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Abstract The aim of the paper is to describe the special critical case in the theory
of singularly perturbed optimal control problems and to give an example which is
typical for slow/fast systems. The theory has traditionally dealt onlywith perturbation
problems near normally hyperbolic manifold of singularities and this manifold is
supposed to be isolated. We reduce the original singularly perturbed problem to a
regularized one such that the existence of slow integral manifolds can be established
by means of the standard theory.

1 Introduction

Consider singularly perturbed differential systems of the type

dx

dt
= f (x, y, t, ε), ε

dy

dt
= g(x, y, t, ε), (1)

where x and y are vectors, and ε is a small positive parameter.
Such systems play an important role as mathematical models of numerous non-

linear phenomena in different fields; see, e.g., [3, 5].
A usual approach in the qualitative study of (1) is to consider first the so called

degenerate system dx/dt = f (x, y, t, 0), 0 = g(x, y, t, 0) and then to draw conclu-
sions for the qualitative behavior of the full system (1) for sufficiently small ε. In
order to recall a basic result of the geometric theory of singularly perturbed systems,
we introduce the following notation and assumptions for sufficiently small positive
ε0, 0 ≤ ε ≤ ε0:
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(A1) the functions f and g are sufficiently smooth and uniformly bounded together
with all their derivatives;

(A2) there are some regionG ∈ Rm and a function h(x, t, ε) of the same smoothness
as g such that g(x, h(x, t), t, 0) ≡ 0, for all (x, t) ∈ G × R;

(A3) the spectrum of the Jacobian matrix B(x, t) = gy(x, h(x, t), t, 0) is uniformly
separated from the imaginary axis for all (x, t) ∈ G × R, i.e., the eigen-
values λi (x, t), i = 1, . . . , n, of the matrix B(x, t) satisfy the inequality
|Reλi (x, t)| ≥ γ, for some positive number γ.

Then the following result is valid (see, e.g., [6, 8]):

Proposition 1 Under the assumptions (A1) − (A3) there is a sufficiently small pos-
itive ε1, ε1 ≤ ε0, such that for ε ∈ I1 system (1) has a smooth integral manifold Mε

(slow integral manifold) with the representation

Mε := {(x, y, t) ∈ Rn+m+1 : y = ψ(x, t, ε), (x, t) ∈ G × R},

and with the asymptotic expansion ψ(x, t, ε) = h(x, t) + εψ1(x, t) + · · · .
The motion on this manifold is described by the slow differential equation ẋ =

f (x,ψ(x, t, ε), t, ε).

Remark 2 The global boundedness assumption in (A1)with respect to (x, y) can be
relaxed by modifying f and g outside some bounded region of Rn × Rm .

Remark 3 In applications, it is usually assumed that the spectrum of the Jacobian
matrix gy(x, h(x, t), t, 0) is located in the left half plane. Under this additional
hypothesis, the manifold Mε is exponentially attracting for ε ∈ I1.

The case when assumption (A3) is violated is called critical. We distinguish three
subcases:

(i) The Jacobian matrix gy(x, y, t, 0) is singular on some subspace of Rm × Rn ×
R. In that case, system (1) is referred to as a singular singularly perturbed system;
see [1]. This subcase has been treated in [1–3, 5].

(ii) The Jacobian matrix gy(x, y, t, 0) has eigenvalues on the imaginary axis with
nonvanishing imaginary parts. A similar case has been investigated in [3, 5, 7].

(iii) The Jacobian matrix gy(x, y, t, 0) is singular on the set M0 := {(x, y, t) ∈
Rm × Rn × R : y = h(x, t), (x, t) ∈ G × R}. In that case, y = h(x, t) is gener-
ically an isolated root of g = 0 but not a simple one.

Other critical cases were considered, for example, in [3–5].
The critical case (i) was considered as applied to the high-gain control problem,

the case (ii) was considered as applied to the manipulator control, and the case (iii)
was considered as applied to the partially cheap control problem; see, for example,
[3, 5]. It is not inconceivable that combinations of other pairs of critical cases and
even triple critical cases are of interest as well and possibly they will be considered
later.
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2 Critical Case

Consider the control system εẋ = A(t, ε)x + εB(t, ε)u, x ∈ Rn+m , x(0) = x0, with
the cost functional

J = 1

2
xT (1)Fx(1) + 1

2

1∫

0

(xT (t)Q(t)x(t) + εuT (t)R(t)u(t))dt,

where A, F1, and Q are (n × n)-matrices, and B is a (n × m)-matrix, and R is
a (m × m)-matrix. Suppose that all these matrices have the following asymptotic
presentations with respect to ε:

