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Abstract In this minicourse, we study hypersurfaces that solve geometric evolution
equations. More precisely, we investigate hypersurfaces that evolve with a normal
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curvature. In three lectures, we address

• hypersurfaces, principal curvatures and evolution equations for geometric quan-
tities like the metric and the second fundamental form.

• the convergence of convex hypersurfaces to round points. Here, we will also show
some computer algebra calculations.

• the evolution of graphical hypersurfaces under mean curvature flow.

1 Overview and Plan for the Summer School

We consider flow equations that deform hypersurfaces according to their curvature.
If X0 : Mn → R

n+1 is an embedding of an n-dimensional manifold, we
can define principal curvatures (λi)1≤i≤n and a normal vector ν. We deform the
embedding vector X according to{

d
dt

X = −Fν,

X(·, 0) = X0,

where F is a symmetric function of the principal curvatures, e.g. the mean curvature
H = λ1 + · · · + λn. In this way, we obtain a family X(·, t) of embeddings and
study their behaviour especially near singularities and for large times. We consider
hypersurfaces that contract to a point in finite time and, after appropriate rescaling,
to a round sphere. Graphical solutions are shown to exist for all times or to disappear
to infinity.

Classical results in this direction were obtained by Huisken [20] and Ecker and
Huisken [11] for mean curvature flow.

Remark 1

(i) We will use geometric flow equations as a tool to deform a manifold.
(ii) The flow equations considered are parabolic equations like the heat equation.

(iii) In order to control the behaviour of the flow, we will look for properties of
the manifold that are preserved under the flow. For that purpose, we will also
look for quantities that are monotone and have geometric significance, i.e. their
boundedness implies geometric properties of the evolving manifold.

We wish to thank Ben Lambert and Wolfgang Maurer for corrections and
Wolfgang Maurer for carefully preparing the figures.

1.1 Plan for the Summer School

These notes first cover some necessary background material. We will then derive
evolution equations for geometric quantities and study two geometric problems.
More precisely, our plan is to study the following:
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• Geometric prerequisites and evolution equations of geometric quantities.
• Convex surfaces contracting to a round point and an estimate for Gauß curvature

flow, Theorem 6, measuring the deviation from being umbilic.
• Mean curvature flow of complete graphs and local C1-bounds, Theorem 16.

2 Differential Geometry of Submanifolds

We will only consider hypersurfaces in Euclidean space.
We use X = X(x, t) = (Xα)1≤α≤n+1 to denote the time-dependent embedding

vector of a manifold Mn into R
n+1 and d

dt
X = Ẋ for its total time derivative.

Set Mt := X(M, t) ⊂ R
n+1. We will often identify an embedded manifold

with its image. We will assume that X is smooth. Assume furthermore that Mn

is smooth, orientable, connected, complete and ∂Mn = ∅. We choose ν = ν(x) =
(να)1≤α≤n+1 to be the outer (or downward pointing) unit normal vector to Mt at
x ∈ Mt . The embedding X(·, t) induces at each point on Mt a metric (gij )1≤i, j≤n

and a second fundamental form (hij )1≤i, j≤n. Let (gij ) denote the inverse of (gij ).
These tensors are symmetric. The principal curvatures (λi)1≤i≤n are the eigenvalues
of the second fundamental form with respect to that metric. That is, at p ∈ M , for
each principal curvature λi , there exists 0 �= ξ ∈ TpM ∼= R

n such that

λi

n∑
l=1

gklξ
l =

n∑
l=1

hklξ
l or, equivalently, λiξ

l =
n∑

k,r=1

glkhkrξ
r .

As usual, eigenvalues are listed according to their multiplicity. A hypersurface is
called strictly convex, if all principal curvatures are strictly positive. The inverse of
the second fundamental form is denoted by

(
h̃ij
)

1≤i, j≤n
.

Latin indices range from 1 to n and refer to geometric quantities on the
hypersurface, Greek indices range from 1 to n + 1 and refer to components in the
ambient space R

n+1. In R
n+1, we will always choose Euclidean coordinates. We

use the Einstein summation convention for repeated upper and lower indices. Latin
indices are raised and lowered with respect to the induced metric or its inverse

(
gij
)
,

for Greek indices we use the flat metric (gαβ)1≤α,β≤n+1 = (δαβ)1≤α,β≤n+1 of Rn+1.
So the defining equation for the principal curvatures becomes λigklξ

l = hklξ
l .

Denoting by 〈·, ·〉 the Euclidean scalar product in R
n+1, we have

gij = 〈X, i, X, j

〉 = Xα
, iδαβX

β
, j ,

where we used indices, preceded by commas, to denote partial derivatives. We
write indices, preceded by semi-colons, e.g. hij ; k or v;k , to indicate covariant
differentiation with respect to the induced metric. Later, we will also drop the
commas and semi-colons, if the meaning is clear from the context. We set Xα

;i ≡ Xα
,i
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and

Xα
; ij = Xα

, ij − Γ k
ijX

α
, k, (1)

where

Γ k
ij = 1

2gkl(gil, j + gjl, i − gij, l )

are the Christoffel symbols of the metric (gij ). Therefore, Xα
;ij becomes a tensor.

The Gauß formula relates covariant derivatives of the position vector to the
second fundamental form and the normal vector

Xα
; ij = −hij ν

α. (2)

The Weingarten equation allows to compute derivatives of the normal vector

να
; i = hk

i X
α
; k. (3)

We can use the Gauß formula (2) or the Weingarten equation (3) to compute the
second fundamental form.

Symmetric functions of the principal curvatures are well-defined, we will use
the mean curvature H = λ1 + . . . + λn, the square of the norm of the second
fundamental form |A|2 = λ2

1 + . . . + λ2
n, tr Ak = λk

1 + . . . + λk
n, and the Gauß

curvature K = λ1 · . . . ·λn. It is often convenient to choose coordinate systems such
that, at a fixed point, the metric tensor equals the Kronecker delta, gij = δij , and
(hij ) is diagonal, (hij ) = diag(λ1, . . . , λn), e.g.

∑
λkh

2
ij ;k =

n∑
i, j, k=1

λkh
2
ij ;k = hklhi

j ; kh
j

i; l = hrshij ; khab; lg
iagjbgrkgsl .

Whenever we use this notation, we will also assume that we have fixed such a
coordinate system.

A normal velocity F can be considered as a function of (λ1, . . . , λn) or (hij , gij ).
If F(λi) is symmetric and smooth, then F(hij , gij ) is also smooth [17, Theorem

2.1.20]. We set F ij = ∂F
∂hij

, F ij, kl = ∂2F
∂hij ∂hkl

. Note that in coordinate systems with

diagonal hij and gij = δij as mentioned above, F ij is diagonal. For F = |A|2, we
have F ij = 2hij = 2λig

ij , and for F = Kα , α > 0, we have F ij = αKαh̃ij =
αKαλ−1

i gij .
The Gauß equation expresses the Riemannian curvature tensor of the hypersur-

face in terms of the second fundamental form

Rijkl = hikhjl − hilhjk. (4)
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As we use only Euclidean coordinate systems in R
n+1, hij ; k is symmetric in all

three indices according to the Codazzi equations.
The Ricci identity allows to interchange covariant derivatives. We will use it for

the second fundamental form

hik; lj = hik; j l + ha
kRailj + ha

i Raklj . (5)

For tensors A and B, Aij ≥ Bij means that (Aij − Bij ) is positive semi-definite.
Finally, we use c to denote universal, estimated constants.

2.1 Graphical Submanifolds

Lemma 1 Let u : Rn → R be smooth. Then graph u is a submanifold in R
n+1. The

metric gij , the lower unit normal vector ν, the second fundamental form hij , the
mean curvature H , and the Gauß curvature K are given by

gij = δij + uiuj ,

gij = δij − uiuj

1 + |Du|2 ,

ν = ((ui),−1)√
1 + |Du|2 ≡ ((ui),−1)

v
,

hij = uij√
1 + |Du|2 ≡ uij

v
,

H = div

(
Du√

1 + |Du|2

)
,

and

K = det D2u(
1 + |Du|2) n+2

2

,

where ui ≡ ∂u
∂xi , ui = uj δ

ji and uij = ∂2u
∂xi∂xj . Note that in Euclidean space, we

often do not distinguish between Du and ∇u.
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Proof

(i) We use the embedding vector X(x) := (x, u(x)), X : R
n → R

n+1.
The induced metric is the pull-back of the Euclidean metric in R

n+1, g :=
X∗g

R
n+1
Eucl.

. We have X,i = (ei, ui). Hence

gij = Xα
,iδαβX

β
,j = 〈X,i,X,j 〉 = 〈(ei , ui), (ej , uj )〉 = δij + uiuj .

(ii) It is easy to check, that gij is the inverse of gij . Note that ui := δij uj , i.e., we
lift the index with respect to the flat metric.

(iii) The vectors X,i = (ei, ui) are tangent to graph u. The vector ((−ui), 1) ≡
(−Du, 1) is orthogonal to these vectors, hence, up to normalization, a unit
normal vector.

(iv) We combine (1), (2) and compute the scalar product with ν to get

hij = − 〈X;ij , ν〉 = −〈X,ij − Γ k
ijX,k, ν〉 = −〈X,ij , ν〉

= −
〈
(0, uij ),

((ui),−1)

v

〉
= uij

v
.

(v) We obtain

H =
n∑

i=1

λi = gij hij =
(

δij − uiuj

1 + |Du|2
)

uij√
1 + |Du|2

= δij uij√
1 + |Du|2 − uiujuij(

1 + |Du|2)3/2

= Δu√
1 + |Du|2 − uiujuij(

1 + |Du|2)3/2

and, on the other hand,

div

(
Du√

1 + |Du|2
)

=
n∑

i=1

∂

∂xi

ui√
1 + |Du|2

=
n∑

i=1

uii√
1 + |Du|2 −

n∑
i,j=1

uiujuji(
1 + |Du|2)3/2

= H.
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(vi) From the defining equation for the principal curvatures and det gij = 1+|Du|2,
we obtain

K =
n∏

i=1

λi = det
(
gij hjk

)
= det gij · det hij = det hij

det gij

= v−n det uij

v2 = det D2u(
1 + |Du|2) n+2

2

.

