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Abstract. Nowadays the complexity that medical equipment has reached
means that not all failure patterns can be easily managed through maintenance
activities, carried out after their manufacture and commissioning. For this rea-
son, experts in electromedicine consider that the analysis of failure patterns
should be carried out with the tools of reliability engineering, since medical
equipment is a technology that is not without risks. Failures in these devices are
caused by risks associated mainly with operator malfunctions, impairment of the
electrical fluid that causes the stopping of procedures in execution in an unex-
pected manner and others inherent to the technology. All these risks lead to a
dynamic working behaviour of medical equipment, which passes through a
finite number of states: running, faulty and broken. As part of the analysis of
failure patterns in medical equipment, the CONFEM algorithm is proposed in
this manuscript to determine the operational reliability coefficient.
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1 Introduction

The maintenance management through automated systems allows the classification and
characterization of the information according to the specific requirements of each user.
In addition, it offers the possibility to analyze and make decisions based on globally
defined indicators in important processes such as the planning of the demand for spare
parts stock. The literature defines a wide range of indicators for assessing maintenance
management. The value of these indicators is used as a comparative value or a refer-
ence level in order to take corrective, modifying and predictive actions as appropriate.

The most commonly used maintenance indicators in the management of production
equipment or services are: mean time between failures (MTBF), mean repair time
(MTTR), technical availability, maintenance frequency, failure frequency, operational
reliability, among others [17-20]. Reliability has been analyzed for different environ-
ments or situations [1-13]. Operational reliability analysis is the fundamental basis of
the continuous improvement process, which systematically incorporates advanced tools
for diagnosing the current status and predicting the future performance of equipment,

© Springer Nature Switzerland AG 2018
Y. Hernandez Heredia et al. (Eds.): IWAIPR 2018, LNCS 11047, pp. 68-76, 2018.
https://doi.org/10.1007/978-3-030-01132-1_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01132-1_8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01132-1_8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01132-1_8&amp;domain=pdf

Intelligent Data Analysis to Calculate the Operational Reliability Coefficient 69

systems or processes. Its study is carried out through the analysis of fault history or
technical status data.

The health sector is one of the areas that must constantly be redirecting its resources
to guarantee the operational reliability and technical availability of medical equipment,
because medical technology is widely used for the prevention, diagnosis and treatment
of various diseases and abnormal physical conditions. It is not without risks, due to the
occurrence in clinical practice of failures caused by improper handling by the operator
and others related to the technology [15], such as, for example, those related to quality
standards; non-compliance with the procedures established by the manufacturers; poor
calibration or others related to external causes. All these risks lead to a dynamic
working behaviour of medical equipment, which passes through a finite number of
states: running, faulty, broken. These states can be absorbent (running, faulty and
broken) and non-absorbent (low technique), where when the latter are reached the
monitoring process ends. Only absorbent states will be considered in the investigation
[23].

This paper presents an algorithm (CONFEM) based on the intelligent analysis of
data to obtain the operational reliability coefficient of medical equipment in a health
unit, from which it will be possible to carry out adequate maintenance planning
(corrective, preventive and predictive) according to the classification categories of
medical equipment in order to obtain an adequate relationship between productivity
and maintenance cost at the equipment level [14]. The manuscript is divided into two
sections. In the first section: Materials and methods, the fundamental concepts used in
the development of the algorithm are dealt with, explaining its operation step by
step. On the other hand, in the section: Results and discussion, the Equipment
Availability and Reliability Sub-module is presented as a practical contribution to the
solution. Also, this section presents a detailed analysis of the algorithm’s operation to
show the reliability of the calculation of the operational reliability coefficient. Finally,
Sect. 4 presents the conclusions and future projections made by the authors in relation
to the calculation of the operational reliability coefficient.

2 Materials and Methods

Medical equipment requires high safety standards to ensure that the services offered are
provided properly and that their operations are carried out in the most appropriate
manner. For this reason, a reliability analysis of these medical technologies determines
their functionality and availability characteristics, allowing the operator to estimate the
deviation of any operating characteristic of a component that may consequently
become a failure of the component itself and jeopardize the safety of the medical
equipment as a system. Hence, it is defined as the study of reliability: “the probability
that an element, device, equipment or system will perform a given function under the
correct conditions in a given time” [16, 22]. The following describes the data man-
agement process for calculating the operational reliability coefficient of a medical
equipment.
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2.1 Data Management in the Process of Calculating the Operational
Reliability Coefficient

The data used for the process of calculating the operational reliability coefficient came
from two different sources: the Management System for Clinical and Electromedical
Engineering (SIGICEM) database, which involves current data, and the Reportech
software database, which involves historical data [25]. Both databases are available
from the National Electromedical Center of Cuba. For this reason, the data were not
standardized, so the need arose according to the domain of the problem, to extract the
necessary data to locate them in a single source of information (Fig. 1). For this
purpose, the extraction, transformation and loading (ETL) processes were performed
from SQL statements, which were executed through a script in the MySQL Database
Management System, without the need to use tools designed to perform ETL processes,
due to the fact that a high degree of transformations, calculations and processing was
not required.
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Fig. 1. Data management in the process of calculating the operational reliability coefficient.