A(t, ε) =
∑
j≥0

ε j A j (t), B(t, ε) =
∑
j≥0

ε j B j (t), Q(t, ε) =
∑
j≥0

ε j Q j (t),

R(t, ε) =
∑
j≥0

ε j R j (t), F(ε) =
∑
j≥0

ε j Fj ,

with matrix coefficients smooth on t , for t ∈ [0, 1].
The solution to this problem is the optimal linear feedback control law

u = −ε−1R−1BT P(t, ε)x,

where P satisfies the differential matrix Riccati equation

εṖ = −PA − AT P + PSP − εQ, P(1, ε) = F. (2)

Setting ε = 0,we obtain from (2) thematrix algebraic equation−MA0 − AT
0 M +

MS0M − Q0 = 0, where S0 = B0R
−1
0 BT

0 . For systems with low energy dissipation
the matrices S0 and Q0 are equal to zero and the main role plays the linear oper-
ator LX = X A0 + AT

0 X . For this class of systems the eigenvalues of A0 are pure
imaginary and the spectrum of the linear operator L has a nontrivial kernel, since
sums (λi (t) + λ j (t)), i, j = 1, . . . , n, form its spectrum. This means that the Eq. (2)
is singular singularly perturbed. Thus, the dimension of the slow integral manifold
of (2) is greater than zero and the problem under consideration is critical in this
sense. Moreover, under taking into account that zero eigenvalues are multiple and
all other, nonzero eigenvalues of L, are pure imaginary, it is possible to say that this
problem is thrice critical.
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3 Example

Let

A =
( −ε 1

−1 −ε

)
, B =

(
0
1

)
, R = (1) , Q =

(
1 0
0 0

)
,

S =
(
0 0
0 1

)
, P =

(
p1 p2
p2 p3

)
,

and consider the corresponding differential system

ε ṗ1 = 2p2 + 2εp1 + p22 − ε,
ε ṗ2 = 2εp2 − p1 + p3 + p2 p3,
ε ṗ3 = −2p2 + 2εp3 + p23 .

First, we need to separate it into a slow and a fast subsystem. At first glance, all
three equations are singularly perturbed. However, setting ε = 0, we obtain p1 =
p2 = p3 = 0, and we should consider the matrix of leading terms on the right hand
side of the system, which has the form

⎛
⎝ 0 2 0

−1 0 1
0 −2 0

⎞
⎠ .

Obviously, this matrix has a zero eigenvalue and two pure imaginary eigenvalues,
i.e., the problem under consideration is twice critical. Moreover, the trivial solution
is multiple. This means that we have thrice critical case.

Let ε = μ2. Introducing the new variables p1 = μ2q1 + μ, p2 = μ2q2 + μ2/2,
and p3 = μ2q3 + μ, and then s = q1 + q3, we obtain the differential system

μṡ = 2q3 + μq2 + 2μs + μq2
2 + μq2

3 + 4 + μ/4,
μ2q̇2 = −s + 2μ2q2 + 2q3 + μq2 + μ2q2q3 + μ/2 + μ2,

μ2q̇3 = −2q2 + 2μq3 + 2μ2q3 + μ2q2
3 + 2μ,

with the slow variable s and two fast variables q2, q3.
The last system possesses one-dimensional slow invariant manifold which is

weakly attractive with respect to the argument 1 − t because the main matrix of
the fast subsystem has eigenvalues 3μ/2 ± i

√
2 − μ2/4.

Thus, the dimension of the system of Riccati differential equations can be reduced
from three to one. Let us construct the slow integral manifold using the fact that
it can be asymptotically expanded in powers of the small parameter. Setting q2 =
ϕ(s,μ) = μϕ1(s) + μ2 . . ., andq3 = ψ(s,μ) = ψ0(s) + μψ1(s) + μ2 . . ., we obtain
ψ0(s) = s/2, ϕ1(s) = s/2, and ψ1(s) = −1/4. Thus, we obtain the slow invariant
manifold q2 = μs/2 + O(μ2), q3 = s/2 − μ/4 + O(μ2), with the equation on the
integral manifold μṡ = s + 2μs + μs2/4 + O(μ2).
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Numerical experiments demonstrate the closeness of solutions of the original
system and the system on the slow invariant manifolds.

4 Conclusion

The slow integralmanifolds for thematrixRiccati equationof linear-quadratic control
problem are constructed and it is shown that the method of integral manifolds allows
us to reduce the dimension of control problems.
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