J , hence N is a filter basis on G. Moreover, by the definition of an infinite
direct product of topologies, it follows that the filter basis N converges to
1 ∈ G. Consequently, N is an amenable filter basis on G.

Theorem 7. Let G be a complete topological group with an amenable filter basis N
for which G/N is a connected nilpotent Lie group for every N ∈ N . Then there
exists a well-defined bijective correspondence

ΨG : Ĝ→ L(G)∗/G, [π] �→ Oπ

between the equivalence classes of unitary irreducible representations of G and the
set of all coadjoint G-orbits contained in the G-invariant set

L(G)∗Z := {ξ ∈ L(G)∗ | (∃N ∈ N )(∃η ∈ L(G/N)∗Z) ξ = η ◦ L(pN )}.
Every unitary irreducible representation π : G → B(H) is thus associated to the
coadjoint G-orbit Oπ := L(pN )∗(O0) ⊆ L(G)∗

Z
, where N ∈ N and O0 ⊆ L(G/N)∗

Z

is the coadjoint (G/N)-orbit associated with a unitary irreducible representation
π0 : G/N → B(H) satisfying π0 ◦ pN = π.

Proof. See [2, Th. 4.6]. �
In connection with the following corollary we note that the Lie algebras of

connected locally compact nilpotent groups can be described as in Proposition 3.

Corollary 8. If G is a connected locally compact nilpotent group, then there is a

bijective correspondence ΨG : Ĝ→ L(G)∗/G onto the set of all coadjoint G-orbits
contained in a certain G-invariant subset L(G)∗

Z
⊆ L(G). For any filter basis

N ⊆ N (G) converging to the identity one has

L(G)∗
Z := {ξ ∈ L(G)∗ | (∃N ∈ N )(∃η ∈ L(G/N)∗Z) ξ = η ◦ L(pN )}.

Proof. See [2, Cor. 4.7]. �
We now draw a corollary of Theorem 7 that applies to pro-Lie groups which

are not locally compact.

Corollary 9. If {Gj}j∈J is a family of connected nilpotent Lie groups, with their
direct product topological group G :=

∏
j∈J Gj, then there is a bijective correspon-

dence ΨG : Ĝ → L(G)∗/G onto the set of all coadjoint G-orbits contained in the
G-invariant subset L(G)∗

Z
⊆ L(G). Here we define

L(G)∗Z := {ξ ∈ L(G)∗ | (∃F ∈ F)(∃η ∈ L(GF )
∗
Z) ξ = η ◦ L(pF )}

where F is the set of all finite subsets F ⊆ J , and for every F ∈ F we define
GF :=

∏
j∈F Gj and pF : G→ GF is the natural projection.
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Proof. See [2, Cor. 4.9]. �
Remark 10. The amenability hypotheses of Theorem 7 may actually be removed,
using some results of [9].
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Abstract. Rapid progress has been made recently on symmetry breaking op-
erators for real reductive groups. Based on Program A–C for branching prob-
lems (T. Kobayashi [Progr. Math. 2015]), we illustrate a scheme of the clas-
sification of (local and nonlocal) symmetry breaking operators by an exam-
ple of conformal representations on differential forms on the model space
(X,Y ) = (Sn, Sn−1), which generalizes the scalar case (Kobayashi–Speh
[Mem. Amer. Math. Soc. 2015]) and the case of local operators (Kobayashi–
Kubo–Pevzner [Lect. Notes Math. 2016]). Some applications to automorphic
form theory, motivations from conformal geometry, and the methods of proofs
are also discussed.
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1. Branching problems – Stages A to C

Suppose Π is an irreducible representation of a group G. We may regard Π
as a representation of its subgroup G′ by restriction, which we denote by Π|G′ .
The restriction Π|G′ is not irreducible in general. In case it can be given as the
direct sum of irreducible G′-modules, the decomposition is called the branching
law of the restriction Π|G′ .

Example 1 (fusion rule). Let π1 and π2 be representations of a group H. The outer
tensor product Π := π1 � π2 is a representation of the product group G := H ×H,
and its restriction Π|G′ to the subgroup G′ := diag(H) is nothing but the tensor
product representation π1 ⊗ π2. In this case, the branching law is called the fusion
rule.

c© Springer Nature Switzerland AG 2019
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For real reductive Lie groups such as G = GL(n,R) or O(p, q), irreducible
representations Π are usually infinite-dimensional and do not always possess high-
est weight vectors, consequently, the restriction Π|G′ to subgroups G′ may involve
various (sometimes “wild”) aspects.

Example 2. The fusion rule of two irreducible unitary principal series representa-
tions of GL(n,R) (n ≥ 3) involve continuous spectrum and infinite multiplicities
in the direct integral of irreducible unitary representations.

By the branching problem (in a wider sense than the usual), we mean the
problem of understanding how the restriction Π|G′ behaves as a representation
of the subgroup G′. We treat non-unitary representations Π as well. In this case,
instead of considering the irreducible decomposition of the restriction Π|G′ , we
may investigate continuous G′-homomorphisms

T : Π|G′ → π

to irreducible representations π of the subgroup G′. We call T a symmetry break-
ing operator (SBO, for short). The dimension of the space of symmetry breaking
operators

m(Π, π) := dimC HomG′(Π|G′ , π)

may be thought of as a variant of the “multiplicity”. Finding a formula of m(Π, π)
is a substitute of the branching law Π|G′ when Π is not a unitary representation.

The author proposed in [19] a program for branching problems in the follow-
ing three stages:

Stage A. Abstract feature of the restriction Π|G′ .

Stage B. Branching laws.
Stage C. Construction of symmetry breaking operators.

Loosely speaking, Stage B concerns a decomposition of representations, whereas
Stage C asks for a decomposition of vectors.

For “abstract features” of the restriction in Stage A, we may think of the
following aspects:

A.1. Spectrum of the restriction Π|G′ :

• (discretely decomposable case, [12, 14, 15]) branching problems could be
studied purely algebraic and combinatorial approaches;
• (continuous spectrum) branching problems may be of analytic feature (e.g.,
Example 2).

A.2. Estimate of multiplicities for the restriction Π|G′ :

• multiplicities may be infinite (see Example 2);
• multiplicities may be at most one in special settings (e.g., theta correspon-
dence [7], Gross–Prasad conjecture [6], real forms of strong Gelfand pairs [35],
visible actions [17], etc.).
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The goal of Stage A in branching problems is to analyze aspects such as A.1 and A.2
in complete generality. If multiplicities of the restriction Π|G′ are known a priori to
be bounded in Stage A, one might be tempted to find irreducible decompositions
(Stage B), and moreover to construct explicit symmetry breaking operators (Stage
C). Thus, results in Stage A might also serve as a foundation for further detailed
study of the restriction Π|G′ (Stages B and C).

This article is divided into three parts. First, we discuss Stage A in Section
3 with focus on multiplicities in both regular representations on homogeneous
spaces and branching problems based on a joint work [26] with T. Oshima, and
give some perspectives of the subject through the classification theory [23] joint
with T. Matsuki about the pairs (G,G′) for which multiplicities in branching laws
are always finite.

Second, we take (G,G′) to be (O(n + 1, 1), O(n, 1)) as an example of such
pairs, and explain the first test case for the classification problem of symmetry
breaking operators (Stages B and C). The choice of our setting is motivated by
conformal geometry, and is also related to the local Gross–Prasad conjecture [6, 31].
We survey the classification theory of conformally covariant SBO for differential
forms on the model space (X,Y ) = (Sn, Sn−1): for local operators based on a
recent book [21] with T. Kubo and M. Pevzner in Section 5 and for nonlocal
operators based on a recent monograph [29] with B. Speh and its generalization
[30] in Section 6.

In Section 7, we discuss an ongoing work with Speh on some applications
of these results to a question from automorphic form theory, in particular, about
the periods of irreducible representations with nonzero (g,K)-cohomologies. The
resulting condition to admit periods is compared with a recent L2-theory [1] joint
with Y. Benoist.

Detailed proofs of the new results in Sections 6 and 7 will be given in separate
papers [20, 30].

Notation. N = {0, 1, 2, . . .}.

2. Preliminaries: smooth representations

We would like to treat non-unitary representations as well for the study of branch-
ing problems. For this we recall some standard concepts of continuous representa-
tions of Lie groups.

Suppose Π is a continuous representation of G on a Banach space V . A vector
v ∈ V is said to be smooth if the map G→ V , g �→ Π(g)v is of C∞-class. Let V ∞

denote the space of smooth vectors of the representation (Π, V ). Then V ∞ is a
G-invariant dense subspace of V , and V ∞ carries a Fréchet topology with a family
of semi-norms ‖v‖i1···ik := ‖dΠ(Xi1) · · · dΠ(Xik)v‖, where {X1, . . . , Xn} is a basis
of the Lie algebra g0 of G. Thus we obtain a continuous Fréchet representation
(Π∞, V ∞) of G.
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Suppose now that G is a real reductive linear Lie group,K a maximal compact
subgroup of G, and g the complexification of the Lie algebra g0 of G. Let HC
denote the category of Harish-Chandra modules whose objects and morphisms are
(g,K)-modules of finite length and (g,K)-homomorphisms, respectively. Let Π be
a continuous representation of G on a complete locally convex topological vector
space V . Assume that the G-module Π is of finite length. We say Π is admissible if

dimC HomK(τ,Π|K) <∞
for all irreducible finite-dimensional representations τ of K. We denote by VK the
space of K-finite vectors. Then VK ⊂ V ∞ and the Lie algebra g leaves VK invariant.
The resulting (g,K)-module on VK is called the underlying (g,K)-module of Π,
and will be denoted by ΠK .

For any admissible representation Π on a Banach space V , the smooth rep-
resentation (Π∞, V ∞) depends only on the underlying (g,K)-module. We say
(Π∞, V ∞) is an admissible smooth representation. By the Casselman–Wallach
globalization theory, (Π∞, V ∞) has moderate growth, and there is a canonical
equivalence of categories between the category HC of Harish-Chandra modules
and the category of admissible smooth representations of G ([37, Chap. 11]). In
particular, the Fréchet representation Π∞ is uniquely determined by its underlying
(g,K)-module. We say Π∞ is the smooth globalization of ΠK ∈ HC.

For simplicity, by an irreducible smooth representation, we shall mean an

irreducible admissible smooth representation of G. We denote by Ĝsmooth the set of
equivalence classes of irreducible smooth representations of G. Via the underlying

(g,K)-modules, we may regard the unitary dual Ĝ as a subset of Ĝsmooth.

3. Multiplicities in symmetry breaking

Let G ⊃ G′ be a pair of real reductive groups. For Π ∈ Ĝsmooth and π ∈ Ĝ′
smooth,

we denote by HomG′(Π|G′ , π) the space of symmetry breaking operators, and define
the multiplicity (for smooth representations) by

m(Π, π) := dimC HomG′(Π|G′ , π) ∈ N ∪ {∞}. (1)

Note that m(Π, π) is well defined without the unitarity assumption on Π and π.
We established a geometric criterion for multiplicities to be finite (more

strongly, to be bounded) as follows:

Theorem 3 ([26], see also [13, 18]). Let G ⊃ G′ be a pair of real reductive algebraic
Lie groups.

(1) The following two conditions on the pair (G,G′) are equivalent:

(FM) (finite multiplicities) m(Π, π) <∞ for all

Π ∈ Ĝsmooth and π ∈ Ĝ′
smooth;

(PP) (geometry) (G×G′)/diag(G′) is real spherical.
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(2) The following two conditions on the pair (G,G′) are equivalent:

(BM) (bounded multiplicities) There exists C > 0 such that

m(Π, π) ≤ C for all Π ∈ Ĝsmooth and π ∈ Ĝ′
smooth;

(BB) (complex geometry) (GC ×G′
C
)/diag(G′

C
) is spherical.

Here we recall that a connected complex manifold XC with holomorphic ac-
tion of a complex reductive group GC is called spherical if a Borel subgroup of GC

has an open orbit in XC. There has been an extensive study of spherical varieties
in algebraic geometry and finite-dimensional representation theory. In contrast,
concerning the real setting, in search of a good framework for global analysis on
homogeneous spaces which are broader than the usual (e.g., reductive symmetric
spaces), the author proposed:

Definition 4 ([13]). Let G be a real reductive Lie group. We say a connected smooth
manifold X with smooth G-action is real spherical if a minimal parabolic subgroup
P of G has an open orbit in X .

We discovered in [13, 26] that these geometric properties (spherical/real
spherical) are exactly the conditions that a reductive groupG has a “strong grip” of
the space of functions on X in the context of multiplicities of (infinite-dimensional)
irreducible representations occurring in the regular representation of G on C∞(X):

Theorem 5 ([26, Thms. A and C]). Suppose G is a real reductive linear Lie group,
H is an algebraic reductive subgroup, and X = G/H.

(1) The homogeneous space X is real spherical if and only if

dimC HomG(π,C∞(X)) <∞ for all π ∈ Ĝsmooth.

(2) The complexification XC is spherical if and only if

sup
π∈Ĝsmooth

dimC HomG(π,C∞(X)) <∞.

Methods of proof. In [26], we obtained not only the equivalences in Theorem 5 but
also quantitative estimates of the dimension. The proof for the upper estimate in
[26] uses the theory of regular singularities of a system of partial differential equa-
tions by taking an appropriate compactification with normal crossing boundaries,
whereas the proof for the lower estimate uses the construction of a “generalized
Poisson transform”. Furthermore, these estimates hold for the representations of
G on the space of smooth sections for equivariant vector bundles over X = G/H
without assuming that H is reductive. For instance, this applies also to the case
where H is a maximal unipotent subgroup of G, giving a Kostant–Lynch estimate
to the dimension of the space of Whittaker vectors ([26, Ex. 1.4 (3)]).

Back to Theorem 3 on branching problems, the geometric estimates of mul-
tiplicities is proved by applying Theorem 5 to the pair (G×G′, diag(G′)) together
with some careful arguments on topological vector spaces ([18, Thm. 4.1]).
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Classification theory. Theorem 3 serves Stage A in branching problems, and singles
out nice settings in which we could expect to go further on Stages B and C of the
detailed study of symmetry breaking.

So it would be useful to develop a classification theory of pairs (G,G′) for
which the geometric criteria (PP) or (BB) in Theorem 3 are satisfied.

• The geometric criterion (BB) in Theorem 3 appeared in the context of finite-
dimensional representations already in 1970s, and such pairs (GC, G′

C
) were

classified infinitesimally, see [32]. The classification of real forms (G,G′) satis-
fying the condition (BB) follows readily from that of complex pairs (GC, G′

C
),

see [23]. Sun–Zhu [35] proved that the constant C in Theorem 3 can be
taken to be one (multiplicity-free theorem) in many of real forms (G,G′), see
[31, Rem. 2.2] for multiplicity-two results for some other real forms.
• The pairs (�G× �G, diag(�G)) for real reductive groups �G satisfying the geo-
metric criterion (PP) in Theorem 3 were classified in [13].
• More generally, symmetric pairs (G,G′) satisfying the geometric criterion

(PP) in Theorem 3 was classified by the author and Matsuki [23]. The meth-
ods are a linearization technique and invariants of quivers.

In turn, these classification results give an a priori estimate of multiplicities in
branching problems by Theorem 3.

Example 6 (finite multiplicities for the fusion rule, [13, Ex. 2.8.6], see also [18,
Cor. 4.2]). Suppose G is a simple Lie group. Then the following two conditions
are equivalent:

(i) dimC HomG(π1 ⊗ π2, π3) <∞ for all π1, π2, π3 ∈ Ĝsmooth;
(ii) G is either compact or locally isomorphic to SO(n, 1).

Example 7. Let (G,G′) = (O(p + r, q), O(r) ×O(p, q)).

(1) m(Π, π) <∞ for all Π ∈ Ĝsmooth and π ∈ Ĝ′
smooth.

(2) m(Π, π) ≤ 1 for all Π ∈ Ĝsmooth and π ∈ Ĝ′
smooth if and only if p+ q+ r ≤ 4

or r = 1.

See [18] for the further classification theory of symmetric pairs (G,G′) that
guarantee finite multiplicity properties for symmetry breaking.

4. Conformally covariant SBOs

This section discusses a question on symmetry breaking with respect to a pair of
conformal manifolds X ⊃ Y .

Let (X, g) be a Riemannian manifold. Suppose that a Lie group G acts
conformally on X . This means that there exists a positive-valued function Ω ∈
C∞(G×X) (conformal factor) such that

L∗
hgh·x = Ω(h, x)2gx for all h ∈ G, x ∈ X,
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where we write Lh : X → X,x �→ h · x for the action of G on X . When X is
oriented, we define a locally constant function

or : G×X −→ {±1}
by or (h)(x) = 1 if (Lh)∗x : TxX −→ TLhxX is orientation-preserving, and = −1 if
it is orientation-reversing.

Since both the conformal factor Ω and the orientation map or satisfy cocycle

conditions, we can form a family of representations �
(i)
λ,δ of G with parameters λ ∈

C and δ ∈ Z/2Z on the space E i(X) of differential i-forms on X (0 ≤ i ≤ dimX)
defined by

�
(i)
λ,δ(h)α := or (h)δΩ(h−1, ·)λL∗

h−1α, (h ∈ G). (2)

The representation �
(i)
λ,δ of the conformal group G on E i(X) will be simply denoted

by E i(X)λ,δ, and referred to as the conformal representation on differential i-forms.
Suppose that Y is an orientable submanifold. Then Y is endowed with a

Riemannian structure g|Y by restriction, and we can define in a similar way a
family of representations Ej(Y )ν,ε (ν ∈ C, ε ∈ Z/2Z, 0 ≤ j ≤ dimY ) of the
conformal group of (Y, g|Y ).

We consider the full group of conformal diffeomorphisms and its subgroup
defined as

Conf(X) := {conformal diffeomorphisms of (X, g)},
Conf(X ;Y ) := {ϕ ∈ Conf(X) : ϕ(Y ) = Y }. (3)

Then there is a natural group homomorphism

Conf(X ;Y )→ Conf(Y ), ϕ �→ ϕ|Y . (4)

Definition 8. A linear map T : E i(X)λ,δ → Ej(Y )ν,ε is a conformally covariant
symmetry breaking operator (conformally covariant SBO, for short) if T intertwines
the actions of the group Conf(X ;Y ).

We shall write

H

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
:= HomConf(X;Y )(E i(X)λ,δ|Conf(X;Y ), Ej(Y )ν,ε) (5)

∪

D

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
:= DiffConf(X;Y )(E i(X)λ,δ|Conf(X;Y ), Ej(Y )ν,ε) (6)

for the space of continuous conformally covariant SBOs and its subspace of differ-
ential SBOs, namely, those operators T satisfying the local property: Supp(Tα) ⊂
Supp(α) for all α ∈ E i(X)λ,δ. This support condition is a generalization of Peetre’s
characterization [34] of differential operators in the X = Y case ([27, Def. 2.1], for
instance).

We address a general problem motivated by conformal geometry:
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Problem 9 (conformally covariant symmetry breaking operators). Let X ⊃ Y are
orientable Riemannian manifolds.

(1) Determine when H

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
�= {0}.

(2) Determine when D

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
�= {0}.

(3) Construct an explicit basis of H

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
and D

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
.

Problem 9 (1) and (2) may be thought of as Stage B of branching problems
in Section 1, while Problem 9 (3) as Stage C.

In the case where X = Y and i = j = 0, a classical prototype of such
operators is a second-order differential operator called the Yamabe operator

Δ +
n− 2

4(n− 1)
κ ∈ DiffConf(X)(E0(X)n

2 −1,δ, E0(X)n
2 +1,δ),

where n is the dimension of the manifold X , Δ is the Laplacian, and κ is the
scalar curvature, see [24, Thm. A], for instance. Conformally covariant differential
operators of higher order are also known: the Paneitz operator (fourth-order) [33],
or more generally, the so-called GJMS operators [5] are such operators. Turning
to operators acting on differential forms, we observe that the exterior derivative d,
the codifferential d∗, and the Hodge ∗ operator are also examples of conformally
covariant operators on differential forms, namely, j = i+1, i−1, and n− i, respec-
tively, with an appropriate choice of the parameter (λ, ν, δ, ε). As is well known,
Maxwell’s equations in four-dimension can be expressed in terms of conformally
covariant operators on differential forms.

Let us consider the general case where X �= Y . From the viewpoint of con-
formal geometry, we are interested in “natural operators” T that persist for all
pairs of Riemannian manifolds X ⊃ Y of fixed dimension. We note that Problem
9 is trivial for individual pairs X ⊃ Y such that Conf(X ;Y ) = {e}, because any
linear operator becomes automatically an SBO. In contrast, the larger Conf(X ;Y )
is, the more constraints on T will be imposed. Thus we highlight the case of large
conformal groups as the first step to attack Problem 9.

In general, the conformal group cannot be so large. We recall from [10,
Thms. 6.1 and 6.2] the upper estimate of the dimension of the conformal group:

Fact 10. Let X be a compact Riemannian manifold of dimension n ≥ 3. Then
dimConf(X) ≤ 1

2 (n+1)(n+2). The equality holds if and only if (Conf(X), X) is
locally isomorphic to (O(n + 1, 1), Sn).

Concerning a pair (X,Y ) of Riemannian manifolds, we obtain the following.

Proposition 11. Let X ⊃ Y be Riemannian manifolds of dimension n and m,
respectively. Then dimConf(X ;Y ) ≤ 1

2 (m+1)(m+2). The equality holds if X = Sn

and Y is a totally geodesic submanifold which is isomorphic to Sm.
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Proof. The first inequality follows from Fact 10 via the group homomorphism (4).
If (X,Y ) = (Sn, Sm), then Conf(X) and Conf(X ;Y ) are locally isomorphic to
O(n + 1, 1) and O(m + 1, 1), respectively, whence the second assertion. �

From now on, we shall consider the pair

(X,Y ) = (Sn, Sn−1), (7)

as a model case with largest symmetries, where Y = Sn−1 is embedded as a totally
geodesic submanifold of X = Sn. As mentioned, the pair (Conf(X),Conf(X ;Y ))
is locally isomorphic to the pair

(G,G′) = (O(n + 1, 1), O(n, 1)). (8)

We remind that this pair appeared in Section 3 on branching problems, see the
case where r = 1 in Example 7. As an a priori estimate in Stage A, see Theorem
3 (2), Example 7, [21, Thm. 2.6], and [35], we have

dimC H

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
≤ 4 for any (i, j, λ, ν, δ, ε). (9)

In turn, the estimate (9) gives an upper bound for the dimension of the space
of “natural” conformal covariant SBOs, E i(X)λ,δ → Ej(Y )ν,ε that persist for all
pairs X ⊃ Y of codimension one. In the next two sections, we explain briefly a
solution to Problem 9 (Stages B and C) in the model case (7).

5. Classification theory of conformally covariant differential SBOs

In the case where symmetry breaking operators are given as differential operators,
Problem 9 in the model space (7) was solved in a joint work [21] with Kubo and
Pevzner. In this section, we introduce its flavors briefly. First of all, the solution
to Problem 9 (2), a question in Stage B of branching problems, may be stated as
follows.

Theorem 12. Suppose n ≥ 3, 0 ≤ i ≤ n, 0 ≤ j ≤ n− 1, λ, ν ∈ C, and δ, ε ∈ {±}.
Then the following three conditions on 6-tuple (i, j, λ, ν, δ, ε) are equivalent:

(i) D

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
�= {0}.

(ii) dimC D

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
= 1.

(iii) The parameter (i, j, λ, ν, δ, ε) satisfies

{j, n− j − 1} ∩ {i− 2, i− 2, i, i+ 1} �= ∅, (10)

ν − λ ∈ N,

a certain condition Q ≡ Qi,j on (λ, ν, δ, ε). (11)
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The first condition (10) concerns the degrees i and j of differential forms.
Loosely speaking, conformally covariant differential SBOs exist only if the degrees
i and j are close to each other or the sum i + j is close to n. The last “addi-
tional” condition Qi,j depends on (i, j). We give the condition Qi,j explicitly in
the following two cases:

• Case j = i. Qi,i amounts to ν ∈ C and δ ≡ ε ≡ ν − λ mod 2.
• Case j = i + 1. For 1 ≤ i ≤ n − 2, Qi,i+1 amounts to (λ, ν) = (0, 0) and

δ ≡ ε ≡ 0 mod 2; for i = 0, Q0,1 amounts to λ ∈ −N, ν = 0, and δ ≡ ε ≡ λ
mod 2.

See [21, Thm. 1.1] for the precise conditions in the other remaining six cases.

Second, we go on with Problem 9 (3) (Stage C) about the construction of
symmetry breaking operators. For this we work with the pair (Rn,Rn−1) of the
flat Riemannian manifolds which are conformal to (Sn \ {pt}, Sn−1 \ {pt}) via the
stereographic projection.

We begin with a scalar-valued operator (Juhl’s operator, [8]). Suppose that
our hyperplane Y = Rn−1 of X = Rn is defined by xn = 0 in the coordinates
(x1, . . . , xn). For μ ∈ C and k ∈ N, we define a homogeneous differential operator
of order k by

Dμ
k :=

∑
0≤i≤[ k2 ]

ai(μ)(−ΔRn−1)i
∂k−2i

∂xk−2i
n

: C∞(Rn)→ C∞(Rn),

where {ai(μ)} are the coefficients of the Gegenbauer polynomial:

Cμ
k (t) =

∑
0≤i≤[ k2 ]

ai(μ)t
k−2i.

Building on the scalar-valued operators, we introduced in [21] matrix-valued dif-
ferential symmetry breaking operators

Di→j
λ,k : E i(Rn)→ Ej(Rn−1)

for each pair (i, j) satisfying (10). We illustrate a concrete formula when j = i.
We set

Di→i
λ,k := Restxn=0 ◦ (Dμ+1

k−2dd
∗ + aDμ

k−1dι ∂
∂xn

+ bDμ
k ),

where d∗ is the codifferential, ι ∂
∂xn

: E i(Rn)→ Ej(Rn−1) is the inner multiplication

of the vector field ∂
∂xn

, and

a :=

{
1 (k: odd)

λ+ i − n
2 + k (k: even)

, b :=
λ+ k

2
, μ := λ + i− n− 1

2
.

Thus Di→i
λ,k is obtained as the composition of a HomC(

∧
i(Cn),

∧
i(Cn−1))-valued

homogeneous differential operator on Rn of order k with the restriction map to
the hyperplane Rn−1.
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The matrix-valued differential operators Di→j
λ,k : E i(Rn) → Ej(Rn−1) were

defined in [21, Chap. 1] also for the other seven cases when the condition (iii) in
Theorem 12 is fulfilled.

Methods of proof in finding the formulæ for Di→j
λ,k . The approach in [21] is based

on the F-method [16], which reduces a problem of finding the operators Di→j
λ,k to

another problem of finding polynomial solutions to a system of ordinary differential
equations (F-system). An alternative approach for j = i − 1, i is given in [20] by
taking the residues of the regular symmetry breaking operators (see also Section
6 below).

With the aforementioned operators Di→j
λ,k , Problem 9 (3) for differential op-

erators were solved in [21, Thms. 1.4–1.8], which may be thought of as an answer
to Stage C of branching problems. We illustrate the results with the following two
theorems in the case where j = i and i + 1.

Theorem 13 (j = i case). Suppose ν ∈ C, k := ν − λ ∈ N, and δ ≡ ε ≡ k mod 2.

(1) The linear map Di→i
λ,k extends to a conformally covariant symmetry breaking

operator from E i(Sn)λ,δ to E i(Sn−1)ν,ε.
(2) Conversely, any conformally covariant differential symmetry breaking opera-

tor from E i(Sn)λ,δ to E i(Sn−1)ν,ε is proportional to Di→i
λ,k , or its renormal-

ization ([21, (1.10)]).

Theorem 14 (j = i + 1 case).

(1) Suppose 1 ≤ i ≤ n − 2, (λ, ν) = (n − 2i, n− 2i + 3), and δ ≡ ε ≡ 1 mod 2.
Then the linear map

Rest ◦ d : E i(Sn)λ,δ → E i+1(Sn−1)ν,ε

is a conformally covariant SBO. Conversely, a nonzero conformally covariant
differential SBO from E i(Sn)λ,δ to E i+1(Sn−1)ν,ε exists only for the above
parameters, and such an operator is proportional to Rest ◦ d.

(2) Suppose i = 0, λ ∈ {0,−1,−2, . . .}, ν = 0, and δ ≡ ε ≡ λ mod 2. Then the
linear map

Restxn=0 ◦ D
λ−n−1

2

−λ ◦ d : E0(Rn)→ E1(Rn−1)

extends to a conformally covariant SBO from E0(Sn)λ,δ to E1(Sn−1)0,ε. Con-
versely, a nonzero conformally covariant differential SBO from E0(Sn)λ,δ to
E1(Sn−1)ν,ε exists only for the above parameters, and such an operator is
proportional to the above operator.

Remark 15.

(1) By using the Hodge ∗ operator on X or its submanifold Y , the other six cases
can be reduced to either the j = i case (Theorem 13) or the j = i + 1 case
(Theorem 14). The construction and classification of differential symmetry
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breaking operators in the model space (7) is thus completed. Its generalization
to the pseudo-Riemannian case is proved in [22].

(2) Special cases of Theorem 13 were known earlier. The case j = i = 0 (scalar-
valued case) was discovered by A. Juhl [8]. Different approaches have been
proposed by Fefferman–Graham [4], Kobayashi–Ørsted–Souček–Somberg[25],
and Clerc [3] among others. Our approach uses an algebraic Fourier transform
of Verma modules (F-method), see [16, 27].

(3) The case n = 2 is closely related to the celebrated Rankin–Cohen bidifferen-
tial operator via holomorphic continuation [28].

6. Classification theory: nonlocal conformally covariant SBOs

In this section we consider nonlocal operators such as integral operators as well,
and thus complete the classification problem (Problem 9) for the model space
(X,Y ) = (Sn, Sn−1).

Building on the classification results on D

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
in Section 5, we want

to

• find dimC H

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
/D

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
;

• find a basis in H

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
modulo D

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
.

This idea fits well with the general strategy to understand the whole space of sym-
metry breaking operators between principal series representations of a reductive
group and its subgroup G′ by using the filtration given by the support of distri-
bution kernels [29, Chap. 11, Sec. 2]. Thus we start with the general setting where
(G,G′) is a pair of real reductive Lie groups. Let P = MAN and P ′ = M ′A′N ′

be Langlands decompositions of minimal parabolic subgroups of G and G′, re-
spectively. For an irreducible representation (σ, V ) of M and a one-dimensional
representation Cλ of A, we define a principal series representation of G by unnor-
malized parabolic induction

I(σ, λ) := IndG
P (σ ⊗ Cλ ⊗ 1).

Similarly, we define that of the subgroup G′, to be denoted by

J(τ, ν) := IndG′
P ′(τ ⊗ Cν ⊗ 1)

for an irreducible representation (τ,W ) of M ′ and a one-dimensional representa-
tion Cν of A′.

By abuse of notation, we identify a representation with its representations
space, and set Vλ := V ⊗Cλ and Wν := W ⊗Cν . Let V∗

λ be the dualizing bundle of
the G-homogeneous bundle G×P Vλ over the real flag manifold G/P . Then there
is a natural linear bijection between the space of symmetry breaking operators
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and the space of invariant distributions (see [29, Prop. 3.2]):

HomG′(Iδ(σ, λ)|G′ , Jε(τ, ν))
∼→ (D′(G/P,V∗

λ)⊗Wν)
Δ(P ′), T �→ KT , (12)

Suppose now that the condition (PP) in Theorem 3 is fulfilled. Then this
implies that #(P ′\G/P ) < ∞, see [26, Rem. 2.5 (4)]. We denote by {Zα} the
totality of P ′-orbits on G/P . We define a partial order α ≺ β by Zα ⊂ Zβ , the
closure of Zβ in G/P . Then there is the unique minimal index αmin corresponding
to the closed P ′-orbit in G/P , and maximal ones β1, . . . , βN corresponding to
open P ′-orbits in G/P .

We observe that the support Supp(KT ) of the distribution kernel KT is a
closed P ′-invariant subset of G/P , and accordingly, define

H(α) ≡ Hσ,λ
τ,ν (α) := {T ∈ HomG′(I(σ, λ)|G′ , J(τ, ν)) : Supp(KT ) ⊂ Zα}

via the isomorphism (12). Clearly, H(α) ⊂ H(β) if α ≺ β. It follows from [27,
Lem. 2.3] that

H(αmin) = DiffG′(I(σ, λ)|G′ , J(τ, ν)).

In contrast to the smallest support Zαmin, a symmetry breaking operator T is
called regular ([29, Def. 3.3]) if Supp(KT ) contains Zβj for some 1 ≤ j ≤ N .

We now return to the special setting (8). Then the Levi subgroup MA of the
minimal parabolic subgroup P = MAN of G = O(n + 1, 1) is given by (O(n) ×
O(1)) × R. For 0 ≤ i ≤ n, δ ∈ {±}, and λ ∈ C, we consider the outer tensor
product representation

∧
i(Cn)� δ � Cλ of MA, and extend it to P by letting N

act trivially. The resulting P -module is denoted simply by
∧

i(Cn) ⊗ δ ⊗ Cλ. We
define an unnormalized principal series representation of G = O(n + 1, 1) by

Iδ(i, λ) ≡ I(
∧i(Cn)� δ, λ) := IndGP (

∧i(Cn)⊗ δ ⊗ Cλ).