��
These formulae extend to the situation, in which u is defined on an open subset

of Rn.

Exercise 1 (Spheres) The lower hemisphere of radius R is locally given as graph u

with u : BR(0) → R defined by u(x) := −√R2 − |x|2. Compute all the quantities
mentioned in Lemma 1 and the principal curvatures explicitly for this example.

Exercise 2 Give a geometric definition of the (principal) curvature of a curve in R
2

in terms of a circle approximating that curve in an optimal way.
Use the min-max characterization of eigenvalues to extend that geometric

definition to n-dimensional hypersurfaces in R
n+1.

Exercise 3 (Rotationally Symmetric Graphs) Assume that the function u :
R

n → R is smooth and u(x) = u(y), if |x| = |y|. Then u(x) = f (|x|) for
some f : R+ → R. Compute once again all the geometric quantities mentioned
in Lemma 1.

3 Evolving Submanifolds

3.1 General Assumption

We will only consider the evolution of manifolds of dimension n embedded into
R

n+1, i.e. the evolution of hypersurfaces in Euclidean space. (Mean curvature flow
is also considered for manifolds of arbitrary codimension. Another generalisation is
to study flow equations of hypersurfaces immersed into Riemannian or Lorentzian
manifolds.)

Definition 1 Let Mn denote an orientable manifold of dimension n. Let X(·, t) :
Mn → R

n+1, 0 ≤ t ≤ T < ∞, be a smooth family of smooth embeddings. Let ν

denote one choice of the normal vector field along X(Mn, t). Then X or (Mt )0≤t<T

with Mt := X(Mn, t) is said to move with normal velocity F , if

d

dt
X = −Fν in Mn × [0, T ).
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Remark 2 In codimension 1, we often do not need to assume that Mn is orientable:
Let X : Mn → Nn+1 be a C2-immersion and H1(N;Z/2Z) = 0. Assume that
X is proper, X−1(∂N) = ∂M , and X is transverse to ∂N . Then N \ X(M) is not
connected [13]. Hence, if Mn is closed and embedded in R

n+1, Mn is orientable.

3.2 Evolution of Graphs

Lemma 2 Let u : Rn×[0,∞) → R be a smooth function such that graph u evolves
according to d

dt
X = −Fν. Then

u̇ =
√

1 + |Du|2 · F.

This result also holds, if u is defined on an open subset of Rn × [0,∞).

Proof Beware of assuming that the (n + 1)-st component in the evolution equation
d
dt

X = −Fν were equal to u̇ as a hypersurface evolving according to d
dt

X = −Fν

does not only move in vertical direction but also in horizontal direction.
Let p denote a point on the abstract manifold embedded via X into R

n+1. As our
embeddings are graphical, we see that

X(p, t) = (x(p, t), u(x(p, t), t)).

We consider the scalar product of both sides of the evolution equation with ν and
obtain

F = 〈Fν, ν〉 =
〈
− d

dt
X, ν

〉
= −

〈((
ẋk
)

, ui ẋ
i + u̇

)
,

((ui ),−1)√
1 + |Du|2

〉
= u̇√

1 + |Du|2
.

��
Corollary 1 Let u : R

n × [0,∞) → R be a smooth function such that graph u

solves mean curvature flow d
dt

X = −Hν. Then

u̇ =
√

1 + |Du|2 · div

(
Du√

1 + |Du|2
)

.

Exercise 4 (Rotationally Symmetric Translating Solutions) Let u := R
n×R →

R be rotationally symmetric. Assume that graph u is a translating solution to mean
curvature flow d

dt
X = −Hν, i.e. a solution such that u̇ is constant.
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Similar to Exercise 3, derive an ordinary differential equation for translating
rotationally symmetric solutions to mean curvature flow.

Why does it suffice to consider the case u̇ = 1?

Remark 3 Consider a physical system consisting of a domain Ω ⊂ R
3. Assume

that the energy of the system is proportional to the surface area of ∂Ω . Then, up to
a transformation t �→ μt for some μ > 0, the L2-gradient flow for the area is mean
curvature flow. We check that in a model case for graphical solutions in Lemma 3.

Lemma 3 Let u : R
n × [0,∞) → R be smooth. Assume that u(x, t) ≡ 0 for

|x| ≥ R. Then the surface area is maximally reduced among all normal velocities
F with given L2-norm, if the normal velocity of graph u is given by H , i.e. if u̇ =√

1 + |Du|2 · H .
Note that in general, soluIons to u̇ = √

1 + |Du|2 · H do not have compact
support.

Proof The area of graph u(·, t)|BR is given by

A(t) =
∫
BR

√
1 + |Du|2 dx.

Define the induced area element dμ by dμ := √
1 + |Du|2 dx. We obtain using

integration by parts

d

dt
A(t)

∣∣∣∣
t=0

=
∫
BR

d

dt

√
1 + |Du|2 dx

∣∣∣∣∣∣∣
t=0

=
∫

BR(0)

1√
1 + |Du|2 〈Du,Du̇〉

∣∣∣∣∣∣∣
t=0

= −
∫
BR

div

(
Du√

1 + |Du|2
)

u̇

v
· v dx

∣∣∣∣∣∣∣
t=0

= −
∫
BR

H F dμ

∣∣∣∣∣∣∣
t=0

≥ −
⎛
⎜⎝ ∫

BR

H 2 dμ

⎞
⎟⎠

1/2⎛
⎜⎝ ∫

BR

F 2 dμ

⎞
⎟⎠

1/2∣∣∣∣∣∣∣
t=0

.

Here, we have used Hölder’s inequality ‖ab‖L1 ≤ ‖a‖L2 · ‖b‖L2 . There, we
get equality precisely if a and b differ only by a multiplicative constant. Hence
the surface area is reduced most efficiently among all normal velocities F with
‖F‖L2 = ‖H‖L2 , if we choose F = H . In this sense, mean curvature flow is the
L2-gradient flow for the area integral. ��
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3.3 Examples

Lemma 4 Consider mean curvature flow, i.e. the evolution equation d
dt

X = −Hν,

with M0 = ∂BR(0). Then a smooth solution exists for 0 ≤ t < T := 1
2n

R2 and is

given by Mt = ∂Br(t)(0) with r(t) = √
2n(T − t) = √

R2 − 2nt .

Proof The mean curvature of a sphere of radius r(t) is given by H = n
r(t)

. Hence
we obtain a solution to mean curvature flow, if r(t) fulfills

ṙ(t) = −n

r(t)
.

A solution to this ordinary differential equation is given by r(t) = √
2n(T − t).

(The theory of partial differential equations implies that this solution is actually
unique and hence no solutions exist that are not spherical.) ��
Exercise 5 Find a solution to mean curvature flow with M0 = ∂BR(0) × R

k ⊂
R

l ×R
k . This includes in particular cylinders. Note that for k ≥ 1, it is not obvious,

whether these solutions are unique.

Exercise 6 Find solutions for d
dt

X = −|A|2ν, d
dt

X = −Kν, d
dt

X = 1
H

ν, and
d
dt

X = 1
K

ν if M0 = ∂BR(0) ⊂ R
n+1, especially for n = 2.

Remark 4 (Level-Set Flow for F > 0) Let Mt be a family of smooth embedded
hypersurfaces in R

n+1 that move according to d
dt

X = −Fν with F > 0. Impose the
global assumption that each point x ∈ R

n+1 belongs to at most one hypersurface
Mt . Then we can (at least locally) define a function u : R

n+1 → R by setting
u(x) = t , if x ∈ Mt . That is, u(x) is the time, at which the hypersurface passes
through the point x. We differentiate the identity t = u(X(p, t)), use that for closed
shrinking hypersurfaces, Du is a negative multiple of the outer unit normal ν and
get

1 = d

dt
u(X(p, t)) =

〈
Du,

d

dt
X

〉
= 〈Du,−Fν〉 = F · |Du|.

We obtain the equation F · |Du| = 1.
If F < 0, Du is a positive multiple of ν and we get F · |Du| = −1.
This formulation is used to describe weak solutions, where singularities in the

classical formulation occur. See for example [21], where the inverse mean curvature
flow F = − 1

H
is considered to prove the Riemannian Penrose inequality. Note that

H = div
(

Du
|Du|

)
as the outer unit normal vector to a closed expanding hypersurface

Mt = {u = t} is given by Du
|Du| . According to (3), the divergence of the unit normal

yields the mean curvature as the derivative of the unit normal in the direction of the
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unit normal vanishes. Hence the evolution equation d
dt

X = 1
H

ν can be rewritten as

div

(
Du

|Du|
)

= |Du|.

For contracting hypersurfaces under mean curvature flow with H > 0, the outer

unit normal is given by − Du
|Du| and H = − div

(
Du
|Du|

)
. Hence mean curvature flow

can be rewritten as |Du| · div
(

Du
|Du|

)
= −1.

Exercise 7 Verify the formula for the mean curvature in the level-set formulation.
Compute level-set solutions to the flow equations d

dt
X = −Hν and d

dt
X = 1

H
ν,

where u depends only on |x|, i.e. the hypersurfaces Mt are spheres centered at the
origin. Compare the result to your earlier computations.

We will use the level-set formulation to study a less trivial solution to mean
curvature flow which can be written down in closed form.

Exercise 8 (Paper-Clip Solution) Let v �= 0. Consider the set

Mt :=
{
(x, y) ∈ R

2 : ev2t cosh(vy) = cos(vx)
}

.

Show that Mt solves mean curvature flow. Describe the shape of Mt for t → −∞
and for t ↗ 0 (after appropriate rescaling).

