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Preface

The Department of Mathematics, School of Advanced Sciences, Vellore Institute of
Technology (Deemed to be University), Vellore, Tamil Nadu, India, organized the
International Conference on Advances in Mathematical Sciences—2017 (ICAMS
2017) in association with the Society for Industrial and Applied Mathematics
VIT Chapter from December 1, 2017, to December 3, 2017. The major objective
of ICAMS 2017 was to promote scientific and educational activities toward the
advancement of common man’s life by improving the theory and practice of
various disciplines of Mathematics. This prestigious conference was partially
financially supported by the Council of Scientific and Industrial Research (CSIR),
India. The Department of Mathematics has 90 qualified faculty members and 30
research scholars, and all were delicately involved in organizing ICAMS 2017
grandly. In addition, 30 leading researchers from around the world served as an
advisory committee for this conference. Overall, more than 450 participants (pro-
fessors/scholars/students) enriched their knowledge in the wings of Mathematics.

There were 9 eminent speakers from overseas and 33 experts from various states
of India who delivered the keynote address and invited talks in this conference.
Many leading scientists and researchers worldwide submitted their quality research
articles to ICAMS. Moreover, 305 original research articles were shortlisted for
ICAMS 2017 oral presentations that were authored by dynamic researchers from
25 states in India and 20 countries around the world. We hope that ICAMS will
further stimulate research in Mathematics, share research interest and information,
and create a forum of collaboration and build a trust relationship. We feel honored
and privileged to serve the best of recent developments in the field of Mathematics
to the reader.

A basic premise of this book is that quality assurance is effectively achieved
through the selection of quality research articles by a scientific committee consisting
of more than 100 reviewers from all over the world. This book comprises the
contribution of several dynamic researchers in 62 chapters. Each chapter identifies
the existing challenges in the areas of Differential Equations, Fluid Dynamics, and
Graph Theory and emphasizes the importance of establishing new methods and
algorithms to address the challenges. Each chapter presents a research problem, the
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vi Preface

technique suitable for solving the problem with sufficient mathematical background,
and discussions on the obtained results with physical interruptions to understand
the domain of applicability. This book also provides a comprehensive literature
survey which reveals the challenges, outcomes, and developments of higher level
mathematics in this decade. The theoretical coverage of this book is relatively at a
higher level to meet the global orientation of mathematics and its applications in
science and engineering.

The target audience of this book is postgraduate students, researchers, and
industrialists. This book promotes a vision of pure and applied mathematics as
integral to modern science and engineering. Each chapter contains important
information emphasizing core Mathematics, intended for the professional who
already possesses a basic understanding. In this book, theoretically oriented readers
will find an overview of Mathematics and its applications. Industrialists will find a
variety of techniques with sufficient discussion in terms of physical point of view
to adapt for solving the particular application based on mathematical models. The
reader can make use of the literature survey of this book to identify the current
trends in Mathematics. It is our hope and expectation that this book will provide an
effective learning experience and referenced resource for all young mathematicians.

As Editors, we would like to express our sincere thanks to all the administrative
authorities of Vellore Institute of Technology, Vellore, for their motivation and
support. We also extend our profound thanks to all faculty members and research
scholars of the Department of Mathematics and all staff members of our institute.
We especially thank all the members of the organizing committee of ICAMS 2017
who worked as a team by investing their time to make the conference a great
success. We thank the national funding agency, Council of Scientific and Industrial
Research (CSIR), Government of India, for the financial support they contributed
toward the successful completion of this international conference. We express our
sincere gratitude to all the referees for spending their valuable time to review the
manuscripts, which led to substantial improvements and selection of the research
papers for publication. The organizing committee is grateful to Mr. Christopher
Tominich, Editor at Birkhäuser/Springer, for his continuous encouragement and
support toward the publication of this book.

Vellore, India B. Rushi Kumar
Vellore, India R. Sivaraj
Vellore, India B. S. R. V. Prasad
Vellore, India M. Nalliah
Vellore, India A. Subramanyam Reddy
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Numerical Solution to Singularly
Perturbed Differential Equation of
Reaction-Diffusion Type in MAGDM
Problems

P. John Robinson, M. Indhumathi, and M. Manjumari

Abstract In multiple attribute group decision-making (MAGDM) problems,
weights of decision-makers play a vital role. In this paper, we present a new
approach for finding the weights for decision-making process based on singular
perturbation problem in which decision-makers’ weights are completely unknown.
The attribute weights are derived using the exact and numerical solution for
reaction-diffusion type problem. For the decision-making process, we utilize a class
of ordered weighted averaging (OWA) operator, and the newly calculated decision-
maker weights are used in the computations of identifying the best alternative
from the available alternatives. The feasibility of the proposed method is displayed
through a numerical illustration, and comparison is made with existing ranking
methods.

Keywords MAGDM · Intuitionistic fuzzy sets · Singular perturbation problem ·
Numerical methods · Ordered weighted averaging (OWA) operator

1 Introduction

MAGDM problems play an important role in our day-to-day life. To handle the
vagueness and uncertainty in real-life problems, Zadeh [27] proposed the idea of
fuzzy set, which handles imprecision through the concept of membership function.
Using the concept of membership function, Atanassov [1, 2] developed the idea of
intuitionistic fuzzy set (IFS). This IFS contains both a membership function and
a non-membership function and also the hesitancy degree. Yager and Filev [23]
introduced the induced OWA (IOWA) operator which is nothing but an extension of
OWA operator. Using OWA operator, one can order the weight either in ascending
or in descending order depending upon the data values, but for IOWA one can
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use the same technique of OWA where the only difference is that the weight can
be ordered through the order-inducing variables. Li and Ye [8], Liu and Li [10],
Yu and Li [25], Li and Wan [9] and Yu et al. [26] proposed novel methods for
solving various decision problems. Robinson and Amirtharaj [19] and Robinson and
Jeeva [20, 21] proposed methods for intuitionistic fuzzy decision problems based
on correlation coefficients and utilized them in MAGDM problems for ranking the
alternatives. Numerical methods are used to solve various differential equations
arising in many real-life problems. Ross et al. [22] proposed a better method for
analysing the singular perturbation problems using numerical methods. Miller et
al. [15] have devoted their work on singular perturbation problems (SPPs) in two
dimensions. Matthews et al. [14] examined a system of two coupled singularly
perturbed ordinary differential equation of reaction-diffusion type problems using
the Dirichlet boundary conditions. Malley [13] and Nayfeh [17] gave general
introduction to SPPs. Paramasivam et al. [18] presented a linear second-order SPP
with piecewise-uniform Shishkin mesh which is used to construct the numerical
methods for the same. The idea of score function which can be used to measure
the similarity degree between vague sets was proposed by Chen [3]. For vague
sets/IFSs, Li et al. [12], Li and Xu [11] and Hung and Yang [6] proposed a degree
of similarity measures and their applications. The cosine similarity measure for
IFS was proposed by Ye [24]. For behaviour analysis problem, Hong and Kim
[5] proposed a measure of similarity between the elements of vague sets. Using
the concept of medians of intervals, Li and Chuntian [7] presented a degree of
similarity measure between IFSs. Mitchell [16] proposed a modification method
of Li and Chuntian [7] method. A novel degree of similarity measure under
intuitionistic fuzzy sets was presented by Chen and Randyanto [4]. In this paper, the
decision-maker weights are derived from boundary value problems through singular
perturbation problems, where the weights are determined, normalized and utilized
in decision-making problems. In the MAGDM problem proposed in this paper, the
operators I-IFOWA and IFWA are used for aggregating the IFS information. The
feasibility of the proposed method is displayed through a numerical illustration, and
comparison is made with different ranking methods found in the literature.

2 Preliminaries

As an introduction, some basic definitions and averaging aggregation operators of
IFS are discussed.

Definition 1 (Intuitionistic Fuzzy Set [1, 2]) Let X be a set which is fixed. An IFS
Ã in X is an object having the form

Ã = {(x, μÃ(x), , γÃ(x)), x ∈ X}
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where μÃ(x) : X −→ [0, 1] and γÃ(x) : X −→ [0, 1] define the degree of
membership and degree of non-membership, respectively, of the element x ∈ X to
the set Ã, which is a subset of X, for every element x ∈ X, 0 ≤ μÃ(x)+γÃ(x) ≤ 1.

2.1 Different Classes of Aggregation Operators

Definition 2 Let β̃k = (μk, γk), 1 ≤ k ≤ n be a compilation of IFS values. The
intuitionistic fuzzy weighted averaging (IFWA) operator, IFWA : Ωn → Ω , is
defined as

IFWA(β̃1, β̃2, . . . , β̃n) =
n∑

k=1

β̃kωk =
(

1−
n∏

k=1

(1− μk)
ωk ,

n∏

k=1

(γk)
ωk

)
,

where ω = (ω1, ω2, . . . , ωn)
T is the weight vector of β̃k for all 1 ≤ k ≤ n, such

that ωk > 0 &
n∑

k=1

wk = 1.

Definition 3 Let β̃k = (μk, γk), 1 ≤ k ≤ n be a compilation of IFS values.
The intuitionistic fuzzy ordered weighted averaging (IFOWA) operator, IFOWA :
Ωn → Ω , is defined as

IFOWA(β̃1, β̃2, . . . , β̃n) =
n∑

k=1

β̃kwk =
(

1−
n∏

k=1

(1− μβk)
wk ,

n∏

k=1

(γβk)
wk

)
,

where σ(1), σ (2), . . . , σ (n) is a permutation of (1, 2, . . . , n) such that β̃σ (k−1) ≥
β̃σ (k) for all 1 ≤ k ≤ n. w = (w1, w2, . . . , wn)

T be the weight vector of β̃j for all

ωk > 0 &
n∑

k=1

wk = 1.

Definition 4 Let β̃k = (μk, γk), 1 ≤ k ≤ n be a compilation of IFS values. An
induced intuitionistic fuzzy ordered weighted averaging (I-IFOWA) operator, I −
IFOWA : Ωn → Ω , is defined as

I −IFOWAw

(
(v1, β̃1), (v2, β̃2), . . . , (vn, β̃n)

)
=

n∑

k=1

g̃kwk

=
(

1−
n∏

k=1

(1− μ̃k)
wk ,

n∏

k=1

γ̃k)
wk

)
,
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where w = (w1, w2, . . . ., wn)
T is the associated weighting vector such that wk ∈

[0, 1],
n∑

k=1

wk = 1, 1 ≤ k ≤ n, g̃k = (μk, γk) is the β̃k value of the I-IFOWA pair

(vi , β̃i) having the kth largest vi, vi ∈ [0, 1], 1 ≤ i ≤ n and vi in (vi , β̃i) is referred
to as an the order-inducing variable and β̃i , β̃i = (μi, γi) are the intuitionistic fuzzy
values.

Properties of I-IFOWA Operator

1. Commutativity. I − IFOWAw

[
(v1, β̃1), (v2, β̃2), . . . , (vn, β̃n)

]
= I −

IFOWAw

[
(v1, β̃

′
1), (v2, β̃

′
2), . . . , (vn, β̃

′
n)
]

where
[
(v1, β̃

′
1), (v2, β̃

′
2), . . . , (vn, β̃

′
n)
]

is any permutation of
[
(v1, β̃1), (v2, β̃2),

. . . , (vn, β̃n)
]
.

2. Idempotency. If β̃k = β̃, where β̃k = (μk, γk) and β̃ = (μ, γ ) for every k,

I − IFOWAw

[
(v1, β̃1), (v2, β̃2), . . . , (vn, β̃n)

]

3. Monotonicity. If β̃k ≤ β̃, for every k,

I − IFOWAw

[
(v1, β̃1), (v2, β̃2), . . . , (vn, β̃n)

]
≤ I − IFOWAw

[
(v1, β̃

′
1),

(v2, β̃
′
2), . . . , (vn, β̃

′
n)
]

3 Singular Perturbation Problem

Singular perturbation problem plays a prominent role in the field of differential
equations and in the real-life application. The applications of singular perturbation
problem in various applied areas are as follows: fluid dynamics, plasma dynamics,
aerodynamics, oceanography, diffraction theory and reaction-diffusion process. A
differential equation in which the highest-order derivative and/or the lowest-order
derivatives is multiplied by a small positive parameter ε is known as a singular
perturbation problem. If the order of the differential equation when the perturbation
parameter ε = 0 is reduced by two, then the system is called as reaction-diffusion
type problems. For instance, in the following equation−εu′′(x)+a(x)u(x) = g(x)

with uε(0) = u0; uε(1) = u1; 0 < x < 1, where 0 < ε � 1, a(x) and g(x) are
smooth functions and continuous on [0, 1], the solution behaviour for this equation
depends upon the behaviour of the a(x) and g(x).
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3.1 Numerical Methods

For the above boundary value problem, the classical finite difference operator
is constructed with a suitable piecewise-uniform mesh which is also useful in
discretizing the problem. The details are given below:

−εδ2U(xj )+ a(xj )U(xj ) = g(xj ) for all xj , j = 1, . . . , N

where

δ2U(xj ) = (D+ −D−)
h

U(xj ), h = hj + hj+1

2

D+U(xj ) = U(xj+1)− U(xj )

hj+1
; D−U(xj ) = U(xj )− U(xj−1)

hj

4 Weight Determination for MAGDM Using Singular
Perturbation Problem

Problem Proposed by the Decision-Maker
The decision-maker represents weighting vector in the form of the following
singularly perturbed differential equation, −εu′′(x) + 4u(x) = 0 with u(0) = 0,
u(1) = 1; 0 < x < 1.

The exact solution of the above problem is u(x) =
(

e

−2√
ε −e

−4√
ε

1−e

−4√
ε

)
e

2x√
ε +

(
1−e

−2√
ε

1−e

−4√
ε

)
e
−2x√

ε .

And the numerical solution is calculated by using the above finite difference
scheme by fixing ε = 0.001.

By normalizing the exact and numerical solution the weight vectors can be
obtained and the results are given in Tables 1 and 2.

Table 1 Exact solution for −εu′′(x) + 4u(x) = 0

N Average of exact solution Normalization of exact solution

64 0.07155 0.41274

128 0.05547 0.31997

256 0.04634 0.26731
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Exact and Numerical Solution of−εu′′(x)+4u(x) = 0 are displayed in Figs. 1 and 2

Table 2 Numerical solution for −εu′′(x) + 4u(x) = 0

N Average of numerical solution Normalization of numerical solution

64 0.07211 0.32953

128 0.05565 0.25430

256 0.04639 0.21200

512 0.04046 0.18492
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 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

"c1.ou" using 1:2

Fig. 1 Exact solution for −εu′′(x) + 4u(x) = 0
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Fig. 2 Numerical solution for −εu′′(x) + 4u(x) = 0
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5 Algorithm for MAGDM Problem Using I-IFOWA
Operator and Similarity Measures of IFSs

The algorithm for MAGDM problem using I-IFOWA and IFWA operator is given
below:

Step: 1 Use the I-IFOWA operator for the decision matrices R(k), to reduce k
matrices into a single matrix:

s̃
(k)
ij = I − IFOWA

[
(v1, s̃

(1)
ij ), (v2, s̃

(2)
ij , )(v3, s̃

(3)
ij , ) . . . , (vn, s̃

(n)
ij )

]
, 1 ≤ i ≤

m, 1 ≤ j ≤ n.

Step: 2 Use the IFWA operator, to find the aggregated IFS values of the alternatives
Ai :

s̃i = (μi, γi) = IFWA
(
s̃
(1)
i , s̃

(2)
i , s̃

(3)
i , . . . , s̃

(t)
i

)
, 1 ≤ i ≤ m.

Step: 3 Use similarity measures to calculate the overall values s̃i and the positive
ideal value s̃+, where s̃+ = (1, 0).

Step: 4 Finally rank the alternatives and find the most desirable one.

6 Numerical Illustration

A company is interested to invest money in the best option to purchase laptops. The
five possible types of laptops available in the market are named as A1, A2, A3, A4
and A5. The following four attributes are p1, the price of the laptop; p2, portability
of the laptop; p3, battery life of laptop; and p4, graphics quality of the laptop. The
five possible alternatives Ai are to be evaluated using intuitionistic fuzzy numbers
by the decision-makers whose weighting vector is obtained by normalizing the
solution of singular perturbation problem given by decision-makers which is ω =
(0.41274, 0.31997, 0.26731)T and w = (0.32953, 0.25430, 0.21200, 0.18492)T .
The following decision matrices R(k) are listed below:

R1 =

⎛
⎜⎜⎜⎜⎜⎝

(0.3, 0.4) (0.2, 0.5) (0.5, 0.2) (0.6, 0.1)
(0.2, 0.6) (0.1, 0.6) (0.1, 0.6) (0.4, 0.3)
(0.3, 0.5) (0.3, 0.4) (0.2, 0.4) (0.2, 0.5)
(0.1, 0.7) (0.2, 0.5) (0.3, 0.2) (0.5, 0.1)
(0.1, 0.5) (0.2, 0.3) (0.2, 0.6) (0.2, 0.4)

⎞
⎟⎟⎟⎟⎟⎠

R2 =

⎛

⎜⎜⎜⎜⎜⎝

(0.4, 0.5) (0.2, 0.3) (0.6, 0.3) (0.7, 0.2)
(0.3, 0.7) (0.2, 0.7) (0.2, 0.7) (0.5, 0.4)
(0.4, 0.4) (0.4, 0.5) (0.3, 0.5) (0.3, 0.6)
(0.1, 0.8) (0.3, 0.6) (0.4, 0.3) (0.2, 0.6)
(0.2, 0.6) (0.3, 0.4) (0.1, 0.7) (0.3, 0.5)

⎞

⎟⎟⎟⎟⎟⎠
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Table 3 Comparison of ranking methods in the literature

Similarty measure Ranking the alternatives

Chen’s method A1 > A3 > A4 > A5 > A2

Hong and Kim’s method A1 > A3 > A4 > A5 > A2

Li and Xu’s method A1 > A3 > A4 > A5 > A2

Li et.al.’s method A1 > A3 > A4 > A5 > A2

Li and Chuntian’s method A1 > A3 > A4 > A5 > A2

Mitchell’s method A1 > A3 > A4 > A5 > A2

Hung and Yang’s (SHY1) method A1 > A3 > A4 > A5 > A2

(SHY2) method A1 > A3 > A4 > A5 > A2

(SHY3) method A1 > A3 > A4 > A5 > A2

Ye’s method A1 > A3 > A4 > A5 > A2

Chen and Randyanto’s method A1 > A3 > A4 > A5 > A2

R3 =

⎛
⎜⎜⎜⎜⎜⎝

(0.5, 0.4) (0.4, 0.5) (0.7, 0.2) (0.8, 0.1)
(0.4, 0.6) (0.3, 0.6) (0.3, 0.6) (0.6, 0.3)
(0.5, 0.6) (0.5, 0.4) (0.7, 0.1) (0.4, 0.5)
(0.2, 0.7) (0.4, 0.5) (0.5, 0.2) (0.7, 0.1)
(0.3, 0.5) (0.4, 0.3) (0.2, 0.6) (0.6, 0.1)

⎞
⎟⎟⎟⎟⎟⎠

By using step 1 and step 2, we get the overall values as follows:

s1 = (0.47773, 0.30376),
s2 = (0.29737, 0.56485),
s3 = (0.37061, 0.42709),
s4 = (0.30405, 0.407773),
s5 = (0.24299, 0.44390).

Using step 3 we obtain the different similarity measures, and finally we get the best
alternatives (Table 3).

Hence, from the above table, it can be clearly seen that the most desirable
alternative is A1.

7 Conclusion

In this work, we have given a new method for finding the weights for group decision-
making process based on singular perturbation problem. The attribute weights for
MAGDM are derived by using the solutions of singular perturbation problem under
intuitionistic fuzzy set. In the process of determining weights, multi-criteria are
explicitly considered. It can be seen from the comparison table that the choice of
the best alternative made from different similarity measures is consistent.
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Application of Integrodifferential
Equations Using Sumudu Transform
in Intuitionistic Trapezoidal Fuzzy
MAGDM Problems

P. John Robinson and S. Jeeva

Abstract Decision-making is a most powerful, well-organized, civic, and pecu-
niary effect. Power to produce logical and correct choices is the burden of any
decision process imbued with uncertainty. In offices where the information or the
data is of the form of intuitionistic trapezoidal fuzzy numbers, to construct the
MAGDM problem, intuitionistic trapezoidal fuzzy weighted geometric (ITFWG)
and intuitionistic trapezoidal fuzzy hybrid geometric (ITFHG) operators are applied.
In this paper, a novel method of deriving the unknown decision-maker weights using
Sumudu transform combined with integrodifferential equation is proposed, and the
derived weights are used in computations for identifying the best alternative. A
goodness of fit for this method is provided to show the effectiveness of the proposed
approach.

1 Introduction

Multiple attribute group decision-making (MAGDM) is a method where decision-
makers who act together penetrate through problems and select different types
of actions and again select the solutions from it. Collective decisions are more
effective than an individual decision since it requires lots of discussion, queries, and
ideas. The major challenge is to give up the inaccuracy and to make it accurate.
To deal with accuracy in qualitative, imprecise, and incomplete information in
decision problems, Zadeh [37] proposed the fuzzy set theory. Intuitionistic fuzzy
sets (IFSs) proposed by Attanassov [1] are a generalization of the concept of fuzzy
sets. Attanassov and Gargov [2] expanded the IFSs by using interval value to express
membership and nonmembership function of IFSs. Szmidt and Kacprzyk [25, 26]
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computed several distance functions and similarity measures for IFSs which were
applied in various decision problems. Li [9] and Wei [28, 29] contributed novel
approaches to the study of fuzzy decision-making. Gerstenkorn and Manko [5] and
Zeng and Li [33] investigated the correlation coefficient of IFS. Yu et al. [36],
Li and Wan [11], Yu and Li [35], Liu and Li [12], and Li and Ye [10] proposed
several methods in decision-making problem under different types of intuitionistic
fuzzy sets. Robinson and Amirtharaj [13–22] defined correlation coefficient for
different higher-order intuitionistic fuzzy sets and utilized in MAGDM problems.
Robinson and Jeeva [23, 24] investigated and discussed the various decision-making
algorithms under intuitionistic fuzzy environment using correlation coefficient as
the ranking tool. Jeeva and Robinson [6] discussed the application of Sumudu
transform method in intuitionistic fuzzy environment. Wu and Cao [30] developed
the geometric aggregation operators in intuitionistic trapezoidal fuzzy numbers.
Wang and Zhang [27], Yager [34], Xu and Yager [33], Xu and Chen [32], and Xu
[31] discussed several aggregation operators like arithmetic and geometric operators
with intuitionistic fuzzy uncertainty. In this work Sumudu transform combined
with integrodifferential equations will be proposed for determining weights of
decision-makers and used for decision-making problems. Hukuhara [7], Eltayeb
and Kilicman [4], Khan and Razzaq [8], and Bulut et al. [3] discussed on solving
fuzzy differential equations by fuzzy Sumudu transform. In this paper, Sumudu
transform is used to obtain the result of the integrodifferential equation, and it is
used to derive the decision-maker weights in MAGDM problems under intuitionistic
trapezoidal fuzzy sets. A goodness for fit for this method is illustrated using
numerical examples.

2 Preliminaries

Some basic concepts of fuzzy sets and arithmetic aggregation operators of intuition-
istic trapezoidal fuzzy sets (ITFSs) are discussed in the following:

Definition 1 ([1] Intuitionistic Fuzzy Set) Let a set X be fixed. An IFS Ã in X is
an object having the form

Ã = {(x, μÃ(x), , γÃ(x)), x ∈ X}

where μÃ(x) : X −→ [0, 1] and γÃ(x) : X −→ [0, 1] define the degree of
membership and degree of nonmembership, respectively, of the element x ∈ X to
the set Ã, which is a subset of X, for every element x ∈ X, 0 ≤ μÃ(x)+γÃ(x) ≤ 1.

Definition 2 ([30] Intuitionistic Trapezoidal Fuzzy Number) Let ã be an intu-
itionistic trapezoidal fuzzy number. Then its membership function and its nonmem-
bership function are given as follows:
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μã(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x−a
b−a

μã, a ≤ x ≤ b

μã, b ≤ x ≤ c

d−c
d−c

, c ≤ x ≤ d

0, others.

,

where 0 ≤ μã ≤ 1; 0 ≤ γã ≤ 1; a, b, c, d ∈ R.

Definition 3 ([30]) Let ã1 =
([a1, b1, c1, d1];μã1, γã1

)
and ã2 = ([a2, b2, c2, d2];

μã2, γã2

)
be two intuitionistic trapezoidal fuzzy numbers, and λ ≥ 0. Then the

normalized Hamming distance between ã1 and ã2 is defined as follows:

d(ã1, ã2) =
(|(1+ μã1)a1 − (1+ μã1)a2| + |(1+ μã1)a1 − (1+ μã1)a2|+
|(1+ μã1)a1 − (1+ μã1)a2| + |(1+ μã1)a1 − (1+ μã1)a2|

)
.