Lemma 16. Let 0 ≤ i ≤ n, δ ∈ {±}, λ ∈ C.
(1) The G-module Iδ(i, λ) is irreducible if λ �∈ Z.
(2) There is a natural isomorphism E i(Sn)λ,δ � I(−1)iδ(i, λ + i) as G-modules.

For the proof of Lemma 16 (2), see [21, Prop. 2.3].
Lemma 16 (2) suggests that we can reformulate Problem 9 about differential

forms on the pair of conformal manifolds (7) into a question of symmetry breaking
operators between principal series representations for the pair (8) of reductive

groups. We write D̃ and H̃ if we use Iδ(i, λ) and Jε(j, ν) = IndG
′

P ′ (
∧

j(Cn−1)⊗ ε⊗
Cν) instead of D and H in (6) and (5), respectively. By Lemma 16 (2), we have

H

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
= H̃

(
i

λ + i, (−1)iδ

∣∣∣∣ j
ν + j, (−1)jε

)
and similarly for D and D̃. Thus we want to

• find dimC H̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
/D̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
;

• find a basis in H̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
modulo D̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
.
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First, we obtain:

Theorem 17 (localness theorem). If j �= i− 1 or i, then

H̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
= D̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
.

In the setting (8), there exists a unique open P ′-orbit in G/P , and accord-
ingly, there exists at most one family of (generically) regular symmetry breaking
operators from the G-modules Iδ(i, λ) to the G′-modules Jε(j, ν). We prove that
such a family exists if and only if j = i − 1 or i, and it plays a crucial role in

the classification problem of SBOs modulo the space D̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
of differential

SBOs as follows. We introduce the set of “special parameters” by

Ψsp :=
{
(λ, ν, δ, ε) ∈ C2 × {±}2 : ν − λ ∈ 2N when δε = 1

or ν − λ ∈ 2N+ 1 when δε = −1
}
.

(13)

Theorem 18. Suppose j = i− 1 or i, and δ, ε ∈ {±}. Then there exists a family of
continuous G′-homomorphism

Ãi,j
λ,ν,δε : Iδ(i, λ)→ Jε(j, ν)

such that Ãi,j
λ,ν,δε depends holomorphically on (λ, ν) ∈ C2 and that the set of the

zeros of Ãi,j
λ,ν,δε is discrete in (λ, ν) ∈ C2.

(1) If (λ, ν, δ, ε) �∈ Ψsp then Ãi,j
λ,ν,δε �= 0 and

H̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
= CÃi,j

λ,ν,δε � D̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
= {0}.

(2) If (λ, ν, δ, ε) ∈ Ψsp and Ãi,j
λ,ν,δε �= 0, then

H̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
= D̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
.

(3) If (λ, ν, δ, ε) ∈ Ψsp and Ãi,j
λ,ν,δε = 0, then

dimC H̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
= dimC D̃

(
i

λ, δ

∣∣∣∣ j
ν, ε

)
+ 1.

The discrete set {(i, j, λ, ν, δ, ε) : Ãi,j
λ,ν,δε = 0} has been determined in [20],

and thus the classification of conformally covariant symmetry breaking operators

E i(X)λ,δ → Ej(Y )ν,ε

for the model space (X,Y ) = (Sn, Sn−1) is accomplished. A detailed proof for
the classification together with some important properties of symmetry breaking
operators (Stage C) such as
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• (K,K ′)-spectrum (a generalized eigenvalue),
• functional equations,
• residue formulæ,

will be given in separate papers (see [20] for the residue formulæ, and [30] for the
classification).

7. Application to periods and automorphic form theory

Let G be a reductive group, and H a reductive subgroup.

Definition 19. An irreducible admissible smooth representation Π of G is H-
distinguished if HomH(Π|H ,C) �= {0}. In this case, it is also said that Π has
an H-period. By the Frobenius reciprocity theorem, the condition is equivalent to
HomG(Π, C∞(G/H)) �= {0}.

In this section, we discuss an application of symmetry breaking operators to
find periods (Definition 19) of irreducible unitary representations. We highlight
the case when Π has nonzero (g,K)-cohomologies. The motivation comes from
automorphic form theory, of which we now recall a prototype.

Fact 20 (Matsushima–Murakami, [2]). Let Γ be a cocompact discrete subgroup of
G. Then we have

H∗(Γ\G/K;C) �
⊕
Π∈Ĝ

HomG(Π, L2(Γ\G))⊗H∗(g,K; ΠK).

The left-hand side gives topological invariants of the locally symmetric space
M = Γ\G/K, whereas the right-hand side is described in terms of the representa-

tion theory. We note that HomG(Π, L2(Γ\G)) is finite-dimensional for all Π ∈ Ĝ
by a theorem of Gelfand–Piateski–Shapiro, and the sum is taken over the following
finite set

Ĝcohom := {Π ∈ Ĝ : H∗(g,K; ΠK) �= {0}},
which was classified by Vogan and Zuckerman [36].

In the case where G = O(n + 1, 1), there are 2(n + 1) elements in Ĝcohom.
Following the notation in [21, Thm. 2.6], we label them as

{Π�,δ : 0 ≤ � ≤ n + 1, δ ∈ {±}},
and we define

Index ≡ IndexG : Ĝcohom → {0, 1, . . . , n + 1}, Π�,δ �→ �,

sgn ≡ sgnG : Ĝcohom → {±}, Π�,δ �→ δ.

We illustrate the labeling by two examples:

Example 21 (one-dimensional representations). There are four one-dimensional
representations of G, which are given as

{Π0,+ � 1,Π0,−,Πn+1,+,Πn+1,− � det}.
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Example 22 (tempered representations). For n odd Π is the smooth representation
of a discrete series representation of G iff Index(Π) = 1

2 (n+1), whereas for n even
Π is that of tempered representation of G iff Index(Π) ∈ {n2 , n

2 + 1}.

We give a necessary and sufficient condition for the existence of symmetry
breaking operators between irreducible representations of G and those of the sub-
group G′ with nonzero (g,K)-cohomologies:

Theorem 23 ([30]). Let (G,G′) = (O(n + 1, 1), O(n, 1)), and (Π, π) ∈ Ĝcohom ×
Ĝ′

cohom. Then the following three conditions on (Π, π) are equivalent.

(i) HomG′(Π∞|G′ , π∞) �= {0}.
(ii) The outer tensor product representation Π∞ � π∞ is diag(G′)-distinguished.
(iii) IndexG(Π)− 1 ≤ IndexG′(π) ≤ IndexG(Π) and sgn(Π) = sgn(π).

The proof uses the symmetry breaking operators that are discussed in Section

6 and the relationship between Ĝcohom and conformal representations on differen-
tial forms on the sphere Sn summarized as below.

Lemma 24 ([21, Thm. 2.6]). If Π ∈ Ĝcohom, then Π∞ can be realized as a subrepre-
sentation of E i(Sn)0,δ with i = IndexG(Π) and δ = (−1)isgnG(Π) if IndexG(Π) �=
n + 1, and also as a quotient of E i(Sn)0,δ with i = IndexG(Π) − 1 and δ =
(−1)isgnG(Π) if IndexG(Π) �= 0.

To end this section, we consider a tower of subgroups of a reductive group G:

{e} = G(0) ⊂ G(1) ⊂ · · · ⊂ G(n) ⊂ G(n+1) = G.

Accordingly, there is a family of homogeneous spaces with G-equivariant quotient
maps:

G = G/G(0) → G/G(1) → · · · → G/G(n+1) = {pt}.
In turn, we have natural inclusions of G-modules:

C∞(G) = C∞(G/G(0)) ⊃ C∞(G/G(1)) ⊃ · · · ⊃ C∞(G/G(n+1)) = C.

A general question is:

Problem 25. Let Π ∈ Ĝsmooth. Find k as large as possible such that Π is G(k)-
distinguished, or equivalently, such that the smooth representation Π∞ can be re-
alized in C∞(G/G(k)).

Any irreducible admissible smooth representation of G can be realized in the
regular representation on C∞(G/G(0)) � C∞(G) via matrix coefficients, whereas
irreducible representations that can be realized in C∞(G/G(0)) = C is the trivial
one-dimensional representation 1.

Suppose that G = O(n + 1, 1), and consider a chain of subgroups of G by

G(k) := O(k, 1) (0 ≤ k ≤ n + 1).

Then G(n+1) = G, however, G(0) is not exactly {e} but G(0) = O(1) is a finite

group of order two. Accordingly, we consider Π ∈ Ĝcohom with sgn(Π) = + below.



Conformal Symmetry Breaking 305

Theorem 26. Suppose Π ∈ Ĝcohom with sgn(Π) = +. Then

HomG(Π
∞, C∞(G/G(k))) �= {0} for all k ≤ n + 1− IndexG(Π).

Example 27 (one-dimensional representations). Suppose that Π ∈ Ĝcohom with
sgnG(Π) = +. We consider two opposite extremal cases, i.e., IndexG(Π) = 0 and
= n + 1. If IndexG(Π) = 0, then Π is isomorphic to the trivial one-dimensional
representation 1, and can be realized in C∞(G/G(k)) for all 0 ≤ k ≤ n + 1 as in
Theorem 26. On the other hand, if IndexG(Π) = n + 1, then Π is another one-
dimensional representation of G (Πn+1,+ � χ−+ with the notation [21, (2.9)]). In

this case, Π can be realized in C∞(G/G(k)) iff k = 0, namely, iff G(k) = O(1).

Remark 28. The size of an (infinite-dimensional) representation could be measured
by its Gelfand–Kirillov dimension, or more precisely, by its associated variety or
by the partial flag variety for which its localization can be realized as a D-module.
Then one might expect the following assertion:

the larger the isotropy subgroup G(k) is (i.e., the larger k is),

the “smaller” irreducible subrepresentations of C∞(G/G(k)) become.
(14)

This is reflected partially in Theorem 26, however, Theorem 26 asserts even
sharper results. To see this, we set

r := min(IndexG(Π), n + 1− IndexG(Π)).

Then the underlying (g,K)-module ΠK can be expressed as a cohomological
parabolic induction from a θ-stable parabolic subalgebra qr with Levi subgroup
NG(qr) � SO(2)r × O(n + 1 − 2r, 1) ([9], see also [11, Thm. 3]). Theorem 26
tells that if n + 1 ≤ 2k, then the larger k is, the smaller r = IndexG(Π) becomes,
namely, the smaller the (g,K)-modules that are cohomologically parabolic induced
modules from qr become. This matches (14). On the other hand, if 2k ≤ n + 1,
then the constraints in Theorem 26 provide an interesting phenomenon which is
opposite to (14) because r = n+1−IndexG(Π), and thus suggest sharper estimates
than (14). For instance, the representation Πn+1,+(� χ−+) is “small” because it

is one-dimensional, but it can be realized in C∞(G/G(k)) only for k = 0 as we saw
in Example 27.

Remark 29 (comparison with L2-theory). Theorem 26 implies that the smooth
representation Π∞ of a tempered representation Π with nonzero (g,K)-cohomo-
logies (see Example 22) occurs in C∞(G/G(k)) if k ≤ n

2 + 1. On the other hand,
for a reductive homogeneous space G/H , a general criterion for the unitary repre-
sentation L2(G/H) to be tempered was proved in a joint work [1] with Y. Benoist
by a geometric method. In particular, the unitary representation L2(G/G(k)) is
tempered if and only if k ≤ n

2 + 1, see [1, Ex. 5.10].
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Representations of the Anyon
Commutation Relations

Eugene Lytvynov

Abstract. We discuss some representations of the anyon commutation rela-
tions (ACR) both in the discrete and continuous cases. These non-Fock rep-
resentations yield, in the vacuum state, gauge-invariant quasi-free states on
the ACR algebra. In particular, we extend the construction from [20] to the
case where the generator of the one-point function is not necessarily a real
operator.
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Keywords. Anyon commutation relations, creation and annihilation operators,
gauge-invariant quasi-free states.

1. Introduction

Let H and F be complex separable Hilbert spaces. (We assume that the scalar
product is always linear in the first variable and antilinear in the second.) Let
a+(f), a−(f) be linear operators in F indexed by vectors f ∈ H. We assume that
the operators a+(f), a−(f) are defined on a dense subspace D of F and map D
into itself. We further assume that the mapping H % f �→ a+(f) is linear and the
restriction of a+(f)∗ to D is equal to a−(f). This also implies that the mapping
H % f �→ a−(f) is antilinear.

Consider the following commutation relations:

a+(f)a+(g) = ±a+(g)a+(f), (1)

a−(f)a−(g) = ±a−(g)a−(f), (2)

a−(f)a+(g) = ±a+(g)a−(f) + (g, f)H. (3)

The choice of the sign plus in (1)–(3) gives the canonical commutation relations
(CCR), describing bosons, while the choice of the sign minus gives the canonical
anticommutation relations (CAR), describing fermions. The a+(f) and a−(f) are
called the creation and annihilation operators, respectively.

c© Springer Nature Switzerland AG 2019
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Note that (2) follows from (1). It is a consequence of (3) that, in the CAR
case, the operators a+(f) and a−(f) are, in fact, bounded.

Let A denote the complex algebra generated by the operators a+(f), a−(f)
satisfying (1)–(3) and the identity operator 1. A is called the CCR algebra or the
CAR algebra, respectively.

Let τ be a state on A, i.e., τ : A → C is a linear functional satisfying
τ(A∗A) ≥ 0 for each A ∈ A and τ(1) = 1. Given a state τ on the algebra A,
the GNS construction gives the corresponding representation of the commutation
relations (1)–(3).

Because of the commutation relation (3), each element of the algebra A can
be represented as a finite sum of Wick ordered operators :

a+(g1) · · · a+(gk)a
−(h1) · · · a−(hn), k, n ∈ N0, k + n ≥ 1.

Therefore, a state τ on A is completely determined by the functions S(k,n) :
Hk+n → C given by

S(k,n)(g1, . . . , gk, h1, . . . , hn) := τ
(
a+(g1) · · ·a+(gk)a

−(h1) · · · a−(hn)
)
. (4)

It was already known in the 1960s (e.g., [7, 8]) that a complete descrip-
tion of irreducible representations of the CCR/CAR (up to unitary equivalence)
is not a realistic problem. This is why it was important to single out and study
those representations that are physically relevant and have important mathemati-
cal properties. The easiest and most standard representation of the CCR/CAR is
the Fock representation, which is realized in F = Fs(H) in the case of the CCR and
in F = Fa(H) in the case of the CAR. Here Fs(H) and Fa(H) are the symmetric
and antisymmetric Fock spaces over H. The corresponding vacuum state τ has the
property that the functionals S(k,n) are all equal to zero.

In fact, the above-mentioned vacuum state τ belongs to the class of the
quasi-free states, which were actively studied since the 1960s, see, e.g., the papers
[1–6, 17, 21, 22] and the monographs [11, 12].

Giving the definition of a general quasi-free state requires some technical
effort. However, in this paper, we will only be interested in the subclass of gauge-
invariant quasi-free states, whose definition will be now recalled.

One says that the state τ is gauge-invariant if it is invariant under the group
of Bogolyubov transformations

a+(h) �→ a+(eiθh) = eiθa+(h),

a−(h) �→ a−(eiθh) = e−iθa−(h), θ ∈ [0, 2π).

By (4), τ is gauge-invariant if and only if S(k,n) ≡ 0 for k �= n. Thus, a gauge-
invariant state is completely determined by the functionals S(n,n) (n ∈ N), called
the n-point functions.

A gauge-invariant state is called quasi-free if its n-point functions are deter-
mined by the one-point function in the following sense: in the case of the CAR
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algebra, we have

S(n,n)(gn, . . . , g1, h1, . . . , hn) = det
[
S(1,1)(gi, hj)

]
i,j=1,...,n

and in the case of the CCR algebra, we have

S(n,n)(gn, . . . , g1, h1, . . . , hn) = per
[
S(1,1)(gi, hj)

]
i,j=1,...,n

.

Here, for a square matrix A, detA and perA denote the determinant and the
permanent of A, respectively.

Consider the sesquilinear form S(1,1). In the CAR case, it is automatically
bounded, while in the CCR case it is natural to assume this. Denote by K the
bounded linear operator in H that is the generator of S(1,1), i.e.,

S(1,1)(f, g) = (Kf, g)H. (5)

Then, for each K ≥ 0, there exists a corresponding gauge-invariant quasi-free state
on the CCR algebra, while for the CAR algebra this holds for 0 ≤ K ≤ 1, see,
e.g., [11]. (In fact, these assumptions on K are also necessary for the existence of
a gauge-invariant quasi-free state.)

In this paper, we will be interested in the representations of the anyon com-
mutation relations (ACR), which form a continuous bridge between the CCR and
CAR. These commutation relations are characterized by a pair (q, q̄) of complex
conjugate numbers of modulus 1, or equivalently by the real number �(q) ∈ [−1, 1].

In the physics literature, in the case where the physical space has dimen-
sion two (a plain), intermediate statistics have been discussed since Leinass and
Myrheim [18] conjectured their existence in 1977. The first mathematically rigor-
ous prediction of intermediate statistics was done by Goldin, Menikoff and Sharp
[14, 15] in 1980, 1981. The name anyon was given to such statistics by Wilczek
[23, 24]. Liguori, Mintchev [19] and Goldin, Sharp [16] derived the commutation re-
lations describing an anyon system, i.e., the anyon commutation relations (ACR).

In [16], Goldin and Sharp arrived at the commutation relations as a “con-
sequence of the group representations describing anyons, together with the (com-
pletely general) intertwining property of the field.” Goldin, Sharp [16] constructed
a representation of the ACR in the space F = L2(Γ0(R2),m), where Γ0(R2) denotes
the space of finite configurations in R2, and m is the Lebesgue–Poisson measure
on Γ0(R2). Note that L2(Γ0(R2),m) can be identified with the symmetric Fock
space Fs(L

2(R2, dx)).
Liguori, Mintchev [19] and Goldin, Majid [13] constructed an anyonic Fock

space F(q,q̄)(L
2(R2, dx)) and realized the ACR in this space. Note, however, that

this representation of the ACR is unitarily equivalent to the representation from
[16]. We also refer to [9] for a detailed discussion of the anyonic Fock space.

In [20], a refinement of the ACR was proposed. These new commutation
relations are determined by a pair (q, q̄) of complex conjugate numbers of modulus
1 and by a real number η. A possible natural choice of η is η = �(q). In the case
of the representation of the ACR in the anyonic Fock space F(q,q̄)(L

2(R2, dx)),
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one does not see the difference between the ACR from [16, 19] and the ACR from
[20]. Nevertheless, this difference becomes crucial when one tries to construct more
complex representations of the ACR.

By using these new commutation relations, the definition of an ACR algebra
and that of a gauge-invariant quasi-free state on the ACR algebra were proposed
in [20]. Under certain assumptions on the generator K satisfying (5), a class of
representations of the ACR corresponding to a gauge-invariant quasi-free state was
explicitly constructed. In particular, the operator K was required to be real, i.e.,
mapping real-valued functions into real-valued functions.

The aim of the present paper is twofold. First, we will present a new discrete
model of anyon statistics over a two-dimensional lattice. It should be noted that
the ACR in the discrete setting were already discussed in [10, 13]. (See also the
references in [20].) However, in both papers [13] and [10], only the case of a one-
dimensional lattice was considered. We show in this paper that addition of a second
dimension of the lattice allows us to construct a wide class of gauge-invariant quasi-
free states on the corresponding ACR algebra. And second, we will show how the
class of representations of the ACR in the continuum setting can be extended to
include those gauge-invariant quasi-free states for which the generator K satisfying
(5) is not necessarily real.

The paper is organized as follows. In Section 2, following [9, 10, 19]), we
recall the construction of the Fock space for a generalized statistics and the Fock
representation of the corresponding commutation relations.

Section 3 consists of two parts. In the first subsection, we consider the dis-
crete ACR over a one-dimensional lattice, Z. This model was proposed in [10] and
was influenced by the discrete model in [13]. We construct a class of non-Fock
representations of the ACR indexed by a positive-valued function on Z (which is
bounded by 1 in the case of anyon particles of fermion type). We show that the
corresponding vacuum state can be thought of as a gauge-invariant quasi-free in
which instead of the determinant/permanent a certain functional q-determinant
appears.

In the second subsection, we propose a model of discrete ACR over a two-
dimensional lattice, Z2. This model has more resemblance to the continuous case
(where the physical space is R2). As a result we construct a class of gauge-invariant
quasi-free representations of the ACR indexed by a positive linear operator in �2(Z)
(bounded by 1 in the case of anyon particles of fermion type).

Finally, in Section 4, we discuss the ACR algebra and the representations
of the ACR corresponding to the gauge-invariant quasi-free states. We extend
here the constructions from [20] to the case where the corresponding operator K
satisfying (5) is not necessarily real.
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2. Fock representation for a generalized statistics

Let X be a locally compact Polish space and let σ be a Radon measure on X . (The
reader who is not familiar with these notions may think of X as Rd or a discrete
space and σ the Lebesgue measure dx or the counting measure, respectively.) Let
X(2) be a symmetric subset of X2 such that

σ⊗2(X2 \X(2)) = 0.

Let Q : X(2) → C be a function satisfying |Q(x, y)| = 1 and Q(x, y) = Q(y, x).
Liguori and Mintchev [19] introduced the notion of a generalized statistics corre-
sponding to the function Q. Heuristically, this is a family of creation operators ∂+

x

and annihilation operators ∂−
x at points x ∈ X such that ∂+

x is the adjoint of ∂−
x

and these operators satisfy the following Q-commutation relations (Q-CR):

∂+
x ∂+

y = Q(y, x)∂+
y ∂+

x , (6)

∂−
x ∂−

y = Q(y, x)∂−
y ∂−

x , (7)

∂−
x ∂+

y = Q(x, y)∂+
y ∂−

x + δ(x, y). (8)

A rigorous meaning of the operators ∂+
x and ∂−

x and the commutation relations
(6)–(8) is given by smearing these relations with functions from the complex L2-
space H := L2(X,σ). More precisely, one should define linear operators

a+(f) =

∫
X

f(x) ∂+
x σ(dx), a−(f) =

∫
X

f(x) ∂−
x σ(dx), f ∈ H, (9)

on a dense linear subspace D of a complex Hilbert space F so that a+(f) depends
linearly on f , the adjoint of a+(f) restricted to D is equal to a−(f), and for all
f, g ∈ H,

a+(f)a+(g) =

∫
X2

f(x)g(y)Q(y, x) ∂+
y ∂+

x σ(dx)σ(dy), (10)

a−(f)a−(g) =

∫
X2

f(x)g(y)Q(y, x) ∂−
y ∂−

x σ(dx)σ(dy), (11)

a−(f)a+(g) =

∫
X2

f(x) g(y)Q(x, y) ∂+
y ∂−

x σ(dx)σ(dy) +

∫
X

g(x)f(x) σ(dx). (12)

Note that the operator-valued integrals on the right-hand side of formulas (10)–
(12) should also be given rigorous meaning. Note also that the choice Q ≡ 1 gives
the CCR and the choice Q ≡ −1 gives the CAR, see (1)–(3).

To construct the Fock representation of the Q-CR one defines the correspond-
ing Q-symmetric Fock space. We denote

X(n) :=
{
(x1, . . . , xn) ∈ Xn | (xi, xj) ∈ X(2) for all 1 ≤ i < j ≤ n

}
,

and we obviously have σ⊗n(Xn \X(n)) = 0. A function f (n) : X(n) → C is called
Q-symmetric if for any i ∈ {1, . . . , n− 1} and (x1, . . . , xn) ∈ X(n).

f (n)(x1, . . . , xn) = Q(xi, xi+1)f
(n)(x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn).
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We denote by H�n the subspace of H⊗n that consists of all Q-symmetric functions
from H⊗n. We call H�n the nth Q-symmetric tensor power of H.

Consider the symmetric group Sn of all permutations of 1, . . . , n. For each
π ∈ Sn, we define a function Qπ : X(n) → C by

Qπ(x1, . . . , xn) :=
∏

1≤i<j≤n

π(i)>π(j)

Q(xi, xj). (13)

Note that, in the case Q ≡ 1, we get Qπ ≡ 1, while in the case Q ≡ −1, we get
Qπ ≡ (−1)|π| = sgnπ. Here |π| is the number of inversions in π, i.e., the number
of i < j such that π(i) > π(j). For a function f (n) : Xn → C, we define

(Pnf (n))(x1, . . . , xn) :=
1

n!

∑
π∈Sn

Qπ(x1, . . . , xn)f
(n)(xπ−1(1), . . . , xπ−1(n)). (14)

The operator Pn determines the orthogonal projection of H⊗n onto H�n.
For any f (n) ∈ H�n and g(m) ∈ H�m, we define the Q-symmetric tensor

product of f (n) and g(m) by

f (n) � g(m) := Pn+m(f (n) ⊗ g(m)).

The tensor product � is associative.
We define the Q-Fock space over H by

FQ(H) :=
∞⊕
n=0

H�nn! .

(In particular, for Q ≡ 1 FQ(H) = Fs(H) and for Q ≡ −1 FQ(H) = Fa(H).) The
vector Ω := (1, 0, 0, . . . ) ∈ FQ(H) is called the vacuum. We also denote by FQ

fin(H)
the subset of FQ(H) consisting of all finite sequences

F = (f (0), f (1), . . . , f (n), 0, 0, . . . )

in which f (i) ∈ H�i for i = 0, 1, . . . , n, n ∈ N.
For each f ∈ H, we define a creation operator a+(f) and an annihilation

operator a−(f) as linear operators acting on FQ
fin(H) that satisfy

a+(f)h(n) := f � h(n), h(n) ∈ H�n,

and a−(f) := (a+(f))∗ �FQ
fin(H). Furthermore, for f ∈ H and h(n) ∈ H�n, we have:

(a−(f)h(n))(x1, . . . , xn−1) = n

∫
X

f(u)h(n)(u, x1, . . . , xn−1)σ(du).

Thus, if we introduce formal operators ∂+
x and ∂−

x by formulas (9), we for-
mally get

∂+
x h(n) = δx � h(n), ∂−

x h(n) = nh(n)(x, ·),
where δx is the delta function at x. Now, one can easily give a rigorous meaning
to the Q-CR (10)–(12) and show that these relations hold.
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Indeed, for h(n) ∈ H�n,(
a+(f)a+(g)h(n)

)
(x1, . . . , xn+2)

=

(∫
X2

f(x)g(y) ∂+
x ∂+

y σ(dx)σ(dy)h(n)

)
(x1, . . . , xn+2)

= Pn+2

(
f(x1)g(x2)h

(n)(x3, . . . , xn)
)
.

Hence, we naturally define(∫
X2

f(x)g(y)Q(y, x)∂+
y ∂+

x σ(dx)σ(dy) h(n)

)
(x1, . . . , xn+2)

=

(∫
X2

g(x)f(y)Q(x, y)∂+
x ∂+

y σ(dx)σ(dy) h(n)

)
(x1, . . . , xn+2)

:= Pn+2

(
g(x1)f(x2)Q(x1, x2)h

(n)(x3, . . . , xn)
)
,

and we indeed have

Pn+2

(
f(x1)g(x2)h

(n)(x3, . . . , xn)
)

= Pn+2

(
g(x1)f(x2)Q(x1, x2)h

(n)(x3, . . . , xn)
)
.

Thus, (10) holds. By duality, this also implies that (11) holds.

Analogously, we define(∫
X2

f(x) g(y)Q(x, y)∂+
y ∂−

x σ(dx)σ(dy) h(n)

)
(x1, . . . , xn)

:= nPn

(∫
X

f(u)g(x1)Q(u, x1)g(x1)h
(n)(u, x2, . . . , xn)σ(du)

)
.

(15)

On the other hand,(
a−(f)a+(g)h(n)

)
(x1, . . . , xn) = (n + 1)

∫
X

f(u) (g � h(n))(u, x1, . . . , xn)σ(du).

(16)
By using (14)–(16), one finally shows that formula (12) holds.

We note that, in the obtained representation of the Q-CR, we only used the
values of the function Q σ⊗2-almost everywhere.

3. Discrete setting

Following [10, 13], we start with a discussion of the ACR over the one-dimensional
lattice.

3.1. One-dimensional lattice

Let X = Z and let σ be the counting measure on Z. Thus, L2(X,σ) = �2(X). Fix
q ∈ C of modulus 1 and η ∈ {−1, 1}.
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We define Q : X2 → C by

Q(x, y) :=

⎧⎪⎨⎪⎩
q, if x < y,

q̄, if x > y,

η, if x = y.

With this choice of Q, the Q-CR (6)–(8) become the discrete ACR over Z. In the
case η = −1, one speaks of anyons of fermion type.

Let us now construct a class of non-Fock representations of these commuta-
tion relations. Let X1 and X2 denote two copies of Z and let Y := X1 +X2. Thus,
�2(Y ) = �2(X1)⊕ �2(X2). We define a function Q : Y 2 → C by

Q(x, y) :=

{
Q(x, y), if either x, y ∈ X1 or x, y ∈ X2,

Q(y, x), if either x ∈ X1, y ∈ X2 or x ∈ X2, y ∈ X1.
(17)

(Here and below we use an obvious abuse of notation.) We consider the correspond-
ing creation and annihilation operators, ∂+

x , ∂−
x (x ∈ Y ) in FQ(�2(Y )). Note that

these are now rigorously defined operators that satisfy the commutation relations

∂+
x ∂+

y = Q(y, x)∂+
y ∂+

x , ∂−
x ∂−

y = Q(y, x)∂−
y ∂−

x , (18)

∂−
x ∂+

y = Q(x, y)∂+
y ∂−

x + δ(x, y). (19)

By (19),
∂+
x ∂−

y = Q(x, y)∂−
y ∂+

x − ηδ(x, y). (20)

For x ∈ Z considered as an element of Xi (i ∈ {1, 2}), we denote the cor-
responding creation and annihilation operators in FQ(�2(Y )) at point x ∈ Xi by
∂+
x,i and ∂−

x,i, respectively.

Fix functions Ki : X → [0,∞) (i ∈ {1, 2}) and define, for each x ∈ X , linear
operators

D+
x : = K1(x)∂

−
x,1 + K2(x)∂

+
x,2, (21)

D−
x : = K1(x)∂

+
x,1 + K2(x)∂

−
x,2. (22)

The following proposition is a direct consequence of (17)–(22).

Proposition 1. Assume K2(x)
2 = 1 + ηK1(x)

2 for all x ∈ Z. Then the operators
D+

x , D−
x (x ∈ Z) given by (21), (22) satisfy the discrete ACR over Z.

Let A denote the complex algebra generated by the operators D+
x , D−

x (x ∈
Z) and the identity operator. Let τ be the vacuum state on A, i.e.,

τ(A) := (AΩ,Ω)FQ(�2(Y )), A ∈ A. (23)

Due to the commutation relation (8), τ is completely determined by the functionals

S(k,n)(x1, . . . , xk, y1, . . . , yn) := τ(D+
x1
· · ·D+

xk
D−

y1
. . . , D−

yn
), (24)

where k, n ∈ N0, k + n ≥ 1.
The following proposition shows that the state τ on A can be understood as

a gauge-invariant quasi-free state on the ACR algebra over Z.
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Proposition 2. We have

S(k,n) ≡ 0 if k �= n. (25)

Furthermore,

S(1,1)(x, y) = K1(x)
2δx,y, (26)

(where δx,y is the Kronecker delta) and for n ≥ 2

S(n,n)(xn, . . . , x1, y1, . . . , yn) =
∑
π∈Sn

Qπ(x1, . . . , xn)S
(1,1)(xl, yπ(l)). (27)

Remark 3. Note that the expression on the right-hand side of formula (27) can be
thought of as a functional Q-determinant of the matrix

[
S(1,1)(xi, yj)

]
i,j=1,...,n

.

Remark 4. It follows from Proposition 2 that the obtained class of representations
of the discrete ACR over Z is completely determined by the function K(x) :=
K2

1 (x) defined on Z and taking values in [0,∞) if η = 1 and in [0, 1] if η = −1.

Proof of Proposition 2. Formulas (25), (26) follow immediately from (21)–(24).
Using also (13), (14), we get

S(n,n)(xn, . . . , x1, y1, . . . , yn)

= K1(x1) · · ·K1(xn)K(y1) · · ·K(yn)

× n!
(
δy1 � · · ·� δyn , δx1 � · · ·� δxn

)
�2(Y )�n

= K1(x1) · · ·K1(xn)K(y1) · · ·K(yn)

×
(
n!Pn(δy1 ⊗ · · · ⊗ δyn), δx1 ⊗ · · · ⊗ δxn

)
�2(Y )⊗n (28)

= K1(x1) · · ·K1(xn)K(y1) · · ·K(yn)
∑
π∈Sn

Qπ(yπ(1), . . . , yπ(n))
n∏

l=1

δyπ(l),xl

= K1(x1)
2 · · ·K1(xn)

2
∑
π∈Sn

Qπ(x1, . . . , xn)
n∏

l=1

δxl,yπ(l)
, �

which implies (12).

3.2. Two-dimensional lattice

We will now present a new discrete model of the ACR over a two-dimensional
lattice, Z2. This construction will have more similarities to the continuous case
over the real plane R2. Furthermore, we will be able to construct a much wider
class of representations of the discrete ACR corresponding to a gauge-invariant
quasi-free state.