Compare this to Theorem 3.
Note that you may also rewrite solutions equivalently (on an appropriate domain)

as

y± := 1

v
log

(
cos(vx) ±

√
cos2(vx) − e2v2t

)
− vt .

Hint: You should obtain tx = ux = − sin(vx)
v cos(vx)

and uy = − sinh(vy)
v cosh(vy)

.

Remark 5 (Level-Set Flow) If a hypersurface moves with velocity F , where F

is not necessarily positive, we cannot use the level-set formulation from above.
Instead, we can use a function u : Rn × [0,∞) → R such that for each c ∈ R,
the set Mt := {x ∈ R

n : u(x, t) = c} (if it is a smooth hypersurface) is an embedded
hypersurface that moves with velocity F .

We fix the unit normal ν = Du
|Du| . Recall that Ẋ = −Fν. If u is as described

above, we have u(X(p, t), t) = c along the flow. Differentiating this equation yields
0 = u̇ + Du · Ẋ = u̇ + Du · (−ν) · F = u̇ − |Du| · F .

For mean curvature flow, we obtain

u̇ = |Du| · div

(
Du

|Du|
)

=
(

δij − uiuj

|Du|2
)

uij .
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We leave it as an exercise that the converse implication is also true if the level sets
are regular in the sense that Du �= 0, i.e. that {x : u(x, t) = c} evolves with normal
velocity F if u̇ = |Du| · F and Du �= 0 along {x : u(x, t) = c}.

3.4 Short-Time Existence and Avoidance Principle

In the case of closed initial hypersurfaces, short-time existence is guaranteed by the
following

Theorem 1 (Short-Time Existence) Let X0 : Mn → R
n+1 be an embedding

describing a smooth closed hypersurface. Let F = F(λi) be smooth, symmetric,
and ∂F

∂λi
> 0 everywhere on X(Mn) for all i. Then the initial value problem

{
d
dt

X = −Fν,

X(·, 0) = X0

has a smooth solution on some (short) time interval [0, T ), T > 0.

Proof (Idea of Proof) Represent potential solutions locally as graphs in a tubular
neighbourhood of X0(M

n). Then ∂F
∂λi

> 0 ensures that the evolution equation for
the height function in this coordinate system is strictly parabolic. Linear theory and
the implicit function theorem guarantee that there exists a solution on a short time
interval.

For more details see [22, Theorem 3.1]. ��
Exercise 9

(i) Check, for which initial data the conditions in Theorem 1 are fulfilled if F =
H, K, |A|2, −1/H, −1/K .

(ii) Find examples of closed hypersurfaces such that

a) H > 0,
b) K > 0,
c) H is not positive everywhere,
d) H > 0, but K changes sign.

(iii) Show that on every smooth closed hypersurface Mn ⊂ R
n+1, there is a point,

where Mn is strictly convex, i.e. λi > 0 is fulfilled for every i.

On the other hand, starting with a closed hypersurface gives rise to solutions
that exist at most on a finite time interval. This is a consequence of the avoidance
principle. We will only consider the avoidance principle for mean curvature flow:

Theorem 2 (Avoidance Principle) Let M1
t and M2

t ⊂ R
n+1 be two embedded

closed hypersurfaces and smooth solutions to d
dt

X = −Hν on a common time
interval [0, T ). If M1

0 and M2
0 are disjoint, then M1

t and M2
t are also disjoint.
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In particular, if M1
0 is contained in a bounded component of Rn+1 \M2

0 , then M1
t

is contained in a bounded component of Rn+1 \ M2
t .

Proof Suppose not. Then there would be some minimal t0 > 0 such that M2
t0

touches M1
t0

at some point p ∈ R
n+1. We get for the normals ν1 = ±ν2 at p.

Observe that if we change ν to −ν, H also changes sign and Hν remains unchanged.
Therefore it does not matter for mean curvature flow, which normal we choose and
we may assume without loss of generality that ν1 = ν2 at p. Writing Mi

t locally
as graphui over the common tangent hyperplane TpMi

t0
⊂ R

n+1, we see that the
functions ui fulfill

u̇i =
√

1 + ∣∣Dui
∣∣2 · div

⎛
⎝ Dui√

1 + ∣∣Dui
∣∣2
⎞
⎠ ≡ F

(
D2ui,Dui

)
.

We may assume that u1 > u2 for t < t0. The evolution equation for the difference
w := u1 − u2 fulfills w > 0 for t < t0 locally in space-time and w(0, t0) = 0, if
we have p = (0, 0) in our coordinate system. The evolution equation for w can be
computed as follows

ẇ = u̇1 − u̇2 = F
(
D2u1,Du1

)
− F

(
D2u2,Du2

)

=
1∫

0

d

dτ
F
(
τD2u1 + (1 − τ )D2u2, τDu1 + (1 − τ )Du2

)
dτ

=
1∫

0

∂F

∂rij
(. . .) dτ ·

(
u1 − u2

)
ij

+
1∫

0

∂F

∂pi

(. . .) dτ ·
(
u1 − u2

)
i

≡ aijwij + biwi.

Hence we can apply the parabolic Harnack inequality or the strong parabolic
maximum principle and see that it is impossible that w(x, t) > 0 for small |x|
and t < t0, but w(0, t0) = 0. Hence M1

t cannot touch M2
t in a point, where ν1 = ν2.

The theorem follows. ��
Remark 6 The avoidance principle also extends to other normal velocities.

However, if Fν is not invariant under changing ν to −ν, we have to ensure
that the normals do not point in opposite directions, e.g. by assuming that one
hypersurface encloses the other initially.

Usually, the normal velocity F , considered as a function of the principal
curvatures, is defined on a convex cone Γ ⊂ R

n. However, this does not ensure in
general that F , considered as a function of

(
D2u,Du

)
, is also defined on a convex
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set. Therefore we recommend in those cases to interpolate between the principal
curvatures instead.

Exercise 10 Show that the normal velocities as considered in Exercise 9 can be
represented (in an appropriate domain) as smooth functions of

(
D2u,Du

)
for

hypersurfaces that are locally represented as graph u.

Corollary 2 (Finite Existence Time) Let M0 be a smooth closed embedded
hypersurface in R

n+1. Then a smooth solution Mt to d
dt

X = −Hν can only exist on
some finite time interval [0, T ), T < ∞.

Proof Choose a large sphere that encloses M0. According to Lemma 4, that sphere
shrinks to a point in finite time. Thus the solution Mt can exist smoothly at most up
to that time. ��
Exercise 11 Deduce similar corollaries for the normal velocities in Exercise 9. You
may use Exercise 6.

Remark 7 (Maximal Existence Time) Consider T maximal such that a smooth
solution Mt as in Corollary 2 exists on [0, T ). Then the embedding vector X is
uniformly bounded according to Theorem 2. Then some spatial derivative of the
embedding X(·, t) has to become unbounded as t ↗ T . For otherwise we could
apply Arzelà-Ascoli and obtain a smooth limiting hypersurface MT such that Mt

converges smoothly to MT as t ↗ T . This, however, is impossibly, as Theorem 1
would allow to restart the flow from MT . In this way, we could extend the flow
smoothly all the way up to T + ε for some ε > 0, contradicting the maximality
of T .

It can often be shown that extending a solution beyond T is possible provided
that ‖X(·, t)‖C2 is uniformly bounded. For mean curvature flow, this follows from
explicit estimates. For other normal velocities, additional assumptions (the principal
curvatures stay in a region, where F has nice properties) and Krylov-Safonov-
estimates may be used to show such a result.

4 Evolution Equations for Submanifolds

In this chapter, we will compute evolution equations of geometric quantities, see
e.g. [20, 22, 27].

For a family Mt of hypersurfaces solving the evolution equation

d

dt
X = −Fν (6)

with F = F(λi), where F is a smooth symmetric function, we have the following
evolution equations.



Geometric Flow Equations 91

Lemma 5 The metric gij evolves according to

d

dt
gij = −2Fhij . (7)

Proof By definition, gij = 〈X,i,X,j 〉 = Xα
,iδαβX

β
,j . We differentiate with respect

to time. Derivatives of δαβ vanish. The term Xα
,i involves only partial derivatives.

We obtain

d

dt
gij = (

Ẋα
)
,i

δαβX
β
,j + Xα

,iδαβ

(
Ẋβ
)
,j

(we may exchange partial spatial and time derivatives)

= (−Fνα
)
,i

δαβX
β
,j + Xα

,iδαβ

(−Fνβ
)
,j

(in view of the evolution equation d
dt

X = −Fν)

= − Fνα
;iδαβX

β
,j − Xα

,iδαβFν;j

(terms involving derivatives of F vanish as ν and Xα
,i are orthogonal to each other;

as the background metric gαβ = δαβ is flat, covariant and partial derivatives of ν

coincide)

= − Fhk
i X

α
,kδαβX

β
,j − FXα

,iδαβhk
jX

β
,k

(in view of the Weingarten equation (3))

= − Fhk
i gkj − Fgikh

k
j

(by the definition of the metric)

= − 2Fhij

(by the definition of hi
j := hjkg

ki ).

The lemma follows. ��



92 O. C. Schnürer

Corollary 3 The evolution equation of the volume element dμ := √
det gij dx is

given by

d

dt
dμ = −FH dμ. (8)

Proof Exercise. Recall the formula for differentiating the determinant. ��
Lemma 6 The unit normal ν evolves according to

d

dt
να = gijF; iX

α
; j . (9)

Proof By definition, the unit normal vector ν has length one,

〈ν, ν〉 = 1 = ναδαβνβ .

Differentiating yields

0 = ν̇αδαβνβ.

