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Abstract This study addresses the thermal energy transport in a slippery sheet-
driven flow of a micropolar fluid analysing the effect of radiative heat flux. The
solution of PDEs of the governing the flow is derived numerically by the application
of self-similarity transformations and Runge-Kutta Fehlberg algorithm along with
shooting method. The computational results are discussed graphically for several
selected flow parameters. Results of this analysis are compared with the published
results and are seen to tally very closely.
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1 Introduction

Micropolar fluids are used to model liquids containing arbitrarily oriented rigid
spherical particles dispersed in a viscous medium, neglecting the fluids parti-
cles deformation. The mechanics of micropolar fluids, emerged from the theory
developed by Eringen [1], has been an interesting area of research owing to
the wide range of applications in industry. For example, polymeric liquids, real
fluids with suspensions, liquid crystals, animal blood and exotic lubricants are
modelled by micropolar fluids. Yacob and Ishak [2] obtained dual solutions to
the problem of a micropolar fluid due to a sheet of shrinking. Energy transfer
in fluids flowing over surfaces of stretching on account of thermal radiation has
effective industrial applications in solar power technology, furnace design, solar
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ponds, heat exchangers, satellites and space vehicles. Sarojamma et al. [3] explored
dual stratification effect on the oblique stagnation point flow of a non-classical
Casson fluid. Recently, researchers are investigating the non-linear thermal radiative
heat transfer and consequently the equation governing the temperature becomes
strongly non-linear. Mahantesh et al. [4] reported the effects of non-linear thermal
radiation coupled with dual diffusion on the 3-D flow of a nanofluid. Wall slip
flows with different aspects have been analysed [5, 6]. All these studies pertain
to slip flows of first order. However, slip flows with second order occur in many
fields of industry. In spite of the need to analyse the slip effect of second order on
fluid flows, not much attention has been paid on it. Fang and Aziz [7] analysed
the flow of a viscous liquid with second-order slip considering the stretch and
shrink effects, respectively. Ibrahim [8] examined the MHD micropolar fluid flow
considering the first and second-order slips. Analysis of heat transfer with non-linear
thermal radiation and second-order slip flow of a micropolar fluid has not yet been
addressed. This investigation addresses the effect of non-linear thermal radiation
and velocity slip of order two in a micropolar fluid flow.

2 Mathematical Formulation

We propose a thin elastic sheet which issues from a narrow slit at the origin of a
Cartesian co-ordinate system. The sheet at y = 0 is taken to be parallel to the x-axis
and moves in its own plane with a velocity uw = ax. The surface temperature Tw is
assumed as constant. The flow is subjected to a constant transverse magnetic field
of strength B0 which is assumed to be applied in the positive y-direction, normal to
the surface. The flow equations after boundary layer approximations are given by
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The boundary conditions are

u = uw + Uslip, v = 0, N = −n
∂u

∂y
, T = Tw at y = 0 (5)

u → 0, N → 0, T → T∞, as y → ∞



Heat Transfer Analysis in a Micropolar Fluid with Non-Linear Thermal. . . 387

where, u and v are velocity components along x and y directions, respectively. The

nomenclature of uw, a, μ, k, σ , ρ, j , K , cp, A, B, Kn, l = min
[

1
Kn

, 1
]
, α (0 ≤

α ≤ 1), λ,ν, Ω , n (0 ≤ n ≤ 1) can be found in [8] and σ ∗, k∗ can be found in
[3]; g1 is acceleration due to gravity, βT is coefficient of thermal expansion, T is the
temperature inside the boundary layer, and T∞ is ambient temperature. Slip velocity
at the surface, following Wu [9], is given by
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N is the microrotation or angular velocity, whose direction of rotation is normal to
the x − y plane, Ω is given by Ω = (μ + k/2)j = μ(1 + β/2)j , where β = k/μ

is the material parameter which describes the coupling of the linear and angular
motion which arises due to the microrotation of the fluid molecules. Therefore β

symbolises the coupling between Newtonian and rotational viscosities. If β → 0
we see that k → 0 which corresponds to the case of Newtonian fluid; hence β → 0
corresponds to a viscous fluid.

3 Method of Solution

We define

u = ∂ψ

∂y
= axf ′, v = −∂ψ

∂x
= −√

aνf (7)

where ψ(x, y) is the stream function. We define the following similarity transfor-
mations for dimensionless variables

η =
√

a

ν
y,ψ = √

aνxf (η),N = ax

√
a

ν
g(η), θ(η) = T − T∞

Tw − T∞
(8)

where f , θ , g are dimensionless variables. Using the above similarity transformation
and dimensionless variables, the governing equations (1)–(4) are reduced into the
ordinary differential equations as follows:

(1 + β)f ′′′ + ff ′′ − (f ′)2 + βg′ − Mf ′ + Grθ = 0 (9)

(
1 + β

2

)
g′′ − β(2g + f ′′) + fg′ − f ′g = 0 (10)
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θ ′′ + Nr[(1 + (θw − 1)θ)3]θ ′′ + 3Nr[(θw − 1)(1 + (θw − 1)θ)2](θ ′)2 (11)

+Prf θ ′ = 0

With boundary conditions

f (0) = 0, f ′(0) = 1 + h1f
′′(0) + h2f

′′′(0), g(0) = −nf ′′(0), (12)

θ(0) = 1 at η = 0

f ′(∞) → 0, g(∞) → 0, θ(∞) → 0 as η → ∞ (13)

where M = σB2
0

ρa
is the magnetic parameter, Gr = g1βT (Tw − T∞)/auw is

the thermal Grashof number, Pr = (ρcpν)/K is the Prandtl number, Nr =
(16σ ∗T 3∞)/(3Kk∗) is the thermal radiation parameter, θw = Tw/T∞ is the
temperature ratio parameter and

h1 = A
√

a/ν, h2 = Ba/ν Nux are the first- and second-order velocity slip
parameters, respectively.