So, let now X = Z2. We denote x = (x1, x2) ∈ X . We again fix a complex
number q of modulus 1 and η ∈ {−1, 1}. We define Q : X2 → C by

Q(x, y) :=

⎧⎪⎨⎪⎩
q, if x1 < y1,

q̄, if x1 > y1,

η, if x1 = y1.
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With this choice of Q, the Q-CR (6)–(8) will be called the discrete ACR over Z2.
Analogously to Subsection 3.1, we then define �2(Y ) and the operators ∂+

x,i and

∂−
x,i (x ∈ X) in FQ(�2(Y )).

Each bounded linear operator L in �2(X) can be identified with its matrix
[L(x, y)]x,y∈X :

(Lf)(x) =
∑
y∈X

L(x, y)f(y), f ∈ �2(X).

Furthermore, for each x ∈ X , we obviously have L(x, ·) ∈ �2(X).
Let K1 and K2 be bounded self-adjoint operators in �2(X). We assume that

Ki(x, y) = 0 if x1 �= y1, i = 1, 2. (29)

This assumption is equivalent to the following requirement: for each bounded func-
tion g : Z→ C, we have LMg,1f = Mg,1Lf for all f ∈ �2(X). Here we defined the
operator Mg,1 by

(Mg,1f)(x) := g(x1)f(x), f ∈ �2(X).

Now, for each x ∈ X , we define linear operators

D+
x : = a−(K1(x, ·), 0

)
+ a+

(
0,K2(x, ·)

)
, (30)

D−
x : = a+

(
K1(x, ·), 0

)
+ a−(0,K2(x, ·)

)
. (31)

In view of (29), formulas (30), (31) can be written in the form

D+
x =

∑
y∈X: y1=x1

(
K1(x, y)∂−

y,1 + K2(x, y)∂+
y,2

)
, (32)

D−
x =

∑
y∈X: y1=x1

(
K1(x, y)∂+

y,1 + K2(x, y)∂−
y,2

)
. (33)

Proposition 5. Let K1 and K2 be bounded positive operators in �2(Z2) satisfying
(29). Assume K2

2 = 1+ ηK2
1 . Then the operators D+

x , D−
x (x ∈ Z2) given by (30),

(31) satisfy the discrete ACR over Z2.

Proof. We will only prove the less trivial commutation relation between D−
x and

D+
y . By (18)–(20), (32) and (33), we have

D−
x D+

y =
∑

u∈X:u1=x1

(
K1(x, u)∂+

u,1 + K2(x, u)∂−
u,2

)
×

∑
v∈X: v1=y1

(
K1(y, v)∂−

v,1 + K2(y, v)∂+
v,2

)
=

∑
u∈X:u1=x1

∑
v∈X: v1=y1

[
Q(u, v)

(
K1(y, v)∂−

v,1 + K2(y, v)∂+
v,2

)
×
(
K1(x, u)∂+

u,1 + K2(x, y)∂−
u,2

)
+
(
K2(y, u)K2(u, x)− ηK1(y, u)K1(u, x)

)
δu,v

]
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= Q(x, y)D+
y D−

x +
∑
u∈X

(
K2(y, u)K2(u, x)− ηK1(y, u)K1(u, x)

)
= Q(x, y)D+

y D−
x + δx,y. �

Similarly to Subsection 3.1, we now define the vacuum state τ on the complex
algebra A generated by the operators D+

x , D
−
x (x ∈ Z2) and the identity operator.

We also define the functionals S(k,n) by (24). Similarly to Proposition 2, we get

Proposition 6. Formula (25) holds for the just constructed state τ . Furthermore,
define the positive bonded linear operator K := K2

1 in �2(Z2) with matrix
[K(x, y)]x,y∈Z2. Then

S(1,1)(x, y) = K(x, y)

and for n ≥ 2, formula (27) holds.

Remark 7. It follows from Proposition 6 that the obtained class of representa-
tions of the discrete ACR over Z2 is completely determined by the bounded linear
operator K in �2(Z2) satisfying K ≥ 0 if η = 1 and 0 ≤ K ≤ 1 if η = −1.

Proof of Proposition 6. Formula (25) follows immediately from (30), (31). Next,

S(1,1)(x, y) = (D−
y Ω, D−

x Ω)FQ(�2(Y ))

= (K1(·, y),K1(·, x))�2(X)

=
∑
u∈X

K1(u, y)K1(x, u)

= K(x, y),

and for n ≥ 2, similarly to (28) and using (29), we calculate

S(n,n)(xn, . . . , x1, y1, . . . , yn)

= (D−
y1
· · ·D−

yn
Ω, D−

x1
· · ·D−

xn
Ω)FQ(�2(Y ))

= n!
(
K1(·, y1)� · · ·� K1(·, yn),K1(·, x1)� · · ·� K1(·, xn)

)
�2(X)�n

=
(
n!Pn(K1(·, y1)⊗ · · · ⊗K1(·, yn)),K1(·, x1)⊗ · · · ⊗K1(·, xn)

)
�2(X)⊗n

=
∑
π∈Sn

∑
(u1,...,un)∈Xn

Qπ(u1, . . . , un)K1(u1, yπ(1)) · · ·K1(un, yπ(n))

×K1(x1, u1)δu1
1,x

1
1
· · ·K1(xn, un)δu1

n,x
1
n

=
∑
π∈Sn

Qπ(x1, . . . , xn)
∑

(u1,...,un)∈Xn

K1(u1, yπ(1)) · · ·K1(un, yπ(n))

×K1(x1, u1) · · ·K1(xn, un)

=
∑
π∈Sn

Qπ(x1, . . . , xn)K(x1, yπ(1)) · · ·K(xn, yπ(n)). �
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4. Continuous setting

Let now X = R2 and σ(dx) = dx is the Lebesgue measure. Thus, H = L2(R2, dx).
We fix q ∈ C, |q| = 1, and set

Q(x, y) =

{
q, if x1 < y1,

q̄, if x1 > y1.
(34)

Thus, in the notations of Section 2, we have

X(2) = {(x, y) ∈ X2 | x1 �= y1}.

4.1. An ACR algebra

We saw in Section 3 that, in order to construct non-Fock representations of the
ACR, we had to derive from the commutation relation (8), a commutation rela-
tion for ∂+

x ∂−
y . By formal multiplication of (8) by Q(y, x) and swapping x and y

variables, we get

∂+
x ∂−

y = Q(x, y)∂−
y ∂+

x −Q(x, x)δ(x, y).

But in the Fock representation of the ACR in the continuous case (Section 2), the
value of Q(x, x) is arbitrary, since the set {(x, y) ∈ X2 | x = y} is of zero Lebesgue
measure dx dy. Hence, it can be chosen arbitrary. Thus, we fix any η ∈ R and set
Q(x, x) := η for all x ∈ X .

Recall (16). By [9, Proposition 2.7], we have

(n + 1)(g � h(n))(u, x1, . . . , xn)

= g(u)h(n)(x1, . . . , xn)

+

n∑
k=1

Q(u, xk)Q(x1, xk)Q(x2, xk) · · ·

· · ·Q(xk−1, xk) g(xk)h
(n)(u, x1, . . . , x̌k, . . . , xn),

(35)

where x̌k denotes the absence of xk. Now, let ϕ(2) : X2 → C be a bounded function
with compact support. By (16) and (35), we have(∫

X2

ϕ(2)(u, v)∂−
u ∂+

v du dv h(n)

)
(x1, . . . , xn)

=

∫
X

ϕ(2)(u, u) duh(n)(x1, . . . , xn)

+

n∑
k=1

∫
X

ϕ(2)(u, xk)Q(u, xk)Q(x1, xk) · · ·

· · ·Q(xk−1, xk)h
(n)(u, x1, . . . , x̌k, . . . , xn) du.

(36)

(Although the calculations in formula (36) look formal, they can, in fact, be given
a rigorous meaning, see Section 3 in [20].) Note that in (36), we use the values of
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ϕ(2)(u, v) du dv-a.e. and the values of ϕ(u, u) du-a.e. Formulas (35) and (36) imply(∫
X2

ϕ(2)(u, v)Q(v, u)∂−
u ∂+

v du dv h(n)

)
(x1, . . . , xn)

= η

∫
X

ϕ(2)(u, u) duh(n)(x1, . . . , xn)

+

n∑
k=1

∫
X

ϕ(2)(u, xk)Q(x1, xk) · · ·Q(xk−1, xk)h
(n)(u, x1, . . . , x̌k, . . . , xn) du

= η

(∫
X

ϕ(2)(u, u) du

)
h(n)(x1, . . . , xn)

+

(∫
X2

ϕ(2)(u, v)∂+
v ∂−

u h(n)

)
(x1, . . . , xn). (37)

Thus,

∂+
x ∂−

y = Q(x, y)∂−
y ∂+

x − ηδ(x, y), (38)

and this formula holds for any choice of η as the value of Q(x, x).

This suggests us to consider the commutation relations (6)–(8) in the contin-
uous case in the refined form

∂+
x ∂+

y = Q(y, x)∂+
y ∂+

x , x �= y, (39)

∂−
x ∂−

y = Q(y, x)∂−
y ∂−

x , x �= y, (40)

∂−
x ∂+

y = Q(x, y)∂+
y ∂−

x + δ(x, y), (41)

where

Q(x, y) =

⎧⎪⎨⎪⎩
q, if x1 < y1,

q̄, if x1 > y1,

η, if x1 = y1.

(42)

To formalize the commutation relations (39)–(41), a rigorous definition of an
ACR algebra was proposed in [20]. Let us briefly recall the main points of this
definition.

Consider a sequence � = (�1, . . . , �n) ∈ {+,−}n. Let

C� :=
{
(i, j) ∈ {1, . . . , n}2 | i < j, �i �= �j

}
.

Let P� denote the collection of all subsets A = {(i1, j1), (i2, j2), . . . , (ik, jk)} ⊂ C�

such that i1, j1, i2, j2, . . . , ik, jk are all different numbers. We define a measure m�

on Rn by

m�(ds1 · · · dsn) =
(
1 +

∑
A={(i1,j1),...,(ik,jk)}∈P	

k∏
l=1

δ(sil , sjl)

)
ds1 · · · dsn.

For example, if � = {+,+}, m�(ds1 ds2) = ds1 ds2 and if � = {+,−}, m�(ds1 ds2) =
ds1 ds2 + δ(s1, s2) ds1 ds2.



322 E. Lytvynov

We now assume that, for each � = (�1, . . . , �n) ∈ {+,−}n, we are given
operator-valued integrals∫

Xn

ϕ(n)(x1, . . . , xn) ∂
�1
x1
· · · ∂�n

xn
dx1 · · · dxn (43)

that are defined in a complex separable Hilbert space F on a dense subspace D of
F and map D into itself. The function ϕ(n) : Xn → C is supposed to be of the
form

ϕ(n)(x1, . . . , xn) = h1(x1) · · ·hn(xn)κ(n)(x1
1, . . . , x

1
n), (44)

where h1, . . . , hn ∈ H and κ(n) ∈ L∞(Rn,m�). (Note that the representation of

ϕ(n) in the form (44) is not unique and we assume that the operator in (43) does
not depend on this representation.) We assume that the product of two operator-
valued integrals is given by∫

Xk

ϕ(k)(x1, . . . , xk) ∂
�1
x1
· · · ∂�k

xk
dx1 · · · dxk

×
∫
Xm

ψ(m)(xk+1, . . . , xk+m) ∂�k+1
xk+1
· · · ∂�k+m

xk+m
dxk+1 · · · dxk+m

=

∫
Xk+m

ϕ(k)(x1, . . . , xk)ψ
(m)(xk+1, . . . , xk+m) ∂�1

x1
· · · ∂�k+m

xk+m
dx1 · · · dxk+m,

and the adjoint of an operator-valued integral is given by(∫
Xk

ϕ(k)(x1, . . . , xk) ∂
�1
x1
· · ·∂�k

xk
dx1 · · · dxk

)∗
=

(∫
Xk

ϕ(k)(x1, . . . , xk) ∂
�k
xk
· · ·∂�1

x1
dx1 · · · dxk

)
,

where

,i :=

{
+ if �i = −,

− if �i = +,
i = 1, . . . , k.

One makes further assumptions that make rigorous sense of the duality of ∂+
x and

∂−
x and the commutation relations (39)–(41) with the function Q given by (42).

Note that, due to our definition of the measures m�, we never use the value
of the function Q on the diagonal {(x, y) ∈ X2 | x1 = y1} when we apply the
Q-commutation relations between ∂+

x , ∂
+
y , or between ∂−

x , ∂−
y . On the other hand,

the value η appears in calculations when we apply the commutation relations to
∂−
x ∂+

y or ∂+
x ∂−

y . (Note that formula (38) holds now in the smeared form!)
Let A be the complex algebra generated by the identity operator and the

operator-valued integrals of the form (43). We will call A an ACR algebra in the
continuum.

Let τ be a state on A. Then due to the commutation relations (39)–(41), τ
is completely determined by the values of

τ

(∫
Xk+n

ϕ(k+n)(x1, . . . , xk+n)∂
+
x1
· · ·∂+

xk
∂−
xk+1
· · · ∂−

xk+n
dx1 · · · dxk+n

)
.
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Thus, for

g1, . . . , gk, h1, . . . , hn ∈ H, κ(k+n) ∈ L∞(Rk+n,m{+}k×{−}n

)
,

we define

S(k,n)(g1, . . . , gk, h1, . . . , hn,κ(k+n))

:= τ

(∫
Xk+n

g1(x1) · · · gk(xk)h1(xk+1) · · ·hn(xk+n)ψ
(k+n)(x1

1, . . . , x
1
k+n)

× ∂+
x1
· · · ∂+

xk
∂−
xk+1
· · ·∂−

xk+n
dx1 · · · dxk+n

)
.

In particular, if κ(k+n) ≡ 1, we get

S(k,n)(g1, . . . , gk, h1, . . . , hn, 1) = τ
(
a+(g1) · · · a+(gk)a

− (Jh1) · · ·a− (Jhn)
)
.

Here J : H → H is the antiunitary operator of complex conjugation: (Jf)(x)

:= f(x).

As easily seen, the Fock representation of the commutation relations (6)–(8)
with Q given by (34) gives a representation of the commutation relations (39)–(41)
with Q given by (42) for any choice of η. In other words, based on the creation
and annihilation operators in the Q-symmetric Fock space FQ(L2(R2, dx)), one
constructs an ACR algebra in which the commutation relations (41), (38) hold for
any choice of η. For this representation of ACR, we trivially have S(k,n) ≡ 0 for
all k and n.

4.2. Non-Fock representations

To construct non-Fock representations of the commutation relations (39)–(41), we
proceed by analogy with Section 3.

We denote by X1, X2 two copies of X = R2. We denote Y := X1+X2, and we
can obviously extend the Lebesgue measure dx to Y . We define a function Q→ C
by (17), and we consider the Q-symmetric Fock space FQ(L2(Y, dx)). Note that,
in this construction, we may think of Q as given by (34) as we do not actually use
here the values of Q on the diagonal.

We fix continuous linear operators K1 and K2 in H. We assume that these
operators commute with any operator of multiplication by a bounded measurable
function κ(x1). The latter condition means that, for i = 1, 2 and f ∈ H,

(Kif)(x
1, x2) =

(
Ki(x

1)f(x1, ·)
)
(x2),

where for dx1-a.a. x1 ∈ R, Ki(x
1) is a bounded linear operator in L2(R, dx2). For

example, Ki may be of the form 1⊗ K̃i, where K̃i is a bounded linear operator in
L2(R, dx2).

For x ∈ X , we denote by ∂+
x,i and ∂−

x,i (i ∈ {1, 2}) the creation and annihila-
tion operators at the point x being identified with the corresponding point of Xi.
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Thus, for f ∈ H,

a+(f, 0) =

∫
X

f(x)∂+
x,1 dx, a−(f, 0) =

∫
X

f(x) ∂−
x,1 dx,

a+(0, f) =

∫
X

f(x)∂+
x,2 dx, a−(0, f) =

∫
X

f(x) ∂−
x,2 dx.

We now define (formal) operators D+
x and D−

x (x ∈ X) that satisfy, for each f ∈ H:∫
X

f(x)D+
x dx =

∫
X

(K1f)(x)∂
−
x,1 dx +

∫
X

(K2f)(x)∂
+
x,2 dx,∫

X

f(x)D−
x dx :=

∫
X

(JK1Jf)(x)∂+
x,1 dx +

∫
X

(JK2Jf)(x)∂−
x,2 dx.

If we denote

A+(f) :=

∫
X

f(x)D+
x dx,

A−(f) :=

∫
X

f(x)D−
x dx,

then

A+(f) :=a+(0,K2f) + a−(JK1f, 0),

A−(f) :=a−(0,K2f) + a+(JK1f, 0).

Theorem 8. Additionally to the above assumption on the operators K1 and K2,
assume that these operators are self-adjoint and satisfy

K2
2 = 1+ ηK2

1 .

Then the operators D+
x , D−

x satisfy the commutation relations (39)–(41) and gen-
erate an ACR algebra A.

In [20, Theorem 19], Theorem 8 was proved under the assumption that the
operators Ki were real, i.e., satisfying JKi = KiJ , or equivalently JKiJ = Ki

(i = 1, 2). The proof of Theorem 8 is similar to that of [20, Theorem 19], so we
omit it. (The proof of Theorem 8 actually extends the proof of Proposition 5 to
the continuous setting.)

The definition of a gauge-invariant quasi-free state on an ACR algebra was
given in [20, Subsection 2.3]. However, it is technically rather difficult. Below we
will present a simplified definition, which will be completely sufficient for our
purposes.

Definition 9. We will say that a state τ on the ACR algebra A is gauge-invariant
quasi-free if:

• S(k,n) ≡ 0 if k �= n;
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• There exists a continuous self-adjoint operator K in H that commutes with
any operator of multiplication by a bounded measurable function κ(x1) and

S(1,1)(g, h,κ(2)) =

∫
X

(Kg)(x)h(x)κ(2)(x1, x1) dx; (45)

• For n ≥ 2,

S(n,n)(gn, . . . , g1, h1, . . . , hn, ψ(2n))

=
∑
π∈Sn

∫
Xn

(
n∏

i=1

(Kgi)(xi)hπ(i)(xi)

)
× ψ(2n)(x1

n, . . . , x1
1, x

1
π−1(1), . . . , x

1
π−1(n))Qπ(x1, . . . , xn) dx1 · · · dxn. (46)

Remark 10. Note that Definition 9 implies that

τ
(
a+(g)a−(h)

)
=

∫
X

(Kg)(x)h(x) dx = (Kg, h)H

and for n ≥ 2

τ
(
a+(gn) · · · a+(g1)a

−(h1) · · ·a−(hn)
)

=
∑
π∈Sn

∫
Xn

(
n∏

i=1

(Kgi)(xi)hπ(i)(xi)

)
Qπ(x1, . . . , xn) dx1 · · · dxn. (47)

In particular, in the Fermi case, Qπ ≡ sgnπ and so

τ
(
a+(gn) · · · a+(g1)a

−(h1) · · ·a−(hn)
)
=

∑
π∈Sn

sgnπ
n∏
i=i

(Kgi, hπ(i))H.

In the general case, the right-hand side of (47) can be though of as a functional
Q-determinant in the continuuum.

Theorem 11. Let A be the ACR algebra from Theorem 8. We define a state τ
on A by

τ(A) := (AΩ,Ω)FQ(L2(Y,dx)), A ∈ A.

Then τ is a gauge-invariant quasi-free state on A satisfying (45), (46) with K=K2
1 .

Theorem 11 is proved analogously to [20, Theorem 22], see also the proof of
Proposition 6.

Corollary 12. Let η ≥ 0. Let K be a continuous linear operator in H. Assume K
commutes with any operator of multiplication by a bounded measurable function
κ(x1). Let also K ≥ 0. Then there exists a gauge-invariant quasi-free state τ on
the ACR algebra A that satisfies (45), (46).

If η < 0, the latter statement remains true if the operator K additionally
satisfies 0 ≤ K ≤ −1/η.

For the proof of Corollary 12, just choose in Theorem 11

K1 :=
√

K, K2 :=
√
1+ ηK.
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Remarks to the Resonance-Decay Problem
in Quantum Mechanics from a
Mathematical Point of View

Hellmut Baumgärtel

Abstract. The description of bumps in scattering cross-sections by Breit–
Wigner amplitudes led in the framework of the mathematical Physics to its
formulation as the so-called Resonance-Decay Problem. It consists of a spec-
tral theoretical component and the connection of this component with the
construction of decaying states. First the note quotes a solution for scattering
systems, where the absolutely continuous parts of the Hamiltonians are semi-
bounded and the scattering matrix is holomorphic in the upper half-plane.
This result uses the approach developed by Lax and Phillips, where the en-
ergy scale is extended to the whole real axis. The relationship of the spectral
theoretic part of its solution and corresponding solutions obtained by other
approaches is explained in the case of the Friedrichs model. A No-Go theorem
shows the impossibility of the total solution within the specific framework
of non-relativistic quantum mechanics. This points to the importance of the
Lax–Phillips approach. At last, a solution is presented, where the scattering
matrix is meromorphic in the upper half-plane.

Mathematics Subject Classification (2010). 81U20 Scattering Theory.

Keywords. Resonance-decay problem, Lax–Phillips approach, Friedrichs
model.

1. Introduction

The origin of the resonance-decay problem in non-relativistic quantum mechan-
ics is the observation of bumps in scattering cross-sections and their successful
description by the so-called Breit–Wigner formula

R Q λ Ñ 1

π

α

pλ ´ cq2 ` α2
, α ą 0, c P R,

c© Springer Nature Switzerland AG 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01156-7_34&domain=pdf


332 H. Baumgärtel

where c is the resonance energy E0. Since

1

π

ż 8

´8
α

pλ ´ cq2 ` α2
dλ “ 1, (1)

the Breit–Wigner formula describes, in a more general scope, a probability distri-
bution of a real numerical quantity varying over the whole real axis R. However
in the framework of scattering theory the Breit–Wigner formula is interpreted by
the Breit–Wigner amplitude

epλq :“ pα

π
q1{2 1

λ ´ pc ´ iαq , c ´ iα “: ζ P C´,

such that Eq. (1) now reads
ş8

´8 |epλq|2dλ “ 1. This suggests to consider the
function e as a state of a quantum-mechanical quantity, whose states are elements
of the Hilbert space L2pR, dλq, where the energy is “diagonalized”, i.e., the energy
operator is the multiplication operator M in this space and the time-evolution is
given by the unitary operator e´itM .

The so-called expectation value for the state e according to the evolution
e´itM is given by pe, e´itMeq and the corresponding “Born probability” by
|pe, e´itMeq|2. The calculation of the expectation value gives

pe, e´itMeq “ e´α|t|´ict,

i.e., with ζ :“ c ´ iα one gets

pe, e´itMeq “
#

e´itζ , t ą 0,

e´itζ , t ă 0,
(2)

and

|pe, e´itMeq|2 “ e´2α|t|, t P R.

That is, the expectation value forms an exponentially decaying semigroup t Ñ
e´itζ for t ě 0, similarly for t ď 0. Within this context the Breit–Wigner ampli-
tude – in particular the decay-semigroup property (2) – suggests the idea that e
could be interpreted as an unstable or decaying state, i.e., as an eigenvector of an
exponentially decaying semigroup, where ζ is an eigenvalue of its generator. This
interpretation of the Breit–Wigner amplitude leads to the problem to derive such
a semigroup and the spectrum of its generator from properties of the scattering
matrix, in particular from their poles in the lower half-plane. The reason to focus
on the poles is explained in Section 2. The formulation of these ideas within the
framework of the mathematical scattering theory led to the so-called

Resonance-Decay Problem. Let tH,H0u be an asymptotically complete quan-
tum-mechanical scattering system with scattering operator S. Then one has to
construct a non-selfadjoint operator B, generator of a so-called decay-semigroup,
depending on H via S, whose eigenvalue spectrum coincides with the set of all
poles of the scattering matrix in the lower half-plane, such that the corresponding
eigenstates can be interpreted as the hypothetical decaying states, connected with
the Breit–Wigner amplitudes.
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In other words, the first part of the problem is a spectral theoretical character-
ization of the poles of the scattering matrix in the lower half-plane and the second
step is to connect this characterization with the decay problem. Since the seventies
this problem induced a vast series of various developments (for a selection of ref-
erences see [1, 2]). In the non-relativistic quantum mechanics the focus of interest
is directed to scattering systems, whose Hamiltonians are semi-bounded. However
the mathematical framework of scattering theory also includes scattering systems,
where the generator H of the unitary evolution group R Q t Ñ e´itH on a Hilbert
space H together with the multiplication operator M “: H0 on the Hilbert space
L2pR,K, dλq form an asymptotic complete scattering system, i.e., the absolutely
continuous spectrum of H and H0 is the whole real axis. The Hilbert space K
represents the multiplicity of the problem.

A scattering theory for such unitary evolutions, which are equipped with
so-called outgoing and incoming subspaces was presented by P.D. Lax and R.S.
Phillips (see [3] and also [6, Chap. 12]), in particular for mutual orthogonal out-
and incoming subspaces. In this case the scattering matrix is holomorphic in C`,
it satisfies the condition }Spzq} ď 1, z P C`, and Lax and Phillips solved the
resonance-decay problem completely. A decisive concept for their solution is an
invariant subspace of a special decay-semigroup, defined on the so-called Hardy
space H2`pR,K, dλq for the upper half-plane, defined by

R Q t Ñ Q`e´itM�H2` , (3)

where Q` is the projection from L2pR,K, dλq onto H2`. In the following this decay-
semigroup is called the characteristic semigroup. At this point it is appropriate to
refer to the property (2) of the Breit–Wigner amplitude and the idea mentioned
there. Remarkably e is an eigenvector of the decay-semigroup (3) with eigenvalue
e´iζt. I.e., the Breit–Wigner amplitude appears in the Lax–Phillips approach as
an important element of a solution of the resonance-decay problem.

The idea, to use the Lax–Phillips technique also for the resonance-decay
problem on the positive energy half-axis, i.e., for semi-bounded Hamiltonians, is
based on the property that the linear manifold P`H2` is dense in the Hilbert
space L2pR`,K, dλq of the reference Hamiltonian H0, where P` is the projection
from L2pR,K, dλq on L2pR`,K, dλq. The linear manifold P`H2` equipped with the
norm of H2` is H2` itself, since P` is injective on H2`. The proof of the following
result for semi-bounded Hamiltonians H,H0 applies the Lax–Phillips technique,
in particular the properties of the characteristic semigroup (see [2, Theorem 3]):

If the scattering matrix of the scattering system tH,H0u on R` is holomor-
phic continuable into the upper half-plane C` and satisfies a certain boundedness
condition then an invariant subspace of the characteristic semigroup is constructed
such that its restriction to this subspace is a solution of the resonance-decay prob-
lem. That is, the spectrum of the generator of this restriction consists exactly of
all poles of the scattering matrix and its resolvent set of all points, where the
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scattering matrix is holomorphic. The eigenvectors for the poles ζ are exactly spe-
cial Breit–Wigner amplitudes k{pλ ´ ζq for certain vectors k, which satisfy the
condition Spζq˚k “ 0, thus solving the multiplicity problem.

So far, this result solves the first part of the resonance-decay problem, the
spectral characterization of the poles, completely. However, the eigenvectors, i.e.,
the decaying states, are vectors from H2` Ă L2pR,K, dλq. This means that the
direct relationship to the positive energy axis and the initial Hilbert space of
states is lost. Even it turns out that these states constructed, i.e., the Breit–Wigner
amplitudes, cannot be transferred unitarily to the Hilbert space L2pR`,K, dλq of
the reference Hamiltonian H0 “ M`, its multiplication operator, to be decaying
states w.r.t. the evolution e´itM` (see Section 3).

Nevertheless, in sight of the structural mathematical point of view, the result
can be interpreted within this Hilbert space: in the dense linear manifold P`H2`
one can introduce without ambiguity the H2`-norm. Then the decay-semigroup
can be considered as acting on P`H2` equipped with this stronger norm.

The real weakness of this result is that its ansatz is an abstract one. Basi-
cally, it takes into consideration only the (canonical) reference Hamiltonian H0

for the absolutely continuous spectrum and the scattering operator. The right or
justification to use this ansatz goes back to the theorem of Wollenberg (see [5, 6])
together with the fact that the Hamiltonian H , i.e., the interaction, is sometimes
unknown. However, the reason for the appearance of poles in the scattering matrix
of a scattering system H,H0 remains to be seen.

2. Friedrichs model

In so-called Friedrichs models the reason for the appearance of poles in the cor-
responding scattering matrix can be recognized. In these models eigenvalues of
the reference operator H0, which are embedded in its absolutely continuous spec-
trum are sometimes unstable caused by the interaction of H . They can generate
poles of the scattering matrix. Therefore, the spectral theoretical characteriza-
tion of these poles can be alternatively obtained by the method of “generalized
eigenvalues”, for example by so-called Gelfand triples. In this approach the corre-
sponding eigenantilinear forms are usually of the pure Dirac-type (see, e.g., [4, 7, 9]
and [8]). Interestingly for the Friedrichs model presented in [7] the solution of the
multiplicity problem corresponds exactly to the solution quoted in Section 1 (see
[7, Theorem 4.2]). In this paper the Friedrichs model H :“ M ` Γ ` Γ˚ on the
full energy axis is considered on the Hilbert state space H :“ L2pR,K, dλq ‘ E ,
where dimK ă 8, dim E ă 8 and M the multiplication operator. The operator
Γ : E Ñ L2pR,K, dλq is defined by pΓeqpλq :“ Mpλqe, where Mpλq P LpE Ñ Kq.
In this model one obtains for the scattering matrix the expression

SKpλq “ 1K ´ 2πiMpλqL`pλ ` i0q´1Mpλq˚, (4)

where L`p¨q denotes the so-called Livšic matrix on C`. Now, if one assumes that
Mp¨q is holomorphic on R and meromorphic continuable, then for a pole ζ of the
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scattering matrix in C´ one obtains that the multiplicity of the corresponding
Dirac-antilinear form is given by those k P K, such that k “ Mpζqe, e P E , where
L`pζqe “ 0 and L`p¨q denotes the continuation of the Livšic matrix into the
lower half-plane (see [7, Theorem 4.2]). The correspondence to the solution of the
multiplicity problem quoted in Section 1 is expressed by

Lemma. Let ζ P C´ and k P K. Then Spζq˚k “ 0 iff k “ Mpζqe, where e P E and
L`pζqe “ 0.

Proof. (i) Let Spζq˚k “ 0. Then, according to Eq. (4), one obtains

k “ ´2πiMpζqpL`pζq´1q˚Mpζq˚k

Put

e :“ ´2πipL`pζq´1q˚Mpζq˚k “ ´2πipL`pζq˚q´1Mpζq˚k. (5)

Since ζ P C´, the Livšic matrix at ζ reads

L`pζq “ pζ ´ H0qPE ´
ż 8

´8
Mpλq˚Mpλq

ζ ´ λ
dλ.

Further note

L`pζq˚ “ L´pζq,
where L´p¨q denotes the Livšic matrix on C´. According to Eq. (5) one has

L`pζq˚e “ ´2πiMpζq˚k “ L´pζqe.
For the continuation of L`p¨q into the lower half-plane one obtains

L`pζq “ L´pζq ` 2πiMpζq˚Mpζq.
Then one obtains

L`pζqe “ ´2πiMpζq˚pk ´ Mpζqeq.
The definition of e in Eq. (5) implies k “ Mpζqe. Therefore L`pζqe “ 0 follows.

(ii) Let k :“ Mpζqe, where L`pζqe “ 0. Then

L`pζq˚e “ L´pζqe “ ´2πiMpζq˚Mpζqe,
hence

e “ ´2πipL`pζq˚q´1Mpζq˚Mpζqe
and

k “ Mpζqe “ ´2πiMpζqpL`pζq˚q´1Mpζq˚k

follows, i.e., Spζq˚k “ 0. �

Similar results one obtains for Friedrichs models on the positive half-axis.
The scattering matrices of Friedrichs models may have poles in the upper half-

plane. Insofar the extension of the result mentioned in Section 1 to these cases is
obvious. For example, if in the Friedrichs model considered one puts dimK “ 1
and Γepλq :“ π´1{2pλ ` iq´1, then ζ :“ i is a pole of the scattering matrix.
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3. A no-go-theorem

In Section 1 a solution of the resonance-decay problem for a scattering system
on the positive half-line, proved in [2], is quoted and critically considered. It was
mentioned that the decaying states constructed there cannot be transferred to the
Hilbert space of the reference Hamiltonian. This section contains a proof for this
assertion.

Theorem 1. There is no state φ P L2pR`,K, dλq, }φ} “ 1, such that the Born prob-
ability w.r.t. the unitary time evolution generated by M` is exponentially decaying,
i.e., such that

|pφ, e´itM`φq|2 “ e´2αt, t ą 0,

for some constant α ą 0.

Proof. Born probabilities are symmetric w.r.t. future and past, i.e., they depend
only on |t|. Assume that there is a state φ and a constant α ą 0 such that

|pφ, e´itM`φq|2 “ e´2α|t|, t P R.