Definition 4 ([30]) Let ãi =
([ai, bi, ci , di];μãi , γãi

)
be an intuitionistic trape-

zoidal fuzzy number and ã+ = ([a+, b+, c+, d+];μ+, γ+) = ([1, 1, 1, 1]; 1, 0)
be the intuitionistic trapezoidal fuzzy-positive ideal solution. Then the distance
between ãi and ã+ is denoted as d(ãi, ã+). If d(ã2, ã

+) < d(ã1, ã
+), then ã1 > ã2.

3 Aggregation Operators for Decision-Making

Definition 5 ([30]) Let ãk = ([ak, bk, ck, dk];μk, γk), for all 1 ≤ k ≤ n be a
compilation of ITFS values. An intuitionistic trapezoidal fuzzy weighted geometric
(ITFWG) operator, IT FWG : Qn → Q, is defined as follows:

IT FWG(ã1, ã2, . . . , ãn) =
n∏

k=1

ãkωk

=
([∏n

k=1(ak)
ωk ,

∏n
k=1(bk)

ωk ,
∏n

k=1(ck)
ωk ,

∏n
k=1(dk)

ωk
] ;∏n

k=1(μk)
ωk , 1− (∏n

k=1(1− γk)
ωk
)

)
,

where ω = (ω1, ω2, . . . , ωn)
T is the weight vector of ãk, 1 ≤ k ≤ n with ωk ∈

[0, 1] and
∑n

k=1 ωk = 1.

Definition 6 ([30]) Let ãk = ([ak, bk, ck, dk];μk, γk), for all 1 ≤ k ≤ n be a
compilation of ITFS values. The intuitionistic trapezoidal fuzzy ordered weighted
geometric (ITFOWG) operator, IT FOWG : Qn → Q, is defined as follows:

IT FOWG(ã1, ã2, . . . , ãn) =
n∏

k=1

ãσ (k)ωk

=
(
(
[∏n

k=1(aσ(k))
ωk ,

∏n
k=1(bk)

ωk ,
∏n

k=1(cσ(k))
ωk ,

∏n
k=1(dσ(k))

ωk
] ;∏n

k=1(μσ(k))
ωk , 1− (∏n

k=1(1− γσ(k))
ωk
)

)
,
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where ω = (ω1, ω2, . . . , ωn)
T is the weight vector of ãk for all 1 ≤ k ≤ n, such

that ωk ∈ [0, 1] and
n∑

k=1

ωk = 1.

where σ(1), σ (2), . . . , σ (n), is a permutation of (1, 2, . . . , n) such that
ãσ (k−1) ≥ ãσ (k) for all 1 ≤ k ≤ n.

Definition 7 ([30]) Let ãk = ([ak, bk, ck, dk];μk, γk), for all 1 ≤ k ≤ n be a
compilation of ITFS values. The Intuitionistic trapezoidal fuzzy hybrid geometric
(ITFHG) operator, IT FHG : Qn → Q, is defined as follows:

IT FHG(ã1, ã2, . . . , ãn) =
n∏

k=1

ãσ (k)ωk

=
([∏n

k=1(ȧσ (k))
ωk ,

∏n
k=1(ḃk)

ωk ,
∏n

k=1(ċσ (k))
ωk ,

∏n
k=1(ḋσ (k))

ωk
] ;∏n

k=1(μ̇σ (k))
ωk , 1− (∏n

k=1(1− γ̇σ (k))
ωk
)

)
,

where ãσ (k) is the kth largest of weighted intuitionistic trapezoidal fuzzy number ãk ,
ω = (ω1, ω2, . . . , ωn)

T be the weight vector of ãk, 1 ≤ k ≤ n with ωk ∈ [0, 1] and
n∑

k=1

ωk = 1.

4 Determining Expert Weights for MAGDM by Sumudu
Transform

Definition 8 ([7]) Let A be the set of functions defined as follows:

A = {f (x)|∃M, τ1and /or τ2 > 0,
 |f (x)| < Me|x|/τj , if x ∈ (−1)j × [0,∞)},

where constant M must be finite, while τ1 and τ2 each may be finite and do not
need to exist simultaneously. Using u to factor the variable t in the argument of the
function f , Sumudu transform is defined as follows:

G(u) = S[f (x)] =
{∫∞

0 f (ut)e−t dt 0 ≤ u < τ2∫∞
0 f (ut)e−t dt − τ1 ≤ u < τ0.

Here M is taken equal to 1, τ2 is finite, and τ1 is simply not needed. Both parts define
the domain of f , and sign of variable t will remain unchanged.

Problem Proposed by Decision-Maker 1 The first decision-maker represents the
weighting vector in the form of first-order integrodifferential equation u′ + 2u(x)+
5
∫ x

0 u(t)dt = 1, with u(0) = 0. By using fuzzy Sumudu transform, we have G(u)
u
−

u(0)
u
+ 2G(u)+ 5uG(u) = 1. Then we get the following results given in Table 1.
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Table 1 Exact solution of
u′ + 2u(x) + 5

∫ x

0 u(t)dt = 1
t u(t) = 1

2e
−t sin2t wi = ui(t)∑

ui(t)

0.2 0.318828772660741 0.181117907481532

0.4 0.480858167875714 0.273162376263091

0.6 0.511513895673254 0.290577056954165

0.8 0.449137371613558 0.255142659301212

Table 2 Exact solution of
u′ − ∫ x

0 u(t)dt = 1
t u(t) = sint wi = ui(t)∑

ui(t)

0.1 0.099833416646828 0.114124136689059

0.2 0.198669330795061 0.172346781593672

0.3 0.295520206661340 0.337822640876924

0.4 0.389418342308651 0.337822640876924

0.5 0.479425538604203 0.548053222434016

0.6 0.564642473395035 0.489830577529404

Problem Proposed by Decision-Maker 2 The second decision-maker represents
the weighting vector in the form of first-order integrodifferential equation u′ −∫ x

0 u(t)dt = 1, with u(0) = 0. By using Fuzzy Sumudu transform, we have
G(u)
u
− u(0)

u
= 1− uG(u). Then we get the following results given in Table 2.

5 Algorithm for MAGDM with Intuitionistic Trapezoidal
Fuzzy Data

Step 1. Use the ITFWG operator for the decision matrix R̃(k), to derive the
individual overall preference ITFS values,

r̃
(k)
i = IT FWG

(
r̃
(k)
i1

, r̃
(k)
i2

, r̃
(k)
i3

, . . . , r̃
(k)
in

)
, 1 ≤ i ≤ m, 1 ≤ k ≤ t .

Step 2. Use the ITFHG operator to derive the collective overall preference ITFS
values of the alternatives Xi .

r̃i = (μi, γi) = IT FHG
(
r̃
(1)
i , r̃

(2)
i , r̃

(3)
i , . . . , r̃

(t)
i

)
, 1 ≤ i ≤ m.

Step 3. Calculate the distance between collective overall values r̃i = (μi, γi) and
intuitionistic trapezoidal fuzzy positive ideal solution using the distance formula
given in Definition 3.

Step 4. Rank all the alternatives Xi, 1 ≤ i ≤ m and select in accordance with
d(c̃i, c̃

+). The smaller d(c̃i, c̃+), the better alternatives Xi .

6 Numerical Illustration

A car company is prudent to pick the most suitable green supplier for one of the
key components in its manufacturing process. Later pre-evaluation, five suppliers
have remained as options for further evaluation. Four measures are seen as u1,
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product of quality; u2, capability of technology; u3, control of pollution; and u4,
managing the environment. This fellowship owns a group of decision-makers from
five consultancy sectors: d1 is from the production sector; d2 is from the purchasing
sector; d3 is from the quality inspection sector; d4 is from financial sector; and d5
is from the technology section. The five possible alternatives Xi are to be assessed
using intuitionistic trapezoidal fuzzy numbers by the two decision-makers whose
weighting vector is obtained by normalizing the solution of integrodifferential
equations. The weight vector proposed by the first decision-maker is given by:

w= (0.181117907481532, 0.273162376263091, 0.290577056954165,
0.255142659301212)T . The weights proposed by the second decision-maker
are given by:

γ = (0.114124136689059, 0.337822640876924, 0.548053222434016)T , and ω =
(0.172346781593672, 0.337822640876924, 0.489830577529404)T . The deci-
sion matrices are listed in the following as:

R1 =

⎛

⎜⎜⎜⎜⎜⎝

([0.5, 0.6, 0.7, 0.8]; 0.5, 0.4) ([0.1, 0.2, 0.3, 0.4]; 0.6, 0.3) ([0.5, 0.6, 0.8, 0.9]; 0.3, 0.6) ([0.4, 0.5, 0.6, 0.7]; 0.2, 0.7)

([0.6, 0.7, 0.8, 0.9]; 0.7, 0.3) ([0.5, 0.6, 0.7, 0.8]; 0.7, 0.2) ([0.4, 0.5, 0.7, 0.8]; 0.7, 0.2) ([0.5, 0.6, 0.7, 0.9]0.4, 0.5)
([0.1, 0.2, 0.4, 0.5]; 0.6, 0.4) ([0.2, 0.3, 0.5, 0.6]; 0.5, 0.4) ([0.5, 0.6, 0.7, 0.8]; 0.5, 0.3) ([0.3, 0.5, 0.7, 0.9]; 0.2, 0.3)

([0.3, 0.4, 0.5, 0.6]; 0.8, 0.1) ([0.1, 0.3, 0.4, 0.5]; 0.6, 0.3) ([0.1, 0.3, 0.5, 0.7]; 0.3, 0.4) ([0.6, 0.7, 0.8, 0.9]; 0.2, 0.6)

([0.2, 0.3, 0.4, 0.5]; 0.6, 0.2) ([0.3, 0.4, 0.5, 0.6]; 0.4, 0.3) ([0.2, 0.3, 0.4, 0.5]; 0.7, 0.1) ([0.5, 0.6, 0.7, 0.8]; 0.1, 0.3)

⎞

⎟⎟⎟⎟⎟⎠

R2 =

⎛

⎜⎜⎜⎜⎜⎝

([0.4, 0.5, 0.6, 0.7]; 0.4, 0.3) ([0.1, 0.2, 0.3, 0.4]; 0.5, 0.2) ([0.4, 0.5, 0.7, 0.8]; 0.2, 0.5) ([0.3, 0.4, 0.5, 0.6]; 0.1, 0.6)
([0.5, 0.6, 0.7, 0.8]; 0.6, 0.3) ([0.4, 0.5, 0.6, 0.7]; 0.6, 0.1) ([0.3, 0.4, 0.6, 0.7]; 0.6, 0.1) ([0.4, 0.5, 0.6, 0.8]; 0.3, 0.4)

([0.1, 0.2, 0.3, 0.4]; 0.5, 0.3) ([0.1, 0.2, 0.4, 0.5]; 0.4, 0.3) ([0.4, 0.5, 0.6, 0.7]; 0.4, 0.2) ([0.2, 0.4, 0.6, 0.8]; 0.5, 0.2)

([0.2, 0.3, 0.4, 0.5]; 0.7, 0.1) ([01, 0.2, 0.3, 0.5]; 0.5, 0.2) ([0.1, 0.2, 0.4, 0.6]; 0.2, 0.3) ([0.5, 0.6, 0.7, 0.8]; 0.1, 0.5)

([0.1, 0.2, 0.3, 0.4]; 0.5, 0.1) ([0.2, 0.3, 0.4, 0.5]; 0.3, 0.2) ([0.1, 0.2, 0.3, 0.4]; 0.6, 0.2) ([0.4, 0.5, 0.6, 0.7]; 0.4, 0.2)

⎞

⎟⎟⎟⎟⎟⎠

R3 =

⎛

⎜⎜⎜⎜⎜⎝

([0.6, 0.7, 0.8, 0.9]; 0.4, 0.5) ([0.2, 0.3, 0.4, 0.5]; 0.5, 0.4) ([0.6, 0.7, 0.9, 1.0]; 0.2, 0.7) ([0.5, 0.6, 0.7, 0.8]; 0.1, 0.8)
([0.7, 0.8, 0.9, 1.0]; 0.6, 0.4) ([0.6, 0.7, 0.8, 0.9]; 0.6, 0.3) ([0.5, 0.6, 0.8, 0.9]; 0.6, 0.3) ([0.6, 0.7, 0.8, 1.0]; 0.3, 0.6)

([0.2, 0.3, 0.5, 0.6]; 0.5, 0.5) ([0.3, 0.4, 0.6, 0.7]; 0.4, 0.5) ([0.6, 0.7, 0.8, 0.9]; 0.4, 0.4) ([0.4, 0.6, 0.8, 1.0]; 0.5, 0.4)

([0.4, 0.5, 0.6, 0.7]; 0.7, 0.2) ([0.2, 0.4, 0.5, 0.6]; 0.5, 0.4) ([0.2, 0.4, 0.6, 0.8]; 0.2, 0.5) ([0.7, 0.8, 0.9, 1.0]; 0.1, 0.7)

([0.3, 0.4, 0.5, 0.6]; 0.5, 0.3) ([0.4, 0.5, 0.6, 0.7]; 0.3, 0.4) ([0.3, 0.4, 0.5, 0.6]; 0.6, 0.2) ([0.6, 0.7, 0.8, 0.9]; 0.4, 0.4)

⎞

⎟⎟⎟⎟⎟⎠

Using the above decision-making algorithm, we get

d(c̃1, c
+) = 0.846730050473296; d(c̃2, c

+) = 0.649502411930568; d(c̃3, c
+) =

0.821819637954159;
d(c̃4, c

+) = 0.845319573215105; d(c̃5, c
+) = 0.785377576460831.

Rank all the alternatives Xi, (i = 1, 2, 3, 4, 5).

X2 < X5 < X3 < X4 < X1.

Since the distance function is used to rank the alternative based on positive
ideal solution, the minimum the distance, the better the rank. Hence, X2 is the best
alternative.

7 Conclusion

Intuitionistic trapezoidal fuzzy set has been an effective and feasible tool for
addressing those uncertain MAGDM problems with the information of all the
alternatives on attributes expressed with intuitionistic trapezoidal fuzzy numbers.
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The attribute weight determining and normalizing methods for integrodifferential
equations using Sumudu transform is introduced and analyzed. Hamming distance
measure is applied to find the lengths of each alternative from positive ideal solution
for the relative similarity of each option. It is clear that the rank of alternatives
obtained by applying weights to MAGDM problem is consistent.

References

1. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems. 20(1), 87–96 (1986) https://
doi.org/10.1016/S0165-0114(86)80034-3

2. Atanassov, k., Gargov, G.: Interval-valued intuitionistic fuzzy sets. Fuzzy Sets and Systems.
31, 343–349 (1989)

3. Bulut, H., Baskonus, H.M., Belgacem, F.B.M.: The analytical solution of some fractional
ordinary differential equations by the Sumudu transform method. A.Appl.Anal. Article ID
203875, 1–6 (2013)

4. Eltayeb, H., Kilicman, A.: A note on the Sumudu transform and differential equations. Applied
Mathematical Sciences. 4(22) , 1089–1098 (2010)

5. Gerstenkorn, T., Manko, J.: Correlation of intuitionistic fuzzy sets. Fuzzy Sets and Systems. 44,
39–43 (1991)

6. Jeeva, S., Robinson, J.P., Application of Sumudu Transform in Intuitionistic Fuzzy MAGDM
Problems. International Journal of Pure and Applied Mathematics. 119(11), 109–117, (2017)

7. Hukuhara, M.: Integration des applications measurable don’t la value rest un compact convexe.
Funkcial. Ekvac. 10, 205–229 (1967)

8. Khan, N.A., Razzaq, O.A.: On the solution of fuzzy differential equations by Fuzzy Sumudu
Transform. Nonlinear Engineering. 4(1), 49–60 (2015)

9. Li, D.F.: Multi attribute decision-making models and methods using intuitionistic fuzzy sets.
Journal of Computer and System Sciences, 70, 73–85 (2005)

10. Li, D-F., Ye Y-F.: Interval-valued least square prenucleolus of interval-valued cooperative
games and a simplified method. Operational Research. 18(1), 205–220 (2018)

11. Li, D-F., Wan, S-P.: Minimum Weighted Minkowski Distance Power Models for Intuitionistic
Fuzzy Madm with Incomplete Weight Information, International Journal of Information
Technology and Decision Making. 16(5), 1387–1408 (2017)

12. Liu, J-C., Li, D-F.: Correlations to TOPSIS-Based Nonlinear-Programming Methodology for
Multiattribute Decision making With Interval-Valued Intuitionistic Fuzzy Sets. IEEE Trans.
Fuzzy Systems. 26(1), 391 (2018)

13. Robinson, J.P., Amirtharaj, E.C.H.: A short primer on the correlation coefficient of Vague sets.
International Journal of Fuzzy System Applications. 1(12), 55–69 (2011a) https://doi.org/10.
4018/ijfsa.2011040105

14. Robinson, J.P., Amirtharaj, E.C.H., Extended TOPSIS with correlation coefficient of Trian-
gular Intuitionistic fuzzy sets for Multiple Attribute Group Decision Making. International
Journal of Decision Support System Technology. 3(3), 15–40 (2011b) https://doi.org/10.4018/
jdsst.2011070102

15. Robinson, J.P., Amirtharaj, E.C.H.: Vague Correlation coefficient of Interval Vague sets.
International Journal of fuzzy System Applications. 2(1), 18–34 (2012a)

16. Robinson, J.P., Amirtharaj, E.C.H.: A search for the Correlation coefficient of Triangular and
Trapezoidal intuitionistic Fuzzy sets for Multiple Attribute Group Decision Making. Commu-
nications in computer and Information Sciences-283, Springer-Verlag. 333–342 (2012b)

17. Robinson, J.P., Amirtharaj, E.C.H.: A Strategic TOPSIS algorithm with correlation coefficient
of interval vague sets. International Journal of Computing Algorithm. 2, 314–33 (2013)

https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.4018/ijfsa.2011040105
https://doi.org/10.4018/ijfsa.2011040105
https://doi.org/10.4018/jdsst.2011070102
https://doi.org/10.4018/jdsst.2011070102


20 P. J. Robinson and S. Jeeva

18. Robinson, J.P., Amirtharaj, E.C.H.: MADM Problems with Correlation Coefficient of Trape-
zoidal Fuzzy Intuitionistic Fuzzy Sets. Advances in Decision Sciences. 2014, 1–10 (2014a)

19. Robinson, J.P., Amirtharaj, E.C.H.: MAGDM-Miner: A New Algorithm for Mining Trape-
zoidal Intuitionistic Fuzzy Correlation Rules, International Journal of Decision Support
System Technology. 6(1), 34–58 (2014b)

20. Robinson, J.P., Amirtharaj, E.C.H.: Efficient Multiple Attribute Group Decision Making
Models with Correlation Coefficient of Vague sets. International Journal of Operations
Research and Information Systems. 5(3), 27–51 (2014c)

21. Robinson, J.P., Amirtharaj, E.C.H.: MAGDM Problems with Correlation coefficient of Trian-
gular Fuzzy IFS. International Journal of Fuzzy Applications. 4(1), 1–32 (2015) https://doi.
org/10.4018/IJFSA.2015010101

22. Robinson, J.P., Amirtharaj, E.C.H.: Multiple Attribute Group Decision Analysis for Intu-
itionistic Triangular and Trapezoidal Fuzzy Numbers. International Journal of Fuzzy System
Applications. 5(3), 42–76 (2016) https://doi.org/10.4018/IJFSA.2016070104

23. Robinson, J.P., Jeeva, S.: Mining Trapezoidal Intuitionistic Fuzzy Correlation Rules for Eigen
Valued Magdm Problems. International Journal of Control Theory and Applications. 9(7),
585–616 (2016)

24. Robinson, J.P., Jeeva, S.: Application of Jacobian & Sor Iteration process in Intuitionistic Fuzzy
MAGDM Problems. Mathematical Sciences International Research Journal. 6(2), 130–134
(2017)

25. Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems.
114, 505–518 (2000)

26. Szmidt, E., Kacprzyk, J.: Using intuitionistic fuzzy sets in group decision making. Control and
Cybernetics. 31, 1037–1053 (2002)

27. Wang, J.Q., Zhang, Z.: Multi-criteria decision-making method with incomplete certain infor-
mation based on intuitionistic fuzzy number, Control Decision. 24, 226–230 (2009)

28. Wei, G.: Some induced geometric aggregation operators with intuitionistic fuzzy information
and their application to group decision making. Applied Soft Computing. 10(2), 423–431
(2010a)

29. Wei, G.: Some arithmetic aggregation operators with intuitionistic trapezoidal fuzzy numbers
and their application to group decision making. Journal of Computers. 5(3), 345–351 (2010b).
https://doi.org/10.4304/jcp.5.3.345-351

30. Wu, J., Cao, Q-W.: Same families of geometric aggregation operators with intuitionistic
trapezoidal fuzzy numbers, Applied Mathematical Modelling. 37, 318–327 (2013) https://doi.
org/10.1016/j.apm.2012.03.001.

31. Xu, Z.S.: Dynamic Intuitionistic fuzzy multi-attribute decision making, International Journal
of Approximate Reasoning, 48(1), 246–262 (2008).

32. Xu, Z.S., Chen, J.: On geometric aggregation over interval-valued intuitionistic fuzzy informa-
tion. in: Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD
2007). 2, 466–471 (2007)

33. Xu, Z.S., Yager, R.R.: Some geometric aggregation operators based on Intuitionistic Fuzzy
sets. International Journal of General Systems, 35, 417–433 (2006).

34. Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision
making. IEEE Transactions on Systems, Man, and Cybernetics. 18, 183–190 (1988)

35. Yu, G-F., Li, D-F.: Application of satisfactory degree to interval-valued intuitionistic fuzzy
multi-attribute decision making. Journal of Intelligent and Fuzzy Systems. 32(1), 1019–1028
(2017)

36. Yu, G-F., Li., D-F., Qiu, J-M., Zheng X-X.: Some operators of intuitionistic uncertain
2-tuple linguistic variables and application to multi-attribute group decision making with
heterogeneous relationiship among attributes. Journal of Intelligent and Fuzzy Systems. 34(1),
599–611 (2018)

37. Zadeh, L. A.: Fuzzy Sets. Information and Control. 8(3), 338–356 (1965) https://doi.org/10.
1016/S0019-9958(65)90241-X

https://doi.org/10.4018/IJFSA.2015010101
https://doi.org/10.4018/IJFSA.2015010101
https://doi.org/10.4018/IJFSA.2016070104
https://doi.org/10.4304/jcp.5.3.345-351
https://doi.org/10.1016/j.apm.2012.03.001
https://doi.org/10.1016/j.apm.2012.03.001
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/S0019-9958(65)90241-X


Existence of Meromorphic Solution
of Riccati-Abel Differential Equation

P. G. Siddheshwar and A. Tanuja

Abstract We present meromorphic solution of the Riccati-Abel differential equa-
tion by considering the corresponding complex differential equation. Riccati-Abel
differential equation is one of the most widely used equations of mathematical
physics. A result from Nevanlinna theory that helps us in obtaining such a solution
concerns sharing one value of meromorphic function and its first derivative.

1 Introduction

In this article, we use some basic results and symbols of Nevanlinna theory
like characteristic function T (r, F ), proximity function m(r, F ), counting function
N(r, F ), reduced counting function N(r, F ), and the first and second main theorems
(see [1–3]). It is difficult to prove that there is no meromorphic solution or to
find all meromorphic solutions of a nonlinear complex differential equation if such
solution exists. Thus, Nevanlinna theory plays a prominent role in obtaining entire
or meromorphic solutions of complex differential equations.

We obtain meromorphic solution of Riccati-Abel differential equation which is
defined as an equation between the first-order derivative and the cubic polynomial.
The Riccati-Abel differential equation which arises in the modeling of real-
world problems such as oceanic circulation, cosmology, cancer therapy, and fluid
mechanics has the form

dF

dz
= a0 + a1F + a2F

2 + a3F
3, (1)

where a0, a1, a2 and a3 denote small functions of F that are non-zero.
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2 Useful Results

Result 1 Suppose F is a meromorphic function, then dF
dz

is not a constant.
Therefore,

T (r, F ) ≤ N

(
r,

1

F − 1

)
+N

(
r,

1
dF
dz
− 1

)
+N(r, F )−N0

⎛

⎝r,
1

d2F

dz2

⎞

⎠+S(r, F ),

where N0

(
r, 1

d2F
dz2

)
represents counting function of the zeros of d2F

dz2 that are not

zeros of dF
dz

and these zeros are counted according to their multiplicity. This result
is a consequence of one of the results in [5].

Result 2 Suppose F is a meromorphic function, then dF
dz

is not constant. Now we
have either

(
d2F

dz2

)3

= c1

(
dF

dz
− μ

)4

, (2)

for some nonconstant c1 or

N2)(r, F ) ≤ N(3(r, F )+ N2)

(
r,

1
dF
dz
− μ

)
+N

⎛

⎝r,
1

d2F

dz2

⎞

⎠+ S(r, F ), (3)

where μ is a constant.