Hence it suffices to show that the claimed equation is true if we take on both sides
the scalar product with an arbitrary tangent vector. The vectors X,i (which we will
also denote henceforth by Xi as there is no danger of confusion; we will also use this
convention in other situations if partial and covariant derivatives of some quantity
coincide) form a basis of the tangent plane at a fixed point. We differentiate the
relation

0 = 〈ν,Xi〉 = ναδαβX
β
i

and obtain

0 = d

dt
ναδαβX

β
i + ναδαβ

d

dt
X

β
i

= d

dt
ναδαβX

β
i + ναδαβ

(
d

dt
Xβ

)
i

= d

dt
ναδαβX

β
i − ναδαβ

(
Fνβ

)
i
.

Hence

d

dt
ναδαβX

β

i = ναδαβνβFi + Fναδαβν
β

i

= Fi + F 1
2 〈ν, ν〉i = Fi
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and the lemma follows as taking the scalar product of the claimed evolution equation
with Xk , i.e. multiplying it with δαβX

β
k , yields

d

dt
ναδαβX

β
k = gijFiX

α
j δαβX

β
k = gij Figjk = δi

kFi = Fk.

��
Lemma 7 The second fundamental form hij evolves according to

d

dt
hij = F; ij − Fhk

i hkj . (10)

Proof The Gauß formula (2) implies that hij = −Xα
;ij να . Differentiating yields

d

dt
hij = − d

dt
〈X;ij , ν〉

= −
〈

d

dt
X;ij , ν

〉
−
〈
−hij ν,

d

dt
ν

〉

= −
〈

d

dt
X;ij , ν

〉
+ hij

〈
ν,

d

dt
ν

〉

= −
〈

d

dt
X;ij , ν

〉

= − d

dt

(
Xα

,ij − Γ k
ijX

α
k

)
να

= −
(

d

dt
Xα

)
,ij

να + Γ k
ij

(
d

dt
Xα

)
,k

να

(where no time derivatives of Γ k
ij show up as Xα

k να = 0)

= (Fνα),ij να − Γ k
ij (Fνα),kνα

(in view of the evolution equation)

=F,ij νανα + F,iν
α
,j να + F,j ν

α
,iνα + Fνα

,ij να − Γ k
ijF,kν

ανα − Γ k
ijFνα

,kνα

=F;ij + Fνα
,ij να
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as F;ij = F,ij −Γ k
ijF,k and να

,j να = 1
2 (νανα)j = 0. It remains to show that να

,ij να =
−hk

i hkj . We obtain

να
,ij να = να

;i,j να

(as να
i = να

;i)

= να
;ij να

(να
;ij = (να

;i ),j − Γ k
ij ν

α
k and 0 = να

k να)

=
(
hk

i X
α
k

)
;j να

(according to the Weingarten equation (3))

=hk
i (−hkj ν

α)να

(due to the Gauß equation (2) and the orthogonality Xα
k να = 0)

= − hk
i hkj

as claimed. The Lemma follows. ��
Lemma 8 The normal velocity F evolves according to

d

dt
F − F ijF;ij = FF ij hk

i hkj . (11)

Proof We have, see [26, Lemma 5.4], the proof of [17, Theorem 2.1.20], or check
this explicitly for the normal velocity considered,

∂F

∂gkl

= −F ilhk
i

and compute the evolution equation of the normal velocity F

d

dt
F − F ijF;ij = − F ilhk

i

d

dt
gkl + F ij d

dt
hij − F ij F; ij

=FF ij hk
i hkj ,

where we used (7) and (10). ��
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We will need more explicit evolution equations for geometric quantities �
involving d

dt
� −F ij�;ij .

Lemma 9 The second fundamental form hij evolves according to

d

dt
hij − Fklhij ; kl =Fklha

khal · hij − Fklhkl · ha
i haj

− Fhk
i hkj + Fkl, rshkl; ihrs; j .

(12)

Proof Direct calculations yield

d

dt
hij − Fklhij ; kl =F;ij − Fhk

i hkj − Fklhij ;kl by (10)

=Fklhkl; ij + Fkl, rshkl; ihrs; j

− Fhk
i hkj − Fklhij ; kl

=Fklhik; lj + Fkl, rshkl; ihrs; j

− Fhk
i hkj − Fklhik; j l by Codazzi

=Fkl
(
ha

kRailj + ha
i Raklj

)− Fhk
i hkj

+ Fkl, rshkl; ihrs; j by (5)

=Fklha
khalhij − Fklha

khajhil

+ Fklha
i halhkj − Fklha

i hajhkl

− Fhk
i hkj + Fkl, rshkl; ihrs; j by (4)

=Fklha
khalhij − Fklha

i hajhkl

− Fhk
i hkj + Fkl, rshkl; ihrs; j .

��
Remark 8 A direct consequence of (6) and (2) is

d

dt
Xα − F ij Xα

; ij =
(
F ij hij − F

)
να. (13)

Hence

d

dt
|X|2 − F ij

(
|X|2

)
;ij = 2

(
F ij hij − F

)
〈X, ν〉 − 2F ij gij .
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Proof We have

d

dt
|X|2 − F ij

(
|X|2

)
;ij = 2

〈
X,

d

dt
X

〉
− 2F ij 〈Xi,Xj 〉 − 2F ij 〈X,X;ij 〉

= 2〈X,−Fν〉 − 2F ijgij − 2F ij 〈X,−hij ν〉.
��

Lemma 10 The evolution equation for the unit normal ν is

d

dt
να − F ij να

;ij = F ij hk
i hkj · να. (14)

Proof We compute

d

dt
να − F ij να

;ij = gijF; iX
α
; j − F ij

(
hk

i X
α
; k

)
; j

by (9) and (3)

= gijF klhkl; iX
α
; j − F ij hk

i; jX
α
; k − F ij hk

i X
α
; kj

= F ij hk
i hkj ν

α by (2).

��
Lemma 11 The evolution equation for the scalar product 〈X, ν〉 is

d

dt
〈X, ν〉 − F ij 〈X, ν〉;ij = −F ij hij − F + F ij hk

i hkj 〈X, ν〉. (15)

Proof We obtain

d

dt
〈X, ν〉 − F ij 〈X, ν〉;ij =Xαδαβ

(
d

dt
νβ − F ij να

;ij
)

+
(

d

dt
Xα − F ij Xα

; ij

)
δαβνβ

− 2F ijXα
; iδαβν

β

; j

=F ij hk
i hkj 〈X, ν〉 +

(
F ij hij − F

)
〈ν, ν〉

− 2F ijXα
; iδαβhk

jX
β

; k

by (3), (13), and (14)

=F ij hk
i hkj 〈X, ν〉 − F ij hij − F.

��
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Lemma 12 Let (ηα)α = −en+1 = (0, . . . , 0,−1). Then ṽ := 〈η, ν〉 ≡ ηανα fulfills

d

dt
ṽ − F ij ṽ;ij = F ij hk

i hkj ṽ (16)

and v := ṽ−1 fulfills

d

dt
v − F ij v;ij = − vF ij hk

i hkj − 2
1

v
F ij vivj . (17)

Proof The evolution equation for ṽ is a direct consequence of (14). For the proof of
the evolution equation of v observe that

vi = − ṽ−2ṽi = −v2ṽi

and

v;ij = − ṽ−2ṽ;ij + 2ṽ−3ṽi ṽj = −v2ṽ;ij + 2v−1vivj .

��

5 Convex Hypersurfaces

5.1 Mean Curvature Flow

G. Huisken obtained the following theorem [20] for n ≥ 2. The corresponding result
for curves by M. Gage, R. Hamilton, and M. Grayson is even better, see [15, 18]. It
is only required that M ⊂ R

2 is a closed embedded curve.

Theorem 3 Let M ⊂ R
n+1, n ≥ 2, be a smooth closed convex hypersurface. Then

there exists a smooth family Mt of hypersurfaces solving

{
d
dt

X = −Hν for 0 ≤ t < T ,

M0 = M

for some T > 0.
As t ↗ T ,

• Mt → Q in Hausdorff distance for some Q ∈ R
n+1 (convergence to a point),

• (Mt − Q) · (2n(T − t))−1/2 → S
n smoothly (convergence to a “round point”).
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The key step in the proof of Theorem 3 (in the case n ≥ 2) is the following:

Theorem 4 Let Mt ⊂ R
n+1, n ≥ 2, be a family of convex closed hypersurfaces

flowing according to mean curvature flow. Then there exists some δ > 0 such that

max
Mt

n|A|2 − H 2

H 2−δ

is bounded above.

The proof involves complicated integral estimates.

Exercise 12 Prove Theorem 4 for δ = 0.
Hint: Use Kato’s inequality.

Theorem 5 (Kato’s Inequality) We have

|∇|A||2 ≤ |∇A|2.

Proof We prove this inequality if |A| �= 0. In the exercise above, we only need

that case. As ∇|A|2 = 2|A|∇|A|, the claim is equivalent to 1
4

∣∣∇|A|2∣∣2 ≤ |A|2 ·
|∇A|2. We choose a coordinate system such that in a fixed point gij = δij and hij

is diagonal with eigenvalues λi . We obtain there

1

4

∣∣∣∇|A|2
∣∣∣2 = 1

4

∑
k

(
∇k|A|2

)2 =
∑
i,j,k

λihii;kλj hjj ;k

≤
∑
i,j,k

(
1

2
λ2

i h
2
jj ;k + 1

2
λ2

jh
2
ii;k
)

=
∑
i,j,k

λ2
i h

2
jj ;k ≤

∑
i,j,k,l

h2
ij ;kλ

2
l

= |A|2 · |∇A|2.
��

Remark 9 For simplicity, we will illustrate the significance of the quantity consid-
ered in Theorem 4 only in the case n = 2. These considerations extend to higher
dimensions.