Then |pφ, e´itM`φq| “ e´α|t| and

pφ, e´itM`φq “
ż 8

0

e´itλ|φpλq|2Kdλ “ e´α|t|`iβptq,

where βp¨q is real-valued, continuous and one has βp´tq “ ´βptq. Define

gpλq “
" |φpλq|2K, λ ą 0

0, λ ă 0

Then g P L1pR, dλq and ż 8

´8
e´itλgpλqdλ “ e´α|t|`iβptq.

The function on the right-hand side is a L2-function, whereż 8

´8
α|e´α|t|`iβptq|2dt “ 1,

i.e., there is a function f P L2pR, dλq such that

F pfqptq “ f̂ptq “ α1{2e´α|t|`iβptq,

where }f}L2 “ 1 and F denotes the Fourier transform. That is, one obtainsż 8

´8
e´itλp2παq´1{2fpλqdλ “ e´α|t|`iβptq “

ż 8

´8
e´itλgpλqdλ.

Since the Schwartz space SpRq is dense in L1pRq w.r.t. the L1-norm and dense in
L2pRq w.r.t. the L2-norm, according to a standard argument in the theory of the

Fourier transformation it follows that p2παq´1{2f “ g, i.e., one obtains g P L2pRq.
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Now g has the property g “ P`g. This means f̂ is an element of H2´pRq, the
Hardy space of the lower half-plane, i.e., one gets f̂ “ Q´f̂ , where Q´ denotes the
projection onto H2´. Because of

P` “ F ´1Q´F

it follows that the inverse Fourier transform F ´1f̂ is necessarily from P`L2pR, dxq,
i.e., the function

x Ñ
ż 8

´8
eixte´α|t|`iβptqdt

vanishes for x ă 0. However, the function

hpzq :“
ż 8

´8
eizte´α|t|`iβptqdt

is well defined within the stripe | Im z| ă α and a holomorphic function there.
Therefore, since this function vanishes for z “ x ă 0 it vanishes identically, hence
also for x ą 0, i.e., one obtains g “ f “ 0, a contradiction. �

4. A result for scattering systems with poles of the
scattering matrix in the upper half-plane

An extension of the result mentioned in Section 1 in this direction is suggested
in Section 2. An incomplete version of the following result can be found already
in [2, Theorem 2], incomplete because of a flaw in the proof. Surprisingly it turns
out that not only the poles in the lower half-plane cause decaying states, but also
holomorphic points ζ there may generate such states, but only in the case that ζ
is a pole (in the upper half-plane) with a special property of its main part.

Theorem 2. Assume that the scattering matrix of the scattering system tH,H0u
on R satisfies the following conditions:

(I) It is meromorphic in C` with at most finitely many poles,
(II) }Spzq} ă K, K ą 0, z P C` |z| ą R, where R is sufficiently large,
(III) there are no complex-conjugated poles,
(IV) there is at least one pole in C´.

Then the spectrum specB` Ă C´ of the generator B` of the restriction of the
characteristic semigroup to the subspace T` Ă H2` is described as follows:

(i) ζ P C´ is an eigenvalue of B` iff (a) ζ is a pole of Sp¨q or (b) ζ is a pole
of Sp¨q and the operator coefficient A of the leading term of the main part of
the pole ζ is not invertible.

(ii) ζ P C´ is a point of the resolvent set resB` of B` iff (a) Spζq and Spζq exist,
i.e., ζ, ζ are holomorphic points of Sp¨q or (b) Spζq exists and ζ is a pole of
Sp¨q and A is invertible, i.e., A´1 exists.
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Proof. Let η1, η2, . . . , ηr be the poles in C` with the multiplicities g1, g2, . . . , gr.
Put g :“ řr

j“1 gj. Let pp¨q be the polynomial of degree g, defined by ppλq :“śr
j“1pλ ´ ηjqgj . PutM` :“ SN`, where N` is the linear manifold of H2` of all

functions u of the form upλq :“ ppλq
pλ`iqg wpλq, where w P H2`. Further put T` :“

H2` aM`.
Proof of (i): Let ζ be an eigenvalue of B`. Then a corresponding eigenvector has

necessarily the form fpλq “ k0

λ´ζ for some k0 P K and one hasż 8

´8
p k0
λ ´ ζ

, SpλqupλqqKdλ “
ż 8

´8
1

λ ´ ζ
pk0, SpλqupλqqKdλ “ 0, u P N`.

First let ζ be a holomorphic point of Sp¨q. Then one obtainsż 8

´8
1

λ ´ ζ
pSpλq˚k0, upλqqKdλ “ 2πipSpζq˚k0, upζqqK “ 0,

hence Spζq˚k0 “ 0 follows, since every k P K is possible for upζq. This means that
Spζq˚ is not invertible, i.e., ζ is a pole and (a) is true. Therefore, one can assume
that ζ is a pole. Then one getsż 8

´8
p k0
λ ´ ζ

, Spλq ppλq
pλ ` iqg wpλqqKdλ “

ż 8

´8
1

λ ´ ζ
pk0, Spλqppλq wpλq

pλ ` iqg qKdλ

“ 0 “ 2πipk0, pSp¨qpp¨qqpζq wpζq
pζ ` iqg qK

“ 2πipk0, cpζqA wpζq
pζ ` iqg qK,

where pSp¨qpp¨qqpζq “ cpζqA, cpζq ‰ 0 and A ‰ 0, where A is the leading term of

the main part of the pole ζ, i.e., one obtains pA˚k0, kq “ 0 for all k P K, hence
A˚k0 “ 0, i.e., A is not invertible and (b) is true.

For the reversal let ζ be a pole of Sp¨q and Spζq˚k0 “ 0 or let ζ be a pole
and A˚k0 “ 0 for some k0 P K, k0 ‰ 0. Then all calculations are reversible.

Proof of (ii): Let ζ P resB`. If ζ is a pole then ζ is an eigenvalue, hence it cannot
be a member of resB`. If Spζq exists and ζ is a pole, but A is not invertible then
ζ is again an eigenvalue. Reversal:

(a): In this case Spζq and Spζq exist. Then ζ is not an eigenvalue, hence

pB` ´ ζ1q´1

exists. According to the “closed graph theorem” it is sufficient to show that

imapB` ´ ζ1q “ T`

is true, i.e., if g P T` then one has to construct a function f P domB` such that

pB` ´ ζ1qf “ g.
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In any case f is an element from the domain of the generator of the full char-
acteristic semigroup. Therefore it is sufficient to construct f as an element of
T` “ H2` aM` such that

fpλq “ gpλq ´ k0
λ ´ ζ

,

where k0 P K is a suitable vector. Since gKM`, i.e., gKSN` or S˚gKN` one has

S˚ pp¨qgp¨q
p¨ ´ iqg KH2`,

i.e., the function

λ Ñ hpλq :“ Spλq˚ ppλq
pλ ´ iqg gpλq

is an element of H2´. The corresponding expression for f reads

Spλq˚ppλq
pλ ´ iqg fpλq “ pλ ´ ζq´1phpλq ´ Spλq˚ppλq

pλ ´ iqg k0q. (6)

Since ζ P C´, on has ppζq ‰ 0. In order that the right-hand side of Eq. (6) is from
H2´, one has to put

hpζq “ Spζq˚ppζq
pζ ´ iqg k0 “ Spζq´1ppζq

pζ ´ iqg k0.

Hence k0 is uniquely determined by

k0 “ pζ ´ iqg
ppζq Spζqhpζq.

(b): In this case Spζq exists but ζ is a pole of Sp¨q and A is invertible. The function
h is defined as before. Now the equation (6) is written in the form

pSp¨qpp¨qq˚pλq
pλ ´ iqg fpλq “ pλ ´ ζq´1phpλq ´ pSp¨qpp¨qq˚pλq

pλ ´ iqg k0q.

In this case one has pSp¨qpp¨qqpζq “ cA, where c ‰ 0 because ζ is one of the poles
ηj and A is again the leading term of the main part of the pole ζ, i.e.,

pSp¨qpp¨qq˚pζq “ cA˚

and one obtains k0 uniquely from the equation

hpζq “ c

pζ ´ iqg A˚k0,

i.e.,

k0 “ pcq´1pζ ´ iqgpA˚q´1hpζq. �
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Mathematical Institute
University of Potsdam, Germany
e-mail: baumg@uni-potsdam.de

mailto:baumg@uni-potsdam.de


Geometric Methods in Physics. XXXVI Workshop 2017

Trends in Mathematics, 341–346

Dynamical Generation of Graphene

M. Myronova and E. Bourret

Abstract. In recent years, the astonishing physical properties of carbon nanos-
tructures have been discovered and are nowadays being intensively studied.
We introduce how to obtain a graphene sheet using group theoretical methods
and how to construct a graphene layer using the method of dynamical gener-
ation of quasicrystals. Both approaches can be formulated in such a way that
the points of an infinite graphene sheet are generated. The main objective is
to describe how to generate graphene step by step from a single point of R2.

Mathematics Subject Classification (2010). Group theory, Mathematical crys-
tallography.

Keywords. Dynamical generation, graphene, nanotubes, congruence classes.

1. Introduction

Graphene is a two-dimensional Euclidean plane tiled by regular hexagons, these
hexagons being all of the same size. The vertices of the hexagons are usually taken
as carbon atoms, but other graphene-like structures were also observed [4, 5].

Although the most promising nanomaterials are graphene and carbon nan-
otubes, their geometrical structures remain so far unexplored. Owing to their ex-
ceptional physical, chemical and mechanical properties, they found an increasing
variety of applications [6].

The mathematical way to obtain a graphene sheet and the related nanotubes
is to use the finite reflection groups. In general, we should use the Lie algebras
A2 and G2 (or respectively their groups SU(3) and G(2)) to construct a layer of
graphene, because both of them yield triangular lattices. In this paper, we con-
sider two mathematical methods to construct graphene. Both will provide identical
graphene layers.

The first method used to obtain a mathematical model for the graphene is
the construction using the simple Lie group SU(3). It gives us an opportunity to
define the congruence classes for the points of its weight lattice and, as a result, to

c© Springer Nature Switzerland AG 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01156-7_35&domain=pdf


342 M. Myronova and E. Bourret

obtain an hexagonal tilling of R2 by removing the points of one of the congruence
classes.

The second method we used is inspired by the process of dynamical generation
of quasicrystals [1]. It was shown that, by using the Coxeter groups H2, H3 and
H4, quasicrystals can be constructed from a single point of Cn (n = 2, 3, 4). In our
case, we consider the Lie group SU(3) and we define a step-by-step construction
of the graphene from a single point of the plane R2. Furthermore, the method of
dynamical generation could be used to obtain any crystallographic structure.

2. Root and weigh lattices of An

Let Φ = {α1, . . . , αn} be a root system of rank n of the Lie algebra An in real
Euclidean space Rn [2]. It is determined by the Coxeter–Dynkin diagram shown
in Figure 1.

α1 α2 α3 αn

Figure 1. Coxeter–Dynkin diagram of the Lie group SU(n + 1).

The set of simple roots αi, i = 1, . . . , n of the root system Φ of An is called an
α-basis. Thus, for the Coxeter–Dynkin diagram, there is the corresponding Cartan
matrix, which gives the geometry of the α-basis:

Cjk =
2〈αj , αk〉
〈αk, αk〉

, where j, k = 1, 2, . . . , n. (1)

The set of ωk, k = 1, . . . , n is called the set of fundamental weights and forms
the ω-basis (or the basis of fundamental weights). It is convenient to work mostly
in the ω-basis. Therefore, we need to convert the α-basis using the duality relation
of the bases:

2〈αj, ωk〉
〈αj , αj〉

≡ 〈α∨
j , ωk〉 = δjk, where j, k ∈ {1, 2, . . . , n}. (2)

The link between the α- and ω-bases is also given by the Cartan matrix C
(1) and its inverse C−1:

αj =

n∑
k=1

Cjkωk and ωj =

n∑
k=1

(C−1
jk )αk. (3)

It is important to introduce the root lattice Q given by the set of all linear
combinations of the simple roots αi:

Q =
{ n∑

i=1

aiαi | ai ∈ Z
}
≡
⊕
i

Zαi ≡ Zα1 + · · ·+ Zαn. (4)
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The positive root lattice Q+ of Q is defined as:

Q+ =
{ n∑

i=1

aiαi | ai = Z≥0
}
≡ a1α1 + · · ·+ anαn. (5)

Likewise, we introduce the weight lattice P and the cone of dominant weight P+:

P = Zω1 + · · ·+ Zωn and P+ = Z≥0ω1 + · · ·+ Z≥0ωn. (6)

In general, the points of the weight lattice P of the Lie group SU(n+1) can
be split into (n+ 1) congruence classes denoted as Kk, k = Z≥0 [3]. Each point of
P belongs precisely to one congruence class and the splitting is defined as

x = a1ω1 + a2ω2 + . . . + anωn ∈ Kk,

na1 + (n− 1)a2 + · · ·+ 2an−1 + an = k mod n + 1. (7)

3. Construction of the graphene from the Lie algebra A2

The most appropriate way to construct a mathematical model for the graphene
layer is to use the simple Lie algebra A2. The root system of A2 and its Coxeter–
Dynkin diagram are shown in Figure 2.

α1 α2

Figure 2. The root system of Lie algebra A2 and it’s Coxeter–Dynkin
diagram are shown from left to right, respectively.

The simple roots α1 and α2 span a real Euclidean space R2. The geometric
relations between them are:

〈α1, α1〉 = 〈α2, α2〉 = 2, 〈α1, α2〉 = −1 and ∠(α1, α2) =
2π

3
.

The Cartan matrix of A2 and its inverse are defined from (1) as follows:

CA2 =

(
2 −1
−1 2

)
, C−1

A2
=

1

3

(
2 1
1 2

)
. (8)

As we mentioned before, the link between α- and ω-bases of A2 is given by
the Cartan matrix (8). Hence, we can write explicitly:

α1 = 2ω1 − ω2, α2 = −ω1 + 2ω2, ω1 =
2

3
α1 +

1

3
α2, ω2 =

1

3
α1 +

2

3
α2.

For the A2 case, the expressions for the root lattice Q (4) as well as for the
weight lattice P (6) can be simplified:

QA2 = Zα1 + Zα2, PA2 = Zω1 + Zω2. (9)

From now on, there are two ways to construct a graphene sheet using the Lie
algebra A2. The first one is to consider the root lattice QA2 and the second one
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is to use the weight lattice PA2 . Both of these lattices are triangular in R2. Root
and weight lattices coincide, but not all the points of QA2 belong to PA2 (Fig. 3).

The construction of the graphene using the root lattice QA2 starts from
finding the proximity cells, called Voronoi domains or Brillouin zones, for each of
the lattice points. In this case, the proximity cells are regular hexagons which tile
R2 (Fig. 3). We obtain the graphene sheet by removing all the points of the lattice
QA2 while retaining the hexagons of proximity cells.

However, an interesting case appears when we use PA2 . As was defined in the
previous section, the points of PA2 can be split into the three mutually congruent
classes Kk, k = 0, 1, 2, by applying the rule from Equation (7):

x = a1ω1 + a2ω2 ∈ Kk, where 2a1 + a2 = k mod 3 and k = 0, 1, 2.

The result of this splitting is the following: the points of the congruence class
K0 represent the points of QA2 , the points of K1 represent the points of QA2 +ω1,
and the points of K2 represent the points of QA2 + ω2 (Fig. 3).

Figure 3. On the left, a fragment of the QA2 is shown. The shaded
region stands for the Voronoi domain. On the right, a fragment of the
PA2 is shown. Points marked by white nodes belong to QA2 and the
congruence class K0. Points marked by red and blue nodes belong to PA2

and K1, K2, respectively. The shaded region stands for the fundamental
domain of PA2 .

Consequently, removing the points ofK0, K1 or K2 yields the hexagonal struc-
ture which represents a graphene layer. For example, in Figure 3, we disregarded
the points of K0.

Note that even though both constructions start with the triangular lattices,
the graphene structure does not form a lattice. A graphene sheet can be refined
and the construction will be based on the refinement of the lattices PA2 and QA2 .
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4. Method of dynamical generation

In this section we describe a step-by-step process to build a graphene sheet starting
from a single point of R2. We consider the weight lattice PA2 . We will be using
two different steps, namely S1 and S2 (Fig. 4):

S1 = (ω1,−ω1 + ω2,−ω2), S2 = (ω2, ω1 − ω2,−ω1).

The points of S1 belong to the K1 and the points of S2 belong to the K2.
As the seed point of our construction we can choose any point of PA2 . If the

chosen point belongs to the congruence class K0 then the first step can be either
S1 or S2. If it belongs to K1 then the next step should be S1. Finally, if it belongs
to K2 then the next step should be S2.

Figure 4. The steps of the dynamical generation of the graphene are
shown. The blue and red regions correspond to the steps S1 and S2,
respectively.

By applying this rule to a single point of R2, we dynamically generate the
points of our structure in the following way: three vectors of the starting step
define three points of the plane. If any of these points coincides with an already
existing point of the graphene structure, we disregard it. If it is a new point, it
should be kept. The more steps we do, the bigger the graphene structure gets and
after an infinite number of steps the graphene layer is complete.

For example, from Figure 3 we see that adding a point of K1 to another point
of K1 yields a point of K2 and adding a point of K2 to another point of K2 yields
a point of K1. One should also note that adding a point of K1 to a point of K2

yield a point of K0 which does not belong to the graphene structure. Therefore,
such an addition is not allowed.

However, an interesting situation arises when removing one, two, or even
three vectors from each of the steps S1 or S2. For example, consider the following
combinations of the steps:

(a) S1 = (ω1,−ω1 + ω2,−ω2), S2 = (ω2, 0, 0);

(b) S1 = (ω1, 0,−ω2), S2 = (ω2, 0,−ω1);

(c) S1 = (ω1,−ω1 + ω2,−ω2), S2 = (0, 0, 0).

This way we can obtain sheets of graphene that will not cover the entire plane
R2. The resulting graphene structures are shown in Figure 5.
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Figure 5. The resulting graphene layers are shown for the combina-
tions of steps S1 and S2 from (a), (b) and (c) from left to right, respec-
tively.
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Eight Kinds of Orthogonal Polynomials
of the Weyl Group C2 and the Tau Method

Tomasz Czyżycki and Jǐŕı Hrivnák

Abstract. The four kinds of the classical Chebyshev polynomials are gener-
alized to eight kinds of two-variable polynomials of the Weyl group C2. The
admissible shift of the weight lattice and the four sign homomorphisms of C2

generate eight types of the underlying hybrid character functions. The con-
struction method of the resulting shifted four kinds of polynomials is detailed.
The tau method for the approximation of solutions of differential equations
using these two-variable polynomials is discussed.

Mathematics Subject Classification (2010). 33C52; 42A10; 65N30.
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1. Introduction

The set Δ = {α1, α2} of simple roots of the root system C2 consists of the simple
short root α1 and the simple long root α2, given by coordinates in the standard
orthonormal basis of R2 with scalar product 〈 , 〉 as

α1 = [1, 0], α2 = [−1, 1].

Four types of lattices are related to the root systemΔ, the root lattice Q, the weight
lattice P , the coweight lattice P∨ and the dual root lattice Q∨ determined by

Q = Zα1 + Zα2,

Q∨ = Zα∨
1 + Zα∨

2 , with α∨
1 = [2, 0], α∨

2 = [−1, 1],

P = Zω1 + Zω2, with ω1 =

[
1

2
,
1

2

]
, ω2 = [0, 1],

P∨ = Zω∨
1 + Zω∨

2 , with ω∨
1 = [1, 1], ω∨

2 = [0, 1].

The Weyl group W of the root system C2 is generated by two reflections rα, α ∈ Δ
which are orthogonal to the simple roots and intersect at the origin. The affine

c© Springer Nature Switzerland AG 2019
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Weyl group is the semidirect product W aff = Q∨ � W and the dual affine Weyl

group is the semidirect product Ŵ aff = Q � W .

Admissible shifts ρ∨, ρ ∈ R2 are required to preserve the invariance of the
shifted weight and the dual weight lattices,

W (ρ∨ + P∨) = ρ∨ + P∨, W (ρ + P ) = ρ + P.

For any irreducible crystallographic root system, all admissible shifts are classified
in [3]. For the case C2, there exist precisely two shifts of the form

ρ =
1

2
ω2 =

[
0,

1

2

]
, ρ∨ =

1

2
ω∨
1 =

[
1

2
,
1

2

]
. (1)

Any vectors in the ω-basis are denoted in round brackets, i.e., ρ = 1
2ω2 =

(
0, 1

2

)
.

The fundamental domain F of the affineWeyl group W aff , which consists of exactly
one point from each W aff -orbit, is the triangle given by its vertices

{
0, 1

2ω
∨
1 , ω∨

2

}
.

The dual fundamental domain F∨ of the dual affineWeyl group Ŵ aff is the triangle
given by its vertices

{
0, ω1,

1
2ω2

}
. The calculation of the functions ε : R2 → N and

h∨
M : R2 → N, M ∈ N defined by the relation

ε(x) =
|W |

|StabW aff (x)| , h∨
M (x) =

∣∣∣StabŴ aff

( x

M

)∣∣∣ , (2)

is demonstrated for the C2 case in [3]. The four sign homomorphisms σ : W →
{±1}, introduced in [1], are for C2 denoted by 1, σe, σs and σl. The explicit form of
the eight sets F σ(ρ) ⊂ F and eight sets F σ∨(ρ∨) ⊂ F∨, with ρ and ρ∨ either zero
or given by (1), follows from equations (57) and (61) in [3], i.e., the sets F σ(ρ) ⊂ F
are of the explicit form

F σ(ρ) = {yσ,ρ
1 ω∨

1 + yσ,ρ
2 ω∨

2 | y
σ,ρ
0 + 2yσ,ρ

1 + yσ,ρ
2 = 1} ,

where

y1,0
0 , y1,0

1 , y1,0
2 ≥ 0, y1,ρ

0 > 0, y1,ρ
1 , y1,ρ

2 ≥ 0,

yσe,0
0 , yσe,0

1 , yσe,0
2 > 0, yσe,ρ

0 ≥ 0, yσe,ρ
1 , yσe,ρ

2 > 0,

yσs,0
0 ≥ 0, yσs,0

1 > 0, yσs,0
2 ≥ 0, yσs,ρ

0 , yσs,ρ
1 > 0, yσs,ρ

2 ≥ 0,

yσl,0
0 > 0, yσl,0

1 ≥ 0, yσl,0
2 > 0, yσl,ρ

0 , yσl,ρ
1 ≥ 0, yσl,ρ

2 > 0,

and the sets F σ∨(ρ∨) ⊂ F∨ are of the explicit form

F σ∨(ρ∨) =
{
zσ,ρ

∨
1 ω1 + zσ,ρ

∨
2 ω2 | zσ,ρ

∨
0 + zσ,ρ

∨
1 + 2zσ,ρ

∨
2 = 1

}
,
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where

z1,00 , z1,01 , z1,02 ≥ 0, z1,ρ
∨

0 > 0, z1,ρ
∨

1 , z1,ρ
∨

2 ≥ 0,

zσ
e,0

0 , zσ
e,0

1 , zσ
e,0

2 > 0, zσ
e,ρ∨

0 ≥ 0, zσ
e,ρ∨

1 , zσ
e,ρ∨

2 > 0,

zσ
s,0

0 , zσ
s,0

1 > 0, zσ
s,0

2 ≥ 0, zσ
s,ρ∨

0 ≥ 0, zσ
s,ρ∨

1 > 0, zσ
s,ρ∨

2 ≥ 0,

zσ
l,0

0 , zσ
l,0

1 ≥ 0, zσ
l,0

2 > 0, zσ
l,ρ∨

0 > 0, zσ
l,ρ∨

1 ≥ 0, zσ
l,ρ∨

2 > 0.

According to [7], defining four vectors ρσ by ρ1 = (0, 0), ρl = (0, 1), ρs =
(1, 0), ρe = (1, 1), four types of Weyl-orbit functions φσ

λ+ρσ : R2 → C of C2 are
given by

φσ
λ+ρσ (x) =

∑
μ∈O(λ+ρσ)

σ(w) e2πi〈μ,x〉, x, λ ∈ R2,

where O(μ) denotes the W -orbit of μ ∈ R2.

2. Eight kinds of polynomials of C2

Four kinds of the classical Chebyshev polynomials of one variable are generalized
to the case of the Weyl group C2. To this aim, eight shifted generalized characters
χσ
ρ,λ of C2 are introduced as ratios

χσ
ρ,λ(x) =

φσ
λ+νσ

ρ
(x)

φσ
νσ
ρ
(x)

,

with the symbols νσ
0 determined as νσ

0 = ρσ and for the non-trivial admissible

shift ρ as ν1
ρ = νσl

ρ =
(
0, 1

2

)
and νσs

ρ = νσe

ρ =
(
1, 1

2

)
. The eight characters χσ

ρ,λ are,

as Weyl group invariant exponential sums, polynomials Tσ
ρ,λ(X1, X2) in basic two

C-functions

X1 = φ1
ω1

, X2 = φ1
ω2

, (3)

i.e., it holds that

Tσ
ρ,λ(X1(x), X2(x)) = χσ

ρ,λ(x).

Expressing the basic two characters χ1
0,λ and χσe

0,λ as polynomials in the basic two

C-functions yields the polynomials C(a,b)(X1, X2) and S(a,b)(X1, X2),

C(a,b)(X1(x), X2(x)) = φ1
(a,b)(x), S(a,b)(X1(x), X2(x)) =

φσe

(a+1,b+1)(x)

φσe

(1,1)(x)

of the first and second kind from [4]. The hybrid characters χσs

0,λ and χσl

0,λ polyno-

mials Ss
(a,b)(X1, X2) and Sl

(a,b)(X1, X2),

Ss
(a,b)(X1(x), X2(x)) =

φσs

(a+1,b)(x)

φσs

(1,0)(x)
, Sl

(a,b)(X1(x), X2(x)) =
φσl

(a,b+1)(x)

φσl

(0,1)(x)
,
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studied in connection with cubature rules in [7], form the polynomials of the third
and fourth kinds.

The novel polynomials Cρ
λ(X1, X2) of the fifth kind, which are obtained from

the shifted character function χ1
ρ,λ,

Cρ
(a,b)(X1(x), X2(x)) =

φ1
(a,b+ 1

2 )
(x)

φ1
(0, 12 )

(x)
,

satisfy the following two general recursion relations

X1C
ρ
(a,b) = Cρ

(a+1,b) + Cρ
(a−1,b+1) + Cρ

(a+1,b−1) + Cρ
(a−1,b), a, b ≥ 2

X2C
ρ
(a,b) = Cρ

(a,b+1) + Cρ
(a+2,b−1) + Cρ

(a−2,b+1) + Cρ
(a,b−1), a ≥ 3, b ≥ 2

and additional special recursions,

X1C
ρ
(a,1) = Cρ

(a+1,1) + Cρ
(a−1,2) + Cρ

(a+1,0) + Cρ
(a−1,1), a ≥ 2

X1C
ρ
(a,0) = Cρ

(a+1,0) + Cρ
(a−1,1) + Cρ

(a,0) + Cρ
(a−1,0), a ≥ 2

X1C
ρ
(1,b) = Cρ

(2,b) + 2Cρ
(0,b+1) + Cρ

(2,b−1) + 2Cρ
(0,b), b ≥ 1

X1C
ρ
(0,b) = Cρ

(1,b) + Cρ
(1,b−1), b ≥ 1

X2C
ρ
(a,1) = Cρ

(a,2) + Cρ
(a+2,0) + Cρ

(a−2,2) + Cρ
(a,0), a ≥ 3

X2C
ρ
(a,0) = Cρ

(a,1) + Cρ
(a−1,0) + Cρ

(a+1,0) + Cρ
(a−2,1), a ≥ 3

X2C
ρ
(2,b) = Cρ

(2,b+1) + Cρ
(4,b−1) + 2Cρ

(0,b+1) + Cρ
(2,b−1), b ≥ 2

X2C
ρ
(1,b) = Cρ

(1,b+1) + Cρ
(3,b−1) + Cρ

(1,b−1) + Cρ
(1,b), b ≥ 1

X2C
ρ
(0,b) = Cρ

(0,b+1) + Cρ
(2,b−1) + Cρ

(0,b−1), b ≥ 1.

Several initial polynomials, which allow recursive calculation of any polynomial of
the fifth kind, are the following,

Cρ
(0,0) = 1, Cρ

(1,0) = X1 − 2, Cρ
(0,1) = X2 −X1 + 1, Cρ

(1,1) = −X2
1 +X1X2 + 2,

Cρ
(2,0) = X2

1 −X1 − 2X2 − 2, Cρ
(0,2) = X2

2 −X2
1 −X1X2 +X1 + 3X2 + 1.

The polynomials Sρ
λ(X1, X2) of the sixth kind, which are obtained from the shifted

character function χσe

ρ,λ,

Sρ
(a,b)(X1(x), X2(x)) =

φσe

(a+1,b+ 1
2 )
(x)

φσe

(1, 12 )
(x)

satisfy two general recursion relations

X1S
ρ
(a,b) = Sρ

(a+1,b) + Sρ
(a−1,b+1) + Sρ

(a+1,b−1) + Sρ
(a−1,b), a, b ≥ 2,

X2S
ρ
(a,b) = Sρ

(a,b+1) + Sρ
(a+2,b−1) + Sρ

(a−2,b+1) + Sρ
(a,b−1), a ≥ 3, b ≥ 2.
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Special recursion relations are similar to relations for Cρ-polynomials and several
initial polynomials of the sixth kind are

Sρ
(0,0) = 1, Sρ

(1,0) = X1 + 1, Sρ
(0,1) = X1 + X2 + 2,

Sρ
(1,1) = X2

1 + X1X2 + X1 − 1, Sρ
(2,0) = X2

1 + X1 −X2 − 2,

Sρ
(0,2) = X2

2 −X2
1 + X1X2 + 4X2 + 3.

The polynomials Ss,ρ
λ (X1, X2) of the seventh kind, which are obtained from

the shifted character function χσs

ρ,λ,

Ss,ρ
(a,b)(X1(x), X2(x)) =

φσs

(a+1,b+ 1
2 )
(x)

φσs

(1, 12 )
(x)

,

satisfy two general recursion relations

X1S
s,ρ
(a,b) = Ss,ρ

(a+1,b) + Ss,ρ
(a−1,b+1) + Ss,ρ

(a+1,b−1) + Ss,ρ
(a−1,b), a, b ≥ 2,

X2S
s,ρ
(a,b) = Ss,ρ

(a,b+1) + Ss,ρ
(a+2,b−1) + Ss,ρ

(a−2,b+1) + Ss,ρ
(a,b−1), a ≥ 3, b ≥ 2.

Other recursion relations are similar to relations for Cρ-polynomials and several
initial polynomials of the seventh kind are

Ss,ρ
(0,0) = 1, Ss,ρ

(1,0) = X1 − 1, Ss,ρ
(0,1) = −X1 + X2 + 2,

Ss,ρ
(1,1) = 1−X2

1 + X1X2 + X1, Ss,ρ
(2,0) = X2

1 −X1 −X2 − 2,

Ss,ρ
(0,2) = X2

2 −X2
1 −X1X2 + 4X2 + 3.

The polynomials Sl,ρ
λ (X1, X2) of the eighth kind, which are obtained from

the shifted character function χσl

ρ,λ,

Sl,ρ
(a,b)(X1, X2) =

φσl

(a,b+ 1
2 )
(x)

φσl

(0, 12 )
(x)

,

satisfy two general recursion relations

X1S
l,ρ
(a,b) = Sl,ρ

(a+1,b) + Sl,ρ
(a−1,b+1) + Sl,ρ

(a+1,b−1) + Sl,ρ
(a−1,b), a, b ≥ 2,

X2S
l,ρ
(a,b) = Sl,ρ

(a,b+1) + Sl,ρ
(a+2,b−1) + Sl,ρ

(a−2,b+1) + Sl,ρ
(a,b−1), a ≥ 3, b ≥ 2.

Other recursion relations are similar to relations for Cρ-polynomials and several
initial polynomials of the eighth kind are

Sl,ρ
(0,0) = 1, Sl,ρ

(1,0) = X1 + 2, Sl,ρ
(0,1) = X1 + X2 + 1,

Sl,ρ
(1,1) = X2

1 + X1X2 − 2, Sl,ρ
(2,0) = X2

1 + X1 − 2X2 − 2,

Sl,ρ
(0,2) = X2

2 −X2
1 + X1X2 −X1 + 3X2 + 1.
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3. Weight functions and discrete orthogonality

Taking any natural number M ∈ N, the sets F σ(ρ) and F σ∨(ρ∨) induce sixteen
discrete point sets F σ

M (ρ, ρ∨) ⊂ F ,

F σ
M (ρ, ρ∨) =

[
1

M
(ρ∨ + P∨)

]
∩ F σ(ρ) (4)

and the corresponding sixteen shifted weight sets

Λσ
M (ρ, ρ∨) = (ρ + P ) ∩MF σ∨(ρ∨). (5)

The X-transform of C2 is a mapping X : R2 → R2 given for any x ∈ R2 as

X(x) = (X1(x), X2(x)),

and induces sixteen discrete point sets

Ωσ
M (ρ, ρ∨) = X (F σ

M (ρ, ρ∨)) .

The sets Ω1
10(0, 0) and Ω1

10(0, ρ
∨) and are depicted in Figure 1.

Figure 1. The left panel depicts the points of the non-shifted set
Ω1

10(0, 0). The right panel depicts the points of the shifted set Ω1
10(0, ρ

∨).

