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Preface

Amajor goal in mathematics as well as in physics has been and still is to understand
the geometry of space and time. Developments in both subjects have fruitfully
influenced each other over the history of science. The formulation of general
relativity by Einstein would not have been possible without the concepts of (semi-)
Riemannian geometry that had emerged with the visionary ideas of Riemann in the
previous century. Conversely, ideas from general relativity influenced mathematical
research and the study of Einstein’s equation is one of today’s major topics in
geometric analysis.

Similarly, the development of more recent areas of theoretical physics, such
as string theory, is deeply connected to the study of geometric problems in
mathematics, such as the study of metrics of special holonomy. It turned out that
geometric flows are also of great importance in the interplay between mathematics
and physics; e.g., the Riemann Penrose inequality has been shown by Huisken and
Ilmanen using the inverse mean curvature flow.

This volume is based on a summer school and workshop entitled “Geometric
flows and the geometry of space-time” held at the University of Hamburg in
September 2016. The aim of this event was to provide a forum where physicists
and mathematicians can exchange ideas and where graduate students and young
researchers get the opportunity to learn about recent developments at the intersection
of mathematics and physics.

It brought together around 60 participants with mathematical and physical
backgrounds. The speakers were Lars Andersson, Helga Baum, Spiros Cotsakis, Pau
Figueras, Gary Gibbons,Mark Haskins, Jason Lotay, Thomas Leistner, Jan Metzger,
and Oliver C. Schnürer.

Out of these 10 speakers, 7 gave two talks where the first one was more of an
introductory nature and the other one was more focused on actual research. These
talks covered a broad variety of topics, ranging from special holonomy metrics to
various concepts of mass in general relativity and the numerical and analytic study
of black hole space-times.

Moreover, three of the speakers gave minicourses where each of them had a total
length of 180min. One minicourse was more of a physical nature and was held
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vi Preface

by Gary Gibbons about the theory of black holes. The other two lecture courses
were more of a mathematical nature. One course was held by Oliver C. Schnürer
about geometric flows and focused in particular on mean curvature flow. The other
course held by Helga Baum was about special holonomy and parallel spinors in
Lorentzian geometry. In addition, we had two related talks about Cauchy problems
for Lorentzian manifolds of special holonomy by Thomas Leistner.

This volume consists of two articles. The first is based on the mathematical
lecture course by Oliver C. Schnürer and the second on the mathematical lecture
course by Helga Baum extended by results presented in the lectures by Thomas
Leistner.

Another volume based on the third lecture course about the theory of black holes
is planned. The papers are written for graduate students and researchers with a
general background in geometry and in the theory of partial differential equations,
who want to get acquainted with these central subjects of modern geometry. We
hope this volume will be helpful and inspiring.

Hamburg, Germany Vicente Cortés
July 2018 Klaus Kröncke

Jan Louis
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2 H. Baum and T. Leistner

Abstract This review is based on lectures given by the authors during the Summer
School Geometric Flows and the Geometry of Space-Time at the University of
Hamburg, September 19–23, 2016. In the first part we describe the algebraic
classification of connected Lorentzian holonomy groups. In particular, we specify
the holonomy groups of locally indecomposable Lorentzian spin manifolds with a
parallel spinor field. In the second part we explain new methods for the construction
of globally hyperbolic Lorentzian manifolds with special holonomy based on the
solution of certain Cauchy problems for PDEs that are imposed by the existence of a
parallel lightlike vector field or a parallel lightlike spinor field with initial conditions
on a spacelike hypersurface. Thereby, we derive a second order evolution equation
of Cauchy-Kowalevski type that can be solved in the analytic setting as well as an
appropriate first order quasilinear hyperbolic system that yields a solution in the
smooth case.

1 Introduction

This review is based on lectures given by the authors during the Summer School
Geometric Flows and the Geometry of Space-Time at the University of Hamburg,
September 19–23, 2016. In these lectures we described at one hand the algebraic
classification of connected Lorentzian holonomy groups and explained at the other
hand new methods for the construction of Lorentzian manifolds with special
holonomy based on the solution of appropriate Cauchy problems with initial
conditions on a spacelike hypersurface.

The holonomy group of a semi-Riemannian manifold (M, g) is the group of
parallel transports along all curves that are closed at a fixed point x ∈ M . It is a Lie
subgroup of the group of all orthogonal transformations of (TxM, gx), its connected
component is isomorphic to the holonomy group of the universal semi-Riemannian
covering of (M, g).

The concept of holonomy was probably first successfully applied in differential
geometry by E. Cartan [31–33], who used it to classify symmetric spaces. Since
then, it has proved to be a very important concept. In particular, it allows to describe
parallel sections in geometric vector bundles over (M, g)—such as tangent, tensor
or spinor bundles—as holonomy invariant objects and therefore by purely algebraic
tools. Moreover, geometric properties like curvature properties can be read off if the
holonomy group is special, i.e., a proper subgroup of O(TxM, gx). One of the impor-
tant consequences of the holonomy notion is its application to the ‘classification’
of special geometries that are compatible with Riemannian geometry. For each of
these geometries an own branch of differential geometry has developed, for example
Kähler geometry (holonomy U(m)), geometry of Calabi-Yau manifolds (SU(m)),
hyper-Kähler geometry (Sp(k)), quaternionic Kähler geometry (Sp(k) · Sp(1)), or
the exceptional geometry of G2-manifolds or of Spin(7)-manifolds. In physics there
is much interest in semi-Riemannian manifolds with special holonomy, since they
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often allow to construct spaces with additional supersymmetries (Killing spinors).
The development of holonomy theory has a long history. We refer for details to
[22, 25, 26, 51].

The irreducible holonomy representations of simply connected semi-Riemannian
manifolds were classified by M. Berger in the 1950s [19, 20]. Since any holonomy
representation of a Riemannian manifold splits into irreducible subrepresentations,
Berger’s results yield the classification of the connected holonomy groups of
Riemannian manifolds. The situation in Lorentzian geometry is more difficult. The
only connected irreducible Lorentzian holonomy group is the group SO0(1, n− 1).
Hence, if a connected Lorentzian holonomy group is a proper subgroup of
SO0(1, n − 1), then it acts decomposable or it acts indecomposable but non-
irreducible, i.e., it admits an invariant degenerate subspace.

The holonomy groups of 4-dimensional Lorentzian manifolds were classified by
physicists working in General Relativity [49, 72, 73]. The general dimension was
long time ignored. Due to the development of supergravity and string theory in
the last decades physicists as well as mathematicians became more interested in
higher dimensional Lorentzian geometry. The search for special supersymmetries
required the classification of holonomy groups in higher dimension. In the beginning
of the 1990s, L. Berard-Bergery and his students began a systematic study of
Lorentzian holonomy groups. They discovered many special features of Lorentzian
holonomy. Their groundbreaking paper [18] on the algebraic structure of subgroups
H ⊂ SO0(1, n − 1) acting with a degenerate invariant subspace was the starting
point for the classification. The second author [60, 61] completed the classification
of the connected Lorentzian holonomy groups by the full description of the structure
of such H ⊂ SO(1, n − 1) which can appear as holonomy groups. It remained to
show that any of the groups in this holonomy list can be realised by a Lorentzian
metric. Many realisations were known before but some cases were still open until
A. Galaev [44] finally found a realisation for all of the groups.

In the first part of this review we describe these results in more detail. In Sect. 2
we first recall some basic notions of Lorentzian geometry in order to clarify the
conventions. For all fundamental differential geometric concepts such as Levi-Civita
connection, Lie derivative, etc. we refer to [68]. In Sect. 3 we give a short introduc-
tion to holonomy theory of semi-Riemannian manifolds and recall the classification
of connected holonomy groups of Riemannian manifolds. Afterwards we explain
the classification of connected holonomy groups of Lorentzian manifolds. Special
holonomy groups always appear if the manifold is spin and admits a non-trivial
parallel spinor field. For this reason we consider in Sect. 4 the relation between
holonomy groups and parallel spinor fields. In particular, we discuss the properties
of the Ricci curvature of Lorentzian spin manifolds with a parallel spinor field
and describe the indecomposable Lorentzian holonomy groups which allow parallel
spinors.

In the second part of the review we explain new approaches to construct globally
hyperbolic Lorentzian manifolds with special holonomy by solving appropriate
Cauchy problems with initial conditions along a spacelike hypersurface based on
recent results in [16, 65] and [62], see also [17] for related results. We focus on
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the case of Lorentzian manifolds which admit non-trivial lightlike parallel vector
fields or non-trivial lightlike parallel spinor fields. In both cases the holonomy
representation is of special form, it admits an invariant degenerate subspace. At
first, in Sect. 5 we derive the necessary constraint conditions, which lightlike
parallel vector and spinor fields impose on spacelike hypersurfaces. In the vector
field case, the local geometry of Riemannian manifolds satisfying these constraint
conditions is completely described. In the spinor field case, the constraint conditions
can be expressed as the existence of an so-called imaginary W -Killing spinor of
a special algebraic type, where W is the Weingarten operator of the spacelike
hypersurface. As an application of the solutions of the Cauchy problem described
in Sect. 7 we obtain a local classification of Riemannian manifolds with imaginary
W -Killing spinors of this algebraic type (Sect. 8). It is natural to ask whether the
constraint conditions for Riemannian manifolds (Σ, h) described in Sect. 5 are
not only necessary but also sufficient for (Σ, h) being a Cauchy hypersurface in
a Lorentzian manifold with a lightlike parallel vector or spinor field. By studying
certain Cauchy problems for PDEs that are induced by the existence of lightlike
parallel vector and spinor fields, we show in Sect. 7 that this is indeed the case. Since
the methods for the existence of a solution are in part analogous to the approach for
the vacuum Einstein equation, we give in Sect. 6 a short review of the approaches
for the Einstein equation. After deriving the constraint equations we first describe
the vacuum Einstein equation as a second order evolution equation for a family
of Riemannian metrics that is of Cauchy-Kowalevski form, that can be solved in
the real-analytic setting. Afterwards we explain the method of hyperbolic reduction
which allows to consider the vacuum Einstein equation as symmetric hyperbolic
system and solve it in the smooth setting. In Sect. 7 we derive in a similar way an
evolution equation of Cauchy-Kowalevski type for a parallel lightlike vector field
in the analytic setting as well as an appropriate symmetric hyperbolic system which
can be solved in the smooth case. Finally we show, that in both cases the solution
admits a parallel lightlike spinor field if, in addition, the contraint conditions for
parallel spinors on the initial hypersurface are satisfied.

2 Basic Notions

Let (Mn, g) be an n-dimensional manifold1 with a metric g of signature (p, q),
where p denotes the number of −1 and q the number of +1 in the normal form of
the metric g. We call (M, g) Riemannian manifold if p = 0, Lorentzian manifold if
p = 1 < n and pseudo-Riemannian manifold if 1 ≤ p < n . If we do not want to
specify the signature we use the term semi-Riemannian manifold.

Contrary to the Riemannian case, not every manifold admits a Lorentzian metric.
There is a topological obstruction (see [68, Chapter 5, Proposition 37] for a proof):

1We assume all manifolds to be smooth, connected and without boundary.
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Theorem 1 LetM be a manifold of dimension n ≥ 2. Then there exists a Lorentzian
metric on M if and only if M is non-compact or M is compact with vanishing Euler
characteristic.

Now, let (M, g) be a Lorentzian manifold.

Definition 1 A tangent vector v ∈ TxM is called

• timelike, if gx(v, v) < 0,
• spacelike, if gx(v, v) > 0 or v = 0,
• lightlike, if gx(v, v) = 0 and v �= 0,
• causal, if v is timelike or lightlike.

Correspondingly, a vector field X is called timelike, spacelike, etc., if X(x) is
timelike, spacelike, etc., for all x ∈ M . A a smooth curve γ : I → M is called
timelike, spacelike, etc., if all its tangent vectors γ ′(t) are timelike, spacelike, etc.,
for all t ∈ I .

Definition 2 Let (M, g) be a Lorentzian manifold. A vector field ξ on M is called
time-orientation if g(ξ, ξ) = −1. If there exists a time-orientation ξ on (M, g),
(M, g) is called time-orientable.

A time-oriented Lorentzian manifold is also called spacetime. A time-orientation
ξ on a Lorentzian manifold (M, g) singles out one of the two time-cones τ±(x) in
any point x ∈ M in a smooth way, where τ+(x) and τ−(x) denote the connected
components of {v ∈ TxM | gx(v, v) < 0}. A causal vector field X on M is called
future-directed, if g(X, ξ) < 0, i.e. X(x) and ξ(x) belong to the same time-cone.

In the following we will denote by ∇g the Levi-Civita connection of (M, g), i.e.
the unique metric and torsion free covariant derivative on (M, g). Our convention
for the curvature tensor Rg ∈ Γ (Λ2T ∗M ⊗ End(T M)), and Rg ∈ Γ (Λ2T ∗M ⊗
Λ2T ∗M) is the following:

Rg(X, Y )Z := ∇g

X∇g

Y Z −∇g

Y∇g

XZ − ∇g

[X,Y ]Z,

Rg(X, Y, Z, W) := g(Rg(X, Y )Z, W).

The curvature tensor satisfies the first and second Bianchi-identities,

Rg(X, Y )Z + Rg(Y, Z)X + Rg(Z, X)Y = 0,

∇g
XRg(Y, Z, U, V )+∇g

Y Rg(Z, X, U, V )+ ∇g
ZRg(X, Y, U, V ) = 0.

Then the Ricci tensor Ricg and the scalar curvature scalg of (M, g) are given by

Ricg(X, Y ) := trg Rg(X, ·, ·, Y ), scalg := trgRicg.

The second Bianchi identity for Rg implies

d scalg = 2divg(Ricg), (1)
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where divg(B) = trg(1,2)∇gB denotes the divergence of a bilinear form tensor
field B.

For Lorentzian manifolds many classical Theorems of Riemannian geometry,
like the Hopf-Rinow Theorem, do not longer hold. For example, there are compact
Lorentzian manifolds that are not geodesically complete. An important class of
Lorentzian manifolds are the globally hyperbolic spacetimes.

Definition 3 A time-oriented Lorentzian manifold (M, g) is called globally hyper-
bolic, if there exists a Cauchy surface S in M , i.e., a subset S ⊂ M which is
intersected exactly once by any inextendible timelike curve.

Each Cauchy surface S ⊂ M is an embedded topological hypersurface of M and
the topological splitting theorem of R. Geroch [48] states, that M is homeomorphic
to R × S for any Cauchy surface S. Moreover, there is an important smooth
splitting theorem for globally hyperbolic manifolds, proven in [21], see also [66,
Theorem 3.78].

Theorem 2 A spacetime (M, g) is globally hyperbolic if and only if it admits
a (smooth) spacelike Cauchy hypersurface. In the globally hyperbolic case, for
each spacelike Cauchy hypersurface Σ ⊂ M , (M, g) is isometric to a Lorentzian
manifold of the form

(R×Σ , ĝ := −λ2 dt2 + ht ),

where λ : R × Σ → R
+ is a smooth function, called laps function, (ht )t∈R is

a smooth family of Riemannian metrics on Σ and Σt := {t} × Σ are spacelike
Cauchy hypersurfaces for any t ∈ R.

In some sense, global hyperbolicity is a local property (see for example [6, Lemma
A.5.6]).

Lemma 1 Let (M, g) be a time oriented Lorentzian manifold and Σ ⊂ M a
spacelike hypersurface. Then each point on Σ has an open neighbourhoodU in M

such that Σ ∩U is a Cauchy hypersurface in U and hence U is globally hyperbolic.

Example 1 (Warped Products) Let I ⊂ R be an open interval, f : I → R
+

a smooth function and (Σ, h) a Riemannian manifold. We consider the warped
product

I ×f Σ := (I ×Σ,−dt2 + f (t)2h).

Then I ×f Σ is globally hyperbolic if and only if (Σ, h) is complete (for a proof
see for example [6, Lemma A.5.14]).

Example 2 (deSitter and Anti-deSitter Spacetime) The Minkowski space is obvi-
ously globally hyperbolic. The deSitter spacetime Sn

1 , i.e. the simply connected
geodesically complete spacetime of constant sectional curvature 1, is globally
hyperbolic as well, since it can be described in the form of Example 1 with I = R,
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Σ = Sn−1 the Riemannian sphere of radius 1, and f (t) = cosh(t). Contrary to this,
the Anti-deSitter spacetime ˜H n

1 , i.e. the simply connected geodesically complete
spacetime of constant sectional curvature -1, is not globally hyperbolic (see [68,
Chapter 14, Example 41]).

Globally hyperbolic manifolds have important analytical properties. For exam-
ple, let E be a vector bundle over a manifoldM , and P : Γ (E) → Γ (E) a normally
hyperbolic operator, i.e., an operator which in local coordinates xμ on M and a
trivialisation of E can be written as

P = gμν ∂2

∂xμ∂xν
+ Aμ ∂

∂xμ
+ B,

where g = gμνdxμdxν is a Lorentzian metric, Aμ and B are matrix-valued
coefficients depending smoothly on the coordinates xμ, and where we use Einstein’s
summation convention. For such operators the Cauchy problem is well-posed:

Theorem 3 If (M, g) is a globally hyperbolic Lorentzian manifold and P :
Γ (E) → Γ (E) a normally hyperbolic operator, then the Cauchy problem for P is
well-posed: if Σ ⊂ M is a spacelike Cauchy hypersurface with the future-directed
timelike unit normal field T , then the initial value problem

Pϕ = ψ, ϕ|Σ = ϕ0, ∇P
T ϕ|Σ = ϕ1,

has a unique smooth solution ϕ ∈ Γ (E) for given sections ϕ0, ϕ1 ∈ Γ0(E|Σ) and
ψ ∈ Γ0(E). Here ∇P denotes the P -compatible connection on E and Γ0(E) the
smooth sections in E with compact support.

For a proof and further details see the books [6, 40].

3 Lorentzian Holonomy Groups

In this section we will explain the classification of the connected holonomy
groups of Lorentzian manifolds. In Sect. 3.1 we first give a short introduction to
holonomy theory and recall the classification of the connected holonomy groups of
Riemannian manifolds. The proofs of the basic Theorems stated in this subsection
can be found in [12, 51, 71]. Then, in Sect. 3.2, we describe the classification of
connected Lorentzian holonomy groups.

3.1 Basics on Holonomy Groups

Let (M, g) be a semi-Riemannian manifold of signature (p, q). If γ : [a, b] → M is
a piecewise smooth curve connecting two points x and y of M , then for any tangent
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vector v ∈ TxM there is a uniquely determined parallel vector field Xv along γ with
initial value v:

∇gXv

dt
(t) = 0 ∀ t ∈ [a, b], Xv(a) = v.

Since the Levi-Civita connection is compatible with the metric, the parallel transport

P
g
γ : TxM −→ TyM

v �−→ Xv(b)

defined by Xv is a linear isometry between (TxM, gx) and (TyM, gy). In particular,
if γ is closed, i.e. a loop at x, Pg

γ is an orthogonal linear map on (TxM, gx). The
holonomy group of (M, g) with respect to x ∈ M is the Lie group

Holx(M, g) := {Pg
γ : TxM → TxM | γ is a loop at x } ⊂ O(TxM, gx).

Exercise 1 Calculate the holonomy groups for the flat Euclidean space R2 and for
the round sphere S2 ⊂ R

3.
Hint for S2: Consider the following loops at the north pole: go from the north pole
along a great circle to the equator, then go a piece along the equator and finally go
back to the north pole along a great circle.

If we restrict ourself to null homotopic curves, we obtain the reduced holonomy
group of (M, g) with respect to x ∈ M:

Hol0x(M, g) := {Pg
γ : TxM → TxM | γ is a null homotopic loop at x } ⊂ Holx(M, g).

Hol0x(M, g) is the connected component of the identity in the Lie group
Holx(M, g). Indeed, contracting a loop γ to one of its points x, gives a curve
in Hol0x(M, g) that joins Pg

γ with the identity. Hence, the holonomy group of a
simply connected manifold is connected.

The holonomy groups of two different points are conjugated: If σ is a smooth
curve connecting x with y, then

Holy(M, g) =Pg
σ ◦ Holx(M, g) ◦Pg

σ−1 .

Therefore, we often omit the reference point and consider the holonomy groups of
(M, g) as class of conjugated subgroups of the (pseudo-)orthogonal group O(p, q).
This requires fixing an orthonormal basis in (TxM, gx), changing the basis however
does not change this conjugacy class.

If π : ( ˜M, g̃) → (M, g) is the universal semi-Riemannian covering, then

Hol0x̃ ( ˜M, g̃) = Hol̃x( ˜M, g̃) � Hol0π(̃x)(M, g).
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For a semi-Riemannian product (M, g) = (M1, g1)×(M2, g2) and (x1, x2) ∈ M1×
M2, the holonomy group is the product of its factors

Hol(x1,x2)(M, g) = Holx1(M1, g1)× Holx2(M2, g2).

Exercise 2 Prove the last two statements.

Next, let us describe three general results that relate the holonomy group
of (M, g) to geometric properties of (M, g). The first one is the relation to
the curvature, described by the Ambrose Singer Holonomy Theorem. Due to the
symmetry properties of the curvature tensor, for all x ∈ M and v, w ∈ TxM the
endomorphism R

g
x (v, w) : TxM → TxM is skew-symmetric with respect to gx ,

hence an element of the Lie algebra so(TxM, gx) of O(TxM, gx). The Lie algebra
of the holonomy group is generated by the curvature operators of (M, g), more
precisely:

Theorem 4 (Ambrose Singer Holonomy Theorem) The Lie algebra of the holo-
nomy group Holx(M, g) is given by

holx(M, g) = span
{

(Pg
γ )−1 ◦ R

g
y

(

v, w
) ◦Pg

γ

∣

∣

∣

v, w ∈ TyM ,

γ is a curve from x to y

}

.

This theorem has many important consequences. For example, it tells us that the
curvature endomorphisms R

g
x at a point x ∈ M give a lower bound for the

holonomy algebra. On the other hand the holonomy algebra restricts the curvature.
In particular, if (M, g) is a locally symmetric space, i.e. ∇gRg = 0, then (P

g
γ )−1 ◦

R∇g

y

(

P
g
γ (v),P

g
γ (w)

) ◦Pg
γ = R

g
x (v, w), hence

holx(M, g) = span{Rg
x (v, w) | v, w ∈ TxM}.

Finally, the first Bianchi identity is inherited by the operators that span the holonomy
algebra and hence poses strong algebraic conditions on the holonomy algebra that
are used to derive classification results we will describe below.

Exercise 3 Use the Ambrose-Singer Theorem to calculate the holonomy algebra of
the sphere Sn and the hyperbolic space H n.

If the manifold (M, g) is real analytic, parallel transport is not longer needed to
describe the holonomy algebra. It is enough to look at the curvature and at all of its
derivatives in one point x.

Theorem 5 Let (M, g) be a real analytic manifold. Then the holonomy algebra of
(M, g) is spanned by all skew-symmetric endomorphisms

(∇g
v1

. . .∇g
vk

Rg
)

x
(v, w) : TxM → TxM,

where v, w, v1, . . . , vk ∈ TxM and 0 ≤ k < ∞.



10 H. Baum and T. Leistner

A second important property of holonomy groups is stated in the following
holonomy principle, which relates parallel tensor fields on M to fixed elements
under the action of the holonomy group of one point.

Theorem 6 (Holonomy Principle) Let T be a tensor bundle on (M, g) and let
∇g be the covariant derivative on T induced by the Levi-Civita connection. Then
there is a vector space isomorphism between parallel tensor fields ψ ∈ Γ (T ) and
holonomy invariant tensors v ∈ Tx in one point x ∈ M , i.e,

{ψ ∈ Γ (T ) | ∇gψ = 0} � {v ∈ Tx | Holx(M, g)v = v}

Proof If ψ ∈ Γ (T ) is a tensor field with ∇gψ = 0, then Holx(M, g) ψ(x) =
ψ(x) , where Holx(M, g) acts in the canonical way on the tensors Tx . Contrary, if
v ∈ Tx is a tensor with Holx(M, g) v = v, then there is an uniquely determined
tensor field ψ ∈ Γ (T ) with ∇gψ = 0 and ψ(x) = v. The tensor field ψ is given by
parallel transport of v, i.e., ψ(y) := P∇g

γ (v) , where y ∈ M and γ is a curve from
x to y. By the holonomy invariance, ψ(y) does not depend on the chosen curve γ .
Moreover, ψ is parallel on M , in particular parallel along any smooth curve in M .
Hence standard ODE-arguments show, that ψ is smooth. ��

Due to this property many intersting special geometric structures can be
described by the properties of the holonomy group.

Example 3 Let (M, g) be a Lorentzian manifold. There exists a lightlike (resp.
timelike) parallel vector field V on (M, g) if and only if there is a lightlike (resp.
timelike) vector v ∈ TxM such that Holx(M, g)v = v.

Example 4 (M2m, g) is a Kähler manifold if and only if Holx(M, g) ⊂ U(m).
To see this, remember that U(m) is embedded in the group SO(2m) by

A+ iB ∈ U(m) �→
(

A −B

B A

)

∈ SO(2m).

Using this embedding, U(m) is described as the stabilizer of the standard almost

complex structure J0 =
(

0 −Im
Im 0

)

∈ End(R2m), where SO(2m) acts by conjuga-

tion on End(R2m). Therefore, the holonomy group satisfies Holx(M, g) ⊂ U(m) ⊂
SO(2m) if and only if Holx(M, g)J0 = J0. By the holonomy principle this is
equivalent to the existence of a parallel, orthogonal, almost complex structure J

on (M, g), given by the parallel transport of J0, i.e. (M, g) is a Kähler manifold.

Exercise 4 Prove that a semi-Riemannian manifold (M, g) of signature (p, q) is
orientable if and only if Holx(M, g) ⊂ SO(p, q).

The third important relation between holonomy and geometry are local spitting
properties. For a subspace E ⊂ TxM we denote by

E⊥ = {v ∈ TxM | gx(v, E) = 0} ⊂ TxM
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its orthogonal complement. If E is holonomy invariant, i.e. Holx(M, g)E ⊂ E,
then E⊥ is holonomy invariant as well. If E is in addition non-degenerate, then E⊥
is non-degenerate as well and TxM is the direct sum of these holonomy invariant
subspaces:

TxM = E ⊕ E⊥.

Theorem 7 (Local and Global Splitting Theorem) Let E ⊂ TxMn be a proper,
non-degenerate, holonomy invariant subspace of TxM of dimension k. Then (M, g)

is locally a metric product, i.e. for each point y ∈ M there exists an open
neighborhood U(y) such that (U(y), g|U(y)) is isometric to a product of two semi-
Riemannian manifolds of dimension k and n− k respectively

(U(y), g|U(y))
isometric� (U1, g1)× (U2, g2).

Moreover, Hol0x(M, g) is isomorphic to the product of two groups H1 × H2, where
H1 ⊂ O(E) and H2 ⊂ O(E⊥).

If in addition, (M, g) is simply connected and geodesicalls complete, then (M, g)

is globally isometric to a product of two semi-Riemannian manifolds

(M, g)
isometric� (M1, g1)× (M2, g2)

with

Holx(M, g) � Holx1(M1, g1)× Holx2(M2, g2).

The local decomposition of (M, g) follows from the Frobenius Theorem. If E ⊂
TxM is a non-degenerate, holonomy invariant subspace, then

E : y ∈ M −→ Ey :=Pg
σ (E) ⊂ TyM,

where σ is a piecewise smooth curve from x to y, is an involutive distribution
on M , the holonomy distribution defined by E. The maximal connected integral
manifolds of E are totally geodesic submanifolds of M , which are geodesically
complete if (M, g) is so. The manifolds (U1, g1) and (U2, g2) in Theorem 7 can
be chosen as small open neighborhood of y in the integral manifold M1(y) of
the holonomy distribution E defined by E and the integral manifold M2(y) of the
holonomy distribution E ⊥ defined by E⊥, respectively, with the metrics induced by
g. If (M, g) is simply connected and geodesically complete, (M, g) is even globally
isometric to the product of the two integral manifolds (M1(x), g1) and (M2(x), g2).

The holonomy group Holx(M, g) acts as group of orthogonal linear mappings on
the tangent space (TxM, gx). This representation is called the holonomy represen-
tation of (M, g), we denote it in the following by ρ. The holonomy representation
ρ : Holx(M, g) → O(TxM, gx) is called irreducible if there is no proper holonomy
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invariant subspace E ⊂ TxM , and indecomposable, if there is no proper non-
degenerate holonomy invariant subspace E ⊂ TxM . To be short, we say that
the holonomy group or its Lie algebra acts irreducibly (indecomposably), if the
holonomy representation has this property. If (M, g) is a Riemannian manifold,
irreducible is the same as indecomposable. In the pseudo-Riemannian case there
are indecomposable holonomy representations which admit degenerate holonomy
invariant subspaces, i.e., which are not irreducible. This causes the problems in the
classification of the holonomy groups of pseudo-Riemannian manifolds.

In view of Theorem 7 we call a semi-Riemannian manifold (M, g) irreducible,
if the holonomy representation of Hol0(M, g) is irreducible, and (locally) indecom-
posable, if it is indecomposable.

Now, we decompose the tangent space TxM into a direct sum of non-degenerate,
orthogonal and holonomy invariant subspaces

TxM = E0 ⊕ E1 ⊕ . . .⊕ Er,

where Holx(M, g) acts indecomposable on E1, . . . , Er and E0 is a maximal non-
degenerate subspace (possibly 0-dimensional), on which the holonomy group acts
trivial. Applying Theorem 7 to this decomposition we obtain the Decomposition
Theorem of de Rham and Wu [35, 77].

Theorem 8 (De Rham-Wu Decomposition Theorem) Let (M, g) be a simply
connected, geodesically complete semi-Riemannian manifold. Then (M, g) is iso-
metric to a product of simply connected, geodesically complete semi-Riemannian
manifolds

(M, g) � (M0, g0)× (M1, g1)× . . .× (Mr, gr ),

where (M0, g0) is a (possibly 0-dimensional) (pseudo-)Euclidian space and the
factors (M1, g1), . . . , (Mr, gr ) are indecomposable and non-flat.

Theorem 8 reduces the classification of connected holonomy groups of geodesi-
cally complete semi-Riemannian manifolds to the study of indecomposable holon-
omy representations. This classification is widely open, only the case of irreducible
holonomy representations is completely solved for every signature.

First of all, let us mention that the holonomy group of a symmetric space is given
by its isotropy representation, a result that goes back to Cartan.

Theorem 9 Let (M, g) be a symmetric space, and let G(M) ⊂ Isom(M, g) be its
transvection group. Furthermore, let λ : H(M) −→ GL(Tx0M) be the isotropy
representation of the stabiliser H(M) = G(M)x0 of a point x0 ∈ M . Then,

λ(H(M)) = Holx0(M, g).
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In particular, the holonomy groupHolx0(M, g) is isomorphic to the stabilizerH(M)

and, using this isomorphism, the holonomy representation ρ is given by the isotropy
representation λ.