The skin friction coefficient Cf and local Nusselt number Nux are defined by

Cf = τw

ρu2
w

,Nux = xqw

K(Tw − T∞)
(14)

where the wall shear stress τw and the surface heat flux qw are given by
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Using Eq. (15) in Eq. (14), we obtain

Cf

√
Rex = − (1 + β(1 − n)) f ′′(0),

Nux√
Rex

= −
(

1 + Nr [1 + (θw − 1)θ(0)]3
)

θ ′(0)

where Rex = Uwx/ν is a local Reynolds number.
The set of differential equations (9)–(11) along with the conditions (12) and (13)

are solved numerically standard RKF-45 method.
In order to confirm the accuracy of our numerical procedure, we compared our

results, viz. −f ′′(0) for various slip factors h1 with those of Sahoo and Do [6] and
Ibrahim [8] when β = M = h2 = n = Gr = Pr = Nr = 0. Values of −θ ′(0) are
compared with those of Ishak [10] and Ibrahim [8] for various values of Pr in the
absence of β,M, h1, h2, n,Gr,Nr and are presented in Table 1. It is seen that there
is an excellent agreement with them. Table 2 shows that −f ′′(0) and −θ ′(0) are
compared with Ibrahim [8] in the absence of thermal buoyancy force and thermal
radiation for various M,β, h2. From this we observe that our results are very close
to those evaluated by Ibrahim [8].
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Table 2 Comparison values of −f ′′(0) and −θ ′(0) with M,β, h2 when h1 = 1, P r = 1, n =
0.5,Gr = 0, Nr = 0

M β h2 −f ′′(0) Ibrahim [8] −f ′′(0) Present −θ ′(0) Ibrahim [8]
−θ ′(0)

Present

0.1 0.1 −1 0.3220 0.32197 0.3816 0.38161

0.2 0.3262 0.32620 0.3603 0.36040

0.4 0.3315 0.33147 0.3239 0.32391

0.2 1 −1 0.3173 0.31728 0.4066 0.40659

2 0.3068 0.30678 0.4431 0.44308

3 0.2971 0.29709 0.4703 0.47033

0.2 2 −1 0.3068 0.30675 0.4431 0.44315

−2 0.2588 0.25883 0.4143 0.41438

−3 0.2262 0.22622 0.3927 0.39281

4 Results and Discussion

Influence of the various physical parameters that emerged in this study on the flow
variables has been presented through graphs and discussed.

Figure 1 shows the variation of the material parameter (β) on the velocity,
and its influence is seen to increase the velocity. From Fig. 2 for any value of
β , microrotation is observed to diminish near the boundary till η = 0.75, and
afterwards it increases and eventually satisfies the free stream condition. Further
microrotation is seen to enhance with β.

Figure 3 indicates that presence of magnetic field suppresses the velocity due
to the Lorentz force developed as a result of the applied magnetic field which has
a tendency to resist the fluid flow. Also, increase in the strength of magnetic field
causes further reduction in the velocity due to stronger Lorentz forces. Magnetic
field is seen to have a decreasing influence on the microrotation.

Figure 4 displays the variation of both velocity and microrotation in the boundary
layer for different values of Gr . It is seen that velocity increases with increase in the
buoyancy parameter Gr as thermal buoyancy assists the fluid flow in the boundary
layer. The microrotation is observed to diminish near the boundary till η = 1.4, and
later it increases up to η = 7 and eventually attains the free stream velocity. It can be
noticed that temperature has an exactly opposite trend to that of the two velocities
for the same variation of Gr .

Influence of first-order slip parameter on both velocity and microrotation com-
ponents is to reduce in their magnitude as illustrated in Fig. 5. Second-order slip
variations on velocities are plotted in Fig. 6. The impact of second-order slip
parameter on velocities is qualitatively similar to that of first-order slip parameter.



Heat Transfer Analysis in a Micropolar Fluid with Non-Linear Thermal. . . 391

Fig. 1 Effect of β on f ′

Fig. 2 Effect of β on g

Figure 7 indicates the variation of thermal radiation parameter on temperature.
When θw > 1, i.e., when heat flow takes place from boundary to the fluid, the
temperature is increased as Nr increases. For the same set of values of Nr , a reversal
trend is seen in temperature when θw < 1 since heat flow is towards the boundary.
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Fig. 3 Effect of M on f ′, g

Fig. 4 Effect of Gr on f ′, g, θ

The effect of (n) on microrotation g is shown in Fig. 8. The microrotation g
is found to increase rapidly near the boundary with increasing values of n due to
larger velocity gradients and away from the boundary velocity shows an opposite
trend.



Fig. 5 Effect of h1 on f ′, g

Fig. 6 Effect of h2 on f ′, g

Fig. 7 Effect of Nr on θ
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Fig. 8 Effect of n on g

5 Conclusion

Some of the highlights of the analysis are:

• Microrotation across the flow shows a decreasing trend near the boundary, while
it increases in the region for an increment in (Gr).

• Microrotation is seen to have an increasing trend for with increase in n.
• Thinner momentum boundary layers are formed for higher values of the slip

parameters.
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