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Abstract The main ideas of simulation of two-phase flows, based on a combina-
tion of the conventional Lagrangian method or Osiptsov method for the dispersed
phase and the mesh-free vortex and thermal blob methods for the carrier phase, are
summarised. Ameshless method for modelling of 2D transient, non-isothermal, gas-
droplet flows with phase transitions, based on a combination of the viscous-vortex
and thermal-blob methods for the carrier phase with the Lagrangian approach for
the dispersed phase, is described. The one-way coupled, two-fluid approach is used
in the analysis. The method makes it possible to avoid the ‘remeshing’ procedure
(recalculation of flow parameters from Eulerian to Lagrangian grids) and reduces
the problem to the solution of three systems of ordinary differential equations, de-
scribing the motion of viscous-vortex blobs, thermal blobs, and evaporating droplets.
The gas velocity field is restored using the Biot–Savart integral. The numerical al-
gorithm is verified against the analytical solution for a non-isothermal Lamb vortex.
The method is applied to modelling of an impulse two-phase cold jet injected into
a quiescent hot gas, taking into account droplet evaporation. Various flow patterns
are obtained in the calculations, depending on the initial droplet size: (i) low-inertia
droplets, evaporating at a higher rate, form ring-like structures and are accumulated
only behind the vortex pair; (ii) large droplets move closer to the jet axis, with their
sizes remaining almost unchanged; and (iii) intermediate-size droplets are accumu-
lated in a curved band whose ends trail in the periphery behind the head of the cloud,
with larger droplets being collected at the front of the two-phase region.
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1 Background

Two-phase flows are widely observed in engineering and environmental conditions
(e.g., [1]). In such flows, the admixture sometimes forms high concentration regions
with complex structures, see [1]. The Eulerian approaches cannot describe such
regions with reasonable accuracy, since these approaches are based on the assump-
tion of single-valued fields of the particle/droplet (hereafter referred to as droplet)
concentration and velocities. As demonstrated in [3], the only approach capable of
calculating the droplet concentration field, without using excessive computer power,
is the one suggested by Osiptsov [6]. The latter approach is commonly known as the
Osiptsov method or approach.

Various meshless methods have proved to be efficient tools for investigating com-
plex single-phase flows both with primitive and vorticity-velocity variables; see, e.g.,
[5]. Lebedeva–Osiptsov–Sazhin [4] proposed amethod combining the viscous-vortex
method for the carrier phase and Osiptsov’s approach [6] for particles/droplets. This
approach combined the advantages of both the viscous-vortex andOsiptsovmethods.

The approaches mentioned above were focused on hydrodynamic aspects of
particle-laden flows. However, in many engineering applications, including auto-
motive applications [8], the effects of heat and mass transfer are significant. In [7],
the approach described in [4] was generalised to take into account some of these
effects. The phase transition on the droplet surface was described using a simple
model based on the assumption that the heat flux reaching the droplet is spent on its
evaporation (cf., a similar assumption used for qualitative engineering analysis of
droplet evaporation in multiphase flows [2, 8]).

The aim of this abstract is to present a brief summary of the models developed
and used in the previous papers [4, 7] (Sect. 2) and the main results obtained there
(Sect. 3). The publication of this mini-review can be justified by the fact that the
original papers were published in engineering journals which are almost unknown to
the mathematical community. At the same time, these papers are focused primarily
on the description of new mathematical tools and their engineering applications,
which are expected to be relevant to mathematical research in this field.

2 Models

In what follows, the main ideas of the models developed and used for 2D plane flow
(Cartesian coordinates) in [4, 7] are briefly summarised.
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2.1 Osiptsov Method

In the Osiptsov approach [6], the dispersed phase number density is inferred from the
solutions to the following systems of ordinary differential equations along chosen
droplet trajectories:
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with indices i and j taking values of x or y in the Cartesian coordinate system;
eg is the unit vector along the direction of the gravity force; xs0, ys0 are the La-
grangian variables (the coordinates of initial particle positions); J is the Jacobian of
the transformation from the Eulerian to the Lagrangian coordinates. Equation (1) is
the continuity equation rewritten in the Lagrangian variables; Eq. (2) are momentum
balance equations along chosen particle trajectories; Eqs. (3) and (4) are additional
equations to calculate the Jacobian components; they are derived from Eq. (2) by
differentiation with respect to xs0 and ys0. These equations are solved subject to
standard initial conditions for plane sprays.
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2.2 Viscous-Vortex and Thermal Blobs

In the viscous-vortex and thermal-blob methods the dimensionless carrier-phase
equations are written in the form [7]:

∂ω
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Re Pr
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where ω = ∇ × v is the vorticity; Re = ρLU/μ and γ = cp/cv are the Reynolds
number and the specific heat ratio; ρ, μ and U are density, dynamic viscosity and
velocity of the carrier phase (gas). Equation (5a) is the vorticity transport equation
which follows from the Navier–Stokes equations for an incompressible fluid. Equa-
tion (5b) is the transient heat conduction equation.

Introducing the vortex and thermal diffusion velocities, vdv and vdT , Eq. (5) can
be presented in the divergence forms:
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This allows tracking of viscous-vortex and thermal blobs moving with velocities
v + vdv and v + vdT respectively by solving ODEs subject to corresponding initial
conditions. Then, vorticity and temperature fields are calculated.

In the first method, the domain with a non-zero vorticity is discretised into N
elements, with the area of the i-th element equal to �vi :

ω (r, t) ≈
N∑
i=1

�iζεi (r − rvi (t)) ,

�i ≈ ω0 (rvi (t0))�vi = const,

where ζεi (r) are the so-called cut-off functions. The elements of discretisation are
called blobs.

Similarly, the equations for M thermal blobs, take the form:
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T (r, t) ≈
M∑
i=1

�iζεi (r − rT i (t)) ,

�i = T0 (rT i (t0))�T i = const,

where �i and rT i are the strength and position of the i-th thermal blob.
Once the vorticity field is calculated, then the velocity field can be restored using

the Biot–Savart integral.

3 Results

The accuracy of calculations depends on a number of parameters used in the dis-
cretisation formulas, including the numbers of viscous-vortex and thermal blobs, the
initial geometry of the blobs, and the time step used in calculating the systems of
ordinary differential equations. To verify the numerical algorithm, the Lamb vortex
flow described by an exact analytical solution to the transient Navier–Stokes equa-
tions was used. Once the model was verified, it was applied to the simulation of the
injection of a cold, two-phase jet into a hot, quiescent gas. In the case of an impulse jet
with a step-like velocity distribution, a vortex ring (or vortex pair) is usually formed
after the jet injection. The study presented in [4, 7] was focused on the formation
and dynamics of a two-phase vortex pair both taking into account and not taking into
account thermal effects.

The flows with the finest droplets were shown to demonstrate better mixing: low-
inertia droplets were shown to form ring-like structures. Droplets of medium size
were shown to collect into narrow bands. The clouds of droplets with the largest
inertia were shown to remain close to the jet axis. The latter result was supported by
experimental observations [1].
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