Proof Let

ψ = 2
d3F
dz3

d2F
dz2

− 3
d2F
dz2

dF
dz
− μ

. (4)

Let us take z∞ to be a pole of F of order 2. We can then arrive at the following
expression:

ψ(z) = O((z− z∞)3),

which implies z∞ is a zero of ψ of multiplicity 3. Thus, if Eq. (2) is not true, i.e.,
ψ �≡ 0, then

N2)(r, F ) ≤ N(r,
1

ψ
) ≤ T (r, ψ)+O(1). (5)
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Note that ψ can have poles of order 2 at zeros of d2F

dz2 or dF
dz
− μ or multiple poles

of F . Therefore, from Eq. (4) we get the following equation:

N(r,ψ) ≤ N(3(r, F )+N2)

(
r,

1
dF
dz
− μ

)
+N

⎛

⎝r,
1

d2F
dz2

⎞

⎠ . (6)

Again from Equ. (4), we can easily get

m(r,ψ) = S(r, F ).

From Eqs. (5) and (6), and above Equation we obtain

N2)(r, F ) ≤ N(3(r, F )+N2)

(
r,

1
dF
dz
− μ

)
+N

⎛

⎝r,
1

d2F
dz2

⎞

⎠+ S(r, F ).

Result 3 Suppose F is a nonconstant meromorphic function. Now either Eq. (3)
holds or

F(z) = 27

2c1[z+ 3A1]2 + μz+ A2, (7)

where c1 �= 0, A1, A2, μ are constants.

Proof Let F ′ be a constant so that F denotes a polynomial of degree at most 1. Now
we have N2)(r, F ) = S(r, F ) such that Eq. (3) is true. Let us further assume F ′ is
not a constant. In Result 2, we have Eq. (3), and if it does not hold, then we have
Eq. (2) which can now be written as

⎛

⎝
d2F
dz2

dF
dz
− μ

⎞

⎠
3

= c1

(
dF

dz
− μ

)
. (8)

On differentiating Eq. (8), we get

3

⎛

⎝
d2F
dz2

dF
dz
− μ

⎞

⎠
2 ⎛

⎝
d2F
dz2

dF
dz
− μ

⎞

⎠
′
= c1

d2F

dz2 . (9)

From Eqs. (8) and (9), we get

⎛

⎝
d2F

dz2

dF
dz
− μ

⎞

⎠
−2 ⎛

⎝
d2F

dz2

dF
dz
− μ

⎞

⎠
′
= 1

3
. (10)
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On integrating Eq. (10) once and combining the result with Eq. (8), we obtain

dF

dz
− μ = −27

c1(z+ 3A)3 . (11)

Now integrating Eq. (11) we can obtain Eq. (7).

We now proceed to obtain the meromorphic solution of the Riccati-Abel differential
equation.

Theorem 1 Suppose F is a nonconstant meromorphic function satisfying the
Riccati-Abel differential equation of the form dF

dz
= a0 + a1F + a2F

2 + a3F
3,

where the non-zero ai’s (i=0,1,2,3) represents small functions of F . Let dF
dz
− 1 and

dF
dz
− F share the value 0 CM, and then we have F and dF

dz
share the value 1 CM,

and F satisfies the equation

F(z) = z + A1

1− c1e−z
, (12)

where A1 and c1 �= 0 are constants.

Proof From the differential equation (1), we can easily get N(3(r, F ) + m(r, F ) =
S(r, F ) which in turn gives T (r, F ) = N2)(r, F )+ S(r, F ). Therefore, N2)(r, F ) �=
S(r, F ), i.e., N=2(r, F ) �= S(r, F ). Following [4] we can get Eq. (12). Substituting
Eq. (12) in Eq. (1), we get

[
z+ A1

1− c1e−z

]′
= a0 + a1

(
z+ A1

1− c1e−z

)
+ a2

(
z+ A1

1− c1e−z

)2

+ a3

(
z+ A1

1− c1e−z

)3

.

(13)

If a0 �≡ 0, now using Eq. (13) we get T (r, e−z) = S(r, e−z); this is not possible.
Hence, we can conclude that a0 ≡ 0. Substituting a0 ≡ 0 in Eq. (13) and equating
the coefficients of like powers of c1e

−z, we can obtain a1(z), a2(z), and a3(z).

Theorem 2 Suppose F is a nonconstant meromorphic function satisfying the
Riccati-Abel differential equation dF

dz
= a0 + a1F + a2F

2 + a3F
3, where ai’s

are defined as earlier. Let F and dF
dz

share the value 1 IM; now we have either

dF

dz
− 1 = a3(F − 1)

[
F 2 +

(
1+ a2

a3

)
F − 1

]
, (14)

or

dF

dz
− 1 = a3(F − 1)

[
F 2 +

(
1+ a2

a3

)
F + A1 − z+ 1

]
, (15)

where A1 is a constant.
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Proof Let z3 be a zero of dF
dz
− 1 and aj (z3) �≡ 0,∞(j = 0, 1, 2, 3) with F and dF

dz

sharing the value 1 IM along with z3 being a zero of F − 1 of order 2. Now using
Eq. (1), we can obtain

(a0 + a1 + a2 + a3)(z3) ≡ 1. (16)

If a0 + a1 + a2 + a3 �≡ 1, we obtain

N

(
r,

1
dF
dz
− 1

)
= N

(
r,

1

F − 1

)
≤ N

(
r,

1

a0 + a1 + a2 + a3 − 1

)
+ S(r, f ),

≤ T (r, a0 + a1 + a2 + a3)+ S(r, F ),

≤ T (r, a0)+ T (r, a1)+ T (r, a2)

+T (r, a3)+ S(r, F ),

= S(r, F ). (17)

From Eq. (1), we now get

N(3(r, F )+m(r, F ) = S(r, F ). (18)

Combining Eqs. (17) and (18), and using Result 1, we get

T (r, F ) ≤ N

(
r,

1

F − 1

)
+N

(
r,

1
dF
dz
− 1

)
+N(r, F )−N0

⎛

⎝r,
1

d2F
dz2

⎞

⎠+ S(r, F ),

= N(3(r, F )+N2)(r, F )−N0

⎛

⎝r,
1

d2F
dz2

⎞

⎠+ S(r, F ).

Also we can get the following expression:

N0

⎛

⎝r,
1

d2F
dz2

⎞

⎠ = S(r, F ). (19)

Using Eqs. (3) and (7), with μ = 1, we get either

N2)(r, F ) ≤ N(3(r, F )+ N2)

(
r,

1
dF
dz
− 1

)
+N

⎛

⎝r,
1

d2F

dz2

⎞

⎠+ S(r, F ), (20)

or

F(z) = 27

2c1[z+ 3A1]2 + z + A2, (21)
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where A1, A2, and c1 �= 0 are constants. From Eqs. (17), (18), and (20), we get

T (r, F ) ≤ N

⎛

⎝r,
1

d2F
dz2

⎞

⎠+ S(r, F ). (22)

Equation (22) together with Eq. (19) yields the following result:

T (r, F ) ≤ N(3

(
r,

1
dF
dz
− 1

)
+ S(r, F ). (23)

Equations (23) and (17) yield the condition T (r, F ) = S(r, F ), and this is a
contradiction. Therefore, Eq. (20) does not hold. From Eq. (21), we find that

F(z)− 1 = 27+ 2c1[z+ 3A1]2[z+ A2 − 1]
2c1[z+ 3A1]2 (24)

and

dF

dz
− 1 = −27

c1[z+ 3A1]3 . (25)

Now F and dF
dz

cannot share 1 IM; this is not possible. Therefore,

a0 + a1 + a2 + a3 ≡ 1. (26)

Substituting Eq. (26) into the differential equation (1), we get

dF

dz
− 1 = a3(F − 1)

[(
a1

a3
+ a2

a3
+ 1

)
+

(
a2

a3
+ 1

)
F + F 2

]
. (27)

If 1+ a1
a3
+ a2

a3
= −1 or 1+

(
a1
a3

)′ +
(

a2
a3

)′ = 0, then we, respectively, arrive at the

conclusion (14) or (15). Otherwise, we infer that

N

⎛

⎝r,
1(

a1
a3
+ a2

a3
+ 1

)
+

(
a2
a3
+ 1

)
F + F 2

⎞

⎠ = S(r, F ).

Suppose
(
a1
a3
+ a2

a3
+ 1

)
+

(
a2
a3
+ 1

)
F + F 2 has a zero of multiplicity l at z0, say,

such that 1
a3

dF
dz −1
F−1 has a zero of multiplicity l at z0. Now let us consider the following

cases:

(i) F(z0) = ∞ or
(ii) dF (z0)

dz
= F(z0) = F 2(z0) = 1 or

(iii) a3(z0) = ∞.
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If F(z0) = ∞, then a3 has a pole of multiplicity l + 1 at z0, while if dF (z0)
dz

=
F 2(z0) = F(z0) = 3, then a1

a3
+ 2 a2

a3
+ 3 has a zero of multiplicity 3 at z0, and

1 +
(

a1
a3

)′ +
(
a2
a3

)′
has a zero of multiplicity min{l − 1, l + 1 − t} at z0; here t

represents the possible multiplicity of the pole of a3 at z0. From case (iii), a3 will
have a pole of multiplicity p at z0. Hence we have

N

⎛

⎝r,
1(

a1
a3
+ a2

a3
+ 1

)
+

(
a2
a3
+ 1

)
F + F 2

⎞

⎠ ≤ N(r, a3)+N

(
r,

1
a1
a3
+ 2 a2

a3
+ 3

)

+ N

⎛

⎜⎝r,
1

1+
(
a1
a3

)′ +
(
a2
a3

)′

⎞

⎟⎠ ,

= S(r, F ). (28)

Equation (27) may now be written as

[(
a1
a3
+ a2

a3
+ 1

)
+

(
a2
a3
+ 1

)
F + F 2

]′ −
[

1+
(

a1
a3

)′ +
(
a2
a3

)′]

[(
a1
a3
+ a2

a3
+
)
+

(
a2
a3
+ 1

)
F + F 2

] = a3(F − 1).

(29)

From Eqs. (18) and (29), it follows that if 1+
(
a1
a3

)′ +
(
a2
a3

)′ �= 0, then

m

⎛

⎝r,
1(

a1
a3
+ a2

a3
+ 1

)
+

(
a2
a3
+ 1

)
F + F 2

⎞

⎠ = S(r, F ). (30)

From Eqs. (28) and (30), we can obtain T (r, F ) = S(r, F ) which is not possible.
Thus, we have

1+
(
a1

a3

)′
+

(
a2

a3

)′
≡ 0. (31)

By integrating Eq. (31) w.r.t. “z”, we have

a1

a3
+ a2

a3
= A1 − z. (32)

From Eqs. (27) and (32), we arrive at Eq. (15).
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3 Conclusion

Riccati-Abel differential equation is known as one of the unsolvable nonlinear dif-
ferential equations. In this article, we use Nevanlinna theory to obtain meromorphic
solution of Riccati-Abel differential equation with sharing one counting multiplicity
or ignoring multiplicity. Our results show that complex method provides a powerful
mathematical tool for solving nonlinear differential equation.
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Expansion of Function with Uncertain
Parameters in Higher Dimension

Priyanka Roy and Geetanjali Panda

Abstract This article considers uncertain parameters of a function as closed
intervals. Expansion of these types of function in a single dimension is studied.
μ-monotonic property of this function in higher dimension is introduced, and
higher-order expansion in Rn is developed using μ-monotonic property.

1 Introduction and Motivation

Interval analysis has been introduced as an alternative approach to studying uncer-
tainty theory from nonstatistical viewpoint, and its application has been increased in
recent years in control, dynamic economy, climate modeling, optimization theory,
etc. An interval function F̆ can be treated as the image extension of a real-valued
function or a function whose arguments are intervals. Calculus of interval functions
is studied by many researchers in the light of calculus of set-valued functions as
discussed in [1, 4, 8, 9] etc. Most of these works are limited up to the existence
of derivative using gH difference. Using these concepts, few developments in the
area of calculus of interval functions are discussed in [2, 3, 5, 6, 11, 12]. Markov
[10] has introduced a nonstandard subtraction �M in the set of intervals based
on which calculus of interval function in a single variable is studied. Rall [11]
developed interval version of mean value theorem and Taylor’s theorem for the
interval functions which map from the set of intervals to the interval space using
interval inclusion property and Gateaux-type derivative. Stefanini [12] proposed
generalization of Hukuhara difference and studied the connection of gH derivatives
with several existing derivatives of interval functions. In the literature of interval
analysis, expansion of interval function has not been studied so far.
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In this article, an attempt is made to proceed one step further to study the
expansion of interval functions. In the present contribution, Markov difference is
accepted due to its computational comfortability. Some notations and preliminaries
on interval analysis are discussed in Sect. 2. μ-monotonicity of interval function
in R has already developed in the existing theory of interval analysis. In Sect. 3,
μ-monotonicity of interval function in Rn is introduced, and using this concept,
differentiability in Rn is revisited. Using this new concept, expansion of interval
functions in one dimension and higher dimension is developed.

2 Some Notations and Preliminaries

Throughout this article K(R) denote the set of all compact intervals on R. ᾰ ∈ K(R)

is the closed interval of the form [α, α] where α ≤ α. Spread of ᾰ is denoted by
μ(ᾰ), where μ(ᾰ) = α − α. For two points α1 and α2, (not necessarily α1 ≤ α2), ᾰ
can be written as ᾰ = [α1∨α2]. Any real number r can be expressed as a degenerate
interval denoted by r̆, r̆ = [r, r] or r.Ĭ , where Ĭ = [1, 1]. 0̆ = [0, 0] = 0.Ĭ denotes
the null interval.

The usual arithmetic operation has been used in this article except the interval
subtraction. Additive inverse in 〈K(R),⊕,�〉 may not exist, that is, ᾰ � ᾰ is not
necessarily 0̆ according to this approach. The nonstandard subtraction due to [10],
denoted by �M , provides additive inverse, which is

ᾰ �M β̆ =
⎧
⎨

⎩

[
α − β, α − β

]
, if μ(ᾰ ≥ μ(β̆)[

α − β, α − β
]
, if μ(ᾰ) < μ(β̆)

(1)

The following properties of�M due to [10] and [7] are used throughout the paper:

(i) ᾰ �M ᾰ = 0̆
(ii) �Mᾰ = (−1)ă

(iii) ᾰ ⊕ (−1)β̆ = ᾰ �M β̆ if and only if μ(ᾰ)μ(β̆) = 0

(iv) ᾰ �M

(
�Mβ̆

)
= ᾰ ⊕ β̆ if and only if μ(ᾰ)μ(β̆) = 0

From the above properties, the following results can be derived easily:

(v) ᾰ �M

(
�M(−1)β̆

)
= ᾰ �M β̆.

(vi) ᾰ �M (�Mᾰ) =
{

2ᾰ, if μ(ă) = 0

[α + α, α + α] otherwise

In K(R), the norm (‖.‖) of an interval ᾰ [10] is defined as ‖ᾰ‖ = max
{|α|, |α|}.
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3 Calculus of Interval Function in Higher Dimension

μ-Monotonic property of an interval function plays an important role while
developing calculus of interval function in the higher dimension. In the light of
μ-monotonic property of interval function in a single variable from [10], we first
focus on μ-monotonic property in the higher dimension.

3.1 μ-Monotonic Property of F̆

Consider F̆ : Rn → K(R), F̆ (x) = [F(x), F(x)], Λn = {1, 2, · · · , n},
(x : ihi) = (x1, x2, . . . , xi + h, . . . xn). Denote μF̆ (x) = F (x)− F(x).

Definition 1 F̆ is called μ-increasing in Rn with respect to ith component if and
only if

μF̆ (x) ≤ μF̆ (x : ihi) whenever xi ≤ xi + hi,∀x, (x : ihi) ∈ Rn (2)

By reverting the inequality, μ-decreasing property of F̆ with respect to ith compo-
nent can be defined. F̆ is μ-monotonic with respect to xi if it is either μ-increasing
or μ-decreasing with respect to ith component.

3.2 Differentiability of F̆

Definition 2 For a n variable interval function F̆ : Rn → K(R) if

limhi→0
1
hi

(
F̆ (x : ih)�M F̆ (x)

)
exists, then the partial derivative of F̆ with

respect to xi exists, and the limiting value is denoted by ∂F̆ (x)
∂xi

.

Remark 1 Existence of partial derivative of F̆ at a point may not guarantee the
existence of partial derivatives of the lower and upper bound functions at that point.

Consider F̆ (x1, x2) = ăx1 ⊕ b̆x2
2 for ă, b̆ ∈ K(R), where μ(ă) > 0. ∂F̆ (0,0)

∂x1
= ă,

where as ∂F (0,0)
∂x1

and ∂F (0,0)
∂x1

do not exist.

Definition 3 F̆ : Rn → K(R) is differentiable at x if F and F are differentiable.

Following these basic ideas, higher-order partial derivatives of an interval function
can be defined.

∂2F̆

∂xj∂xi
= lim

hj→0

1

hj

(
∂F̆ (x : jh)

∂xi
�M

∂F̆ (x)

∂xi

)
=

[
∂2F

∂xj∂xi
∨ ∂2F

∂xj∂xi

]



32 P. Roy and G. Panda

4 Expansion of Interval Functions

4.1 Expansion of Interval Function in R

Proposition 1 If g : R → R is first-order differentiable and F̆ : Ω ⊆ R → K(R)

is differentiable, then (gF̆ ) is differentiable, and (gF̆ )
′ = g

′
F̆ ⊕ gF̆

′
.

Proof of this result follows directly from Definition 2 in [10].

Theorem 1 Let F̆ : R → K(R) be such that F̆ ′, F̆ ′′, · · · , F̆ s exist and μ-
monotonic in nbd(η), η ∈ R. Then for any x ∈ nbd(η), x �= η,

F̆ (x)�M

[
F̆ (η)�M

(
�M(x − η)F̆

′
(η)

)
�M

(
�M

(x − η)2

2! F̆
′′
(a)

)
�M · · ·

�M

(
�M

(x − η)s−1

(s − 1)! F̆ s−1(η)

)]

⊂ ∪ϑ∈[0,1]
(x − η)s(1− ϑ)s−1

(s − 1)! F̆ s (η + ϑ(x − η))

(3)

Proof Consider an interval function Φ̆ : Δ→ K(R) as

Φ̆(τ ) = F̆ (τ )�M

(
�M(x − τ )F̆ ′(τ )

)
�M

(
�M

(x − τ )2

2! F̆ ′′(τ )
)
�M

· · · �M

(
�M

(x − τ )s−1

(s − 1)! F̆ s−1(τ )

)
(4)

for Δ = [η, x] or [x, η].
Since F̆ , F̆ ′, · · · , F̆ s−1, F̆ s exist in nbd(η), so differentiability of Φ̆ in nbd(η)

follows from Theorem 7 in [10]. Since F̆ , F̆ ′, · · · , F̆ s−1, F̆ s all are μ-monotonic in
nbd(η), each of them will be either μ-increasing or μ-decreasing in nbd(η).

Denote ηi(τ ) = (x−τ )i

i! .

Case 1

(i) Suppose F̆ , F̆ ′, F̆ ′′, . . . , F̆ s−1, F̆ s are all μ-increasing in Ω . Then (ηi(τ ))F̆
j (τ )

and (η′i (τ ))F̆ j (τ ) are μ-increasing for all i, j ∈ Λs .
From Proposition 1 and Theorem 7 in [10],

Φ̆ ′(τ ) = F̆ ′(τ )�M

(
�M(−1)F̆ ′(τ )

)
�M

(
�M(x − τ )F̆ ′′(τ )

)
�M

(
�M(−1)(x − τ )F̆ ′′(τ )

)
�M

(
�M

(x − τ )2

2! F̆ ′′′(τ )
)
�M

(
�M(−1)

(x − τ )2

2
F̆ ′′′(τ )

)
�M · · · �M

(
�M

(x − τ )s−1

(s − 1)! F̆ s (τ )

)

(5)
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For j = 1, 2, · · · , s − 1,

�M

(
�M

(x − τ )j−1

(j − 1)! F̆ j (τ )

)
�M

(
�M(−1)

(x − τ )j−1

(j − 1)! F̆ j (τ )

)
= 0̆

holds, which follows from property (i) of �M .

For j = s, �M

(
�M

(x−τ )s−1

(s−1)! F̆ s (τ )
)
= (x−τ )s−1

(s−1)! F̆ s(τ ) holds from the

property (v) of �M . Hence the expressions for Φ̆ ′(τ ) can be simplified
further as

Φ̆ ′(τ ) = (x − τ )s−1

(s − 1)! F̆ s (τ ) (6)

From Theorem 9 in [10],

Φ̆(x)�M Φ̆(η) ⊂ (x − η) ∪τ∈Δ Φ̆ ′(τ )

= ∪ϑ∈[0,1]
(1− ϑ)s−1(x − η)s

(s − 1)! F̆ s(η + ϑ(x − η)) (7)

That is,

F̆ (x)�M

[
F̆ (η)�M

(
�M(x − η)F̆

′
(η)

)
�M

(
�M

(x − η)2

2! F̆
′′
(a)

)
�M · · ·

�M

(
�M

(x − η)s−1

(s − 1)! F̆ s−1(η)

)]
⊂

∪ϑ∈[0,1]
(x − η)s(1− ϑ)s−1

(s − 1)! F̆ s(η+ϑ(x−η))

(ii) If F̆ , F̆ ′, F̆ ′′, . . . , F̆ s−1, F̆ s are μ-decreasing, using Theorem 7 from [10], it
can be verified that the expression of Φ ′ will be same to (6). So (3) holds in this
case.

Case 2 Suppose F̆ , F̆ ′, F̆ ′′, . . . , F̆ s−1, F̆ s are differently μ-monotonic.
For instance, suppose even order successive derivatives are μ-increasing and odd

order successive derivatives are μ-decreasing .
Then μ-monotonicity of ηi(τ )F̆

j (τ ) or η′i (τ )F̆ j (τ ) will depend on μ-
monotonicity of corresponding F̆ j (τ ) where i, j ∈ Λn.

Using Proposition 1 and Theorem 7 in [10] in (4), the following relation holds:

Φ̆ ′(τ ) = [F̆ ′(τ )�M

{
�M(−1)F̆ ′(τ )

}
] ⊕ [�M

{
�M(x − τ )F̆ ′′(τ )

}
�M

{
�M(−1)(x − τ )F̆ ′′(τ )

}
] ⊕ [�M

{
�M

(x − τ )2

2! F̆ ′′′(τ )
}
�M

{
�M(−1)

(x − τ )2

2
F̆ ′′′(τ )

}
] ⊕ · · · ⊕ [�M

{
�M

(x − τ )s−1

(s − 1)! F̆ s(τ )

}
]

(8)
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Using property (i) and (v) of �M , (8) reduces to Φ̆ ′(τ ) = (x−τ )s−1

(s−1)! F̆ s (τ ), which is

similar to the expression of Φ̆ ′(τ ) in (6). Therefore (3) can be derived proceeding
in similar way as in Case-1. If the role of μ-monotonicity for odd and even F̆ j are
changed, then Φ̆ ′ will remain unchanged as in (6).

Moreover, if μ-monotonicity of F̆ j is not consistently changed (some consec-
utive F̆ j s’ are μ-increasing, and some consecutive F̆ j s’ are μ-decreasing), then
using (5) and (8), it can be verified that the expression of Φ̆ ′(τ ) will be same as (6),
hence the theorem.

Corollary 1 Suppose there exists k > 0 and M > 0, such that for s sufficiently

large, ‖ F̆ (s)(x) ‖< kMs ∀ x ∈ nbd(η). Then (
(x−η)s(1−ϑ)s−1

(s−1)! ) ∪ϑ∈[0,1] F̆ s (η +
ϑ(x − η))→ 0̆ as s →∞.

Proof ‖ (
(x−η)s(1−ϑ)s−1

(s−1)! )F̆ s(ξ) ‖� |x−η|s (1−ϑ)s−1

(s−1)! kMs holds for any ξ ∈ nbd(a).

limn→∞ Ms−1|x−η|s−1

(s−1)! = 0 and limn→∞(1− ϑ)s−1 =
{

0 ϑ �= 0

1 ϑ = 0
.

This implies (
(x−η)s(1−ϑ)s−1

(s−1)! )F̆ s(ξ) → 0̆ as n → ∞ for each ξ ∈ nbd(η) and

hence (
(x−η)s(1−ϑ)s−1

(s−1)! ) ∪ϑ∈[0,1] F̆ s (η + ϑ(x − η))→ 0̆ as s →∞.

4.2 Expansion of Interval Function in Rn

Theorem 2 Let F̆ : Rn → K(R) be s−1 times differentiable. F̆ and all the partial
derivatives of F̆ up to order s are component-wise μ-monotonic in nbd(η) for some
η ∈ R

n. Then

F̆ (x)�M

{
F̆ (η)�M

(
�M

n∑

i=1

∂F̆ (η)

∂xi
(xi − ηi)

)
�M

⎛

⎝�M
1

2!
n∑

i,j=1

∂2F̆ (η)

∂xi∂xj
(xi − ηi)(xj − ηj )

⎞

⎠�M · · ·

�M

⎛

⎝�M
1

(s − 1)!
n∑

i1,i2,...,is=1

∂s−1F̆ (η)

∂xi1 . . . ∂xis−1
(xi1 − ηi1) . . . (xis−1 − ηis−1)

⎞

⎠

⎫
⎬

⎭

⊂ ∪ξ∈L.S{η,x}
n∑

i1,i2,...,is=1

1

(s − 1)!
∂sF̆ (c)

∂xi1 . . . ∂xis
(xi1 − ηi1) . . . (xis − ηis),

(9)
where L.S {η, x} denotes the segment of line joining η and x.