The restrictions of the mapping X to the point sets Fσ
M (ρ, ρ∨) are denoted

by Xσ
M (ρ, ρ∨). Since the mappings Xσ

M (ρ, ρ∨) are one-to-one, it holds for the
numbers of points that |Ωσ

M (ρ, ρ∨)| = |Λσ
M (ρ, ρ∨)|, and the discrete function

ε̃ : Ωσ
M (ρ, ρ∨)→ N, given for any y ∈ Ωσ

M (ρ, ρ∨) by

ε̃(y) = ε
(
(Xσ

M (ρ, ρ∨))
−1

y
)

,

is well defined.
The polynomial weight functions wσ

ρ (X1, X2), defined by

wσ
ρ (X1(x), X2(x)) = [φσ

νσ
ρ
(x)]2,
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are for the novel four classes of the shifted polynomials of the form

w1
ρ(X1, X2) = 2X1 + X2 + 4,

wσe

ρ (X1, X2) = 2X3
1 −X2

1X2 − 4X2
1 − 8X1X2 + 4X2

2 + 16X2,

wσs

ρ (X1, X2) = 2X3
1 + X2

1X2 + 4X2
1 − 8X1X2 − 4X2

2 − 16X2,

wσl

ρ (X1, X2) = −2X1 + X2 + 4.

Thus, the discrete orthogonality of Weyl orbit functions in [3] induces for all
λ, λ′ ∈ −νσ

ρ + Λσ
M (ρ, ρ∨) the discrete orthogonality of all eight classes of shifted

polynomials Tσ
ρ,λ of the form

∑
y∈Ωσ

M (ρ,ρ∨)

ε̃(y)wσ
ρ (y)T

σ
ρ,λ(y)T

σ
ρ,λ′ (y) = 16M2 · h∨

M (λ + νσ
ρ ) · δλ,λ′ .

4. Tau method

The tau method, called also Lanczos approximation method, is the method of
searching for approximate solutions of differential equations in the form of finite
sum of functions from a given family. The main idea is to approximate the solution
of a given differential equation by solving exactly an approximate problem. The
crucial point is including in the solution additional terms with arbitrary coefficient
τ . Consider the differential equation

uxy = u,

with initial conditions u(x, 0) = x2, uy(x, 0) = 2. The approximate solution is
assumed in the form of sum of Cρ-polynomials up to degree 3,

F (x, y) = a00C
ρ
(0,0)(x, y) + · · ·+ a03C

ρ
(0,3)(x, y).

Lanczos approximation method requires rewriting all partial derivatives of F to
the form of the underlying Cρ-polynomials, hence the equation

Fxy(x, y) = (a11 − a02 + 6a21 − 3a30 − 11a03)C
ρ
(0,0)

+ (2a12 − 2a03)C
ρ
(0,1) + (2a21 − 6a03)C

ρ
(1,0) + τ1C

ρ
(1,1) + · · ·

= F (x, y) = a00C
ρ
(0,0) + a01C

ρ
(0,1) + a10C

ρ
(1,0) + · · ·+ a03C

ρ
(0,3)

is obtained. Solving this system of linear equations and requiring the initial con-
ditions, the approximate solution of the form

F (x, y) = 2y +
1

3
xy2 + x2 − 2y2 − 10

27
y3

is determined.
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First, in short we present two different topics: Hurwitz numbers which appear
in counting of branched covers of Riemann and Klein surfaces, and the study of
spectral correlation functions of products of random matrices which belong to
independent (complex) Ginibre ensembles.

There are a lot of studies on extracting information about Hurwitz numbers,
on one side, from integrable systems, as it was done in [21, 51, 52] and further
developed in [6, 7, 15, 18, 23, 27, 43, 44, 48, 49, 66] (see also reviews [29] and
[33]) and from matrix integrals [22, 34, 39] on the other. (Actually the point that
there is a special family of tau functions which were introduced in [35] and in
[55] and studied in [24–26, 53, 56, 58, 59] where links with matrix models were
written down which describe perturbation series in coupling constants of a number
of matrix models, and these very tau functions, called hypergeometric ones, count
also special types of Hurwitz numbers. This article is based on [48, 59] and [54].
In the last paper we put known results in quantum chaos [1–3]. The results of our
work should be compared to ones obtained in [5, 31] and [12].

1. Counting of branched covers

Let us consider a connected compact surface without boundary Ω and a branched
covering f : Σ → Ω by a connected or non-connected surface Σ. We will consider
a covering f of the degree d. It means that the preimage f−1(z) consists of d
points z ∈ Ω except some finite number of points. This points are called critical
values of f .

c© Springer Nature Switzerland AG 2019
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Consider the preimage f−1(z) = {p1, . . . , p�} of z ∈ Ω. Denote by δi the
degree of f at pi. It means that in the neighborhood of pi the function f is home-
omorphic to x �→ xδi . The set Δ = (δ1, . . . , δ�) is the partition of d, that is called
topological type of z.

For a partition Δ of a number d = |Δ| denote by �(Δ) the number of the
non-vanishing parts (|Δ| and �(Δ) are called the weight and the length of Δ,
respectively). We denote a partition and its Young diagram by the same letter.
Denote by (δ1, . . . , δ�) the Young diagram with rows of length δ1, . . . , δ� and cor-
responding partition of d =

∑
δi.

Fix now points z1, . . . , zf and partitions Δ(1), . . . ,Δ(f) of d. Denote by

C̃Ω(z1,...,zf)(d; Δ
(1), . . . ,Δ(f))

the set of all branched covering f : Σ → Ω with critical points z1, . . . , zf of topo-
logical types Δ(1), . . . ,Δ(f).

Coverings f1 : Σ1 → Ω and f2 : Σ2 → Ω are called isomorphic if there exists
a homeomorphism ϕ : Σ1 → Σ2 such that f1 = f2ϕ. Denote by Aut(f) the group
of automorphisms of the covering f . Isomorphic coverings have isomorphic groups
of automorphisms of degree |Aut(f)|.

Consider now the set CΩ(z1,...,zf)(d; Δ
(1), . . . ,Δ(f)) of isomorphic classes in

C̃Ω(z1,...,zf)(d; Δ
(1), . . . ,Δ(f)). This is a finite set. The sum

He,f(d; Δ(1), . . . ,Δ(f)) =
∑

f∈CΩ(z1,...,zf)(d;Δ
(1),...,Δ(f))

1

|Aut(f)| , (1)

does not depend on the location of the points z1, . . . , zf and is called Hurwitz
number. Here f denotes the number of the branch points, and e is the Euler
characteristic of the base surface.

In case it will not produce a confusion we admit ‘trivial’ profiles (1d) among
Δ1, . . . ,Δf in (1) keeping the notation He,f though the number of critical points
now is less than f.

In case we count only connected covers Σ we get the connected Hurwitz
numbers He,f

con(d; Δ
(1), . . . ,Δ(f)).

The Hurwitz numbers arise in different fields of mathematics: from algebraic
geometry to integrable systems. They are well studied for orientable Ω. In this case
the Hurwitz number coincides with the weighted number of holomorphic branched
coverings of a Riemann surface Ω by other Riemann surfaces, having critical points
z1, . . . , zf ∈ Ω of the topological types Δ(1), . . . ,Δ(f), respectively. The well known
isomorphism between Riemann surfaces and complex algebraic curves gives the
interpretation of the Hurwitz numbers as the numbers of morphisms of complex
algebraic curves.

Similarly, the Hurwitz number for a non-orientable surface Ω coincides with
the weighted number of the dianalytic branched coverings of the Klein surface
without boundary by another Klein surface and coincides with the weighted num-
ber of morphisms of real algebraic curves without real points [11, 45, 46]. An
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extension of the theory to all Klein surfaces and all real algebraic curves leads to
Hurwitz numbers for surfaces with boundaries may be found in [9, 47].

Riemann–Hurwitz formula related the Euler characteristic of the base surface
e and the Euler characteristic of the d-fold cover e′ as follows:

e′ = de+

f∑
i=1

(
�(Δ(i))− d

)
= 0 (2)

where the sum ranges over all branch points zi , i = 1, 2, . . . with ramification
profiles given by partitions Δi , i = 1, 2, . . ., respectively, and �(Δ(i)) denotes the
length of the partition Δ(i) which is equal to the number of the preimages f−1(zi)
of the point zi.

Example 1. Let f : Σ → CP1 be a covering without critical points. Then, each
d-fold cover is the disjoint union of d Riemann spheres: CP1∐ · · ·∐CP1, then
|Autf | = d! and H2,0(d) = 1

d!

Example 2. Let f : Σ→ CP1 be a d-fold covering with two critical points with the
profiles Δ(1) = Δ(2) = (d). (One may think of f = xd.) Then H2,2(d; (d), (d)) =
1
d . Let us note that Σ is connected in this case (therefore H2,2(d; (d), (d)) =

H2,2
con(d; (d), (d))) and its Euler characteristic e′ = 2.

Example 3. The generating function for the Hurwitz numbers H2,2(d; (d), (d)) from
the previous Example may be written as

F (h−1p(1), h−1p(2)) := h−2
∑
d>0

H2,2
con(d; (d), (d))p

(1)
d p

(2)
d = h−2

∑
d>0

1

d
p
(1)
d p

(2)
d

Here p(i) = (p
(i)
1 , p

(i)
2 , . . . ), i = 1, 2 are two sets of formal parameters. The powers

of the auxiliary parameter 1
h count the Euler characteristic of the cover e′ which

is 2 in our example. Then thanks to the known general statement about the link
between generating functions of “connected” and “disconnected” Hurwitz numbers
(see for instance [36]) one can write down the generating function for the Hurwitz
numbers for covers with two critical points, H2,2(d; Δ(1),Δ(2)), as follows:

τ(h−1p(1), h−1p(2)) = eF (h−1p(1),h−1p(2))

= eh
−2 ∑

d>0
1
dp

(1)
d p

(2)
d =

∑
d≥0

∑
Δ(1),Δ(2)

H2,2(d; Δ(1),Δ(2))h−e′p
(1)

Δ(1)p
(2)

Δ(2) (3)

where p
(i)

Δ(i) := p
(i)

δ
(i)
1

p
(i)

δ
(i)
2

p
(i)

δ
(i)
3

· · · , i = 1, 2 and where e′ = �(Δ(1)) + �(Δ(2)) in

agreement with (2) where we put f = 2. From (3) it follows that the profiles
of both critical points coincide, otherwise the Hurwitz number vanishes. Let us
denote this profile by Δ, |Δ| = d and from the last equality we get

H2,2(d; Δ,Δ) =
1

zΔ
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Here

zΔ =
∞∏
i=1

imi mi! (4)

where mi denotes the number of parts equal to i of the partition Δ (then the
partition Δ is often denoted by (1m12m2 · · · )).

Example 4. Let f : Σ → RP2 be a covering without critical points. Then, if Σ is
connected, then Σ = RP2, deg f = 1 or Σ = S2, deg f = 2. Next, if d = 3, then
Σ = RP2∐RP2∐RP2 or Σ = RP2∐S2. Thus H1,0(3) = 1

3! +
1
2! =

2
3 .

Example 5. Let f : Σ → RP2 be a covering with a single critical point with
profile Δ, and Σ is connected. Note that due to (2) the Euler characteristic of Σ
is e′ = �(Δ). (One may think of f = zd defined in the unit disc where we identify
z and −z if |z| = 1.) In case we cover the Riemann sphere by the Riemann sphere
z → zm we get two critical points with the same profiles. However we cover RP2

by the Riemann sphere, then we have the composition of the mapping z → zm

on the Riemann sphere and the factorization by antipodal involution z → − 1
z̄ .

Thus we have the ramification profile (m,m) at the single critical point 0 of RP2.
The automorphism group is the dihedral group of the order 2m which consists of
rotations by 2π

m and antipodal involution z → − 1
z̄ . Thus we get that

H1,1
con (2m; (m,m)) =

1

2m
.

From (2) we see that 1 = �(Δ) in this case. Now let us cover RP2 by RP2 via
z → zd. From (2) we see that �(Δ) = 1. For even d we have the critical point 0, in
addition each point of the unit circle |z| = 1 is critical (a folding), while from the
beginning we restrict our consideration only on isolated critical points. For odd
d = 2m − 1 there is the single critical point 0, the automorphism group consists
of rotations on the angle 2π

2m−1 . Thus in this case

H1,1
con (2m− 1; (2m− 1)) =

1

2m− 1
.

Example 6. The generating series of the connected Hurwitz numbers with a single
critical point from the previous Example is

F (h−1p) =
1

h2

∑
m>0

p2mH1,1
con (2m; (m,m)) +

1

h

∑
m>0

p2m−1H
1,1
con (2m− 1; (2m− 1))

where H1,1
con describes d-fold covering either by the Riemann sphere (d = 2m) or

by the projective plane (d = 2m− 1). We get the generating function for Hurwitz
numbers with a single critical point

τ(h−1p) = eF (h−1p) = e
1
h2

∑
m>0

1
2m p2

m+ 1
h

∑
modd

1
mpm

=
∑
d>0

∑
Δ

|Δ|=d

h−�(Δ)pΔH1,a(d; Δ) (5)
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where a = 0 and if Δ = (1d), and where a = 1 and otherwise. Then H1,1(d; Δ)

is the Hurwitz number describing d-fold covering of RP2 with a single branch
point of type Δ = (d1, . . . , dl), |Δ| = d by a (not necessarily connected) Klein
surface of Euler characteristic e′ = �(Δ). For instance, for d = 3, e′ = 1 we get
H1,1(3;Δ) = 1

3δΔ,(3). For unbranched coverings (that is for a = 0, e′ = d) we get
the corresponding formula.

Tau functions. Let us note that the expression presented in (3), namely,

τ2KP
1 (h−1p(1), h−1p(2)) = eh

−2 ∑
d>0

1
dp

(1)
d p

(2)
d (6)

coincides with the simplest two-component KP tau function with two sets of higher
times h−1p(i), i = 1, 2, while (5) may be recognized as the simplest non-trivial tau
function of the BKP hierarchy of Kac and van de Leur [30]

τBKP
1 (h−1p) = e

1
h2

∑
m>0

1
2mp2

m+ 1
h

∑
modd

1
mpm (7)

written down in [57]. In (3) and in (5) the higher times are rescaled as pm →
h−1pm, m > 0 as it is common in the study of the integrable dispersionless equa-
tions where only the top power of the ‘Plank constant’ h is taken into account.
For instance, see [50] where the counting of coverings of the Riemann sphere by
Riemann spheres was related to the so-called Laplacian growth problem [42, 64].
About the quasiclassical limit of the DKP hierarchy see [4]. The rescaling is also
common for tau functions used in two-dimensional gravity where the powers of
h−e group contributions of surfaces of Euler characteristic e to the 2D gravity
partition function [14]. In the context of the links between Hurwitz numbers and
integrable hierarchies the rescaling p → h−1p was considered in [29] and in [49].
In our case the role similar to h plays N−1, where N is the size of matrices in
matrix integrals.

With the help of these tau functions we shall construct integral over matrices.
To do this we present the variables p(i), i = 1, 2 and p as traces of a matrix we
are interested in. We write p(X) = (p1(X), p2(X), . . . ), where

pm(X) = trXm =
N∑
i=1

xm
i (8)

and where x1, . . . , xN are eigenvalues of X .

In this case we use non-bold capital letters for the matrix argument and our
tau functions are tau functions of the matrix argument:

τ2KP
1 (X,p) := τ2KP

1 (p(X),p) =
∑
λ

sλ(X)sλ(p) = etrV (X,p) =

N∏
i=1

e
∑∞

m=1
1
mxm

i pm

(9)
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where xi are eigenvalues of X , and p = (p1, p2, . . . ) is a semi-infinite set of param-
eters, and

τBKP
1 (X) := τBKP

1 (p(X)) =
∑
λ

sλ(X) =
N∏
i=1

(1− xi)
−1
∏
i<j

(1− xixj)
−1. (10)

Here sλ denotes the Schur function, see Appendix A. We recall the fact [38], which
we shall need: if X is N ×N matrix, then

sλ(X) = 0, if �(λ) > N (11)

where �(λ) is the length of a partition λ = (λ1, . . . , λ�), λ� > 0.
For further purposes we need the following spectral invariants of a matrix X :

PΔ(X) :=
�∏

i=1

pδi(X) (12)

where Δ = (δ1, . . . , δ�) is a partition and each pδi is defined by (8)
In our notation one can write

τ2KP
1 (X,Y ) = τ2KP

1 (p(X),p(Y )) =
∑
Δ

1

zΔ
PΔ(X)PΔ(Y ). (13)

Combinatorial approach. The study of the homomorphisms between the funda-
mental group of the base Riemann surface of genus g (the Euler characteristic is
respectively e = 2 − 2g) with f marked points and the symmetric group in the
context of the counting of the non-equivalent d-fold covering with given profiles
Δi, i = 1, . . . , f results in the following equation (for instance, for the details, see
Appendix A written by Zagier for the Russian edition of [36] or works [20, 40])

g∏
j=1

ajbja
−1
j b−1

j X1 · · ·Xf = 1, (14)

where aj , bj, Xi ∈ Sd and where each Xi belongs to the cycle class CΔi . Then
the Hurwitz number H2−2g,f(d; Δ1, . . . ,Δf) is equal to the number of solutions
of equation (14) divided by the order of symmetric group Sd (to exclude the
equivalent solutions obtained by the conjugation of all factors in (14) by elements of
the group. In the geometrical approach each conjugation means the re-enumeration
of d sheets of the cover).

For instance Example 3 considered above counts non-equivalent solutions of
the equation X1X2 = 1 with given cycle classes CΔ1 and CΔ2 . Solutions of this
equation consist of all elements of class CΔ1 and inverse elements, so Δ2 = Δ1 =:
Δ. The number of elements of any class CΔ (the cardinality of |CΔ|) divided by
|Δ|! is 1

zΔ
as we got in Example 3.

For Klein surfaces (see [20, 41]) instead of (14) we get

g∏
j=1

R2
jX1 · · ·Xf = 1, (15)
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where Rj , Xi ∈ Sd and where each Xi belongs to the cycle class CΔi . In (15),
g is the so-called genus of non-orientable surface which is related to its Euler
characteristic e as e = 1 − g. For the projective plane (e = 1) we have g = 0, for
the Klein bottle (e = 1) g = 1.

Consider unbranched covers of the torus (equation (14)), projective plane
and the Klein bottle (15)). In this we put each Xi = 1 in (14)) and (15)). Here we
present three pictures, for the torus (e = 0), the real projective plane (e = 1) and
Klein bottle (e = 0) which may be obtained by the identification of square’s edges.
We get aba−1b−1 = 1 for torus, abab = 1 for the projective plane and abab−1 = 1
for the Klein bottle.

Consider unbranched coverings (f = 0). For the real projective plane we have
g = 1 in (15) only one R1 = ab. If we treat the projective plane as the unit disk
with identified opposite points of the boarder |z| = 1, then R is related to the
path from z to −z. For the Klein bottle (g = 2 in (15)) there are R1 = ab and
R2 = b−1.

To avoid confusion in what follows we will use the notion of genus and the
notations g only for Riemann surfaces, while the notion of the Euler characteristic
e we shall use both for orientable and non-orientable surfaces.

2. Random matrices. Complex Ginibre ensemble

On this subject there is an extensive literature, for instance see [1–3, 61, 62].
We will consider integrals over complex matrices Z1, . . . , Zn where the mea-

sure is defined as

dΩ(Z1, . . . , Zn) =

n∏
α=1

dμ(Zα) = c

n∏
α=1

N∏
i,j=1

d�(Zα)ijd-(Zα)ije
−|(Zα)ij |2 (16)

where the integration range is CN2 × · · · × CN2

and where c is the normalization
constant defined via

∫
dΩ(Z1, . . . , Zn) = 1.

We treat this measure as the probability measure. The related ensemble is
called the ensemble of n independent complex Ginibre ensembles. The expectation
of a quantity f which depends on entries of the matrices Z1, . . . , Zn is defined by

E(f) =
∫

f(Z1, . . . , Zn)dΩ(Z1, . . . , Zn).

Let us introduce the following products

X := (Z1C1) · · · (ZnCn) (17)

Yt := (C̃nZ†
n)(C̃n−1Z

†
n−1) · · · (C̃t+1Z

†
t+1)(C̃1Z

†
1)(C̃2Z

†
2) · · · (C̃tZ

†
t ), 0 < t < n,

(18)

where Zα, Cα, C̃α are complex N × N matrices and where Z†
α is the Hermitian

conjugate of Zα. We consider each matrix Zα, α = 1, . . . , n as the random matrix
which belongs to the complex Ginibre ensemble numbered by α while the given
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matrices Cα and C̃α are treated as sources. We are interested in correlation func-
tions of spectral invariants of matrices X and Yt. Actually all answers we shall
obtain depend on pairwise products CαC̃α, therefore in what follows we put each
C̃α equal to the unity matrix IN .

We denote by x1, . . . , xN and by y1, . . . , yN the eigenvalues of the matrices X
and Yt, respectively. Given partitions λ = (λ1, . . . , λl), μ = (μ1, . . . , μk), l, k ≤ N ,
let us introduce the following spectral invariants

Pλ(X) = pλ1(X) · · · pλl
(X), Pμ(Yt) = pμ1(Yt) · · · pμk

(Yt) (19)

where each pm(X) is defined via (8).
For a given partition λ, such that d := |λ| ≤ N , let us consider the spectral

invariant Pλ of the matrix XYt (see (12)). We have

Theorem 1. X and Yt are defined by (17)–(18). Denote e = 2− 2g.

(A) Let n > t = 2g ≥ 0. Then

E (Pλ(XY2g)) = zλ
∑

Δ1,...,Δn−2g+1

|λ|=|Δj |=d, j≤n−2g+1

H2−2g,n+2−2g(d;λ,Δ1, . . . ,Δn−2g+1)

× PΔn−2g+1(C ′C′′)

n−2g∏
i=1

PΔi(C2g+i)

(20)

where
C ′ = C1 · · ·C2g−1, C′′ = C2C4 · · ·C2g (21)

(B) Let n > t = 2g + 1 ≥ 1. Then

E (Pλ(XY2g+1)) = zλ
∑

Δ1,...,Δn−2g+1

|λ|=|Δj|=d, j≤n−2g+1

H2−2g,n+2−2g(d;λ,Δ1, . . . ,Δn−2g+1)

× PΔn−2g(C ′)PΔn−2g+1(C ′′)

n−2g−1∏
i=1

PΔi(C2g+1+i), (22)

where
C ′ = C1C3 · · ·C2g+1, C′′ = C2C4 · · ·C2g (23)

Corollary 1. Let |λ| = d ≤ N as before, and let each Ci = IN (N × N unity
matrix). Then

1

zλ
E (Pλ(XY2g)) =

1

zλ
E (Pλ(XY2g+1)) = Nnd−�(λ)

∑
e′

Ne′Se′
e (λ) (24)

where e = 2− 2g and where

Se′
e (λ) :=

∑
Δ1,...,Δn+e−1∑n+e−1
i=1

�(Δi)=L

He,n+e(d;λ,Δ1, . . . ,Δn+e−1), L = −�(λ)+nd+e′ (25)

is the sum of Hurwitz numbers counting all d-fold coverings with the following
properties:
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(i) the Euler characteristic of the base surface is e
(ii) the Euler characteristic of the cover is e′

(iii) there are at most f = n + e critical points

The item (ii) in the corollary follows from the equality PΔ(IN ) = N �(Δ)

(see (12) and (8)) and from the Riemann–Hurwitz relation which relates Euler
characteristics of a base and a cover via branch points profile’s lengths (see (2)):

n+e−1∑
i=1

�(Δi) = −�(λ) + (f− e)d + e′

In our case f− e = n.

Theorem 2. X and Yt are defined by (17)–(18).

(A) If |λ| �= |μ| then E (Pλ(X)Pμ(Yt)) = 0.
(B) Let |λ| = |μ| = d and n− 1 > t = 2g + 1 ≥ 1. Then

E (Pλ(X)Pμ(Y2g+1)) = zλzμ
∑

Δ1,...,Δn−2g

|λ|=|Δj|=d, j≤n−2g

H2−2g,n+2−2g(d;λ, μ,Δ1, . . . ,Δn−2g)

× PΔn−2g−1(C ′)PΔn−2g (CnC′′)

n−2g−2∏
i=1

PΔi(C2g+1+i),

(26)

where C ′ and C ′′ are given by (21).
(C) Let |λ| = |μ| n > t = 2g ≥ 0. Then

E (Pλ(X)Pμ(Y2g)) = zλzμ
∑

Δ1,...,Δn−2g

|λ|=|Δj|=d, j≤n−2g

H2−2g,n+2−2g(d;λ, μ,Δ1, . . . ,Δn−2g)

× PΔn−2g+1(C ′CnC′′)

n−2g∏
i=1

PΔi(C2g+i), (27)

where C′ and C ′′ are given by (23).

Corollary 2. Let |λ| = d ≤ N as before, and let each Ci = IN . Then

1

zλzμ
E (Pλ(X)Pλ(Y2g)) =

1

zλzμ
E (Pλ(X)Pλ(Y2g+1))

=
1

zλ
E (Pλ(XY2g)) =

1

zλ
E (Pλ(XY2g+1)) .

(28)
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Theorem 3. X and Yt are defined by (17)–(18).

(A) Let n− 1 > t = 2g + 1 ≥ 0. Then

E
(
Pλ(X)τBKP

1 (Y2g+1)
)
= zλ

∑
Δ1,...,Δn−2g

|λ|=|Δj|=d, j≤n−2g

H1−2g,n+1−2g(d;λ,Δ1, . . . ,Δn−2g)

× PΔn−2g−1(C ′)PΔn−2g (CnC′′)

n−2g−2∏
i=1

PΔi(C2g+1+i)

(29)

where C′ and C ′′ are given by (21).
(B) Let n > t = 2g ≥ 0. Then

E
(
Pλ(X)τBKP

1 (Y2g)
)
= zλzμ

∑
Δ1,...,Δn−2g

|λ|=|Δj|=d, j≤n−2g

H1−2g,n+1−2g(d;λ,Δ1, . . . ,Δn−2g)

× PΔn+1−2g(C ′CnC′′)

n−2g∏
i=1

PΔi(C2g+i) (30)

where C′ and C ′′ are given by (23).

The sketch of proof. The characteristic Frobenius-type formula by Mednykh–Poz-
dnyakova–Jones [20, 41]

He,k(d; Δ1, . . . ,Δk) =
∑

λ
|λ|=d

(
dimλ

d!

)e

ϕλ(Δ
1) · · ·ϕλ(Δ

k) (31)

where dimλ is the dimension of the irreducible representation of Sd, and

ϕλ(Δ
(i)) := |CΔ(i) | χλ(Δ

(i))

dimλ
, dim λ := χλ

(
(1d)

)
(32)

χλ(Δ) is the character of the symmetric group Sd evaluated at a cycle type Δ,
and χλ ranges over the irreducible complex characters of Sd (they are labeled
by partitions λ = (λ1, . . . , λ�) of a given weight d = |λ|). It is supposed that
d = |λ| = |Δ1| = · · · = |Δk|. |CΔ| is the cardinality of the cycle class CΔ in Sd.

Then we use the characteristic map relation [38]:

sλ(p) =
dimλ

d!

⎛⎜⎝pd1 +
∑
Δ

|Δ|=d

ϕλ(Δ)pΔ

⎞⎟⎠ (33)

where pΔ = pΔ1 · · · pΔ�
and where Δ = (Δ1, . . . ,Δ�) is a partition whose weight

coincides with the weight of λ: |λ| = |Δ|. Here
dimλ = d!sλ(p∞), p∞ = (1, 0, 0, . . . ) (34)

is the dimension of the irreducible representation of the symmetric group Sd. We
imply that ϕλ(Δ) = 0 if |Δ| �= |λ|.
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Then we know how to evaluate the integral with the Schur function via
Lemma used in [59] and [48, 49] (for instance see [38] for the derivation).

Lemma 1. Let A and B be normal matrices (i.e., matrices diagonalizable by unitary
transformations). Then below p∞ = (1, 0, 0, . . . ).∫

Cn2
sλ(AZBZ+)e− trZZ+

n∏
i,j=1

d2Z =
sλ(A)sλ(B)

sλ(p∞)
(35)

and ∫
Cn2

sμ(AZ)sλ(Z
+B)e− trZZ+

n∏
i,j=1

d2Z =
sλ(AB)

sλ(p∞)
δμ,λ . (36)

To prove Theorem 1 we use the property that we can equate the integral over
E(τ2KP(XYy)) using this lemma and (6) and then compare it to the same inte-
gral where now we use (9). To prove Theorem 2 in the similar way we equate
E(τ2KP(X)τ2KP(Yy)). To prove Theorem 3 we similarly E(τ2KP(X)τ2KP(Yy)) in
the same way taking into account also (10).

Appendix A. Partitions and Schur functions

Let us recall that the characters of the unitary group U(N) are labeled by partitions
and coincide with the so-called Schur functions [38]. A partition λ = (λ1, . . . , λn)
is a set of nonnegative integers λi which are called parts of λ and which are ordered
as λi ≥ λi+1. The number of non-vanishing parts of λ is called the length of the
partition λ, and will be denoted by �(λ). The number |λ| =

∑
i λi is called the

weight of λ. The set of all partitions will be denoted by P.
The Schur function labeled by λ may be defined as the following function in

variables x = (x1, . . . , xN ) :

sλ(x) =
det

[
xλi−i+N
j

]
i,j

det
[
x−i+N
j

]
i,j

(37)

in case �(λ) ≤ N and vanishes otherwise. One can see that sλ(x) is a symmetric
homogeneous polynomial of degree |λ| in the variables x1, . . . , xN , and deg xi =
1, i = 1, . . . , N .

Remark. In case the set x is the set of eigenvalues of a matrix X , we also write
sλ(X) instead of sλ(x).

There is a different definition of the Schur function as quasi-homogeneous
non-symmetric polynomial of degree |λ| in other variables, the so-called power
sums, p = (p1, p2, . . . ), where deg pm = m.

For this purpose let us introduce

s{h}(p) = det[s(hi+j−N)(p)]i,j ,



366 A.Yu. Orlov

where {h} is any set of N integers, and where the Schur functions s(i) are defined

by e
∑

m>0
1
mpmzm

=
∑

m≥0 s(i)(p)z
i. If we put hi = λi− i+N , where N is not less

than the length of the partition λ, then

sλ(p) = s{h}(p). (38)

The Schur functions defined by (37) and by (38) are equal, sλ(p) = sλ(x),
provided the variables p and x are related by the power sums relation

pm =
∑
i

xm
i . (39)

In case the argument of sλ is written as a non-capital bold letter one uses
definition (38), and we imply definition (37) in case the argument is not bold
and non-capital letter, and in case the argument is capital letter which denotes
a matrix, then it implies the definition (37) with x = (x1, . . . , xN ) being the
eigenvalues.

It may be easily checked that

sλ(p) = (−1)|λ|sλtr(−p) (40)

where λtr is the partition conjugated to λ (in [38] it is denoted by λ∗). The Young
diagram of the conjugated partition is obtained by the transposition of the Young
diagram of λ with respect to its main diagonal. One gets λ1 = �(λtr).

Appendix B. Matrix integrals as generating functions of
Hurwitz numbers from [48, 49]

In case the base surface is CP1 the set of examples of matrix integrals generating
Hurwitz numbers were studied in works [7, 12, 13, 34, 36, 39, 66]. One can show
that the perturbation series in coupling constants of these integrals (Feynman
graphs) may be related to TL (KP and two-component KP) hypergeometric tau
functions. It actually means that these series generate Hurwitz numbers with at
most two arbitrary profiles. (An arbitrary profile corresponds to a certain term in
the perturbation series in the coupling constants which are higher times. The TL
and 2-KP hierarchies there are two independent sets of higher times which yields
two critical points for Hurwitz numbers.)

Here, very briefly, we will write down few generating series for the RP2 Hur-
witz numbers. These series may be not tau functions themselves but may be pre-
sented as integrals of tau functions of matrix argument. (The matrix argument,
which we denote by a capital letter, say X , means that the power sum variables
p are specified as pi = trX i, i > 0. Then instead of sλ(p), τ(p) we write sλ(X)
and τ(X)). If a matrix integral in examples below is a BKP tau function then it
generates Hurwitz numbers with a single arbitrary profile and all other are sub-
jects of restrictions identical to those in CP1 case mentioned above. In all examples
V (x,p) :=

∑
m>0

1
mxmpm. We also recall the notation p∞ = (1, 0, 0, . . . ) and that
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numbers He,f(d; . . . ) are Hurwitz numbers only in case d ≤ N , N is the size of
matrices.

For more details of the RP2 case see [48]. New development in [48] with
respect to the consideration in [59] is the usage of products of matrices. Here we
shall consider a few examples. All examples include the simplest BKP tau function,
of matrix argument X , [57] defined by

τB
1 (X) :=

∑
λ

sλ(X) = e
1
2

∑
m>0

1
m (trXm)2+

∑
m>0,odd

1
m trXm

=
det

1
2 1+X

1−X

det
1
2 (IN ⊗ IN −X ⊗X)

(41)

as the part of the integration measure. Other integrands are the simplest KP tau
functions τ2KP

1 (X,p) := etrV (X,p) where the parameters p may be called coupling
constants. The perturbation series in coupling constants are expressed as sums of
products of the Schur functions over partitions and are similar to the series we
considered in the previous sections.