As

2|A|2 − H 2 = 2(λ2
1 + λ2

2) − (λ1 + λ2)
2

= 2λ2
1 + 2λ2

2 − λ2
1 − 2λ1λ2 − λ2

2

= λ2
1 − 2λ1λ2 + λ2

2

= (λ1 − λ2)
2,

it measures the difference from being umbilic (λ1 = λ2) and vanishes precisely if
Mt is a sphere. Here, we have used that, according to Codazzi, λ1 = λ2 everywhere
implies that Mt is locally part of a sphere or hyperplane.
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Assume that min
Mt

H → ∞ as t ↗ T . Assume also that λ1 ≤ λ2 and that the

surfaces stay strictly convex, i.e. min
Mt

λ1 > 0. Then Theorem 4 implies for any ε that

there exists tε , such that for tε ≤ t < T

ε ≥ max
Mt

H−δ ≥ 2|A|2 − H 2

H 2
= (λ1 − λ2)

2

(λ1 + λ2)2
≥ (λ1 − λ2)

2

4λ2
2

= 1

4

(
λ1

λ2
− 1

)2

.

Hence λ1
λ2

≈ 1 and thus this implies that Mt is, in terms of the principal curvatures
λi , close to a sphere.

5.2 Gauß Curvature Flow and Other Normal Velocities

There are many results showing that convex hypersurfaces converge to round points
under certain flow equations, see e.g. [1, 2, 6, 14–16, 23, 27, 28, 32].

Let us consider normal velocities of homogeneity bigger than one. In this case,
the calculations, that lead to a theorem corresponding to Theorem 4 for mean
curvature flow, are much simpler and rely only on the maximum principle.

Theorem 6 ([2, Proposition 3]) Let Mt be a smooth family of closed strictly
convex solutions to Gauß curvature flow d

dt
X = −Kν. Then

t �→ max
Mt

(λ1 − λ2)
2

is non-increasing.

Proof Recall that H 2 − 4K = (λ1 + λ2)
2 − 4λ1λ2 = (λ1 − λ2)

2 =: w. For Gauß
curvature flow, we have, according to Appendix 2,

F ij =Kij = ∂

∂hij

det hkl

det gkl

= det hkl

det gkl

h̃ij = Kh̃ij ,

F ij,kl =Kh̃ij h̃kl − Kh̃ikh̃lj ,

where
(
h̃ij
)

i,j
is the inverse of (hij )i,j . Recall the evolution equations (7), (11),

and (12) which become for Gauß curvature flow

d

dt
gij = − 2Khij ,

d

dt
K − Kh̃klKkl = KKh̃ij hk

i hkj = K2H,
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and

d

dt
hij − Kh̃klhij ;kl = Kh̃klha

khalhij − Kh̃klhklh
a
i haj − Khk

i hkj

+ K
(
h̃kl h̃rs − h̃kr h̃sl

)
hkl;ihrs;j

= KHhij − (n + 1)Kha
i haj + K

(
h̃kl h̃rs − h̃kr h̃sl

)
hkl;ihrs;j ,

where n = 2. We have

d

dt
H − Kh̃ij H;ij = − hij gikgjl d

dt
gkl + gij

(
d

dt
hij − Kh̃klhij ;kl

)

= 2K|A|2 + KH 2 − 3K|A|2 + Kgij
(
h̃kl h̃rs − h̃kr h̃sl

)
hkl;ihrs;j

= K
(
H 2 − |A|2

)
+ Kgij

(
h̃kl h̃rs − h̃kr h̃sl

)
hkl;ihrs;j

= 2K2 + Kgij
(
h̃kl h̃rs − h̃kr h̃sl

)
hkl;ihrs;j ,

hence

d

dt
w − Kh̃ij w;ij = 2H

(
d

dt
H − Kh̃ijH;ij

)
− 2Kh̃ijHiHj

− 4

(
d

dt
K − Kh̃ijK;ij

)

= 2H
(

2K2 + Kgij
(
h̃kl h̃rs − h̃kr h̃sl

)
hkl;ihrs;j

)
− 2Kh̃ij HiHj − 4K2H

= 2HKgij
(
h̃kl h̃rs − h̃kr h̃sl

)
hkl;ihrs;j − 2Kh̃ij HiHj .

In a coordinate system, such that gij = δij and hij = diag (λ1, λ2) in a fixed point,
we obtain

d

dt
w − Kh̃ijw;ij = 2KH

2∑
i,j,k=1

1

λiλj

hii;khjj ;k − 2KH

2∑
i,j,k=1

1

λiλj

h2
ij ;k

− 2K

2∑
i,j,k=1

1

λk

hii;khjj ;k
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= 2KH

2∑
i,j,k=1

i �=j

1

λiλj

hii;khjj ;k − 2KH

2∑
i,j,k=1

i �=j

1

λiλj

h2
ij ;k − 2K

2∑
i,j,k=1

1

λk

hii;khjj ;k

= 4KH

λ1λ2

(
h11;1h22;1 − h2

12;1 + h11;2h22;2 − h2
12;2
)

− 2K

λ1
(h11;1 + h22;1)2 − 2K

λ2
(h11;2 + h22;2)2.

From now on, we consider a positive spatial maximum of H 2 − 4K . There, we get
2Hgij hij ;k − 4Kh̃ij hij ;k = 0 for k = 1, 2. In a coordinate system as above, this
(divided by 2) becomes

0 = Hh11;k + Hh22;k − 2
K

λ1
h11;k − 2

K

λ2
h22;k

= (λ1 + λ2 − 2λ2)h11;k + (λ1 + λ2 − 2λ1)h22;k
= (λ1 − λ2)(h11;k − h22;k).

This enables us to replace h11;2 in the evolution equation in a positive critical point
by h22;2: h11;2 = h22;2 and h22;1 = h11;1. Using also the Codazzi equations, we can
rewrite the evolution equation in a positive critical point as

d

dt
w − Kh̃ij w;ij = 4(λ1 + λ2)

(
h2

11;1 − h2
22;2 + h2

22;2 − h2
11;1
)

− 2K

λ1
(h11;1 + h22;1)2 − 2K

λ2
(h11;2 + h22;2)2

≤ 0.

Hence, by the parabolic maximum principle, see Theorem 18 for a version on a
domain, the claim follows. ��

A consequence of Theorem 6 is the following result, see [2, Theorem 1].

Theorem 7 Let M ⊂ R
3 be a smooth closed strictly convex surface. Then

there exists a smooth family of closed strictly convex hypersurfaces solving Gauß
curvature flow d

dt
X = −Kν for 0 ≤ t < T . As t ↗ T , Mt converges to a round

point.

Proof (Sketch of Proof) The main steps are

(i) The convergence to a point is due to K. Tso [31]. There, the problem is
rewritten in terms of the support function and considered in all dimensions.
It is shown that a positive lower bound on the Gauß curvature is preserved
during the evolution. This ensures that the surfaces stay convex. The evolution
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equation of

K

〈X, ν〉 − 1
2R

is used to estimate K from above as long as the surface encloses BR(0). Then,
using further estimates, a bound on the principal curvatures follows. Parabolic
Krylov-Safonov estimates imply bounds on higher derivatives.

(ii) Theorem 6.
(iii) Show that Mt is between spheres of radius r+(t) and r−(t) and center q(t) with

r+(t)
r−(t)

→ 1 as t ↗ T .

(iv) Show that the quotient K(p,t)
Kr(t)

converges to 1 as t ↗ T . Here

r(t) = (3(T − t))1/3

is the radius of a sphere flowing according to Gauß curvature flow that becomes
singular at t = T and Kr(t) = (3(T − t))−2/3 its Gauß curvature. This involves
a Harnack inequality for the normal velocity.

(v) Show that λi

(3(T −t ))−1/3 → 1 as t ↗ T .
(vi) Obtain uniform a priori estimates for a rescaled version of the flow and hence

smooth convergence to a round sphere.
��

Theorem 7 has recently been generalised to higher dimensions by other methods,
see [3, 4].

5.3 The Tensor Maximum Principle

Often, the tensor maximum principle can be used to deduce a priori bounds.
We see directly from the parabolic maximum principle for tensors that a positive

lower bound on the principal curvatures is preserved for surfaces moving with
normal velocity |A|2.

Lemma 13 For a smooth closed strictly convex surface M in R
3, flowing according

to d
dt

X = −|A|2ν, the minimum of the principal curvatures is non-decreasing.

Proof We have F = |A|2 = hij gjkhklg
li , F ij = 2giahabg

bj , and F ij,kl = 2gikgjl .
Consider Mij = hij − εgij with ε > 0 so small that Mij is positive semi-definite
for some time t0. We wish to show that Mij is positive semi-definite for t > t0.
Using (7) and (12), we obtain

d

dt
hij − Fklhij ; kl = 2 tr A3hij − 3|A|2hk

i hkj + 2gkrglshkl; ihrs; j .
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In the evolution equation for Mij , we drop the positive definite terms involving
derivatives of the second fundamental form

d

dt
Mij − FklMij ; kl ≥ 2 tr A3hij − 3|A|2hk

i hkj + 2ε|A|2hij .

Let ξ be a zero eigenvalue of Mij with |ξ | = 1, Mij ξ
j = hij ξj − εgij ξ

j = 0. So
we obtain in a point with Mij ≥ 0

(
2 tr A3hij − 3|A|2hk

i hkj + 2ε|A|2hij

)
ξ iξj = 2ε tr A3 − 3ε2|A|2 + 2ε2|A|2

= 2ε tr A3 − ε2|A|2

≥ 2ε2|A|2 − ε2|A|2 > 0

and the maximum principle for tensors, Theorem 19, stated in the case of a
differential equation d

dt
Mij = . . ., extends to the case of a differential inequality

d
dt

Mij ≥ . . . and implies the result. ��
Exercise 13 Show that under mean curvature flow of closed hypersurfaces, the
following inequalities are preserved during the flow.

(i) H ≥ 0, H > 0,
(ii) hij ≥ 0,

(iii) εHgij ≤ hij ≤ βHgij for 0 < ε ≤ 1
n

< β < 1.

Such estimates exist also for other normal velocities.