Data cleaning was performed according to:

e Incomplete data in attributes of interest or summarized data (equipment_name).
e Existence of noise: errors in the data (equipment_model_attribute).
e Inconsistent data: there is a discrepancy in the values (annual_quantity attribute).

The extraction process consisted of collecting the relevant data from the source
databases (SIGICEM and Reportech) to carry out the business component processes.
The following transformation techniques were applied to these data:

e Normalize: to avoid data redundancy, data updating problems in the tables and
protect their integrity.

e Discrete: transform a continuous value into a discrete one (Equipment states:
Running, F; Faulty, D; Broken, R. This transformation allowed the construction of
the sequence of absorbing states to obtain the quantitative indicators used in the
calculation of the operational reliability coefficient. Another example is the one
related to electromedical specialties, where each one was assigned a number in the
range of 1 to 12).

e Generation of missing data: by the average of the class to which the object belongs.
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After the necessary transformations to improve the quality of the data were carried
out, they were loaded into the target database (BD_Stock), which were classified and
grouped for better evaluation and interpretation. The population of medical equipment
was grouped into non-overlapping and internally homogeneous subpopulations for the
performance of the processes that integrate the business component with the use of
cluster sampling techniques. To carry out the operational reliability process, the pop-
ulation of medical equipment was stratified into subpopulations by specialty, equip-
ment designation, make and model. These subpopulations were then stratified
according to their technical state into three groups of equipment: Running, Faulty and
Broken. The classification and grouping of the data allowed the calculation of the
operational reliability coefficient based on its evolution over time on continuous
variables.

2.2 Process for Calculating the Operational Reliability Coefficient

In the operational field, the operational reliability coefficient (Cy) is calculated as a
function of maintenance times:

MTBF

C,=——
° " MTBF + MTTR

(1)
where,

Mean Time Between Failures (MTBF').

Mean Time to Repair (MTTR).

MTBF: indicates the average time elapsed until the fault event arrives.

MTTR: is the measure of the distribution of the repair time of an equipment or
system. This indicator measures the effectiveness of restoring the unit to optimum
operating conditions once the unit is out of service due to a failure within a given
period of time.

To make up the chain (absorbent states of medical equipment), we rely on historical
data from service orders made by the electromedicine specialists of the health units.
The service orders contain a set of data related to the management of the equipment,
including the technical status (Running, Faulty, Broken). Equipment is managed on the
basis of four factors: Equipment Function, Physical Risk Associated with Clinical
Application, Maintenance Requirements, and Equipment Trouble History. The first
factor has a direct relationship with the equipment and the rest with its level of per-
formance over time [14].

The status chain is constructed by stratifying equipment by specialty, name, brand
and model to facilitate the search for reports associated with its operation over time.

Based on the theoretical foundations on operational reliability described above, the
sequence of states was constructed to select the dates on which the equipment moves
from state F to state D or R until it reaches state F" again. Later, the time in days of the
occurrences F — (Do’'R) — F is counted, divided by the number of such occurrences
present in the chain.
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In this manner, the MTBF was calculated:
MTBF = 5r0on-r (2)

where,

CDias: number of days elapsed in the occurrence F — (Do'R) — F
Oc: number of occurrences.

The MTTR was calculated taking into account the number of days spent on the
occurrences D — Fo'R — F, divided by the number of such occurrences present in the
chain.

The numerical value obtained from the relationship between the mean time between
faults with the addition of the mean repair time and the mean time between faults is
multiplied by 100 for a better interpretation of the operational reliability coefficient in
percentage.

2.3 CONFEM Algorithm

The calculation of the operational reliability coefficient shall be performed for n steps.
The following describes the operation of the CONFEM algorithm and the MTTR and
MTBF functions. It has as input parameters a list with the sequence of states through
which a medical equipment passes during its useful life and the instant of time (number
of months).

Algorithm 1 CONFEM
Input:
listEquipment: List of equipment reported in service orders
varLongEq: Equipment list length
varSequence: Sequence of states of a device
varLongSec: Sequence length
varMTBF: Mean Time Between Failures
varMTTR: Average repair time
Output:
varCo: Operational reliability
Begin:
For i=1 to i< varLongEq do
varSequence = GenerateSequence (listEquipment[i])
If varLongSec <> 0 do
varMTBF = FunctionMTBF (varSequence)
varMTTR = FunctionMTTR (varSequence)
varCo = varMTBF/ (varMTBF+ varMTTR)
If not
“The selected equipment has not been installed”
End if
End For

—
el A 20 AT LT >

—_

Return varCo



Intelligent Data Analysis to Calculate the Operational Reliability Coefficient 73

In the CONFEM algorithm (Algorithm 1), the methods MTBF Function and
MTTTR Function are problem dependent methods, so the complexity of CONFEM
was determined from the complexity of these functions. The complexity of MTBF
Function is O(n?) and O(nlogn) is that of MTBF Function. With the application of the
summation rule it can be concluded that the complexity of the CONFEM algorithm is
0(n?).