Therefore, the holonomy groups of symmetric spaces can be read off from the
classification lists of symmetric spaces, which describe the pair (G(M), H(M))

and the isotropy representation λ. For irreducible symmetric spaces these lists can
be found in [22, Chapter 10], in [50] and in [20]. In order to classify the irreducible
holonomy representations, the classification of the non-symmetric case remains.
This was done by M. Berger in 1955 [19]. He proved that there is only a short list of
groups which can appear as holonomy groups of irreducible non-locally symmetric
simply connected semi-Riemannian manifolds. This list is now called the Berger
list. The Berger list of Riemannian manifolds is well-known. There appear only
six special holonomy groups and due to the holonomy principle (Theorem 6) each
of these groups is related to a special, rich and interesting geometry, described by
the corresponding parallel geometric object. For more details on the corresponding
geometries, see [22] or [52].

Theorem 10 (Riemannian Berger List) Let (Mn, g) be an n-dimensional, irre-
ducible Riemannian manifold. Then the connected holonomy group Hol0(M, g)

is up to conjugation in O(n) one of the following groups with its standard
representation,

n Holonomy group Special geometry

n SO(n) —

2m ≥ 4 U(m) Kähler manifold

2m ≥ 4 SU(m) Ricci-flat Kähler manifold

4m ≥ 8 Sp(m) Hyperkähler manifold

4m ≥ 8 Sp(m) · Sp(1) quaternionic Kähler manifold

7 G2 G2-manifold

8 Spin(7) Spin(7)-manifold

or (Hol0(M, g), ρ) is the isotropy representation of a simply connected irreducible
Riemannian symmetric space.

M. Berger also classified the connected holonomy groups of irreducible pseudo-
Riemannian manifolds. In the Lorentzian case, this list does not contain a proper
subgroup of SO0(1, n − 1). This reflects a special algebraic fact concerning
irreducibly acting connected subgroups of the Lorentzian group O(1, n − 1) (see
for example [36]).

Theorem 11 If H ⊂ O(1, n−1) is a connected Lie subgroup acting irreducibly on
R
1,n−1, then H = SO0(1, n− 1).
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3.2 Holonomy Groups of Lorentzian Manifolds

In this section we will describe the algebraic classification of the connected
holonomy groups of Lorentzian manifolds.

In dimension 4 there are 14 types of Lorentzian holonomy groups which were
first listed by J.F. Schell [72] and R. Shaw [73], see also [22, Chapter 10]. We will
not recall this list here, instead, in the followingwe will consider arbitrary dimension
and take a more systematic approach (for other surveys of the following results,
see [45, 46]).

Due to Theorems 8 and 11 the decomposition theorem for Lorentzian manifolds
can be formulated as follows:

Theorem 12 Let (N, h) be a simply connected, geodesically complete Lorentzian
manifold. Then (N, h) is isometric to the product

(N, h) � (M, g)× (M1, g1)× . . .× (Mr, gr ),

where (Mi, gi) are either flat or irreducible Riemannian manifolds and (M, g) is
either

1. (R,−dt2),
2. an n-dimensional irreducible Lorentzian manifold with holonomy group

Hol0(M, g) � SO0(1, n− 1), or
3. an indecomposable, non-irreducible Lorentzian manifold.

Since the holonomy groups of the Riemannian factors are known, it remains to
classify the indecomposable, non-irreducible Lorentzian holonomy representations.

Corollary 1 Let (Mn, g) be an indecomposable, non-irreducible Lorentzian man-
ifold. Then the holonomy representation ρ : Hol0x(M, g) → O(TxM, gx) admits a
degenerate invariant subspace W ⊂ TxM . The intersection L := W ∩W⊥ ⊂ TxM

is a lightlike line, which is also invariant under the full holonomy groupHolx(M, g).
In particular, the holonomy group Holx(M, g) lies in the stabilizer O(TxM, gx)L of
L in O(TxM, gx):

Holx(M, g) ⊂ O(TxM, gx)L.

For the proof that the invariance of L under Hol0x(M, g) implies its invariance under
the full Holx(M, g) and for interesting examples with Hol0x(M, g) �= Holx(M, g),
see [15]. Geometrically, this means that (Mn, g) admits an lightlike parallel line
bundle V ⊂ T M , defined by

Vy := RPg
γ (L),
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where γ is a smooth curve from x to y. Moreover, V ⊂ V
⊥. Since V and

V
⊥ are integrable distributions, (M, g) is foliated into totally geodesic lightlike

hypersurfaces, each itself foliated by lightlike pregeodesics.
Let us describe the stabilizer O(TxM, gx)L in detail. For that we fix a Witt basis

(s−, s1, . . . , sn−2, s+) in (TxM, gx) such that s− ∈ L and

(

gx(sα, sβ)
)

=
⎛

⎝

0 0 1
0 In−2 0
1 0 0

⎞

⎠ , where α, β ∈ {−, 1, . . . , n− 2,+}, (2)

identify (TxM, gx) with the Minkowski space and and write the elements of
O(TxM, gx) as matrices with respect to this basis. The stabilizer of the lightlike
line L = Rs− ⊂ R

1,n−1 is a semidirect product and given by the matrices

O(1, n− 1)L = (

R
∗ × O(n− 2)

)

�R
n−2

=
⎧

⎨

⎩

⎛

⎝

a−1 xt − 1
2a‖x‖2

0 A −aAx

0 0 a

⎞

⎠

∣

∣

∣

∣

∣

∣

a ∈ R
∗

x ∈ R
n−2

A ∈ O(n− 2)

⎫

⎬

⎭

.

The Lie algebra of O(1, n− 1)L is

so(1, n− 1)L = (

R⊕ so(n− 2)
)

�R
n−2

=
⎧

⎨

⎩

⎛

⎝

r yt 0
0 X −y

0 0 −r

⎞

⎠

∣

∣

∣

∣

∣

∣

r ∈ R

y ∈ R
n−2

X ∈ so(n− 2)

⎫

⎬

⎭

.

If we describe a matrix in the Lie algebra so(1, n− 1)L by (r, X, y) (in the obvious
way), the commutator is given by

[(r, X, y), (s, Y, z)] = (

0, [X, Y ], (X + r Id)z− (Y + s Id)y
)

.

In particular, R, Rn−2 and so(n − 2) are subalgebras of so(1, n − 1)L. Let h be a
subalgebra of so(1, n− 1)L. We call the subalgebra

g := projso(n−2)(h) ⊂ so(n− 2)

the orthogonal part of h. It is reductive, i.e., its Levi decomposition is given by
g = z(g) ⊕ [g, g], where z(g) is the center of g and the commutator [g, g] is semi-
simple.

The first step in the classification of indecomposable, non-irreducible holonomy
representations is a result due to L. Berard-Bergery and A. Ikemakhen [18],
who described the possible algebraic types of indecomposable, non-irreducible
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subalgebras h of the stabilizer so(1, n−1)L =
(

R⊕so(n−2)
)

�R
n−2. A geometric

proof of this result was later given by A. Galaev in [43].

Theorem 13 Let L ⊂ R
1,n−1 be a lightlike line in the Minkowski space, let

h ⊂ so(1, n− 1)L = (R⊕ so(n− 2)) �R
n−2

be an indecomposable subalgebra and let g = projso(n−2)(h) = z(g)⊕ [g, g] be its
orthogonal part. Then h is of one of the following four types:

1. h1(g) := (R⊕ g) �R
n−2.

2. h2(g) := g �R
n−2.

3. h3(g, ϕ) := {(

ϕ(X), X + Y, z
) | X ∈ z(g), Y ∈ [g, g], z ∈ R

n−2},
where ϕ : z(g) → R is a linear and surjective map.

4. h4(g, ψ) := {(

0, X + Y, ψ(X) + z
) | X ∈ z(g), Y ∈ [g, g], z ∈ R

k
}

,
where R

n−2 = R
m ⊕ R

k , 0 < m < n− 3,
g ⊂ so(Rk),
ψ : z(g) → R

m is linear and surjective.

In the following we will refer to theses cases as the Lie algebras h of type 1 to type
4. The types 1 and 2 are called uncoupled types, the types 3 and 4 coupled types,
since the so(n − 2)-part is coupled by ϕ and ψ with the R- and the R

n−2-part,
respectively. If the holonomy algebra h = holx(M, g) is of type type 2 or 4 (in
this case proj

R
(h) = 0), the universal covering of (M, g) admits a parallel lightlike

vector field V . If the holonomy algebra is of type 1 or 3 (i.e., with proj
R

(h) �= 0), the
universal covering admits a recurrent lightlike vector field V , i.e.∇ g̃V = η⊗V with
a 1-form η such that dη �= 0. The orthogonal part g of hol(M, g) has the following
geometric meaning. The Levi-Civita connection ∇g induces a covariant derivative
∇S on the vector bundle S := V

⊥/V over M by

∇S

X[Y ] := [∇g
XY ], where Y ∈ Γ (V⊥) and X ∈ X(M).

S is the so-called screen bundle and we will come back to it in Sect. 8. It is not
difficult to show, that the holonomy algebra of (S,∇S) coincides with g.

Moreover, the different types of holonomy algebras translate into special cur-
vature properties of the lightlike hypersurface of M , defined by the involutive
distribution V ⊥. For details we refer to [23].

For a classification of the holonomy algebras hol(M, g) one has to give a
description of its orthogonal parts g. This was done by the second author who
obtained the following result [59–61].

Theorem 14 Let (Mn, g) be an indecomposable, non-irreducible Lorentzian man-
ifold. Then the orthogonal part g = projso(n−2)(hol(M, g)) of the holonomy
algebra is the holonomy algebra of a Riemannian manifold (with its holonomy
representation).
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The proof of this theorem is based on the observation, that the orthogonal part of a
Lorentzian holonomy algebra has a special algebraic property. It is a so-called weak
Berger algebra—a notion, which was introduced and studied by the second author
in [59] (see also [44, 61]). We will explain this notion here shortly.

Let g ⊂ gl(V ) be a subalgebra of the linear maps of a finite dimensional real or
complex vector space V with scalar product 〈·, ·〉. Then we consider the following
spaces

K (g) := {R ∈ Λ2(V ∗)⊗ g | R(x, y)z+ R(y, z)x + R(z, x)y = 0},
B(g) := {B ∈ V ∗ ⊗ g | 〈B(x)y, z〉 + 〈B(y)z, x〉 + 〈B(z)x, y〉 = 0}.

The spaceK (g) is called the space of algebraic curvature tensors of g. This name
is motivated by the fact, that the condition which defines K (g) is just the Bianchi
identity for the curvature tensor R∇

x of a torsion free covariant derivative ∇. The
spaceB(g) is called space of weak algebraic curvature tensors of g. A Lie algebra
g ⊂ gl(V ) is called Berger algebra if there are enough algebraic curvature tensors
to generate g, i.e., if

g = span{R(x, y) | x, y ∈ V, R ∈ K (g)}.

An orthogonal Lie algebra g ⊂ so(V , 〈·, ·〉) is called weak Berger algebra if there
are enough weak algebraic curvature tensors to generate g, i.e., if

g = span{B(x) | x ∈ V, B ∈ B(g)}.

Obviously, every orthogonal Berger algebra g ⊂ so(V , 〈·, ·〉) is a weak Berger
algebra. If (V , 〈·, ·〉) is an Euclidian space and g ⊂ so(V ) a weak Berger algebra,
then V decomposes into orthogonal g-invariant subspaces

V = V0 ⊕ V1 ⊕ . . .⊕ Vs, (3)

where g acts trivial on V0 (possibly 0-dimensional) and irreducible on Vj , j =
1, . . . , s. Moreover, g is the direct sum of ideals

g = g1 ⊕ . . .⊕ gs ,

where gj acts irreducible on Vj and trivial on Vi if i �= j . gj ⊂ so(Vj ) is a weak
Berger algebra andB(g) = B(g1)⊕ . . .⊕B(gs ).

Now, let (M, g) be an indecomposable, non-irreducible Lorentzian manifold
with holonomy group Holx(M, g). From the Ambrose-Singer Theorem 4 and the
first Bianchi identity it follows that the holonomy algebra holx(M, g) is a Berger
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algebra.2 Moreover, the orthogonal part g of holx(M, g) is a weak Berger algebra
of an Euclidian space, hence it decomposes into a direct sum of irreducibly acting
weak Berger algebras. Using representation theory of semi-simple Lie algebras,
the second author classified all irreducible weak Berger algebras and consequently
showed that any irreducible weak Berger algebra on an Euclidian space is the
holonomyalgebra of an irreducibleRiemannianmanifold. This implies Theorem 14.

It remains the question whether there are further restrictions for the holonomy
algebra of an indecomposable, non-irreducible Lorentzian manifold. A. Galaev
proved that this is not the case. In fact, any of the algebras in the list of Theorem 13,
where g is the holonomy algebra of a Riemannian manifold, can be realised as
holonomy algebra of a Lorentzian manifold. To show this, A. Galaev constructed a
real analytic Lorentzian metric g on Rn, such that hol0(R

n, g) is of the form h1(g),
h2(g), h3(g, ϕ) or h4(g, ψ), as described in Theorem 13, with g a holonomy algebra
of a Riemannian manifold. To describe these metrics, let us fix some notations. As
we know, Rn−2 has a decomposition into orthogonal subspaces

R
n−2 = R

n0 × R
n1 × . . .×R

ns , (4)

where g acts trivial onRn0 and irreducible onRn1 , . . . ,Rns . Now, let (e1, . . . , en−2)
be an orthonormal basis ofRn−2 adapted to the decomposition (4). We choose weak
algebraic curvature endomorphisms Qα ∈ B(g), α = 1, . . . , N , which generate
B(g).

In case of z(g) �= 0, we extend the surjective linear maps ϕ : z(g) → R and
ψ : z(g) → R

m ⊂ R
n0 to g by setting ϕ|[g,g] = 0, ψ|[g,g] = 0 and define the

numbers:

ϕαi := 1

(α − 1)!ϕ(Qα(ei))

ψαij := 1

(α − 1)!
〈

ψ(Qα(ei)), ej

〉

Rn−2
,

where α = 1, . . . , N, i = n0 + 1, . . . , n− 2, j = 1, . . . , m. Using the description
of the holonomy algebra of an real analytic manifold in Theorem 5, A. Galaev
proved in [44] the following theorem (see also [45]).

Theorem 15 Let h ⊂ so(1, n−1) be one of the Lie algebras h1(g), h2(g), h3(g, ϕ),
h4(g, ψ) in the list of Theorem 13, where g = projso(n−2)h ⊂ so(n − 2) is the
holonomy algebra of a Riemannian manifold. We consider the following metric g

2In fact, the holonomy algebra of every torsionfree connection is a Berger algebra.
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on Rn with coordinates (v, u, x1, . . . , xn−2):

g = 2dvdu+ 2
n−2
∑

i=1
Aidxidu+ f du2 +

n−2
∑

i=1
dx2

i ,

where the functions Ai are given by

Ai(u, x1, . . . , xn−2) :=
N
∑

α=1

n−2
∑

k,l=1
1

3(α−1)!
〈

Qα(ek)el +Qα(el)ek, ei

〉

Rn−2xkxlu
α,

and the function f (v, u, x1, . . . , xn−2) is defined in the following list, corresponding
to the type of h:

h f

Type 1: h1(g) = (R⊕ g) �R
n−2 v2 +

n0
∑

i=1
x2

i

Type 2: h2(g) = g� R
n−2

n0
∑

i=1
x2

i

Type 3: h3(g, ϕ) 2v
N
∑

α=1

n−2
∑

i=n0+1
ϕαixiu

α−1 +
n0
∑

k=1
x2

k

Type 4: h4(g, ψ) 2
N
∑

α=1

n−2
∑

i=n0+1

m
∑

j=1
ψαijxixj uα−1 +

n0
∑

k=m+1
x2

k

Then, h is the holonomy algebra of (Rn, g) with respect to the point 0 ∈ R
n.

Finally, we describe further examples of Lorentzian manifolds with special
holonomy.

Example 5 Let (Mn, g) be a simply connected indecomposable Lorentzian sym-
metric space. The classification of these spaces was obtained by Cahen and Wallach
in [29].

a) If (Mn, g) is irreducible, then (Mn, g) is isometric to a simply connected space
form of constant non-zero sectional curvature and Hol(Mn, g) = SO0(1, n−1).

b) If (M, g) is non-irreducible, then (Mn, g) is isometric to a Cahen-Wallach space
CWn(λ) of dimension n ≥ 3, which is the Rn with the metric

gλ := 2dvdu+
n−2
∑

i=1
λix

2
i du2 +

n−2
∑

i=1
dx2

i ,
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where λ = (λ1, . . . , λn−2) is a tuple of non-zero real parameters. In this case,
the holonomy group is abelian, Hol(Mn, g) = R

n−2.

Example 6 Let (N, h) be an (n − 2)-dimensional Riemannian manifold, and let
f ∈ C∞(R2×N) be a smooth function such that the Hessian of f (0, 0, ·) ∈ C∞(N)

is non-degenerate in p0 ∈ N . Then the holonomy group of the Lorentzian manifold
(M, gf,h)

M := R
2 × N , gf,h := 2dvdu+ f du2 + h,

where v, u denote the coordinates of R2, is given by

Hol(0,0,p0)(M, gf,h) =
{

Holp0(N, h) �R
n−2 if

∂f
∂v
= 0,

(R+ × Holp0(N, h)) �R
n−2 if

∂2f

∂v2
�= 0.

This can be proved by direct calculation of the group of parallel transports (cf. for
example [12], chap. 5).

Example 7 Let (B, hB) be a Riemannian manifold and π : M → B an S1-principal
bundle over B. Choose a connection form A on M , a smooth real function f on M

and a closed nowhere vanishing 1-form η on B. Then

g := 2i A ◦ π∗η + f (π∗η)2 + π∗hB

is a Lorentzian metric. The fundamental vertical vector field V , induced by i in the
Lie algebra if S1, is lightlike and recurrent,

∇g
XV = −V (f )η(dπ(X)) V .

One can choose the topological type of the S1-bundle,A, f and η in such a way, that
(M, g) is indecomposable and non-irreducible with holonomy group of type 1 and
2 (cf. K. Lärz in [57]). Lärz used this construction to derive geodesically complete
examples, compact examples and totally twisted examples (i.e. examples without
topological splitting of a 1-dimensional factor as in the previous examples).

An important source for Lorentzian manifolds with special holonomy group are
spin manifolds admitting parallel spinor fields. In the next section we will explain
this in detail.

4 Lorentzian Spin Geometry: Curvature and Holonomy

In this section we will give a short introduction to Lorentzian spin manifolds
and discuss consequences of the existence of parallel spinor fields on Lorentzian
manifolds for curvature properties and the shape of the holonomy group.
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4.1 Spin Structures and Spinor Fields

We start with an introduction of spin structures and spinor fields on semi-
Riemannian manifolds.

Definition 4 Let (M, g) be a semi-Riemannian manifold of signature (p, q).
Then (M, g) is called space- and time-orientable, if the bundle of all adapted3

orthonormal frames of (M, g) can be reduced to the connected subgroup
SO0(p, q) ⊂ O(p, q). Such a reduction will be denoted by F (M, g) and called
space- and time-orientation.

For a Riemannian manifold space- and time-orientability is the same as ori-
entability.

Exercise 5 Prove, that a Lorentzian manifold (M, g) is space- and time-orientable
if and only if M is orientable and (M, g) admits a time-orientation ξ . In this case,
the fibre ofF (M, g) in x ∈ M is given by

F (M, g)x :=
{

sx := (s1, . . . , sn)

∣

∣

∣

sx positively oriented orthonormal basis in (TxM, gx),

s1 timelike and future directed, s2, . . . , sn spacelike.

}

.

Now let 〈·, ·〉p,q be the bilinear form on Rn, n = p + q , given by

〈v, w〉p,q := −v1w1 − . . .− vpwp + vp+1wp+1 + . . .+ vnwn,

where v = (v1, . . . , vn), w = (w1, . . . , wn) ∈ R
n. We denote by Cliffp,q the

Clifford algebra of the space (Rn,−〈·, ·〉p,q ). Cliffp,q is a real associative algebra
with 1 generated by Rn with the relations

v ·w +w · v = −2〈v, w〉p,q 1.

As vector space it is isomorphic to the exterior algebra Λ∗
R

n. There is an important
group Spin(p, q) ⊂ Cliffp,q , the spin group, defined by

Spin(p, q) := {v1 · . . . · v2k | 〈vj , vj 〉p,q = ±1, j = 1, . . . , 2k, k ∈ N }.

Spin(p, q) is a Lie group, the connected component of the identity, Spin0(p, q), is
given by the products v1 · . . . · v2k with even number of timelike vectors vj . In the
positive definite case, the Spin group Spin(n) := Spin(0, n) is connected. The Lie
algebra spin(p, q) of Spin(p, q) can be described as subspace of Cliffp,q

spin(p, q) = span{ei · ej | 1 ≤ i < j ≤ n} � Λ2
R

n ⊂ Cliffp,q,

3We call an orthonormal basis (s1, . . . , sn) of (TxM, gx) adapted, if gx(sj , sj ) = −1 for 1 ≤ j ≤
p and gx(sj , sj ) = 1 for p + 1 ≤ j ≤ n.
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where (e1, . . . , en) denotes the canonical basis of Rn, with the Lie bracket

[X, Y ] := X · Y − Y ·X, X, Y ∈ spin(p, q).

There is a twofold covering λ : Spin(p, q) → SO(p, q), defined by

λ(v1 · . . . · v2k) := Sv1 ◦ . . . ◦ Sv2k ,

where the map Sv for v ∈ R
n, 〈v, v〉p,q = ±1, denotes the reflection across the

hypersurface v⊥ ⊂ R
n,

Sv(w) = w − 2
〈v, w〉p,q

〈v, v〉p,q

v, w ∈ R
n.

For index p = 0, the twofold covering λ is universal iff n ≥ 3, for index p = 1, λ

is the universal iff n ≥ 4.
The complexified Clifford algebra CliffCp,q has exactly one equivalence class of

irreducible representations if n = p + q is even. If n is odd, there are exactly two
such equivalence classes. Restricting this irreducible representation to Spin(p, q) ⊂
CliffCp,q one obtains the fundamental representation of the spin group, the spin

representation4

κ : Spin(p, q) −→ GL(Δp,q).

The representation space Δp,q is a complex vector space of dimension 2[n/2]. Δp,q

is an irreducible Spin(p, q)-module, if n is odd, and splits into two irreducible
submodules Δp,q = Δ+

p,q ⊕ Δ−
p,q , if n is even (for proofs see [58, Ch.I.5]). Since

R
n ⊂ Cliffp,q , we can multiply vectors from R

n with elements of Δp,q . This
multiplication, called Clifford multiplication, is Spin(p, q)-equivariant. Moreover,
there is a Spin0(p, q)-invariant hermitian form 〈·, ·〉Δp,q on Δp,q , which is positive
definite, if p = 0, n, and indefinite of split signature, if 1 ≤ p < n. An explicit
realisation of the spin representation, the Clifford multiplication and the form
〈·, ·〉Δp,q can be found for example in [8, 11] or [41].

Definition 5 Let (M, g) be a time- and space-oriented semi-Riemannian manifold.
A spin structure of (M, g) is a pair ( ˜F (M, g), Λ) of a principal fibre bundle
˜F (M, g) over M with structure group Spin0(p, q) and a smooth and surjective
map Λ : ˜F (M, g) → F (M, g) which respects the bundle projections as well as
the group actions, i.e.

π
˜F = πF ◦Λ,

Λ(q · a) = Λ(q) · λ(a), for all q ∈ ˜F (M, g) and a ∈ Spin0(p, q).

4If n = p + q is odd, the two possible restrictions are equivalent as Spin(p, q)-representations.
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Definition 6 A semi-Riemannian manifold is called spin manifold, if it is space-
and time-oriented and if it admits a spin structure.

Not every space- and time-oriented semi-Riemannian manifold admits a spin
structure. There is a topological obstruction that ensure the existence of spin
structures, namely w2(M) = 0, where w2 is the second Stiefel-Whitney class,
see [8, 55]. If w2(M) = 0, the number of non-equivalent spin structures coincides
with the number of elements in H 1(M,Z2). On spin manifolds, besides of tensor
bundles, there exists a special complex vector bundle, the spinor bundle and special
differential operators acting on its smooth sections, the spinor fields, which are of
interests in Mathematics as well as in Physics, like the Dirac operator or the twistor
operator. We shortly recall the basic properties of the differential calculus for spinor
fields.

Let (M, g) be a semi-Riemannian spin manifold of dimension n and signature
(p, q) with spin structure ( ˜F (M, g), f ). Using the spin representation Δp,q , we
can define the spinor bundle, i.e. the associated complex vector bundle

S := ˜F (M, g)×Spin0(p,q) Δp,q.

The Clifford multiplication and the scalar product 〈·, ·〉Δp,q onΔp,q are Spin0(p, q)-
invariant. Hence, we can extend these fibre-wise algebraic objects to the bundles
over M and obtain:

1. the Clifford multiplication at the bundle level

μ : T M ⊗ S −→ S and μ∗ : T ∗M ⊗ S −→ S ,

X ⊗ ϕ �−→ X · ϕ ω ⊗ ϕ �−→ ω · ϕ := ω� · ϕ

2. the non-degenerate hermitian bundle metric 〈· ·〉S on S,
3. the spinor derivative ∇S : Γ (S) → Γ (T ∗M ⊗ S), i.e. the covariant derivative

on S induced by the Levi-Civita connection ∇g, locally given by

∇S
Xϕ = X(ϕ)+ 1

2

∑

k<l

g(∇g
Xsk, sl) σ k · σ l · ϕ, (5)

where (s1, . . . , sn) is a local orthonormal frame and (σ 1, . . . , σ n) the dual frame.

Thereby, the following rules are satisfied for all vector fields X, Y on M and all
spinor fields ϕ, ψ ∈ Γ (S):

(X · Y + Y ·X) · ϕ = −2 g(X, Y ) ϕ, (6)

〈X · ϕ, ψ〉S = (−1)p+1〈ϕ, X · ψ〉S , (7)

∇S(X · ϕ) = ∇g(X) · ϕ +X · ∇Sϕ, (8)

X(〈ϕ, ψ〉S ) = 〈∇S
Xϕ, ψ〉S + 〈ϕ,∇S

Xψ〉S . (9)
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The Dirac operator D : Γ (S) → Γ (S) on a semi-Riemannian spin manifold is
given by D := μ∗ ◦ ∇S , locally,

Dϕ =
n

∑

j=1
σj · ∇S

sj
ϕ, ϕ ∈ Γ (S).

A spinor field ϕ ∈ Γ (S) is called harmonic, if Dϕ = 0, and parallel, if ∇Sϕ = 0.
To each spinor field ϕ belongs a special vector field, the Dirac current of ϕ.

Definition 7 Let ϕ ∈ Γ (S) be a spinor field on a semi-Riemannian spin manifold
(M, g) of index p. Then the vector field Vϕ on M , given by

g(Vϕ, X) := ip+1〈ϕ, X · ϕ〉S for all X ∈ X(M),

is called Dirac current of ϕ.

The Dirac current Vϕ is a real vector field, since by relation (7) we have

ip+1〈ϕ, X · ϕ〉S = (−i)p+1〈X · ϕ, ϕ〉S = ip+1〈ϕ, X · ϕ〉S.

Proposition 1 If ϕ ∈ Γ (S) is harmonic, the Dirac current Vϕ is divergence free. If
ϕ ∈ Γ (S) is parallel, the Dirac current Vϕ is parallel as well.

Proof We use the rules (7)–(9) for the spinor calculus and obtain for the derivative
of the Dirac current Vϕ:

g(∇g
Y Vϕ, X) = Y

(

g(Vϕ, X)
) − g(Vϕ,∇g

Y X)

= ip+1Y
(〈ϕ, X · ϕ〉S

)− ip+1〈ϕ,∇g
Y X · ϕ〉S

(9)= ip+1〈∇S
Y ϕ, X · ϕ〉S + ip+1〈ϕ,∇S

Y (X · ϕ)〉S − ip+1〈ϕ,∇g
Y X · ϕ〉S

(8)= ip+1〈∇S
Y ϕ, X · ϕ〉S + ip+1〈ϕ, X · ∇S

Y ϕ〉S
(7)= (−i)p+1〈X · ∇S

Y ϕ, ϕ〉S + ip+1〈ϕ, X · ∇S
Y ϕ〉S

= 2Re
(

(−i)p+1〈X · ∇S
Y ϕ, ϕ〉S

)

.

It immediately follows that the Dirac current of a parallel spinor field is parallel as
well. For the divergence of Vϕ we obtain

divg(Vϕ) =
n

∑

k=1
εkg(∇g

sk
Vϕ, sk) = 2Re

(

(−i)p+1 〈
n

∑

k=1
εksk · ∇S

sk
ϕ, ϕ

〉

S

)

= 2Re
(

(−i)p+1〈Dϕ, ϕ〉S
)

,
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where (s1, . . . , sn) denotes a local orthonormal frame and εk := g(sk, sk) = ±1.
Hence, the Dirac current of a harmonic spinor field is divergence free. ��

4.2 Curvature and Holonomy of Lorentzian Manifolds with
Parallel Spinors

Now, let us focus on Lorentzian spin manifolds (M, g). Whereas for Riemannian
spin manifolds, the bundle metric 〈·, ·〉S is positive definite and the Clifford
multiplication X· : S → S is a skew symmetric map, in case of Lorentzian spin
manifolds, 〈·, ·〉S is indefinite of split signature and X· : S → S is symmetric. Using
a time-orientation ξ of (M, g), we obtain a positive definite hermitian bundle metric
(·, ·)ξ on S by

(ϕ, ψ)ξ := 〈ξ · ϕ, ψ〉S ,

but the price one has to pay is that the Clifford multiplication does not behaves so
nicely, namely,

(X · ϕ, ψ)ξ = −(ϕ, θ(X) · ψ)ξ ,

where θ : T M → T M is the reflection across ξ⊥ (cf. [8] or [11]).
The Dirac current of a spinor field on a Lorentzian spin manifold has special

properties.

Proposition 2 The Dirac current of a spinor field ϕ on a Lorentzian spin manifold
satisfies

1. zero(ϕ) = zero(Vϕ).
2. g(Vϕ, Vϕ) ≤ 0.
3. Vϕ is future directed on M \ zero(Vϕ).

Proof Let ξ be a time-orientation of (M, g). Then

g(Vϕ, ξ) = −〈ξ · ϕ, ϕ〉S = −(ϕ, ϕ)ξ ≤ 0. (10)

Since (·, ·)ξ is positive definite, this shows, that Vϕ(x) = 0 implies ϕ(x) = 0. On
the other hand, by the very definition of Vϕ , ϕ(x) = 0 implies Vϕ(x) = 0. Hence,
the zero sets of Vϕ and ϕ coincide. Equation (10) shows in addition, that Vϕ is
future-directed on M \ zero(Vϕ).

We now decompose Vϕ in a timelike and a spacelike part:

Vϕ =: −g(Vϕ, ξ)ξ + Z.
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Then Z ∈ ξ⊥ is spacelike and Z(x) = 0 implies gx(Vϕ(x), Vϕ(x)) ≤ 0. It remains
to show, that g(Vϕ, Vϕ) ≤ 0 on the open submanifold ˜M := M \ (zero(Z) ∪
zero(Vϕ)) of M . On ˜M we consider the spacelike unit vector field

N := − Z√
g(Z, Z)

∈ ξ⊥.

Then on ˜M

Vϕ = α ξ − β N, (11)

where α := −g(Vϕ, ξ) > 0 and β := √
g(Z, Z) > 0 .

The bundle map ξ · N · : S|˜M → S|˜M is an involution, since

(ξ · N) · (ξ · N)· = −(ξ · ξ
︸︷︷︸

1

) · (N ·N
︸ ︷︷ ︸

−1
)· = IdS|˜M .