Example B1. The projective analog of Okounkov’s generating series for double
Hurwitz series as a model of normal matrices. From the equality(

2πζ−1
1

) 1
2 e

(nζ0)2

2ζ1 eζ0nc+
1
2 ζ1c

2

=

∫
R

exinζ0+(cxi− 1
2x

2
i )ζ1dxi,

in a similar way as was done in [58] using ϕλ(Γ) =
∑

(i.j)∈λ(j − i), one can derive

en|λ|ζ0eζ1ϕλ(Γ)δλ,μ = k

∫
sλ(M)sμ(M

†) det
(
MM†

)nζ0
e−

1
2
ζ1 tr(log(MM†))2dM,

where k is unimportant multiplier, M is a normal matrix with eigenvalues
z1, . . . , zN , log |zi| = xi and

dM = d∗U
∏
i<j

|zi − zj |2
N∏
i=1

d2zi.

Then the RP2 analogue of Okounkov’s generating series may be presented as the
following integral ([51]) may be written∑

λ
�(λ)≤N

en|λ|ζ0+ζ1ϕλ(Γ)sλ(p)

= k

∫
eV (M,p)eζ0n tr log(MM†)− 1

2 ζ1(tr log(MM†))2τB
1 (M †)dM .

(42)

Recall that in the work [51] there were studied Hurwitz numbers with an arbitrary
number of simple branch points and two arbitrary profiles. In our analog, describ-
ing the coverings of the projective plane, an arbitrary profile only one, because,
unlike the Toda lattice, the hierarchy of BKP has only one set of (continuous)
higher times.

A similar representation of the Okounkov CP1 was earlier presented in [8].
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Below we use the following notations

• d∗U is the normalized Haar measure on U(N):
∫
U(N)

d∗U = 1.

• Z is a complex matrix

dΩ(Z,Z†) = π−n2

e− tr(ZZ†)
N∏

i,j=1

d�Zijd-Zij .

• Let M be a Hermitian matrix the measure is defined

dM =
∏
i≤j

d�Mij

∏
i<j

d-M.

It is known [38] ∫
sλ(Z)sμ(Z

†) dΩ(Z,Z†) = (N)λδλ,μ, (43)

where (N)λ :=
∏

(i.j)∈λ(N + j − i) is the Pochhammer symbol related to λ. A

similar relation was used in [7, 26, 53, 58, 59], for models of Hermitian, complex
and normal matrices.

By IN we shall denote the N ×N unit matrix. We recall that

sλ(IN ) = (N)λsλ(p∞) , sλ(p∞) =
dimλ

d!
, d = |λ|.

Example B2. Three branch points. The generating function for RP2 Hurwitz num-
bers with three ramification points, having three arbitrary profiles:∑
λ, �(λ)≤N

sλ(p
(1))sλ(Λ)sλ(p

(2))

(sλ(p∞))
2 =

∫
τB
1 (Z1ΛZ2)

∏
i=1,2

eV (trZ†
i ,p

(i)) dΩ(Zi, Z
†
i ).

(44)
If p(2) = p(q, t) with any given parameters q, t, and Λ = IN then (44) is the
hypergeometric BKP tau function.

Example B3. ‘Projective’ Hermitian two-matrix model. The following integral∫
τB
1 (cM2)e

tr V (M1,p)+tr(M1M2)dM1dM2 =
∑
λ

c|λ|(N)λsλ(p),

where M1,M2 are Hermitian matrices is an example of the hypergeometric BKP
tau function.

Example B4. Unitary matrices. Generating series for projective Hurwitz numbers
with arbitrary profiles in n branch points and restricted profiles in other points:∫

etr(cU
†
1 ···U

†
n+m)

(
n+m∏
i=n+1

τB
1 (Ui)d∗Ui

)(
n∏

i=1

τKP
1 (Ui,p

(i))d∗Ui

)

=
∑
d≥0

cd (d!)1−m
∑

λ, |λ|=d
�(λ)≤N

(
dimλ

d!

)2−m(
sλ(IN )

dim λ

)1−m−n n∏
i=1

sλ(p
(i))

dimλ
.

(45)
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Here p(i) are parameters. This series generate certain linear combination of Hur-
witz numbers for base surfaces with Euler characteristic 2 − m, m ≥ 0. In case
n = 1 this BKP tau function may be viewed as an analogue of the generating
function of the so-called non-connected Bousquet–Melou–Schaeffer numbers (see
Example 2.16 in [33]). In case n = m = 1 we obtain the following BKP tau function∫

τB
1 (U2)e

tr V (U1,p)+tr(cU†
1U

†
2 )d∗U1d∗U2 =

∑
λ

�(λ)≤N

c|λ|
sλ(p)

(N)λ
.

Example B5. Integrals over complex matrices. A pair of examples. An analogue
of Belyi curves generating function [13, 66] is as follows:

N∑
l=1

N l
∑

Δ(1),...,Δ(n+1)

�(Δn+1)=l

cdHe,n+1(d; Δ(1), . . . ,Δ(n+1))

n∏
i=1

p
(i)

Δ(i)

=
∑
λ

c|λ|
(d!)m−2(N)λ
(dimλ)m−2

n∏
i=1

sλ(p
(i))

sλ(p∞)
(46)

=

∫
etr(cZ

†
1 ···Z

†
n+m)

(
n+m∏
i=n+1

τB
1 (Zi)dΩ(Zi, Z

†
i )

)(
n∏

i=1

τKP
1 (Zi,p

(i))dΩ(Zi, Z
†
i )

)
where e = 2−m is the Euler characteristic of the base surface.

The series in the following example generates the projective Hurwitz numbers
themselves where to get rid of the factor (N)λ in the sum over partitions we use
mixed integration over U(N) and over complex matrices:∑

Δ(1),...,Δ(n)

cd H1,n(d; Δ(1), . . . ,Δ(n))
n∏

i=1

p
(i)

Δ(i) =
∑

λ, �(λ)≤N

c|λ|
dimλ

d!

n∏
i=1

sλ(p
(i))

sλ(p∞)

=

∫
τKP
1 (cU †Z†

1 · · ·Z
†
k,p

(n))τB
1 (U)d∗U

n−1∏
i=1

τKP
1 (Zi,p

(i))dΩ(Zi, Z
†
i ). (47)

Here Z,Zi, i = 1, . . . , n − 1 are complex N × N matrices and U ∈ U(N). As in
the previous examples one can specify all sets p(i) = p(qi, ti), i = 1, . . . , n except
a single one which in this case has the meaning of the BKP higher times.
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1. Introduction

There are several ways how hydrodynamics of ideal fluid may be treated geomet-
rically. In particular, it may be viewed as an application of the theory of integral
invariants due to Poincaré and Cartan (see Refs. [1, 2], or, in modern presenta-
tion, Refs. [3, 4]). Then, the original Poincaré version of the theory refers to the
stationary (time-independent) flow, described by the stationary Euler equation,
whereas Cartan’s extension embodies the full, possibly time-dependent, situation.

Although the approach via integral invariants is far from being the best
known, it has some nice features which, hopefully, make it worth spending some
time. Namely, the form in which the Euler equation is expressed in this approach,
turns out to be ideally suited for extracting important (and useful) classical conse-
quences of the equations remarkably easily (see more details in Ref. [4]). This refers,
in particular, to the behavior of vortex lines, discovered long ago by Helmholtz.

2. Poincaré integral invariants

Consider a manifold M endowed with dynamics given by a vector field v

γ̇ = v ẋi = vi(x). (1)

The field v generates the dynamics (time evolution) via its flow Φt ↔ v. We will
call the structure phase space

(M,Φt ↔ v) phase space. (2)

c© Springer Nature Switzerland AG 2019
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In this situation, let us have a k-form α and consider its integrals over various
k-chains (k-dimensional surfaces) c on M . Due to the flow Φt corresponding to v,
the k-chains flow away, c �→ Φt(c). Compare the value of the integral of α over the
original c and integral over Φt(c). If, for any chain c, the two integrals are equal,
it reflects a remarkable property of the form α with respect to the field v. We call
it (absolute) integral invariant:∫

Φt(c)

α =

∫
c

α ⇔
∫
c

α is integral invariant . (3)

For infinitesimal t ≡ ε we have∫
Φε(c)

α =

∫
c

α + ε

∫
c

Lvα (4)

(here Lv is the Lie derivative along v). If (3) is to be true for each c, we get
from (4)

Lvα = 0. (5)

Sometimes, however, it may be enough that the integral only behaves invariantly
when restricted to k-cycles (i.e., chains whose boundary vanish, ∂c = 0). We speak
of relative integral invariants. Then the condition (5) can be weakened to

Lvα = dβ̃ (6)

for some β̃. (So, α is to be Lie-invariant modulo exact form.) Using Cartan’s
formula ivd + div = Lv, the condition (6) may also be rewritten as

ivdα = dβ. (7)

Therefore, the main statement on relative (Poincaré) invariants reads:

ivdα = dβ ⇔
∮
c

α = relative invariant w.r.t. Φt ↔ v. (8)

2.1. Stationary Euler equation

The Stationary Euler equation for the ideal (inviscid) fluid reads (see, e.g., Ref. [5])

(v ·∇)v = −∇p/ρ−∇Φ. (9)

Here the mass density ρ, the velocity field v, the pressure p and the potential Φ
of the volume force field (gz for the usual gravitational field) are functions of r.

It turns out (see Ref. [4]) that for barotropic fluid (when ∇p/ρ = ∇P , where
P is the enthalpy (heat function) per unit mass) it may be rewritten in the form
of Eq. (7) with a particular choice of α and β:

ivdṽ = −dB Euler equation (10)

where

ṽ := v · dr (≡ g(v, · ) ≡ !gv) (11)
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is the velocity 1-form standardly associated with the velocity vector field v = vi∂i

in terms of “lowering of index” (≡ !g procedure) and

B := v2/2 + P +Φ Bernoulli function. (12)

2.2. Vortex lines equation

Vortex lines, γ(λ) ↔ r(λ), are field lines of the vorticity vector field ω, which is
the curl of the velocity field v. So, they satisfy ω × r′ = 0 (the prime symbolizes
tangent vector).

Now we have (see the machinery explained in § 8.5 of Ref. [6])

ṽ = v · dr (13)

dṽ = (curlv) · dS ≡ ω · dS (14)

iγ′dṽ = (ω × r′) · dr (15)

The vorticity 2-form dṽ, present in Eq. (10), is of crucial importance. It encodes
complete information about the vorticity vector field ω and, as we see from (15),

iγ′dṽ = 0 vortex line equation (16)

expresses the fact that γ(λ) is a vortex line.

2.3. Why the form of Eq. (10) is so convenient

For several reasons:

1. Application of iv on both sides gives

vB = 0 Bernoulli equation (17)

(saying that B is constant along streamlines).
2. Application of iγ′ on both sides (where γ′ is from (16)) gives

γ′B = 0 (18)

(saying that B is constant along vortex -lines).
3. Setting dṽ = 0 (when the flow is irrotational) leads to

B = const. (19)

(a version of Bernoulli equation; B is, then, constant in bulk of the fluid).
4. Just looking at (8), (10) and (11) we get∮

c

v · dr = const. Kelvin’s theorem (20)

(velocity circulation is conserved w.r.t. the flow).
5. Just looking at (8), (16) and using the Stokes theorem gives∫

S

ω · dS = const. Helmholtz theorem (21)

(the strength of the vortex tube is constant along the tube).
6. Application of d on both sides gives very quickly. . . see Section 2.4.
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2.4. Helmholtz theorem on frozen vortex lines – stationary case

Application of d on both sides of (10) results in

Lv(dṽ) = 0, i.e., Φ∗
t (dṽ) = dṽ Φt ↔ v. (22)

So, the vorticity 2-form dṽ is invariant w.r.t. the flow of the fluid.
Let us define a distribution D in terms of dṽ:

D := {vectors w such that iwdṽ = 0 holds}. (23)

Due to the Frobenius criterion the distribution is integrable (see Refs. [4], [6]).
From (15) and (16) we see that the distribution is one-dimensional (at those points
where ω �= 0) and that its integral surfaces coincide with vortex lines. Since the
distribution D is invariant w.r.t. Φt ↔ v, its integral surfaces (i.e., vortex lines)
are invariant w.r.t. Φt ↔ v, too. But this means that (another) Helmholtz theorem
is true: vortex lines move with the fluid (are frozen into the fluid; see Refs.[7–9]).

3. Cartan integral invariants

Cartan proposed, as a first step, to study the dynamics given in (1) and (2) on
M × R (the extended phase space; the time coordinate is added) rather than on
M . Using the natural projection

π : M × R→M (m, t) �→ m (xi, t) �→ xi (24)

the forms α and β (from the Poincaré theory) may be pulled-back from M onto
M × R and then combined into a single k-form

σ = α̂ + dt ∧ β̂. (25)

(Here, we denote α̂ = π∗α and β̂ = π∗β.) In a similar way, define a vector field

ξ = ∂t + v. (26)

Its flow clearly consists of the flow Φt ↔ v on the M factor combined with the
trivial lapsing of time in the R factor (so, it is “the same flow”). A simple check
(see Ref. [4]) reveals that the equation

iξdσ = 0 (27)

is equivalent to (7). And the main statement (8) takes the form

iξdσ = 0 ⇔
∮
c

σ = relative invariant. (28)

The first new result by Cartan (w.r.t. Poincaré) is the following observation: Take
any two cycles in M × R which encircle the common tube of solutions (here “so-
lutions” mean integral curves of ξ, i.e., solutions of the dynamics as seen from
M ×R). Then, still, integrals of σ over c1 and c2 give the same number (a simple
proof see in Ref. [4]).

The further Cartan generalization is stronger and much more interesting for
us. Namely, (25) might also be regarded as a decomposition of the most general
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k-form σ on M×R. In this case, α̂ and β̂ need not be obtained by the pull-back from
M . Rather, they are the most general spatial forms on M ×R. In comparison with
just pull-backs, they may be time-dependent, i.e., it may happen that L∂t α̂ �= 0

and/or L∂t β̂ �= 0. (In coordinate presentation, their components may depend on
time.)

It turns out that the proof of (28) does not use any details of the decompo-
sition. The structure of the equation (27) is all one needs. Notice, however, that
the equivalence of (27) and (7) is no longer true, now. Instead, one can check that

iξdσ = 0 ⇔ L∂t α̂ + ivd̂α̂ = d̂β̂ (29)

(the term L∂t α̂ is new). Here d̂ denotes the spatial exterior derivative. (In coor-
dinate presentation – as if the variable t in components was constant.) So, the
equation

L∂t α̂ + ivd̂α̂ = d̂β̂ (30)

is the equation that time-dependent forms α̂ and β̂ are to satisfy in order that the
integral of σ is to be relative integral invariant (in the new, more general, sense of
encircling the common tube of solutions).

3.1. Non-stationary Euler equation

Retell Cartan’s results in the context of hydrodynamics, i.e., for

σ = v̂ − Bdt (31)

where, in usual coordinates (r, t) on E3 × R,

v̂ := v · dr ≡ v(r, t) · dr (32)

From (29) we get

iξdσ = 0 ⇔ L∂t v̂ + ivd̂v̂ = −d̂B. (33)

One easily checks that the r.h.s. of (33) is nothing but the complete, time-depen-
dent, Euler equation. Therefore the time-dependent Euler equation may also be
written in remarkably succinct form

iξdσ = 0 Euler equation . (34)

Just looking at (28), (34), (31) and (32) shows that Kelvin’s theorem is still true
(the two loops c1 and c2 are usually in constant-time hyper-planes t = t1 and
t = t2, so that the Bdt term does not contribute).

3.2. Helmholtz theorem on frozen vortex lines – non-stationary case

Application of d on (34) results in

Lξ(dσ) = 0, i.e., Φ∗
τ (dσ) = dσ Φτ ↔ ξ (35)

So, dσ is invariant w.r.t. the flow of the fluid.
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Define the distribution D in terms of annihilation of as many as two exact
forms:

D ↔ iwdσ = 0 = iwdt. (36)

The new distribution D is integrable as well. It is, however, also invariant w.r.t.
the flow of the fluid. (Because of (35) and the trivial fact that Lξ(dt) = 0.) So,
integral submanifolds (surfaces) move with the fluid.

What do they look like? Although it is not visible at first sight, they are
nothing but vortex lines (see Ref. [10] or, in more detail, Ref. [4]). So, the Helmholtz
theorem is also true in the non-stationary case: vortex lines move with the fluid
(are frozen into the fluid).
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1. Introduction

Hilbert C∗-modules play a fundamental role in modern theory of operator algebras
and related fields. From the present perspective, one could distinguish the follow-
ing main areas of application, which were initiated respectively by Rieffel (1973),
Kasparov (1981), Woronowicz (1991) and Pimsner (1997): (I) Induced representa-
tions and Morita equivalence; (II) KK-theory; (III) C∗-algebraic quantum groups;
and (IV) Universal C∗-algebras.

Topics (I)–(III) are well established and thoroughly discussed in monographs:
see [5] for (I), [2] for (II) and [3] for (III). The present notes form an extended
abstract from a series of lectures, whose main aim was to introduce elements of
the theory of Hilbert C∗-modules in a form suitable for further studies on modern
approach to noncommutative dynamics and universal C∗-algebras (IV).

2. Hilbert C∗-modules and adjointable maps

Hilbert C∗-modules over commutative C∗-algebras appeared first in the work of
Kaplansky (1953). The rudiments of the theory for general C∗-algebras were elab-
orated in the PhD thesis of Paschke (1972). The idea behind the notion is sim-
ple: “generalize Hilbert spaces by replacing complex numbers with a general C∗-
algebra”.

Namely, let A be a C∗-algebra. A (right) pre-Hilbert A-module is a (right)
A-module X equipped with a map 〈·, ·〉A : X ×X → A such that:

(1) 〈x, ya + zb〉A = 〈x, y〉A a + 〈x, z〉A b for any x, y, z ∈ X and a, b ∈ A;
(2) 〈x, y〉∗A = 〈y, x〉A for any x, y ∈ X ;
(3) 〈x, x〉A ≥ 0 for any x ∈ X (positivity in A);
(4) 〈x, x〉A = 0 implies x = 0 for any x ∈ X .

c© Springer Nature Switzerland AG 2019
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The map 〈x, y〉A is called an A-valued inner-product. Generalizing standard argu-
ments one can show that defining

‖x‖ :=
√
‖〈x, x〉A‖, x ∈ X,

the function d(x, y) = ‖x− y‖ is a metric on X . We say that X is a (right) Hilbert
A-module if it is complete with respect to d.1 Then using an approximate unit {μλ}
in A one can show that the formula λx := limλ x(λμλ), λ ∈ C, x ∈ X , defines
scalar multiplication on X . In this way X becomes a complex Banach space and
〈·, ·〉A : X ×X → A a sesqui-linear form.

Example (Hilbert spaces). Hilbert C-modules are Hilbert spaces.

Example (C∗-algebras). A C∗-algebra A may be treated as a Hilbert A-module
equipped with the following natural right multiplication and A-valued inner prod-
uct:

x · a := xa, 〈x, y〉A := x∗y, for x, y, a ∈ A.

Hilbert A-submodules of A correspond to closed right ideals in A.

Example (Concrete Hilbert A-modules). Let H be a Hilbert space. Let A ⊆ B(H)
be a C∗-subalgebra and X ⊆ B(H) a closed subspace such that XA ⊆ X and
X∗X ⊆ A. Then X with operations inherited from B(H) is a Hilbert A-module.
Every Hilbert A-module can be represented in this form.

Example (Hilbert C(M)-modules = Vector bundles). Let H = ({Ht}t∈M ,Γ(H))
be a continuous field of Hilbert spaces over a compact Hausdorff space M (i.e.,
{Ht}t∈M is a family of Hilbert spaces, Γ(H) is a linear subspace of sections M %
t �→ x(t) ∈ Ht such that M % t �→ ‖x(t)‖ is continuous, elements of Γ(H) exhaust
each space Ht, and Γ(H) is maximal with these properties). Then Γ(H) is a (right)
Hilbert C(M)-module with the module action and a C(M)-valued sesqui-linear
form given by:

(xa)(t) := a(t)x(t), 〈x, y〉C(M)(t) := 〈x(t), y(t)〉,
x ∈ Γ(H), a ∈ C(M), t ∈M. Every Hilbert C(M)-module is of the form described
above.

Let X and Y be Hilbert A-modules. We say that a map T : X → Y is an
adjointable operator if there exists a map T ∗ : Y → X such that

〈Tx, y〉A = 〈x, T ∗y〉A, for all x ∈ X, y ∈ Y.

It follows then that both T and T ∗ are bounded C-linear and A-linear operators.
Moreover, T determines uniquely T ∗ and vice versa. In general, not every bounded
(or even isometric) A-linear map is adjointable even when A is commutative. The
set L(X,Y ) of all adjointable operators from X to Y is a Banach space with
respect to the operator norm. The space L(X) := L(X,X) is a unital C∗-algebra

1Analogously one defines left Hilbert modules, as a left A-module equipped with an A-valued
inner product which is A-linear with respect to the first variable.
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with involution given by adjoint of an adjointable operator. For each x ∈ X , y ∈ Y ,
the map Θx,y : Y → X defined by

Θx,y(z) = x〈y, z〉A
is an adjointable operator with Θ∗

x,y=Θy,x. The elements of K(Y,X) :=span{Θx,y :
x∈X,Y ∈Y }⊆L(Y,X) are called (generalized) compact operators from Y to X .
The set K(Y,X) is a Banach space and K(X) := K(X,X) is an ideal in L(X).

Example (Hilbert spaces). If A = C, then X and Y are Hilbert spaces and
L(X,Y ) = B(X,Y ) are bounded operators and K(X,Y ) = K(X,Y ) are usual
compact operators.

Example (C∗-algebras). If we treat a C∗-algebra A as a Hilbert A-module, then
K(A) ∼= A where Θx,y �→ xy∗, x, y ∈ A. In particular, if A = B(H) then K(A) ∼=
B(H). This shows that, in general, compact operators in the sense of Hilbert
modules are not compact as operators between Banach spaces.

Example (Multiplier C∗-algebras). The multiplier algebra M(A) of a C∗-algebra
A is as a maximal essential unitization of A. For any Hilbert C∗-module X we
have M(K(X)) ∼= L(X). In particular, L(A) ∼= M(A).

3. C∗-correspondences

Let A,B be C∗-algebras. A C∗-correspondence from A to B is a (right) Hilbert
B-module X equipped with a homomorphism φX : A → L(X) – left action of
A on X . We write b · x := φX(b)x. We will treat C∗-correspondences as “gen-
eralized morphisms” between C∗-algebras. In particular, to denote that X is a

C∗-correspondence from A to B we write A
X−→ B. We also say that X is non-

degenerate if φX(A)X = X .

Example (Representations). Representations π : A → B(H) of a C∗-algebra A

may be identified with C∗-correspondences A
Hπ−→ C from A to C.

Example (Homomorphisms). If α : A→ B is a ∗-homomorphism we may treat it

as a non-degenerate C∗-correspondence A
Xα−→ B where Xα := α(A)B is equipped

with operations a · x := α(a)x, x · b := xb, 〈x, y〉B := x∗y for all x, y ∈ Xα, a ∈
A, b ∈ B.

Example (Concrete C∗-correspondences). Let X ⊆ B(H) be a closed linear space
and A,B ⊆ B(H) be C∗-subalgebras such that XB ⊆ X , X∗X ⊆ B, AX ⊆ X .
Then X is naturally a C∗-correspondence from A to B. Every C∗-correspondence
can be represented in this form.

Example (C∗-correspondences vs. graphs). Let V , W be sets (spaces with discrete
topology). Let G = (E, s, r) be a graph from V to W , i.e., E is a set of edges
and s : E → V and r : E → W are source and range maps. We define C∗-
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correspondence XG from A = C0(W ) to B := C0(V ) by putting XG := {x ∈
C0(E) : V % v �−→

∑
e∈s−1(v) |x(e)|2 ∈ C is in C0(V )}, and

〈x, y〉A(v) :=
∑

e∈s−1(v)

x(e)y(e),

(a · x)(e) := a(r(e))x(e), (x · b)(e) := x(e)b(s(e)).

Every C∗-correspondence from C0(W ) to C0(V ) is of this form.

If A
X−→ B and B

Y−→ C are C∗-correspondences then there is a C∗-

correspondence A
X⊗BY−→ C defined as follows. The space X ⊗B Y = span{x ⊗ y :

x ∈ X, y ∈ Y } is the Hausdorff completion of the algebraic tensor product of X
and Y with respect to the seminorm defined by the C-valued sesqui-linear form
given by the formula

〈x1 ⊗ y1, x2 ⊗ y2〉C := 〈y1, 〈x1, x2〉B · y2〉C .

The left and right action on X ⊗B Y is defined in an obvious way: a · (x⊗ y) · c :=
(a · x)⊗ (y · c) for x ∈ X, y ∈ Y , a ∈ A, c ∈ C. The C∗-correspondence X ⊗B Y is
usually called the (inner) tensor product of X and Y . We encourage to think of it
as a “composition” of C∗-correspondences X and Y .

Example (Induced representations). If A
X−→ B is a C∗-correspondence and B

Hπ−→
C is a representation of B, then A

X⊗BHπ−→ C is a representation of A.

The latter representation is called the induced representation from π by X .

Example (Composition of homomorphisms). If α : A → B and β : B → C are
∗-homomorphisms, then the C∗-correspondence Xα⊗B Xβ is naturally isomorphic
to the C∗-correspondence Xβ◦α associated to the ∗-homomorphism β ◦α : A→ C.

Example (Concrete tensor products). Let A,B,C ⊆ B(H) and X,Y ⊆ B(H) be

concrete C∗-correspondences A
X−→ B and B

Y−→ C. Then XY = span{xy : x ∈
X, y ∈ Y } ⊆ B(H) is a concrete C∗-correspondence A

XY−→ C which is naturally
isomorphic to the C∗-correspondence X ⊗B Y .

Example (Composition of graphs). Let G = (E, s, r) a graph from V to W and
H = (F, s, r) a graph from W to U . We define the composite graph H ◦ G :=
(F ◦ E, s, r), where F ◦ E := {(f, e) ∈ F × E : s(f) = r(e)}, s(f, e) := s(e)
and r(f, e) = r(f). Then we have a natural isomorphism of C∗-correspondences
XH ⊗B XG

∼= XH◦G.

Let us consider a “category” whose objects are C∗-algebras and morphisms
are non-degenerate C∗-correspondences. Strictly speaking such a structure is not
a category, but a bicategory because the associativity holds only up to a natural

isomorphism. More specifically, if A
X−→ B, B

Y−→ C and C
Z−→ D are C∗-

categories, we have a natural isomorphism:

X ⊗B (Y ⊗C Z) ∼= (X ⊗B Y )⊗C Z.
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C∗-algebras treated as Hilbert modules act as “identity morphisms”: we have
X ⊗B B ∼= X and (A ⊗A X) ∼= X (here is where we use non-degeneracy of

X). In particular, a C∗-correspondence A
X−→ B is “invertible” if there is a C∗-

correspondence B
X�

−→ A such that

X� ⊗A X ∼= B, X ⊗B X� ∼= A.

A C∗-correspondence is “invertible” in the above sense if and only if it is a Morita–
Rieffel equivalence bimodule – an object that we describe below.

4. The Morita–Rieffel equivalence

Let A,B be C∗-algebras. A Hilbert A-B-bimodule is a space X which is both a
right Hilbert B-module and a left Hilbert A-module such that the respective inner
products satisfy

A〈x, y〉z = x〈y, z〉B, x, y, z ∈ X.

Then 〈X,X〉B := span{〈x, y〉B : x, y ∈ X} is an ideal in B and A〈X,X〉 :=
span{A〈x, y〉 : x, y ∈ X} is an ideal in A. We say that X is a (Morita–Rieffel)
equivalence bimodule if in addition 〈X,X〉B = B and A〈X,X〉 = A. If X is a
Hilbert A-B-bimodule, and X� is the adjoint Hilbert B-A-bimodule2, then X ⊗B

X� ∼= 〈X,X〉B and (X� ⊗A X) ∼= A〈X,X〉. Thus X is an equivalence bimodule if
and only if it is “invertible”. Two C∗-algebras A and B are Morita equivalent if
there exists an equivalence Hilbert A-B-bimodule.

Remark. Every Hilbert A-B-bimodule X restricts to an equivalence A〈X,X〉-
〈X,X〉B-bimodule. Every Hilbert A-B-bimodule X is a C∗-correspondence from
A to B (the left action of A on X is necessarily given by adjointable operators).

A C∗-correspondence A
X−→ B is a Hilbert A-B-bimodule if and only if the left

action φX restricts to an isomorphism from an ideal J in A onto K(X) (then we
necessarily have 〈x, y〉B = φX |−1

J (Θx,y)).

Example (Compact operators). Every right Hilbert B-module is an equivalence
K(X)-〈X,X〉B-bimodule where K(X)〈x, y〉 := Θx,y, x, y ∈ X . In particular, every
Hilbert space H gives Morita equivalence between C and K(H).

Example (Hereditary subalgebras and ideals). Let p be an element of a C∗-algebra
C. The right ideal X := pC is an equivalence bimodule establishing Morita equiv-
alence between A := pCp and B := CpC.

Example (Ternary rings of operators). A closed linear space X ⊆ B(H) satisfying
XX∗X ⊆ X is called a (concrete) ternary ring of operators. Any such X is an
equivalence bimodule from A := XX∗ to B := X∗X. Every equivalence A-B-
bimodule can be represented in this form.

2It arises by exchanging the left and right structures.
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Suppose that C∗-algebras A and B are embedded as corners into a C∗-algebra
C, i.e., we have the decomposition C =

(
A X
X� B

)
. Then the space X with operations

inherited from C is a Hilbert A-B-bimodule. It is an equivalence bimodule if
and only if A and B are full C∗-subalgebras of C (i.e., we have CAC = C and
CBC = C). In fact, any two C∗-algebras A and B are Morita equivalent if and
only if they can be embedded into a C∗-algebra C as full and complementary
corners, see [1]. The celebrated theorem of Brown, Green and Rieffel [1] states the
following:

Theorem 1. If A and B have countable approximate units then A and B are Morita
equivalent if and only if A and B are stably isomorphic, i.e., A⊗K(H) ∼= B⊗K(H)
where H is a Hilbert space.

Morita equivalent C∗-algebras A and B share a vast list of properties, cf.
[5]. For instance, they have: isomorphic lattices of ideals Ideal(A) ∼= Ideal(B);

homeomorphic spectra Â ∼= B̂ (equivalence classes of irreducible representations
equipped with Jacobson topology); isomorphic K-groups Ki(A) ∼= Ki(B), i = 0, 1.
Moreover, A is nuclear (resp., liminal or postliminal) if and only if B is nuclear
(resp., liminal or postliminal).

Comments on actions of C∗-correspondences: Group actions of Hilbert bimod-
ules on C∗-algebras correspond to Fell bundles over groups. They generalize group
actions by automorphisms and the associated crossed products model all group
graded C∗-algebras. Inverse semigroup actions by Hilbert bimodules can be viewed
as noncommutative groupoids. They model all regular C∗-inclusions and in par-
ticular noncommutative Cartan pairs. Semigroup actions of C∗-correspondences
correspond to product systems. They model various variants and generalizations
of Cuntz-Pimsner algebras [4].
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Abstract. We discuss two topics related to Fourier transforms on Lie groups
and on homogeneous spaces: the operational calculus and the Gelfand–Gindi-
kin problem (program) about separation of non-uniform spectra. Our purpose
is to indicate some non-solved problems of noncommutative harmonic analysis
that definitely are solvable.
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1. Abstract Plancherel theorem for groups

See, e.g., [2]. Let G be a type I locally compact group with a two-side invariant

Haar measure dg. Denote by Ĝ the set of all irreducible unitary representations

of G (defined up to a unitary equivalence1). For ρ ∈ Ĝ denote by Hρ the space of

the representation ρ. For ρ ∈ Ĝ and f ∈ L1(G) we define the following operator
in Hρ:

ρ(f) :=

∫
G

f(g) ρ(g) dg.

This determines a representation of the convolution algebra L1(G) in Hρ,

ρ(f1)ρ(f2) = ρ(f1 ∗ f2).

Consider a Borel measure ν on Ĝ and the direct integral of Hilbert spaces Hρ with

respect to the measure ν. Consider the space L(Ĝ, ν) of measurable functions Φ

Supported by the grant FWF, P28421.
1For a formal definition of type I groups see, e.g., [2, Sect. 7.2]. Connected semisimple Lie groups,
connected nilpotent Lie groups, classical p-adic groups have type I. This condition implies a

presence of the standard Borel structure on Ĝ and a uniqueness of a decomposition of any
unitary representation of G into a direct integral of irreducible representations.

c© Springer Nature Switzerland AG 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01156-7_40&domain=pdf


390 Yu. Neretin

on Ĝ sending any ρ ∈ G to a Hilbert–Schmidt operator in Hρ and satisfying the
condition ∫

Ĝ

tr
(
Φ(ρ)∗Φ(ρ)

)
dν(ρ) <∞.