5.4 Two Dimensional Surfaces

Theorem 8 ([27]) Let Mt be a family of closed strictly convex hypersurfaces
evolving according to d

dt
X = −|A|2ν. Then

t �→ max
Mt

(λ1 + λ2)(λ1 − λ2)
2

λ1λ2

is non-increasing.
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Exercise 14

(i) Prove Theorem 8.

Hint: In a positive critical point of w := (λ1+λ2)(λ1−λ2)
2

λ1λ2
, for F = |A|2, the

evolution equation of w is given by

d

dt
w − F ijw;ij = − 4(λ1 − λ2)

2λ1λ2

− 2
5λ8

1 − 4λ7
1λ2 + 46λ6

1λ
2
2 + 48λ5

1λ
3
2 + 72λ4

1λ
4
2(

λ2
1 + λ1λ2 + λ2

2

)2
λ4

1

h2
11;1

− 2
44λ3

1λ
5
2 + 34λ2

1λ
6
2 + 8λ1λ

7
2 + 3λ8

2(
λ2

1 + λ1λ2 + λ2
2

)2
λ4

1

h2
11;1

− 2
5λ8

2 − 4λ7
2λ1 + 46λ6

2λ
2
1 + 48λ5

2λ
3
1 + 72λ4

2λ
4
1(

λ2
2 + λ2λ1 + λ2

1

)2
λ4

2

h2
22;2

− 2
44λ3

2λ
5
1 + 34λ2

2λ
6
1 + 8λ2λ

7
1 + 3λ8

1(
λ2

2 + λ2λ1 + λ2
1

)2
λ4

2

h2
22;2.

(This is a longer calculation.)
(ii) Show that the only closed strictly convex surfaces contracting self-similarly

(by homotheties) under d
dt

X = −|A|2ν, are round spheres. A surface Mt is
said to evolve by homotheties, if for all t1, t2, there exists λ ∈ R such that
Mt1 = λMt2 .

(iii) Show that for closed strictly convex initial data M , there exists some c > 0
such that 1

c
≤ λ1

λ2
+ λ2

λ1
≤ c for surfaces evolving according to d

dt
X = −|A|2ν

for all 0 ≤ t < T , where T is, as usual, the maximal existence time.

Similar results also exist for expanding surfaces

Theorem 9 ([28]) Let Mt be a family of closed strictly convex hypersurfaces
evolving according to d

dt
X = 1

K
ν. Then

t �→ max
Mt

(λ1 − λ2)
2

λ2
1λ

2
2

is non-increasing.

Exercise 15 Prove Theorem 9 and deduce consequences similar to those in Exer-
cise 14.

Hint: In a critical point of w := (λ1−λ2)
2

λ2
1λ

2
2

, the evolution equation of w reads

d

dt
w − F ijw;ij = −2

(λ1 + λ2)(λ1 − λ2)
2

λ3
1λ

3
2

− 8

λ6
1λ2

h2
11; 1 − 8

λ1λ
6
2

h2
22; 2.
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5.5 Calculations on a Computer Algebra System

For checking the monotonicity of

t �→ max
Mt

(λ1 + λ2)(λ1 − λ2)
2

λ1λ2
,

see Theorem 8, the calculations become quite long. In the following we describe
how the calculations leading to this theorem can be done by a computer provided
that you trust these machines.

(i) Rewrite w = (λ1+λ2)(λ1−λ2)
2

λ1λ2
in terms of H and K , H and K in terms of gij

and hij and finally gij and hij as a function of Du and D2u, provided that the
surface is locally described as graph u.

(ii) Proceed similarly with the normal velocity |A|2 = F
(
Du,D2u

)
. Then u

fulfills the partial differential equation

u̇ =
√

1 + |Du|2 · F
(
Du,D2u

)
≡ vF.

(iii) Differentiating this equation yields

u̇k = vFrij uijk + vFpiuik + ui

v
Fuik,

where we have used F = F(p, r), and then dropping lower order terms
suggests to consider the linearised operator

LW := Ẇ − vFrij Wij ,

where v and F are evaluated at
(
Du,D2u

)
.

(iv) We would like to show that w is non-increasing. This follows from the
maximum principle if we can show that d

dt
w − F ijw;ij ≡ d

dt
w − ∂F

∂hij
w;ij ≤ 0

in a positive maximum of w. By the chain rule, we get

∂F

∂rij
= ∂F

∂hkl

· ∂hkl

∂rij
= ∂F

∂hij

· 1

v
.

(v) The considerations in the last paragraph do not depend on the coordinate
system. We choose a coordinate system such that a positive maximum is
attained at the origin and Du(0) = 0. We may assume in addition that D2u(0)

is diagonal. At the origin, both factors that distinguish covariant and partial
derivatives in w;ij = w,ij − Γ k

ijw,k vanish. Hence it suffices to show that
Lw|x=0 ≤ 0. This can be carried out with the help of a computer.
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The algorithm in words:

1. Write w = w
(
Du,D2u

)
and F = F

(
Du,D2u

)
.

2. Compute the following derivatives in terms of derivatives of u: Frij , ẇ, wi , wij .
3. Combine those derivatives and get Lw =: N1 in terms of derivatives of u.
4. Use the relations obtained from differentiating u̇ = vF , u̇k = (vF)k and u̇kl =

(vF)kl to remove any time derivative from N1: Call the result N2.
5. As w is positive and maximal at the point we want to consider, we can solve

wk = 0 for u11k and u22k. We use this to replace the terms u112 and u221 in N2
and get N3.

6. Assume that Du(0) = 0 and D2u(0) = ( a 0
0 b

)
in N3 to get N4.

7. N4 consists of three terms:

N4 = A + Bu2
111 + Cu2

222,

no terms involving u111u222 show up. Observe that A, B and C do only depend
on a and b and that B and C are equal up to interchanging a and b.

8. It is easy to see that A ≤ 0 and B ≤ 0 for a, b ≥ 0 in the situation of Theorem 8.
If it is not obvious, whether these inequalities hold, Sturm’s algorithm [30]

can be used to check the underlying polynomials for positivity.
9. Applying the steps above for different choices of w can be used to find monotone

quantities, see [27, 28].

Two warnings:

• Do not use the simplifications valid at a single point, especially Du = 0, before
differentiating.

• The computer might identify u12 and u21. Take this into account when computing
Fr12 .

Exercise 16 Prove Theorem 8 based on computer algebra calculations.

6 Mean Curvature Flow of Entire Graphs

For mean curvature flow of entire graphs, K. Ecker and G. Huisken proved the
following existence theorem [11, Theorem 5.1].

Theorem 10 Let u0 : Rn → R be locally Lipschitz continuous. Then there exists a
function u ∈ C∞ (Rn × (0,∞)) ∩ C0 (Rn × [0,∞)) solving

⎧⎪⎨
⎪⎩

u̇ = √1 + |Du|2 · div

(
Du√

1 + |Du|2
)

in R
n × (0,∞),

u(·, 0) = u0 in R
n.
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The key ingredient in the existence proof is the following localised gradient
estimate.

Theorem 11 Let u : BR(0) × [0, T ] → R be a smooth solution to graphical mean
curvature flow. Then

√
1 + |Du|2(0, t) ≤ c(n) sup

BR(0)

√
1 + |Du|2(·, 0) · exp

(
c(n) R−2

(
osc

BR(0)×[0,T ] u
)2
)

.

We do not prove this Theorem in this course. However, if we additionally assume
that u(x, 0) → ∞ as |x| → ∞, Theorem 16, that is much easier to prove, can be
used instead of Theorem 11.

Theorem 10 has been extended to continuous initial data by J. Clutterbuck [7]
and T. Colding and W. Minicozzi [9].

If u is initially close to a cone in an appropriate sense, graphical mean curvature
flow converges, as t → ∞, after appropriate rescaling, to a self-similarly expanding
solution “coming out of a cone”, see the papers by K. Ecker and G. Huisken [11]
and N. Stavrou [29].

Stability of translating solutions to graphical mean curvature flow without
rescaling is considered in [8].

7 Mean Curvature Flow Without Singularities

The material in this section is based on joint work with M. Sáez, see [25].

7.1 Intuition

Remark 10

(i) Long time existence for entire graphs was first shown by K. Ecker and G.
Huisken [11], see Theorem 10.

(ii) We wish to study the evolution of complete graphs defined on subsets of
Euclidean space Rn+1. The additional dimension is related to Theorem 13.

(iii) We assume for the moment that such initial data have smooth solutions. Then
the following figures should give some intuition about the behaviour of these
solutions.

a) A rotationally symmetric solution defined on a ball: Fig. 1 on page 108
shows a rotationally symmetric graph in R

n+2 defined on a ball in R
n+1. A

cylinder over the boundary of the ball encloses this graph. Asymptotically,
these two hypersurfaces coincide as xn+2 → ∞. Under mean curvature
flow, the cylinder in R

n+2 collapses to a line in finite time. The sphere
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Fig. 1 Graph defined over a
ball

in R
n+1 collapses to a point in finite time. As the principal curvatures of

any cylinder Mn
t × R are λ1, . . . , λn, 0, where λ1, . . . , λn are the principal

curvatures of Mn
t , the projection of the evolving cylinder coincides at all

times with the evolving sphere.
The evolution of the graph stays graphical and asymptotic to the evolving
cylinder as xn+2 → ∞. As the curvature near the tip is larger than that of
the cylinder, the tip moves faster and moves up to infinity at precisely the
time when the cylinder collapses to a line. Thus for all times, the boundary
of the projections of the graphs coincides with the evolving spheres and
hence fulfills mean curvature flow.

b) A solution initially defined on a domain that will form a neckpinch under
mean curvature flow for n ≥ 2: In Fig. 2 on page 109, the graph is initially
defined over a domain whose boundary will develop a neckpinch in finite
time, i.e. the thin neck will collapse. There are methods to continue the flow
past this neckpinch singularity. After this singularity, the hypersurface splits
into two topologically spherical components. Once again, the evolution of
the graph above is such that the boundary of its projection or, equivalently,
of the domain of definition of the graph, fulfills mean curvature flow. This
happens as follows: As the neckpinch singularity forms downstairs, the
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Fig. 2 Solution with a neckpinch singularity