Let S±1 be the eigenspaces of ξ ·N · to the eigenvalues±1. Then

S|˜M = S1 ⊕ S−1

is an orthogonal decomposition with respect to (·, ·)ξ and

ϕ ∈ Γ (S±1) ⇐⇒ ξ · ϕ = ±N · ϕ. (12)

Now, consider the decomposition of ϕ ∈ Γ (S|˜M) with respect of these eigenspaces,
ϕ = ϕ1 + ϕ−1 ∈ Γ (S1 ⊕ S−1). Then

α = −g(Vϕ, ξ)
(10)= (ϕ, ϕ)ξ = ‖ϕ1‖2ξ + ‖ϕ−1‖2ξ . (13)

β = −g(Vϕ, N) = 〈N · ϕ, ϕ〉S = (ξ ·N · ϕ, ϕ)ξ = (ϕ1 − ϕ−1, ϕ1 + ϕ−1)ξ

= ‖ϕ1‖2ξ − ‖ϕ−1‖2ξ . (14)

Hence on ˜M ,

g(Vϕ, Vϕ) = −α2 + β2 = −4‖ϕ1‖2ξ ‖ϕ−1‖2ξ ≤ 0.

��
Remark 1 The Dirac current Vψ of a spinor field ψ ∈ Γ (S) on a Riemannian spin
manifold satisfies zero(ψ) ⊂ zero(Vψ). Contrary to the Lorentzian case, in general
equality does not hold, Vψ = 0 can happen for a non-zero spinor field ψ .
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Definition 8 We call a spinor field on a Lorentzian spin manifold lightlike, if the
Dirac current Vϕ is lightlike.

Proposition 3 Let ϕ ∈ Γ (S) be a nowhere vanishing spinors field on a Lorentzian
spin manifold. Then ϕ is lightlike if and only if Vϕ · ϕ = 0.

Proof Let ϕ = ϕ1 + ϕ−1 ∈ Γ (S1 ⊕ S−1) as in the proof of Proposition 2. We use

the decomposition Vϕ
(11)= αξ − βN on M and obtain

g(Vϕ, Vϕ) = 0 ⇐⇒ −α2 + β2 = 0

⇐⇒ α = β > 0

(13),(14)⇐⇒ ‖ϕ1‖2ξ + ‖ϕ−1‖2ξ = ‖ϕ1‖2ξ − ‖ϕ−1‖2ξ
⇐⇒ ϕ−1 = 0 i.e. ϕ ∈ Γ (S1)

(12)⇐⇒ ξ · ϕ = N · ϕ
⇐⇒ Vϕ · ϕ = α (ξ −N) · ϕ = 0.

��
Applying the holonomy principle (Theorem 6) and the local splitting theorem
(Theorem 7), we obtain for the holonomy group Holx(M, g):

Corollary 2 Let ϕ ∈ Γ (S) be a parallel spinor field, ϕ �= 0. Then the parallel
vector field Vϕ is either lightlike or timelike with g(Vϕ, Vϕ) = const < 0. In
particular, Holx(M, g) is contained in the stabilizer of Vϕ(x) in O(TxM, gx),

Holx(M, g) ⊂ O(TxM, gx)Vϕ(x) ⊂ O(TxM, gx).

a) If Vϕ is timelike, then

TxM = RVϕ(x)⊕ Vϕ(x)⊥

is a holonomy-invariant decomposition into non-degenerate subspaces, hence,
(M, g) is locally isometric to a metric product (R × F,−dt2 + gF ), where
(F, gF ) is a Riemannian spin manifold with a parallel spinor field.

b) If Vϕ is lightlike, thenHolx(M, g) lies in the stabilizer of a lightlike vector, hence

Holx(M, g) ⊂ SO(n− 2) �R
n−2 ⊂ SO0(1, n− 1).

A Riemannian spin manifold with parallel spinors is Ricci-flat (see Remark 2
below). In contrast, for Lorentzian spin manifolds with parallel spinor fields the
Ricci tensor may be non-zero. Here is an example where this happens.
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Exercise 6 We consider the Cahen-Wallach spaces CWn(λ) = (Rn, gλ), with

gλ = 2dvdu+
n−2
∑

j=1
λj x2

j du2 +
n−2
∑

j=1
dx2

j ,

from Example 5. Prove:

1. V := ∂
∂v

is lightlike and parallel.

2. Ricg(X, Y ) = −
( n−2
∑

j=1
λj

)

g(X, V )g(Y, V ) for all vector fields X and Y .

3. CWn(λ) is a spin manifold and the dimension of the space of parallel spinors is
half of the rank of the spinor bundle, i.e. 2[n/2]−1.

4. If ϕ is a parallel spinor field on CWn(λ), then Vϕ = ‖ϕ‖2ξ V for an appropriate
chosen time-orientation ξ .

In general, for Lorentzian spin manifolds we have:

Proposition 4 Let ϕ ∈ Γ (S) be a parallel, lightlike spinor field on a Lorentzian
spin manifold (M, g). Then there exists a smooth function f on M such that

Ricg = f V �
ϕ ⊗ V �

ϕ and Vϕ(f ) = 0. (15)

Moreover, the scalar curvature of (M, g) vanishes, scalg = 0.

Proof Using the local formula (5) for the spinor derivative one can calculate for the
curvature of ∇S

RS(X, Y )ϕ =
( [

∇S
X,∇S

Y

]

−∇S
[X,Y ]

)

ϕ = 1
2

∑

k<l

Rg(X, Y, sk, sl ) σ k ·σ l ·ϕ. (16)

The symmetry properties of the curvature tensor Rg yield the following formulas
for the Ricci tensor and the scalar curvature:

n
∑

j=1
σj · RS(X, sj ) ϕ = −1

2
Ricg(X) · ϕ, (17)

n
∑

j=1
σj · Ricg(sj ) · ϕ = scalg ϕ. (18)

In particular, if ϕ is parallel and non-zero, (17) and (18) imply

Ricg(X) · ϕ = 0 for all vector fields X, (19)

scalg = 0. (20)
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Now, let ϕ be parallel and lightlike. Then, in addition to (19), Vϕ · ϕ = 0. Hence,
using (6) we obtain

Ricg(X) · Ricg(X) · ϕ = −g(Ricg(X), Ricg(X)) ϕ = 0,
(

Ricg(X) · Vϕ + Vϕ · Ricg(X)
) · ϕ = −2g(Ricg(X), Vϕ) ϕ = 0.

Therefore,

0 = g(Vϕ, Vϕ) = g(Ricg(X), Ricg(X)) = g(Vϕ, Ricg(X)).

Since g is a Lorentzian metric, Vϕ and Ricg(X) have to be linearly dependent, i.e.
there exists a 1-form ω on M such that Ricg(X) = ω(X) ·Vϕ , or for the (2, 0)-Ricci
tensor,

Ricg(X, Y ) = ω(X) · g(Vϕ, Y ). (21)

Now, let us consider the timelike vector field T := ξ
g(ξ,Vϕ)

, satisfying g(T , Vϕ) = 1,
and the function f := ω(T ). Then,

ω(X) = ω(X) g(Vϕ, T ) = Ricg(X, T ) = Ricg(T , X) = ω(T ) g(Vϕ, X) = f g(Vϕ, X).

Hence,

Ricg(X, Y ) = f g(Vϕ, X) g(Vϕ, Y ) for all vector fields X, Y,

which proves the first part of (15). Now, since the scalar curvature of (M, g)

vanishes, (1) implies

0 = divg(Ricg) = divg(f V �
ϕ ⊗ V �

ϕ) = Vϕ(f )+ f divgVϕ · V �
ϕ + f (∇g

Vϕ
Vϕ)�.

Since Vϕ is parallel, this shows the second part of (15). ��
Remark 2 In the Riemannian case, formula (19) implies, that a Riemannian spin
manifold with a non-trivial parallel spinor field is Ricci-flat. Hence, by the local
splitting result in Corollary 2a), if a Lorentzian spin manifold admits a parallel
spinor field with timelike Dirac current, it is Ricci flat as well.

Next, we adress the question how the holonomy groups of Lorentzian spin
manifolds with parallel spinor fields look like.

The relation between parallel spinor fields and holonomy groups is based on the
following observation [67, 75]:

Proposition 5 Let (M, g) be a space- and time-oriented semi-Riemannian man-
ifold of signature (p, q). Then, there exists a spin structure on (M, g) with a
non-vanishing parallel spinor field if and only if there exists a homomorphism
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� : Hol(M, g) → Spin0(p, q) with λ ◦ � = IdHol(M,g) and a non-vanishing spinor
v ∈ Δp,q , fixed under Hol(M, g), i.e. ,

�(Hol(M, g))v = v.

Moreover, the dimension of the space of parallel spinor fields on (M, g) and the
dimension of the space of fixed spinors under Hol(M, g) coincide.

It was shown by M.Y. Wang [75] that the connected holonomy group Hol0(M, g)

of an irreducible Riemannian spin manifold with parallel spinor fields is one of the
groups SU(n/2), Sp(n/4), G2 or Spin(7). Since Riemannian spin manifolds with
parallel spinor fields are Ricci-flat and Ricci-flat homogeneous Riemannian spaces
are flat (see [1]), one only has to check the criteria of Proposition 5 for the six proper
subgroups of SO(n) in the Riemannian Berger list (Theorem 10 above). Wang also
determined the possible full holonomy groups Hol(M, g) of irreducible Riemannian
spin manifolds with parallel spinor fields [76], which are the groups G described in
the following algebraic lemma (see also [15]).

Lemma 2 Let G ⊂ SO(n) be a Lie group with connected component Go equal to
SU(n/2), Sp(n/4), G2 (n=7) or Spin(7) (n=8) and with a non-zero fixed spinor in
Δn. Then G is equal to one of the groups in the following table, in which N is the
dimension of the space of spinors fixed under G:

G0 n G N Conditions

SU(m) 2m SU(m) 2

SU(m) �Z2 1 m divisible by 4

Sp(k) 4k Sp(k) k + 1

Sp(k)× Zd (k + 1)/d d > 1, d odd and divides k + 1

Sp(k) · Z2d 2
⌊

k
2d

⌋+ 1 k even, 1 < d ≤ 2d

Sp(k) ·Q4d

⌊

k
2d

⌋

if k
2 odd k even, 1 < d ≤ 2d,

⌊

k
2d

⌋+ 1 if k
2 even

Sp(k) · B4d see Ref. [76] k even and conditions in [76]

Sp(k) · Γ 1 k even

Spin7 8 Spin7 1

G2 7 G2 1

Here

1. Q4d is the double cover of the dihedral group D2d of order 2d ,
2. Sp(k) · B4d for d = 6, 12, 30, and B4d is the double cover in Sp(1) of the

polyhedral groups P2d in SO(3), i.e. the tetrahedral group P12, the octahedral
group P24, and the icosahedral group P60, and

3. Γ is an infinite subgroup of U(1) � Z2.
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In order to describe the holonomy groups of Lorentzian spin manifolds with
parallel spinor fields the following algebraic fact is useful.

Lemma 3 Let H = G � R
n−2 ⊂ SO0(1, n − 1) with G ⊂ SO(n − 2). Then the

following spaces have the same dimension

1. spinors in Δn−2 fixed under G.
2. spinors in Δ1,n−1 fixed under H .

Proof If � : H = G�R
n−2 → Spin0(1, n−1) is a homomorphismwith λ◦� = IdH ,

the restriction of � to G maps into λ−1(SO(n−2)) = Spin(n−2) ⊂ Spin0(1, n−1),
hence we can define �0 := �|G and obtain λ ◦ �0 = IdG. Rn−2 ⊂ H is a connected
closed Abelian subgroup. When realizing Spin0(1, n − 1) in the Clifford algebra
Cliff1,n−1 , the image of Rn−2 under � is given by

�(Rn−2) = {1+ e− · x | x ∈ R
n−2} ⊂ Spin0(1, n− 1) ⊂ Cliff1,n−1,

where (e−, e1, . . . , en−2, e+) is a Witt basis of the Minkowski space R
1,n−1 as

in (2). Then, if �0 : G → Spin(n − 2) is a homomorphism with λ ◦ �0 = IdG,
we define � : H = G �R

n−2 → Spin0(1, n− 1) by

�(g · x) := �0(g) · (1+ e− · x), g ∈ G, x ∈ R
n−2.

It remains to check the conditions for the fixed spinors. We proceed as in the proof
of Proposition 2. Let e0, en−1 be the orthonormal basis in span(e−, e+) given by
e0 := 1√

2
(e− − e+) and en−1 := 1√

2
(e− + e+). Then e0 · en−1· is an involution

on the spinor modul Δ1,n−1. Let Δ1,n−1 = Δ+ ⊕Δ− be the decomposition into its
the eigenspaces to the eigenvalues±1. Then Δ±|Spin(n−2) is isomorphic to the spin
representation Δn−2, w ∈ Δ± iff e0 · w = ±en−1 · w and en−1 ·Δ± = Δ∓. Hence
for v := v+ + v− ∈ Δ+ +Δ− we obtain

�(g·x)v = �0(g)·(1+e−·x)(v++v−) = �0(g)v++�0(g)v−−
√
2�0(g)·x ·en−1 ·v+.

Comparing the components we see that �(g · x)v = v is equivalent to

�0(g)v+ = v+ and �0(g)v− −
√
2�0(g) · x · en−1 · v+ = v−.

Since the second condition holds for all g ∈ G, setting g = 1 we obtain x · en−1 ·
v+ = 0 for all x ∈ R

n−2, which implies v+ = 0 and �0(g)v− = v−. Hence
�(H)v = v is equivalent to v = v− and �0(G)v− = v−. ��

These preparations allow us to prove the following result about the holonomy
groups of Lorentzian spin manifolds with parallel spinor fields.
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Theorem 16 Let (M, g) be an oriented and time-oriented, indecomposable Lorent-
zian manifold of dimension n. Then (M, g) admits a spin structure with a non-zero
parallel spinor field if and only if

Hol(M, g) � G �R
n−2,

where G ⊂ SO(n − 2) is a subgroup such that there is a non-zero fixed spinor in
Δn−2 under G. Moreover, the number N of linearly independent parallel spinor
fields coincides with the dimension of the space of fixed spinors of Δn−2 under G.

If N > 0, the connected component G0 of G is a product of groups of the form
{1}, SU(m), Sp(k), G2 or Spin(7) (with their standard representations). If G0 acts
irreducible on Rn−2, then G is one of the groups in the table of Lemma 2.

Proof Since (M, g) is indecomposable, by Corollary 2 each non-vanishing parallel
spinor field has to be lightlike. Hence the full holonomy group is contained in the
stabilizer of a lightlike vector, i.e. Hol(M, g) ⊂ SO(n − 2) � R

n−2. In particular,
the holonomy algebra is of type 2 or 4 in Theorem 13. But, in case of type
4, the orthogonal part g of hol(M, g) is a holonomy algebra of a Riemannian
manifold with a non-trivial center which excludes the existence of a fixed spinor
in Δn−2 under g (cf. [60, 61]). Hence, the holonomy algebra hol(M, g) is of type
2. In [15, Proposition 1] the possible structure of the full holonomy group for
each of the holonomy algebra types is described. In particular, if the holonomy
algebra hol(M, g) is of type 2 then the full holonomy group Hol(M, g) has the
form Ĝ � R

n−2, where Ĝ ⊂ R
∗ × O(n − 2) with connected component equal

to the connected component of projO(n−2)(Hol(M, g)) ⊂ O(n − 2). Since, in
addition, projR∗(Hol(M, g)) = {1}, it follows that Hol(M, g) = G× R

n−2, where
G ⊂ SO(n − 2). Hence, we can apply Proposition 5 and Lemma 3 and obtain the
first part of the Theorem. The second part follows from Lemma 2. ��

It remains to discuss whether there exist Lorentzianmanifoldswith the holonomy
groups described in Theorem 16, where we are also interested to obtain manifolds
with special causality properties.

Let us first consider again the construction in Example 6 and choose the function
f there as independent on v. As we know, the Lorentzian manifold M := R

2 × N

with the metric gf,h := 2dvdu+ f du2 + h has full holonomy group Hol(N, h) �

R
n−2. For Lorentzian manifolds of type (M, gf,h) various causality properties

are known (see for example [30] and [37]). Let us quote here the following two
results.

1) If (N, h) is a complete Riemannian manifold and if the function f does not
depend on u and is at most quadratic at spacial infinity, i.e., there exist x0 ∈ N

and real constants r, c > 0 such that

f (x) ≤ c · dN(x0, x)2 for all x ∈ N with dN(x0, x) ≥ r,

then (M, gf,h) is geodesically complete. Here dN is the distance function of
(N, h).
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2) If (N, h) is a complete Riemannian manifold and if the function −f is spacial
subquadratic, i.e., there exist x0 ∈ N and continious functions p, c1, c2 ∈
C(R, [0,∞)) with p(u) < 2 such that

−f (u, x) ≤ c1(u) dN(x0, x)p(u) + c2(u) for all (u, x) ∈ R× N,

then (M, gf,h) is globally hyperbolic.

Of course, both conditions for f can be realised in addition to det
(

HessNf (u0, x0)
)

�= 0. Hence, each of the groups in Theorem 16 can be realised as holonomy group
of a geodesically complete as well as by a globally hyperbolic Lorentzian manifold,
if the group G in this Theorem is the holonomy group of a complete Riemannian
manifold.

Another construction of globally hyperbolic examples in the form of Theorem 2
with complete Cauchy surface can be found in [13] and [15]. We consider the
following warped product (F, gF ) over an irreducible Riemannian spin manifold
(Nn−2, h) with parallel spinor fields:

F := R× N, gF := ds2 + e−4sh.

Let C : T F → T F be a Codazzi tensor on (F, gF ), i.e. a symmetric homomor-
phism field such that

d∇F

C(X, Y ) := (∇F
XC)Y − (∇F

Y C)X = 0 for all X, Y ∈ X(F ),

with only positive eigenvalues and let a ∈ R be a positive number. Then the
Lorentzian manifold (M, gh,C),

M := (−a,∞)× F, gh,C := −dt2 + gt := −dt2 + (C + 2(t + a)IdT F )∗gF ,

has full holonomy Hol(N, h) � R
n−2, hence it admits parallel spinor fields.

If, in addition, (N, h) is complete, then the Lorentzian manifold (M, gh,C) is
globally hyperbolic and the space-like slices ({t} × F, gt ) are complete Cauchy
hypersurfaces. Codazzi tensors on warped products are described in [13].

These two constructions reduce the problem of finding, for each G in Theo-
rem 16, a Lorentzian manifold with holonomy G � R

n−2 to the Riemannian case.
First, one has to ensure the existence of Riemannian manifolds with holonomy
group G. Then, for geodesically complete or globally hyperbolic Lorentzian
metrics, one needs complete Riemannian manifolds with holonomy group G. For
connected holonomy groups G = G0 there are deep existence results for complete
and even compact Riemannian manifoldswith special holonomy obtained by several
authors (for an overview see [52]). Based on the examples with connected holonomy
groups, Moroianu and Semmelmann in [67] constructed irreducible Riemannian
manifoldswith parallel spinor for each of the non-connected groupsG in the table of
Lemma 2. For SU(m)�Z2 they construct a compact manifold, and for the remaining
groups the metrics are obtained by removing points from compact spaces or by
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cone constructions, thus these metrics are not complete. This yields the following
conclusion.

Corollary 3 For every group G in Theorem 16, which is connected or for which
G0 acts irreducible on Rn−2, there exist a Lorentzian spin manifold with holonomy
G�R

n−2 and a non-zero parallel spinor field. Moreover, for the connected groupsG

and for SU(m)�Z2, there exist geodesically complete as well as globally hyperbolic
Lorentzian manifolds with complete spacelike Cauchy hypersurfaces and holonomy
G �R

n−2.

To our knowledge, it remains an open questionwhether the groups Sp(m)×Zd , and
Sp(m) · Γ in the table of Lemma 2 can be realised as holonomy groups of complete
Riemannian manifolds.

5 Constraint Equations for Special Lorentzian Holonomy

In the remaining half of this article, we will describe how one can construct (globally
hyperbolic) Lorentzian manifolds with special holonomy by solving a Cauchy
problem with initial conditions along a space-like hypersurface (see Sect. 7). As
a starting point, in this section we will derive the constraint conditions special
holonomy induces on spacelike hypersurfaces. We will mainly restrict to the case
that the Lorentzian manifold admits a lightlike parallel vector field or a lightlike
parallel spinor field.

5.1 Constraint Equations for Recurrent and Parallel Vector
Fields

Let (M, g) be a time-oriented Lorentzian manifold and i : Σ ↪→ M a spacelike
hypersurface with the induced Riemannian metric h := i∗g. For any x ∈ Σ

TxM = TxΣ ⊕ RT (x),

where T : Σ → T M|Σ is the future-directed unit normal vector field on Σ . Then
for all vector fields X, Y on Σ , we can decompose the covariant derivative ∇g

XY in
a tangent and a normal part and obtain

∇g
x Y = projT Σ∇g

XY − g(∇g
XY, T ) T = ∇h

XY − II(X, Y ) · T , (22)

where II is the second fundamental form of the hypersurface Σ ⊂ M . If we denote
by W : T Σ → T Σ the Weingarten operator of Σ ⊂ M ,

W(X) := −∇g

XT ,
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then the second fundamental form is given as

II(X, Y ) = g(W(X), Y ) = h(W(X), Y ).

Now we derive the constraint equations which a recurrent and lightlike vector field
on a Lorentzian manifold imposes on a spacelike hypersurface.

Proposition 6 Let (M, g) be a time-oriented Lorentzian manifold with a recurrent,
lightlike, future-directed vector field V and let Σ ⊂ M be a spacelike hypersurface
with the induced Riemannian metric h and the future-directed unit normal vector
field T . Then the function u and the vector field U on Σ , defined by

u := −g(T , V |Σ), U := uT − V |Σ = −prT Σ(V |Σ),

satisfy

∇hU = −u W + (ω|T Σ)⊗ U, (23)

u2 = h(U, U), (24)

where ω is the 1-form on M defined by ∇gV = ω⊗V . In particular, dU� = ω∧U�

and hence the distribution U⊥ on Σ is integrable.
In particular, if V is parallel, U satisfies the constraints (24) and

∇hU = −u W, (25)

and U� is a nowhere vanishing closed 1-form on Σ .

Proof By definition we have

h(U, U) = g(uT − V |Σ, uT − V |Σ) = −2ug(V |Σ, T )+ u2g(T , T ) = u2.

Moreover, since V is recurrent, for all vector fields X on Σ holds

ω(X)V = ∇g
XV = ∇g

X(uT − U)

= X(u)T + u∇g
XT −∇g

XU

= X(u)T − uW(X)− ∇h
XU + h(W(U), X)T ,

which is equivalent to

X(u) = −h(W(U), X) + uω(X) and

∇h
XU = −uW(X) + ω(X)U,
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where the first condition follows from the second by differentiating the equation
u2 = h(U, U). Then, since the Weingarten operator is symmetric, we obtain

dUb(X, Y ) = 1
2 (ω(X)h(U, Y )− ω(X)h(U, Y )) .

This implies that the distribution U⊥ is integrable. Moreover, the result for V

parallel follows from setting ω = 0. ��
We will now describe the local geometry of Riemannian manifold (Σ, h) satisfying
the constraint equations. We will restrict to the case where V is parallel. Here
admitting a closed non-vanishing 1-form has strong implication for the local form
of h as well as on the global geometry of Σ . For a proof see [62].

Theorem 17 Any Riemannian manifold (Σ, h) that solves the constraints (24)
and (25) with nowhere vanishing vector field U is locally isometric to

(

I × N, h = u−2ds2 + gs

)

, (26)

where I ⊂ R is an interval, gs is a family of Riemannian metrics on some manifold
N parametrised by s ∈ I , and u2 = h(U, U). Under this isometry, we have Us =
u2

s ∂s and in the decomposition T Σ = R∂s ⊕ T N the endomorphism W is given by

W = −1

u
h(∇U, ·) =

(

∂s(
1
u
) gradgs ( 1

u(s,.)
)

d( 1
u(s,.)

) −u
2L∂s gs

)

, (27)

whereL∂s denotes the Lie derivative in s-direction, gradgs the gradient with respect
to gs , and d the differential in N-directions.

Moreover, if the vector field 1
u2

U is complete, then the universal cover of Σ

is globally isometric to a manifold of the form (26) with I = R and N simply
connected.

Conversely, given (Σ, h) as in (26) with I = R or I = S1 a circle, the vector
field U = u2∂s solves (25) for W as in (27). If in addition N is compact and u

bounded, then (Σ, h) is complete.

The proof in [62] proceeds as follows:
Since U� is closed, locally, U is the gradient of some function z and the leaves

of U⊥ are given by its level sets Nc = {z = c}. For the vector field Z = 1
h(U,U)

U

we have

LZU� = dU�(Z, .) = 0,

and hence, the flow φ of Z sends level sets of z to level sets, i.e., φs(p) ∈ Nz(p)+s .
Then the map

Ψ : I ×N0  (s, p) �→ φs(p),
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is a local diffeomorphism with dΨ (∂s) = Z and which, since its differential
preserves U⊥, pulls back the metric to

Ψ ∗h = u−2ds2 + gs.

The statement about the universal covering space is based on the following fact, for
a proof see for example [63, Proposition 8].

Lemma 4 Let Σ be a smooth manifold with a closed 1-form η and a complete
vector field Z such that η(Z) = 1. Then all leaves N of ker(η) are diffeomorphic to
each other and the universal cover ˜Σ of Σ is diffeomorphic to R × ˜N , where ˜N is
the universal cover of N .

The above Theorem 17 also give us a way to construct complete Riemannian
manifolds satisfying the constraint conditions.

5.2 Constraint Equations for Parallel Spinor Fields

Next, let us suppose in addition, that (M, g) is a Lorentzian spin manifold of dimen-
sion (n + 1), with spin structure ( ˜F (M, g), Λ). Then each spacelike hypersurface
Σ is oriented by a timelike future directed unit normal T and ( ˜F (M, g), Λ) induces
a spin structure on (Σ, h) as follows. The embedding of the frame-bundle

F (Σ, h) −→ F (M, g)|Σ
(s1, . . . , sn) �−→ (T , s1, . . . , sn)

is a reduction of F (M, g)|Σ to the subgroup SO(n) ⊂ SO0(1, n). Hence
˜F (Σ, h) := Λ−1(F (Σ, h)) ⊂ ˜F (M, g)|Σ is a principal fibre bundle with
structure group Spin(n) and gives together with the map ΛΣ := Λ|

˜F (Σ,h)

a spin structure of (Σ, h). If we restrict the spin representation Δ1,n to the
subgroup Spin(n) ⊂ Spin0(1, n), we obtain the following isomorphisms of Spin(n)-
representations:

Δn �
{

Δ1,n|Spin(n), if n is even,
Δ+

1,n|Spin(n), if n is odd.

Hence, the spinor bundle SΣ of (Σ, h) and the spinor bundle S of (M, g) are related
by

SΣ = ˜F (Σ, h)×Spin(n) Δn =
{

˜F (M, g)|Σ ×Spin0(1,n) Δ1,n, if n is even,
˜F (M, g)|Σ ×Spin0(1,n) Δ+

1,n, if n is odd.

=
{

S|Σ if n is even
S+|Σ if n is odd.

(28)
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Let φ ∈ Γ (S(+)) be a spinor field on (M, g) and ϕ := φ|Σ ∈ Γ (SΣ) the
corresponding spinor field on (Σ, h) given by the identification (28). Then the
Clifford multiplication in the two spinor bundles is related by

X · ϕ = i T ·X · φ|Σ for all X ∈ X(Σ) (29)

and the positive definite scalar products on both bundles satisfy

〈ϕ1, ϕ2〉SΣ = (φ1|Σ, φ2|Σ)T . (30)

The next proposition describes the constraint conditions which a lightlike parallel
spinor field on a Lorentzian spin manifold imposes on a spacelike hypersurface.

Proposition 7 Let (M, g) be a Lorentzian spin manifold, Σ ⊂ M a spacelike
hypersurface with a future directed timelike unit normal field T and φ ∈ Γ (S(+)) a
lightlike parallel spinor field on (M, g). Then the induced spinor field ϕ := φ|Σ on
(Σ, h) satisfies

∇SΣ

X ϕ = i

2
W(X) · ϕ for all X ∈ X(Σ), (31)

Uϕ · ϕ = i uϕϕ, (32)

where W denotes the Weingarten operator of the hypersurface Σ ⊂ M , Uϕ is the
Dirac current of ϕ and uϕ is the positive function given by

uϕ = ‖Uϕ‖h = ‖ϕ‖2.
Moreover, Uϕ = projT Σ(−Vφ|Σ).

Proof Let (s1, . . . , sn) be a local orthonormal frame on Σ and X ∈ X(Σ). From (5)
we obtain for the spinor derivative of φ:

∇S
Xφ = X(φ)− 1

2

n
∑

j=1
g(∇g

XT, sj )T · sj · φ + 1

2

∑

k<j

g(∇g
Xsk, sj )sk · sj · φ

= X(φ)+ i

2

n
∑

j=1
g(∇g

X
T, sj )(iT · sj ) · φ + 1

2

∑

k<j

g(∇g
X

sk, sj )(iT · sk) · (iT · sj ) · φ.

The identification of the spinor bundles and formula (29) for the Clifford multipli-
cation imply

∇S
Xφ|Σ = X(ϕ)− i

2

n
∑

j=1
h(W(X), sj )sj · ϕ + 1

2

∑

k<j

h(∇h
x sk, sj )sk · sj · ϕ

= ∇SΣ

X ϕ − i

2
W(X) · ϕ.
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This shows (31). To derive the algebraic condition (32), we decompose the Dirac
current Vϕ of φ on Σ into Vφ |Σ = uT − U , where U = projT Σ(−Vφ|Σ), and use
the condition Vφ · φ = 0 (cf. Proposition 3). Multiplying 0 = (uT −U) · φ)|Σ with
T yields

0 = (uT · T · φ)|Σ + i(iT · U) · φ|Σ = uϕ + iU · ϕ.

It remains to prove that U is the Dirac current Uϕ of ϕ and u = ‖ϕ‖2. By definition,

h(Uϕ, X) = −i〈X · ϕ, ϕ〉SΣ .

On the other hand, for all X ∈ X(Σ),

h(U, X) = −g(Vφ |Σ, X) = 〈X · φ, φ〉|Σ = (T ·X · φ, φ)T

(29),(30)= −i〈X · ϕ, ϕ〉SΣ = h(Uϕ, X).

Hence Uϕ = U = proj(−Vφ|Σ). Moreover, by Proposition 6,

h(Uϕ, Uϕ) = u2 = −i〈Uϕ · ϕ, ϕ〉SΣ = −i2u〈ϕ, ϕ〉SΣ = u‖ϕ‖2,

which finishes the proof. ��
Definition 9 Let (Σ, h) be a Riemannian spin manifold and W : T Σ → T Σ

a symmetric endomorphism field. A spinor field ϕ ∈ Γ (SΣ) is called imaginary
W-Killing spinor or imaginary generalised Killing spinor, if it satisfies

∇SΣ

X ϕ = i

2
W(X) · ϕ for all X ∈ X(Σ).

This definition relates to the constraint conditions for a parallel lightlike vector
field as follows.