Proof Suppose Φ̆(τ ) = F̆ (η + τ (x − η)) = F̆ (ν(τ )), where ν(τ ) = η + τ (x − η)

From Theorem 8 in [10], Φ̆ ′(τ ) = (x − η)′∇F̆ (ν(τ )), Φ̆ ′′(τ ) = (x −
η)′∇2(F̆ (ν(τ ))(x − η).
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By induction, Φ̆(s)(τ ) =∑n
i1,i2,··· ,is=1

∂s F̆ (τ )
∂xi1∂xi2···∂xis (xi1 − ηi1) · · · (xis − ηis)

From the assumptions of the theorem, Φ̆ is (s-1)times differentiable and
Φ̆, Φ̆ ′, · · · , Φ̆(s) are μ-monotonic. From Theorem 9 in [10], for τ, ϑ ∈ [0, 1],

Φ̆(τ )�M

{
Φ̆(0)�M

(
�MτΦ̆ ′(0)

)
�M

(
�M

τ 2

2! Φ̆
′′(0)

)
�M

· · · �M

(
�M

τ(s−1)

(s − 1)!Φ̆
(s−1)(0)

)}
⊂ ∪ϑ∈[0,1]

τ s

(s − 1)!Φ̆
(s)(ϑ),

(10)

In particular for t = 1,

Φ̆(1)�M

{
Φ̆(0)�M

(
�MΦ̆ ′(0)

)
�M

(
�M

1

2! Φ̆
′′(0)

)
�M

· · · �M

(
�M

1

(s − 1)!Φ̆
(s−1)(0)

)}
⊂ ∪ϑ∈[0,1]

1

(s − 1)!Φ̆
(s)(ϑ).

(11)

Φ̆(1) = F̆ (x), Φ̆(0) = F̆ (η), Φ̆ ′(0) = ∑n
i=1

∂F̆ (η)
∂xi

(xi − ηi), Φ̆ ′′(0) =
∑n

i,j=1
∂2F̆ (η)
∂xi∂xj

(xi − ηi)(xj − ηj ), etc..
(9) follows after substituting these values in (11).

Corollary 2 Suppose there exist k > 0 and M > 0, such that for sufficiently large

n, ‖ ∂s F̆ (ξ)
∂xi1...∂xis

‖< kMs ∀ ξ ∈ L.S {η, x}. Then

∪
n∑

i1,i2,...,is=1

(
1

(s − 1)!)
∂sF̆ (ξ)

∂xi1 . . . ∂xis
(xi1 − ηi1) . . . (xis − ηis)→ 0̆ as s →∞

Proof For any ξ ∈ L.S {η, x}, ‖ ∂s F̆ (ξ)
∂xi1...∂xis

‖ = max
{
| ∂sF (ξ)

∂xi1...∂xis
|, | ∂sF (ξ)

∂xi1...∂xis
|
}

.

Rest of the part is similar to the proof of Corollary 1.

The following result is derived from (9) and Corollary 2.

F̆ (x) ≈ F̆ (η)�M

(
�M

n∑

i=1

∂F̆ (η)

∂xi
(xi − ηi)

)
�M

⎛

⎝�M
1

2!
n∑

i,j=1

∂2F̆ (η)

∂xi∂xj
(xi − ηi)(xj − ηj )

⎞

⎠�M · · ·

�M

⎛

⎝�M
1

(s − 1)!
n∑

i1,i2,...,is=1

∂s−1F̆ (η)

∂xi1 . . . ∂xis−1
(xi1 − ηi1) . . . (xis−1 − ηis−1)

⎞

⎠

(12)
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Remark 2 Expansion of interval function F̆ (x) should not be misunderstood as the
expansion of its lower and upper bound function. Suppose F̆ (x) ≈ Ğ(x), where
Ğ(x) is obtained by expanding F̆ about a up to order n. If F(x) ≈ h1(x), F(x) ≈
h2(x), where h1(x) and h2(x) are the expansion of F(x) and F(x), respectively, of
order n, then Ğ(x) is not necessarily same as [h1(x), h2(x)]. Moreover due to μ

monotonic property, existence of expansion of F̆ (x) may not imply the existence of
expansion of h1(x) and h2(x).

5 Conclusion and Future Scope

This article has focused on the expansion of interval function in Rn. This expansion
can provide a powerful tool for developing solution of system of equation, solving
least mean square problems with interval parameters, which can be treated as future
applications of the present contribution.
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Analytical Solutions of the Bloch
Equation via Fractional Operators
with Non-singular Kernels

A. S. V. Ravi Kanth and Neetu Garg

Abstract This article deals with the fractional Bloch equation by using Caputo-
Fabrizio fractional derivative and Atangana-Baleanu fractional derivative with
non-singular kernels. Bloch equation is extensively used in chemistry, physics,
magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR). The
nuclear magnetization M = (Mx,My,Mz) is derived analytically, and its behaviour
is discussed via plots for different fractional orders. A comparative study of the
analytical solutions with Caputo-Fabrizio, Atangana-Baleanu and Caputo fractional
derivatives is presented. Equilibrium stage is achieved faster via Atangana-Baleanu
fractional derivative than other fractional derivatives.

1 Introduction

Fractional calculus is the study of derivatives and integrals of non-integer order
which provides us an excellent opportunity to understand memory and hereditary
properties of the complex systems. Thus its applications are growing numerously in
mathematical biology [3, 14] in electric circuits [1], in medicine [6] and in many
other areas.

For fractional generalization of a physical model, an appropriate definition is
essential. In literature, many definitions of fractional derivative are introduced,
namely, the Riemann-Liouville derivative, Caputo derivative, conformal derivative,
etc. (see [7–9, 12]). The Riemann-Liouville derivative involves fractional initial
conditions which do not have any physical significance, while the Caputo derivatives
involves integer order initial conditions. Both Riemann-Liouville and Caputo
derivatives involves singular kernels. Recently Caputo-Fabrizio [5] proposed a
fractional derivative in the form of exponential kernel, and Atangana-Baleanu
[4] introduced a fractional derivative with kernel in the form of generalized
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Mittag-Leffler function. These derivatives can describe the heterogeneities which
cannot be well portrayed by fractional models with singular kernel.

The classical Bloch equation is defined as [10]

dMx(t)

dt
= w0My(t)− Mx(t)

T2
,

dMy(t)

dt
= −w0Mx(t)− My(t)

T2
,

dMz(t)

dt
= M0 −Mz(t)

T1
, (1)

with initial values Mx(0) = Mz(0) = 0 and My(0) = 100. Mx(t), My(t) and Mz(t)

represent the system magnetization components, M0 equilibrium magnetization, T1
the spin-lattice relaxation time taken in regrowth of the longitudinal component
Mz(t), T2 the spin-spin relaxation time which denotes the signal decay in NMR and
w0 resonant frequency defined by Larmor relationship w0 = γB0 (B0 denotes static
magnetic field in z-component). Fractional operators describe the dynamics and
complexity of the systems more efficiently than the integer order models. Fractional
Bloch equation have gained attention by many researchers (see [10, 11, 13, 15]).
Magin et al. [10] presented the solution of the fractional Bloch equation analytically
by using Caputo fractional derivative. The fractional Bloch equation is solved
numerically by creating a Matlab function and Simulink model [11].

In the present work, the fractional Bloch equation is solved by using Caputo-
Fabrizio fractional derivative and Atangana-Baleanu fractional derivative with non-
singular kernels. The article is organized as follows. Various definitions of fractional
derivative are discussed in Sect. 2. The fractional Bloch equation via Caputo-
Fabrizio and Atangana-Baleanu fractional derivative are discussed in Sect. 3. In
the Sect. 3.2, results and discussions are presented. The conclusion of our work is
presented in the Sect. 4.

2 Basic Definitions

In this section, the definitions of Caputo, Caputo-Fabrizio and Atangana-Baleanu
fractional derivatives are discussed.

Definition 1 Caputo fractional derivative (CFD) of g(t) of order α (> 0) as defined
in [12]

C
aD

α
t g(t) =

1

Γ (n− α)

∫ t

a

g(n)(τ )

(t − τ )α−n+1
dτ, n− 1 < α ≤ n. (2)

.
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Definition 2 Assume that g ∈ H 1(a, b), b > a , the Caputo-Fabrizio fractional
derivative (CFFD) of g(t) is defined as [5]

CF
a Dα

t g(t) =
M(α)

(1− α)

∫ t

a

e
−α(t−τ )

1−α g′(τ )dτ , 0 ≤ α ≤ 1, (3)

where M(α), normalization constant, depends on α such that M(0) = M(1) = 1.

Definition 3 The Caputo-Fabrizio fractional integral of g(t) is defined as [9]

CFIαg(t) = 2(1− α)

(2− α)M(α)
g(t) + 2α

(2− α)M(α)

∫ t

0
g(τ)dτ . (4)

This definition indicates that Caputo-Fabrizio fractional integral of g(t) of order α
is the average of g(t) and its first order integral. Thus normalized function takes the
form M(α) = 2

2−α
, 0 ≤ α ≤ 1. Thus CFFD of g(t) is reformulated as [9]

CF
a Dα

t g(t) =
1

(1− α)

∫ t

a

e
−α(t−τ )

1−α g′(τ )dτ, 0 ≤ α ≤ 1. (5)

Definition 4 Assume that g ∈ H 1(a, b), b > a , the Atangana-Baleanu fractional
derivative in Caputo sense (ABFD) of g(t) is given as [4]

AB
a Dα

t g(t) =
B(α)

(1− α)

∫ t

a

Eα

(−α(t − τ )α

1− α

)
g′(τ )dτ , 0 ≤ α ≤ 1, (6)

where B(α) has the same properties as that of M(α).

3 Fractional Bloch Equation

3.1 Fractional Bloch Equation with Caputo-Fabrizio
Fractional Derivative

We consider the fractional generalization of the Bloch equation (1) by introducing
an auxiliary parameter σ into fractional operator to make it physically consistent
[2, 10]:

d

dt
→ 1

σ 1−α

dα

dtα
,m− 1 < α ≤ m,m = 1, 2, 3, . . . (7)

where σ has dimensions of seconds.
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Thus, the fractional generalization of the Bloch equation (1) is obtained as

0Dα
t Mx(t) = w̃0My(t)− Mx(t)

T̃2
,

0Dα
t My(t) = −w̃0Mx(t)− My(t)

T̃2
,

0Dα
t Mz(t) = M0 −Mz(t)

T̃1
, 0 < α ≤ 1, (8)

with initial values Mx(0) = Mz(0) = 0 and My(t) = 100. Here w̃0 = w0σ
1−α ,

1
T̃1
= σ 1−α

T1
, 1
T̃2
= σ 1−α

T2
having units of (sec)−α.

To obtain both Mx(t) and My(t), we assume that

M∗(t) = Mx(t)+ iMy(t), (9)

where M∗(t) is the transverse magnetisation. Using λ = 1
T̃2
+ iw̃0 and substituting

Eq. (9) in the fractional system (8), we get

0Dα
t M∗(t) = −λM∗(t),

0Dα
t Mz(t) = M0 −Mz(t)

T̃1
, (10)

with initial values

M∗(0) = Mx(0)+ iMy(0),

Mz(0) = 0. (11)

Using CFFD in (10), we get

1

(1− α)

∫ t

a

e
−α(t−τ )

1−α M ′∗(τ )dτ = −λM∗(t),

1

(1− α)

∫ t

a

e
−α(t−τ )

1−α M ′
z(τ )dτ =

M0 −Mz(t)

T̃1
. (12)

By taking Laplace transform on both sides of (12) and using convolution theorem,
we get

s ¯M∗(s)−M∗(0)
s + α(1 − s)

= −λ ¯M∗(s),

s ¯Mz(s)−Mz(0)

s + α(1 − s)
= −

¯Mz(s)

T̃1
+ M0

T̃1s
. (13)
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By substituting (11) in (13) and applying inverse Laplace transform, we get the
solution

Mx(t)+ iMy(t) = [Mx(0)+ iMy(0)]
1+ λ− αλ

e
−αλt

1+λ−αλ ,

Mz(t) = M0

[
1− T̃1

(T̃1 + 1− α)
e
− αt

T̃1+1−α

]
.

3.2 Fractional Bloch Equation with Atangana-Baleanu
Fractional Derivative

Consider the fractional system (10) with ABFD (Caputo sense):

1

(1− α)

∫ t

a

Eα

(−α(t − τ )α

1− α

)
M ′∗(τ )dτ = −λM∗(t),

1

(1− α)

∫ t

a

Eα

(−α(t − τ )α

1− α

)
M ′

z(τ )dτ =
M0 −Mz(t)

T̃1
. (14)

By applying Laplace transform on both sides of (14), we get

M̄∗(s) = sα−1M∗(0)
sα(1+ λ(1− α))+ αλ

,

M̄z(s) = M0

[
1

s
− sα−1T̃1

sα(T̃1 + 1− α)+ α

]
. (15)

The inverse Laplace transform of (15) gives us the solution

M∗(t) = M∗(0)
1+ λ− αλ

Eα

( −αλtα

1+ λ− αλ

)
,

Mz(t) = M0

[
1− T̃1

(T̃1 + 1− α)
Eα

(
− αtα

T̃1 + 1− α

)]
.
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4 Results and Discussions

In all the figures, we have assumed that w̃0 = 1, T̃1 = 1(s)α , T̃2 = 20(ms)α and
M0 = 100.

Figure 1 portrays the plot of Mx(t) for α = 0.9 and 0.6 with initial value of
Mx(0) = 0 by using fractional derivatives CFFD, ABFD and CFD. It is observed
from the figure, as the fractional order α is decreasing, free induction decay curves
take a much shorter relaxation time T̃2.

Figure 2 depicts the plot of My(t) for α = 0.9 and 0.6 with initial value My(0) =
100 by using fractional derivatives CFFD, ABFD and CFD. It is observed from
the figure that the solution corresponding to ABFD takes a much shorter spin-spin
relaxation time with decreasing fractional order (α) in comparison with CFFD and
CFD.

Figure 3 compares the behaviour of Mz(t) corresponding to three fractional
operators for α = 0.9 and 0.6. From the figure, it is observed that Mz(t)

corresponding to CFFD achieves its equilibrium stage more quickly than ABFD
and CFD with increasing time. We also observed that Mx(t) and Mz(t) increases,
while My(t) decays as the time increases.

Figure 4 demonstrates the dynamic relationship between the components Mx(t)

and My(t) for α = 1, 0.9, 0.8 and 0.7, respectively. A regular spiral is portrayed for
α = 1 and is noticed that it starts decaying at a faster rate with decreasing fractional
order. The decay in the components by using ABFD is faster than that via CFFD
and CFD. In Fig. 5, we have displayed the complete trajectory of magnetization in
three dimension for α = 0.9 and 1, respectively, with Mx(0) = 0, My(0) = 100
and Mz(0) = 0 converging to the equilibrium value M0.
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Fig. 1 Mx(t) via CFFD, ABFD and CFD for T̃2 = 20(ms)α , w̃0 = 1, Mx(0) = 0 and α = 0.9
and 0.6
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5 Conclusion

In this paper, the dynamics of fractional Bloch equation via CFFD and ABFD
with non-singular kernels was studied. Fractional Bloch equation via ABFD and
CFFD allows the description of the memory with non-singularity and behaves much
better in comparison with CFD with singular kernel. The analytical solutions of the
model using the CFFD and ABFD are derived for different fractional orders α. It
is observed that the solution of corresponding classical equation is recovered as
a particular case. We conclude that solution continuously varies according to the
fractional order of the equation.
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Solution of the Lorenz Model
with Help from the Corresponding
Ginzburg-Landau Model

P. G. Siddheshwar, S. Manjunath, and T. S. Sushma

Abstract Centre manifold theory, a useful tool in the study of dynamical systems,
plays a crucial role in analysing the stability of the system. In the paper the three-
dimensional manifold arising in the study of Rayleigh-Bénard-Brinkman convection
in enclosures is reduced to a unidimensional manifold using a transformation
dictated by the centre manifold theorem. Such a reduction is possible since the
Lorenz model is autonomous. The advantage in this procedure is that the intractable
Lorenz model gets reduced to a tractable Ginzburg-Landau equation and hence
facilitates an analytical study of heat transport.

Keywords Rayleigh-Bénard-Brinkman convection · Center manifold · Enclosure

1 Introduction

The evolution of dynamical systems is studied in recent years. New techniques with
better ideas for analysing these dynamical systems have emerged. The geometric
concept of manifold theory is in use for solving the dynamical systems from
a very long period. One such vigorous geometric tool is the centre manifold
theory. The treatment of the theory for reducing a higher dimensional system
to its corresponding smaller dimensions is in practice nowadays. Known by its
name reduction principle, the centre manifold performs reduction of the higher
dimensional dynamical systems to lower dimensions without disturbing the stability
and behaviour of the original large dimensional system. This is described in detail
in books [1, 3, 10, 15–17].
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The parameters encountered in the governing equations of the problem when
varied may bring a qualitative change in the structure of the solutions or may give
new solutions or even may change the stability of the solution. These changes are
referred to as bifurcations. Centre manifold theory serves as the best device to retain
the qualitative behaviour of the system around the critical points in bifurcation
problems [1, 5].

This important concept of centre manifold was probably introduced by Pliss [12]
and was developed by many others [1, 4, 6–10, 12]. The stability, existence and
smoothness of the stable, centre-stable, centre-unstable and unstable manifolds also
were given by Kelly [7, 8]. The problem of laminar mixed convection flow using
centre manifold theory has been derived in the paper by Guillet et al. [4]. A brief
description of the properties of centre manifold, viz. existence, uniqueness, smooth-
ness, differentiability and analyticity, is discussed in the paper by Sijbrand [14]. The
main applications of centre manifold in differential equations was given by Carr
[1]. Be it a partial differential equation or an ordinary differential equation, integral
equation, singular perturbations or functional differential equation, applications of
the centre manifold theory is now widespread.

The present paper presents the derivation of the Ginzburg-Landau equation
from the third-order Lorenz model for Rayleigh-Bénard convection in a porous
enclosure using centre manifold technique. Extensive literature on Rayleigh-Bénard
convection can be found [2, 11, 13].

2 Nomenclature

Latin symbols

A,B,C Amplitudes of convection

Ar Aspect ratio

GRa Linear operator

H Applied magnetic field

K Quadratic operator

M Ratio of specific heats

M
′

Hartmann number

p Fluid pressure

Pr Prandtl number

Ra Rayleigh number

X,Z Non-dimensional horizontal and vertical coordinates
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Greek symbols

χ Thermal diffusivity

μ Dynamic viscosity

μ1 Magnetic permeability

ν Kinematic viscosity

φ Porosity

Ψ Non-dimensional stream function

ρ Fluid density

Θ Dimensionless temperature

σ Electrical conductivity of the fluid

Subscripts

c Critical

0 Reference

3 Mathematical Formulation

We consider a laminar free convection flow of an electrically conducting
incompressible viscous fluid in an enclosure filled with porous medium of breadth
b and height h. The lateral walls are kept insulated and heated from below. The
isothermal boundaries are assumed to be stress-free. The velocity field is two-
dimensional (Fig. 1).

The dimensionless governing equations are

1

Pr

∂

∂τ
(∇2

AΨ )−Ar

Pr

∂(Ψ,∇2
AΨ )

∂(X,Z)
= a∧∇4

AΨ−aM ′2A2
r∇2

AΨ−a2RaA4
r

∂Θ

∂X
, (1)

M
∂Θ

∂τ
= −Ar

∂Ψ

∂X
+ Ar

∂(Ψ,Θ)

∂(X,Z)
+ aM∇2

AΘ, (2)

where the constants

Ar = h

b
, a = χ

χbl

, M
′ = μ1H0L

√
σ

μf

, P r = μ

ρ0χ
, Ra = ρ0βΔTgb3

μχ
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Fig. 1 Schematic
representation of system
under study

and

∇2 = 1

h2∇2
A.

4 Boundary Conditions

We consider the stress-free, isothermal, horizontal boundaries and stress-free,
adiabatic, vertical boundaries as follows:

Ψ = ∂2Ψ

∂Z2 = Θ = 0 at Z = ±1

2
and − 1

2
< X <

1

2
.

Ψ = ∂2Ψ

∂X2 =
∂Θ

∂X
= 0 at X = ±1

2
and − 1

2
< Z <

1

2
.

⎫
⎪⎪⎬

⎪⎪⎭
(3)

5 Linear Stability Analysis

We perform linear stability analysis to find when convection sets in, and so assume

Ψ (X,Z) = A1 sinπ

(
X + 1

2

)
sin π

(
Z + 1

2

)
,

Θ(X,Z) = B1 cosπ

(
X + 1

2

)
sin π

(
Z + 1

2

)
,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(4)
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Equation (4) substituted into the dimensionless equations (1) and (2) gives us the
critical Rayleigh number in the form

Rac = Mδ4(∧δ2 +M ′2A2
r )

π2A5
r

, (5)

where δ2 = π2(1+ A2
r ).

6 Lorenz Model

The following minimal representation of Fourier series is chosen to satisfy the
boundary conditions (3).

Ψ (X,Z, τ) = −
√

2Mδ2

π2Ar
A1(τ) sinπ

(
X + 1

2

)
sinπ

(
Z + 1

2

)
,

Θ(X,Z, τ) =
√

2

πr
B1(τ) cos π

(
X + 1

2

)
sinπ

(
Z + 1

2

)
− 1

πr
B2(τ) sin 2π

(
Z + 1

2

)
.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(6)

Substituting Eq. (6) into Eqs. (1) and (2), we obtain the following non-linear set of
amplitude equations:

dA1

dt1
= cP r(B1 − A1),

dB1

dt1
= A1 − B1 − A1B2,

dB2

dt1
= −bB2 + A1B1,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(7)

where

c = ∧δ2 +M ′2A2
r

δ2
, r = Ra

Rac
, b = 4π2

δ2
.

System (7) is the analytically intractable Lorenz model of the problem.

dS

dt1
= GRaS +K(S), (8)
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with

t1 = δ2τ, S =
⎡

⎣
A1

B1

B2

⎤

⎦ , (9)

and the operators GRa and K(S) are respectively given by

GRa =
⎡

⎣
−cP r cP r 0

r −1 0
0 0 −b

⎤

⎦ , K(S) =

⎡

⎢⎢⎣

0
π2αA1B2

−π2α

2
A1B1

⎤

⎥⎥⎦ . (10)

Introducing

ε = Ra − Rac, (11)

we write

GRa = GRa(Rac)+ G̃(ε), (12)

where the term GRa(Rac) is given by

GRa(Rac) =
⎡

⎣
−cP r cP r 0

r −1 0
0 0 −b

⎤

⎦ (13)

and

G̃(ε) =
⎡

⎣
0 0 0
ε 0 0
0 0 0

⎤

⎦ . (14)

Thus

dS

dt1
= GRa(Rac)S + ã(S, ε). (15)

The eigenvalues of GRa(Rac) are λ1 = 0, λ2 = −(1+ cP r)and λ3 = −b and the
corresponding eigenvectors as columns of a matrix are

E =
⎡

⎣
1 −cP r 0
1 1 0
0 0 1

⎤

⎦ . (16)
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We now do the linear change of coordinates by applying the transformation

Y = E−1S, (17)

where

Y =
⎡

⎣
U

V

W

⎤

⎦ . (18)

Thus we get a diagonal matrix L(Rac) from GRa(Rac) in the form

L(Rac) =
⎡

⎣
0 0 0
0 −(1+ cP r) 0
0 0 −b

⎤

⎦ . (19)

System (8) on using Eqs. (16), (17), (18) and (19) can be written as

dY

dt1
= L(Rac)Y + ñ(Y, ε). (20)

where ñ(Y, ε) = E−1ã(SY, ε).

7 Reduction of the System Using Centre Manifold

dU

dt1
= cP r

(1+ cP r)
(εU − cP rεV − UW + cP rVW) ,

d

dt1

[
V

W

]
=
[
−(1+ cP r) 0

0 −b

][
V

W

]
+
⎡

⎣
1

(1+ cP r)
(εU − cP rεV − UW + cP rVW)

U 2 + (1− cP r)UV − cP rV 2

⎤

⎦ .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(21)

System (21) is a three-dimensional dynamical system which we aim to reduce
to a single-dimensional system. The study is local, and hence the concentration lies
only on the behaviour around the critical point. Thus the non-linear part on the
right-hand side of system (21) as well as its first derivative will be equal to zero.
In general, if [V W ]T = [f1(U) f2(U)]T where f(U) and its first order derivative
become zero, then

[
V

W

]
=

[
f1(U)

f2(U)

]
, (22)
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will be the centre manifold for the system. Now

[
V

W

]′
=

[
f
′
1(U)

f
′
2(U)

]
U
′
. (23)

The above Eq. (23) is the condition that the centre manifold has to satisfy.
We approximate the functions V,W in terms of U using series expansion for
f
′
1(U), f

′
1(U). So approximating V and W as follows:

V = a1U
2 + a2Uε + a3Uε2 +O ‖ (U, ε) ‖3,

W = b1U
2 + b2Uε + b3Uε2 +O ‖ (U, ε) ‖3 .