3 Results and Discussion

As a practical contribution of this work, a sub-module was implemented that bears the
name Availability and reliability of the equipment, which is integrated with the Pre-
diction and Stock Management Module of the Management System for Clinical
Engineering and Electromedicine. This sub-module incorporates the DISTEM algo-
rithm, because the operational reliability and technical availability coefficient is one of
the variables considered in the multivariate model for the prediction of spare parts stock
for medical equipment.

The CONFEM algorithm was incorporated into the business component of the
MPREDSTOCK: Multivariate model for predicting spare parts stock for medical
equipment [25]. For this reason, CONFEM receives the same parameters as the
MPREDSTOCK as input for its execution. To validate the efficacy of the CONFEM
algorithm the experimental method was used on the basis of having each piece
independently.

A case database of 385 cases was also designed, which included the entire set of
data from 30,843 reports on health center service orders in the national territory in the
years 2003 to 2014 available in the Reportech System [26]. The 385 instances were
divided into k = 10 training sets, so 356 instances were used for training and 39 for
testing. However, only the results for 55 instances are shown in this manuscript
because the result achieved with the rest of the instances is similar to the one obtained
in Sect. 3.2.

Different combinations of the CONFEM algorithm were executed, such as the
execution specified in Sect. 3.1. On the other hand, in Sect. 3.2 it was demonstrated by
means of the nonparametric test of the Wilcoxon-signed ranges that the observed
operational reliability coefficient does not statistically differ (p_value > 0.05) from the
operational reliability coefficient calculated from the theoretical assumptions specified
in Sect. 2.3.

3.1 Execution of the CONFEM Algorithm
Medical Equipment

Specialty: Electro-optical and laboratory
Equipment designation: Blood gas analyzer
Mark: ROCHE

Model: COBAS b121

Description of the piece: THB/SO2 Module
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Sequence FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDDDDDDDRRRRRRRRR
of states:

The sequence of states of the ROCHE COBAS 121b blood gas analyzer represents
0.17% of the 30, 843 reports made in the service orders of health centers in the national
territory. From the sequence of states, the determination matrix of Table 1 and the
transition graph between the absorbent states (Fig. 2) were defined with their initial
probability vector represented by a 1x3 invariant row vector (7).

Table 1. Parameters used in the experimental analysis.

Running (F) | Faulty (D) | Broken (R) | Totals
Running (F) | 39 1 0 40
Faulty (D) 0 6 1 7
Broken (R) | 0 0 8 8
Totals 39 7 9 55

Fig. 2. Transition graph between states of the blood gas analyzing medical equipment.

For a 12-month period, the operational reliability coefficient was 71%, with a
technical availability of 52%.

3.2 Application of the Non-parametric Wilcoxon-Signed Range Test
Measurement

e Operational reliability coefficient observed.
e Estimated operational reliability coefficient.

Wilcoxon test hypothesis

Hy: There is no difference between the median of the observed and estimated
operational reliability coefficient.

H,: There are differences between the median of the observed and estimated
operational reliability coefficient.

Decision rule: if p_value > 0.05 is not rejected Hy.

Tools used in the analysis: SPSS 13.0 and Weka 3.5.2.
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Table 2. Statistics of related samples.

Median |N |Z p_value
Coefficient observed | 0.7722 | 55| —0.537]0.592
Estimated coefficient | 0.7522

The experimental results in Table 2 show a p_value > 0.05, so Hy is not rejected,
indicating that there is no statistically significant difference between the median of the
observed operational reliability coefficient and the estimated one.

4 Conclusions and Future Projections

The CONFEM algorithm starts from the analysis of the failure patterns of medical
equipment for the calculation of the operational reliability coefficient, for which it
allows the sequence of states to be extended without altering the adopted model or the
temporal complexity of its execution. The results and discussion show that it is sat-
isfactory that the algorithm is based on the distillation of information collected, clas-
sified, organized and integrated into the SIGICEM database, and that new information
and an appropriate representation of the data for use by the computer system developed
is derived. However, the group of authors recommends, in order to achieve greater
accuracy in the calculation of the operational reliability coefficient, measuring external
effects and states that are not directly visible in the functioning of medical equipment,
using more complex methods based on learning, such as the Markov’s Hidden Models.
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