Fig. 3 Graph defined over an annulus

mean curvature in R
n+1 blows up. Meanwhile, above the neck region in

R
n+2, the mean curvature becomes even larger so that the graph over the

neck region moves to infinity while the rest of the graph remains finite.
Then the graph separates into two disjoint components.

c) A solution initially defined on an annulus: In Fig. 3 on page 109, the domain
of definition is an annulus. Its boundary consists of two disjoint spheres that
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Fig. 4 Ωt with many holes

disappear at different times. The graph above is asymptotic to two cylinders
as xn+2 → ∞. When the inner cylinder collapses, a “cap at infinity” is
added to the graph and its topology changes. Similarly to the example of a
contracting sphere, this cap can travel in finite time from infinity downwards
and become visible. Later, the situation is similar to that of Fig. 1.

d) A solution defined on a domain in the plane bounded by possibly countably
many disjoint curves: For a planar domain with finitely many holes,
see Fig. 4 on page 110, there are finitely many times, where boundary
components shrink to points and vanish similarly to the situation in Fig. 3.
At those times, caps at infinity are added to the graphical solution similarly
to the annulus situation above.
Finally, if a planar domain has countably many holes, we can arrange so
that the holes disappear on a dense set of times. We get a smoothly evolving
graph whose mean curvature is unbounded at all times.



Geometric Flow Equations 111

7.2 Results

Let us consider mean curvature flow for graphs defined on a relatively open set

Ω ≡
⋃
t≥0

Ωt × {t} ⊂ R
n+1 × [0,∞). (18)

Our existence result for bounded domains is

Theorem 12 (Existence) Let A ⊂ R
n+1 be a bounded open set and u0 : A → R

a locally Lipschitz continuous function with u0(x) → ∞ for x → x0 ∈ ∂A.
Then there exists (Ω, u), where Ω ⊂ R

n+1 ×[0,∞) is relatively open, such that
u : Ω → R solves graphical mean curvature flow

u̇ =
√

1 + |Du|2 · div

(
Du√

1 + |Du|2
)

in Ω ∩ {t > 0},

u is smooth for t > 0 and continuous up to t = 0, Ω0 = A, u(·, 0) = u0 in A and
u(x, t) → ∞ as (x, t) → (x0, t0) ∈ ∂Ω , where ∂Ω is the relative boundary of Ω

in R
n+1 × [0,∞).

Such smooth solutions yield weak solutions to mean curvature flow. We have

Theorem 13 (Weak Flow) Let (A, u0) and (Ω, u) be as in Theorem 12. Let ∂Dt

be the level set evolution of ∂Ω0 with D0 = Ω0. If ∂Dt does not fatten, the measure
theoretic boundaries of Ωt and Dt coincide for every t ≥ 0.

Here, Dt = {
x ∈ R

n+1 : w(x, t) < 0
}

and w solves ẇ = |Dw| · div
(

Dw
|Dw|

)
as in

Remark 5. The equation is solved in the viscosity sense, see e.g. [5, 12] for more
details.

7.3 Strategy of Proof

Proof (Strategy of the Proof of Theorem 12)

(i) Fix L > 0. Then there exists a solution with initial value min{u0, L} for all
t ∈ [0,∞], see [11].

(ii) If L1 < L, we prove a priori estimates for the part of the evolving graphs which
is below L1. This is done in Theorem 16 for the (spatial) first order derivatives
of u. See Theorem 17 for the second derivative bounds. Similar techniques
imply bounds for all higher derivatives.

(iii) We let L → ∞ and use a variant of the Theorem of Arzelà-Ascoli to pass to a
subsequence which converges to our solution.

��



112 O. C. Schnürer

Proof (Sketch of the Strategy of the Proof of Theorem 13) In the following sketch of
a proof we try to give an idea of the argument without mentioning technical details,
e.g. approximations or fattening. None of the steps works exactly as described
below.

(i) The constructed solution graph u(·, t) corresponds to a level-set solution.
(ii) The level-set solution starting from ∂A ×R is an outer barrier to the graphical

solution graphu(·, t). Observe that Ωt is the projection of the evolving graph
at time t to R

n+1. Hence Ωt is contained in the level-set evolution of A.
(iii) By shifting the level set solution downwards, we obtain convergence to the

level set solution starting with the cylinder ∂A ×R. This prevents graph u(·, t)
from detaching near infinity from the evolution of the cylinder.

��

7.4 The A Priori Estimates

Recall the definition v = √
1 + |Du|2, where we consider u as a function defined

on some subset of Rn+1 × [0,∞).
Let η := (ηα) = (0, . . . , 0, 1). In the following, whenever quantities like v or

|A|2 are involved, we consider u and v as functions on the evolving hypersurfaces
rather than as functions depending on (x, t) ∈ R

n+1 × [0,∞), i.e. we consider
u := Xαηα and v := −〈ν, η〉−1.

Theorem 14 Let X be a solution to mean curvature flow. Then we have the
following evolution equations

(
d
dt

− Δ
)
u = 0,(

d
dt

− Δ
)

v = − |A|2v − 2
v |∇v|2,(

d
dt

− Δ
) |A|2 = − 2|∇A|2 + 2|A|4,(

d
dt

− Δ
)
G ≤ − 2k · G 2 − 2ϕv−3〈∇v,∇G 〉,

where G = ϕ|A|2 ≡ v2

1−kv2 |A|2 and k > 0 is chosen so that kv2 ≤ 1
2 in the domain

considered.

Proof For mean curvature flow, we have F ij = gij . This implies F ij hij = H . In
view of (13), we deduce

(
d
dt

− Δ
)
X = 0 and

(
d
dt

− Δ
)
u = 0.

For the evolution equation of w := |A|2, we calculate

(
d
dt

− Δ
)
gij = − 2Hhij , see (7),(

d
dt

− Δ
)
hij = |A|2hij − 2Hha

i haj , see (12),

w = gikhij g
jlhkl,
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ẇ = 2gikḣij g
jlhkl − 2girgskhij g

jlhkl ġrs,

wr = 2gikhij ;r gjlhkl,

wrs = 2gikhij ;rsgjlhkl + 2gikhij ;rgjlhkl;s,(
d
dt

− Δ
) |A|2 = 2gik

(
|A|2hij − 2Hha

i haj

)
gjlhkl + 4H tr A3 − 2|∇A|2

= 2|A|4 − 2|∇A|2.

For the remaining claims see [10, 11]. ��
Assumption 15 For the proof of the a priori estimates, we will assume that

u : Rn+1 × [0,∞) → R

is a smooth solution to mean curvature flow such that for any T > 0 there exists
R > 0 such that for all t ∈ [0, T ]

{x : u(x, t) ≤ 0} ⊂ BR(0).

In order to be able to consider smooth solutions, a few extra constructions are
necessary.

Theorem 16 (C1-Estimates) Let u be as in Assumption 15. Then

v(−u)2 = vu2 ≤ max
t=0

{u<0}
vu2

at points where u < 0.

Here and in the following, it is often possible to increase the exponent of −u.

Proof According to Theorem 14, w := vu2 fulfills

ẇ = v̇u2 + 2vuu̇,

wi = viu
2 + 2vuui,

wij = vij u
2 + 2vuuij + 2vuiuj + 2u(viuj + vjui),(

d
dt

− Δ
)
w =u2 ( d

dt
− Δ

)
v − 2v|∇u|2 − 4u〈∇v,∇u〉

=u2
(

−v|A|2 − 2

v
|∇v|2

)
− 2v|∇u|2 − 4

〈
u√
v
∇v,

√
v∇u

〉

≤ − u2v|A|2 ≤ 0.

The estimate follows from the maximum principle applied to w in the domain where
u < 0. ��
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Remark 11 We recommend thinking of Theorem 16 as an estimate for v(−u)2.

Corollary 4 Let u be as in Assumption 15. Then

v ≤ max
t=0

{u<0}
vu2

at points where u ≤ −1.

Exercise 17 Consider v(−u) to obtain similar C1-estimates.

Remark 12 Corollaries similar to Corollary 4 also hold for the following a priori
estimates for points with u ≤ −ε < 0 or t ≥ ε > 0. We do not write them down
explicitly.

In Theorem 16 and later, the result still holds if we replace every u by u − h for
any constant h.

Remark 13 For later use, we estimate derivatives of u and v,

|∇u|2 = ηαXα
i gijX

β
j ηβ = ηα

(
δαβ − νανβ

)
ηβ = 1 − v−2 ≤ 1

and, according to (3),

|∇v|2 =
((−ηανα

)−1
)

i
gij
((−ηβνβ

)−1
)

j
= v4ηαXα

k hk
i g

ij hl
jX

β
l ηβ

≤ v4|A|2 ≤ v2ϕ|A|2 = v2G .

We therefore obtain

|〈∇u,∇v〉| ≤ |∇u| · |∇v| ≤ v2|A| ≤ v
√
G .

Theorem 17 (C2-Estimates) Let u be as in Assumption 15.

(i) Then there exist λ > 0, c > 0 and k > 0 (the constant in ϕ and implicitly in
G ), depending on the C1-estimates, such that

tu4G + λu2v2 ≤ ct + sup
t=0

{u<0}

λu2v2

at points where u < 0 and 0 < t ≤ 1.
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(ii) Moreover, if u is in C2 initially, we get C2-estimates up to t = 0: Then there
exists c > 0, depending only on the C1-estimates, such that

u4G ≤ ct + sup
t=0

{u<0}

u4G

at points where u < 0.

Proof In order to prove both parts simultaneously, we set

w := (μt + (1 − μ))u4G + λu2v2 ≡ μtu
4G + λu2v2.