Lemma 5 Let (Σ, h) be a Riemannian manifold with an imaginary W -Killing
spinor ϕ. Then the Dirac current Uϕ satisfies the following conditions

1. ∇hUϕ = −‖ϕ‖2 ·W .
2. The function qϕ := ‖ϕ‖4 − h(Uϕ, Uϕ) is non-negative and constant. Moreover

qϕ = ‖ϕ‖2 · dist(iϕ, Eϕ)2,

where dist(iϕ, Eϕ) is the pointwise distance of the spinor iϕ to the subspace
Eϕ := {X·ϕ | X ∈ T M} ⊂ SΣ with respect to the real scalar productRe〈·, ·〉SΣ .

If qϕ = 0, then uϕ := ‖ϕ‖2 = ‖Uϕ‖h and Uϕ ·ϕ = iuϕ ϕ. In particular, in this case
Uϕ satisfies the the constraint conditions (24) and (25) with respect to W .
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Proof Differentiating h(Uϕ, X) = i〈ϕ, X · ϕ〉 yields

h(∇h
Y Uϕ, X) = − 1

2 〈W(Y) · ϕ, X · ϕ〉 + 1
2 〈ϕ, X ·W(Y) · ϕ〉

= 1
2 〈ϕ, (W(Y ) ·X +X ·W(Y)) · ϕ〉

= −‖ϕ‖2 · h(W(Y ), X).

This shows the first equation. Furthermore,

Y (‖ϕ‖4) = 2‖ϕ‖2 · (〈∇Y ϕ, ϕ〉 + 〈ϕ,∇Y ϕ〉)
= ‖ϕ‖2 · (i〈W(Y) · ϕ, ϕ〉 − i〈ϕ, W(Y ) · ϕ〉)
= −2‖ϕ‖2 · h(Uϕ, W(Y )).

Hence,

Y (qϕ) = −2‖ϕ‖2 · h(Uϕ, W(Y ))+ 2‖ϕ‖2 · h(Uϕ, W(Y )) = 0,

i.e., the function qϕ is constant. In order to show, that qϕ is non-negative, we
calculate for the distance dist(iϕ, Eϕ):

dist(iϕ, Eϕ)2 = ‖iϕ‖2 − ‖projEϕ
(iϕ)‖2 = ‖ϕ‖2 − ‖ϕ‖−4 · ‖

∑

j

〈iϕ, sj · ϕ〉 sj · ϕ‖2

= ‖ϕ‖2 − ‖ϕ‖−2 · h(Uϕ, Uϕ) = qϕ · ‖ϕ‖−2.

In the case of qϕ = 0 there exists a vector field ξ on Σ such that ξ · ϕ = iϕ. Using
the definition of Uϕ shows that ξ = ‖ϕ‖−2 · Uϕ and therefore, Uϕ · ϕ = iuϕϕ. ��
Definition 10 We say that an imaginary W -Killing spinor is of type I if qϕ = 0,
and of type II if qϕ > 0.

Remark 3 The restriction of a parallel spinor field φ of a Lorentzian manifold to a
spacelike hypersurface is always an imaginary W -Killing spinor. By Proposition 7
ϕ := φ|Σ is of type I, if Vφ is lightlike. The same arguments as in proof of this
proposition shows that ϕ is of type II, if Vφ it timelike.

Remark 4 (Killing Spinors) As the name suggests, imaginary generalised Killing
spinors are a generalisation of imaginary Killing spinors for which W = 2μId for
μ ∈ R \ {0}. These are, in turn, a special case of Riemannian manifolds (Σ, h)

with Killing spinors, i.e., with ∇hϕ = λX · ϕ with λ ∈ C \ {0}. The existence
of a Killing spinor on (Σ, h) of dimension n implies that h is an Einstein metric
with scalar curvature 4n(n − 1)λ2, which in particular implies that λ is either real
or imaginary. By Myer’s Theorem, it implies that complete Riemannian manifolds
with real Killing spinor (λ ∈ R \ {0}) are compact. On the other hand if (Σ, h)

admits an imaginary Killing spinor (λ = iμ ∈ iR \ {0}), Σ cannot be compact, as
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otherwise the inequality

0 ≤
∫

Σ

〈Dϕ, Dϕ〉dΣ =
∫

Σ

〈D2ϕ, ϕ〉dΣ = −nμ2
∫

Σ

〈ϕ, ϕ〉dΣ < 0,

would hold, in which D is the Dirac operator. In contrast, Riemannian manifolds
with imaginary generalised Killing spinors can be compact, see [16, Section 6] for
a 2-dimensional example.

Moreover, for a Riemannian manifold with a Killing spinor, the (Riemannian or
Lorentzian) cone

M = R>0 ×Σ, g = 2λ2dr2 + r2h,

admits a parallel spinor.5 This, together with Berger’s classification, Wang’s result
([75], as described in our Proposition 5) and a result by Gallot that a cone over a
complete Riemannian manifold is either flat or irreducible [47], was used by C. Bär
in [4] when classifying complete Riemannian manifolds with real Killing spinors.
Generalised real Killing spinors have been considered in [3].

The first author obtained the following classification of complete Riemannian
manifolds with imaginary Killing spinor ϕ in [9]: if ϕ is of type II, then (Σ, h) is
isometric to the hyperbolic space with sectional curvature−4μ2, and if ϕ is of type
I, then (Σ, h) is isometric to a warped product of the form

(R× N, ds2 + e−4μsg),

where (N, g) is a complete Riemannian spin manifold with parallel spinor field.
This result can also be deduced using a generalisation of Gallot’s result in [2].

Since for a Riemannian manifold (Σ, h) with imaginary generalised W -Killing
spinor ϕ of type I the vector field Uϕ satisfies the constraint conditions (25),
Theorem 17 applies to (Σ, h) and consequently leads to Theorem 28 in Sect. 8.2,
which can be seen as a (local) analogue of the classification for imaginary Killing
spinors in [9].

For the moment, let us present classification results for Riemannian manifolds
with imaginary generalised W -Killing spinors for two special cases of W .

Example 8 W := f · IdT Σ with f ∈ C∞(Σ,R+).
Then (Σ, h) is a complete Riemannian spin manifold with imaginary W -Killing

spinor of type I if and only if (Σ, h) is isometric to a warped product

(R× F , ds2 + e
−4

s
∫

0
f (τ) dτ

gF ),

5This is in fact true in any signature.
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where (F, gF ) is a complete Riemannian spin manifold with a non-vanishing
parallel spinor field (for a proof see [14, chap.7.2] or [69]).

In this example, F is a level set of the function uϕ = ‖ϕ‖2 and the splitting
diffeomorphism is given by the flow of the vector field u−1ϕ Uϕ . In this spitting, the
function f only depends on the s-coordinate.

Example 9 Let W be a Codazzi tensor on (Σ, h), i.e.

d∇h

W(X, Y ) := (∇h
XW)(Y )− (∇h

Y W)(X) = 0 for all X, Y ∈ X(Σ),

and suppose that W is invertible and all of its eigenvalues λ are positive and
uniformally bounded by positive constants, 0 < c1 ≤ λ ≤ c2.

In this case, (Σ, h) is a complete Riemannian spin manifold with imaginary W -
Killing spinor of type I if and only if (Σ, h) is isometric to

( R× F , (W−1)∗(ds2 + e−4sgF ) ),

where (F, gF ) is a complete Riemannian spin manifold with a non-vanishing
parallel spinor field and W−1 is a Codazzi tensor for the warped product (R ×
F, ds2 + e−4sgF ). In [13] Codazzi tensors on such warped products are described.

6 The Cauchy Problem for the Vacuum Einstein Equations

The results in the previous section suggest the question whether the constraint
conditions for a Riemannian manifold (Σ, h) are not only necessary but also
sufficient for (Σ, h) being a Cauchy hypersurface in a Lorentzian manifolds with
parallel lightlike vector field (or spinor field). In Sect. 7 we will see that this is indeed
the case by showing how a globally hyperbolic Lorentzian manifold with special
holonomy can be constructed from a given Riemannian manifold (Σ, h) satisfying
the constraint equations in Sect. 5. We will achieve this by studying certain Cauchy
problems for PDEs that are induced by the existence of parallel lightlike vector fields
or spinor fields. Since our approach for establishing the existence of a solution is in
parts analogous to the approach for the Einstein equations, in this section we will
review this approach in detail. We will however focus on local aspects of the proofs,
i.e., on constructing a neighbourhood of a given Riemannian manifold, and not on
much more difficult aspects such as maximality or stability of solutions.
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6.1 The Constraint Conditions for the Vacuum Einstein
Equations

The vacuum Einstein equations for a Lorentzian manifold (M, g) are equivalent to
the condition that g is Ricci-flat,

Ricg = 0. (33)

In this equation the Lorentzian metric g is considered to be the unknown and the
equation for g is usually treated as a Cauchy problem: given a Riemannian manifold
(Σ, h), is there a Lorentzian manifold (M, g) satisfying equation (33) such that
(Σ, h) is a spacelike hypersurface in (M, g) and g|Σ = h? Of course, for this to
be possible, (Σ, h) has to satisfy certain constraint equations, which we will now
derive.

Let (M, g) be a time oriented Lorentzian manifold and (Σ, h = g|Σ) be a
spacelike hypersurface with Weingarten tensor W and second fundamental form
II. Then the curvature tensors of g and h satisfy the Gauss equation,

Rg(X, Y, Z, V ) = Rh(X, Y, Z, V )+II(Y, Z)II(X, V )−II(Y, V )II(X, Z), (34)

and the Codazzi equation,

Rg(X, Y, Z, T )|T Σ = (∇h
XII)(Y, Z)− (∇h

Y II)(X, Z), (35)

where X, Y, Z, V vectors tangent to Σ and T is the positive timelike unit normal
along Σ . They follow from the formula (22) and imply for the Ricci tensor of g that

Ricg(T , X) = tr(∇h
XW) − divh(W)(X) = dtr(W)(X) − divh(II)(X), (36)

and

Ricg(X, Y ) = −Rg(T , X, Y, T )+ Rich(X, Y )+ tr(W)II(X, Y )− II(W(X), Y ),

(37)

again with X, Y ∈ T Σ . In addition we have that

Ricg(T , T ) =
n

∑

i=1
Rg(T , Ei, Ei, T ),

where T , E1, . . . En is an orthonormal basis for g. This implies for the scalar
curvature that

scalg = −2Ricg(T , T )+ scalh + tr(W)2 − tr(W 2). (38)
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Now one tries to express Ricg = 0 along Σ in terms of geometric quantities in
(Σ, h). The resulting equations, that are implied by the above formulae, are called
the constraint equations for the vacuum Einstein equations (see for example [7]):

Lemma 6 (Constraint Equations for the Vacuum Einstein Equations) Let
(M, g) be a time oriented Lorentzian manifold with Ricg = 0 and (Σ, h = g|Σ)

be a spacelike hypersurface with unit normal T and Weingarten tensor W . Then
Ricg(T , .)|T Σ = 0 is equivalent to

dtr(W)− divh(W) = 0. (39)

and Ricg(T , T )|Σ = 0 is equivalent to

scalg|Σ = scalh + tr(W)2 − tr(W 2).

In particular, if Ricg = 0 along Σ , then the constraint equations (39) and

scalh + tr(W)2 − tr(W 2) = 0, (40)

are satisfied.

6.2 Results from PDE Theory

We will now state the results from the theory of PDEs that are needed in order
to show the existence of solutions for the considered Cauchy problems. We will
formulate them for functions on R

n+1 with values in some RN . We fix coordinates
(x0, . . . , xn) on Rn+1 and use the index convention that Greek indices μ, ν, . . . run
from 0 to n and Latin indices i, j, . . . only from 1 to n. The initial data will be given
on a hypersurfaceΣ which we assume to be an open set in the hyperplane {x0 = 0}
containing the origin.

The first result is the Cauchy-Kowalevski Theorem and we will formulate it
for PDEs of second order. It gives an existence and uniqueness statement for a
Cauchy problem of the following form: find an RN -valued function w, defined on a
neighbourhood in R

n+1 of the origin such that

∂20w = F(xμ, w, ∂μw, ∂0∂iw, ∂i∂j w), w|Σ = f, ∂0w|Σ = g, (41)

where f and g are functions on Σ and F is an RN -valued function on a vector space
of the appropriate dimension.

Theorem 18 (Cauchy-Kowalevski) If F , f and g are real analytic, then the
Cauchy problem (41) has a unique analytic solution w defined in a neighbourhood
of the origin in Rn+1.
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For a proof see for example [38] or [74, Section 16].
Of course, real analyticity is a strong assumption, but since Lewy’s example it is

well known that it cannot be removed. Hence, we will give another result from the
theory of first order quasilinear symmetric hyperbolic systems which applies in the
smooth setting.

Definition 11 A first order, quasilinear PDE of the form (in which we use Einstein’s
summation convention),

Aν(xμ, w)∂νw = b(xμ, w), (42)

for an R
N -valued function w on Rn+1, is called symmetric hyperbolic, if

• the Aν’s and b are functions of the n+ 1 coordinates and the N unknowns,
• the Aν have values in the symmetric N ×N-matrices,
• b has values in RN , and
• A0 ≥ cId for a positive constant c.

For first order, quasilinear symmetric hyperbolic PDEs there is the following result.

Theorem 19 (Existence and Uniqueness for Symmetric Hyperbolic PDEs)
Consider a symmetric hyperbolic system (42) with Aμ and b smooth functions and
f ∈ C∞(Σ). Then there is a smooth solution w : M → R

N to (42) on an open
neighbourhood M of Σ in R × Σ with w|Σ = f . Such a solution is unique in
the sense that if wi : Mi → R

N , i = 1, 2, are two smooth solutions on open
neighbourhoodsMi in R×Σ with w1|Σ = w2|Σ , then w1 = w2 on M1 ∩M2.

For more details and proofs we refer to [74, Sections 16.1 and 16.2] or [42] and
references therein.

The bad news is that neither of the two results can be applied directly to the
PDE that arises when (33) is written in arbitrary coordinates. Indeed, in coordinates
(x0, . . . , xn) on a Lorentzian manifold (M, g) with g = gμνdxμdxν , the Ricci
tensor Ricg = Ric

g
μνdxμdxν is given by

Ricg
μν = − 1

2gαβ∂α∂βgμν + ∂(μΓν) +Gμν, (43)

where Γμ = gαβΓμαβ and Γμαβ = 1
2

(

∂αgβμ + ∂βgαμ − ∂μgαβ

)

denote the
Christoffel symbols of g, the round brackets denote the symmetrisation of indices,
and Gμν = Gμν(xα, gαβ, ∂γ gαβ) are lower order terms depending on the coordi-
nates xα, the functions gαβ and its first derivatives ∂γ gαβ . The term that in general
prevents us from applying the Cauchy-Kowalevski Theorem or (when rewriting this
as a first order PDE) Theorem 19 is the term

∂(μΓν) = 1
2gαβ

(

∂μ∂αgνβ + ∂ν∂αgμβ − ∂μ∂νgαβ

)+ LOT s. (44)

The fundamental reason that the above results cannot be applied directly to
Eq. (33) is its diffeomorphism invariance. Indeed, let g be a Ricci-flat Lorentzian



46 H. Baum and T. Leistner

metric on R
n+1 and φ a diffeomorphism of Rn+1 that restricts to the identity in

a small neighbourhood of Σ = {x0 = 0}. Then the metric φ∗g, which is the
pull-back of g by φ, is isometric to g and thus also Ricci-flat. Hence, its metric
coefficients (φ∗g)μν = ∂μφα∂νφβgαβ are also solutions to the PDE (33) but,
because of the assumption we have φ|Σ = Id and dφ|Σ = Id and thus the same
initial condition along Σ . This however contradicts the uniqueness statements in
the above results. Hence, in order to apply the PDE theory to Eq. (33), one has to
break this diffeomorphism invariance.We will show two ways how this can be done.

6.3 The Vacuum Einstein Equations as Evolution Equations

Let (Σ, h) be a Riemannian manifold satisfying the constraint conditions in
Lemma 6. The aim is to construct a globally hyperbolic Lorentzian manifold (M, g)

that is Ricci-flat and contains (Σ, h) as a Cauchy hypersurface. Motivated by the
Splitting Theorem 2, we will make an anstaz that M is an open neighbourhood of
{0} ×Σ in R×Σ and the metric g is of the form

g = −λ2 dt2 + ht , (45)

where ht is a family of Riemannian metrics with h0 = h and λ a positive function
on R × Σ . We are now going to derive the Ricci-flatness equation as an evolution
equation for the family of Riemannian metrics ht . In regards to the remarks in
Sect. 6.2, in this setting the diffeomorphism invariance is broken by only allowing
coordinate transformations of Σ , i.e., diffeomorphism that are independent of t .

InM we consider the hypersurfacesΣt = {t}×Σ equippedwith the metrics ht =
g|T Σt×T Σt . Their timelike unit normal is given by T = λ−1∂t , their Weingarten
tensor by Wt = −∇gT |T Σt , and their second fundamental forms IIt by

IIt (X, Y ) = − 1
2λ

(L∂t g)(X, Y ) for all X, Y ∈ T Σt , (46)

whereL∂t denotes the Lie derivative with respect to ∂t . In this setting we introduce
some notation. If A is an endomorphism and B a symmetric bilinear form on M

with A(T ) = T B = 0, then it holds that

(L∂t A)(T ) = T (L∂t B) = 0,

whereL denotes the Lie derivative. Hence, we introduce the notation

A′ := L∂t A, B ′ := L∂t B.

Furthermore, if A and B are metric duals of each other, B = g(A., .) = ht (A., .),
we get

B ′(X, Y )− g(A′X, Y ) = −2λIIt (AX, Y ),
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which by Eq. (46) becomes the familiar Leibniz formula

B ′(X, Y ) = ht (A
′X, Y )+ h′t (AX, Y ). (47)

In case of the second fundamental form and the Weingarten operator, this implies

II′t (X, Y ) = ht (W
′
t (X), Y )− 2λ ht (W

2
t (X), Y ).

In addition to the Gauß and Codazzi equations, in this situation we can also express
the curvature termRg(T , X, Y, T ) in terms of (derivatives of) IIt and get an equation
that is sometimes calledMainardi equation,

Rg(X, T , T , Y ) = IIt (X, Wt (Y ))+ 1
λ

(

II′t (X, Y )+ Hessht (λ)(X, Y )
)

. (48)

On the one hand, we can insert this into Eq. (37) and get

Ricg |T Σt×T Σt = Richt + tr(Wt ) IIt − 2IIt (., Wt .)− 1
λ

(

II′t + Hessht (λ)
)

,

(49)

where Hessht (λ) = ∇ht dλ denotes the Hessian of λ with respect to the metric ht .
On the other hand, we get the equation

Ricg(T , T ) = tr(W 2
t )+ 1

λ

(

trht (II′t )+Δht (λ)
)

, (50)

where Δht (λ) = trht (Hessht (λ)) denotes the Laplacian of λ with respect to ht . Note
the subtle notional difference here that the trace of the bilinear form is taken with
respect to ht while the trace for an endomorphism is independent of the metric. This
yields the expression for the scalar curvature

scalg = scalht + (tr(Wt ))
2 − 3tr(W 2

t )− 2
λ

(

trht (II′t )+Δht (λ)
)

. (51)

Then we observe:

Lemma 7 The Lorentzian metric g in (45) is Ricci flat if and only if the equation

II′t = λ
(

Richt + tr(Wt) IIt − 2IIt (., Wt .)
)

− Hessht (λ), (52)

as well as the constraint equations (39) and (40) are satisfied for each Riemannian
metric ht .

Proof The ‘only-if’ direction of this statement clearly follows from Lemma 6 and
formula (49).

On the other hand, by formula (49), Eq. (52) implies that Ricg|T Σt×T Σt = 0.
By formula (36), the constraint equation (39) implies that Ricg(T , X) = 0 for all
X ∈ T Σt and it remains to show that Ric(T , T ) = 0. For this, we take the trace of



48 H. Baum and T. Leistner

Eq. (52) and the constraint (40) to get

0 = trht II′t +Δht (λ)− λ
(

scalht + (tr(Wt ))
2 − 2tr(W 2

t )
)

= trht II′t +Δht (λ)+ λtr(W 2
t ).

By (50) this implies that Ricg(T , T ) = 0 and hence Ricg = 0. ��
The key observation now is that Eq. (52) is a second order evolution equation for the
family ht of Riemannian metrics that it is of Cauchy-Kowalevski form as in (41).
This becomes evident when spelling out the left-hand-side of (52) as

II′t = 1
2λ2

(

λ′h′t − λh′′t
)

,

and noting that the right-hand-side of (52) contains no double derivatives of ht in
t-direction. Then the Cauchy-Kowalevski Theorem applies:

Theorem 20 Let (Σ, h) be a real analytic Riemannian manifold satisfying the
constraint equations (40) and (39) with a real analytic symmetric endomorphismW

and corresponding symmetric bilinear form II, and let λ be a real analytic function
on R×Σ . Then there is a unique real analytic Ricci-flat Lorentzian metric g of the
form (45) with h0 = h and h′0 = II defined on a neighbourhood M of {0} × Σ in
R×Σ , such that (M, g) is globally hyperbolic with Cauchy hypersurface Σ .

Proof We proceed in three steps:

Step 1: Let p ∈ Σ . We fix coordinates charts of Σ around p and apply the
Cauchy-Kowalevski Theorem to the evolution equation (37) written in these
coordinates. On each coordinate patch, this will give a unique real analytic
solution ht defined on a neighbourhood of Up in R × Σ . By Lemma 1 this
neighbourhood Up can be chosen to be globally hyperbolic. By the uniqueness,
the solutions on such globally hyperbolic neighbourhoods for different p and
q coincide on their overlaps Up ∩ Uq and hence define a unique real analytic
solution ht on neighbourhoodM := ∪p∈ΣUp of {0} ×Σ in R×Σ .

Step 2: We show that (M, g) is globally hyperbolic. Let γ = (γ0, γΣ) : (a, b) →
M be an inextendible timelike geodesic. Then γ intersect one of the globally
hyperbolic neighbourhoods from Step 1 and hence intersects Σ , i.e., there is a
c ∈ (a, b) such that γ0(c) = 0. Since γ is timelike, it is γ ′0(s) �= 0 for all
s ∈ (a, b) which implies that γ0 cannot return to 0, and hence γ (c) is the only
intersection of γ with Σ .

Step 3: It remains to show that the resulting Lorentzian manifold (M, g) is
actually Ricci-flat. The evolution equation ensures that Ricg|T Σt×T Σt = 0. We
define a function and a 1-form on M by

f = Ricg(T , T ) = −scalg, ω = Ricg(T , .),
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and show that they are zero. The key is the second Bianchi-identity and its
consequence (1). Using Ricg|T Σt×T Σt = 0, it provides us with evolution
equations for f and ω,

f ′ = 2tr(W)f + 2divht (ω)+ 4ω(gradht (log(λ))

ω′ = tr(W)ω + 1
2df.

Obviously, the right-hand-side is R-linear in f and ω. To these equations we can
again apply the Cauchy-Kowalevski Theorem. The constraint equations along Σ

imply that f |Σ = 0 and ω|Σ = 0, so that the unique solutions for f and ω vanish
on all of M . This concludes the proof. ��
This result goes back to Darmois [34], see also [64]. It is independent of the
signature of g and in particular holds for Riemannian metrics g = λ2dt2 + ht ,
see [3, 56].

6.4 The Vacuum Einstein Equations as Symmetric Hyperbolic
System

The generalisation of Theorem 20 to the smooth setting goes back to Y. Choquet-
Bruhat [39]. In order to apply the theory of symmetric hyperbolic PDEs to the
vacuum Einstein equation, one approach is to break the diffeomorphism invariance.
This can be done done by fixing certain coordinates, Choquet-Bruhat used harmonic
coordinates, [39], another approach is to fix a background metric. This is known as
hyperbolic reduction, and goes back to Friedrich and Renadall [42], see also [70].

For a Lorentzianmanifold (M, g), recall from Sect. 6.2 that the term that prevents
Eq. (33) from being symmetric hyperbolic when written in coordinates was ∂(μΓν),
see Eq. (43). This term cannot be expressed invariantly, so just subtracting this
term from the Ricci tensor would not give an invariant PDE, it suggest however
a modification of Ricg by the symmetric derivative of a 1-form η,

Ricg + Sym(∇gη),

where the symbol Sym denotes the symmetrisation of a bilinear form
Sym(B)(X, Y ) = 1

2 (B(X, Y ) + B(Y, X)). The idea to find η in [42], known as
hyperbolic reduction, is to fix a backgroundmetric g̃ with Levi-Civita connection˜∇
and define η by taking its trace with respect its two covariant entries and dualising
with the metric g give a 1-form

ηg,g̃(X) :=
n

∑

μ=0
εμg(C(Eμ, Eμ), X), (53)
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for X ∈ T M , Eμ an orthonormal basis for g, and where C is the difference tensor
of ∇g and ˜∇,

C(X, Y ) = ˜∇XY −∇g

XY.

Then we define

˜Ric
g := Ricg + Sym(∇gηg,g̃), (54)

In the following, we use again Einstein’s summation convention and the conven-
tion that Greek indices run from 0, . . . , n and Latin indices from 1, . . . , n.

Lemma 8 Let (M, g̃) be a Lorentzian manifold and g Lorentzian metric on M

satisfying the equation

˜Ric
g = 0, (55)

where ˜Ric
g
is defined in (54). Then in local coordinates xμ, with x0 a timelike

coordinate, the metric coefficients gμν and its first derivatives Kμν := ∂0gμν and
Lμν,i := ∂igμν satisfy a symmetric hyperbolic system of the following form

∂0gμν = Kμν,

g00∂0Kμν + 2g0i∂iKμν + gij ∂iLμν,j = Fμν,

−g
j

i ∂0Lμν,j + g
j

i ∂jKμν = 0,

(56)

with suitable functions Fμν = Fμν(xα, gαβ, Kαβ, Lαβ,k) depending on the coordi-
nates (xα), the metric coefficients and ist first derivatives.

Proof In local coordinates (xμ) the term Sym(∇gη) in (54) is

∇g

(μην) = 1
2gαβ

(

∂μ∂νgαβ − ∂μ∂αgβν − ∂μ∂βgαν

)+ LOT s,

and hence, because of Eq. (44), the functions

fμν := ∂(μΓν) +∇g

(μην)

are of lower order in gαβ , i.e., fμν = fμν(xα , gαβ, ∂γ gαβ). Hence, because of
Eq. (43), we get

(˜Ric
g
)μν = − 1

2gαβ∂α∂βgμν + Fμν, (57)

where Fμν = fμν + Gμν and the Gμν’s are of lower order in gαβ and defined in
Eq. (43).
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Then Eq. (55) and the definition of the Kμν’s and Lμν,i ’s imply the system (56).
It remains to show that (56) is symmetric hyperbolic.

To this end, on the appropriate vector spaces we define linear maps A0 =
A0(xα, gαβ, Kαβ, Lαβ,k) and Ai = Ai(xα, gαβ, Kαβ, Lαβ,k), depending on the
coordinates, the metric coefficients and its derivatives, as

A0

⎛

⎝

uμν

vμν

wμν,i

⎞

⎠ :=
⎛

⎜

⎝

uμν

g00vμν

−g
j

i wμν,j

⎞

⎟

⎠
, Ai

⎛

⎝

uμν

vμν

wμν,j

⎞

⎠ :=
⎛

⎜

⎝

0
2g0ivμν + gikwμν,k

gi
j vμν

⎞

⎟

⎠
.

Writing these linear maps schematically as matrices shows that they are symmetric,

A0 =
⎛

⎜

⎝

1 0 0
0 g00 0

0 0 −g
j

i

⎞

⎟

⎠
, Ai =

⎛

⎝

0 0 0
0 2g0i gij

0 gij 0

⎞

⎠ .

Moreover, since g is Lorentzian metric and the x0 coordinate is timelike, the matrix
−gij is negative definite and hence A0 is positive definite. It is easily checked that
the system (56) can be written as

A0

⎛

⎝

∂0gμν

∂0Kμν

∂0Lμν,j

⎞

⎠+ Ai

⎛

⎝

∂igμν

∂iKμν

∂iLμν,j

⎞

⎠ = b

as in (42) with

b = b(xα, gαβ, Kαβ, Lαβ,k) =
⎛

⎝

Kμν

Fμν(xα, gαβ, Kαβ, Lαβ,k)

0

⎞

⎠ ,

where Fμν is determined by the LOTs in Eq. (57). ��
A few remarks are in place. First, it is clear that the system (56) consist of less

equations than the original system (57), which was equivalent to Eq. (55) and hence
is weaker. We will however see later that Eq. (56) together with the appropriate
initial conditions implies Eq. (55).

Secondly, clearly a solution g to equation (55) is not necessarily Ricci-flat. The
key observation then is that if g satisfies condition (55) then the 1-form η satisfies a
linear wave equation.

Lemma 9 Let (M, g) be a Lorentzian manifold with Ricci tensor Ricg and η be a
solution to equation

Ricg + Sym(∇gη) = 0. (58)
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The η satisfies the wave equation

Δgη − Ricg(η�, .) = 0,

where Δg denotes the Bochner-Laplacian on 1-forms, Δgη = trg(1,2)(∇∇η), or in
abstract index notation (Δgη)μ = ∇ν∇νημ.

Proof Taking the trace of Eq. (58) gives

0 = scalg + divg(η).

Taking the divergence of (58), the identity (1) and the definition of the curvature
yield the simple computation

0 = −∇μscalg +∇ν∇νημ + ∇ν∇μην

= −∇μ∇νην +∇ν∇νημ +∇ν∇μην

= ∇ν∇νημ + R ν
νμ αηα

= Δgημ − Ricg
μαηα,

which proves the lemma. ��
By Theorem 3, this implies that η is uniquely determined by its values and
derivatives on an initial Cauchy hypersurface. This means that one has to choose
the initial values such that η|Σ = 0 and ∇η|Σ = 0 for Σ . The following will
facilitate this:

Lemma 10 Let (M, g) be a Lorentzian manifold with Ricci tensor Ricg and η be a
solution to Eq. (58). Moreover, let (Σ, h) be a spacelike hypersurface satisfying the
constraint equations (39) and (40). If η|Σ = 0, then also ∇gη|Σ = 0.

Proof Because of η|Σ = 0, we also have that ∇g
Xη|Σ = 0 for all X ∈ T Σ . For the

other terms, the constraint conditions come into play: by Lemma 6, the constraint
condition (39) gives that

0 = Ricg(∂t , X) = − 1
2 (∇g

∂t
η)(X),

where we also use Eq. (55). Equation (55) and what we know about η so far also
give

Ricg(T , T )|Σ = −(∇g
T η)(T )|Σ = divg(η)|Σ = −scalg|Σ.

But then Eq. (38) and the constraint condition (40) show that scalg and hence ∇gη

vanish along Σ . ��
We will now specify the correct initial conditions that enable us to put Lem-

mas 8–10 into action.
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Theorem 21 Let (Σ, h) be a Riemannian manifold equipped with a symmetric
bilinear form II, a smooth function f ∈ C∞(Σ) and a smooth 1-form σ . Moreover,
let λ be a smooth positive function on R×Σ . On R×Σ fix the background metric

g̃ = −λ2dt2 + h. (59)

Then on a neighbourhood M of {0} × Σ in R × Σ there is a unique Lorentzian
metric g that satisfies Eq. (55) and the initial conditions

g|Σ = g̃|Σ, g′|T Σ×T Σ = −2λ|Σ II, g′(∂t , ∂t )|Σ = f, g′(∂t , .)|Σ = σ,

and such that (M, g) contains (Σ, h) as Cauchy hypersurface.