There exists a unique measure μ on Ĝ (the Plancherel measure), such that
for any f1, f2 ∈ L1 ∩ L2(G) we have

〈f1, f2〉L2(G) =

∫
Ĝ

tr
(
ρ(f2)

∗ρ(f1)
)
dμ(ρ)

and the map f �→ ρ(f) extends to a unitary operator from L2(G) to the space

L2(Ĝ, μ) (F.I. Mautner, I. Segal (1950), see, e.g., [2]).

2. An example. The group GL(2,R)
Let GL(2,R) be the group of invertible real matrices of order 2. Let μ ∈ C and
ε ∈ Z2. We define the function xμ//ε on R \ 0 by

xμ//ε := |x|μ sgn(x)ε.
Denote Λ := C×Z2×C×Z2. For each element (μ1, ε1;μ2, ε2) of Λ we define

a representation Tμ,ε of GL2(R) in the space of functions on R by

Tμ1,ε1;μ2,ε2

(
a b
c d

)
ϕ(t)

= ϕ

(
b + td

a + tc

)
· (a + tc)−1+μ1−μ2//ε1−ε2 det

(
a b
c d

)1/2+μ2//ε2

.

This formula determines the principal series of representations of GL(2,R). If
μ1 − μ2 /∈ Z, then representations Tμ1,ε1;μ2,ε2 and Tμ2,ε2;μ1,ε1 are irreducible and
equivalent (on representations of SL(2,R), see, e.g., [4, 39]).

If μ1 = iτ1, μ2 = iτ2 ∈ iR, then a representation Tμ1,ε1;μ2,ε2 is unitary in
L2(R) (they are called representations the unitary principal series).

Next, we define representations of the discrete series. Let n = 1, 2, 3, . . .
Consider the Hilbert space Hn of holomorphic functions ϕ on C \ R satisfying∫

C\R
|ϕ(z)|2| Im z|n−1 dRe z d Im z <∞.

In fact, ϕ is a pair of holomorphic functions determined on half-planes Im z > 0
and Im z < 0. For τ ∈ R, δ ∈ Z2 we define the unitary representation Dn,τ,δ of
GL2(R) in Hn by

Dn,τ,δ

(
a b
c d

)
ϕ(z) = ϕ

(b + zd

a + zc

)
(a + zc)−1−n det

(
a b
c d

)1/2+n/2+iτ//δ

.

There exists also the complementary series of unitary representations, which
does not participate in the Plancherel formula.
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Remark. The expression for Dn,τ,δ is contained in the family Tμ1,ε1;μ2,ε2 , but we
change the space of the representations.

The Plancherel measure for SL(2,R) was explicitly evaluated in 1952 by
Harish-Chandra, it is supported by the principal and discrete series. On the prin-
cipal series the density is given by the formula (see, e.g., [39])

dP =
1

16π3
(τ1 − τ2) tanhπ(τ1 − τ2)/2 dτ1 dτ2, if ε1 − ε2 = 0;

dP =
1

16π3
(τ1 − τ2) cothπ(τ1 − τ2)/2 dτ1 dτ2 if ε1 − ε2 = 1.

On nth piece of the discrete series the measure is given by

dP =
n

8π3
dτ.

3. Homogeneous spaces, etc.

The Plancherel formula for complex classical groups was obtained by I.M. Gelfand
and M.A. Naimark [5] in 1948–50, for real semisimple groups by Harish-Chandra in
1965 (see, e.g., [11, 13]), there is also a formula for nilpotent groups (A.A. Kirillov
[12], L. Pukanszky [37]).

During 1950–early 2000s there was obtained a big zoo of explicit spectral
decompositions of L2 on homogeneous spaces, of tensor products of unitary repre-
sentations, of restrictions of unitary representations to subgroups. We present some
references, which can be useful for our purposes [1, 5, 9, 11, 16, 23, 27, 38, 41].
Unfortunately, texts about groups of rank > 1 are written for experts and are
heavy for exterior readers. See also the paper [29] on some spectral problems (de-
formations of L2 on pseudo-Riemannian symmetric spaces), which apparently are
solvable but are not solved.

However, a development of the last decades seems strange. The Plancherel
formula for Riemannain symmetric spaces [7] (see, e.g., [10]) and Bruhat–Tits
buildings [14] had a general mathematical influence (for instance to theory of
special functions and to theory of integrable systems). Usually, Plancherel formulas
are heavy results (with impressive explicit formulas) without further continuation
even inside representation theory and noncommutative harmonic analysis.

4. Operational calculus for GL(2,R), see [33], 2017

Denote by Gr24 the Grassmannian of all two-dimensional linear subspaces in R4.
The natural action of the group GL(4,R) in R4 induces the action on Gr24, therefore
we have a unitary representation of the group GL(4,R) in L2 on Gr24 (this is an
irreducible representation of a degenerate principal series) and the corresponding
action of the Lie algebra gl(4).
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For g ∈ GL(2,R) its graph is a linear subspace in R2 ⊕R2 = R4. In this way
we get an embedding

GL(2,R) → Gr24.

The image of the embedding is an open dense subset in Gr24. Thus we have an
identification of Hilbert spaces

L2
(
GL(2,R)

)
� L2

(
Gr24

)
(since natural measures on GL(2,R) and Gr24 are different, we must multiply func-
tions by an appropriate density to obtain a unitary operator). Therefore we get a
canonical action of the group GL(4,R) in L2

(
GL(2,R)

)
. It is easy to see that the

block diagonal subgroup GL(2,R) × GL(2,R) ⊂ GL(4,R) acts by left and right
shifts on GL(2,R).

We wish to evaluate the action of the Lie algebra gl(4) in the Fourier-image.

Consider the space C∞
0

(
GL(2,R)

)
of smooth compactly supported functions

on GL(2,R). For any F ∈ C∞
0

(
GL(2,R)

)
consider the operator-valued function

Tμ1,ε1;μ2,ε2(F ) depending on (μ1, ε1;μ2, ε2) ∈ Λ. We write these operators in the
form

Tμ1,ε1;μ2;ε2(F )ϕ(t) =

∫ ∞

−∞
K(t, s|μ1, ε1;μ2, ε2)ϕ(s) ds.

The kernel K is smooth in t, s and holomorphic in μ1, μ2.

On the other hand we have the Hilbert space L2
( ̂GL(2,R), dP

)
. The norm

in this Hilbert space is given by

‖K‖2 =
∫ ∫ ∞

−∞

∫ ∞

−∞

∣∣K(t, s|μ1, ε1;μ2, ε2)
∣∣2dt ds dP(μ)+

+
{
summands corresponding to the discrete series

}
.

(1)

We must write the action of the Lie algebra gl(4). Denote by ekl the standard
generators of gl(4) acting in smooth compactly supported functions on GL(2,R)
and by Ekl the same generators acting in the space of functions of variables t, s,
μ1, ε1, μ2, ε2. The action of the subalgebra gl(2)⊕gl(2) is clear from the definition
of the Fourier transform, this Lie algebra acts by first-order differential operators.
For instance

e12 = −b
∂

∂a
− d

∂

∂b
, E12 =

∂

∂t
;

e43 = b
∂

∂a
+ d

∂

∂c
, E43 = −s2

∂

∂s
+ (−1− μ1 + μ2)s.

Define shift operators V +
1 , V −

1 , V +
2 , V −

2 by

V ±
1 K(t, s|μ1, ε1;μ2, ε2) = K(t, s|μ1 ± 1, ε1 + 1;μ2, ε2); (2)

V ±
2 K(t, s|μ1, ε1;μ2, ε2) = K(t, s|μ1, ε1;μ2 ± 1, ε2 + 1). (3)
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To be definite, we present formulas for two nontrivial generators ekl and their
Fourier images Ekl:

e14 =
∂

∂b
+

c

ad− bc
,

E14 =
−1/2 + μ1

μ1 − μ2

∂

∂s
V −
1 +

−1/2 + μ2

μ1 − μ2

∂

∂t
V −
2 ,

e32 = −
(

ac
∂

∂a
+ ad

∂

∂b
+ c2

∂

∂c
+ cd

∂

∂d

)
− c,

E32 =
1/2 + μ1

μ1 − μ2

∂

∂t
V +
1 +

1/2 + μ2

μ1 − μ2

∂

∂s
V +
2 .

There is also a correspondence for operators of multiplication by functions. For
instance, the operator of multiplication by c in C∞

0

(
GL(2,R)

)
corresponds to

1

μ1 − μ2

(
∂

∂t
V +
1 +

∂

∂s
V +
2

)
in the Fourier-image. There are similar formulas for multiplications by a, b, d. The
operator of multiplication by (ad−bc)−1 corresponds to V −

1 V −
2 (the last statement

is trivial). The operator ∂
∂b corresponds to

μ1

μ1 − μ2

∂

∂s
V −
1 +

μ2

μ1 − μ2

∂

∂t
V −
2 ,

There are similar formulas for other partial derivatives.

We emphasize that our formulas contain shifts in imaginary directions (the
shifts in (2)–(3) are transversal to the contour of integration in (1)).

5. Difference operators in imaginary direction and
classical integral transforms

The operators iEkl are symmetric in the sense of the spectral theory. The question
about domains of self-adjointness is open.

There exist elements of spectral theory of self-adjoint difference operators in
L2(R) of the type

Lf(s) = a(s)f(s + i) + b(s)f(s) + c(s)f(s− i), i2 = −1, (4)

see [8, 30]. Recall that several systems of classical hypergeometric orthogonal poly-
nomials (Meixner–Polaszek, continuous Hahn, continuous dual Hahn, Wilson) are
eigenfunctions of operators of this type. In the polynomial cases the problems are
algebraic. The simplest nontrivial analytic example is the operator

Mf(s) =
1

is

(
f(s + i)− f(s− i)

)



394 Yu. Neretin

in L2
(
R+, |Γ(is)|−2ds

)
. We define M on the space of functions f holomorphic in

a strip | Im s| < 1 + δ and satisfying the condition

|f(s)| � exp{−π|Re s|}|Re s|−3/2−ε

in this strip. The spectral decomposition of M is given by the inverse Konto-
rovich–Lebedev integral transform. Recall that the direct Kontorovich–Lebedev
transform

Kf(s) =

∫ ∞

0

Kis(x)f(x)
dx

x
,

where Kis is the Macdonald–Bessel function, gives the spectral decomposition of
a second-order differential operator, namely

D :=

(
x

d

dx

)2

− x2, x > 0.

The transform K is a unitary operator L2(R+, dx/x) → L2
(
R+, |Γ(is)|−2ds

)
. It

sends D to the multiplication by s2, and K−1 sends M to the multiplication by
2/x. So we get so-called bispectral problem.

Now there is a zoo of explicit spectral decompositions of operators (4). The
similar bispectrality appears for some other integral transforms: the index hyperge-
ometric transform (another names of this transform are: the Olevsky transform, the
Jacobi transform, the generalized Mehler–Fock transform) [25], the Wimp trans-
form with Whittaker kernel [30], for a continuous analog of expansion in Wilson
polynomials proposed by W. Groenevelt [8], etc.

This subject is now a list of examples (which certainly can be extended), but
there are no a priori theorems.

6. A general problem about overalgebras

Let G be a Lie group, g the Lie algebra. Let H ⊂ G be a subgroup. Let σ be an
irreducible unitary representation of G. Assume that we know an explicit spectral
decomposition of restriction of ρ to a subgroup H. To write the action of the
overalgebra g in the spectral decomposition.

Remarks.

1) Above we have G = GL(4,R), its representation σ in L2 on the Grassmannian
Gr24, and H = GL(2,R) × GL(2,R). The restriction problem is equivalent
to the decomposition of regular representation of GL(2,R) × GL(2,R) in
L2
(
GL(2,R)

)
. The Fourier transform is the spectral decomposition of the

regular representation.
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2) It is important that similar overgroups exist for all 10 series of classical real
Lie groups2. Moreover, a decomposition of L2 on any classical symmetric
space3 G/M can be regarded as a certain restriction problem, see [24].

3) Next, consider a tensor product ρ1 ⊗ ρ2 of two unitary representations of a
group G. Then we have the action of G × G in the tensor product, so the
problem of decomposition of tensor products can be regarded as a problem
of a restriction from the group G×G to the diagonal subgroup G.

The question under the discussion was formulated in [30]. Several problems
of this kind were solved [18–20, 30, 31, 33]. In all the cases we get differential-
difference operators including shifts in imaginary direction. Expressions also in-
clude differential operators of high order, even for SL(2,R)-problems we usually
get operators of order 2.

Conjecture. All problems of this kind are solvable (if we are able to write a spectral
decomposition).

7. The Gelfand–Gindikin problem, [3], 1977

The set Ĥ of unitary representations of a semisimple group H naturally splits into
different types (series).

Let H be a semisimple group, M a subgroup. Consider the space L2(H/M).
Usually its H-spectrum contains different series. To write explicitly decomposition
of L2 into pieces with uniform spectrum.

A variant of the problem: let G be a Lie group, H ⊂ G a semisimple subgroup,
ρ is a unitary representation of G. Answer to the same question.

8. Example: separation of series for the one-sheet hyperboloid

Consider the space R3 equipped with an indefinite inner product

〈u, v〉 = −u1v1 + u2v2 + u3v3.

Consider the pseudo-orthogonal group preserving the form 〈·, ·〉, denote by
SO0(2, 1) its connected component. Recall that SO0(2, 1) is isomorphic to the
quotient PSL(2,R) of SL(2,R) by the center {±1}.

Consider a one-sheet hyperboloid H defined by x2
1 − x2

2 − x2
3 = 1. It is an

SO0(2, 1)-homogeneous space admitting a unique (up to a scalar factor) invariant
measure. Decomposition of L2(H) into irreducible representations of SO0(2, 1) is
well known. The spectrum is a sum of all representations of the discrete series

2More precisely, an overgroup G̃ exists for G = GL(n,R), GL(n,C), GL(n,H), O(p, q), U(p, q),
Sp(p, q), Sp(2n,R), Sp(2n,C), O(n,C), SO∗(2n) (and not for SL(n, ·), SU(p, q)). For instance,
for g ∈ Sp(2n,R) its graph is a Lagrangian subspace in R2n ⊕ R2n, this determines a map from

Sp(2n,R) to the Lagrangian Grassmannian with an open dense image. We set G̃ := Sp(4n,R).
3The groups G, M must be from the list of the previous footnote, M must be a symmetric
subgroup in G.
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of PSL(2,R) and the integral over the whole principal series with multiplicity 2.
The separation of series was proposed by V.F. Molchanov [15] in 1980 (we use a
modification from [22]).

Denote by C = C ∪∞ the Riemann sphere, by R = R ∪∞ denote the real
projective line, R ⊂ C. Consider the diagonal action of SL(2,R) on C× C,

(x1, x2) �→
(

b + dx1

a + cx1
,
b + dx2

a + cx2

)
.

Consider the subset H ′ in R× R consisting of points x1, x2 such that x1 �= x2. It
is easy to verify that H ′ is an orbit of SL(2,R), it is equivalent to the hyperboloid
H as a homogeneous space4. It is easy to verify that the invariant measure on H ′

is given by the formula

dν(x1, x2) = |x1 − x2|−2 dx1 dx2.

We identify the space L2(H ′, dν) with the standard L2(R × R) by the unitary
operator

Jf(x1, x2) = f(x1, x2)(x1 − x2)
−1.

Now our representation in L2(H) transforms to the following unitary representa-
tion in the standard L2(R2):

Q

(
a b
c d

)
f(x1, x2) = f

(
b + dx1

a + cx1
,
b + dx2

a + cx2

)
(a + cx1)

−1(a + cx2)
−1. (5)

Next, consider a unitary representation of SL(2,R) in L2(R) given by

T

(
a b
c d

)
f(x) = f

(
b + xd

a + xc

)
(a + xc)−1.

Obviously, we have Q = T ⊗ T. The representation T is contained in the unitary
principal series and it is a unique reducible element of this series (see, e.g., [4]).

Denote by Π± the upper and lower half-planes in C. The Hardy space H2(Π+)
consists of functions F+ holomorphic in Π+ that can be represented in the form

F+(x) =

∫ ∞

0

ϕ(t)eitx dt, where ϕ(t) ∈ L2(R+).

Obviously, F is well defined also on R and is contained in L2. The space H2(Π−)
consists of functions F− holomorphic in Π− of the form

F−(x) =

∫ 0

−∞
ϕ(t)eitx dt, where ϕ(−t) ∈ L2(R+).

Evidently,

L2(R) = H2(Π+)⊕H2(Π+).

It can be shown that the subspaces H2(Π±) ⊂ L2(R) are invariant with respect to
operators T (·), and therefore T splits into two summands T+ ⊕ T− (one of them

4Two families of lines on the hyperboloid correspond to two families of lines x1 = const and
x2 = const on R× R.
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has a highest weight, another a lowest weight). Hence Q = (T+⊕T−)⊗ (T+⊕T−)
splits into 4 summands. It can be shown that this is the desired decomposition:

• the space H2(Π+)⊗H2(Π+) consists of functions in L2(R2) continued holo-
morphically to the domain Π+×Π+; the representation T+⊗T+ in H2(Π±) ⊂
L2(R) is a direct sum of all highest weight representations of representation
of PSL(2,R);
• T− ⊗ T− is a direct sum of all lowest weight representations;
• in T+ ⊕ T− we have the direct integral of all representations of the principal

series (and the same integral in T− ⊗ T+).

Remark. S.G. Gindikin [6] used a similar argument (restriction from a reducible
representation of an overgroup) for multi-dimensional hyperboloids.

9. Splitting off the complementary series, see [35]

Consider the pseudo-orthogonal group O(1, q) consisting of operators preserving
the following indefinite inner product in R1+q,

〈x, y〉 = −x0y0 + x1y1 + · · ·+ xqyq.

We write elements of this group as block (1 + q) × (1 + q) matrices g =

(
a b
c d

)
.

Denote by SO0(1, q) its connected component, it consists of matrices satisfying two
additional conditions det g = +1, a > 0. Denote by Sq−1 the unit sphere in Rn. The
group O(1, q) acts on Sq−1 by conformal transformations x �→ (a + xc)−1(b + xd)
(they preserve the sphere), the coefficient of a dilation equals to (a + xc)−1.

For λ ∈ C we define a representation Tλ = T q
λ of SO0(1, q) in a space of

functions on Sq−1 by

Tλ

(
a b
c d

)
f(x) = (a + xc)−(q−1)/2+λf

(
(a + xc)−1(b + xd)

)
.

If λ = iσ ∈ iR, then our representation is unitary in L2(Sq−1), in this case Tiσ

is called a representation of the unitary spherical principal series, representations
Tiσ and T−iσ are equivalent (on these representations see, e.g., [40]). If 0 < s <
(q − 1)/2, then Ts is unitary in the Hilbert space Hs with the inner product

〈f1, f2〉s =
∫
Sq−1

∫
Sq−1

f1(x1) f2(x2) dx1 dx2

‖x1 − x2|(q−1)/2−s
.

More precisely, 〈, ·, ·〉 determines a positive definite Hermitian form on the space
C∞(Sq−1) (this is not obvious), we get a pre-Hilbert space and consider its com-
pletion Hs. Such representations form the spherical complementary series. The
spaces Hs are Sobolev spaces5.

5In the standard notation, Hs is the Sobolev space H−s,2(Sq−1). Notice that Sobolev spaces
Hσ,2(·) are Hilbert spaces but inner product are defined not canonically. In our case the inner
products are uniquely determined from the SO0(1, q)-invariance. For semisimple groups of rank
> 1 complementary series are realized in functional Hilbert spaces that are not Sobolev spaces.
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Consider a restrictions of Tiσ to the subgroup SO0(1, q − 1). The group
SO0(1, q − 1) has the following orbits on Sq−1: the equator Eq = Sq−2 defined
by the equation xq = 0, the upper hemisphere H+ and the lower hemisphere
H−. The equator has zero measure and can be forgotten. Therefore L2(Sq−1) =
L2(H+) ⊕ L2(H−). On the other hand, hemispheres as homogeneous spaces are
equivalent to SO0(1, q−1)/SO(q−1), i.e., to the (q− 1)-dimensional Lobachevsky
space. The decomposition of L2 is a classical problem, in each summand L2(H±)
we get a multiplicity-free direct integral over the whole spherical principal series.

The restriction of a representation Ts of the complementary series is more
interesting, it contains several summands of the complementary series and is equiv-
alent to ⊕

k: s−k>1/2
T q−1
s−k

⊕
L2(H+)

⊕
L2(H−). (6)

This spectrum was obtained by Ch. Boyer (1973), our purpose is to visualize
summands of the complementary series.

According to the trace theorems Sobolev spaces of negative order can contain
distributions supported by submanifolds. Denote by δEq the delta-function of the
equator, δEq := δ(xq). Let ϕ be a smooth function on Eq.

‖ϕδEq‖2s = 〈ϕδEq, ϕδEq〉s =
∫
Sq−2

∫
Sq−2

ϕ(y1)ϕ(y2) dy1 dy2
‖y1 − y2|−(q−1)/2+s

.

If s > 1/2 the integral converges and ϕδEq ∈ Hs. The representation of SO0(1, q)
in the space of such functions is T q−1

s .

Denote by ∂
∂nδEq := δ′(xq) the derivative of δEq in the normal direction.

Similar arguments show that for s > 3/2 and smooth ψ we have ψ ∂
∂nδEq ∈ Hs.

The space of functions of the form

ϕδEq + ψ
∂

∂n
δEq

again is invariant. It contains the subspace T q−1
s and we get the representation

T q−1
s+1 in the quotient. Since our representation is unitary, T q−1

s+1 must be direct
summand, etc. . .

Next, we consider the operator J : Hs �→ L2(Sq−1) given by

Jf(x) = |xq|(q−1)/2−sf(x).

It intertwines restrictions of Ts and T0, the kernel of J consists of distributions
supported by Eq and the image is dense6. This gives us (6).

6More precisely, we consider this operator as an operator on smooth functions compactly sup-

ported outside Eq, take the closure Γ of its graph in Hs ⊕L2, and examine projection operators
Γ → Hs, Γ → L2.
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10. The modern status of the problem

We mention the following works:

a) G.I. Olshanski [36] (1990) proposed a way to split off highest weight and
lowest weight representations.

b) The author in [21] (1986) proposed a way to split off complementary series
(see proofs and further examples in [35], the paper [28] contains an example
with separation of direct integrals of different complementary series).

c) S.G. Gindikin [6] (1993) and V.F. Molchanov [17] (1998) obtained a separa-
tion of spectra for multi-dimensional hyperboloids.

These old works had continuations, in particular there were many further
works with splitting off highest weight representations (for more references, see
[32]).

The recent paper [32] (2017) contains formulas for projection operators sep-
arating spectrum for L2 on pseudo-unitary groups U(p, q). In this case we can
consider separation into series (if we fix the number r of continuous parameters
of a representation, r � min(p, q)), subsubseries (if we fix all discrete parameters
of a representation) and intermediate subseries. All these question are solvable.
The solution was obtained by a summation of all characters corresponding to a
given type of spectrum, certainly this way must be available for all semisimple Lie
groups.

In [34] the problem was solved for L2 on pseudo-Riemannian symmetric
spaces GL(n,C)/GL(n,R). The calculation is based on an explicit summation of
spherical distributions. Apparently, this can be extended to all symmetric spaces
of the form GC/GR, where GC is a complex semisimple Lie group and GR is a real
form of GC (on Plancherel formulas for such spaces, see [1, 9, 38]).

For arbitrary semisimple symmetric spaces the problem does not seem to be
well formulated, see a discussion of multi-dimensional hyperboloids in [17].
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1. Introduction

We present a short introduction to noncommutative geometry and spectral triples.
We start the journey with C∗ algebras and noncommutative differential, briefly
mentioning K-theory, K-homology and cyclic (co)homology to finish with the no-
tion of spectral triples, their benefits and examples.

2. What is noncommutative geometry?

The story of noncommutative geometry begins with the classical (differential) ge-
ometry and extends into the realm of abstract algebras and operators using the
language Hilbert spaces and operators on them. One may, of course, say that non-
commutative geometry studies the geometry of quantum spaces – or, to be more
explicit – the geometry of noncommutative algebras. Clearly, the word quantum,
although at first only superficially related to quantum mechanics or quantum field
theory might be the right one – both physics and mathematics are involved in
many examples and there is a huge interplay between them. However, the no-
tion of quantum spaces is a delicate one since the objects that noncommutative
geometry attempts to study are (usually) not spaces – they cannot be visualized.

Why study noncommutative geometry and why have an interest in it? First
of all, it seems to be a natural and rich extension of the concept of spaces, one that
can admit the notion of geometry in its various aspects. Moreover, within noncom-
mutative geometry one can have on the same footing various objects, which, at
first sight, are completely different. Last not least one should mention that many
basic examples do arise from physics: the phase space in quantum mechanics, the
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Brillouin zone in the Quantum Hall Effect, the geometry of finite spaces in the
noncommutative description of the Standard Model, quantum groups in integrable
models or the quantized target space of string theory.

Let us attempt to place the subject matter of noncommutative geometry
in relation to some other subjects in physics and mathematics. It certainly lies
situated between operator algebra and functional analysis and differential geome-
try, with many links to abstract algebra, rings and modules, homological algebra,
topology, probability, measure theory and algebraic geometry. In physics, it has
most of the applications in classical field theory, gauge theories, but with a view
on quantum field theory, renormalization, quantum mechanics as well as gravity,
cosmology and even string theory. In this short review, which is based on three
lectures, we can only present a very basic and superficial overview of the mathe-
matical ideas behind Noncommutative Geometry.

3. From spaces to algebras (and back)

The space is nothing but a collection of points, however, when in mathematics
we start to think about a space the first and basic idea that arises is that of a
topological space – that is a space, which allows us to distinguish (in a very basic
way) whether two points are “close” to each other, without being specific about
actually measuring it with some numbers.

The fundamental idea that might have been the origin of noncommutative
geometry is already present in the following two theorems from the last century:

Theorem 1 (Gelfand–Naimark). Every commutative unital C∗-algebra is an alge-
bra of continuous functions on a compact Hausdorff space.

Theorem 2 (Gelfand–Naimark–Segal). Every C∗-algebra is isomorphic to a com-
plex, involutive, normed-closed algebra of bounded operators on a Hilbert space.

Skipping details of the precise formulation of the above statements and their
proofs let us concentrate on their significance. First, thanks to the Gelfand–
Naimark’s theorem, we can use noncommutative C∗ algebras as the definition
of noncommutative Hausdorff compact spaces and then, the GNS construction al-
lows us to make a precise recipe to construct a C∗ algebra, which became then
very concrete – subalgebras of the operators on a Hilbert space.

The Gelfand–Naimark theorem is just a good starting point for noncommu-
tative topology and towards many other notions like measurable functions, for
instance. To summarize this section let us quote the dictionary, which establishes
parallel notions between standard and noncommutative topology:
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TOPOLOGY ALGEBRA

(locally compact) topological space commutative C∗-algebra
homeomorphism automorphism
continuous proper map morphism
compact space unital C∗-algebra
open (dense) subset (essential) ideal
compactification unitization
Stone–Čech compactification multiplier algebra
Cartesian product tensor product

4. From topology to geometry (noncommutative way)

Having started with topology we have established a good point for the discussion of
noncommutative spaces. However, we are still very far from geometry as topology
does not distinguish between a ball and a cube!

We shall skip all constructions and theorems that extend the notions of vector
bundles, connections, homology and cohomology – just to name the most impor-
tant ones. Instead, we shall carry out the parallels built up for C∗-algebras, while
concentrating on the differential calculi.

4.1. Differential Calculi

In the course of differential geometry one begins with the notion of a smooth
manifold, C∞ functions and vector fields. This is, however, reserved for a purely
commutative world, as some simple algebras, like Mn(C), do not admit any outer
derivations, which is the algebraic characterisation of a vector field. Can this be
cured? Not directly, however, a good answer is that one should rather pass to
differential forms and differential algebras.

Definition 3. A differential graded algebra (DGA) over an algebraA is an N-graded
algebra, not necessarily finite, such that the 0th grade is isomorphic with A and
that is equipped with a degree 1 linear map (grade increasing), which obeys the
graded Leibniz rule:

d(ρω) = dρω + (−1)|ρ|ρ dω,

for any elements ω, ρ, where |ρ| denotes the degree of the form ρ.

There is, unfortunately, no unique way to construct the DGAs in noncom-
mutative world and we can have too many of them even in the commutative case.
The canonical one, the universal differential algebra is completely uninteresting,
as it carries no cohomological information and is infinite-dimensional even in the
simplest case.
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4.2. How to represent differential algebras?

As with the C∗-algebras came the natural representation on the Hilbert space, let
us consider a specific way of obtaining differential graded algebras – connected
with representations and commutators. Let A be an algebra and let π be its
representation on a vector space (not necessarily finite-dimensional). Let F be
an endomorphism (a linear operator, in other words) of this vector space.

Lemma 4. If π is a representation of the algebra A, then for each linear operator
F the following gives a representation of the universal differential algebra Ωu(A):

πF (a0 da1 da2, . . . , dan) = π(a0) [F, π(a1)][F, π(a2)] . . . [F, π(an)].

Of course, if we do not assume anything about F we have just a representation
of the algebra, and neither grading nor the external derivative could be represented.
While dealing with infinite-dimensional representations on a Hilbert space we need
to be careful as the commutators might be (in principle) unbounded. Therefore,
it is natural to assume that all operators π(a) and the commutators [F, π(a)] are
bounded for all a ∈ A.

There exists a canonical way to obtain a differential graded algebra through
πF : we have to take J = kerπF + d(kerπF ). This is a differential ideal within
Ωu(A) and then Ωu(A)/J will be a differential algebra. However, it might not
have a representation on the Hilbert space.

A very particular situation happens if we assume more about F , for example
if we take F 2 = 1, which means that (as seen on a Hilbert space) F is a sign
operator with eigenvalues being +1 and −1. We then have:

Lemma 5. Let and F 2 = 1 be an operator on the Hilbert space H and let π be the
representation of A as bounded operators on H. Then πF defined in Lemma 3.2 is
a representation of the differential algebra, with:

πF (dω) = FπF (ω)− (−1)|w|πF (ω)F,

for any universal form ω of degree |ω|.
The above construction is not just another way of obtaining differential

graded algebras but has a deep geometric meaning and some equivalence classes of
such constructions (called Fredholm modules) over an algebra are building blocks
of K-homology.

5. Spectral triples and how to use them

In this last part of these notes we use (and probably overuse) the word spectral.
Its sense will be described in the definition of properties of spectral triples – a
concise proposition for noncommutative spin manifolds. The clue is that (almost)
everything is set by the Dirac operator and it, in turn, is defined through its set
of discrete eigenvalues with multiplicities. We very briefly describe the idea which
links the theory with physics: the construction of gauge theories and the spectral
action principle.
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5.1. What the Dirac operator is good for

The Laplace operator on a Riemannian compact manifolds encodes a lot of infor-
mation about the geometry. The same is true for its nontrivial square root, the
Dirac operator (in case we have a spin manifold). The Dirac operator on a compact
spin manifolds is indeed a very elegant object: an unbounded, self-adjoint oper-
ator, with a discrete spectrum and with the growth of eigenvalues governed by
the dimension of the manifold. It encodes also the topological and geometrical in-
formation about the manifold, in particular about the differential algebra and the
metric. Spectral triples just mimic this construction in the noncommutative world,
assuming that it is the basic data that makes the noncommutative approach the
geometry.

Definition 6. Let us have an algebra A, its faithful representation π on a Hilbert
space H, a selfadjoint unbounded operator D with compact resolvent, such that

∀a ∈ A, [D,π(a)] ∈ B(H),
then we call (A, π,D) a spectral triple.

Since the definition is very basic, we shall need (in most cases) some additional
structures. We say that the spectral triple is even if there exists an operator γ such
that γ = γ†, γπ(a) = π(a)γ and γD + Dγ = 0. We say that the spectral triple is
finitely summable if the operator |D|−1 has eigenvalues growing like ns for some

s ≥ 0. If the growth of eigenvalues of |D|−1 is exactly of the order n
1
p , we say that

the spectral triple is of metric dimension p.
Spectral triples allow for more “decorations” and conditions like reality struc-

ture, which we omit here. Instead, let us quote the most important result, which
establishes (precisely) the relation of spectral triples to classical differential geom-
etry.

Theorem 7. If A = C∞(M), M is a spin Riemannian compact manifold, S is
a spinor bundle over M , H = L2(S) (summable sections of spinor bundle) and
D is the Dirac operator on M then to (A,H, D) is a spectral triple (with a real
structure) and metric dimension dim(M).

Even more interesting is the reconstruction theorem, which roughly states the
inverse and (with several additional assumption) was demonstrated by Connes.

5.2. Differential forms and fluctuations

Since [D,π(a)] is bounded we can easily apply what we have learned about differen-
tial algebras – and we can call all elements of the type

∑
i π(ai)[D,π(bi)] first-order

differential forms. Since both the algebra and the forms ale embedded in B(H) the
one forms have naturally the structure of a bimodule over A and generate the
algebra corresponding to the sections of the Clifford bundle. The one forms play
an important role as possible bounded perturbations of the Dirac operator. For
every A =

∑
i π(ai)[D,π(bi)], which is selfadjoint, we consider DA = D+A, which

satisfies all conditions for the Dirac operator thus giving us a family of fluctuations
of the original Dirac operator.
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5.3. Integration for spectral triples

Cutting a very long story short let us recall that for the finitely summable spectral
triples one make a nice use of the Dirac operator. Using the ζ-function regularisa-
tion of the trace we can define a noncommutative integral:

−
∫

T = Resz=0 Tr
(
T |D|−z

)
.