If we set μ = 1, we obtain μt = t and later the first claim, if μ = λ = 0, we get
μt = 1 and deduce in the following the second claim. We calculate

ẇ = μu4G + 4μtu
3G u̇ + μtu

4Ġ + 2λv2uu̇ + 2λu2vv̇,

wi = 4μtu
3G ui + μtu

4Gi + 2λv2uui + 2λu2vvi ,

wij = 4μtu
3G uij + μtu

4Gij + 2λv2uuij + 2λu2vvij + 12μtu
2G uiuj

+ 4μtu
3(Giuj + Gjui) + 2λv2uiuj + 2λu2vivj

+ 4λuv(uivj + uj vi ),

μtu
3∇G = 1

u
∇w − 4μtu

2G∇u − 2λv2∇u − 2λuv∇v,

(
d
dt

− Δ
)
w ≤ μu4G + μtu

4
(
−2k · G 2 − 2ϕv−3〈∇v,∇G 〉

)
+ 2λu2v

(
−|A|2v − 2

v |∇v|2
)

− 12μtu
2G |∇u|2

− 8μtu
3〈∇G ,∇u〉 − 2λv2|∇u|2 − 2λu2|∇v|2 − 8λuv〈∇u,∇v〉.

In the following, we will use the notation 〈∇w, b〉 with a generic vector b. The
constants c are allowed to depend on sup{|u| : u < 0} (which does not exceed its
initial value) and the C1-estimates. It may also depend on an upper bound for t ,
but we assume that 0 < t ≤ 1 whenever t appears explicitly. I.e., we suppress
dependence on already estimated quantities.

We estimate the terms involving ∇G separately. Let ε > 0 be a constant. We fix
its value below. Using Remark 13 for estimating terms, we get

−2ϕμtu
4v−3〈∇v,∇G 〉

= − 2
ϕu

v3

〈
∇v,

1

u
∇w − 4μtu

2G∇u − 2λv2∇u − 2λuv∇v

〉

≤〈∇w, b〉 + 8μt
ϕ|u|3

v
G |A| + 4λϕv|u||A| + 4

λϕu2

v2 |∇v|2
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=〈∇w, b〉 + 8μtϕ
2 |u|3G 3/2

ϕ3/2

1

v
+ 4λϕv|u||A| + λu2|∇v|2 · 4

ϕ

v2

≤〈∇w, b〉 + εμtu
4G 2 + ελu2v2|A|2 + λu2|∇v|2 · 4

ϕ

v2

+ c(ε, λ),

−8μtu
3〈∇G ,∇u〉

= − 8

〈
∇u,

1

u
∇w − 4μtu

2G∇u − 2λv2∇u − 2λuv∇v

〉

≤〈∇w, b〉 + 32μtu
2G + 16λv2 + 16λ|u|v3|A|

≤ 〈∇w, b〉 + εμtu
4G 2 + ελu2v2|A|2 + c(ε, λ).

We obtain

(
d
dt

− Δ
)
w ≤μu4G + μtu

4G 2(−2k + 2ε) + 〈∇w, b〉
+ λu2v2|A|2(−2 + 3ε) + λu2|∇v|2

(
4

ϕ

v2 − 6
)

+ c(ε, λ).

Let us assume that k > 0 is chosen so small that kv2 ≤ 1
3 in {u < 0}. This implies

ϕ ≤ 2v2. We may assume that λ ≥ 2u2 in {u < 0} and get μu4G ≤ 1
2λu2ϕ|A|2 ≤

λu2v2|A|2. We get

4
ϕ

v2 − 6 = 4

1 − kv2 − 6 ≤ 0.

Finally, fixing ε > 0 sufficiently small, we obtain

(
d
dt

− Δ
)
w ≤ 〈∇w, b〉 + c.

Now, both claims follow from the maximum principle. ��

Appendix 1: Parabolic Maximum Principles

The following maximum principle is fairly standard. For non-compact, strict or
other maximum principles, we refer to [11] or [24], respectively.

We will use C2;1 for the space of functions that are two times continuously dif-
ferentiable with respect to the space variables and once continuously differentiable
with respect to the time variable.
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Theorem 18 (Weak Parabolic Maximum Principle) Let Ω ⊂ R
n be open and

bounded and T > 0. Let aij , bi ∈ L∞(Ω × [0, T ]). Let aij be strictly elliptic, i.e.
aij (x, t) > 0 in the sense of matrices. Let u ∈ C2;1(Ω ×[0, T ))×C0

(
Ω × [0, T ])

fulfill

u̇ ≤ aijuij + biui in Ω × (0, T ).

Then we get for (x, t) ∈ Ω × (0, T )

u(x, t) ≤ sup
P(Ω×(0,T ))

u,

where P (Ω × (0, T )) := (Ω × {0}) ∪ (∂Ω × (0, T )).

Proof

(i) Let us assume first that u̇ < aij uij + biui in Ω × (0, T ). If there exists a point
(x0, t0) ∈ Ω × (0, T ) such that u(x0, t0) > sup

P(Ω×(0,T ))

u, we find (x1, t1) ∈
Ω × (0, T ) and t1 minimal such that u(x1, t1) = u(x0, t0). At (x1, t1), we have
u̇ ≥ 0, ui = 0 for all 1 ≤ i ≤ n, and uij ≤ 0 (in the sense of matrices). This,
however, is impossible in view of the evolution equation.

(ii) Define for 0 < ε the function v := u − εt . It fulfills the differential inequality

v̇ = u̇ − ε < u̇ ≤ aijuij + biui = aij vij + bivi .

Hence, by the previous considerations,

u(x, t) − εt = v(x, t) ≤ sup
P(Ω×(0,T ))

v = sup
P(Ω×(0,T ))

u − εt

and the result follows as ε ↘ 0.
��

There is also a parabolic maximum principle for tensors, see [19, Theorem 9.1].
(See the AMS-Review for a small correction of the proof.)

A tensor Nij depending smoothly on Mij and gij , involving contractions with
the metric, is said to fulfill the null-eigenvector condition, if Nij vivj ≥ 0 for all
null-eigenvectors v of Mij .

Theorem 19 Let (Mij )i,j be a tensor, defined on a closed Riemannian manifold
(M, g(t)), fulfilling

∂

∂t
Mij = ΔMij + bk∇kMij + Nij

on a time interval [0, T ), where b is a smooth vector field and Nij fulfills the null-
eigenvector condition. If Mij ≥ 0 at t = 0, then Mij ≥ 0 for 0 ≤ t < T .
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Appendix 2: Some Linear Algebra

Lemma 14 We have

∂

∂aij

det(ars) = det(ars)a
ji,

if aij is invertible with inverse aij , i.e. if aij ajk = δi
k.

Proof It suffices to prove that the claimed equality holds when we multiply it with
aik and sum over i. Hence, we have to show that

∂

∂aij

det(ars)aik = det(ars)δ
j
k .

We get

∂

∂aij

det(ars) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 1 . . . a1 j−1 0 a1 j+1 . . . a1 n

...
...

...
...

...

ai−1 1 . . . ai−1 j−1 0 ai−1 j+1 . . . ai−1 n

0 . . . 0 1 0 . . . 0
ai+1 1 . . . ai+1 j−1 0 ai+1 j+1 . . . ai+1 n

...
...

...
...

...

an 1 . . . an j−1 0 an j+1 . . . an n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

and thus

∂

∂aij

det(ars) · aik = det

⎛
⎜⎜⎜⎝

0 . . . 0 a1 k 0 . . . 0
a2 1 . . . a2 j−1 0 a2 j+1 . . . a2 n

...
...

...
...

...

an 1 . . . an j−1 0 an j+1 . . . an n

⎞
⎟⎟⎟⎠

+ det

⎛
⎜⎜⎜⎜⎜⎝

a1 1 . . . a1 j−1 0 a1 j+1 . . . a1 n

0 . . . 0 a2 k 0 . . . 0
a3 1 . . . a3 j−1 0 a3 j+1 . . . a3 n

...
...

...
...

...

an 1 . . . an j−1 0 an j+1 . . . an n

⎞
⎟⎟⎟⎟⎟⎠

+ . . .
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= det

⎛
⎜⎜⎜⎝

a1 1 . . . a1 j−1 a1 k a1 j+1 . . . a1 n

a2 1 . . . a2 j−1 0 a2 j+1 . . . a2 n

...
...

...
...

...

an 1 . . . an j−1 0 an j+1 . . . an n

⎞
⎟⎟⎟⎠

+ det

⎛
⎜⎜⎜⎜⎜⎝

a1 1 . . . a1 j−1 0 a1 j+1 . . . a1 n

a2 1 . . . a2 j−1 a2 k a2 j+1 . . . a2 n

a3 1 . . . a3 j−1 0 a3 j+1 . . . a3 n

...
...

...
...

...

an 1 . . . an j−1 0 an j+1 . . . an n

⎞
⎟⎟⎟⎟⎟⎠

+ . . .

= det

⎛
⎜⎝

a1 1 . . . a1 j−1 a1 k a1 j+1 . . . a1 n

...
...

...
...

...

an 1 . . . an j−1 an k an j+1 . . . an n

⎞
⎟⎠

=δ
j
k det(ars).

��
Lemma 15 Let aij (t) be differentiable in t with inverse aij (t). Then

d

dt
aij = −aikalj d

dt
akl.

Proof We have

aikakj = δi
j .

There exists ãij such that

aikã
kj = δ

j
i .

Then aij = ãij , as

aij = aikδ
j
k = aik

(
aklã

lj
)

=
(
aikakl

)
ãlj = ãij .

We differentiate and obtain

0 = d

dt
δi
j = d

dt

(
aikakj

)
= d

dt
aikakj + aik d

dt
akj .
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Hence

d

dt
ail = d

dt
aikδl

k = d

dt
aikakj a

jl = −aik d

dt
akj a

jl.

��
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