Proof The proof proceeds similarly to the proof of Theorem 20. At p ∈ Σ we
fix coordinates xi on an open set W in Σ and denote by x0 := t the canonical t-
coordinate on R×Σ . Since the system (56) turned out to be symmetric hyperbolic,
it has a unique solution (gμν, Kμν, Lμν,i ) on a neighbourhood U of W in R × W

satisfying the initial conditions

gμν |W = g̃μν |W , Kij |W = −2λIIij , K00|W = f, K0i |W = σi,

as well as Lμν,k |W = ∂kg̃μν |W , i.e.,

Lij,k |W = ∂khij , Li0,k|W = 0, L00,i |W = ∂iλ|W . (60)

This first equation in (56) is just that Kμν = ∂0gμμ, which turns the third into

0 = ∂0
(

Lμν,i − ∂igμν

)

.

This, together with the first initial condition in (60) implies that Lμν,i = ∂igμν on all
of U . With this, the second equation in the system (56) just becomes the the second
order equation (57) and hence implies Eq. (55). Hence for each p ∈ Σ we obtain
a Lorentzian metric on an open neighbourhood Up in R × W satisfying Eq. (55).
As before, we can chose Up to be globally hyperbolic, but in addition we chose it
so small that Up ∩ Σt is spacelike, where Σt = {t} × Σ . This requirement will
be needed in the next step to ensure that the t-component of a timelike geodesic is
nonzero.

Having such Up for each p ∈ Σ , we define now M := ∪p∈ΣUp. As before,
the uniqueness of the solution implies that two solutions on different Up coincide
on overlaps and hence constitute a solution on a neighbourhood M = ∪p∈MUp of
Σ in R × Σ . As before in Step 2 in the proof of Theorem 20 one can now show
that M is globally hyperbolic, using that the Up are globally hyperbolic and the
additional requirement that Σt ∩Up is spacelike. The latter ensures that each curve
γ = (γ0, γΣ) satisfies g(γ ′Σ(s), γ ′Σ(s) ≥ 0, which implies for a timelike curve that
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γ ′0(s) �= 0 for all s. Hence the argument in Step 2 in the proof of Theorem 20 can be
applied to show that (M, g) is globally hyperbolic. ��

In order to specify the remaining initial conditions f and σ in Theorem 21 in a
way that the 1-form ηg,g̃ vanishes, we will make use of the following observation:

Lemma 11 If g̃ is the background metric (59) on R×Σ and g another Lorentzian
metric on a neighbourhood of Σ in R × Σ such that g|Σ = g̃|Σ , then η = ηg,g̃

satisfies

η(∂t )|Σ = 1
2λ2

g′(∂t , ∂t )|Σ + 1
2 tr

h(g′|Σ)+ λ′
λ
|Σ,

η|T Σ = 1
λ2

g′(∂t , .)|T Σ.

Proof We use coordinates x0 = t and xi coordinates on Σ . Then, because of the
initial conditions g|Σ = g̃|Σ , we have along Σ

˜Γ i
kl−Γ i

kl = 0, ˜Γ 0
kl−Γ 0

kl = − g′kl

2λ2
, ˜Γ 0

00−Γ 0
00 = λ′

λ
+ g′00

2λ2
, ˜Γ k

00−Γ k
00 = −hkj g′0j .

Hence, still along Σ we get

η0|Σ = gμνg0α

(

˜Γ α
μν − Γ α

μν

) |Σ = ˜Γ 0
00 − Γ 0

00 − λ2hkl
(

˜Γ 0
kl − Γ 0

kl

)

|Σ,

which proves the first equation, and

ηi |Σ = gμνgiα

(

˜Γ α
μν − Γ α

μν

) |Σ = gμνhik

(

˜Γ k
μν − Γ k

μν

)

|Σ = λ−2g′0i |Σ,

proving the second one. ��
Now have all we need in order to prove:

Theorem 22 Let (Σ, h) be a Riemannian manifold satisfying the constraint con-
ditions (40) and (39) for a symmetric bilinear form II and let λ be a smooth
positive function on R × Σ and g̃ the associated background metric (59). Then
on a neighbourhoodM of {0} ×Σ in R×Σ there is a unique Ricci-flat Lorentzian
metric g with ηg,g̃ = 0 and satisfying the initial conditions

g|Σ = g̃|Σ, g′|Σ = −2λII+ 2λ2
(

λtrh(II)− λ′
)

dt2.

Moreover (M, g) contains (Σ, h) as Cauchy hypersurface.

Proof The initial conditions are as in Theorem 21 with

f := 2λ2
(

λtrh(II)− λ′
)

, σ := 0.
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By Theorem 21 we get a unique globally hyperbolic Lorentzian manifold (M, g)

with ˜Ric
g = 0. By Lemma 11 the initial conditions ensure that ηg,g̃|Σ = 0. By

Lemma 10 this also implies that ∇gηg,g̃|Σ = 0. Now we can apply Lemma 9 and
Theorem 3 to conclude that ηg,g̃ = 0 on all of M and hence that g is Ricci flat. ��
Remark 5 In contrast to the result in Theorem 20, the Ricci-flat metric found in
Theorem 22 is not necessarily of the form −λ2dt2 + ht . We can however arrange
with a simple trick that the hypersurfaces Σt remain orthogonal to ∂t , see [62,
Section 5]:

If t denotes the global t-coordinate on M ⊂ R×Σ , its gradient with respect to g

is by construction timelike and the leaves of the integrable distribution gradg(t)⊥ are
given byΣt = {t}×Σ . Then the vector field F = (dt (gradg(t))−1 gradg(t) satisfies
dt (F ) = 1 and its flow φs sends level sets Σt to Σt+s . Indeed, the derivative of the
function f (s) := t (φs(p)) satisfies

df
ds
= dt|φs(p)(F ) = 1,

and hence f (s) = t (φs(p)) = s+ t (p). The flow φt defines a diffeomorphismψ on
a neighbourhood of Σ in M by ψ(t, p) = φt t (p) that satisfies dψ(∂t ) = F . Hence
the pulled back metric is of the form

ψ∗g = −˜λ2dt2 + ht ,

with a smooth function˜λ. AlongΣ it satisfies˜λ|Σ = g(gradg(t), gradg(t))−1/2|Σ =
λ|λ, i.e., along Σ , ˜λ coincides with the prescribed function λ. Off Σ , it might
however differ from λ.

7 Cauchy Problems for Lorentzian Special Holonomy

In this section we will see that the constraint conditions in Sect. 5 for a Riemannian
manifold (Σ, h) are not only necessary but also sufficient for (Σ, h) being a
Cauchy hypersurface in a Lorentzian manifold with parallel lightlike vector field
(spinor field). Following the strategy we have described in the previous section for
the vacuum Einstein equations, we will achieve this by studying certain Cauchy
problems for PDEs that are induced by the existence of parallel lightlike vector
fields or spinor fields. This will involve finding the right evolution equations for a
time-dependent family of Riemannian metrics as well as ensure that these equations
have a solution. As before we will study this in the analytic setting where we derive
evolution equations [16] and in the smooth setting where we study a symmetric
hyperbolic PDE system [62].
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7.1 Evolution Equations for a Parallel Lightlike Vector Field in
the Analytic Setting

As in Sect. 6.3 in this section we again make the ansatz to construct a Lorentzian
metric g = −λ2dt2 + ht of the form (45) on an open neighbourhood M in R × Σ

of a Riemannian manifolds (Σ, h) satisfying the constraint condition (25) and (24).
We assume that M = R×Σ and g = −λ2dt2+ht . If we write a lightlike vector

field V as V = utT −Ut with t-dependent function and vector field on Σ , then the
constraints for each t ,

∇ht Ut + utWt = 0, dut + IIt (Ut , ·) = 0

are equivalent to ∇gV |Σt = 0, whereas ∇g

∂t
V = 0 is equivalent to

U ′
t = λW(U) + ut gradht (λ), u′ = dλ(Ut), (61)

where the prime denotes the t-derivative, i.e., U ′ = [∂t , U ]. Equation (61),
considered as an equation for U , u and g however cannot be brought into Cauchy-
Kowalevski form. Instead we will find a second order equation for U , u and g

resulting from V Rg = 0 and show that we can apply the Cauchy-Kowalevski
Theorem to it. The key to find the evolution equations is the following observation:

Lemma 12 A vector field V is parallel on (M, g) if and only if the following
equations are satisifed

Rg(∂t , X)V = 0, for all X ∈ ∂⊥t = T Σt , (62)

∇g
∂t
∇g

∂t
V = 0, (63)

∇g

XV |Σ = 0, for all X ∈ T Σ (64)

∇g

∂t
V |Σ = 0. (65)

Proof If V is parallel, all the conditions follow immediately. On the other hand,
Eq. (63) shows that the vector field ∇g

∂t
V is parallel transported along the curves

t �→ (t, x). Hence, with the initial condition (65), we have ∇g

∂t
V = 0 everywhere

on M . Using this, Eq. (62) for vector fields X ∈ Γ (∂⊥t ) with [∂t , X] = 0 gives that
0 = Rg(∂t , X)V = ∇g

∂t
∇g

XV , which shows that ∇g
XV is parallel transported along

all t �→ (t, x). Since we have assumed that ∇g
XV = 0 along the initial manifold Σ ,

it also shows that V is parallel on M . ��
In these equations, (64) just is the constraint condition (61) for t = 0, Eq. (65)
gives initial conditions for U |t=0, and Eqs. (62) and (63) provide us with evo-
lution equations for ht , Ut and ut . For this we have to rewrite (62) using the
Codazzi-Mainardi equations and obtain that Eq. (62) is equivalent to

ut II′t (X, Y ) = λ(dht IIt )(Ut , Y, X) − utλIIt (X, Wt (Y ))− utHessht (λ)(X, Y ),

(66)
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for all X, Y ∈ ∂⊥t and where dht IIt is defined by

(dht IIt )(X, Y, Z) = 1
2

(

(∇ht

X IIt )(Y, Z) − (∇ht

Y IIt )(X, Z)
)

.

When spelling out the II′-terms, Eq. (66) becomes a second order evolution equation
for the metric ht which is of Cauchy-Kowalevski form. Moreover, the right-hand-
side does not contain any time derivatives of Ut or ut . There is however an obvious
problemwith this equation: the term (d∇t IIt )(Ut , Y, X) is not necessarily symmetric
in X and Y . In fact, its skew-symmetrisation is equal to dht (X, Y, Ut ) which in
general is not zero. Hence, when considered as an evolution equation for g, it
might yield a solution that is not symmetric. We can resolve this problem under
the assumption that all data are real analytic.

Lemma 13 Let (M, g) be real analytic and let V be an analytic lightlike vector
field on M . Then ∇gV = 0, if and only if Eqs. (63)–(65) together with

Rg(X, V, V, Y ) = 0, for all X, Y ∈ ∂⊥t , (67)

are satisfied.

Proof (Sketch of the Proof) Having Eqs. (63)–(65), but not Eq. (62) it remains to
show that ∇g

XV = 0 on all of M . The idea is to use Eq. (67) to derive a linear
system of the form

∇g

∂t

⎛

⎝

A

B

C

⎞

⎠ = Q

⎛

⎝

A

B

C

⎞

⎠ ,

for A, B ∈ (∂⊥t )∗ ⊗ T M and C ∈ Λ2(∂⊥t )∗ ⊗ T M defined by

A(X) = ∇g
XV, B(X) = Rg(T , X)V, C(X, Y ) = Rg(X, Y )V .

and where Q is a linear operator on an appropriate vector space. Moreover, the
initial conditions (64) and (65) imply that A, B, and C vanish along Σ . Hence,
being subject to the linear system above, they vanish everywhere. ��
Now it is a matter of determining the explicit forms of the evolution equations. For
Eq. (67) one uses again the Codazzi-Mainardi equations and obtains an equation
similar to (66). Equation (63) on the other hand, when written in terms of Ut and ut

is equivalent to the equations

U ′′
t = λ

(

[∂t , Wt (Ut )]+Wt(U
′
t )− λW 2

t (Ut )
)

+ λ′tWt (U)

+ ut

(

[∂t , gradht λ] − λWt (gradht λ)
)

+ (

2u′t − dλ(Ut )
)

gradht λ

u′′t = ht ([∂t , gradht λ], Ut )+ 2dλ(U ′
t )− 3λdλ(Wt (Ut ))− ut‖gradht λ)‖2ht

.
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The crucial observation is that the right-hand-sides do not contain any second t-
derivatives, so that we can apply the Cauchy-Kowalevski Theorem.

Theorem 23 Let (Σ, h, W, U) be an analytic Riemannian manifold together with
a field of h-symmetric, analytic endomorphisms W , with corresponding symmetric
bilinear form II := h(W., .), and an analytic vector field U satisfying the following
constraint equation

∇hU + uW = 0, (68)

where u2 = h(U, U). Then, for any positive analytic function λ on R × Σ there
exists an open neighbourhood M of {0} × Σ in R × Σ and an unique analytic
Lorentzian metric

g = −λ2dt2 + ht

on M which admits an analytic lightlike parallel vector field V = ut

λ
∂t − Ut and

satisfies the initial conditions

h0 = h, U0 = U, u0 = u,

h′0 = −2λ0II, U ′
0 = u gradh(λ0)+ λ0W(U), u′0 = dλ0(U).

(69)

Moreover, M can be chosen such that Σ ⊂ M is a spacelike Cauchy hypersurface.
The t-dependent families of metrics ht , vector fields Ut and smooth functions ut on
Σ are solutions to the following PDE system

h′′t (X, Y ) = λ2

ut

(

dht

(h′t
λ

)

(Ut , X, Y )+ dht

(h′t
λ

)

(Ut , Y, X)

)

+ 1

2
h′t (X, (h′t )�(Y ))

+(log λ)′h′t (X, Y ) + 2λHessht (λ)(X, Y ) + 2
λ2

u2
t

Rht (X, Ut , Ut , Y )

+ 1

2u2
t

(

h′t (X, Y )h′t (Ut , Ut )− h′t (X, Ut )h
′
t (Y, Ut )

)

,

ht (U
′′
t , X) = − λ2

2ut

dht (
h′t
λ

)(Ut , X, Ut )− 1

2
(log λ)′h′t (Ut , X)− λHessht (λ)(Ut , X)

− h′t (U ′
t , X)+ utht ([∂t , grad

ht λ], X) + ut

2
h′t (gradht λ, X)

+ (

2u′t − dλ(Ut )
)

dλ(X),

u′′t = ht ([∂t , gradht λ], Ut )+ 2dλ(U ′
t )+

3

2
h′t (gradht (λ).Ut )− ut‖gradht λ‖2ht

.
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The proof is analogous to the proof of Theorem 20 for the Einstein equations and
follows from using the Cauchy-Kowalevsky theorem locally and then obtaining a
globally hyperbolic manifold by the uniqueness of the solutions.

Finally, we give an example which was first given in [13] and for which the above
system can be solved explicitly.

Example 10 Let (M, h, W, U, u) be a Riemannian manifold with a symmetric
endomorphism field W , a vector field U and a function u on M satisfying the
constraint equations

∇hU = −uW, h(U, U) = u2 > 0.

If, in addition,W is a Codazzi tensor, i.e., d∇h
W = 0, and λ = 1, then the following

are solutions to the PDE system in Theorem 23

ht := h− 2th(W(·), ·) + t2h(W 2(·), ·) = h((1− tW)2(·), ·),

U(t, x) := 1

(1− tWx)
U(x) =

∞
∑

k=0
Wk

x (U(x))tk,

u(t, x) := u(x).

They are defined on

M := {(t, x) ∈ R×Σ | t‖Wx‖hx < 1}.

7.2 The Cauchy Problem for a Parallel Lightlike Vector Field
as a Symmetric Hyperbolic System

Now we want to present recent results in [62] that generalise Theorem 23 to the
smooth setting. We want to take the same approach as for the Cauchy problem
for the Einstein equations in Sect. 6.4, and moreover we would like to partially
reduce the Cauchy problem for parallel lightlike vector fields to the vacuumEinstein
equations. But, whereas the integrability conditions for parallel lightlike spinor
fields in Proposition 4 are formulated in terms of the Ricci tensor and lead to obvious
evolution equations for the metric in the Cauchy problem for parallel lightlike spinor
fields (in [65], see also Remark 7 below), the existence of a parallel lightlike vector
field yields hardly any nontrivial information about the Ricci tensor. Thus, it is not
obvious at all that the methods that work for the Cauchy problem for the Einstein
equations or a parallel lightlike spinor field also work for a parallel lightlike vector
field and that Theorem 23 can be generalised to the smooth setting. The idea here
is to simply introduce the Ricci tensor as new unknown, i.e. set Ricg = Z. We
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consider this as an evolution equation for the metric g and close the system by
deriving a first order equation for Z by further differentiation.

To find the PDE that will form the correct quasilinear first order hyperbolic
system, we assume that (Σ, h) is a Riemannian manifold and that M is an open
neighbourhood of Σ in R × Σ with a Lorentzian metric g, a function λ =√−g(∂t , ∂t ), and such that along Σ , which we identify within M with Σ0 =
{0} ×Σ , it is

g|Σ = −λ2|Σdt2 + h,

i.e., such that the initial hypersurfaceΣ is g-orthogonal to ∂t . In contrast to Sect. 7.1,
however we will not assume that Σt = {t} × Σ is g-orthogonal to ∂t away from
Σ0 = Σ . We denote by π : M  (t, p) → p ∈ Σ the projection onto the second
component and by prT Σ = dπ its differential, i.e., the g-independent projection

prT Σ : T M = R∂t ⊕ T Σ → T Σ

onto the second factor.
Now we assume that (M, g) admits a parallel lightlike vector field V . We set

U := −prT Σ(V ) ∈ Γ (π∗T Σ). Hence, using the timelike unit vector field T = 1
λ
∂t ,

V decomposes into

V = vT − U, (70)

with v ∈ C∞(M). Note that V �= 0 and g(V, V ) = 0 imply that v, U and hence
u := √

g(U, U) have no zeros. Along the initial hypersurface Σ we have that
g(T , U)|Σ0 = 0, as T was assumed to be the unit normal vector field along Σ , and
hence that v|Σ = u|Σ . Moreover we have seen that in this situation (Σ, h, U |Σ )

satisfies the constraints (25) and (24).
We will now derive and analyse several PDEs that follow from ∇gV = 0 and

which will constitute a symmetric hyperbolic system. First note that the 1-form V �

satisfies the PDE

(d + divg)ω = 0, (71)

Here d+divg : Ω∗(M) → Ω∗(M) is the de Rham operator on the algebra of forms.
It is also given by

d + divg = c ◦ ∇,

where c : T M ⊗Λ∗M → Λ∗M denotes Clifford multiplication by forms, i.e.,

c(X) · ω = X� ∧ ω − ιXω, for all X ∈ T M, (72)
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where ιXω = ω(X, . . .) denotes the interior product. The advantage of this equation
is that d + divg is of Dirac type which suggest that equation (71) is symmetric
hyperbolic. The disadvantage is that the solution might not be a 1-form. But this can
be resoved by appropriate initial conditions.

Lemma 14 Let (M, g) be a globally hyperbolic manifold and Σ a Cauchy
hypersurface. If ω ∈ Ω∗(M) is a solution of Eq. (71) with ω|Σ ∈ T ∗M , then
ω ∈ T ∗M everywhere on M .

Proof Because of (d + divg)ω = 0 we get that ω is in the kernel of the Hodge
Laplacian ΔHL = (d + divg)2. Writing ω = ω1 + . . .+ ωn+1 in components with
k-forms ωk , this implies that all ωk satisfy the wave equation

ΔHLωk = 0.

With ω|Σ ∈ T ∗M all ωi except ω1 vanish along Σ and hence, by Theorem 3, this
wave equation implies that the ωi ’s for i > 1 vanish everywhere. ��

Next, as V is parallel, it annihilates the curvature tensor Rg , i.e., V Rg = 0. In
particular,

V Ricg = 0. (73)

To evaluate this further, note that the vector field metric V defines a (non-
orthogonal) splitting

T M = T Σ ⊕ RV (74)

of bundles over M . We introduce the g- and V -dependent projection

prg,V

T Σ : T M → T Σ

onto the first factor in the splitting (74). Writing this explicitly as

prg,V

T Σ = IdT M + 1
v

(

g(T , .)− g(T , prT Σ(.))
)

V,

where v is the function defined in Eq. (70), show that this projection is indeed g-
dependent. Then Eq. (73) is equivalent to

Ricg = Z ◦ prg,V
T Σ , (75)

where Z is a symmetric bilinear form on T Σ , i.e. Z ∈ Γ (π∗(T ∗Σ⊗T ∗Σ)), which
is trivially extended to a symmetric bilinear form on T M = T Σ ⊕ RV .



62 H. Baum and T. Leistner

Finally, in order to find the first order equation for Z, we observe that the second
Bianchi identity implies that (∇g

V Ricg) = 0 and hence

(∇g

V Z)(X, Y ) = 0 for all X, Y ∈ π∗T Σ. (76)

Of course, for reasons described in Sect. 6.2, Eq. (75) cannot be symmetric
hyperbolic as it contains the Ricci tensor. Hence we have to perform the hyperbolic
reduction described in Sect. 6.4: for a positive function λ ∈ C∞(R × Σ), we fix
a background metric g̃ on R × Σ as in (59), which defines a 1-form η = ηg,g̃ as
in (53) and, instead of Eq. (71), consider the equation

˜Ric
g = Ricg + Sym(∇gη) = Z ◦ prg,V

T Σ + Sym(∇gη). (77)

For Eqs. (71), (76) and (77) we obtain the analogon of Theorem 21.

Theorem 24 Let (Σ, h) be a Riemannian manifold equipped with a vector field U

such that u := √
h(U, U) > 0 and satisfying the constraint (25) for a symmetric

bilinear form II, a smooth function f ∈ C∞(Σ), a smooth 1-form σ and a smooth
bilinear form Q. Moreover, let λ be a smooth positive function onR×Σ . OnR×Σ

fix the background metric g̃ = −λ2dt2 + h as in (59). Then on a neighbourhood M

of {0} × Σ in R × Σ there is a unique Lorentzian metric g with a unique lightlike
vector field V and a unique bilinear form Z that satisfy equation (71) for ω = V �,
Eqs. (76) and (77), and the initial conditions

g|Σ = g̃|Σ, g′|T Σ×T Σ = −2λ|Σ II, V |Σ = u
λ
∂t − U (78)

as well as

g′(∂t , ∂t )|Σ = f, g′(∂t , .)|Σ = σ, Z|Σ = Q. (79)

Moreover, (M, g) contains (Σ, h) as Cauchy hypersurface.

Proof As in the proof of Theorem 21, at each point in Σ we fix coordinates
(x0 = t, x1, . . . , xn) and show that in such coordinates Eqs. (71), (76) and (77)
are equivalent to a symmetric hyperbolic system for a form ω, a metric g and a
bilinear form Z.

We start with Eq. (75): as in the proof of Theorem 21 the initial conditions in (78)
ensure that Eq. (76) is equivalent to the symmetric hyperbolic system

∂0gμν = Kμν,

g00∂0Kμν + 2g0i∂iKμν + gij ∂iLμν,j = Hμν,

−g
j

i ∂0Lμν,j + g
j

i ∂jKμν = 0,

(80)
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which is the same as the system (56), with the difference that the function Fμν

in (56) has to be replaced by

Hμν = Fμν +
(

Z ◦ prg,V
T Σ

)

μν
,

where V is defined by g(V, .) = ω1 for ω = ω1 + . . . ωn+1 with ωk a k-form.
Hence Hμν depends only algebraically on the unknowns gαβ , ∂γ gαβ , Zμν and ω =
(ω1)α + . . .+ (ωn+1)α...β .

Next, we consider Eq. (71) in coordinates and identify ω with a smooth map
to R

2n+1
depending on the coordinates. The key here is that de Rham operator d +

divg = c◦∇g in (71), where c denotes the Clifford multiplication in (72), is of Dirac
type. Hence, one can use the Clifford identity c(X)·c(Y )+c(Y )·c(X) = −2g(X, Y )

to show that equation (71) is of the form

Aμ(xα, gαβ, ω)∂μω = b(xα, gαβ, ∂γ gαβ, ω), (81)

where the matrices Aμ are symmetric. Along Σ , where g = g̃, A0 is a positive
multiple of the identity, and hence A0 is positive definite in a neighbourhood of Σ .

Finally, it is easy to see that Eq. (76), when written in local coordinates as

∂0Zkl − λ
v
Ui∂iZkl = 2Γ i

0(kZl)i − 2 λ
v
UiΓ

j

i(kZl)j ,

is equivalent to an equation of the form

∂0Zkl + ai(xα, gαβ, ∂γ gαβ, (ω1)α)∂iZkl = bkl(x
α, gαβ, ∂γ gαβ, (ω1)α, Zαβ).

(82)

We conclude that the system comprising Eqs. (80)–(82) is a quasilinear first order
symmetric hyperbolic system in the unknowns g, K , Z and ω, which has a unique
solution for given initial conditions. Patching these together to a globally hyperbolic
Lorentzian manifold (M, g) satisfying Eqs. (71), (75) and (76) for V = ω

�
1 works

as before. Moreover, for ω we fix the initial condition

ω|Σ = g̃( u
λ
∂t − U, .) ∈ T ∗M.

By Lemma 14, this initial condition implies that ω is in fact a 1-form on M and we
have V = ω�, which concludes the proof. ��
After this result it remains to show that we can choose the remaining initial
conditions (79) in a way that the associated solutions satisfy ηg,g̃ = 0 and∇gV = 0.
In particular to conclude ∇gV = 0 from (d + divg)V � = 0 seems a long shot, but
as before, the right wave equation will help with this. This is the statement of the
following proposition. Its proof in [62, Section 4] is substantially more involved
than the proofs of Lemmas 9–11 above, and we do not attempt to present it here.
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Proposition 8 Let (Σ, h) be a Riemannian manifold and g̃ be the background
metric (59) on R × Σ . Moreover, let (M, g) be a Lorentzian manifold where M is
an open neighbourhood of Σ , η = ηg,g̃ be the 1-form defined in (53), V a lightlike
vector field and Z a t-dependent bilinear form on Σ satisfying the equations

Z = Ricg + Sym(∇gη), (d + divg)V � = 0, ∇g

V Z|T Σ×T Σ = 0, V Z = 0.

(i) Then the tensor fields

Φ := (∇gV, η,∇g

V η, (∇gη)(V )
)

, Ψ := divg(Z − trg(Z)
2 g),

satisfy a wave equation of the following form

ΔgΦ = F(Φ,∇gΦ, Ψ ), ∇g
V Ψ = H(Φ,∇gΦ), (83)

where Δg is the Laplacian on tensor fields and F and H are suitable tensor
fields. Moreover, when written in coordinates, the system (83) is equivalent to a
linear first order symmetric hyperbolic system.

(ii) Assume that (Σ, h) and U satisfy the constraint conditions (24) and (25) and
g, V , and Z satisfy the initial conditions along Σ ,

g|Σ = g̃|Σ, g′|Σ = −2λII+ 2λ2
(

λtrh(II)− λ′
)

dt2, V |Σ = u
λ
∂t − U,

(84)

as well as

U Z|Σ = dtr(W) − divh(W),

Z|U⊥×U⊥ = Rich − II2 + tr(W)II+
+ 1

u2

(

(U II)2 − II(U, U)II− Rh(., U, U, .)
)

,

(85)

Then Φ|Σ = Ψ |Σ = 0.

The importance of the initial conditions (85) for Z becomes clear when comparing
them to the constraint conditions for the Einstein equations in Lemma 6. This
proposition is the key for the proof of the main result.

Theorem 25 Let (Σ, h) be a Riemannian manifold equipped with a vector field U

such that u := √
h(U, U) > 0 and satisfying the constraint (25) for a symmetric

bilinear form II. Moreover, let λ be a smooth positive function on R×Σ . On R×Σ

fix the background metric g̃ = −λ2dt2 + h as in (59). Then on a neighbourhood M

of {0} × Σ in R × Σ there is a unique Lorentzian metric g with a unique lightlike
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parallel vector field V such that ηg,g̃ = 0 and initial conditions

g|Σ = g̃|Σ, g′|T Σ×T Σ = −2λ|Σ II, V |Σ = u
λ
∂t − U

are satisfied. Moreover, (M, g) is globally hyperbolic and contains (Σ, h) as
Cauchy hypersurface.

Proof We apply Theorem 24 in which we specify the initial conditions for f , σ and
Q by Eqs. (84) and (85) as in (ii) of Proposition 8. Then (i) and (ii) in Proposition 8
imply Φ = Ψ = 0 on all of M which in turn gives that ηg,g̃ = 0 as well as
∇gV = 0. In particular this implies that V is lightlike. As we have specified a full
set of initial conditions for a symmetric hyperbolic system, g and V are unique. ��
Remark 6 As explained in Remark 5, we can find a transformation fixing Σ such
that the metric in Theorem 25 is of the form g = −˜λ2 + ht with a positive function
˜λ such that˜λ|Σ = λ|Σ .

7.3 Cauchy Problem for Parallel Lightlike Spinors

Now we will show that a Riemannian manifold (Σ, h) with imaginary W -Killing
spinor of type I as defined in Definition 9 can always be extended to a Lorentzian
manifold with parallel lightlike spinor. Since such a manifold satisfies the constraint
conditions (24) and (25) for a parallel lightlike vector field (see Lemma 5), we can
apply the results in the previous section and obtain a Lorentzian manifold (M, g)

with parallel lightlike vector field. If (M, g) then admits a parallel spinor, it must
be parallel translated along any direction that is transversal to Σ in M , e.g., parallel
translated along the flow of V or of ∂t .

Theorem 26 Let (Σ, h) be a Riemannian manifold with imaginary W -Killing
spinor ϕ.

1. If (Σ, h), W and ϕ are real analytic, then the real analytic globally hyperbolic
Lorentzian manifold (M, g) obtained in Theorem 23 admits a unique real
analytic parallel lightlike spinor field φ with φ|Σ = ϕ and V = Vφ .

2. If (Σ, h), W and ϕ are smooth, then the smooth globally hyperbolic Lorentzian
manifold (M, g) obtained in Theorem 25 admits a unique smooth parallel
lightlike spinor field φ with φ|Σ = ϕ and V = Vφ .

Proof Let (M, g) be the globally hyperbolic Lorentzian manifold obtained from
Theorem 23 or Theorem 25 and V be the parallel lightlike vector field on (M, g).
Then we extend the spinor ϕ to a spinor on M by parallel transporting ϕ along
the flow lines of V . This yields a real analytic (or smooth, depending on the
assumptions) spinor field φ with ∇S

V φ = 0. In order to show that also ∇S
Xφ = 0

for X ∈ T Σt , we consider the following section in T ∗Σ ⊗ S, where S is the spinor
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bundle of (M, g),

A(X) := ∇S
Xφ.

Then, using the fact that V is parallel, that ∇S
V φ = 0, and the relation between the

curvature RS and Rg in Eq. (16), we compute

(∇S
V A)(X) = RS(V, X)φ + ∇S

X∇S
V φ + ∇S

[V,X]φ −∇S

∇g
V X

φ = Rg(V, X) · φ = 0.