This exists for all operators T , which are products of π(a), powers of D and their
commutators with D and |D| (assuming regularity of the spectral triple).

If the spectral triple has metric dimension p then it could be shown that
−
∫

π(a)|D|−p defines a trace on the algebra A. In particular, for a compact,
p-dimensional spin manifold M with a true Dirac operator −

∫
|D|−p ∼ vol(M).

5.4. Measuring spectral geometries

Using the integration defined above we can measure the volume, however, there is
much more that could be extracted. In the classical case a simple formula allows
us to recover distances on the manifold:

d(x, y) = sup
||[D,a]||≤1

|x(a) − y(a)|, x, y ∈M,a ∈ C∞(M).

As in the noncommutative situation there may be no points, we need to extend
it, replacing the points with the states on the algebra, thus making the space of
states equipped with a metric. If this metrizes the weak-* topology then we are
dealing with quantum metric spaces, which then allows us to study convergence
of spaces in the Rieffel–Gromov–Hausdorff distance.

5.5. Towards (noncommutative) physics

Suppose we accept that spectral triples do describe noncommutative manifolds. Is
there any physical contents in them? Can we use them to describe some noncom-
mutative physics? The answer is yes and, indeed, we shall be able to provide – at
least – some partial answers.

Again, assume that we have a spectral triple, that is (A, π,D), and consider
the family of all allowed Dirac operators as the physical degrees of freedom. That
includes not only some possible rescaling, changes of the metric but also the fluc-
tuations of the gauge type as described before. Next, we define a functional on the
space of all admissible Dirac operators:

S(D) = Tr f(D2),

where f is a suitable cut-off function, which, for instance, vanishes for arguments
bigger than a certain number Λ. This idea appeared for the first time (in a similar
phrasing) in the work of Sakharov in 1965 to describe the gravity action and
possible corrections.
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5.6. The Standard Model and gravity

The story of spectral action becomes interesting when we apply it to geometries of
the type M ×F , where M is a Riemannian manifold and F is a discrete geometry.
It is like a Kaluza–Klein model but with the extra dimensions being in fact of (clas-
sical dimension) zero. In fact, if the discrete geometry is F =C⊕H⊕M3(C) then,
in addition to classical gravity and the Einstein–Hilbert term, the spectral action
yields all Yang–Mills action terms together with the Higgs field (as a doublet) and
the correct Higgs potential.

5.7. Where can you learn more?

In these very short note we have tried to give a glimpse of noncommutative geome-
try – a theory, which, motivated by examples, extends the notion of geometry into
the algebraic world. What we still need to supply is a word about prospects: first
of learning (where to learn more) but also the prospects of the field (why learn
it). Interested student should go to http://bit.ly/2zfCB7v where the author
maintains a basic list of recommended material for further reading.
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1. Motivations

Hs-Diffeomorphisms groups of the circle. For s > 3/2, the group Diffs(S1) of
Sobolev class Hs diffeomorphisms of the circle is a C∞-manifold modeled on the
space of Hs-section of the tangent bundle TS1 ([1]), or equivalently on the space of
real Hs-function on S1. It is a topological group in the sense that the multiplication
(f, g) �→ f ◦ g is well defined and continuous, the inverse f �→ f−1 is continuous,
the left translation Lγ by γ ∈ Diffs(S1) applying f to η ◦ f is continuous, and the
right translation Rγ by γ ∈ Diffs(S1) applying f to f ◦ η is smooth. These results
are consequences of the Sobolev Lemma which states that for a compact manifold
of dimension n, the space of Hs-sections of a vector bundle E over M is contained,
for s > k+n/2, in the space of Ck-sections, and that the injection Hs(E) ↪→ Ck(E)
is continuous. In particular, for s > 3/2, Diffs(S1) is the intersection of the space
of C1-diffeomorphisms of the circle with the space Hs(S1, S1) of Hs maps from S1

into itself. Hence Diffs(S1) is an open set of Hs(S1, S1).

For the same reasons, the subgroup of Diffs(S1) preserving three points in
S1, say −1,−i and 1, is, for s > 3/2, a C∞ manifold and a topological group
modeled on the space of Hs-vector fields which vanish on −1,−i and 1.

One may ask what happens for the critical value s = 3/2 and look for a group
with some regularity and a manifold structure such that the tangent space at the
identity is isomorphic to the space of H

3
2 -vector fields vanishing at −1,−i and 1

(or equivalently on any codimension 3 subspace of H
3
2 ). The universal Teichmüller

space T0(1) defined below will verify these conditions.

c© Springer Nature Switzerland AG 2019
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Diff+(S1) as a group of symplectomorphisms. Consider the Hilbert space V =

H
1
2 (S1,R)/R of real-valued H

1
2 functions with mean-value zero. Each element

u ∈ V can be written as

u(x) =
∑
n∈Z

uneinx with u0 = 0, u−n = un and
∑
n∈Z

|n||un|2 <∞.

Endow V with the symplectic form

Ω(u, v) =
1

2π

∫
S1

u(x)∂xv(x)dx = −i
∑
n∈Z

nunvn,

The group of orientation preserving C∞-diffeomorphisms of the circle acts on V by

ϕ · f = f ◦ ϕ− 1

2π

∫
S1

f ◦ ϕ,

preserving the symplectic form Ω. Note that the previous action is well defined for
any orientation preserving homeomorphism of S1. Therefore one may ask what is
the biggest subgroup of the orientation preserving homeomorphisms of the circle
which preserves V and Ω. The answer is the group of quasisymmetric homeomor-
phisms of the circle defined below (Theorem 3.1 and Proposition 4.1 in [3]).
Teichmüller spaces of compact Riemann surfaces. Consider a compact Riemann
surface Σ. The Teichmüller space T (Σ) of Σ is defined as the space of complex
structures on Σ modulo the action by pull-back of the group of diffeomorphisms
which are homotopic to the identity. It can be endowed with a Riemannian metric,
called the Weil–Petersson metric, which is not complete. A point beyond which
a geodesic cannot be continued corresponds to the collapsing of a handle of the
Riemann surface ([6]), hence yields to a Riemann surface with lower genus. One
can ask for a Riemannian manifold in which all the Teichmüller spaces of compact
Riemann surfaces with arbitrary genus inject isometrically. The answer will be the
universal Teichmüller space endowed with a Hilbert manifold structure and its
Weil–Petersson metric ([5]).

2. The universal Teichmüller space

Quasiconformal and quasisymmetric mappings. Let us give some definitions and
basic facts on quasiconformal and quasisymmetric mappings.

Definition 1. An orientation preserving homeomorphism f of an open subset A in
C is called quasiconformal if the following conditions are satisfied.

• f admits distributional derivatives ∂zf , ∂z̄f ∈ L1
loc(A,C) ;

• there exists 0 ≤ k < 1 such that |∂z̄f(z)| ≤ k|∂zf(z)| for every z ∈ A.

Such an homeomorphism is said to be K-quasiconformal, where K = 1+k
1−k .

Example 1. For example, f(z) = αz + βz̄ with |β| < |α| is |α|+|β|
α−|β| -quasiconformal.
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Denote by L∞(A,C) the complex Banach space of bounded complex-valued
functions on an open subset A ⊂ C.

Theorem 2 ([2]). An orientation preserving homeomorphism f defined on an open
set A ⊂ C is quasiconformal if and only if it admits distributional derivatives ∂zf ,
∂z̄f ∈ L1

loc(A,C) which satisfy

∂z̄f(z) = μ(z)∂zf(z), z ∈ A

for some μ ∈ L∞(A,C) with ‖μ‖∞ < 1.

The function μ appearing in the previous theorem is called the Beltrami
coefficient or the complex dilatation of f . Let D denote the open unit disc in C.

Theorem 3 (Ahlfors–Bers). Given μ ∈ L∞(D,C) with ‖μ‖∞ < 1, there exists a
unique quasiconformal mapping ωμ : D→ D with Beltrami coefficient μ, extending

continuously to D, and fixing 1,−1, i.

Definition 2. An orientation preserving homeomorphism η of the circle S1 is called
quasisymmetric if there is a constant M > 0 such that for every x ∈ R and every
|t| ≤ π

2

1

M
≤ η̃(x + t)− η̃(x)

η̃(x)− η̃(x − t)
≤M,

where η̃ is the increasing homeomorphism on R uniquely determined by 0 ≤ η̃(0) <
1, η̃(x + 1) = η̃(x) + 1, and the condition that it projects onto η.

Theorem 4 (Beurling–Ahlfors extension Theorem). Let η be an orientation pre-
serving homeomorphism of S1. Then η is quasisymmetric if and only if it extends
to a quasiconformal homeomorphism of the open unit disc D into itself.

T (1) as a Banach manifold. One way to construct the universal Teichmüller space
is the following. Denote by L∞(D)1 the unit ball in L∞(D,C). By Ahlfors–Bers
theorem, for any μ ∈ L∞(D)1, one can consider the unique quasiconformal map-
ping wμ : D → D which fixes −1,−i and 1 and satisfies the Beltrami equation
on D

∂

∂z
ωμ = μ

∂

∂z
ωμ.

Therefore one can define the following equivalence relation on L∞(D)1. For μ,
ν ∈ L∞(D)1, set μ ∼ ν if wμ|S1 = wν |S1. The universal Teichmüller space is
defined by the quotient space

T (1) = L∞(D)1/ ∼ .

Theorem 5 ([2]). The space T (1) has a unique structure of complex Banach man-
ifold such that the projection map Φ : L∞(D)1 → T (1) is a holomorphic submer-
sion.
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The differential of Φ at the origin D0Φ : L∞(D,C)→ T[0]T (1) is a complex
linear surjection and induces a splitting of L∞(D,C) into ([5]) :

L∞(D,C) = KerD0Φ⊕ Ω∞(D),

where Ω∞(D) is the Banach space defined by

Ω∞(D) :=
{
μ ∈ L∞(D,C) | μ(z) = (1 − |z|2)2φ(z), φ holomorphic on D

}
.

T (1) as a group. By the Beurling–Ahlfors extension theorem, a quasiconformal
mapping on D extends to a quasisymmetric homeomorphism on the unit circle.
Therefore the following map is a well-defined bijection

T (1) → QS(S1)/PSU(1, 1)
[μ] �→

[
wμ|S1

]
.

The coset QS(S1)/PSU(1, 1) inherits from its identification with T (1) a Banach
manifold structure. Moreover the coset QS(S1)/PSU(1, 1) can be identified with
the subgroup of quasisymmetric homeomorphisms fixing −1, i and 1. This identi-
fication allows to endow the universal Teichmüller space with a group structure.
With respect to this differential structure, the right translations in T (1) are bi-
holomorphic mappings, whereas the left translations are not even continuous in
general. Consequently T (1) is not a topological group.

The WP-metric and the Hilbert manifold structure on T (1). The Banach mani-
fold T (1) carries a Weil–Petersson metric, which is defined only on a distribution
of the tangent bundle ([4]). In order to resolve this problem the idea in [5] is to
change the differentiable structure of T (1).

Theorem 6 ([5]). The universal Teichmüller space T (1) admits a structure of
Hilbert manifold on which the Weil–Petersson metric is a right-invariant strong
hermitian metric.

For this Hilbert manifold structure, the tangent space at [0] in T (1) is iso-
morphic to

Ω2(D) :=
{
μ(z) = (1 − |z|2)2φ(z), φ holomorphic on D, ‖μ‖2 <∞

}
,

where ‖μ‖22 =
∫ ∫

D
|μ|2ρ(z)d2z is the L2-norm of μ with respect to the hyperbolic

metric of the Poincaré disc ρ(z)d2z = 4(1−|z|2)−2d2z. The Weil–Petersson metric
on T (1) is given at the tangent space at [0] ∈ T (1) by

〈μ, ν〉WP :=

∫∫
D

μ ν ρ(z)d2z

With respect to this Hilbert manifold structure, T (1) admits uncountably many
connected components. For this Hilbert manifold structure, the identity component
T0(1) of T (1) is a topological group. Moreover the pull-back of the Weil–Petersson
metric on the quotient space Diff+(S

1)/PSU(1, 1) is given at [Id] by

hWP ([Id])([u], [v]) = 2π
∞∑

n=2

n(n2 − 1)unvn.
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Hence the identity component T0(1) of T (1) can be seen as the completion of
Diff+(S

1)/PSU(1, 1) for the H3/2-norm. This metric make T (1) into a strong
Kähler–Einstein–Hilbert manifold, with respect to the complex structure given
at [Id] by the Hilbert transform (see below where the definition of the Hilbert
transform is recalled). The tangent space at [Id] consists of Sobolev class H3/2

vector fields modulo psu(1, 1). The associated Riemannian metric is given by

gWP ([Id])([u], [v]) = π
∑

n�=−1,0,1

|n|(n2 − 1)unvn,

and the imaginary part of the Hermitian metric is the two-form

ωWP ([Id])([u], [v]) = −iπ
∑

n�=−1,0,1

n(n2 − 1)unvn.

Note that ωWP coincides with the Kirillov–Kostant–Souriau symplectic form ob-
tained on Diff+(S

1)/PSU(1, 1) when considered as a coadjoint orbit of the Bott–
Virasoro group.

3. The restricted Siegel disc

The Siegel disc. Let V = H
1
2 (S1,R)/R be the Hilbert space of real-valued H

1
2

functions with mean-value zero. The Hilbert inner product on V is given by

〈u, v〉V =
∑
n∈Z

|n|unvn.

Endow the real Hilbert space V with the following complex structure (called the
Hilbert transform)

J

⎛⎝∑
n�=0

uneinx

⎞⎠ = i
∑
n�=0

sgn(n)uneinx.

Now 〈·, ·〉V and J are compatible in the sense that J is orthogonal with respect to
〈·, ·〉V . The associated symplectic form is defined by

Ω(u, v) = 〈u, J(v)〉V =
1

2π

∫
S1

u(x)∂xv(x)dx = −i
∑
n∈Z

nunvn.

Let us consider the complexified Hilbert space H := H1/2(S1,C)/C and the com-
plex linear extensions of J and Ω still denoted by the same letters. Each element
u ∈ H can be written as

u(x) =
∑
n∈Z

uneinx with u0 = 0 and
∑
n∈Z

|n||un|2 <∞.

The eigenspaces H+ and H− of the operator J are the following subspaces

H+ =

{
u ∈ H

∣∣∣∣∣u(x) =
∞∑

n=1

une
inx

}
and H− =

{
u ∈ H

∣∣∣∣∣u(x) =
−1∑

n=−∞
une

inx

}
,
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and one has the Hilbert decomposition H = H+ ⊕ H− into the sum of closed
orthogonal subspaces. The Siegel disc associated with H is defined by

D(H) := {Z ∈ L(H−,H+) | Ω(Zu, v) = Ω(Zv, u), ∀u, v ∈ H− and I − ZZ̄ > 0},

where, for A ∈ L(H+,H+), the notation A > 0 means 〈A(u), u〉H > 0, for all
u ∈ H+, u �= 0 and where for B ∈ L(H−,H+), define

B(u) := B(ū), BT := (B̄)∗.

It follows easily that D(H) can be written as

D(H) := {Z ∈ L(H−,H+) | ZT = Z, ∀u, v ∈ H− and I − ZZ̄ > 0}.

The restricted Siegel disc associated with H is by definition

Dres(H) := {Z ∈ D(H) | Z ∈ L2(H−,H+)},

where L2(H−,H+) denotes the space of Hilbert–Schmidt operators fromH− toH+.

The restricted Siegel disc as an homogeneous space. Consider the symplectic
group Sp(V ,Ω) of bounded linear maps on V which preserve the symplectic form Ω

Sp(V ,Ω) = {a ∈ GL(V) | Ω(au, av) = Ω(u, v), for all u, v ∈ V}.

The restricted symplectic group Spres(V ,Ω) is by definition the intersection of the
symplectic group with the restricted general linear group defined by

GLres(H,H+) =
{
g ∈ GL(H) | [d, g] ∈ L2(H)

}
,

where d := i(p+ − p−) and p± is the orthogonal projection onto H±. Using the
block decomposition with respect to the decomposition H = H+ ⊕H−, one gets

Spres(V ,Ω) :=

{(
g h
h̄ ḡ

)
∈ GL(H)

∣∣∣∣ h ∈ L2(H−,H+), gg
∗ − hh∗ = I, ghT = hgT

}
.

Proposition 7. The restricted symplectic group acts transitively on the restricted
Siegel disc by

Spres(V ,Ω)×Dres(H) −→ Dres(H),
((

g h
h̄ ḡ

)
, Z

)
�−→ (gZ + h)(h̄Z + ḡ)−1.

The isotropy group of 0 ∈ Dres(H) is the unitary group U(H+) of H+, and the
restricted Siegel disc is diffeomorphic as Hilbert manifold to the homogeneous space
Spres(V ,Ω)/U(H+).

On the space {A ∈ L2(H−, H+) | AT = A} consider the following Hermitian
inner product

Tr(V ∗U) = Tr(V̄ U).

Since it is invariant under the isotropy group of 0 ∈ Dres(H), it extends to an
Spres(V ,Ω)-invariant Hermitian metric hD.
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Remark 8. In the construction above, replace V by R2 endowed with its natural
symplectic structure. The corresponding Siegel disc is nothing but the open unit
disc D. The action of Sp(2,R) = SL(2,R) is the standard action of SU(1, 1) on D
given by

z ∈ D �−→ az + b

b̄z + ā
∈ D, |a|2 − |b|2 = 1,

and the Hermitian metric obtained on D is given by the hyperbolic metric

hD(z)(u, v) =
1

(1− |z|2)2uv̄.

Therefore, Dres(H) can be seen as an infinite-dimensional generalization of the
Poincaré disc.

4. The period mapping

The following theorems answer the second question addressed in the first section.

Theorem 9 (Theorem 3.1 in [3]). For φ a orientation preserving homeomorphism
and any f ∈ V, set by Vφf = f ◦ ϕ − 1

2π

∫
S1 f ◦ ϕ. Then Vφ maps V into itself iff

φ is quasisymmetric.

Theorem 10 (Proposition 4.1 in [3]). The group QS(S1) of quasisymmetric home-
omorphisms of the circle acts on the right by symplectomorphisms on

H = H1/2(S1,C)/C

by

Vφf = f ◦ ϕ− 1

2π

∫
S1

f ◦ ϕ,

ϕ ∈ QS(S1), f ∈ H.

Consequently this action defines a map Π : QS(S1) → Sp(V ,Ω). Note that
the operator Π(ϕ) preserves the subspaces H+ and H− iff ϕ belongs to PSU(1, 1).
The resulting map (Theorem 7.1 in [3]) is an injective equivariant holomorphic
immersion

Π : T (1) = QS(S1)/PSU(1, 1)→ Sp(V ,Ω)/U(H+) � D(H)

called the period mapping of T (1). The Hilbert version of the period mapping is
given by the following

Theorem 11 ([5]). For [μ] ∈ T (1), Π([μ]) belongs to the restricted Siegel disc if and
only if [μ] ∈ T0(1). Moreover the pull-back of the natural Kähler metric on Dres(H)
coincides, up to a constant factor, with the Weil–Petersson metric on T0(1).



418 A.B. Tumpach

References

[1] Ebin, D.G. [1968], The manifold of Riemannian metrics, 1970 Global Analysis (Proc.
Sympos. Pure Math., Vol XV, Berkeley, Calif., 1968) pp. 11–40 Amer. Math. Soc.,
Providence, R.I.

[2] Lehto, O. [1987], Univalent functions and Teichmüller spaces, Springer-Verlag, New
York.

[3] Nag, S. and D. Sullivan [1995], Teichmüller theory and the universal period mapping

via quantum calculus and the H1/2 space on the circle, Osaka J. Math., 32, no. 1,
1–34.

[4] Nag, S. and A. Verjovsky [1990], Diff(S1) and the Teichmüller Spaces, Comm. Math.
Phys., 130, no. 1, 123–138.

[5] Takhtajan, L. and L.-P. Teo [2004], Weil–Petersson metric on the universal Teich-
müller space, Mem. Amer. Math. Soc., 183, no.861, viii+119pp.

[6] Tromba, A.J. [1992], Teichmüller theory in Riemannian geometry, Lectures in Math-
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1. Introduction

Differential operators on varieties with singularities were studied in a great number
of papers. General theory of such operators is rather complicated and the majority
of general results are rather implicit because singularities can have very compli-
cated structure. However, certain spaces with simplest singularities can demon-
strate clear behavior of differential equations and formulas for their solutions as
well as for spectral characteristics of corresponding operators can be much more
explicit then in general situation. From the other hand, such spaces appear in
different applications, so the properties mentioned above seem to be interesting.
Further we discuss two examples of spaces with singularities – hybrid spaces and
polyhedral surfaces. In particular, we study spectral properties of Laplacians on
hybrid spaces and polyhedral 2D surfaces as well as behavior of localized solutions
of Schrödinger equations. One of the main tools for studying differential operators
on such spaces is the theory of extensions of symmetric operators. The proofs of
some of the results can be found in [1–3] (see also [4]); the proofs of the remaining
results will be published in a separate paper.

1.1. Hybrid spaces

Let M1, . . . ,Mk be smooth compact geodesically complete oriented Riemannian
manifolds of dimension at most 3 and let γ1, . . . , γs be segments endowed with
parameterization. The hybrid space M is a topological space obtained by gluing
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the endpoints of the segments to certain points q1, . . . , q2s on the manifolds; we
assume that different endpoints are glued to different points qj . Such spaces appear
as models for nanostructures, electronic devices and even for transport motion.

1.2. Polyhedral surfaces

We will also consider polyhedral surfaces – compact 2D oriented surfaces M , glued
from a finite number of flat polygons in a usual manner. The surfaces will be
not necessary embedded in R3; the total angles β1, . . . , βM at the vertices can
be less or greater than 2π – the unique condition is the Gauss-Bonnet relation∑M

j=1(1−
βj

2π ) = χ(M), where χ denotes Euler characteristics.

Remark 1. Each polyhedron admits a natural complex structure. Namely, if P is a
point of a face, then the natural complex coordinate is z = x1+ ix2, where (x1, x2)
are standard Euclidean coordinate on R2. The same states for the points, lying on
edges – one can unfold the vicinity of such a point to the plane and then introduce
the same coordinate. If P is a vertex with total angle β then the vicinity of P can
be unfolded to the plane angle of volume β; the natural coordinate on M near P is
ζ = z2π/β, where z = x1+ ix2 is a standard coordinate on the plane. This complex
structure, in particular induces the smooth structure of each polyhedral surface.

Remark 2. The natural metric on a polyhedral surface has the form ds2 = dzdz̄

outside the vertices; near the vertex it has the form ds2 = ( β
2π )

2|ζ|2( β
2π−1)dζdζ̄

and has singularities at vertices. In particular, the wave equation in coordinates
(y1, y2), ζ = y1 + iy2 has the form

∂2u

∂t2
=

2π

β

(
y2
1 + y2

2

)1− β
2π

(
∂2u

∂y2
1

+
∂2u

∂y2
2

)
.

The velocity of waves vanishes (if β < 2π) or becomes infinite (if β > 2π) at ver-
tices; such a situation appear, in particular, when long waves meet small obstacles
(islands or narrow hollows).

2. Definitions of Laplacians

Further we discuss properties of Laplacians and Schrödinger equations on hybrid
spaces and polyhedral surfaces; in order to define the corresponding operators one
has to state boundary conditions in singular points (points of gluing for hybrid
spaces or vertices for polyhedra). These conditions can be defined by the following
natural arguments. 1. The Laplacian must be self-adjoint. 2. On the “regular” part
of the space the Laplacian must coincide with the usual one. The formal definitions
have the following forms.

2.1. Hybrid spaces

Consider the direct sum ⊕jΔj⊕l
d2

dz2
l
, where Δj are Laplace–Beltrami operators on

Mj and d2

dz2
l
are second derivatives on γl with Neumann boundary conditions. Let
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us restrict this operator to the set of functions, vanishing at the points of gluing
(note that, as dimMj ≤ 3, the domain of the direct sum consists of continuous
functions); we will denote this restriction by Δ0. Evidently, Δ0 is a symmetric but
not self-adjoint operator in L2(M).

Definition 3. Laplace operator on a hybrid space M is a self-adjoint extension
of Δ0.

Remark 4. The Laplacian is not unique; different operators are defined by different
boundary conditions at the points of gluing. Namely, the explicit description of
the corresponding domains has the following form. For each point of gluing q
consider the pair (u′, u), where u is the limit at q of a function on the segment,
and u′ is the limit of the derivative in the direction entering q. For the function
on the manifold consider its asymptotics at the point q; this asymptotics has the
form u(x) = aF (x, q) + b + o(1), where a, b are constants and F = −1/(4πd) if
dimMk = 3 and F = log d/2π, if dimMk = 2 (here d is the geodesic distance from
x to q). Let us collect the constants (u, u′, a, b) for all points of gluing and consider
a vector v = (u′

1, a1, . . . , u
′
2s, a2s, u1, b1, . . . , u2s, b2s) ∈ C4s ⊕C4s. Let us fix in the

latter space a plane L, Lagrangian with respect to the standard skew-Hermitian
form. The boundary conditions have the form v ∈ L; they can be written explicitly
in terms of the unitary matrix, defining L. Further we consider only local boundary
conditions – this means that the plane L supposed to be a direct sum of 2D planes,
corresponding to different points of gluing.

2.2. Polyhedral surfaces

Consider the non-compact smooth Riemannian manifold M0 = M\{P1, . . . , PM},
where Pj are vertices. Consider the usual Laplace–Beltrami operator Δ̃ on C∞

0 (M0)
and let Δ0 denote the closure of this operator with respect to the graph norm ‖◦‖Δ:
‖u‖2Δ = ‖u‖2+‖Δ̃u‖2, where ‖◦‖ denotes the L2-norm. Clearly, Δ0 is a symmetric
operator in L2(M).

Definition 5. The Laplace operator on a polyhedral surface M is a self-adjoint
extension of Δ0.

Remark 6. The boundary conditions for Laplacians on polyhedral surfaces can be
formulated analogous to those on hybrid spaces; the vector, defining the asymp-
totics of the corresponding function in vertices, must lie in a fixed Lagrangian
plane.

3. Spaces of harmonic functions

Now we describe the kernel of the Laplacian ΔL, corresponding to the Lagrangian
plane L. Formulation of the result is similar for hybrid spaces and polyhedra.

Theorem 7. The kernel of the operator ΔL is isomorphic to the intersection L∩L0

where Lagrangian plane L0 is defined by the singular space itself.
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Remark 8. In general position the intersection is zero, so there are no nontrivial
harmonic functions. However, for hybrid spaces A.A. Tolchennikov ([1]) introduced
special Laplacians with natural boundary conditions of “continuous type”; for
these Laplacians he proved the estimates b0 ≤ dimKerΔL ≤ b0 + b1, where b0, b1
are Betti numbers of the graph, obtained from M by contracting all manifolds Mk

to points.
For polyhedral surfaces, the plane L0 can be expressed in terms of the Mittag-

Leffler problem, corresponding to the Riemannian surface M . The kernel of the
Friedrichs extension is one-dimensional and contains constants; for spherical poly-
hedra and Laplacians with local boundary conditions harmonic functions can be
described explicitly.

4. Time-dependent Schrödinger equations on hybrid spaces.
Propagation of quasi-particles

Consider the following Cauchy problem for the time-dependent Schrödinger equa-
tion on a hybrid space M

ih
∂ψ

∂t
= Δψ, ψ|t=0 = A0(z)e

i
h ((z−z0)+q0(z−z0)

2),

where z0 is a point of a segment γ, h → 0 is a semi-classical small parameter,
q0 ∈ C, -q0 > 0, A0 ∈ C∞

0 (γ) is a smooth cut-off function. The initial function
has the form of a narrow peak, concentrated in a small vicinity of a point z0.
Asymptotics as h → 0 of this problem was considered in [2, 3]; the behaviour of
solution on segments is following. Consider the geodesic on γ, starting from z0 with
the fixed unit velocity. At some instant of time the geodesic meets one of the points
of gluing q. At this instant consider all geodesics on the corresponding manifold,
starting from this point with unit velocities as well as the geodesic on the initial
segment, starting from q in the direction, opposite to the direction of the initial
geodesic. At certain instants the geodesics meet points of gluing; we consider all
geodesics (on manifolds and on segments), starting from all these points with unit
velocities. Clearly, for arbitrary instant of time we will have a set of points on the
segments, propagating along the geodesics, and certain surfaces on the manifolds
(union of geodesic spheres), moving along the geodesics. The asymptotic solution of
the Cauchy problem has the form of a number of narrow peaks, concentrated near
these sets. We suppose that for arbitrary time t the number of points, appearing
on the segments, is finite and denote this number by N(t).

Definition 9. The number N(t) is called the number of quasi-particles on the edges
of M .

Our aim is to describe the asymptotics of N(t) as t→∞.

4.1. The counting function for geodesics

The behavior of the function N(t) depends essentially on the properties of the
geodesic flow on M . Namely, for each pair (qi, qj) of the points of gluing, lying on
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the same manifold Ml, consider the number mij(t) of different lengths of geodesics
on Ml, connecting qi and qj and such that these lengths are at most t (let us
remind, that we assume that this number is finite for arbitrary t). Note that the
points qi and qj can coincide. Let us denote by m(t) the sum of mij(t) for all pairs
of points, lying on the same manifolds. The asymptotics of N(t) is defined by the
asymptotics of m(t); the latter is defined by the properties of the geodesic flows
on the manifolds Mj. We will consider three different situations.

5. The finite number of geodesic lengths

The simplest situation takes place if the total number of times of geodesics is finite
(such situation appears, for example, if all Mj are Euclidean or hyperbolic spaces
or spheres). We denote by L1, . . . , Lp these lengths and by l1, . . . , ls the lengths of
the segments.

Theorem 10. Let the set L1, . . . , Lp, l1, . . . , ls be linearly independent over the field
Q. Then the number of quasi-particles N(t) has the following asymptotics as t→∞

N(t) = Ctp+s−1 + o(tp+s−1), C =

∑s
j=1 ls

22s−2(p + s− 1)!
∏s

j=1 lj
∏p

i=1 Li
. (1)

Remark 11. The main step in the proof of this theorem is following: the problem
of the computation of N(t) can be reduced to the problem of computation of the
number of lattice points in certain growing polyhedra.

6. Case of the polynomial growth of m(t)

Suppose that the number of geodesics m(t) grows polynomially as t → ∞. Such
a situation takes place for the manifolds with not very complicated geodesic flow.
Note that there are popular classes of such manifolds; in particular, so-called uni-
formly secure ones (the manifold is called uniformly secure, if there exists an integer
R, such that for arbitrary pair of points all geodesics, connecting these points, can
be blocked by an R-point obstacle). In this case the number of quasi-particles
grows in a sub-exponential way.

Theorem 12. Let m(t) = c0t
γ(1 + O(t−ε)), γ > 0, ε > 0. Let the set of lengths

Lj, lj be linearly independent over Q (i.e., any finite subset of lengths is linearly
independent). Then

logN(t) = (γ + 1)

(
c0Γ(γ + 1)ζ(γ + 1)

γγ

) 1
γ+1

t
γ

γ+1 (1 + o(1)) (2)

Here Γ(x) and ζ(x) are the Γ-function and the Riemann ζ-function.
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7. Exponential growth of m

Finally we suppose that the function m(t) grows exponentially. Note that this case
is typical for geodesic flows with positive topological entropy: if M is a compact
Riemannian manifold, then the topological entropy H of the geodesic flow equals

H = lim
t→∞

1

t
log

∫
M×M

mx,y(t)dxdy,

where mx,y(t) denotes the number of geodesics with the lengths at most t, con-
necting the points x and y. Moreover, if M does not have conjugate points (this is
the case, for example, for compact surfaces of constant negative curvature), then
for arbitrary pair of points x, y H = limt→∞

1
t logmx,y(t).

Theorem 13. Let logm(t) = Ht(1+ t−ε), ε > 0. Let the set of lengths Lj, lj be lin-
early independent over Q (i.e., any finite subset of lengths in linearly independent).
Then

logN(t) = Ht(1 + o(1)). (3)

8. Abstract prime numbers distributions

The main steps in the proofs of the theorems of Sections 6, 7 are following: the
problem of the computation of N(t) can be reduced to certain problem of the
analytic number theory. Namely, consider an arithmetic semigroup G = ⊕j∈JZ+,
where J is a countable set, and a homomorphism ρ : G → R+, such that for
arbitrary t ∈ R+ the set of elements g ∈ G with ρ(g) ≤ t is finite. We can identify
elements j ∈ J with the corresponding generators of Z+. Consider two functions
m(t) = �{j ∈ J |ρ(j) ≤ t}, N(t) = �{g ∈ G, ρ(g) ≤ t}. The direct (inverse)
problem of abstract primes distribution is the following question. If one knows the
asymptotics of N (m), how to compute the asymptotics of m (N)?

Remark 14. If J is the set of primes and ρ(j)=log j, then m(log t) is the distribution
function of primes and N(t) is the integral part of t.

If J is the set of integers and ρ(j) = j then N(t) is the number of partitions
of integer t and m(t) = t.

The result of the previous sections follow from the results which give the
solution of the inverse problem of abstract primes distribution for the cases of
polynomial and exponential growths of m(t).
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