}
(24)

Equating the coefficient of U2 and Uε and ensuring that the condition (23) is
satisfied fetches us the constants

a1 = 0, b1 = 1

b
, a2 = 1

(1+ Pr)2 , b2 = 0.

Substituting the constants a1, b1, a2, b2 into Eq. (24) and again back-substituting
them in first equation of system (21) gives the flow on the centre manifold

dU

dt1
= Pr

(1+ Pr)

[
Uε − 1

b
U3

]
. (25)

The above Eq. (25) is the cubic, real Ginzburg-Landau equation that is analytically
tractable.

8 Results

Rayleigh-Bénard convection of Newtonian liquid in an enclosure filled with porous
medium is studied using centre manifold theorem. The analytically intractable three-
dimensional Lorenz model is reduced to analytically tractable one-dimensional
Ginzburg-Landau equation. The analytical solution of the cubic Ginzburg-Landau
equation for U is pretty straightforward. The quantities V and W can then be
determined from Eq. (24). By considering S = EY, we can get the analytical solution
of the Lorenz model using which the classical phase-space and phase-plane plots
can be obtained.
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Estimation of Upper Bounds for Initial
Coefficients and Fekete-Szegö Inequality
for a Subclass of Analytic Bi-univalent
Functions

G. Saravanan and K. Muthunagai

Abstract In this article we have introduced a class R̃Σ(η, q, ς), η ∈ C−{0} of bi-
univalent functions defined by symmetric q-derivative operator. We have estimated
the upper bounds for the initial coefficients and Fekete- Szegö inequality by making
use of Chebyshev polynomials.

Keywords Bi-univalent · Chebyshev polynomials · Symmetric q-derivative
operator
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1 Introduction

Let A be the class of all normalized functions of the form

f (z) = z+
∞∑

n=2

anz
n (1)

which are analytic in the unit disk U. A holomorphic, injective function on U is said
to be univalent on U. Let S, the subclass of A, be the class of all univalent functions
on U.
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A function f (z) ∈ A is said to be bi-univalent in U, if f (z) ∈ S and its inverse
has an analytic continuation to |w| < 1. The class of all bi-univalent functions is
denoted by Σ . There is a rich literature on the estimates of the initial coefficients
of bi-univalent functions (see [5, 7, 8, 10, 12, 19–21]). However not much is known
about the estimates of higher coefficients.

For f (z)and g(z) analytic in U , we say that f (z) is subordinate to g(z), written
f (z) ≺ g(z), if there exists a Schwarz function w(z) with w(0) = 0 and |w(z)| < 1
in U such that f (z) = g(w(z)). That is if the range of one holomorphic function
is contained in that of the second and these functions agree at a single point, then a
sharp comparison of these two functions can be made.

The problem of finding sharp bounds for the linear functional |a3 − ζa2
2| of

any compact family of functions is popularly known as Fekete-Szegö problem.
This coefficient functional on the normalized analytic functions in the unit disk
represents various geometric quantities. For example, for ζ = 1, the functional
represents Schwarzian derivative, which plays a significant role in the theory of
univalent functions, conformal mapping, and hypergeometric functions.

Usually to approximation of map projection, method of least squares is used.
Determination of polynomial coefficients requires solutions of complicated system
of equations. It is possible to avoid such problem using orthogonal Chebyshev
polynomials. Though there are four kinds of Chebyshev polynomials, only the first
and second kinds Tn(x) and Un(x) are dealt by majority of the researchers. See for
example, Doha [6] and Mason [14]. In the case of a real variable ς on (−1,1), they
are defined by

Tn(ς) = cos nθ,

Un(ς) = sin(n+ 1)θ

sinθ
,

where the subscript n denotes the polynomial degree and x = cos θ .
Geometric function theory provides a platform to have a multiple dimensional

view on the different subclasses of analytic functions with the help of q-calculus
which is an effective tool of investigation. For example, the theory of q-calculus
is used to describe the extension of the theory of univalent functions. For basic
definitions, applications, terminologies, geometric properties, and approximation,
one can refer [1, 3, 4, 9, 11, 13, 15, 17, 18].

Let us suppose 0 < q < 1 throughout this paper.

Definition 1 The symmetric q-derivative D̃qf of a function f given by (1) is
defined as follows:

(D̃qf )(z) = f (qz)− f (q−1z)

(q − q−1)z
, if z �= 0,

and (D̃qf )(0) = f ′(0) provided f ′(0) exists.
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we have

(D̃qf )(z) = 1+
∞∑

n=2

[̃n]qanzn−1,

where the symbol [̃n]q denotes the number

[̃n]q = qn − q−n

q − q−1 .

Let P be the class of functions with positive real part consisting of all the analytic
functions p : U → C satisfying p(0) = 1 and Re(p(z)) > 0. The class P is
called the class of Caratheodory functions. The following result will be required for
proving our results.

Lemma 1 ([16]) If the function p ∈ P is defined by

p(z) = 1+ p1z + p2z
2 + p3z

3 + · · · .

then

|pn| ≤ 2 (n ∈ N = {1, 2, 3, · · · })

2 Main Results

Definition 2 Let f ∈ Σ . Then f ∈ R̃Σ(η, q, ς), η ∈ C− {0} if

1+ 1

η

(
(D̃qf )(z)− 1

) ≺ R(z, ς) := 1

1− 2ςz+ z2
,

(
1

2
< ς < 1, z ∈ U

)

and

1+ 1

η

(
(D̃qg)(w) − 1

) ≺ R(w, ς) := 1

1− 2ςw +w2
,

(
1

2
< ς < 1, w ∈ U

)

where g = f−1.
We note that

lim
q→1−

R̃Σ(η, q, ς)

=

⎧
⎪⎪⎨

⎪⎪⎩
f ∈ Σ :

limq→1−
(

1+ 1
η

(
(D̃qf )(z)− 1

))
> 0, z ∈ U

limq→1−
(

1+ 1
η

(
(D̃qg)(w) − 1

))
> 0, w ∈ U

⎫
⎪⎪⎬

⎪⎪⎭
= RΣ(η, ς).
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The class RΣ(η, ς) is defined as follows:

Definition 3 Let f ∈ Σ . Then f ∈ RΣ(η, ς), η ∈ C− {0} if

1+ 1

η

(
f ′(z)− 1

) ≺ R(z, ς) := 1

1− 2ςz+ z2 ,

(
1

2
< ς < 1, z ∈ U

)

and

1+ 1

η

(
g′(w)− 1

) ≺ R(w, ς) := 1

1− 2ςw +w2 ,

(
1

2
< ς < 1, w ∈ U

)

where g = f−1.
If ς = cosα, α ∈ (−π

3 , π
3

)
. Then

R(z, ς) = 1

1− 2ςz+ z2 = 1+
∞∑

n=1

sin(n+ 1)α

sinα
zn (z ∈ U)

Thus

R(z, ς) = 1+ 2cosαz+ (3cos2α − sin2α)z2 + · · · (z ∈ U).

The second kind of Chebyshev polynomials are given by

R(z, ς) = 1+ U1(ς)z+ U2(ς)z
2 + · · · (z ∈ U, ς ∈ (−1, 1)),

where Un−1 = sin(n arccosς)√
1−ς2

(n ∈ N) .

We also have

Un(ς) = 2ςUn−1(ς)− Un−2(ς),

and

U1(ς) = 2ς, U2(ς) = 4ς2 − 1, U3(ς) = 8ς3 − 4ς, · · · (2)

The generating function of the first kind of Chebyshev polynomials Tn(ς), ς ∈
(−1, 1), is of the form

∞∑

n=0

Tn(ς)z
n = 1− ςz

1− 2ςz+ z2 (z ∈ U)
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2.1 Coefficient Bounds for R̃Σ(η, q, ς)

Theorem 1 Let f given by (1) be in the class R̃Σ(η, q, ς). Then

|a2| ≤ 2ς
√

2ς |η|√
4
(
|η|[̃3]q − [̃2]2q

)
ς2 + 2[̃2]2qς + [̃2]2q

and

|a3| ≤ |η|
⎧
⎨

⎩
2ς

[̃3]q
+ 4|η|ς2

[̃2]2q

⎫
⎬

⎭

Proof Let f ∈ R̃Σ(η, q, ς) and g be the analytic extension of f−1 to U. Then there
exist functions u and v, analytic in U with u(0) = v(0) = 0, |u(z)| < 1, |v(w)| < 1,
z,w ∈ U such that

1+ 1

η

(
(D̃qf )(z)− 1

) = R(u(z), ς), (3)

1+ 1

η

(
(D̃qg)(w)− 1

) = R(v(w), ς). (4)

Next, define the functions p, q ∈ P by

p(z) = 1+ u(z)

1− u(z)
= 1+ p1z + p2z

2 + · · ·

q(w) = 1+ v(w)

1− v(w)
= 1+ q1w + q2w

2 + · · ·

From the equations mentioned above, one can derive

u(z) = p(z)− 1

p(z)+ 1
= 1

2
p1z+ 1

2

(
p2 − 1

2
p2

1

)
z2 + · · · (5)

v(w) = q(w)− 1

q(w)+ 1
= 1

2
q1w + 1

2

(
q2 − 1

2
q2

1

)
w2 + · · · (6)

Combining (3), (4), (5) and (6)

1+ 1

η

(
(D̃qf )(z)−1

)=1+ 1

2
U1(ς)p1z

+
(

1

4
U2(ς)p

2
1+

1

2
U1(ς)

(
p2− 1

2
p2

1

))
z2 + · · · (7)



62 G. Saravanan and K. Muthunagai

1+ 1

η

(
(D̃qg)(w)−1

)=1+ 1

2
U1(ς)q1w

+
(

1

4
U2(ς)q

2
1+

1

2
U1(ς)

(
q2− 1

2
q2

1

))
w2 + · · · (8)

It follows from (7) and (8) that

[̃2]qa2

η
= U1(ς)p1

2
(9)

[̃3]qa3

η
= U1(ς)

2

(
p2 − p2

1

2

)
+ U2(ς)

4
p2

1 (10)

−[̃2]qa2

η
= U1(ς)q1

2
(11)

and

[̃3]q
η

(2a2
2 − a3) = U1(ς)

2

(
q2 − q2

1

2

)
+ U2(ς)

4
q2

1 , (12)

From (9) and (11) we obtain

p1 = −q1. (13)

2[̃2]2qa2
2

η2
= U2

1 (ς)

4
(p2

1 + q2
1 ). (14)

If we add (10) and (12)

2[̃2]qa2
2

η
= U1(ς)

2
(p2 + q2)+ U2(ς)− U1(ς)

4
(p2

1 + q2
1 ). (15)

Using (14) in (15)

2

[
[̃3]q
η
− 1

η2

[
U2(ς)− U1(ς)

U2
1 (ς)

]
[̃2]2q

]
a2

2 =
U1(ς)

2
(p2 + q2). (16)

From Lemma 1, (2) and (16)

|a2| ≤ 2ς
√

2ς |η|
√

4
(
|η|[̃3]q − [̃2]2q

)
ς2 + 2[̃2]2qς + [̃2]2q
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Next, if we subtract (12) from (10) we get

2[̃3]q
η

(a3 − a2
2) =

U1(ς)

2
(p2 − q2)+ U2(ς)− U1(ς)

4
(p2

1 − q2
1 ). (17)

Equations (13), (14) and (17) yield

a3 = ηU1(ς)

4[̃3]q
(p2 − q2)+ η2U2

1 (ς)(p
2
1 + q2

1 )

8[̃2]2q
.

By Lemma 1

|a3| ≤ |η|
⎧
⎨

⎩
2ς

[̃3]q
+ 4|η|ς2

[̃2]2q

⎫
⎬

⎭

Remark 1 With the condition η = 1, theorem 1 reduces to the results of Altinkaya
and Yalcin [2].

Theorem 2 Let f given by (1) be in the class RΣ(η, ς). Then

|a2| ≤ ς
√

2ς |η|√
1+ 2ς + (3|η| − 4) ς2

.

and

|a3| ≤ |η|
{
|η|ς2 + 2ς

3

}

2.2 Fekete-Szegö Inequality for R̃Σ(η, q, ς)

Theorem 3 Let f given by (1) be in the class R̃Σ(η, q, ς) and ζ ∈ R. Then

|a3 − ζa2
2 |

≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2ςη

[̃3]q
f or |ζ − 1| ≤ 4[η[̃3]q − [̃2]2q ]ς2 + 2[̃2]2qς + [̃2]2q

4η[̃3]qς2

8η2|1− ζ |ς3

4[η[̃3]q − [̃2]2q ]ς2 + 2[̃2]2qς + [̃2]2q
f or |ζ − 1| ≥ 4[η[̃3]q − [̃2]2q ]ς2 + 2[̃2]2qς + [̃2]2q

4η[̃3]qς2
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Proof From (16) and (17)

a3 − ζa2
2 = (1− ζ )

⎡

⎣ η2U3
1 (ς)(p2+ q2)

4
[
η[̃3]qU2

1 (ς)−(U2(ς)−U1(ς))[̃2]2q
]

⎤

⎦+ ηU1(ς)

4[̃3]q
(p2− q2)

= U1(ς)

[(
s(ζ )+ η

4[̃3]q

)
p2 +

(
s(ζ )− η

4[̃3]q

)
q2

]

where

s(ζ ) = η2U1(ς)(1− ζ )

4
[
η[̃3]qU2

1 (ς)− (U2(ς)− U1(ς))[̃2]2q
]

So, we conclude that

|a3 − ζa2
2| ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2ςη

[̃3]q
, 0 ≤ |s(ζ )| ≤ η

4[̃3]q

8ς |s(ζ )|, |s(ζ )| ≥ η

4[̃3]q
Remark 2 For η = 1 results are same as the results of Altinkaya and Yalcin [2].

Theorem 4 Let f given by (1) be in the class RΣ(η, ς) and ζ ∈ R. Then

|a3 − ζa2
2| ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2ςη

3
, 0 ≤ |1− ζ | ≤ (3η − 4)ς2 + 2ς + 1

3ης2

2|1− ζ |ς3

(3η− 4)ς2 + 2ς + 1
, |1− ζ | ≥ (3η − 4)ς2 + 2ς + 1

3ης2

References

1. Aldweby, H., Darus, M.: A subclass of harmonic univalent functions associated with q-
analogue of Dziok- Srivastava operator. ISRN Math. Anal. (2013) doi:382312, 6 pages.
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An Adaptive Mesh Selection Strategy
for Solving Singularly Perturbed
Parabolic Partial Differential
Equations with a Small Delay

Kamalesh Kumar, Trun Gupta, P. Pramod Chakravarthy,
and R. Nageshwar Rao

Abstract In this paper, an adaptive mesh has been generated using the concept
of entropy function for solving convection-diffusion singularly perturbed parabolic
partial differential equations with a small delay. Similar problems are associated
with a furnace used to process a metal sheet in control theory. The beauty of the
method is, unlike the popular adaptive meshes (Bakhvalov and Shishkin), prior
information of the width and position of the layers are not required. The method
is independent of perturbation parameter ε and gives us an oscillation-free solution,
without any user-introduced parameters. The applicability of the proposed method
is illustrated by means of two examples.

1 Introduction

In the last few decades, there has been a growing interest in the study of delay
differential equations due to their occurrence in a wide variety of application
fields such as biosciences, control theory, economics, material science, medicine,
robotics, etc. [1]. Singularly perturbed delay partial differential equations provide
more realistic models in many areas of science and engineering that display time
lag or aftereffect.

Numerical solution of singularly perturbed partial differential equations has been
an active field of research from the last three decades, and an extensive literature
has been developed [2, 3], but theory and numerical solution of singularly perturbed
partial differential equations with delay are still at the initial stage. Lange and Miura
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[4] studied the asymptotic analysis of singularly perturbed boundary value problems
for differential-difference equations. The study of the problem considered in this
paper was started by Ansari et al. [5], where they discussed finite difference scheme
for singularly perturbed partial differential equations on a layer-adapted mesh.
Natesan et al. [6, 7] had given finite difference schemes on Shishkin meshes for large
delay in time. Sharma and Bansal [8, 9] developed parameter-uniform numerical
schemes with general shift arguments. Chakravarthy and Rao [10] had given fitted
Numerov method for singularly perturbed delay partial differential equations on
uniform mesh.

It is noticeable that the standard central difference scheme on a uniform mesh,
when applied on a singularly perturbed partial differential equation, would lead to
oscillatory solution, which means that more points are required in the boundary
layer region. As such the layer-adaptive meshes developed by Bakhvalov [11],
Gartland [12], and others and special piecewise-uniform meshes developed by
Shishkin [13] are serving the purpose. Though the Shishkin meshes are widely used
due to their simplicity, the major drawback is the requirement of prior information
of the location of the layer regions. To overcome this drawback, we proposed
an adaptive mesh using the concept of entropy function for solving singularly
perturbed delay parabolic partial differential equations. The method is independent
of perturbation parameter ε and gives us an oscillation-free solution, without any
user-introduced parameters.

The paper is organized as follows: In Sect. 2, we state the problem. In Sect. 3,
the numerical scheme is presented. Section 4 deals with adaptive mesh algorithm,
and we use central difference scheme for solving singularly perturbed delay
parabolic partial differential equation. In Sect. 5, two examples have been solved
to demonstrate the applicability and efficiency of the proposed method. Section 6
ends with brief conclusions.

2 Statement of the Problem

Let Ω = (0, 1), D = Ω × (0, T ], and Γ = Γl ∪ Γb ∪ Γr , where Γl = {(0, t) : 0 ≤
t ≤ T } and Γr = {(1, t) : 0 ≤ t ≤ T } are the left and the right sides of the domain
D and Γb = [0, 1] × [−δ, 0].

In this paper, we consider a class of singularly perturbed delay parabolic partial
differential equation of the form

Lεu(x, t) ≡ ∂u

∂t
− ε

∂2u

∂x2
+ a(x, t)u+ b(x, t)

∂u

∂x
+ c(x, t)u(x, t − δ)

= f (x, t), (x, t) ∈ D,

(1)

with the initial data
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u(x, t) = φb(x, t), (x, t) ∈ Γb, (2)

and the boundary conditions

u(0, t) = φl(t), on Γl, and u(1, t) = φr(t), on Γr, (3)

where 0 < ε � 1 is the singular perturbation parameter, δ > 0 represents the delay
parameter, and a(x, t), b(x, t), c(x, t), f (x, t) on D and φb(x, t), φl(t), φr (t) on Γ

are assumed to be smooth and bounded function that satisfy the conditions a(x, t)+
c(x, t) ≥ 0, b(x, t) ≤ β < 0 on D. Under the above conditions, IBVP (1) exhibits
boundary layer along x = 0. The existence and uniqueness of a solution of (1)
can be established under the assumption that the data are Holder continuous and
also satisfy appropriate compatibility conditions at the corner points (0, 0), (1, 0),
(0,−δ), and (1,−δ) and then the required compatibility conditions are

φb(0, 0) = φl(0), φb(1, 0) = φr(0), (4)

dφl(0)

dt
− ε

∂2φb(0, 0)

∂x2 + a(0, 0)φb(0, 0)+ b(0, 0)
∂φb(0, 0)

∂x
+

c(0, 0)φb(0,−δ) = f (0, 0) and

dφr(0)

dt
− ε

∂2φb(1, 0)

∂x2
+ a(1, 0)φb(1, 0)+ b(1, 0)

∂φb(1, 0)

∂x
+

c(1, 0)φb(1,−δ) = f (1, 0). (5)

Under the above assumptions and conditions, problem (1) with the conditions (2)–(3)
has a unique solution [14].

3 Numerical Scheme

When the delay parameter δ is smaller than perturbation parameter ε, the use of
Taylor’s series for the delay term is valid [15]. Using Taylor’s series expansion to
approximate the delayed argument, we get

u(x, t − δ) ≈ u(x, t)− δut (x, t)+O(δ2). (6)

Substituting (6) in Eq. (1), we get

(1−δc(x, t))
∂u

∂t
−ε

∂2u

∂x2 +(a(x, t)+c(x, t))u(x, t)+b(x, t)
∂u

∂x
= f (x, t). (7)
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Let the time interval [0, T ] be partitioned into N equal parts with constant step size
Δt . We choose the step size Δt in such a way that the delay parameter δ = sΔt ,
where s is some positive integer.

Let 0 = t0, t1, . . . , tN = T be the mesh points such that tj = j T
N
= jΔt, j =

0, 1, . . . , N . Applying backward Euler formula for time derivative in Eq. (7), we
obtain a system of ordinary differential equations at each time step as

(1− δc(x))
Uj(x)− Uj−1(x)

Δt
− ε

∂2Uj(x)

∂x2 + (a(x)+ c(x))Uj(x)

+b(x)
∂Uj(x)

∂x
= f (x),

where Uj = U(x, tj ) " u(x, tj ), a(x) = a(x, tj ), b(x) = b(x, tj ), c(x) = c(x, tj ),
and f (x) = f (x, tj ), j = 1, 2, . . . , N. The above equation can be rewritten as

− ε
d2Uj

dx2 + b(x, tj )
dUj

dx
+ P(x, tj )U

j = Q(x, tj ), (8)

where P(x, tj ) =
(
a(x, tj ) + c(x, tj ) + 1−δc(x,tj )

Δt

)
and Q(x, tj ) =

(
f (x, tj ) +

1−δc(x,tj )

Δt
Uj−1

)
.

The boundary conditions (2–3) can be written as

U(x, 0) = φb(x, 0), x ∈ [0, 1],
U(0, tj ) = φl(tj ), U(1, tj ) = φr(tj ), j = 1, 2, . . . , N.

(9)

We solve (8) along with the conditions (9) using central difference scheme with a
minimum number of mesh points on uniform mesh in space direction. The presence
of the singular perturbation parameter ε leads to occurrences of wild oscillation in
the numerical solution. In order to avoid such oscillations, a large number of mesh
points are required in layer region, when ε is very small. To overcome this, we
generated a variable mesh using entropy function. The strategy for generating an
adaptive mesh is given in the following section.

4 Adaptive Mesh Algorithm

We now rewrite Eq. (8) as

−ε
d2U

dx2 + b(x)
dU

dx
+ P(x)U = Q(x) where U = Uj = U(x, tj ) " u(x, tj ).

Now, we define the entropy production equation by multiplying with an appro-
priate test function. From the theory of scalar conservation law, we know that
U2 is always an appropriate entropy variable, and therefore 2U(x) is a suitable
multiplying test function [16]. On multiplying with the test function, we obtain
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(
−ε

d2U

dx2 + b(x)
dU

dx
+ P(x)U

)
× 2U(x) = Q(x)× 2U(x). (10)

After simplifying, Eq. (10) can be written as

−εZ′′ + bZ′ + 2PZ + 2ε(U ′)2 = 2UQ, where Z = U2.

The above equation can be rewritten as

− εZ′′ + bZ′ − 2UQ = −2PZ − 2ε(U ′)2. (11)

The right-hand side of Eq. (11) is considered as our entropy function and is always
negative for all values x ∈ [0, 1]. As we know that, if we solve Eq. (8) by using
central difference method, we get oscillations inside and near the boundary layer
region. If we calculate the discrete analogue of the left-hand side part in (11)
using the same central difference operator by taking Zi = U2

i , where Ui is the
central difference computed solution of Eq. (8), we observe that the left-hand side
is negative whenever the solution is smooth enough and positive where we have
boundary layers. If we write the right-hand side part of (11) at the mesh point
(xi, tj ), as

− 2Pi,j (Ui,j .Ui−1,j )− 2ε

(
Ui,j − Ui−1,j

xi − xi−1

)(
Ui+1,j − Ui,j

xi+1 − xi

)
, (12)

we get the positive value whenever the oscillations occur.
To generate the adaptive mesh, first we calculate entropy function with a

minimum number of initial uniform mesh points in space direction. Since the value
of entropy function is always negative, but due to oscillation behavior of the solution
at some mesh points, it will be positive. We find out the location of the mesh point,
where the entropy is maximum and positive. We add mesh points, one to the left and
other to the right side of the mesh point where entropy is maximum and positive.
Now, we compute the solution with newly generated mesh points (nonuniform
mesh) using central difference method and check whether the entropy is positive or
negative throughout the interval. If the entropy is positive, we repeat the process of
adding mesh points. We repeat this process till we get entropy negative throughout
the interval.

We discretize the Eqs. (8)–(9) using central difference scheme on nonuniform
mesh as follows:

LNUi,j = −εδ2Ui,j + bi,jD
0Ui,j + Pi,jUi,j = Qi,j , (13)

with the boundary conditions

Ui,0 = φb,i,0, U0,j = φl,j , U1,j = φr,j , (14)
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where D+Ui,j = Ui+1,j − Ui,j

xi+1 − xi
, D−Ui,j = Ui,j − Ui−1,j

xi − xi−1
,

D0Ui,j = Ui+1,j − Ui−1,j

xi+1 − xi−1
, δ2u(xi) = 2(D+Ui,j −D−Ui,j )

xi+1 − xi−1
.