This however is a linear first order PDE for A in Cauchy-Kowalevski form and
in particular symmetric hyperbolic, so A is unique. The constraint equations and
∇S

V φ = 0 however yield that A|Σ = 0, which implies that A = 0 on all of M . The
proof that V is the Dirac current of φ is straightforward and the details can be found
in [16, Section 5]. ��
Remark 7 This Theorem in the analytic setting was proven in [16] by the same
method as presented here.

The result in the smooth setting was first proven by Lischewski [65], but without
using the solution for the Cauchy problem for a parallel lightlike vector field
presented in Sect. 7. Instead, Lischewski considers a Cauchy problem directly
for the spinor and the metric by finding a PDE that corresponds to a first order
symmetric hyperbolic system. Since the equation ∇Sφ = 0 does not have this
property, the following system of equations is considered in [65],

Ricg = f (V
�
φ)2, Dgφ = 0, df (Vφ) = 0, (86)

where Dg is the Dirac operator of g. Then the the proof follows the one for the
Einstein equations: first it is shown that these equations for the unknowns g and φ

are first order quasilinear symmetric hyperbolic and hence have a unique solution,
which then is shown to satisfy a wave equation that involves the square D2 of the
Dirac operator and the connection Laplacian Δ, and then the initial conditions are
fixed so that the vanishing along the initial surface Σ is ensured.

8 Geometric Applications

In this section we will apply the results from the previous section to study Lorentzian
holonomy reductions further. In Theorem 28 we also give an application our result
has for Riemannian manifolds with imaginary W -Killing spinors, and in Remark 1
we formulate an open problem about flows of special Riemannian structures.
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8.1 Applications to Lorentzian Holonomy

In this section we will use the results from Sect. 7 in order to construct globally
hyperbolic Lorentzian manifolds with prescribed screen holonomy from Rieman-
nian manifolds. On the one hand, from Theorem 17 we know how the Riemaniann
manifolds satisfying the constraint conditions are constructed from families of
Riemannian metrics, on the other hand we can use Theorem 25 to construct
Lorentzian manifolds with special holonomy from them. We will now study the
consequence for the family of Riemannianmetrics that are implied by certain special
holonomies.

The key concepts are the following:

Definition 12 Let (M, g) be a Lorentzian manifold of dimension (n + 2) with a
subbundle V of parallel lightlike lines in the tangent bundle that is invariant under
parallel transport. Then the bundle

S := V
⊥/V

is called the screen bundle of (M, g). The connection on S defined by

∇S

X[Y ] =
[∇g

XY
]

,

for X ∈ T M and Y ∈ Γ (V⊥) is called screen connection and its holonomy group
is called screen holonomy group. In the following we are only interested in the
connected component of the screen holonomy group (or its Lie algebra), which we
will simply call screen holonomy.

A subbundle S ⊂ T M is called screen distribution if V⊥ = V⊕ S.

This is well defined as Γ (V⊥) andΓ (V) are invariant under∇g . SinceV is lightlike,
we can also define a metric on S,

gS([X], [Y ]) := g(X, Y ),

for X, Y ∈ V
⊥. This metric is parallel with respect to ∇S. As we mentioned in

Sect. 3.2, the orthogonal component of the holonomy algebra of (M, g) is equal to
the screen holonomy.

Exercise 7 Prove the last statement, i.e.,

hol(S,∇S) � projso(n)(hol(M, g)).

According to Theorem 14 the screen holonomy is always the holonomy algebra
of a Riemannian manifold. We will now establish a relation between the screen
holonomy and the holonomy of the Riemannian metric in the families gs in
Theorem 17.
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In general, the screen bundle is just a vector bundle over M , however in some
situations it can be realised as a screen distribution. This is in particular the case
when (M, g) admits a timelike unit vector field T . Then the screen bundle is realised
as screen distribution

S = T ⊥ ∩ V
⊥.

Moreover, if (Σ, h) is a Riemannian manifold satisfying the constraint condi-
tions (24) and (25) with a vector field U and (M, g) the Lorentzian manifold arising
from it by Theorem 25, then by Remark 6 it is T ⊥|Σ = ∂⊥t |Σ = T Σ and we can
identify the screen distribution along Σ with

S|Σ = U⊥.

For the screen connection along Σ we have

∇S

XY |Σ = ∇⊥
X Y, for Y ∈ Γ (S|Σ) = Γ (U⊥), X ∈ T Σ, (87)

where ∇⊥ = prU⊥ ◦ ∇h is the induced connection. Moreover if

(Σ, h) = (I × N,
1

u2 ds2 + gs)

is given as in Theorem 17, we can interpret Y ∈ Γ (U⊥) as family {Ys}s∈I . Then we
can compare the following vector bundles of the same rank

(T N,∇gs ) (U⊥,∇⊥) (S,∇S)

↓ ↓ ↓
N ⊂ Σ ⊂ M.

Next, recall that Lorentzian holonomy reductions from so(1, n) to g � R
n−1 with

g ⊂ so(n − 1) are given by a parallel lightlike vector field V and parallel sections
of

⊗a,b
S := S

∗ ⊗ · · · ⊗ S
∗

︸ ︷︷ ︸

a times

⊗S⊗ · · · ⊗ S
︸ ︷︷ ︸

b times

→ M

such as a complex structure, a stable 3-form, etc. In this situation we have:

Proposition 9 Let (Σ, h) = (I × N, 1
u2

ds2 + gs) be a Riemannian manifold
satisfying the constraints for a vector field U and (M, g) the Lorenzian manifold
with parallel lightlike vector field V arising as solution of the Cauchy problem in
Theorem 25. Then there is a 1–1 correspondence between

(a) sections σ̂ of the bundle Sa,b → M with ∇Sσ = 0,
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(b) sections σ of the bundle⊗a,bU⊥ → Σ with ∇⊥σ = 0, and
(c) families (σs)s∈I of sections of⊗a,bT N → N with ∇gs σs = 0 and

σ ′s = 1
2 (g′s )� • σs, (88)

where the prime denotes the Lie derivative with respect to ∂s , the � is
the dualisation with respect to gs and • denotes the natural action of an
endomorphism on tensors.

Hence, hol(∇S) = prso(n)hol(M, g) lies in the stabiliser of a tensor on S if and only
if on N there is an induced s-dependent family of gs -parallel tensors σs satisfying
Eq. (88).

Proof The equivalence of (b) and (c) is proved by just writing out the definition
of ∇⊥

∂s
σ and ∇⊥

X σ for X ∈ T N . The implication from (a) to (b) follows from the
formula (87), so it remains to show the implication from (b) to (a). Then we extend
σ ∈ Γ (⊗a,bU⊥ → Σ) to σ̂ ∈ Γ (⊗a,b

S→ M) by parallel transport along the flow
of V . Then the proof is similar to the one of Theorem 26: we define A := ∇Sσ ∈
Γ (T ⊥ ⊗ ⊗a,b

S), show that ∇S

V σ = 0, and observe that the equation ∇S

V A = 0 is
a linear symmetric hyperbolic system for A with initial condition A|Σ = 0. Hence,
not only ∇S

V σ̂ = 0 but also ∇S

Xσ̂ = 0 for X ∈ T Σ . ��
This result allows to describe the possible reductions of the (connected) screen

holonomy geometrically in terms of the family gs of Riemannian metrics on N .
Later we will be interested in Lorentzian manifolds with parallel spinors, and from
Theorem 16 we know that the screen holonomy has to admit a parallel spinor,
i.e., has to be a product of SU(m), Sp(k), G2, or Spin(7). As we have seen in
Theorem 10, the corresponding geometric structures are special Kähler, hyper-
Kähler, which are defined by (three) parallel complex structures J , as well as G2
and Spin(7)-structures. A G2-structure in dimension 7 is given by a parallel stable
3-form φ, i.e., a 3-form which has an open orbit in the 3-forms under the action
of GL7R, whereas a Spin(7)-structure in dimension 8 is given by a certain generic
4-form ψ . In both cases the forms define the metric, so in the next Theorem we will
write we write gs = gs(φs) and gs = gs(ψs) to indicate that for families of G2 and
Spin(7) structures, the metric gs is defined algebraically in terms of a distinguished
stable 3-form φs or a generic 4-form ψs , respectively. The explicit formulae can be
found for example in [24, 52].

Theorem 27 Let (Σ, h, W, U) be given as in (26) and (27) and let (M, g) be the
Lorentzian manifold arising from this choice of initial data via Theorem 25 (for
arbitrary choice for λ). Then G = prSO(n)Hol(M, g) ⊂ SO(n) lies in the stabiliser
of some tensor in T k,l

R
n if and only if there is an s-dependent and ∇gs -parallel

family of tensor fields σs on N , of the same type and subject to the flow equation

σ ′s = −1

2
(g′s)� • σs.
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Here, the prime denotes the Lie derivative of a tensor with respect to ∂s , e.g., σ ′s :=
L∂s σs , (g′)�• denotes the natural action of the endomorphism (g′)� ∈ End(T N) on
tensors in T k,lN , and � indicates the dualisation with respect to gs . Moreover:

1. There are proper subgroups H1 and H2 of SO(n) such that G ⊂ H1 ×H2 if and
only if there is a local metric splitting

(N, gs) ∼= (N1 × N2, g1
s + g2

s ) (89)

with Hol(Ni, gi
s) ⊂ Hi .

2. if G is contained in one of SU(m), Sp(k), G2, Spin(7) or trivial, this translates
into the conditions for Riemannian special holonomy metrics from Table 1.

For most of the cases proof of this Theorem follows easily from Proposition 9 with
the exception of SU(m). Here a lengthy computation in [62, Section 7] shows how
the condition Hol(M, g) ⊂ SU(m) translates into divgs (g′s) = 0.

Theorems 25 and 27 provide a construction principle for Lorentzian manifolds
with reduced screen holonomy as seen in the following simple example.

Example 11 Consider the following warped product manifold (Σ = I × N, h :=
h = ds2+f (s)g0) with (N, g0) a Ricci-flat simply connected Riemannian manifold
with irreducible special holonomy, i.e., Hol(N, h0) ∈ {SU(m),Sp(k),G2,Spin(7)}
or trivial. Then(Σ, h) satisfies the constraint and Theorem 25 can be applied
to it, obtaining a Lorentzian manifold with the corresponding screen holonomy
Hol(N, h0) by Theorem 27.

Problem 1 (Open Problems About Flows of Special Riemannain Structures)
We do not know whether the flow equation (88) on the parallel tensors and the
metric in Table 1 defining the holonomy reductions is an extra condition or if it

Table 1 Equivalent characterisation of special screen holonomy for (M, g) in terms of flow
equations for tensors on N

dim(N) Geometric structures on N Hol(M, g) ⊂
2m (N, ωs , Js, gs = ωs(Js ·, ·)) Ricci-flat Kähler,

J ′s = − 1
2 (g′s )� • Js, divgs (g′s ) = 0

SU(m) �R
2m

4k (N, ωi
s , J i

s , gs = ωi
s(J

i
s ·, ·))i=1,2,3 hyper-Kaehler,

(J i)′s = − 1
2 (g′s )� • J i

s

Sp(k) �R
4k

7 (N, φs ∈ Ω3(N)), gs = gs(φs) G2 metrics,

φ′s = − 1
2 (g′s )� • φs

G2 �R
7

8 (N, ψs ∈ Ω4(N), gs = gs(ψs)) Spin(7) metrics,

ψ ′
s = − 1

2 (g′s )� • ψs

Spin(7) � R
8

n
gs flat

R
n
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is automatically satisfied. This question is suggested by the following observation:
when proving the first point (1) in Theorem 27 one shows that a parallel volume
form, i.e., the parallel object that defines the splitting, always satisfies the flow
equation (88).

The question can be formulated, for example, in the case of G2-structures as
follows: given a family of holonomy G2-metrics hs , does there exist a family of
stable 3-forms φs , such that hs = hs(φs) and such that φs satisfies

φ′s +
1

2
(g′s )� • φs = 0 ? (90)

Since the tangent space at a stable three form φ splits under G2 into three irreducible
components

R⊕ Sym2
0(R

7)⊕ R
7 � Λ3

(r, S, X) �→ rφ + S� • φ +X (∗φ),

where ∗ is the Hodge star operator, it follows that

φ′ = S� • φ + X (∗φ),

for a family of symmetric bilinear forms, whereas the associated metric satisfies
g′ = 2S, see [28, 53, 54]. Hence, for the curve φt the equation (90) is equivalent to
the condition

φ′ ∈ R⊕ Sym0(R
7),

i.e., that φ′ has no R7-component in the decomposition. We do not know if this can
always be achieved for any curve ht of holonomy G2-metrics, and we leave this as
an open problem.

In the case of Kähler structures the situation is similar. It can be shown [62,
Section 7] that the flow equation (88) for a Kähler form ω is equivalent to

ω′
s ∈ Λ1,1(N, Js), (91)

where Λ1,1(N, Js) denotes the 2-forms that are holomorphic with respect to the
parallel complex structure Js . Again we leave it as an open question whether or not
for a given family of Kähler metrics there are compatible parallel complex structures
Js and Kähler forms ωs such that the relation (91) is satisfied.

The answers to these questions will have consequences for the results we will
give now.
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8.2 Applications to Spinor Field Equations

In this last section we want to apply the previous results, in particular the one in
Theorem 26 to spinor field equations: to the equation for a parallel spinor on a
Lorentzian manifold and that for an imaginary W -Killing spinor on a Riemannian
manifold.

We start with the problem of a (local) classification of Riemannian manifolds
with imaginary W -Killing spinor. This means that we change our perspective
slightly from focussing on the Lorentzian manifold—which will now appear as
a tool—to focussing on the Riemannian manifold, which so far appeared only as
initial condition. Clearly, condition (31) for an imaginaryW -Killing spinor arises as
a generalisation of the equation for imaginary Killing spinors, for which W = i

2 Id,
see [14]. Moreover, solutions to equation (31) are the counterpart to real generalised
Killing spinors which have been in the focus of recent research, for example in
[3, 5]. A Riemannian manifold (Σ, h) with imaginary W -Killing spinor of type I
(see Definition 10) satisfies the constraint conditions (24) and (25) for a vector
field (Lemma 5). Hence, applying Theorem 17 gives a generalisation of results
from [9, 10], see also [14], where it is shown that in the complete case and for
W = f Id, (Σ, h) is necessarily isometric to a warped product (see Example 8).
Using the Lorentzian manifold (M, g) obtained by the Cauchy problem as a tool,
with the results from the previous sections we can even say more.

Theorem 28 Let (Σ, h) be a Riemannian spin manifold admitting an imaginary
W -Killing spinor ϕ of type I. Then:

1. (Σ, h) is locally isometric to

(Σ, h) �
(

I × N1 × . . .× Nk, h = 1

u2
ds2 + g1

s + . . .+ gk
s

)

(92)

for Riemannian manifolds (Ni, gi
s) of dimension ni , u = ||ϕ||2, I an interval,

and under this isometry W is given by (27). Moreover, for each i = 1, . . . , k,
each hi

s is a family of special holonomy metrics to which exactly one of the cases
of Table 1 applies.

2. If (Σ, h) is simply connected and the vector field 1
u2ϕ

Uϕ is complete, the isometry

in (92) is global with I = R.
3. Conversely, every Riemannianmanifold (Σ, h) of the form (92)with I ∈ {S1,R},

where u is any positive function and (Ni, gi
s) are families of special holonomy

metrics subject to the flow equations in Table 1, is spin and admits an imaginary
W -Killing spinor ϕ of type I.

The proof follows from several results above: if (Σ, h) admits an imaginary W -
Killing spinor of type I, byTheorem 26 there is a Lorentzian manifold (M, g) which
admits a lightlike parallel spinor field (and hence a lightlike parallel vector field). By
Theorem 16, the connected screen holonomy of (M, g) is a product of the groups
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listed in Table 1. Then the results in Theorem 27 then imply the existence of the local
isometry to a metric (92). The statements in (2) and (3) also follow from results in
Theorem 17 and using the Lorentzian manifold arising from the Cauchy problem.

Finally, we give a local normal form for Lorentzian metrics admitting a parallel
lightlike spinor fields.

Theorem 29 Let (M, g) be a Lorentzian manifold admitting a parallel lightlike
spinor field. Then (M, g) is locally isometric to

(M, g) ∼= (R×R×N1 × . . .× Nm, 2dvdw + g1
w + . . .+ gm

w), (93)

for some integer m, manifolds Ni for i = 1, . . . , m where each gi
w is a w-dependent

family of Riemannian metrics on Ni to which exactly one of the cases in Table 1
applies. Conversely, every manifold as in (93) satisfying these conditions admits a
parallel lightlike spinor.

Again, this theorem follows from the previous results and by introducing new
coordinates v = −t + s and w = t + s in which the metric in (93) is of the form

g = −dt2 + ds2 + gt+s =: −dt2 + ht . (94)

Note that the normal forms in Theorem 29 need not be the most general ones.
For example, for signature (1, 10), in [27] it is shown that a term Hwdw2, where
Hw is an arbitrary function not depending on v can be added to (93). However, the
analysis of normal forms for metrics with parallel spinor in [27] rests on the known
orbit structure of the action of Spin(1, n) in low dimensions whereas Theorem 29
covers all dimensions.
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curvature. In three lectures, we address

• hypersurfaces, principal curvatures and evolution equations for geometric quan-
tities like the metric and the second fundamental form.

• the convergenceof convex hypersurfaces to round points. Here, we will also show
some computer algebra calculations.

• the evolution of graphical hypersurfaces under mean curvature flow.

1 Overview and Plan for the Summer School

We consider flow equations that deform hypersurfaces according to their curvature.
If X0 : Mn → R

n+1 is an embedding of an n-dimensional manifold, we
can define principal curvatures (λi)1≤i≤n and a normal vector ν. We deform the
embedding vector X according to

{

d
dt

X = −Fν,

X(·, 0) = X0,

where F is a symmetric function of the principal curvatures, e.g. the mean curvature
H = λ1 + · · · + λn. In this way, we obtain a family X(·, t) of embeddings and
study their behaviour especially near singularities and for large times. We consider
hypersurfaces that contract to a point in finite time and, after appropriate rescaling,
to a round sphere. Graphical solutions are shown to exist for all times or to disappear
to infinity.

Classical results in this direction were obtained by Huisken [20] and Ecker and
Huisken [11] for mean curvature flow.

Remark 1

(i) We will use geometric flow equations as a tool to deform a manifold.
(ii) The flow equations considered are parabolic equations like the heat equation.
(iii) In order to control the behaviour of the flow, we will look for properties of

the manifold that are preserved under the flow. For that purpose, we will also
look for quantities that are monotone and have geometric significance, i.e. their
boundedness implies geometric properties of the evolving manifold.

We wish to thank Ben Lambert and Wolfgang Maurer for corrections and
Wolfgang Maurer for carefully preparing the figures.

1.1 Plan for the Summer School

These notes first cover some necessary background material. We will then derive
evolution equations for geometric quantities and study two geometric problems.
More precisely, our plan is to study the following:
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• Geometric prerequisites and evolution equations of geometric quantities.
• Convex surfaces contracting to a round point and an estimate for Gauß curvature

flow, Theorem 6, measuring the deviation from being umbilic.
• Mean curvature flow of complete graphs and local C1-bounds, Theorem 16.

2 Differential Geometry of Submanifolds

We will only consider hypersurfaces in Euclidean space.
We use X = X(x, t) = (Xα)1≤α≤n+1 to denote the time-dependent embedding

vector of a manifold Mn into R
n+1 and d

dt
X = Ẋ for its total time derivative.

Set Mt := X(M, t) ⊂ R
n+1. We will often identify an embedded manifold

with its image. We will assume that X is smooth. Assume furthermore that Mn

is smooth, orientable, connected, complete and ∂Mn = ∅. We choose ν = ν(x) =
(να)1≤α≤n+1 to be the outer (or downward pointing) unit normal vector to Mt at
x ∈ Mt . The embedding X(·, t) induces at each point on Mt a metric (gij )1≤i, j≤n

and a second fundamental form (hij )1≤i, j≤n. Let (gij ) denote the inverse of (gij ).
These tensors are symmetric. The principal curvatures (λi)1≤i≤n are the eigenvalues
of the second fundamental form with respect to that metric. That is, at p ∈ M , for
each principal curvature λi , there exists 0 �= ξ ∈ TpM ∼= R

n such that

λi

n
∑

l=1
gklξ

l =
n

∑

l=1
hklξ

l or, equivalently, λiξ
l =

n
∑

k,r=1
glkhkrξ

r .

As usual, eigenvalues are listed according to their multiplicity. A hypersurface is
called strictly convex, if all principal curvatures are strictly positive. The inverse of
the second fundamental form is denoted by

(

h̃ij
)

1≤i, j≤n
.

Latin indices range from 1 to n and refer to geometric quantities on the
hypersurface, Greek indices range from 1 to n + 1 and refer to components in the
ambient space R

n+1. In R
n+1, we will always choose Euclidean coordinates. We

use the Einstein summation convention for repeated upper and lower indices. Latin
indices are raised and lowered with respect to the induced metric or its inverse

(

gij
)

,
for Greek indices we use the flat metric (gαβ)1≤α,β≤n+1 = (δαβ)1≤α,β≤n+1 ofRn+1.
So the defining equation for the principal curvatures becomes λigklξ

l = hklξ
l .

Denoting by 〈·, ·〉 the Euclidean scalar product in R
n+1, we have

gij =
〈

X, i, X, j

〉 = Xα
, iδαβX

β
, j ,

where we used indices, preceded by commas, to denote partial derivatives. We
write indices, preceded by semi-colons, e.g. hij ; k or v;k , to indicate covariant
differentiation with respect to the induced metric. Later, we will also drop the
commas and semi-colons, if the meaning is clear from the context. We setXα

;i ≡ Xα
,i



80 O. C. Schnürer

and

Xα
; ij = Xα

, ij − Γ k
ij Xα

, k, (1)

where

Γ k
ij = 1

2gkl(gil, j + gjl, i − gij, l )

are the Christoffel symbols of the metric (gij ). Therefore, Xα
;ij becomes a tensor.

The Gauß formula relates covariant derivatives of the position vector to the
second fundamental form and the normal vector

Xα
; ij = −hij να. (2)

The Weingarten equation allows to compute derivatives of the normal vector

να
; i = hk

i Xα
; k. (3)

We can use the Gauß formula (2) or the Weingarten equation (3) to compute the
second fundamental form.

Symmetric functions of the principal curvatures are well-defined, we will use
the mean curvature H = λ1 + . . . + λn, the square of the norm of the second
fundamental form |A|2 = λ21 + . . . + λ2n, trA

k = λk
1 + . . . + λk

n, and the Gauß
curvature K = λ1 · . . . ·λn. It is often convenient to choose coordinate systems such
that, at a fixed point, the metric tensor equals the Kronecker delta, gij = δij , and
(hij ) is diagonal, (hij ) = diag(λ1, . . . , λn), e.g.

∑

λkh2
ij ;k =

n
∑

i, j, k=1
λkh2

ij ;k = hklhi
j ; kh

j

i; l = hrshij ; khab; lg
iagjbgrkgsl .

Whenever we use this notation, we will also assume that we have fixed such a
coordinate system.

A normal velocityF can be considered as a function of (λ1, . . . , λn) or (hij , gij ).
If F(λi) is symmetric and smooth, then F(hij , gij ) is also smooth [17, Theorem

2.1.20]. We set F ij = ∂F
∂hij

, F ij, kl = ∂2F
∂hij ∂hkl

. Note that in coordinate systems with

diagonal hij and gij = δij as mentioned above, F ij is diagonal. For F = |A|2, we
have F ij = 2hij = 2λig

ij , and for F = Kα , α > 0, we have F ij = αKαh̃ij =
αKαλ−1i gij .

The Gauß equation expresses the Riemannian curvature tensor of the hypersur-
face in terms of the second fundamental form

Rijkl = hikhjl − hilhjk. (4)
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As we use only Euclidean coordinate systems in R
n+1, hij ; k is symmetric in all

three indices according to the Codazzi equations.
The Ricci identity allows to interchange covariant derivatives. We will use it for

the second fundamental form

hik; lj = hik; j l + ha
kRailj + ha

i Raklj . (5)

For tensors A and B, Aij ≥ Bij means that (Aij −Bij ) is positive semi-definite.
Finally, we use c to denote universal, estimated constants.

2.1 Graphical Submanifolds

Lemma 1 Let u : Rn → R be smooth. Then graphu is a submanifold in Rn+1. The
metric gij , the lower unit normal vector ν, the second fundamental form hij , the
mean curvature H , and the Gauß curvature K are given by

gij = δij + uiuj ,

gij = δij − uiuj

1+ |Du|2 ,

ν = ((ui),−1)
√

1+ |Du|2 ≡
((ui),−1)

v
,

hij = uij
√

1+ |Du|2 ≡
uij

v
,

H = div

(

Du
√

1+ |Du|2

)

,

and

K = detD2u
(

1+ |Du|2) n+2
2

,

where ui ≡ ∂u
∂xi , ui = uj δji and uij = ∂2u

∂xi∂xj . Note that in Euclidean space, we
often do not distinguish between Du and ∇u.



82 O. C. Schnürer

Proof

(i) We use the embedding vector X(x) := (x, u(x)), X : R
n → R

n+1.
The induced metric is the pull-back of the Euclidean metric in R

n+1, g :=
X∗g

R
n+1
Eucl.

. We have X,i = (ei, ui). Hence

gij = Xα
,iδαβX

β
,j = 〈X,i, X,j 〉 = 〈(ei , ui), (ej , uj )〉 = δij + uiuj .

(ii) It is easy to check, that gij is the inverse of gij . Note that ui := δij uj , i.e., we
lift the index with respect to the flat metric.

(iii) The vectors X,i = (ei, ui) are tangent to graphu. The vector ((−ui), 1) ≡
(−Du, 1) is orthogonal to these vectors, hence, up to normalization, a unit
normal vector.

(iv) We combine (1), (2) and compute the scalar product with ν to get

hij = − 〈X;ij , ν〉 = −〈X,ij − Γ k
ij X,k, ν〉 = −〈X,ij , ν〉

= −
〈

(0, uij ),
((ui),−1)

v

〉

= uij

v
.

(v) We obtain

H =
n

∑

i=1
λi = gij hij =

(

δij − uiuj

1+ |Du|2
)

uij
√

1+ |Du|2

= δij uij
√

1+ |Du|2 −
uiujuij

(

1+ |Du|2)3/2

= Δu
√

1+ |Du|2 −
uiujuij

(

1+ |Du|2)3/2

and, on the other hand,

div

(

Du
√

1+ |Du|2
)

=
n

∑

i=1

∂

∂xi

ui
√

1+ |Du|2

=
n

∑

i=1

uii
√

1+ |Du|2 −
n

∑

i,j=1

uiujuji
(

1+ |Du|2)3/2

=H.
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(vi) From the defining equation for the principal curvatures and det gij = 1+|Du|2,
we obtain

K =
n
∏

i=1
λi = det

(

gij hjk

)

= detgij · det hij = dethij

detgij

= v−n detuij

v2
= detD2u

(

1+ |Du|2) n+2
2

.

��
These formulae extend to the situation, in which u is defined on an open subset

of Rn.

Exercise 1 (Spheres) The lower hemisphere of radiusR is locally given as graphu

with u : BR(0) → R defined by u(x) := −√

R2 − |x|2. Compute all the quantities
mentioned in Lemma 1 and the principal curvatures explicitly for this example.

Exercise 2 Give a geometric definition of the (principal) curvature of a curve in R2

in terms of a circle approximating that curve in an optimal way.
Use the min-max characterization of eigenvalues to extend that geometric

definition to n-dimensional hypersurfaces in R
n+1.

Exercise 3 (Rotationally Symmetric Graphs) Assume that the function u :
R

n → R is smooth and u(x) = u(y), if |x| = |y|. Then u(x) = f (|x|) for
some f : R+ → R. Compute once again all the geometric quantities mentioned
in Lemma 1.

3 Evolving Submanifolds

3.1 General Assumption

We will only consider the evolution of manifolds of dimension n embedded into
R

n+1, i.e. the evolution of hypersurfaces in Euclidean space. (Mean curvature flow
is also considered for manifolds of arbitrary codimension. Another generalisation is
to study flow equations of hypersurfaces immersed into Riemannian or Lorentzian
manifolds.)

Definition 1 Let Mn denote an orientable manifold of dimension n. Let X(·, t) :
Mn → R

n+1, 0 ≤ t ≤ T < ∞, be a smooth family of smooth embeddings. Let ν

denote one choice of the normal vector field along X(Mn, t). Then X or (Mt )0≤t<T

with Mt := X(Mn, t) is said to move with normal velocity F , if

d

dt
X = −Fν in Mn × [0, T ).



84 O. C. Schnürer

Remark 2 In codimension 1, we often do not need to assume that Mn is orientable:
Let X : Mn → Nn+1 be a C2-immersion and H1(N;Z/2Z) = 0. Assume that
X is proper, X−1(∂N) = ∂M , and X is transverse to ∂N . Then N \ X(M) is not
connected [13]. Hence, if Mn is closed and embedded in Rn+1, Mn is orientable.

3.2 Evolution of Graphs

Lemma 2 Let u : Rn×[0,∞) → R be a smooth function such that graphu evolves
according to d

dt
X = −Fν. Then

u̇ =
√

1+ |Du|2 · F.

This result also holds, if u is defined on an open subset of Rn × [0,∞).

Proof Beware of assuming that the (n+ 1)-st component in the evolution equation
d
dt

X = −Fν were equal to u̇ as a hypersurface evolving according to d
dt

X = −Fν

does not only move in vertical direction but also in horizontal direction.
Let p denote a point on the abstract manifold embedded via X into Rn+1. As our

embeddings are graphical, we see that

X(p, t) = (x(p, t), u(x(p, t), t)).

We consider the scalar product of both sides of the evolution equation with ν and
obtain

F = 〈Fν, ν〉 =
〈

− d

dt
X, ν

〉

= −
〈

((

ẋk
)

, ui ẋ
i + u̇

)

,
((ui ),−1)
√

1+ |Du|2

〉

= u̇
√

1+ |Du|2
.

��
Corollary 1 Let u : Rn × [0,∞) → R be a smooth function such that graphu

solves mean curvature flow d
dt

X = −Hν. Then

u̇ =
√

1+ |Du|2 · div
(

Du
√

1+ |Du|2
)

.

Exercise 4 (Rotationally Symmetric Translating Solutions) Let u := R
n×R→

R be rotationally symmetric. Assume that graphu is a translating solution to mean
curvature flow d

dt
X = −Hν, i.e. a solution such that u̇ is constant.
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Similar to Exercise 3, derive an ordinary differential equation for translating
rotationally symmetric solutions to mean curvature flow.

Why does it suffice to consider the case u̇ = 1?

Remark 3 Consider a physical system consisting of a domain Ω ⊂ R
3. Assume

that the energy of the system is proportional to the surface area of ∂Ω . Then, up to
a transformation t �→ μt for some μ > 0, the L2-gradient flow for the area is mean
curvature flow. We check that in a model case for graphical solutions in Lemma 3.

Lemma 3 Let u : Rn × [0,∞) → R be smooth. Assume that u(x, t) ≡ 0 for
|x| ≥ R. Then the surface area is maximally reduced among all normal velocities
F with given L2-norm, if the normal velocity of graphu is given by H , i.e. if u̇ =
√

1+ |Du|2 ·H .
Note that in general, soluIons to u̇ = √

1+ |Du|2 · H do not have compact
support.