We solved the system of Eq. (13) with the boundary conditions (14) by Gauss
elimination method with partial pivoting.

5 Numerical Results

To demonstrate the applicability of the method presented above, we consider two
test problems. Since the exact solution is not known, we use the following double
mesh principle to compute the maximum point-wise errors:

E
M,N
ε,δ = max

0≤i≤N
| UM,N(xi, tj )− U2M,2N(x2i, t2j ) |,

where UM,N(xi, tj ) is the solution obtained on a mesh containing M + 1 points in
spatial direction and N + 1 points in temporal direction.

The numerical rate of convergence is calculated using [17] the formula

R
M,N
ε,δ = log | EM,N

ε,δ − E
2M,2N
ε,δ |

log 2
.

Example 1
∂u

∂t
− ε

∂2u

∂x2 −
∂u

∂x
= −2e−1u(x, t − δ), (x, t) ∈ (0, 1)× (0, 2], with

the initial data u(x, t) = e−(t+x/
√
ε), (x, t) ∈ [0, 1] × [−δ, 0], and the boundary

conditions u(0, t) = e−t and u(1, t) = e−(t+1/
√
ε), t ∈ (0, 2].

Example 2
∂u

∂t
− ε

∂2u

∂x2 −
∂u

∂x
+ (1+ x2)

2
u = t3 − u(x, t − δ), (x, t) ∈ (0, 1)×

(0, 2], with the initial data u(x, t) = 0, (x, t) ∈ [0, 1] × [−δ, 0] and the boundary
conditions u(0, t) = 0 and u(1, t) = 0, t ∈ (0, 2].

The numerical solution for these examples are plotted in Figs. 1, 2, 3, 4, 5, and 6.
The maximum point-wise errors and rate of convergence for these examples for
different values of perturbation parameter ε are presented in Tables 1 and 2.
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Fig. 1 Numerical solution of
Example 1 with the central
finite difference scheme on
uniform mesh for ε = 2−10,
δ = 0.02ε, M=44, and N=40

Fig. 2 Surface plot of the
solution of Example 1, using
adaptive mesh for ε = 2−10,
δ = 0.02ε, M = 10(initially),
M∗ = 44, and N=40

Fig. 3 Numerical solution of
Example 1 using adaptive
mesh for different time levels
for ε = 2−10, δ = 0.02ε,
M = 10(initially), M∗ = 44,
and N=40
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Fig. 4 Numerical solution of
Example 2 with the central
finite difference scheme on
uniform mesh for ε = 2−20,
δ = 0.05ε, M=42, and N=40

Fig. 5 Surface plot of the
solution of Example 2, using
adaptive mesh for ε = 2−20,
δ = 0.05ε, M = 10(initially),
M∗ = 42, and N=40

Fig. 6 Numerical solution of
Example 2 using adaptive
mesh for different time levels
for ε = 2−20, δ = 0.05ε,
M = 10(initially), M∗ = 42,
and N=40
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Table 1 Maximum absolute error for Example 1 for different values of ε with δ = 0.02ε, M=10,
and N=40

ε Generated mesh (M∗) Max. error Rate of convergence (RM∗,N )

2−7 80 0.0637 2.1557

2−8 70 0.0652 2.1838

2−9 42 0.0656 2.1628

2−10 44 0.0669 2.1705

2−11 46 0.0680 2.1815

2−12 48 0.0685 2.1870

2−13 80 0.0688 2.1898

2−14 82 0.0689 2.1912

2−15 84 0.0690 2.1919

2−16 86 0.0690 2.1923

Table 2 Maximum absolute error for Example 2 for different values of ε with δ = 0.05ε, M=10,
and N=40

ε Generated mesh (M∗) Max. error Rate of convergence (RM∗,N )

2−7 16 0.1620 2.1520

2−8 18 0.1655 2.1665

2−9 20 0.1673 2.1739

2−10 22 0.1682 2.1776

2−11 24 0.1687 2.1795

2−12 26 0.1689 2.1804

2−13 28 0.1691 2.1809

2−14 30 0.1691 2.1812

2−15 32 0.1691 2.1813

2−16 34 0.1692 2.1813

6 Conclusions

In this paper, an adaptive mesh has been generated using the concept of entropy
function for solving convection-diffusion singularly perturbed parabolic partial dif-
ferential equations with small delay. The method is based on central finite difference
scheme on nonuniform mesh. It has been found that our algorithm gives oscillation-
liberated solution with a minimum number of mesh points. The efficiency of the
method is tested with two numerical examples. From the results, it can be observed
that the method converges uniformly with respect to the perturbation parameter ε

and convergence quadratically. From the numerical results, it is concluded that our
adaptive mesh offers a significant advantage over Bakhvalov and Shishkin meshes.
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Steady Finite-Amplitude
Rayleigh-Bénard-Taylor Convection
of Newtonian Nanoliquid
in a High-Porosity Medium

P. G. Siddheshwar and T. N. Sakshath

Abstract Two-dimensional, steady, finite-amplitude Rayleigh-Bénard-Taylor
convection of a Newtonian nanoliquid-saturated porous medium is studied using
rigid-rigid isothermal boundary condition. The nanoliquid is assumed to conform to
a single-phase description and occupies a loosely packed porous medium. Critical
Rayleigh number and Nusselt number as functions of various parameters are
analyzed, and this is depicted graphically. A non-zero Taylor number demands
a higher temperature difference between the horizontal boundaries compared to that
of a zero Taylor number case in order to initiate instability in the system and thus
inhibits advection of heat. The isothermal boundaries of the rigid-rigid type do not
allow as much heat to pass through as that by the free-free type, and hence we see a
reduced heat transfer situation in the former case.

Keywords Nanoliquid · Rayleigh-Bénard convection · Rotation · Porous
medium · Linear · Non-linear · Stability · Single-phase

Nomenclature

Greek and Latin symbols
α Thermal diffusivity of the

nanoliquid-saturated medium
A,B,C,D,E Amplitudes of convection

β Thermal expansion coefficient
of the nanoliquid- saturated
medium

Cp Specific heat at constant
pressure of nanoliquid-
saturated medium

χ Nanoparticle volume fraction g=(0,0,-g) Acceleration due to gravity

!T Temperature difference K Permeability of the medium
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" Brinkman number k Thermal conductivity of
the nanoliquid-
saturated medium

μ Dynamic viscosity of
the nanoliquid

M Ratio of specific heats

μ
′

Dynamic viscosity of
the nanoliquid-
saturated medium

Nu Nusselt number of the
nanoliquid-saturated
medium

ν Wave number p Pressure

# Angular velocity −→q = ûi + vĵ +wk̂ velocity vector

φ Porosity Ra Rayleigh number of the
nanoliquid-saturated
medium

ψ Dimensional stream
function

Ta Taylor number

ρ Density of the
nanoliquid-saturated
medium

x,X Dimensional and
dimensionless
horizontal coordinates

σ 2 Porous parameter z,Z Dimensional and
dimensionless vertical
coordinates

$ Non-dimensional
temperature

h Distance between the
plates

Subscripts and Superscripts
0 Reference value np Nanoparticle

1 Liquid property in
porous medium

s Solid

b Basic state ′ Perturbed quantity

c Critical FF Free-free boundaries

l Base liquid RR Rigid-rigid boundaries

nl Nanoliquid

1 Introduction

The practical importance of Rayleigh-Bénard convection in a clear fluid and in a
porous medium is now well known [5, 10]. The effect of rotation is known to have
a significant impact on the flow in a porous medium. The effect of rotation on
the onset of convection and heat transfer using a local thermal equilibrium (LTE)
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model is investigated in many works including those of Riahi [11] and Vadasz
[15]. Subsequently a number of researchers have also studied various aspects of the
problem both experimentally and theoretically [2, 8] in a clear fluid. The thermal
instabilities of a fluid contained in a rotating system were studied by Busse [4].
Desaive et al. [7] studied the onset of stationary convection in a rotating porous layer.

Several works considering stability analysis in nanoliquid-saturated rotating
porous layer have been reported [1, 3, 13, 14]. The thermal instability in a
nanoliquid-saturated rotating porous layer was studied by Bhadauria and Agarwal
[3] by considering the effect of thermophoresis and Brownian motion. Similar study
considering an anisotropic porous layer was carried out by Agarwal et al. [1]. Linear
and nonlinear realm of Rayleigh-Bénard-Taylor convection in a Newtonian nanoliq-
uid and nanoliquid-saturated high-porosity medium was conducted by Siddheshwar
and Sakshath [13, 14].

The following unconsidered aspects are investigated in the problem:

1. The onset of Rayleigh-Bénard-Taylor convection and quantification of heat trans-
port in nanoliquid-saturated medium using rigid-rigid isothermal boundaries.

2. The results on Rayleigh-Bénard-Taylor convection of Newtonian base liquids
3. Regulation of the residence time of heat in the system using nanoparticles and

porous matrix

2 Mathematical Formulation

The schematics of the physical system and the coordinate system are illustrated in
Fig. 1. The system is rotated with constant angular velocity

−→
# .

The dimensionless forms of governing equations for the problem are:

a1∇4% − a2
1Ra

∂$

∂X
− a1σ

2(∇2%)+ a1
√
T a

∂V

∂Z
= 0, (1)

− ∂%

∂X
+ a1M∇2$+ ∂(%,$)

∂(X,Z)
= 0, (2)

z

Nanoliquid-

saturated

porous medium

Fig. 1 Schematic representation of Rayleigh-Bénard-Taylor convection of Newtonian nanoliquid
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"∇2V − σ 2V −√T a
∂%

∂Z
+ 1

Prφ

1

a1

∂(%, V )

∂(X,Z)
= 0, (3)

where V is the y-component of velocity which varies along x and z directions:

a1 = α

α1
(thermal diffusivity ratio)," = μ

′

μ
(ratio of viscosities),

σ 2 = h2

K
(porous parameter), Ra = (ρβ)h3g!T

μ α
(effective Rayleigh number),

T a =
(

2ρ#h2

φμ

)2

(modified Taylor number), P r = μ

ρα
(Prandtl number).

In the next section, we make a linear stability analysis and study the onset of
convection.

2.1 Linear Stability Analysis for Marginal Stationary
Convection for Isothermal Rigid-Rigid Boundaries

The isothermal rigid-rigid boundaries satisfy:

% = ∂%

∂Z
= $ = V = 0 at Z = ±1

2
. (4)

The normal mode solution for solving eigen boundary value problem is:

% = A sin(νX) (Cf )e(Z),

$ = B cos(νX) sin

[
π

(
Z + 1

2

)]
,

V = D sin(νX) sin

[
2π

(
Z + 1

2

)]
,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (5)

where A, B, and D are the amplitudes, ν is the wave number, (Cf )e(Z) is the
Chandrasekhar function (even solution) [5, 6, 9], and μ1=4.73004074. Substituting
Eq. (5) in the nondimensional form of the governing Eqs. (1)–(3) and following
the standard orthogonalization procedure, the critical value of nanoliquid Rayleigh
number for stationary onset can be arrived at in the form:

RaRR
c = Mδ2

c

(
F1"

(
μ4

1 + ν4
c

)+ F2μ
2
1

(
2"ν2

c + σ 2
)+ F1ν

2
c σ

2
)

2F 2
3 ν

2
c

+ Mδ2
cF

2
4 Ta

π2F 2
3 ν

2
c

(
"ν2

c + 4π2"+ σ 2
) , (δ2

c = ν2
c + π2),

(6)
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where F1 = 1

1+ cos (μ1)
−

tan
(μ1

2

)

μ1
+ 1

1+ cosh (μ1)
−

tanh
(μ1

2

)

μ1
, (7)

F2 = 1

1+ cos (μ1)
+

tan
(μ1

2

)

μ1
− 1

1+ cosh (μ1)
−

tanh
(μ1

2

)

μ1
, (8)

F3 = 4πμ2
1

π4 − μ4
1

, F4 =
4π2μ1 tan

(μ1

2

)

4π2 − μ2
1

+
4π2μ1 tanh

(μ1

2

)

4π2 + μ2
1

. (9)

The nonlinear analysis will now be used to study the heat transport.

2.2 Weakly Nonlinear Stability Analysis

The truncated representation for making a weakly nonlinear analysis for rigid-rigid,
isothermal boundaries is:

% = A sin(νcX) (Cf )e(Z),

$ = B cos(νcX) sin

[
π

(
Z + 1

2

)]
− C sin

[
2π

(
Z + 1

2

)]
,

V = D sin(νcX) sin

[
2π

(
Z + 1

2

)]
+ E sin(2νcX)sin

[
π

(
Z + 1

2

)]
.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

(10)
Substituting Eq. (10) into Eqs. (1)–(3) and using the orthogonality condition with
the eigen functions on the resulting equations, we get a system of four algebraic
equations whose solutions are:

A2 = 8M2π2δ2
c a

2
1r

ν2
c F

2
5

[
1− 1

r

]
, B = 2νcF3

Ma1δ2
c r

A, (11)

C = F3F5ν
2
c

4M2π2a2
1δ

2
c r

A2 = 2F3

F5

[
1− 1

r

]
, D = 2F4

√
Ta

π"
(
ν2
c + 4π2

)+ πσ 2
A,

where r = Ra

RaRR
c

is the scaled Rayleigh number, F1, F2, F3, andF4 are given by

Eqs. (7)–(9) (12)

and F5 = 16π2μ2
1

(
μ4

1 + 39π4
)

μ8
1 − 82π4μ4

1 + 81π8
. (13)

We next calculate the Nusselt number.
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2.3 Nusselt Number

The amount of heat transport by Taylor-Bénard convection for rigid-rigid isothermal
boundary can be written down in terms of a Nusselt number, Nu, given by:

Nu = 1+ Heat transport by advection

Heat transport by molecular diffusion
.

The Nusselt number for rigid-rigid, isothermal boundaries is given by:

NuRR = 1+ 2

(
2πF3

F5

)
k

k1

[
1− 1

r

]
, (14)

where F3andF5 are given by Eqs. (9) and (13) and r is given by (12).
In the succeeding section, the results obtained are discussed and made some

conclusions.

3 Results and Discussion

The thermophysical properties of ethylene glycol [12] as the base liquid, copper
[12] as the nanoparticle, and 30% glass fiber-reinforced polycarbonate porous
material [16] are considered. The thermophysical properties of ethylene glycol-
copper-saturated porous medium is calculated, and the same is tabulated in Tables 1
and 2.

The linear and nonlinear realms of two-dimensional Rayleigh-Bénard-Taylor
convection of a Newtonian nanoliquid in a high-porosity medium are investigated.
Figure 2a demonstrates the fact that increasing the rotation rate decreases the heat
transport. This is because the creation of the y-component V uses up some energy
and thereby leads to delayed onset.

We also infer Rac increases with increase in ", and this result is depicted in
Fig. 2b. Increase in the value of " signifies decrease in the value of permeability (or
porosity), and this means less space is available for the nanoliquid to flow. Hence

Table 1 Thermophysical properties of 30% glass fiber-reinforced polycarbonate porous material
at 300 K [16]

ρs [kg m−3] (Cp)s [J/kg K] ks [W/m K] αs [m2 s−1× 107] φ

1430 1130 0.24 1.4852 0.88

Table 2 Thermophysical properties of ethylene glycol-copper-saturated porous medium at 300 K
for volume fraction, χ = 0.06. and φ = 0.88

ρ Cp k β μ
′

α (ρCp) (ρβ)

[kg/m3] [J/kg K] [W/m K] [K−1 × 105] [kg/m s] [m2 s−1 × 107] [J/m3 K ×10−6] [kg/m3 K]

1565.09 1662.34 0.29294 39.17174 0.02522673 1.12545 2.60172 0.613073
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Fig. 2 Variation of Nusselt number, Nu with Rayleigh number, Ra for different values of (a)
Taylor number, T a, for Brinkman number, "=1.2, porous parameter, σ 2=5, volume fraction,
χ=0.06 and porosity, φ=0.88. (b) ", for σ 2=5, χ=0.06, Ta=100 and φ=0.88. (c) σ 2, for "=1.2,
χ=0.06, Ta=100 and φ=0.88. (d) χ , for "=1.2, σ 2=5, Ta=100 and φ=0.88

this results in delayed onset. The Nusselt number decreases with increase in " which
is also depicted in Fig. 2b. The reason behind this is similar to the one explained in
the context of Rac.

The increase in the value of Rac with increase in σ 2 is shown in Fig. 2c. The
porous medium is a bad conductor of heat compared to the nanoliquid, and this
implies larger Rac, thereby slowing down of the flow and delayed onset. The Nusselt
number decreasing with increasing value of σ 2 is also depicted in Fig. 2c. The
reason behind this is similar to the one explained in the context of Rac.

From Fig. 2d, it is clear that Rac decreases as χ increases as is to be expected.
This implies that advanced onset of convection with increase in χ leads to an
enhanced heat transport situation.

4 Conclusion

1. The critical values of Ra and Nu of the nanoliquid-saturated porous medium in
free-free [13] and rigid-rigid boundaries vary as shown below:
RaFF

c < RaRR
c , NuFF > NuRR .
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2. Regulation of the residence time of heat energy can be made by considering
ethylene glycol as the base liquid, copper as the nanoparticle, and glass fiber-
reinforced polycarbonate porous material.

3. The effect of increasing ", σ 2, and Ta on the onset of convection leads to a
“stabilized system,” and χ has the opposite effect.
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MHD Three Dimensional
Darcy-Forchheimer Flow of a Nanofluid
with Nonlinear Thermal Radiation

Nainaru Tarakaramu, P. V. Satya Narayana, and B. Venkateswarlu

Abstract The numerical analysis of 3D magnetohydrodynamicDarcy-Forchheimer
nanofluid flow with nonlinear thermal radiation is explored. Utilizing suitable
similarity transformations, the governing PDEs are transformed into nonlinear
ODEs. The resulting equations are then solved numerically by the most robust
shooting technique with RK method of fourth order. The effect of various
parameters like radiation, temperature ratio, Forchheimer and porosity parameters
on θ(η) and φ(η), skin friction coefficient, and rate of heat transfer is discussed
graphically. It is observed that the heat transfer rate reduces and skin friction
coefficient increases for the rise of Fr and λ.

Keywords MHD · Nanofluid · Nonlinear thermal radiation ·
Darcy-Forchheimer porous medium

1 Introduction

The nanofluid technology is one of the effective fields which is used in industrial
as well as engineering applications. Nanofluids are dilute suspensions of fibers
and particles of nanosize submerged in liquids, and these nanoliquids change the
thermal performance. The thermal conductivity is the most important in various
physical implications because the thermal conductivity of the solids is higher than
liquids. Choi [1] studied the enhancement of heat transfer based on the thermal
conductivity of nanofluids. Theoretical and experimental reviews on nanofluids
were presented by Wang and Mujumdar [2, 3], and Ahn and Kim [4]. Cai et
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Nomenclature

a, b constants Sc Schmidt number= υ
DB

u, v, w Velocity components along x, y, respec-
tively

α Ratio parameter (b/a)

K Permeable of porous medium Cw Variable concentration (Kg m−3)

M Magnetic field=
σB2

0
ρf a

DT Thermophoresis diffusion (m2 .s−1)

T∞ Ambient fluid temperature K∗ Mean absorption coefficient

hf Heat transfer coefficient Tf Temperature of hot fluid

Nt Thermophoresis parameter=
(ρC)pD∞C∞

(ρC)f υ
Greek symbols

Nux Nusselt number υ Kinematic viscosity = μ
ρf

Nb Brownian motion coefficient

=
(ρC)pDT (Tf−T∞)

(ρC)f υT∞

C∞ Uniform ambient concentration
(Kg m−3)

C Nanoparticle volume fraction θ Dimensionless temperature

Cf Skin friction coefficient (ρc)p Heat capacity of the nanoparticle mate-
rial

(
Jm3K

)

Fr Inertia coefficient of porous medium Fr =
Cb

(K)1/2

φ Dimensionless concentration

αm Thermal diffusion= k
(ρC)f

F Forchheimer

T Fluid temperature (K) η Similarity variable

λ Porosity parameter= υ
aK

ν Kinematic viscosity (m2.s−1)

Rd Radiation parameter 16σ ∗T 3∞
3(ρC)f αmK∗ σ Electrical conductivity (m2 s−1)

Pr Prandtl number= υ
αm

μ Dynamic viscosity of nanofluid (Ns.m−2)

Rex and Rey Reynolds number=Uwx
v

and Vwy
v

σ ∗ Boltzmann constant (wm−2K−4)

DB Brownian diffusion ρ Fluid density (Kg.m−3)

γ Biot number= hf

kf

( υf

c

)1/2
ρf Fluid density

f Dimensionless stream function μ Dynamic viscosity (P a.s−1)

f
′

Dimensionless velocity ρnf Density of nanofluid (kg.m−3)

Cp Specific heat constant kJ/kgK Subscripts

B0 Dimensionless magnetic field w Wall mass transfer velocity (m s−1)

∞ Condition at free stream

al. [5] developed the nanofluids and nanoparticles based on fractal approaches.
Kakac and Pramuanjaroenkij [6] analyzed the heat transfer enhancement in thermal
conductivity due to nanoparticle decomposition. Das [7] studied the influence of
heat transfer characteristics of a nanofluid in a rotating system. Later, Narayana et
al. [8, 9] examined the heat transfer of a nanofluid flow past a vertical porous plate
with different heat and mass transfer effects.

The Darcy-Forchheimer model [10, 11] has many applications in engineering
and thermal insulation materials like nuclear waste disposal, petroleum resources,
energy storage units, solar receivers, heat exchanger, beds of fossil fuels, and so on.
The influence of heterogeneous-homogeneous reactions on Darcy-Forchheimer flow
is analyzed numerically by Khan et al. [12], Muhammad et al. [13] and Hayat et al.



MHD Three Dimensional Darcy-Forchheimer Flow of a Nanofluid with. . . 89

[14, 15]. Mahammad et al. [16] presented magnetohydrodynamicflow on non-Darcy
porous medium. The authors [17, 18] developed 3D flow on rotational channel in the
presence of porous stretching wall. The effect of MHD on different non Newtonian
fluid flow was studied numerically by Yousif et al. [19], Satya Narayana et al. [20],
and Tarakaramu and Satya Narayana [21].

The objective of present paper is to study the numerical analysis of 3D MHD
Darcy-Forchheimer flow of nanofluid over a stretching surface with nonlinear
thermal radiation. The governing equations are solved numerically by RK method
with the help of shooting scheme. Numerical results are plotted and analyzed for
various values of emerging flow parameters.

2 Mathematical Analysis

Assume the steady 3D magnetohydrodynamic flow over stretching surface filled
with porous space and the space characterized by Darcy-Forchheimer relation with
nonlinear thermal radiation. Choose a Cartesian coordinate system (x, y, z) in
which x− and y−axes are along the stretchable surface in the direction of the
flow and z−axis is normal to it. The physical model and coordinate system are
shown in Fig. 1. The stretching velocities Uw(x) = ax and Vw(y) = by are along
in the directions of x and y. Apply the effect of a constant magnetic field B0 in
the direction of z and perpendicular to the surface (i.e., xy-plane). The surface
of the sheet is subjected to the convective boundary conditions. The continuity,
momentum, energy, and spice concentration equations in the presence of thermal
radiation and magnetic field over a stretching surface can be expressed as

Fig. 1 Flow configuration and coordinate system
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∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= υ

(
∂2u

∂z2

)
− υ

K
u− Fu2 − σB2

0

ρ
u (2)

u
∂v

∂x
+ v

∂v

∂y
+w

∂v

∂z
= υ

(
∂2v

∂z2

)
− υ

K
v − Fv2 − σB2

0

ρ
v (3)

u
∂T

∂x
+v

∂T

∂y
+w

∂T

∂z
= αm

∂2T

∂z2 −
1

(ρC)f

∂qr

∂z
+ (ρC)p

(ρC)f

(
DB

∂T

∂z

∂C

∂z
+DT

T∞

(
∂T

∂z

)2
)

(4)

u
∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= DB

∂2C

∂z2 +
DT

T∞

(
∂2T

∂z2

)
(5)

The relevant boundary conditions are
u = ax, v = by, w = 0,

−kf
∂T
∂y
= hf (Tf − T ), DB

(
∂C
∂z

)
+ DT

T∞

(
∂T
∂z

)
= 0 at z = 0

u→ 0, v → 0, T → T∞, C → C∞ as z→∞
The radiative heat flux qr according to the Ref. [22] is

qr = − 4σ ∗

3K∗
∂T 4

∂z
(6)

Differentiating Eq. (6) with respect to z, we get
∂qr
∂z
= − 16σ ∗

3K∗ ∂
∂z

(
T 3 ∂T

∂z

)

Substituting above equation in Eq. (4), we get

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= αm

∂2T

∂z2 +
1

(ρC)f

(
16σ ∗

3K∗
∂

∂z

(
T 3 ∂T

∂z

))

+ (ρC)p

(ρC)f

(
DB

∂T

∂z

∂C

∂z
+ DT

T∞

(
∂T

∂z

)2
)

(7)

The similarity transformations are
u = axf ′(η), v = ayg(η), w = −√aυ(f + g)

φ(η) = C−C∞
C∞ , η =

√
a
υf

z

In view of above similarity transformations, the Eqs. (2)–(4) and (7) become

f ′′′ + f ′(f + g)′ − (
f ′

)2
(1+ Fr)− f ′(M + λ) = 0 (8)

g′′′ + g′(f + g)′ − (
g′
)2
(1+ Fr)− g′(M + λ) = 0 (9)
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(
1+ Rd(θ(θw − 1)+ 1)3

Pr

)
θ ′′ +Nbφ

′θ ′ +Ntθ
′2 + θ ′(f + g) = 0 (10)

φ′′ + Scφ′(f + g)+ θ ′′
(
Nt

Nb

)
= 0 (11)

Corresponding boundary conditions are
f = 0, f ′ = 1, g = 0, g′ = α, θ ′ = −γ (1− θ),

Nbφ+Ntθ
′ = 0, at η = 0

f ′ → 0, g′ → 0, θ → 0, φ → 0 , as η →∞
Moreover the skin friction coefficient and Nusselt number are below:

√
(Rex)Cfx = −f ′′(0)√
(Rex)Cfy = −α3/2g′′(0)
1√

(Rex)
Nux = −

(
1+ Rd(θ(θw − 1)+ 1)3) θ ′(0)

3 Results and Discussion

Equations (8)–(11) are solved numerically by RK method along with eminent
shooting procedure. The influence of various parameters on θ(η) and φ(η) profiles
is elucidated with the help of graphical illustration from Figs. 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, and 12.
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Fig. 3 Influence of Rd on φ(η)
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Fig. 6 Influence of Fr θ(η)
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Fig. 7 Influence of Fr on φ(η)

The effect of Rd on θ(η) and φ(η) is illustrated in Figs. 2 and 3. It is noted that
the increasing values of Rd correspond to results in an enhancement of the fluid
temperature and lead to decrease in concentration. Physically, thermal radiation is
inversely proportional to the thermal diffusivity.

Figures 4 and 5 depict the θ(η) and φ(η) profiles for various values of
temperature ratio parameter θw. It is pointed out that the temperature increases for
distinct values of θw, while opposite effect occurs in concentration.
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Fig. 8 Influence of λ on θ(η)
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Fig. 9 Influence of λ on φ(η)

The variations of temperature and concentration fields with distinct values of
inertia coefficient Fr are shown in Figs. 6 and 7. Increasing values of inertia
coefficient Fr leads to diminish both the temperature and concentration fields. This
is due to the fact that Fr is inversely proportional to permeability porous medium in
fluid motion.

Figures 8 and 9 are plotted to examine how the fluid temperature and concentra-
tion profiles are affected with the variation in porosity parameter λ. It is clear that
the fluid temperature diminishes with rising values of λ; however the reverse trend
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is observed in the case of concentration. Physically, the strong drag force applied on
high speed of porous flow of nanoparticles yields to the weak temperature and high
concentration.

Figures 10, 11, and 12 depict the influence of Fr on skin friction coefficients and
Re

−1/2
x Nux . It is observed that skin friction coefficient along the x-axis and rate

of heat transfer decreased with the rise of Fr values; on the other hand Fr shows
opposite trend in case of skin friction coefficient along the y-axis.
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4 Conclusion

Three-dimensional MHD Darcy-Forchheimer nanofluid flow over stretching surface
with nonlinear thermal radiation and convective condition is investigated in the
present work. The present work finds the application in the field of engineering
and geophysical such as groundwater, porous pipes, blood flow via arteries or
lungs, insulation of granule and fiber, grain storage, casting solidification, vessels of
gas-cooled reactors, machines of high-power density, petroleum reservoirs, porous
bearings, and gas-cleaning filtration.
The most important conclusions of this study are as follows:

1. The temperature profile increases with increasing values of Rd and θw, while it
decreases with raising values of Fr and λ.

2. An increasing value of Rd , θw, and Fr leads to dwindle in concentration whereas
increase with rising values of λ.

3. Both the directions of skin friction coefficient dwindle for distinct ascending
large values of λ.
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Effect of Electromagnetohydrodynamic
on Chemically Reacting Nanofluid Flow
over a Cone and Plate

H. Thameem Basha, I. L. Animasaun, O. D. Makinde, and R. Sivaraj

Abstract The intention of this communication is to explore the significance
of electromagnetohydrodynamic (EMHD) on the fluid transport properties of a
chemically reacting nanofluid with two types of geometries. Simulations have been
done to investigate the controlling equations by utilizing Crank-Nicolson scheme.
Influence of embedded parameters such as Hartman number, heat source/sink,
Brownian diffusion, chemical reaction, and thermophoretic diffusivity is graphically
presented. Tables demonstrate the significant impact of sundry parameters on skin
friction factor and heat and mass transfer rates. It is observed that the electrical field
parameter has high influences on the fluid flow and heat transfer characteristics.

Keywords Non-uniform heat source/sink · Thermophoretic diffusivity ·
EMHD · Thermal radiation · Chemical reaction

1 Introduction

Nowadays, the use and analysis of the magnetohydrodynamics (MHD) in power
industries, medical equipment, biomedical treatment, and thermal systems have
gained considerable attention such as magnetic resonance imaging (MRI) equip-
ment, cooling of nuclear reactors, transportation of biological materials, blood
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pump devices, magnetic compass in airplanes, drug delivery, hyperthermia, and
high-temperature plasma. Makinde et al. [1] utilized the Buongiorno model for
analyzing the heat and mass transport mechanism of nanofluid under the influence
of Lorentz force. Kandasamy et al. [2] analyzed hydromagnetic flow over a vertical
surface with solar radiation. The influence of Lorentz force in nanofluid flow subject
to Navier slip condition was examined by Khan et al. [3]. Khan and Makinde [4]
scrutinized the influence of convective heating in hydromagnetic nanofluid flow
over a flat plate. Hayat et al. [5] investigated the MHD peristaltic transport past
a symmetric channel. Nadeem et al. [6] simulated 2D Maxwell fluid flow in an
extending surface under the influence of a magnetic field. Mabood et al. [7] used RK
Fehlberg method to study water-based nanofluid flow in an extending surface with
applied magnetic field. Farooq et al. [8] examined the role of different parameters
on Brownian motion and thermophoretic diffusivity of MHD viscoelastic nanofluid.
Sheikholeslami et al. [9] examined the flow of hydromagnetic nanofluid with
radiative heat flux over two types of plates. Rashad et al. [10] investigated the flow of
Cu water-based nanofluid in a lid-driven cavity. Srinivas et al. [11] employed the 2D
Buongiorno model to examine the heat and mass transfer behavior of hydromagnetic
nanofluid in a porous duct. Bondareva et al. [12] reported the influence of Lorentz
force on nanofluid flow in a trapezoidal cavity. Sheremet et al. [13] employed the
Cu nanoparticle to upsurge the heat transfer in a wavy porous cavity in the presence
of Lorentz force. The prime idea of this investigation is to explore the influence
of EMHD on chemically reacting nanofluid flow in two different geometries. The
Crank-Nicolson scheme has been applied to examine the controlling equations.
Such consideration is significant in drug targeting and cancer therapy research. The
impacts of diverse pertinent parameters are studied, and the outcomes are indicated
graphs and tables.

2 Mathematical Formulation

We examine the two-dimensional (x, y) nanofluid flow over two different geome-
tries (cone and plate) as demonstrated in Fig. 1. In a coordinated system, x and y

are the surface of the geometries and normal to the geometries, respectively. The

Fig. 1 Geometry of the
problem
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transverse magnetic field of strength B0 and electrical field E0 are implemented
in the y-direction. It is assumed that the neighboring (wall) fluid temperature
(Tw) and concentration (Cw) are stationary, which are higher than the ambient
fluid temperature (Tw > T∞) and concentration (Cw > C∞), respectively. The
governing equations for the present flow problem are [14–17]

∂(rωu)

∂x
+ ∂(rωv)

∂y
= 0 (1)

ρf

(
∂u

∂t∗
+ u

∂u

∂x
+ v

∂u

∂y

)
= μ

(
∂2u

∂y2

)
+ σB0 (E0 − B0u)

+g
[
(1− C∞) ρf β (T − T∞)− (

ρp − ρf

)
(C − C∞)

]
cosλ (2)

(
ρCp

)
p

(
∂T

∂t∗
+ u

∂T

∂x
+ v

∂T

∂y

)
= k

(
∂2T

∂y2

)
(3)

+(
ρCp

)
f

[
DB

∂C

∂y

∂T

∂y
+ DT

T∞

(
∂T

∂y

)2
]
+ q ′′′ − ∂qr

∂y

∂C

∂t∗ + u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2 +
DT

T∞
∂2T

∂y2 −Kr(C − C∞) (4)

qr is the radiative heat flux, E0 is the electrical field, DB and DT are the Brownian
and thermophoretic diffusivity of a nanoparticle, and Kr is the dimensional chemical
reaction parameter.

The transport properties during primary assumptions (t∗ ≤ 0) are

u = 0, v = 0, T = T∞, C = C∞ for all x, y (5)

The transport properties at the limits of the geometry at any time (t∗ > 0) are

u = 0, v = 0, T = Tw, C = Cw at y = 0

u = 0, T = T∞, C = C∞ at x = 0 (6)

u→ 0, T → T∞, C → C∞ as y →∞

when ω = 1 corresponds to flow over a vertical cone and ω = λ = 0 corresponds
to flow over a vertical flat plate.

In the energy equation, q ′′′ is considered as

q ′′′ = (Gr)1/2

L2

(
γ1L

ν (Gr)1/2 (Tw − T∞) u+ γ2 (T − T∞)

)
(7)

Here, γ1 > 0 and γ2 > 0 indicate the internal heat generation, while γ1 < 0 and
γ2 < 0 indicate the internal heat absorption.
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Radiative heat flux in terms of σ ∗ and k∗ are considered as

qr = −4

3

σ ∗

k∗
∂T 4

∂y
= −16

3

σ ∗

k∗
T 3 ∂T

∂y
(8)

where σ ∗ is the Stefan-Boltzmann constant and k∗ is the mean absorption
coefficient.

The dimensionless variables are considered as

X = x

L
, Y = y

L
(Gr)1/4, R = r

L
, r = xsin(λ), U = uL

ν
(Gr)−1/2,

V = vL

ν
(Gr)−1/4, t = νt∗

L2 (Gr)1/2, θ = T − T∞
Tw − T∞

, φ = C − C∞
Cw − C∞

(9)

The governing Eqs. (1)−(4) are dimensionalized by means of Eq. (9) and stated
below

∂(RωU)

∂X
+ ∂(RωV )

∂Y
= 0 (10)

∂U

∂t
+ U

∂U

∂X
+ V

∂U

∂Y
= ∂2U

∂Y 2 +M(E1 − U)+ [θ −NRφ] cosλ (11)

∂θ

∂t
+ U

∂θ

∂X
+ V

∂θ

∂Y
= 1

Pr

(
1+ 4

3
Rd

)(
∂2θ

∂Y 2

)
+NB

∂φ

∂Y

∂θ

∂Y

+NT

(
∂θ

∂y

)2

+ 1

Pr

(γ1U + γ2θ) (12)

∂φ

∂t
+ U

∂φ

∂X
+ V

∂φ

∂Y
= 1

Sc

[
∂2φ

∂Y 2 +
NT

NB

∂2θ

∂Y 2

]
−KRφ (13)

The dimensionless form of the conditions stated in Eqs. (5) and (6) are

t ≤ 0 : U = 0, V = 0, θ = 0, φ = 0 for all X,Y

t > 0 : U = 0, V = 0, θ = 1, φ = 1 at Y = 0

U = 0, θ = 0, φ = 0 at X = 0 (14)

U → 0, θ → 0, φ → 0 as Y →∞

Gr is the Grashof number, M is the Hartmann number, NR is the buoyancy ratio
parameter, Rd is the thermal radiation parameter, NB is the Brownian diffusivity,
NT is the thermophoretic diffusivity, KR is the dimensionless chemical reaction
parameter, Sc is the Schmidt number, E1 is the electrical field parameter, and τ is
the ratio between the base fluid and nanoparticle heat capacity that are, respectively,
as follows:
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Gr = gβ (Tw − T∞) (1− C∞) L3
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0L

2
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, α = k(
ρCp

)
p

, Pr = ν

α
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DB

,E1 = E0L

B0ν(Gr)1/2 ,

Rd = 4σ ∗T 3∞
k∗k

, τ =
(
ρCp

)
f(

ρCp

)
p

NB = τDB (Cw − C∞)

ν
,NT = τDT (Tw − T∞)

ν
,

NR =
(
ρp − ρf

)
(Cw − C∞)

βρf (Tw − T∞) (1− C∞)
(15)

The local skin friction factor (Sfx), Nusselt number (Nux), and Sherwood
number (Shx) are

Sfx = Gr3/4
(
∂U

∂Y

)

Y=0
, Nux = −XGr1/4

(
∂θ

∂Y

)

Y=0
,

Shx = −XGr1/4
(
∂φ

∂Y

)

Y=0
(16)

The mean skin friction (Sf ), rate of heat transfer coefficient (Nu) , and rate of
mass transfer coefficient (Sh) can be written as

Sf = Gr3/4
∫ 1

0

(
∂U

∂Y

)

Y=0
dX, Nu = −Gr1/4

∫ 1

0

((
∂θ
∂Y

)
Y=0

θY=0

)
dX,

Sh = −Gr1/4
∫ 1

0

⎛
⎜⎝

(
∂φ
∂Y

)

Y=0

φY=0

⎞
⎟⎠ dX (17)

3 Results and Discussion

The required section is aimed at addressing outcomes of pertinent parameters on
velocity (U), temperature (θ) and concentration (φ), skin friction, and heat and
mass transfer rates for various sundry parameters. Calculations are made for diverse
values of M = 0.40, 0.70, 1.0, and 1.2; E1 = 0.20, 0.40, 0.60, and 0.80; NB = 0.10,
0.30, 0.50, and 0.70; and NT = 0.10, 0.30, 0.50, and 0.70. The discretized governing
equations are solved by Crank-Nicolson scheme, and the outputs are portrayed in



104 H. Thameem Basha et al.

Table 1 Effect of M , NB , NT , and E1 on Sf , Nu and Sh

Physical Sf
(
Gr−3/4

)
Nu

(
Gr−1/4

)
Sh

(
Gr−1/4

)

Parameters Values Plate Cone Plate Cone Plate Cone

M 0.10 0.73192 0.45203 0.41495 0.33173 0.54968 0.52260

0.40 0.75092 0.48620 0.42218 0.34778 0.55413 0.52903

0.70 0.76743 0.51571 0.42648 0.35836 0.55641 0.53303

1.0 0.77771 0.53371 0.42847 0.36374 0.55732 0.53498

NB 0.10 0.73192 0.45203 0.41495 0.33173 0.54968 0.52260

0.30 0.74738 0.45981 0.37102 0.29265 0.64775 0.58648

0.50 0.75902 0.46580 0.32807 0.25521 0.67013 0.60096

0.70 0.76981 0.47138 0.28811 0.22068 0.68149 0.60824

NT 0.10 0.73192 0.45203 0.41495 0.33173 0.54968 0.52260

0.30 0.72952 0.45165 0.37842 0.30087 0.38630 0.44010

0.50 0.72866 0.45207 0.34525 0.27279 0.30992 0.43264

0.70 0.72915 0.45320 0.31514 0.24724 0.30456 0.48704

E1 0.20 0.66547 0.37809 0.37862 0.27508 0.52749 0.49970

0.40 0.73192 0.45203 0.41495 0.33173 0.54968 0.52260

0.60 0.79807 0.52619 0.44479 0.37458 0.56740 0.54199

0.80 0.86379 0.59937 0.47057 0.40958 0.58289 0.55914

Table 2 Comparison table

Parameters Nu
(
Gr−1/4

)
Sh

(
Gr−1/4

)

NB NT

Hayth
et al. [18]

Sreedevi
et al. [19]

Present
Study

Hayth
et al. [18]

Sreedevi
et al. [19]

Present
Study

0.30 0.20 0.3842 0.3842 0.3843 0.2336 0.2335 0.2336

0.40 0.25 0.3697 0.3698 0.3696 0.1983 0.1983 0.1982

0.50 0.30 0.3556 0.3556 0.3550 0.1643 0.1644 0.1633

graphs and tables. Table 1 characterizes the average skin friction factor, average
Nusselt number, and average Sherwood number for various pertinent parameters.
Table 2 demonstrates the perfection of the obtained results of this present analysis by
means of a comprehensive comparative study on NB and NT with the reported data
of Hayat et al. [18] and Sreedevi et al. [19]. Variation of U and θ profiles for diverse
values of M is plotted in Fig. 2a, b. The large values of M reduce the fluid U since
a resistive force occurs which decelerates motion of the fluid and hence enhances
the heat transfer in the thermal boundary layer. Influence of active parameter E1 on
U and θ is portrayed in Fig. 2c, d. From the physical point of view, E1 promotes
the resistive force, which usually declines the frictional resistance. According to
this fact, U enhances; however, the reverse situation is observed for θ . Figure 3a, b
reveals the effect of NB on θ and φ. The larger values of NB yield higher random
motion of nanoparticle. It means that the θ boundary layer thickness increases and
ensures the decay in φ boundary layer thickness. Figure 3c, d is demonstrated to
investigate the influence of NT on heat and mass transfer mechanisms. Physically,
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Fig. 2 U and θ for diverse values of M and E1

as NT increases, the motion of nanoparticles from hot wall to the cold ambient space
will be promoted and hence enhance the heat transfer of nanoparticles. Likewise
the motion of nanoparticles from high concentration to low concentration will be
promoted and hence enhance the mass transfer of nanoparticles.

4 The Conclusions

A numerical study is performed for analyzing the chemically reacting nanofluid flow
with electrohydromagnetic and nonuniform heat sources/sinks over two types of
geometries. The key findings are enhancement in θ is observed for larger magnetic
number. U boosts for larger E1, whereas reverse behavior is found in θ . The effect
of NB and NT on θ is similar and is opposite behavior in φ.
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Effect of Non-linear Radiation on 3D
Unsteady MHD Nanoliquid Flow over a
Stretching Surface with Double
Stratification

K. Jagan, S. Sivasankaran, M. Bhuvaneswari, and S. Rajan

Abstract The key goal of the article is to examine the non-linear thermal radiation
and double stratification effects on 3D MHD convective stream of nanoliquid over a
non-linear stretchable surface in a porous medium. Using suitable transformations,
the governing systems are converted into ODEs and are solved by using homotopy
analysis method (HAM). While increasing thermal and solutal stratification param-
eter, the temperature decreases. The temperature enhances by raising the values of
non-linear thermal radiation. The skin friction coefficient along x- and y-axis, local
Nusselt number and Sherwood number are plotted for important parameter involved
in the study, and the results are discussed in detail.

Keywords Nanofluid · Stratification · Non-linear thermal radiation · Porous
medium · MHD

1 Introduction

The importance of convective stream and thermal transport of nanoliquid is
discussed in [1–4]. Hayat et al. [5] studied the non-linear thermal radiation effect
on three-dimensional magnetohydrodynamic flow of viscoelastic nanoliquid. Das
et al. [6] and Madhu et al. [7] analysed about the influence of thermal radiation on
unsteady stream of nanoliquid and Maxwell nanoliquid over a stretching surface.
Hayat et al. [8] investigated about the unsteady magnetohydrodynamic flow of
nanoliquid with double stratification. The impact of double stratification on mass
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and heat transport in unsteady MHD nanoliquid stream over a horizontal surface
was studied by Mutuku et al. [9]. In this paper, the examination is made on three-
dimensional unsteady MHD convective stream of nanoliquid over a stretchable sheet
in a porous medium in the existence of dual stratification and non-linear thermal
radiation.

2 Mathematical Formulation

The three-dimensional unsteady electrically conducting nanoliquid flow towards a
stretchable sheet in the existence of the applied magnetic field of a constant strength
B0 is considered. At t = 0, the velocity components is taken as v1 = a1x and v2 =
b1y where v1 and v2 are the velocity components along x- and y-axis and a1 and
b1 are positive constants. Due to the existence of nanoparticles, the thermophoresis
and Brownian motion are taken into account. The radiative heat flux is taken as qr =
− 4σ ∗

3k∗
∂T 4

∂z
. The ambient temperature and concentration are assumed as T∞ = T0 +

d1x and C∞ = C0 + d3x. The fluid temperature and concentration are considered
as Tw = T0 + d2x and Cw = C0 + d4x where d1, d2, d3 and d4 are dimensional
constants. The thermal and concentration stratification effects are considered into
account. The governing systems for the analysis can be derived as follows:

∂v1

∂x
+ ∂v2

∂y
+ ∂v3

∂z
= 0, (1)

∂v1

∂t
+ v1

∂v1

∂x
+ v2

∂v1

∂y
+ v3

∂v1

∂z
= ν

∂2v1

∂z2 − σB2
0

ρ
v1 − νϕ

k
v1, (2)

∂v2

∂t
+ v1

∂v2

∂x
+ v2

∂v2

∂y
+ v3

∂v2

∂z
= ν

∂2v2

∂z2 − σB2
0

ρ
v2 − νϕ

k
v2, (3)

∂T

∂t
+ v1

∂T

∂x
+ v2

∂T

∂y
+ v3

∂T

∂z
= α

∂2T

∂z2 + τDB

(
∂T

∂z

∂C

∂z

)

+τDT

T∞

(
∂T

∂z

)2

− 1

ρcp

∂qr

∂z
, (4)

∂C

∂t
+ v1

∂C

∂x
+ v2

∂C

∂y
+ v3

∂C

∂z
= DB

∂2C

∂z2 +
DT

T∞
∂2T

∂z2 , (5)

and the boundary conditions are

v1 = 0, v2 = 0, v3 = 0, T = T∞, C = C∞; t < 0,

v1 = v1,w = a1x, v2 = v2,w = b1y, v3 = 0, T = Tw, C = Cw, z = 0; t ≥ 0,

v1 → 0, v2 → 0, T → T∞, C → C∞, as z→∞; t ≥ 0. (6)
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where v3 is velocity component along z-axis and α, ν, σ, ϕ, k1,DB and DT are ther-
mal diffusivity, kinematic viscosity, electrical conductivity, porosity, permeability of
the porous medium, Brownian motion and thermophoresis coefficient, respectively.
The similarity transformations are

η = z

√
a1

νξ
, ξ = 1− e−τ , τ = a1t, v1 = a1xf

′, v2 = a1yg
′,

v3 = −
√
a1 ν ξ (f + g) , θ (η) = T − T∞

Tw − T∞
, φ (η) = C − C∞

Cw − C∞
. (7)

where prime denotes the derivative with respect to η.
Substituting (7) in (1), (1) is satisfied identically. Substituting (7) in (2) to (6), we

get

f ′′′+(ξ−1)

[
ξ
∂f ′

∂ξ
−η

2
f ′′

]
−ξ

[
f ′2−f ′′ (f+g)

]
−ξ

[
f ′

(
λ+M2

)]
= 0, (8)

g′′′+(ξ−1)

[
ξ
∂g′

∂ξ
−η

2
g′′

]
−ξ

[
g′2−g′′ (f+g)

]
− ξ

[
g′

(
λ+M2

)]
= 0, (9)

(
1+ 4

3
Rd

)
θ ′′ + 4

3
Rd

[
θ3
w

(
3θ2θ ′2 + θ3θ ′′

)
+ 3θ2

w

(
2θθ ′2 + θ2θ ′′

)

+ 3θw
(
θ ′2 + θθ ′′

)]
+ PrNb θ ′φ′ + PrNtθ ′2 + Pr (ξ − 1)

[
ξ
∂θ

∂ξ
− η

2
θ ′
]

+Pr ξ
[
θ ′ (f + g)− f ′θ − ST f

′] = 0, (10)

φ′′ + Sc(ξ − 1)

[
ξ
∂φ

∂ξ
− η

2
φ′
]
+ Sc ξ

[
φ′ (f + g)− f ′φ − SP f ′

]

+Nt

Nb
θ ′′ = 0, (11)

f (ξ, 0) = g (ξ, 0) = 0, f ′ (ξ, 0) = 1, θ (ξ, 0) = 1− ST , φ (ξ, 0) = 1− SP ,

g′ (ξ, 0) = c, f ′ (ξ,∞) = 0, g′ (ξ,∞) = 0, θ (ξ,∞) = 0, φ (ξ,∞) = 0. (12)

where Pr,M, Sc, c, λ,Nb,Nt, Rd , θw, ST and SP are Prandtl number, local Hart-
man number, Schmidt number, stretching ratio, local porosity, Brownian motion,
thermophoresis, thermal radiation, temperature ratio, thermal stratification and
solutal stratification parameters that are defined as
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Pr = α

ν
, M2 = σB2

0

a1ρ
, Sc = ν

D
, c = b1

a1
, λ = νϕ

a1k1
, Nb = τDB (Cw − C∞)

ν
,

Nt = τDT (Tw − T∞)

νT∞
, Rd = 4σ ∗T 3∞

kk∗
, θw = Tw − T0

T∞
,

ST = d1

d2
, SP = d3

d4
. (13)

The local skin friction coefficient along x- and y-directions and local Nusselt
number are defined as follows.