Proof The area of graphu(·, t)|BR is given by

A(t) =
∫

BR

√

1+ |Du|2 dx.

Define the induced area element dμ by dμ := √

1+ |Du|2 dx. We obtain using
integration by parts

d

dt
A(t)

∣

∣

∣

∣

t=0
=

∫

BR

d

dt

√

1+ |Du|2 dx

∣

∣

∣

∣

∣

∣

∣

t=0

=
∫

BR(0)

1
√

1+ |Du|2 〈Du, Du̇〉

∣

∣

∣

∣

∣

∣

∣

t=0

= −
∫

BR

div

(

Du
√

1+ |Du|2
)

u̇

v
· v dx

∣

∣

∣

∣

∣

∣

∣

t=0

= −
∫

BR

H F dμ

∣

∣

∣

∣

∣

∣

∣

t=0

≥ −
⎛

⎜

⎝

∫

BR

H 2 dμ

⎞

⎟

⎠

1/2 ⎛

⎜

⎝

∫

BR

F 2 dμ

⎞

⎟

⎠

1/2∣
∣

∣

∣

∣

∣

∣

t=0

.

Here, we have used Hölder’s inequality ‖ab‖L1 ≤ ‖a‖L2 · ‖b‖L2 . There, we
get equality precisely if a and b differ only by a multiplicative constant. Hence
the surface area is reduced most efficiently among all normal velocities F with
‖F‖L2 = ‖H‖L2 , if we choose F = H . In this sense, mean curvature flow is the
L2-gradient flow for the area integral. ��
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3.3 Examples

Lemma 4 Consider mean curvature flow, i.e. the evolution equation d
dt

X = −Hν,

with M0 = ∂BR(0). Then a smooth solution exists for 0 ≤ t < T := 1
2n

R2 and is

given by Mt = ∂Br(t)(0) with r(t) = √
2n(T − t) = √

R2 − 2nt .

Proof The mean curvature of a sphere of radius r(t) is given by H = n
r(t)

. Hence
we obtain a solution to mean curvature flow, if r(t) fulfills

ṙ(t) = −n

r(t)
.

A solution to this ordinary differential equation is given by r(t) = √
2n(T − t).

(The theory of partial differential equations implies that this solution is actually
unique and hence no solutions exist that are not spherical.) ��
Exercise 5 Find a solution to mean curvature flow with M0 = ∂BR(0) × R

k ⊂
R

l ×R
k . This includes in particular cylinders. Note that for k ≥ 1, it is not obvious,

whether these solutions are unique.

Exercise 6 Find solutions for d
dt

X = −|A|2ν, d
dt

X = −Kν, d
dt

X = 1
H

ν, and
d
dt

X = 1
K

ν if M0 = ∂BR(0) ⊂ R
n+1, especially for n = 2.

Remark 4 (Level-Set Flow for F > 0) Let Mt be a family of smooth embedded
hypersurfaces in Rn+1 that move according to d

dt
X = −Fν with F > 0. Impose the

global assumption that each point x ∈ R
n+1 belongs to at most one hypersurface

Mt . Then we can (at least locally) define a function u : R
n+1 → R by setting

u(x) = t , if x ∈ Mt . That is, u(x) is the time, at which the hypersurface passes
through the point x. We differentiate the identity t = u(X(p, t)), use that for closed
shrinking hypersurfaces, Du is a negative multiple of the outer unit normal ν and
get

1 = d

dt
u(X(p, t)) =

〈

Du,
d

dt
X

〉

= 〈Du,−Fν〉 = F · |Du|.

We obtain the equation F · |Du| = 1.
If F < 0, Du is a positive multiple of ν and we get F · |Du| = −1.
This formulation is used to describe weak solutions, where singularities in the

classical formulation occur. See for example [21], where the inverse mean curvature
flow F = − 1

H
is considered to prove the Riemannian Penrose inequality. Note that

H = div
(

Du
|Du|

)

as the outer unit normal vector to a closed expanding hypersurface

Mt = {u = t} is given by Du
|Du| . According to (3), the divergence of the unit normal

yields the mean curvature as the derivative of the unit normal in the direction of the
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unit normal vanishes. Hence the evolution equation d
dt

X = 1
H

ν can be rewritten as

div

(

Du

|Du|
)

= |Du|.

For contracting hypersurfaces under mean curvature flow with H > 0, the outer

unit normal is given by − Du
|Du| and H = − div

(

Du
|Du|

)

. Hence mean curvature flow

can be rewritten as |Du| · div
(

Du
|Du|

)

= −1.

Exercise 7 Verify the formula for the mean curvature in the level-set formulation.
Compute level-set solutions to the flow equations d

dt
X = −Hν and d

dt
X = 1

H
ν,

where u depends only on |x|, i.e. the hypersurfaces Mt are spheres centered at the
origin. Compare the result to your earlier computations.

We will use the level-set formulation to study a less trivial solution to mean
curvature flow which can be written down in closed form.

Exercise 8 (Paper-Clip Solution) Let v �= 0. Consider the set

Mt :=
{

(x, y) ∈ R
2 : ev

2t cosh(vy) = cos(vx)
}

.

Show that Mt solves mean curvature flow. Describe the shape of Mt for t → −∞
and for t ↗ 0 (after appropriate rescaling).

Compare this to Theorem 3.
Note that you may also rewrite solutions equivalently (on an appropriate domain)

as

y± := 1

v
log

(

cos(vx)±
√

cos2(vx)− e2v
2t

)

− vt .

Hint: You should obtain tx = ux = − sin(vx)
v cos(vx)

and uy = − sinh(vy)
v cosh(vy)

.

Remark 5 (Level-Set Flow) If a hypersurface moves with velocity F , where F

is not necessarily positive, we cannot use the level-set formulation from above.
Instead, we can use a function u : Rn × [0,∞) → R such that for each c ∈ R,
the set Mt := {x ∈ R

n : u(x, t) = c} (if it is a smooth hypersurface) is an embedded
hypersurface that moves with velocity F .

We fix the unit normal ν = Du
|Du| . Recall that Ẋ = −Fν. If u is as described

above, we have u(X(p, t), t) = c along the flow. Differentiating this equation yields
0 = u̇+Du · Ẋ = u̇+Du · (−ν) · F = u̇− |Du| · F .

For mean curvature flow, we obtain

u̇ = |Du| · div
(

Du

|Du|
)

=
(

δij − uiuj

|Du|2
)

uij .
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We leave it as an exercise that the converse implication is also true if the level sets
are regular in the sense that Du �= 0, i.e. that {x : u(x, t) = c} evolves with normal
velocity F if u̇ = |Du| · F and Du �= 0 along {x : u(x, t) = c}.

3.4 Short-Time Existence and Avoidance Principle

In the case of closed initial hypersurfaces, short-time existence is guaranteed by the
following

Theorem 1 (Short-Time Existence) Let X0 : Mn → R
n+1 be an embedding

describing a smooth closed hypersurface. Let F = F(λi) be smooth, symmetric,
and ∂F

∂λi
> 0 everywhere on X(Mn) for all i. Then the initial value problem

{

d
dt

X = −Fν,

X(·, 0) = X0

has a smooth solution on some (short) time interval [0, T ), T > 0.

Proof (Idea of Proof) Represent potential solutions locally as graphs in a tubular
neighbourhood of X0(M

n). Then ∂F
∂λi

> 0 ensures that the evolution equation for
the height function in this coordinate system is strictly parabolic. Linear theory and
the implicit function theorem guarantee that there exists a solution on a short time
interval.

For more details see [22, Theorem 3.1]. ��
Exercise 9

(i) Check, for which initial data the conditions in Theorem 1 are fulfilled if F =
H, K, |A|2, −1/H, −1/K .

(ii) Find examples of closed hypersurfaces such that

a) H > 0,
b) K > 0,
c) H is not positive everywhere,
d) H > 0, but K changes sign.

(iii) Show that on every smooth closed hypersurface Mn ⊂ R
n+1, there is a point,

where Mn is strictly convex, i.e. λi > 0 is fulfilled for every i.

On the other hand, starting with a closed hypersurface gives rise to solutions
that exist at most on a finite time interval. This is a consequence of the avoidance
principle. We will only consider the avoidance principle for mean curvature flow:

Theorem 2 (Avoidance Principle) Let M1
t and M2

t ⊂ R
n+1 be two embedded

closed hypersurfaces and smooth solutions to d
dt

X = −Hν on a common time
interval [0, T ). If M1

0 and M2
0 are disjoint, then M1

t and M2
t are also disjoint.
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In particular, if M1
0 is contained in a bounded component ofRn+1 \M2

0 , then M1
t

is contained in a bounded component of Rn+1 \M2
t .

Proof Suppose not. Then there would be some minimal t0 > 0 such that M2
t0

touches M1
t0
at some point p ∈ R

n+1. We get for the normals ν1 = ±ν2 at p.
Observe that if we change ν to−ν,H also changes sign andHν remains unchanged.
Therefore it does not matter for mean curvature flow, which normal we choose and
we may assume without loss of generality that ν1 = ν2 at p. Writing Mi

t locally
as graphui over the common tangent hyperplane TpMi

t0
⊂ R

n+1, we see that the
functions ui fulfill

u̇i =
√

1+ ∣

∣Dui
∣

∣

2 · div
⎛

⎝

Dui

√

1+ ∣

∣Dui
∣

∣

2

⎞

⎠ ≡ F
(

D2ui, Dui
)

.

We may assume that u1 > u2 for t < t0. The evolution equation for the difference
w := u1 − u2 fulfills w > 0 for t < t0 locally in space-time and w(0, t0) = 0, if
we have p = (0, 0) in our coordinate system. The evolution equation for w can be
computed as follows

ẇ = u̇1 − u̇2 = F
(

D2u1, Du1
)

− F
(

D2u2, Du2
)

=
1

∫

0

d

dτ
F

(

τD2u1 + (1− τ )D2u2, τDu1 + (1− τ )Du2
)

dτ

=
1

∫

0

∂F

∂rij

(. . .) dτ ·
(

u1 − u2
)

ij
+

1
∫

0

∂F

∂pi

(. . .) dτ ·
(

u1 − u2
)

i

≡ aijwij + biwi.

Hence we can apply the parabolic Harnack inequality or the strong parabolic
maximum principle and see that it is impossible that w(x, t) > 0 for small |x|
and t < t0, but w(0, t0) = 0. Hence M1

t cannot touchM2
t in a point, where ν1 = ν2.

The theorem follows. ��
Remark 6 The avoidance principle also extends to other normal velocities.

However, if Fν is not invariant under changing ν to −ν, we have to ensure
that the normals do not point in opposite directions, e.g. by assuming that one
hypersurface encloses the other initially.

Usually, the normal velocity F , considered as a function of the principal
curvatures, is defined on a convex cone Γ ⊂ R

n. However, this does not ensure in
general that F , considered as a function of

(

D2u, Du
)

, is also defined on a convex
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set. Therefore we recommend in those cases to interpolate between the principal
curvatures instead.

Exercise 10 Show that the normal velocities as considered in Exercise 9 can be
represented (in an appropriate domain) as smooth functions of

(

D2u, Du
)

for
hypersurfaces that are locally represented as graphu.

Corollary 2 (Finite Existence Time) Let M0 be a smooth closed embedded
hypersurface in Rn+1. Then a smooth solution Mt to

d
dt

X = −Hν can only exist on
some finite time interval [0, T ), T < ∞.

Proof Choose a large sphere that encloses M0. According to Lemma 4, that sphere
shrinks to a point in finite time. Thus the solution Mt can exist smoothly at most up
to that time. ��
Exercise 11 Deduce similar corollaries for the normal velocities in Exercise 9. You
may use Exercise 6.

Remark 7 (Maximal Existence Time) Consider T maximal such that a smooth
solution Mt as in Corollary 2 exists on [0, T ). Then the embedding vector X is
uniformly bounded according to Theorem 2. Then some spatial derivative of the
embedding X(·, t) has to become unbounded as t ↗ T . For otherwise we could
apply Arzelà-Ascoli and obtain a smooth limiting hypersurface MT such that Mt

converges smoothly to MT as t ↗ T . This, however, is impossibly, as Theorem 1
would allow to restart the flow from MT . In this way, we could extend the flow
smoothly all the way up to T + ε for some ε > 0, contradicting the maximality
of T .

It can often be shown that extending a solution beyond T is possible provided
that ‖X(·, t)‖C2 is uniformly bounded. For mean curvature flow, this follows from
explicit estimates. For other normal velocities, additional assumptions (the principal
curvatures stay in a region, where F has nice properties) and Krylov-Safonov-
estimates may be used to show such a result.

4 Evolution Equations for Submanifolds

In this chapter, we will compute evolution equations of geometric quantities, see
e.g. [20, 22, 27].

For a family Mt of hypersurfaces solving the evolution equation

d

dt
X = −Fν (6)

with F = F(λi), where F is a smooth symmetric function, we have the following
evolution equations.
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Lemma 5 The metric gij evolves according to

d

dt
gij = −2Fhij . (7)

Proof By definition, gij = 〈X,i, X,j 〉 = Xα
,iδαβX

β
,j . We differentiate with respect

to time. Derivatives of δαβ vanish. The term Xα
,i involves only partial derivatives.

We obtain

d

dt
gij =

(

Ẋα
)

,i
δαβX

β
,j +Xα

,iδαβ

(

Ẋβ
)

,j

(we may exchange partial spatial and time derivatives)

= (−Fνα
)

,i
δαβX

β
,j +Xα

,iδαβ

(−Fνβ
)

,j

(in view of the evolution equation d
dt

X = −Fν)

= − Fνα
;iδαβX

β
,j −Xα

,iδαβFν;j

(terms involving derivatives of F vanish as ν and Xα
,i are orthogonal to each other;

as the background metric gαβ = δαβ is flat, covariant and partial derivatives of ν

coincide)

= − Fhk
i Xα

,kδαβX
β
,j − FXα

,iδαβhk
jX

β
,k

(in view of the Weingarten equation (3))

= − Fhk
i gkj − Fgikhk

j

(by the definition of the metric)

= − 2Fhij

(by the definition of hi
j := hjkgki ).

The lemma follows. ��
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Corollary 3 The evolution equation of the volume element dμ := √

detgij dx is
given by

d

dt
dμ = −FH dμ. (8)

Proof Exercise. Recall the formula for differentiating the determinant. ��
Lemma 6 The unit normal ν evolves according to

d

dt
να = gij F; iX

α
; j . (9)

Proof By definition, the unit normal vector ν has length one,

〈ν, ν〉 = 1 = ναδαβνβ .

Differentiating yields

0 = ν̇αδαβνβ.

Hence it suffices to show that the claimed equation is true if we take on both sides
the scalar product with an arbitrary tangent vector. The vectors X,i (which we will
also denote henceforth byXi as there is no danger of confusion; we will also use this
convention in other situations if partial and covariant derivatives of some quantity
coincide) form a basis of the tangent plane at a fixed point. We differentiate the
relation

0 = 〈ν, Xi〉 = ναδαβX
β
i

and obtain

0 = d

dt
ναδαβX

β
i + ναδαβ

d

dt
X

β
i

= d

dt
ναδαβX

β
i + ναδαβ

(

d

dt
Xβ

)

i

= d

dt
ναδαβX

β
i − ναδαβ

(

Fνβ
)

i
.

Hence

d

dt
ναδαβX

β

i = ναδαβνβFi + Fναδαβν
β

i

=Fi + F 1
2 〈ν, ν〉i = Fi
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and the lemma follows as taking the scalar product of the claimed evolution equation
with Xk , i.e. multiplying it with δαβX

β
k , yields

d

dt
ναδαβX

β
k = gij FiX

α
j δαβX

β
k = gij Figjk = δi

kFi = Fk.

��
Lemma 7 The second fundamental form hij evolves according to

d

dt
hij = F; ij − Fhk

i hkj . (10)

Proof The Gauß formula (2) implies that hij = −Xα
;ij να . Differentiating yields

d

dt
hij = − d

dt
〈X;ij , ν〉

= −
〈

d

dt
X;ij , ν

〉

−
〈

−hij ν,
d

dt
ν

〉

= −
〈

d

dt
X;ij , ν

〉

+ hij

〈

ν,
d

dt
ν

〉

= −
〈

d

dt
X;ij , ν

〉

= − d

dt

(

Xα
,ij − Γ k

ij Xα
k

)

να

= −
(

d

dt
Xα

)

,ij

να + Γ k
ij

(

d

dt
Xα

)

,k

να

(where no time derivatives of Γ k
ij show up as Xα

k να = 0)

= (Fνα),ij να − Γ k
ij (Fνα),kνα

(in view of the evolution equation)

=F,ij νανα + F,iν
α
,j να + F,j να

,iνα + Fνα
,ij να − Γ k

ij F,kνανα − Γ k
ijFνα

,kνα

=F;ij + Fνα
,ij να
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as F;ij = F,ij −Γ k
ij F,k and να

,j να = 1
2 (νανα)j = 0. It remains to show that να

,ij να =
−hk

i hkj . We obtain

να
,ij να = να

;i,j να

(as να
i = να

;i)

= να
;ij να

(να
;ij = (να

;i ),j − Γ k
ij να

k and 0 = να
k να)

=
(

hk
i Xα

k

)

;j να

(according to the Weingarten equation (3))

=hk
i (−hkj να)να

(due to the Gauß equation (2) and the orthogonality Xα
k να = 0)

= − hk
i hkj

as claimed. The Lemma follows. ��
Lemma 8 The normal velocity F evolves according to

d

dt
F − F ij F;ij = FF ij hk

i hkj . (11)

Proof We have, see [26, Lemma 5.4], the proof of [17, Theorem 2.1.20], or check
this explicitly for the normal velocity considered,

∂F

∂gkl

= −F ilhk
i

and compute the evolution equation of the normal velocity F

d

dt
F − F ij F;ij =− F ilhk

i

d

dt
gkl + F ij d

dt
hij − F ij F; ij

=FF ij hk
i hkj ,

where we used (7) and (10). ��
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We will need more explicit evolution equations for geometric quantities �
involving d

dt
�−F ij�;ij .

Lemma 9 The second fundamental form hij evolves according to

d

dt
hij − F klhij ; kl =F klha

khal · hij − F klhkl · ha
i haj

− Fhk
i hkj + F kl, rshkl; ihrs; j .

(12)

Proof Direct calculations yield

d

dt
hij − F klhij ; kl =F;ij − Fhk

i hkj − F klhij ;kl by (10)

=F klhkl; ij + F kl, rshkl; ihrs; j

− Fhk
i hkj − F klhij ; kl

=F klhik; lj + F kl, rshkl; ihrs; j

− Fhk
i hkj − F klhik; j l by Codazzi

=F kl
(

ha
kRailj + ha

i Raklj

)− Fhk
i hkj

+ F kl, rshkl; ihrs; j by (5)

=F klha
khalhij − F klha

khajhil

+ F klha
i halhkj − F klha

i hajhkl

− Fhk
i hkj + F kl, rshkl; ihrs; j by (4)

=F klha
khalhij − F klha

i hajhkl

− Fhk
i hkj + F kl, rshkl; ihrs; j .

��
Remark 8 A direct consequence of (6) and (2) is

d

dt
Xα − F ij Xα

; ij =
(

F ij hij − F
)

να. (13)

Hence

d

dt
|X|2 − F ij

(

|X|2
)

;ij = 2
(

F ij hij − F
)

〈X, ν〉 − 2F ij gij .
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Proof We have

d

dt
|X|2 − F ij

(

|X|2
)

;ij = 2

〈

X,
d

dt
X

〉

− 2F ij 〈Xi, Xj 〉 − 2F ij 〈X, X;ij 〉

= 2〈X,−Fν〉 − 2F ijgij − 2F ij 〈X,−hij ν〉.
��

Lemma 10 The evolution equation for the unit normal ν is

d

dt
να − F ij να

;ij = F ij hk
i hkj · να. (14)

Proof We compute

d

dt
να − F ij να

;ij = gij F; iX
α
; j − F ij

(

hk
i Xα

; k

)

; j
by (9) and (3)

= gij F klhkl; iX
α
; j − F ij hk

i; jXα
; k − F ij hk

i Xα
; kj

=F ij hk
i hkj να by (2).

��
Lemma 11 The evolution equation for the scalar product 〈X, ν〉 is

d

dt
〈X, ν〉 − F ij 〈X, ν〉;ij = −F ij hij − F + F ij hk

i hkj 〈X, ν〉. (15)

Proof We obtain

d

dt
〈X, ν〉 − F ij 〈X, ν〉;ij =Xαδαβ

(

d

dt
νβ − F ij να

;ij
)

+
(

d

dt
Xα − F ij Xα

; ij

)

δαβνβ

− 2F ij Xα
; iδαβν

β

; j

=F ij hk
i hkj 〈X, ν〉 +

(

F ij hij − F
)

〈ν, ν〉

− 2F ij Xα
; iδαβhk

j X
β

; k

by (3), (13), and (14)

=F ij hk
i hkj 〈X, ν〉 − F ij hij − F.

��
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Lemma 12 Let (ηα)α = −en+1 = (0, . . . , 0,−1). Then ṽ := 〈η, ν〉 ≡ ηανα fulfills

d

dt
ṽ− F ij ṽ;ij =F ij hk

i hkj ṽ (16)

and v := ṽ−1 fulfills

d

dt
v− F ij v;ij = − vF ij hk

i hkj − 2
1

v
F ijvivj . (17)

Proof The evolution equation for ṽ is a direct consequence of (14). For the proof of
the evolution equation of v observe that

vi = − ṽ−2ṽi = −v2ṽi

and

v;ij = − ṽ−2ṽ;ij + 2ṽ−3ṽi ṽj = −v2ṽ;ij + 2v−1vivj .

��

5 Convex Hypersurfaces

5.1 Mean Curvature Flow

G. Huisken obtained the following theorem [20] for n ≥ 2. The corresponding result
for curves by M. Gage, R. Hamilton, and M. Grayson is even better, see [15, 18]. It
is only required that M ⊂ R

2 is a closed embedded curve.

Theorem 3 Let M ⊂ R
n+1, n ≥ 2, be a smooth closed convex hypersurface. Then

there exists a smooth family Mt of hypersurfaces solving

{

d
dt

X = −Hν for 0 ≤ t < T ,

M0 = M

for some T > 0.
As t ↗ T ,

• Mt → Q in Hausdorff distance for some Q ∈ R
n+1 (convergence to a point),

• (Mt −Q) · (2n(T − t))−1/2 → S
n smoothly (convergence to a “round point”).
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The key step in the proof of Theorem 3 (in the case n ≥ 2) is the following:

Theorem 4 Let Mt ⊂ R
n+1, n ≥ 2, be a family of convex closed hypersurfaces

flowing according to mean curvature flow. Then there exists some δ > 0 such that

max
Mt

n|A|2 −H 2

H 2−δ

is bounded above.

The proof involves complicated integral estimates.

Exercise 12 Prove Theorem 4 for δ = 0.
Hint: Use Kato’s inequality.

Theorem 5 (Kato’s Inequality) We have

|∇|A||2 ≤ |∇A|2.

Proof We prove this inequality if |A| �= 0. In the exercise above, we only need

that case. As ∇|A|2 = 2|A|∇|A|, the claim is equivalent to 1
4

∣

∣∇|A|2∣∣2 ≤ |A|2 ·
|∇A|2. We choose a coordinate system such that in a fixed point gij = δij and hij

is diagonal with eigenvalues λi . We obtain there

1

4

∣

∣

∣∇|A|2
∣

∣

∣

2 = 1

4

∑

k

(

∇k|A|2
)2 =

∑

i,j,k

λihii;kλj hjj ;k

≤
∑

i,j,k

(

1

2
λ2i h2

jj ;k +
1

2
λ2jh2

ii;k
)

=
∑

i,j,k

λ2i h2
jj ;k ≤

∑

i,j,k,l

h2
ij ;kλ2l

= |A|2 · |∇A|2.
��

Remark 9 For simplicity, we will illustrate the significance of the quantity consid-
ered in Theorem 4 only in the case n = 2. These considerations extend to higher
dimensions.

As

2|A|2 −H 2 = 2(λ21 + λ22)− (λ1 + λ2)
2

= 2λ21 + 2λ22 − λ21 − 2λ1λ2 − λ22

= λ21 − 2λ1λ2 + λ22

= (λ1 − λ2)
2,

it measures the difference from being umbilic (λ1 = λ2) and vanishes precisely if
Mt is a sphere. Here, we have used that, according to Codazzi, λ1 = λ2 everywhere
implies that Mt is locally part of a sphere or hyperplane.
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Assume that min
Mt

H → ∞ as t ↗ T . Assume also that λ1 ≤ λ2 and that the

surfaces stay strictly convex, i.e. min
Mt

λ1 > 0. Then Theorem 4 implies for any ε that

there exists tε , such that for tε ≤ t < T

ε ≥ max
Mt

H−δ ≥ 2|A|2 −H 2

H 2
= (λ1 − λ2)

2

(λ1 + λ2)2
≥ (λ1 − λ2)

2

4λ22

= 1

4

(

λ1

λ2
− 1

)2

.

Hence λ1
λ2
≈ 1 and thus this implies that Mt is, in terms of the principal curvatures

λi , close to a sphere.

5.2 Gauß Curvature Flow and Other Normal Velocities

There are many results showing that convex hypersurfaces converge to round points
under certain flow equations, see e.g. [1, 2, 6, 14–16, 23, 27, 28, 32].

Let us consider normal velocities of homogeneity bigger than one. In this case,
the calculations, that lead to a theorem corresponding to Theorem 4 for mean
curvature flow, are much simpler and rely only on the maximum principle.

Theorem 6 ([2, Proposition 3]) Let Mt be a smooth family of closed strictly
convex solutions to Gauß curvature flow d

dt
X = −Kν. Then

t �→ max
Mt

(λ1 − λ2)
2

is non-increasing.

Proof Recall that H 2 − 4K = (λ1 + λ2)
2 − 4λ1λ2 = (λ1 − λ2)

2 =: w. For Gauß
curvature flow, we have, according to Appendix 2,

F ij =Kij = ∂

∂hij

dethkl

detgkl

= dethkl

detgkl

h̃ij = Kh̃ij ,

F ij,kl =Kh̃ij h̃kl −Kh̃ikh̃lj ,

where
(

h̃ij
)

i,j
is the inverse of (hij )i,j . Recall the evolution equations (7), (11),

and (12) which become for Gauß curvature flow

d

dt
gij = − 2Khij ,

d

dt
K −Kh̃klKkl =KKh̃ij hk

i hkj = K2H,
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and

d

dt
hij −Kh̃klhij ;kl =Kh̃klha

khalhij −Kh̃klhklh
a
i haj −Khk

i hkj

+K
(

h̃kl h̃rs − h̃kr h̃sl
)

hkl;ihrs;j

=KHhij − (n+ 1)Kha
i haj +K

(

h̃kl h̃rs − h̃kr h̃sl
)

hkl;ihrs;j ,

where n = 2. We have

d

dt
H −Kh̃ij H;ij = − hij gikgjl d

dt
gkl + gij

(

d

dt
hij −Kh̃klhij ;kl

)

= 2K|A|2 +KH 2 − 3K|A|2 +Kgij
(

h̃kl h̃rs − h̃kr h̃sl
)

hkl;ihrs;j

=K
(

H 2 − |A|2
)

+Kgij
(

h̃kl h̃rs − h̃kr h̃sl
)

hkl;ihrs;j

= 2K2 +Kgij
(

h̃kl h̃rs − h̃kr h̃sl
)

hkl;ihrs;j ,

hence

d

dt
w −Kh̃ij w;ij = 2H

(

d

dt
H −Kh̃ij H;ij

)

− 2Kh̃ij HiHj

− 4

(

d

dt
K −Kh̃ij K;ij

)

= 2H
(

2K2 +Kgij
(

h̃kl h̃rs − h̃kr h̃sl
)

hkl;ihrs;j
)

− 2Kh̃ij HiHj − 4K2H

= 2HKgij
(

h̃kl h̃rs − h̃kr h̃sl
)

hkl;ihrs;j − 2Kh̃ij HiHj .

In a coordinate system, such that gij = δij and hij = diag (λ1, λ2) in a fixed point,
we obtain

d

dt
w −Kh̃ij w;ij = 2KH

2
∑

i,j,k=1

1

λiλj

hii;khjj ;k − 2KH

2
∑

i,j,k=1

1

λiλj

h2
ij ;k

− 2K

2
∑

i,j,k=1

1

λk

hii;khjj ;k
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= 2KH

2
∑

i,j,k=1
i �=j

1

λiλj

hii;khjj ;k − 2KH

2
∑

i,j,k=1
i �=j

1

λiλj

h2
ij ;k − 2K

2
∑

i,j,k=1

1

λk

hii;khjj ;k

= 4KH

λ1λ2

(

h11;1h22;1 − h2
12;1 + h11;2h22;2 − h2

12;2
)

− 2K

λ1
(h11;1 + h22;1)2 − 2K

λ2
(h11;2 + h22;2)2.

From now on, we consider a positive spatial maximum of H 2 − 4K . There, we get
2Hgij hij ;k − 4Kh̃ij hij ;k = 0 for k = 1, 2. In a coordinate system as above, this
(divided by 2) becomes

0 =Hh11;k +Hh22;k − 2
K

λ1
h11;k − 2

K

λ2
h22;k

= (λ1 + λ2 − 2λ2)h11;k + (λ1 + λ2 − 2λ1)h22;k
= (λ1 − λ2)(h11;k − h22;k).

This enables us to replace h11;2 in the evolution equation in a positive critical point
by h22;2: h11;2 = h22;2 and h22;1 = h11;1. Using also the Codazzi equations, we can
rewrite the evolution equation in a positive critical point as

d

dt
w −Kh̃ij w;ij = 4(λ1 + λ2)

(

h2
11;1 − h2

22;2 + h2
22;2 − h2

11;1
)

− 2K

λ1
(h11;1 + h22;1)2 − 2K

λ2
(h11;2 + h22;2)2

≤ 0.

Hence, by the parabolic maximum principle, see Theorem 18 for a version on a
domain, the claim follows. ��

A consequence of Theorem 6 is the following result, see [2, Theorem 1].

Theorem 7 Let M ⊂ R
3 be a smooth closed strictly convex surface. Then

there exists a smooth family of closed strictly convex hypersurfaces solving Gauß
curvature flow d

dt
X = −Kν for 0 ≤ t < T . As t ↗ T , Mt converges to a round

point.

Proof (Sketch of Proof) The main steps are

(i) The convergence to a point is due to K. Tso [31]. There, the problem is
rewritten in terms of the support function and considered in all dimensions.
It is shown that a positive lower bound on the Gauß curvature is preserved
during the evolution. This ensures that the surfaces stay convex. The evolution
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equation of

K

〈X, ν〉 − 1
2R

is used to estimate K from above as long as the surface encloses BR(0). Then,
using further estimates, a bound on the principal curvatures follows. Parabolic
Krylov-Safonov estimates imply bounds on higher derivatives.

(ii) Theorem 6.
(iii) Show that Mt is between spheres of radius r+(t) and r−(t) and center q(t) with

r+(t)
r−(t)

→ 1 as t ↗ T .

(iv) Show that the quotient K(p,t)
Kr(t)

converges to 1 as t ↗ T . Here

r(t) = (3(T − t))1/3

is the radius of a sphere flowing according to Gauß curvature flow that becomes
singular at t = T and Kr(t) = (3(T − t))−2/3 its Gauß curvature. This involves
a Harnack inequality for the normal velocity.

(v) Show that λi

(3(T−t ))−1/3 → 1 as t ↗ T .
(vi) Obtain uniform a priori estimates for a rescaled version of the flow and hence

smooth convergence to a round sphere.
��

Theorem 7 has recently been generalised to higher dimensions by other methods,
see [3, 4].

5.3 The Tensor Maximum Principle

Often, the tensor maximum principle can be used to deduce a priori bounds.
We see directly from the parabolic maximum principle for tensors that a positive

lower bound on the principal curvatures is preserved for surfaces moving with
normal velocity |A|2.
Lemma 13 For a smooth closed strictly convex surface M inR3, flowing according
to d

dt
X = −|A|2ν, the minimum of the principal curvatures is non-decreasing.

Proof We have F = |A|2 = hij gjkhklg
li , F ij = 2giahabgbj , and F ij,kl = 2gikgjl .

Consider Mij = hij − εgij with ε > 0 so small that Mij is positive semi-definite
for some time t0. We wish to show that Mij is positive semi-definite for t > t0.
Using (7) and (12), we obtain

d

dt
hij − F klhij ; kl = 2 trA3hij − 3|A|2hk

i hkj + 2gkrglshkl; ihrs; j .
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In the evolution equation for Mij , we drop the positive definite terms involving
derivatives of the second fundamental form

d

dt
Mij − F klMij ; kl ≥ 2 trA3hij − 3|A|2hk

i hkj + 2ε|A|2hij .

Let ξ be a zero eigenvalue of Mij with |ξ | = 1, Mij ξj = hij ξj − εgij ξj = 0. So
we obtain in a point with Mij ≥ 0

(

2 trA3hij − 3|A|2hk
i hkj + 2ε|A|2hij

)

ξ iξj = 2ε trA3 − 3ε2|A|2 + 2ε2|A|2

= 2ε trA3 − ε2|A|2

≥ 2ε2|A|2 − ε2|A|2 > 0

and the maximum principle for tensors, Theorem 19, stated in the case of a
differential equation d

dt
Mij = . . ., extends to the case of a differential inequality

d
dt

Mij ≥ . . . and implies the result. ��
Exercise 13 Show that under mean curvature flow of closed hypersurfaces, the
following inequalities are preserved during the flow.

(i) H ≥ 0, H > 0,
(ii) hij ≥ 0,
(iii) εHgij ≤ hij ≤ βHgij for 0 < ε ≤ 1

n
< β < 1.

Such estimates exist also for other normal velocities.

5.4 Two Dimensional Surfaces

Theorem 8 ([27]) Let Mt be a family of closed strictly convex hypersurfaces
evolving according to d

dt
X = −|A|2ν. Then

t �→ max
Mt

(λ1 + λ2)(λ1 − λ2)
2

λ1λ2

is non-increasing.
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Exercise 14

(i) Prove Theorem 8.

Hint: In a positive critical point of w := (λ1+λ2)(λ1−λ2)
2

λ1λ2
, for F = |A|2, the

evolution equation of w is given by

d

dt
w − F ij w;ij = − 4(λ1 − λ2)

2λ1λ2

− 2
5λ81 − 4λ71λ2 + 46λ61λ

2
2 + 48λ51λ

3
2 + 72λ41λ

4
2

(

λ21 + λ1λ2 + λ22

)2
λ41

h2
11;1

− 2
44λ31λ

5
2 + 34λ21λ

6
2 + 8λ1λ

7
2 + 3λ82

(

λ21 + λ1λ2 + λ22

)2
λ41

h2
11;1

− 2
5λ82 − 4λ72λ1 + 46λ62λ

2
1 + 48λ52λ

3
1 + 72λ42λ

4
1

(

λ22 + λ2λ1 + λ21

)2
λ42

h2
22;2

− 2
44λ32λ

5
1 + 34λ22λ

6
1 + 8λ2λ

7
1 + 3λ81

(

λ22 + λ2λ1 + λ21

)2
λ42

h2
22;2.

(This is a longer calculation.)
(ii) Show that the only closed strictly convex surfaces contracting self-similarly

(by homotheties) under d
dt

X = −|A|2ν, are round spheres. A surface Mt is
said to evolve by homotheties, if for all t1, t2, there exists λ ∈ R such that
Mt1 = λMt2 .

(iii) Show that for closed strictly convex initial data M , there exists some c > 0
such that 1

c
≤ λ1

λ2
+ λ2

λ1
≤ c for surfaces evolving according to d

dt
X = −|A|2ν

for all 0 ≤ t < T , where T is, as usual, the maximal existence time.

Similar results also exist for expanding surfaces

Theorem 9 ([28]) Let Mt be a family of closed strictly convex hypersurfaces
evolving according to d

dt
X = 1

K
ν. Then

t �→ max
Mt

(λ1 − λ2)
2

λ21λ
2
2

is non-increasing.

Exercise 15 Prove Theorem 9 and deduce consequences similar to those in Exer-
cise 14.

Hint: In a critical point of w := (λ1−λ2)
2

λ21λ
2
2

, the evolution equation of w reads

d

dt
w − F ij w;ij = −2

(λ1 + λ2)(λ1 − λ2)
2

λ31λ
3
2

− 8

λ61λ2
h2
11; 1 −

8

λ1λ
6
2

h2
22; 2.
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5.5 Calculations on a Computer Algebra System

For checking the monotonicity of

t �→ max
Mt

(λ1 + λ2)(λ1 − λ2)
2

λ1λ2
,

see Theorem 8, the calculations become quite long. In the following we describe
how the calculations leading to this theorem can be done by a computer provided
that you trust these machines.

(i) Rewrite w = (λ1+λ2)(λ1−λ2)
2

λ1λ2
in terms of H and K , H and K in terms of gij

and hij and finally gij and hij as a function of Du and D2u, provided that the
surface is locally described as graphu.

(ii) Proceed similarly with the normal velocity |A|2 = F
(

Du, D2u
)

. Then u

fulfills the partial differential equation

u̇ =
√

1+ |Du|2 · F
(

Du, D2u
)

≡ vF.

(iii) Differentiating this equation yields

u̇k = vFrij uijk + vFpi uik + ui

v
Fuik,

where we have used F = F(p, r), and then dropping lower order terms
suggests to consider the linearised operator

LW := Ẇ − vFrij Wij ,

where v and F are evaluated at
(

Du, D2u
)

.
(iv) We would like to show that w is non-increasing. This follows from the

maximum principle if we can show that d
dt

w−F ij w;ij ≡ d
dt

w− ∂F
∂hij

w;ij ≤ 0
in a positive maximum of w. By the chain rule, we get

∂F

∂rij

= ∂F

∂hkl

· ∂hkl

∂rij

= ∂F

∂hij

· 1
v

.

(v) The considerations in the last paragraph do not depend on the coordinate
system. We choose a coordinate system such that a positive maximum is
attained at the origin and Du(0) = 0. We may assume in addition that D2u(0)

is diagonal. At the origin, both factors that distinguish covariant and partial
derivatives in w;ij = w,ij − Γ k

ij w,k vanish. Hence it suffices to show that
Lw|x=0 ≤ 0. This can be carried out with the help of a computer.
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The algorithm in words:

1. Write w = w
(

Du, D2u
)

and F = F
(

Du, D2u
)

.
2. Compute the following derivatives in terms of derivatives of u: Frij , ẇ, wi , wij .
3. Combine those derivatives and get Lw =: N1 in terms of derivatives of u.
4. Use the relations obtained from differentiating u̇ = vF , u̇k = (vF)k and u̇kl =

(vF)kl to remove any time derivative from N1: Call the result N2.
5. As w is positive and maximal at the point we want to consider, we can solve

wk = 0 for u11k and u22k. We use this to replace the terms u112 and u221 in N2
and get N3.

6. Assume that Du(0) = 0 and D2u(0) = (

a 0
0 b

)

in N3 to get N4.
7. N4 consists of three terms:

N4 = A+ Bu2
111 + Cu2

222,

no terms involving u111u222 show up. Observe that A, B and C do only depend
on a and b and that B and C are equal up to interchanging a and b.

8. It is easy to see that A ≤ 0 and B ≤ 0 for a, b ≥ 0 in the situation of Theorem 8.
If it is not obvious, whether these inequalities hold, Sturm’s algorithm [30]

can be used to check the underlying polynomials for positivity.
9. Applying the steps above for different choices of w can be used to find monotone

quantities, see [27, 28].

Two warnings:

• Do not use the simplifications valid at a single point, especially Du = 0, before
differentiating.

• The computer might identify u12 and u21. Take this into account when computing
Fr12 .

Exercise 16 Prove Theorem 8 based on computer algebra calculations.

6 Mean Curvature Flow of Entire Graphs

For mean curvature flow of entire graphs, K. Ecker and G. Huisken proved the
following existence theorem [11, Theorem 5.1].

Theorem 10 Let u0 : Rn → R be locally Lipschitz continuous. Then there exists a
function u ∈ C∞ (Rn × (0,∞)) ∩ C0 (Rn × [0,∞)) solving

⎧

⎪

⎨

⎪

⎩

u̇ = √

1+ |Du|2 · div
(

Du
√

1+ |Du|2
)

in R
n × (0,∞),

u(·, 0) = u0 in R
n.
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The key ingredient in the existence proof is the following localised gradient
estimate.

Theorem 11 Let u : BR(0)× [0, T ] → R be a smooth solution to graphical mean
curvature flow. Then

√

1+ |Du|2(0, t) ≤ c(n) sup
BR(0)

√

1+ |Du|2(·, 0) · exp
(

c(n) R−2
(

osc
BR(0)×[0,T ] u

)2
)

.

We do not prove this Theorem in this course. However, if we additionally assume
that u(x, 0) → ∞ as |x| → ∞, Theorem 16, that is much easier to prove, can be
used instead of Theorem 11.

Theorem 10 has been extended to continuous initial data by J. Clutterbuck [7]
and T. Colding and W. Minicozzi [9].

If u is initially close to a cone in an appropriate sense, graphical mean curvature
flow converges, as t →∞, after appropriate rescaling, to a self-similarly expanding
solution “coming out of a cone”, see the papers by K. Ecker and G. Huisken [11]
and N. Stavrou [29].

Stability of translating solutions to graphical mean curvature flow without
rescaling is considered in [8].

7 Mean Curvature Flow Without Singularities

The material in this section is based on joint work with M. Sáez, see [25].

7.1 Intuition

Remark 10

(i) Long time existence for entire graphs was first shown by K. Ecker and G.
Huisken [11], see Theorem 10.

(ii) We wish to study the evolution of complete graphs defined on subsets of
Euclidean space Rn+1. The additional dimension is related to Theorem 13.

(iii) We assume for the moment that such initial data have smooth solutions. Then
the following figures should give some intuition about the behaviour of these
solutions.

a) A rotationally symmetric solution defined on a ball: Fig. 1 on page 108
shows a rotationally symmetric graph in R

n+2 defined on a ball in Rn+1. A
cylinder over the boundary of the ball encloses this graph. Asymptotically,
these two hypersurfaces coincide as xn+2 → ∞. Under mean curvature
flow, the cylinder in R

n+2 collapses to a line in finite time. The sphere
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Fig. 1 Graph defined over a
ball

in R
n+1 collapses to a point in finite time. As the principal curvatures of

any cylinder Mn
t × R are λ1, . . . , λn, 0, where λ1, . . . , λn are the principal

curvatures of Mn
t , the projection of the evolving cylinder coincides at all

times with the evolving sphere.
The evolution of the graph stays graphical and asymptotic to the evolving
cylinder as xn+2 → ∞. As the curvature near the tip is larger than that of
the cylinder, the tip moves faster and moves up to infinity at precisely the
time when the cylinder collapses to a line. Thus for all times, the boundary
of the projections of the graphs coincides with the evolving spheres and
hence fulfills mean curvature flow.

b) A solution initially defined on a domain that will form a neckpinch under
mean curvature flow for n ≥ 2: In Fig. 2 on page 109, the graph is initially
defined over a domain whose boundary will develop a neckpinch in finite
time, i.e. the thin neck will collapse. There are methods to continue the flow
past this neckpinch singularity. After this singularity, the hypersurface splits
into two topologically spherical components. Once again, the evolution of
the graph above is such that the boundary of its projection or, equivalently,
of the domain of definition of the graph, fulfills mean curvature flow. This
happens as follows: As the neckpinch singularity forms downstairs, the
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Fig. 2 Solution with a neckpinch singularity

Fig. 3 Graph defined over an annulus

mean curvature in R
n+1 blows up. Meanwhile, above the neck region in

R
n+2, the mean curvature becomes even larger so that the graph over the

neck region moves to infinity while the rest of the graph remains finite.
Then the graph separates into two disjoint components.

c) A solution initially defined on an annulus: In Fig. 3 on page 109, the domain
of definition is an annulus. Its boundary consists of two disjoint spheres that
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Fig. 4 Ωt with many holes

disappear at different times. The graph above is asymptotic to two cylinders
as xn+2 → ∞. When the inner cylinder collapses, a “cap at infinity” is
added to the graph and its topology changes. Similarly to the example of a
contracting sphere, this cap can travel in finite time from infinity downwards
and become visible. Later, the situation is similar to that of Fig. 1.

d) A solution defined on a domain in the plane bounded by possibly countably
many disjoint curves: For a planar domain with finitely many holes,
see Fig. 4 on page 110, there are finitely many times, where boundary
components shrink to points and vanish similarly to the situation in Fig. 3.
At those times, caps at infinity are added to the graphical solution similarly
to the annulus situation above.
Finally, if a planar domain has countably many holes, we can arrange so
that the holes disappear on a dense set of times. We get a smoothly evolving
graph whose mean curvature is unbounded at all times.
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7.2 Results

Let us consider mean curvature flow for graphs defined on a relatively open set

Ω ≡
⋃

t≥0
Ωt × {t} ⊂ R

n+1 × [0,∞). (18)

Our existence result for bounded domains is

Theorem 12 (Existence) Let A ⊂ R
n+1 be a bounded open set and u0 : A → R

a locally Lipschitz continuous function with u0(x) →∞ for x → x0 ∈ ∂A.
Then there exists (Ω, u), where Ω ⊂ R

n+1×[0,∞) is relatively open, such that
u : Ω → R solves graphical mean curvature flow

u̇ =
√

1+ |Du|2 · div
(

Du
√

1+ |Du|2
)

in Ω ∩ {t > 0},

u is smooth for t > 0 and continuous up to t = 0, Ω0 = A, u(·, 0) = u0 in A and
u(x, t) → ∞ as (x, t) → (x0, t0) ∈ ∂Ω , where ∂Ω is the relative boundary of Ω

in Rn+1 × [0,∞).

Such smooth solutions yield weak solutions to mean curvature flow. We have

Theorem 13 (Weak Flow) Let (A, u0) and (Ω, u) be as in Theorem 12. Let ∂Dt

be the level set evolution of ∂Ω0 with D0 = Ω0. If ∂Dt does not fatten, the measure
theoretic boundaries of Ωt and Dt coincide for every t ≥ 0.

Here, Dt =
{

x ∈ R
n+1 : w(x, t) < 0

}

and w solves ẇ = |Dw| · div
(

Dw
|Dw|

)

as in

Remark 5. The equation is solved in the viscosity sense, see e.g. [5, 12] for more
details.

7.3 Strategy of Proof

Proof (Strategy of the Proof of Theorem 12)

(i) Fix L > 0. Then there exists a solution with initial value min{u0, L} for all
t ∈ [0,∞], see [11].

(ii) IfL1 < L, we prove a priori estimates for the part of the evolving graphs which
is below L1. This is done in Theorem 16 for the (spatial) first order derivatives
of u. See Theorem 17 for the second derivative bounds. Similar techniques
imply bounds for all higher derivatives.

(iii) We let L →∞ and use a variant of the Theorem of Arzelà-Ascoli to pass to a
subsequence which converges to our solution.

��
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Proof (Sketch of the Strategy of the Proof of Theorem 13) In the following sketch of
a proof we try to give an idea of the argument without mentioning technical details,
e.g. approximations or fattening. None of the steps works exactly as described
below.

(i) The constructed solution graphu(·, t) corresponds to a level-set solution.
(ii) The level-set solution starting from ∂A×R is an outer barrier to the graphical

solution graphu(·, t). Observe that Ωt is the projection of the evolving graph
at time t to R

n+1. Hence Ωt is contained in the level-set evolution of A.
(iii) By shifting the level set solution downwards, we obtain convergence to the

level set solution starting with the cylinder ∂A×R. This prevents graphu(·, t)

from detaching near infinity from the evolution of the cylinder.
��

7.4 The A Priori Estimates

Recall the definition v = √

1+ |Du|2, where we consider u as a function defined
on some subset of Rn+1 × [0,∞).

Let η := (ηα) = (0, . . . , 0, 1). In the following, whenever quantities like v or
|A|2 are involved, we consider u and v as functions on the evolving hypersurfaces
rather than as functions depending on (x, t) ∈ R

n+1 × [0,∞), i.e. we consider
u := Xαηα and v := −〈ν, η〉−1.
Theorem 14 Let X be a solution to mean curvature flow. Then we have the
following evolution equations

(

d
dt
−Δ

)

u = 0,

(

d
dt
−Δ

)

v = − |A|2v− 2
v |∇v|2,

(

d
dt
−Δ

) |A|2 = − 2|∇A|2 + 2|A|4,
(

d
dt
−Δ

)

G ≤ − 2k · G 2 − 2ϕv−3〈∇v,∇G 〉,

where G = ϕ|A|2 ≡ v2

1−kv2
|A|2 and k > 0 is chosen so that kv2 ≤ 1

2 in the domain
considered.

Proof For mean curvature flow, we have F ij = gij . This implies F ij hij = H . In
view of (13), we deduce

(

d
dt
−Δ

)

X = 0 and
(

d
dt
−Δ

)

u = 0.
For the evolution equation of w := |A|2, we calculate

(

d
dt
−Δ

)

gij = − 2Hhij , see (7),
(

d
dt
−Δ

)

hij = |A|2hij − 2Hha
i haj , see (12),

w = gikhij gjlhkl,
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ẇ = 2gikḣij gjlhkl − 2girgskhij gjlhkl ġrs,

wr = 2gikhij ;r gjlhkl,

wrs = 2gikhij ;rsg
jlhkl + 2gikhij ;rgjlhkl;s,

(

d
dt
−Δ

) |A|2 = 2gik
(

|A|2hij − 2Hha
i haj

)

gjlhkl + 4H trA3 − 2|∇A|2

= 2|A|4 − 2|∇A|2.

For the remaining claims see [10, 11]. ��
Assumption 15 For the proof of the a priori estimates, we will assume that

u : Rn+1 × [0,∞) → R

is a smooth solution to mean curvature flow such that for any T > 0 there exists
R > 0 such that for all t ∈ [0, T ]

{x : u(x, t) ≤ 0} ⊂ BR(0).

In order to be able to consider smooth solutions, a few extra constructions are
necessary.

Theorem 16 (C1-Estimates) Let u be as in Assumption 15. Then

v(−u)2 = vu2 ≤ max
t=0
{u<0}

vu2

at points where u < 0.

Here and in the following, it is often possible to increase the exponent of −u.

Proof According to Theorem 14, w := vu2 fulfills

ẇ = v̇u2 + 2vuu̇,

wi = viu
2 + 2vuui,

wij = vij u2 + 2vuuij + 2vuiuj + 2u(viuj + vjui),

(

d
dt
−Δ

)

w =u2 ( d
dt
−Δ

)

v− 2v|∇u|2 − 4u〈∇v,∇u〉

=u2
(

−v|A|2 − 2

v
|∇v|2

)

− 2v|∇u|2 − 4

〈

u√
v
∇v,

√
v∇u

〉

≤ − u2v|A|2 ≤ 0.

The estimate follows from the maximum principle applied to w in the domain where
u < 0. ��
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Remark 11 We recommend thinking of Theorem 16 as an estimate for v(−u)2.

Corollary 4 Let u be as in Assumption 15. Then

v ≤ max
t=0
{u<0}

vu2

at points where u ≤ −1.

Exercise 17 Consider v(−u) to obtain similar C1-estimates.

Remark 12 Corollaries similar to Corollary 4 also hold for the following a priori
estimates for points with u ≤ −ε < 0 or t ≥ ε > 0. We do not write them down
explicitly.

In Theorem 16 and later, the result still holds if we replace every u by u− h for
any constant h.

Remark 13 For later use, we estimate derivatives of u and v,

|∇u|2 = ηαXα
i gij X

β
j ηβ = ηα

(

δαβ − νανβ
)

ηβ = 1− v−2 ≤ 1

and, according to (3),

|∇v|2 =
(

(−ηανα
)−1)

i
gij

(

(−ηβνβ
)−1)

j
= v4ηαXα

k hk
i gij hl

jX
β
l ηβ

≤ v4|A|2 ≤ v2ϕ|A|2 = v2G .

We therefore obtain

|〈∇u,∇v〉| ≤ |∇u| · |∇v| ≤ v2|A| ≤ v
√
G .

Theorem 17 (C2-Estimates) Let u be as in Assumption 15.

(i) Then there exist λ > 0, c > 0 and k > 0 (the constant in ϕ and implicitly in
G ), depending on the C1-estimates, such that

tu4G + λu2v2 ≤ ct + sup
t=0
{u<0}

λu2v2

at points where u < 0 and 0 < t ≤ 1.
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(ii) Moreover, if u is in C2 initially, we get C2-estimates up to t = 0: Then there
exists c > 0, depending only on the C1-estimates, such that

u4G ≤ ct + sup
t=0
{u<0}

u4G

at points where u < 0.

Proof In order to prove both parts simultaneously, we set

w := (μt + (1− μ))u4G + λu2v2 ≡ μtu
4G + λu2v2.

If we set μ = 1, we obtain μt = t and later the first claim, if μ = λ = 0, we get
μt = 1 and deduce in the following the second claim. We calculate

ẇ =μu4G + 4μtu
3G u̇+ μtu

4Ġ + 2λv2uu̇+ 2λu2vv̇,

wi = 4μtu
3G ui + μtu

4Gi + 2λv2uui + 2λu2vvi ,

wij = 4μtu
3G uij + μtu

4Gij + 2λv2uuij + 2λu2vvij + 12μtu
2G uiuj

+ 4μtu
3(Giuj + Gjui)+ 2λv2uiuj + 2λu2vivj

+ 4λuv(uivj + ujvi ),

μtu
3∇G = 1

u
∇w − 4μtu

2G∇u− 2λv2∇u− 2λuv∇v,

(

d
dt
−Δ

)

w ≤μu4G + μtu
4
(

−2k · G 2 − 2ϕv−3〈∇v,∇G 〉
)

+ 2λu2v
(

−|A|2v− 2
v |∇v|2

)

− 12μtu
2G |∇u|2

− 8μtu
3〈∇G ,∇u〉 − 2λv2|∇u|2 − 2λu2|∇v|2 − 8λuv〈∇u,∇v〉.

In the following, we will use the notation 〈∇w, b〉 with a generic vector b. The
constants c are allowed to depend on sup{|u| : u < 0} (which does not exceed its
initial value) and the C1-estimates. It may also depend on an upper bound for t ,
but we assume that 0 < t ≤ 1 whenever t appears explicitly. I.e., we suppress
dependence on already estimated quantities.

We estimate the terms involving ∇G separately. Let ε > 0 be a constant. We fix
its value below. Using Remark 13 for estimating terms, we get

−2ϕμtu
4v−3〈∇v,∇G 〉

= − 2
ϕu

v3

〈

∇v,
1

u
∇w − 4μtu

2G∇u− 2λv2∇u− 2λuv∇v
〉

≤〈∇w, b〉 + 8μt
ϕ|u|3
v

G |A| + 4λϕv|u||A| + 4
λϕu2

v2
|∇v|2



116 O. C. Schnürer

=〈∇w, b〉 + 8μtϕ
2 |u|3G 3/2

ϕ3/2

1

v
+ 4λϕv|u||A| + λu2|∇v|2 · 4 ϕ

v2

≤〈∇w, b〉 + εμtu
4G 2 + ελu2v2|A|2 + λu2|∇v|2 · 4 ϕ

v2

+ c(ε, λ),

−8μtu
3〈∇G ,∇u〉

= − 8

〈

∇u,
1

u
∇w − 4μtu

2G∇u− 2λv2∇u− 2λuv∇v
〉

≤〈∇w, b〉 + 32μtu
2G + 16λv2 + 16λ|u|v3|A|

≤ 〈∇w, b〉 + εμtu
4G 2 + ελu2v2|A|2 + c(ε, λ).

We obtain

(

d
dt
−Δ

)

w ≤μu4G + μtu
4G 2(−2k + 2ε)+ 〈∇w, b〉

+ λu2v2|A|2(−2+ 3ε)+ λu2|∇v|2
(

4
ϕ

v2
− 6

)

+ c(ε, λ).

Let us assume that k > 0 is chosen so small that kv2 ≤ 1
3 in {u < 0}. This implies

ϕ ≤ 2v2. We may assume that λ ≥ 2u2 in {u < 0} and get μu4G ≤ 1
2λu2ϕ|A|2 ≤

λu2v2|A|2. We get

4
ϕ

v2
− 6 = 4

1− kv2
− 6 ≤ 0.

Finally, fixing ε > 0 sufficiently small, we obtain

(

d
dt
−Δ

)

w ≤ 〈∇w, b〉 + c.

Now, both claims follow from the maximum principle. ��

Appendix 1: Parabolic Maximum Principles

The following maximum principle is fairly standard. For non-compact, strict or
other maximum principles, we refer to [11] or [24], respectively.

We will use C2;1 for the space of functions that are two times continuously dif-
ferentiable with respect to the space variables and once continuously differentiable
with respect to the time variable.
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Theorem 18 (Weak Parabolic Maximum Principle) Let Ω ⊂ R
n be open and

bounded and T > 0. Let aij , bi ∈ L∞(Ω × [0, T ]). Let aij be strictly elliptic, i.e.
aij (x, t) > 0 in the sense of matrices. Let u ∈ C2;1(Ω ×[0, T ))×C0

(

Ω × [0, T ])
fulfill

u̇ ≤ aijuij + biui in Ω × (0, T ).

Then we get for (x, t) ∈ Ω × (0, T )

u(x, t) ≤ sup
P(Ω×(0,T ))

u,

whereP (Ω × (0, T )) := (Ω × {0}) ∪ (∂Ω × (0, T )).

Proof

(i) Let us assume first that u̇ < aij uij + biui in Ω × (0, T ). If there exists a point
(x0, t0) ∈ Ω × (0, T ) such that u(x0, t0) > sup

P(Ω×(0,T ))

u, we find (x1, t1) ∈
Ω × (0, T ) and t1 minimal such that u(x1, t1) = u(x0, t0). At (x1, t1), we have
u̇ ≥ 0, ui = 0 for all 1 ≤ i ≤ n, and uij ≤ 0 (in the sense of matrices). This,
however, is impossible in view of the evolution equation.

(ii) Define for 0 < ε the function v := u− εt . It fulfills the differential inequality

v̇ = u̇− ε < u̇ ≤ aijuij + biui = aijvij + bivi .

Hence, by the previous considerations,

u(x, t)− εt = v(x, t) ≤ sup
P(Ω×(0,T ))

v = sup
P(Ω×(0,T ))

u− εt

and the result follows as ε ↘ 0.
��

There is also a parabolic maximum principle for tensors, see [19, Theorem 9.1].
(See the AMS-Review for a small correction of the proof.)

A tensor Nij depending smoothly on Mij and gij , involving contractions with
the metric, is said to fulfill the null-eigenvector condition, if Nij vivj ≥ 0 for all
null-eigenvectors v of Mij .

Theorem 19 Let (Mij )i,j be a tensor, defined on a closed Riemannian manifold
(M, g(t)), fulfilling

∂

∂t
Mij = ΔMij + bk∇kMij + Nij

on a time interval [0, T ), where b is a smooth vector field and Nij fulfills the null-
eigenvector condition. If Mij ≥ 0 at t = 0, then Mij ≥ 0 for 0 ≤ t < T .
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Appendix 2: Some Linear Algebra

Lemma 14 We have

∂

∂aij

det(ars) = det(ars)a
ji,

if aij is invertible with inverse aij , i.e. if aij ajk = δi
k.

Proof It suffices to prove that the claimed equality holds when we multiply it with
aik and sum over i. Hence, we have to show that

∂

∂aij

det(ars)aik = det(ars)δ
j
k .

We get

∂

∂aij

det(ars) = det

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a1 1 . . . a1 j−1 0 a1 j+1 . . . a1 n

...
...

...
...

...

ai−1 1 . . . ai−1 j−1 0 ai−1 j+1 . . . ai−1 n

0 . . . 0 1 0 . . . 0
ai+1 1 . . . ai+1 j−1 0 ai+1 j+1 . . . ai+1 n

...
...

...
...

...

an 1 . . . an j−1 0 an j+1 . . . an n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

and thus

∂

∂aij

det(ars) · aik = det

⎛

⎜

⎜

⎜

⎝

0 . . . 0 a1 k 0 . . . 0
a2 1 . . . a2 j−1 0 a2 j+1 . . . a2 n

...
...

...
...

...

an 1 . . . an j−1 0 an j+1 . . . an n

⎞

⎟

⎟

⎟

⎠

+ det

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a1 1 . . . a1 j−1 0 a1 j+1 . . . a1 n

0 . . . 0 a2 k 0 . . . 0
a3 1 . . . a3 j−1 0 a3 j+1 . . . a3 n

...
...

...
...

...

an 1 . . . an j−1 0 an j+1 . . . an n

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+ . . .
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= det

⎛

⎜

⎜

⎜

⎝

a1 1 . . . a1 j−1 a1 k a1 j+1 . . . a1 n

a2 1 . . . a2 j−1 0 a2 j+1 . . . a2 n

...
...

...
...

...

an 1 . . . an j−1 0 an j+1 . . . an n

⎞

⎟

⎟

⎟

⎠

+ det

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a1 1 . . . a1 j−1 0 a1 j+1 . . . a1 n

a2 1 . . . a2 j−1 a2 k a2 j+1 . . . a2 n

a3 1 . . . a3 j−1 0 a3 j+1 . . . a3 n

...
...

...
...

...

an 1 . . . an j−1 0 an j+1 . . . an n

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+ . . .

= det

⎛

⎜

⎝

a1 1 . . . a1 j−1 a1 k a1 j+1 . . . a1 n

...
...

...
...

...

an 1 . . . an j−1 an k an j+1 . . . an n

⎞

⎟

⎠

=δ
j
k det(ars).

��
Lemma 15 Let aij (t) be differentiable in t with inverse aij (t). Then

d

dt
aij = −aikalj d

dt
akl.

Proof We have

aikakj = δi
j .

There exists ãij such that

aikãkj = δ
j
i .

Then aij = ãij , as

aij = aikδ
j
k = aik

(

aklã
lj
)

=
(

aikakl

)

ãlj = ãij .

We differentiate and obtain

0 = d

dt
δi
j =

d

dt

(

aikakj

)

= d

dt
aikakj + aik d

dt
akj .
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Hence

d

dt
ail = d

dt
aikδl

k =
d

dt
aikakj ajl = −aik d

dt
akj ajl.

��
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