ξ
1
2 Re

1/2
x Cfx = −f ′′ (ξ, 0) . (14)

ξ
1
2 Re

1/2
y Cfy = −g′′ (ξ, 0) . (15)

ξ
1
2 Re

−1/2
x Nu = −

(
1+ 4

3
Rd (θw)

3
)
θ ′ (ξ, 0) . (16)

ξ
1
2 Re

−1/2
x Sh = −φ′ (ξ, 0) . (17)

where Rex = v1,wx

ν
and Rey = v2,wy

ν
are local Reynolds numbers.

3 Solution Procedure

The Eqs. (8) to (12) are solved using HAM by choosing the initial approximation
and auxiliary linear operators as

f0 (ξ, η) = 1− exp(−η), g0 (ξ, η) = c [1− exp(−η)] ,

θ0 (ξ, η) = (1− ST ) exp(−η), φ0 (ξ, η) = (1− SP ) exp(−η). (18)

Lf (f ) = d3f

dη3 −
df

dη
, Lg (g) = d3g

dη3 −
dg

dη
,

Lθ (θ) = d2θ

dη2 − θ, Lφ (φ) = d2φ

dη2 − φ. (19)

which satisfies the property

Lf [A1 + A2 exp (−η)+ A3 exp (η)] = 0. (20)

Lg[A4 + A5 exp (−η)+ A6 exp (η)] = 0. (21)
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Fig. 1 h-curve for f ′′(ξ, 0),
g′′(ξ, 0), θ ′(ξ, 0) and φ′(ξ, 0) f '' 0

g'' 0
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2

1
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Lθ [A7 exp (−η)+ A8 exp (η)] = 0. (22)

Lφ[A9 exp (−η)+ A10 exp (η)] = 0. (23)

where A1, A2, . . . , A10 are the arbitrary constants.
The resulting equations contain the auxiliary parameters hf , hg, hθ and hφ . The

h-curve is plotted for c = λ = M = Nb = Nt = ST = SP = 0.2, Pr = 1.5,
Rd = 0.3, Sc = 0.5, θw = 0.1 and ξ = 1. From Fig. 1, it is clear that the
admissible range of hf , hg, hθ and hφ are −1.0 ≤ hf ≤ −0.1,−1.1 ≤ hg ≤
0.0,−0.7 ≤ hθ ≤ −0.1 and −1.0 ≤ hφ ≤ −0.3.

4 Results and Discussion

The discussions are prepared for several combinations of relevant factors involved in
the study. It is discovered from Fig. 2 that while increasing the value of the porosity
parameter λ, Hartmann number M and unsteady parameter ξ , the velocity profiles
along x- and y-directions decrease. From Fig. 3, it is clear that the temperature
enhances by increasing the non-linear thermal radiation parameter Rd , but it
decreases with increase in unsteady parameter ξ and thermal stratification parameter
ST . The nanoparticles’ volume fraction profile drops by raising the values of the
solutal stratification parameter SP . The skin friction along x- and y-directions
enhances while growing the porosity parameter and Hartmann number; see Fig. 4.
In Fig. 5, it is witnessed that the local Nusselt number diminishes when raising
the values of the porosity parameter, Hartmann number and non-linear thermal
radiation parameter Rd . The local Sherwood number diminishes by raising the
solutal stratification parameter SP values.
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Fig. 2 Influence of λ M, ξ on f ′(ξ, η) and g′(ξ, η), (a) ST = 0.2, SP = 0.2, Rd = 0.3, θw = 0.1,
M = 0.2, c = 0.2, Nb = 0.2, Nt = 0.2, ξ = 1. (b) l = 0.2, ST = 0.2, SP = 0.2, Rd = 0.3,
θw = 0.1, c = 0.2, Nb = 0.2, Nt = 0.2, ξ = 1. (c) l = 0.2, ST = 0.2, SP = 0.2, Rd = 0.3,
θw = 0.1, M = 0.2, c = 0.2, Nb = 0.2, Nt = 0.2. (d) ST = 0.2, SP = 0.2, Rd = 0.3, θw = 0.1,
M = 0.2, c = 0.2, Nb = 0.2, Nt = 0.2, ξ = 1. (e) l = 0.2, ST = 0.2, SP = 0.2, Rd = 0.3,
θw = 0.1, c = 0.2, Nb = 0.2, Nt = 0.2, ξ = 1. (f) l = 0.2, ST = 0.2, SP = 0.2, Rd = 0.3,
θw = 0.1, M = 0.2, c = 0.2, Nb = 0.2, Nt = 0.2

(a) (b)

(c) (d)

Fig. 3 Influence of ξ Rd, ST on temperature and SP on concentration, (a) λ = 0.2, ST = 0.2,
SP = 0.2, Rd = 0.3, θw = 0.1, M = 0.2, c = 0.2, Nb = 0.2, Nt = 0.2. (b) λ = 0.2, ST = 0.2,
SP = 0.2, θw = 0.1, M = 0.2, c = 0.2, Nb = 0.2, Nt = 0.2, ξ = 1. (c) λ = 0.2, SP = 0.2,
Rd = 0.3, θw = 0.1, M = 0.2, c = 0.2, Nb = 0.2, Nt = 0.2, ξ = 1. (d) λ = 0.2, ST = 0.2,
Rd = 0.3, θw = 0.1, M = 0.2, c = 0.2, Nb = 0.2, Nt = 0.2, ξ = 1
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Fig. 4 Influence of λ and M on ξ
1
2 Re

1/2
x Cf , (a) ST = 0.2, SP = 0.2, Rd = 0.3, θw = 0.1,

M = 0.2, c = 0.2, Nb = 0.2, Nt = 0.2. (b) l = 0.2, ST = 0.2, SP = 0.2, Rd = 0.3, θw = 0.1,
Nb = 0.2, Nt = 0.2, ξ = 1. (c) ST = 0.2, SP = 0.2, Rd = 0.3, θw = 0.1, M = 0.2, c = 0.2,
Nb = 0.2, Nt = 0.2. (d) ST = 0.2, SP = 0.2, Rd = 0.3, θw = 0.1, Nb = 0.2, Nt = 0.2
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Fig. 5 Influence of λ, M, Rd, ST on ξ
1
2 Re

−1/2
x Nu and SP on ξ

1
2 Re

−1/2
x Sh, (a) ST = 0.2, SP =

0.2, Rd = 0.3, θw = 0.1, M = 0.2, c = 0.2, Nb = 0.2, Nt = 0.2. (b) l = 0.2, ST = 0.2,
SP = 0.2, Rd = 0.3, θw = 0.1, Nb = 0.2, Nt = 0.2, ξ = 1. (c) l = 0.2, ST = 0.2, SP = 0.2,
θw = 0.1, M = 0.2, c = 0.2, Nb = 0.2, Nt = 0.2. (d) l = 0.2, SP = 0.2, Rd = 0.3, θw = 0.1,
M = 0.2, c = 0.2, Nb = 0.2, ξ = 1. (e) l = 0.2, ST = 0.2, Rd = 0.3, θw = 0.1, M = 0.2,
c = 0.2, Nb = 0.2, ξ = 1
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5 Conclusion

The study of unsteady three-dimensional MHD convective nanoliquid stream over
a non-linear stretchable sheet with non-linear thermal radiation and thermal and
solutal stratification in a porous medium is examined. The thermal boundary
layer thickness enhances while raising the non-linear thermal radiation parameter
which results in diminish on energy transfer rate. The thickness of momentum
boundary layer and local Nusselt number diminishes, whereas the thickness of
temperature boundary layer and skin friction enhances while growing porosity and
Hartman number. While raising thermal stratification, the momentum boundary
layer thickness and local Nusselt number diminish. The nanoparticles’ volume
fraction profile and local Sherwood number diminish with increase in solutal
stratification.
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Chemical Reaction and Nonuniform Heat
Source/Sink Effects on Casson Fluid Flow
over a Vertical Cone and Flat Plate
Saturated with Porous Medium

P. Vijayalakshmi, S. Rao Gunakala, I. L. Animasaun, and R. Sivaraj

Abstract The intention of this communication is to explore the characteristics
of electromagnetohydrodynamics on the fluid transport properties of a chemically
reacting Casson fluid with two types of geometries. Formulations consist of salient
features of radiative heat transfer, Lorentz force, and chemical reaction. This model
is constituted with governing equations which are solved numerically by an efficient
finite difference scheme of Crank-Nicolson type. Impact of pertinent parameters
like Casson fluid, electrical field, Hartmann number, and chemical reaction is
observed through graphs. The outcomes of surface shear stress, rate of heat, and
mass transfers are presented through tables. Results enable us to state that larger
electrical field decelerates the Casson fluid flow. Influence of the magnetic field on
mean surface shear stress is more significant in the flow on a plate than that of cone.

1 Introduction

MHD flow problems have been analyzed in distinct areas like measurement of
moving blood, generating of power, nuclear production, and generators. These are
technical strategy also adopting electromagnetic methods. The non-Newtonian flu-
ids have incorporated a lot of aspects due to their distinct utilization in manufactory

P. Vijayalakshmi · R. Sivaraj (�)
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology,
Vellore, Tamilnadu, India
e-mail: vijayalakshmi.p2016@vitstudent.ac.in; sivaraj.r@vit.ac.in

S. Rao Gunakala
Department of Mathematics and Statistics, The University of the West Indies, St. Augustine,
Trinidad and Tobago
e-mail: sreedhara.rao@sta.uwi.edu

I. L. Animasaun
Department of Mathematical Sciences, Federal University of Technology, Akure,
Ondo State, Nigeria
e-mail: ilanimasaun@futa.edu.ng

© Springer Nature Switzerland AG 2019
B. Rushi Kumar et al. (eds.), Applied Mathematics and Scientific Computing,
Trends in Mathematics, https://doi.org/10.1007/978-3-030-01123-9_13

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01123-9_13&domain=pdf
mailto:vijayalakshmi.p2016@vitstudent.ac.in
mailto:sivaraj.r@vit.ac.in
mailto:sreedhara.rao@sta.uwi.edu
mailto:ilanimasaun@futa.edu.ng
https://doi.org/10.1007/978-3-030-01123-9_13


118 P. Vijayalakshmi et al.

and engineering. The non-Newtonian fluids enhance the deportation of coal oil
from petroleum production. In past few decades, the study of hydromagnetics over
a cone and plate has attracted many researchers attention. In food industries and
engineering, the hydromagnetic flow of Casson fluid has been an interesting area
of research. The Casson fluid miniature can be preferred to correct the rheological
details for manifold constituents like jelly, ketchup, and mishmash. Ketchup is a
shear-thinning fluid. Shear thinning means that the fluid viscosity decreases with
increasing shear stress. In other words, fluid motion is initially difficult at slow
rates of deformation but will flow more freely at high rates. It is fascinating to
indicate that the Casson fluid miniature can be selected for blood flow of human
beings investigations as a result of blood has abundant elements like red corpuscles,
fibrinogen, and protein. Sharma et al. [1] described the effects of heat source/sink on
magnetohydrodynamic assorted change of possession stagnation point flow ahead
a perpendicular stretching sheet in the existence of extrinsic Hartmann number.
Kumar and Sivaraj [2] analyzed the Walters’ B-liquid flow throughout the extend
of a flat plat and a vertical cone sopped with porosity in the existence of Dufour and
Soret effects. Kong et al. [3] determined the oversees performs together accumulate
the electromagnetic radiation signals that the antenna acquire and analyzed the
passion of the electromagnetic radiation signal. Mathematical investigations of
Casson fluid which accomplished a topmost convective surface of paraboloid of
innovation to nonlinear radiation and viscous dissipation were presented in Reddy
et al. [4]. Hayat et al. [5] committed to the flow change of possession of viscous
fluid by a bowed elongated sheet. Zhang et al. [6] examined the effect of thermal
radiation on magnetohydrodynamics natural convection in two-dimensional and
three-dimensional cavity. Some current absorbing write off connected with the flow,
chemical reaction, and heat and mass transfer typical features of Casson fluids can
be found in Ahmed et al. [7]. Gupta et al. [8] investigated the Brownian motion and
dispersion of thermophoresis in non-Newtonian nanofluid and concluded a bent on
stretching surface accompanying effects of thermal radiation and chemical reaction.
Siddiqa et al. [9] concerned with the problem at fixed intervals MHD natural
deportation boundary layer flow of emitting micropolar fluid beside a perpendicular
surface. The radiative heat transfer flow of a reactive hydromagnetic fluid inside
a chamber permeated with non-Darcy saturated porous medium with convective
wall cooling is investigated by Hassan et al. [10]. Wang and Zhao [11] represented
basic scheme for the eventuality of thermal radiation in anisotropic porous medium.
Malik and Nayak [12] presented the heat transfer characteristics of MHD nanofluid
flow in an enclosure saturated porous medium. In this paper, the predominant idea
is to examine the chemically reacting Casson flow over a cone and plate in the
presence of electromagnetohydrodynamics and nonuniform heat source/sink. The
Crank-Nicolson scheme has been applied to solve the controlling equations. The
impacts of diverse pertinent parameters are studied, and the outcomes are indicated
through graphs and tables.
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2 Mathematical Formulation

Two-dimensional Casson fluid flow of an incompressible and EMHD is deliberated
with two distinct geometries saturated with porous medium as exhibits in Fig. 1.
In the system of Cartesian coordinates, x-axis represents the surface of the vertical
cone and flat plate. The y-axis represents normal to the surface. At fixed temperature
Tw and fixed concentration Cw , the wall is maintained at y = 0 which is greater
than the medium temperature T∞ and medium concentration C∞, respectively.
Then electrical field E0 and the transverse Hartmann number of strength B0 are
implemented in the y-direction. The porous is pretended to be uniform. The Casson
fluid flow characterizes the nonuniform heat source/sink, chemical reaction and
thermal radiation effects. The set of governing equations is modeled based on
previously reported studies [13–17].
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Here qr , E0 , β, K , and kR represent the radiative heat flux, electrical field, Casson
fluid, porosity, and dimensional chemical reaction parameter, respectively.

Fig. 1 Physical view
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The transport properties during primary assumption (t∗ ≤ 0) are

u = 0, v = 0, T = T∞, C = C∞ for all x, y (5)

The transport properties at the limits of the geometries at any time (t∗ > 0) are

u = 0, v = 0, T = Tw, C = Cw at y = 0

u = 0, T = T∞, C = C∞ at x = 0 (6)

u→ 0, T → T∞, C → C∞ as y →∞

when h = 1 corresponds to flow over a vertical cone and h = α = 0 corresponds
to flow over a vertical flat plate.

The nonuniform heat generator/absorber q ′′′ is defined as

q
′′′ = (Gr)1/2

L2

(
γ1L

υ(Gr)1/2 (Tw − T∞) u+ γ2 (T − T∞)

)
(7)

By employing the Rosseland resemblance for radiative heat flux
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The dimensionless variables are defined as

X = x
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, (9)

The governing Eqs. (1)−(4) are dimensionalized by means of Eq. (9) and stated
below
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The dimensionless form of the conditions stated in Eqs. (5) and (6) are

t ≤ 0 : U = 0, V = 0, θ = 0, φ = 0 for all X,Y

t > 0 : U = 0, V = 0, θ = 1, φ = 1 at Y = 0

U = 0, θ = 0, φ = 0 at X = 0 (14)

U → 0, θ → 0, φ → 0 at Y →∞

Grashof number(Gr), Hartmann number(M), Casson fluid parameter(β), ther-
mal radiation parameter (qr), electrical field (E), porosity (K), dimensionless
chemical reaction parameter (KR), and skin-friction number (Sc) are, respectively,
as follows:
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The local skin-friction factor (Sfx), Nusselt number (Nux), and Sherwood
numbers (Shx) can be represented as
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The mean skin-friction (Sf ), rate of heat transfer coefficient (Nu), and rate of
mass transfer coefficient (Sh) can be represented as
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3 Results and Discussion

The set of nonlinear equations (10) to (13) are solved by using the Crank-Nicolson
scheme with boundary conditions (14). Crank-Nicolson scheme has been utilized
dramatically by many investigators [13–17]. Such a system of equations is derived
and explained by Hans Petter Langtangen et al.[18]. This section addresses the
characteristics of temperature, velocity, and concentration distributions as well
as Nusselt number, Sherwood number, and skin-friction variations of pertinent
parameters. The table constitutes the average skin friction, average Nusselt number,
and average Sherwood number for distinct parameters. Computations are formed for
distinct values of E = 0.1, 0.3, 0.5, 0.7; M = 0, 1, 2, 3; β = 1.0, 1.5, 2.0, 2.5; and
KR = 0, 1, 2, 3. Variation of velocity (U) and temperature (θ) drawing of outline
across the electrical field is displayed in Figs. 2 and 3. In the presence of an electrical
field, a Lorentz force occurs, which causes the velocity increases and temperature
decreases. Figures 4 and 5 represent the magnetic field; it creates the resistive force
that is called Lorentz force it exhibits velocity decrease and temperature increase.
Domination of rapid parameters β on velocity and skin friction (Sfx) is illustrated
in Figs. 6 and 7. Figure 7 annotates that greater values of β have the disposition to
slow down the fluid flow. It is prepared for that β increases furnished to diminishing
the yield stress which raise the value of plastic dynamic viscosity. An increase
in radiation enhances the boundary layer. A raise in chemical reaction parameter
decreases the concentration whereas increases the Sherwood number profiles as
portrayed in Figs. 8 and 9. Table 1 illustrates the influence of β, E, M , and KR

on average skin friction, average Nusselt number and average Sherwood number.

Fig. 2 U for various values
of E
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Fig. 3 θ for various values
of E
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Fig. 4 U for various values
of M
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Fig. 5 θ for various values
of M
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Fig. 6 U for various values
of β
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Fig. 7 Sfx for various values
of β
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Fig. 8 φ for various values
of KR
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Fig. 9 Shx for various
values of KR
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Table 1 Effect of β, E, M , and KR on Sfx , Nux , and Shx

Physical Sfx Nux Shx

parameters Values Plate Cone Plate Cone Plate Cone

β 1.0 1.11987 0.58609 −0.24907 −0.69043 0.57463 0.53420

1.5 1.11571 0.59146 −0.50400 −1.30899 0.55609 0.52389

2.0 1.12118 0.59973 −0.64902 −1.66993 0.55004 0.52096

2.5 1.12625 0.60583 −0.74050 −1.89651 0.54707 0.51956

E 0.1 1.06322 0.54484 −0.53559 −1.54897 0.55027 0.51919

0.3 1.11517 0.59146 −0.50400 −1.30899 0.55609 0.52389

0.5 1.16566 0.63818 −0.44307 −1.07145 0.56087 0.52808

0.7 1.21578 0.68687 −0.38402 −0.88146 0.56545 0.53243

M 0.0 1.14404 0.60535 −0.45009 −1.17690 0.55947 0.52575

1.0 1.11571 0.59146 −0.50400 −1.30899 0.55609 0.52389

2.0 1.08960 0.57884 −0.55902 −1.44462 0.55306 0.52224

3.0 1.06543 0.56729 −0.61510 −1.58331 0.55031 0.52078

KR 0.0 1.15206 0.60713 −0.40332 −1.07713 0.34715 0.28109

1.0 1.11571 0.59146 −0.50400 −1.30899 0.55609 0.52389

2.0 1.09034 0.58101 −0.57905 −1.44323 0.71507 0.69308

3.0 1.07046 0.57263 −0.63583 −1.53071 0.84669 0.82948

4 The Conclusions

A numerical study is executed for hydromagnetic Casson fluid flow with chemical
reaction and nonuniform heat source/sink over two types of geometries. The
following findings can be drawn. Intensification in temperature is observed for
larger magnetic number. Skin-friction factor boosts for larger β, whereas the trend
is reversed in velocity distribution. The magnitude of decrease in temperature and
velocity is more significant when the fluid flow over plate compare with the fluid
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flow over cone. Casson fluid velocity increases with viscosity variation, moving
plate velocity, and heat source. Temperature is decreasing with thermal radiation
and heat sink.
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An Analytic Solution of the Unsteady
Flow Between Two Coaxial Rotating
Disks

Abhijit Das and Bikash Sahoo

Abstract In this study, analytical solutions are obtained for the unsteady flow
of a viscous, incompressible fluid between two coaxial rotating disks of infinite
dimensions, using the homotopy analysis method (HAM). Using similar variables,
we first simplify the exact Navier–Stokes equation to highly coupled nonlinear
partial differential equations. Upon application of the HAM these equations are
replaced by a system of linear and uncoupled ordinary differential equations and
solutions effective throughout the entire temporal and spatial domains are obtained.
The nature of the flow fields is discussed under the influence of the same or opposite
direction of rotation, Reynolds number, etc. Physically interesting quantities, such
as radial and tangential shear stresses, are also obtained, and are valid throughout the
temporal domain. To the best of our knowledge, no such series solution is available
in the literature for the problem under consideration.

Keywords Rotating disk · unsteady flow · Reynolds number · HAM

1 Introduction

The study of flows related to rotating disks is of significant importance in the field
of fluid dynamics because of its industrial and technical applications in rotating
machinery, such as centrifugal pumps, turbines, or computer storage devices or
rheometers, or oceanography. More specifically, internal air-cooling systems are
usually modeled via disks rotating at different speeds, such as in gas or marine
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turbines, counter rotating disks and rotor–stator systems. Moreover, it is possible
to find similarity solutions to the Navier–Stokes equations in some idealized
infinite configurations. In 1951, Batchelor [1] first considered the two-disk problem,
generalizing the solutions given by Kármán [6] and Bodewadt [2] for a single
disk, and surmised the general characteristics of the flow between two disks, but
did not provide any explicit solution. Later, in 1953, Stewartson [10] revisited the
same problem experimentally (for small or large Reynolds numbers) and his results
were in agreement with those of Batchelor on co-rotating disks. However, when
the direction of rotation was reversed, he found that there is no core rotation as
was mentioned in [1]. This Batchelor–Stewartson controversy was settled in the
study [13], showing that both Batchelor’s and Stewartson’s solutions can be obtained
from the similarity solutions. Among recent studies, Das [3] produced analytical
solutions for Batchelor’s problem using the homotopy analysis method (HAM).
Turkyilmazoglu [11] extended this problem to the case in which the disk’s surfaces
are allowed to stretch radially at a constant rate and produced numerical solutions,
discussing the effects of surface stretching on the velocity and temperature fields.

An unsteady counterpart of Batchelor’s problem has been studied by many
researchers such as Pearson [9], who solved the problem numerically, considering
the disk’s angular velocity to be time-dependent and assuming a similar radius
dependence to that used in [1, 6] for the steady flow; the problem was extended to
study the heat transfer process by Ibrahim [4] following similar assumptions made
by Hazma and Macdonald [5] regarding the disk’s angular velocities and the gap
between them.

The present investigation deals with the unsteady version of Batchelor’s problem.
Similarity solutions effective throughout the entire temporal and spatial domains
are obtained using the efficient HAM introduced by Liao [7, 8] and to the best of
author’s knowledge no such analytical solutions exist in the literature. The HAM is
different from all other analytic techniques owing to the presence of the convergence
control parameter, h̄, which helps to adjust and control the convergence of the
solution series whenever necessary. Moreover, the similarity transformations used
in this study enable us to treat the similarity variable for time (ζ ) as a parameter,
which greatly simplifies solving for the higher order terms of the solution series.

The remainder of the chapter is organized as follows. Fundamental equations
are derived in Sect. 2. The HAM is applied to the governing system of coupled and
nonlinear partial differential equations (PDEs) and the results obtained are discussed
in Sect. 3. Finally, in Sect. 4, the conclusions are drawn.

2 Fundamental Equations

Let us consider the time-dependent flow of a viscous, incompressible fluid between
two coaxial rotating disks, lying in the planes z = 0 and z = d . Let the lower and
upper disks be started impulsively (at t = 0) into rotation with angular velocities
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Ω1 and Ω2 respectively. Let the velocity components along (r, θ, z) be (u, v,w)

respectively. Next, following [12], we consider the similarity variables:

u = rΩ1
∂H(η, ζ )

∂η
, v = rΩ1G(η, ζ ), w = −2dΩ1

√
ζH(η, ζ ),

η = z

d
√
ζ
, ζ = 1− e−τ , τ = Ω1t (1)

and the equations governing the flow become:

∂4H

∂η4 − Re(1− ζ )

(
ζ

∂2H

∂ζ∂η2 −
η

2

∂3H

∂η3 −
1

2

∂2H

∂η2

)

+ 2Reζ

(
G

∂G

∂η
+H

∂3H

∂η3

)
= 0 (2)

∂2G

∂η2 − Re(1− ζ )

(
ζ
∂G

∂ζ
− η

2

∂G

∂η

)
− 2Reζ

(
G

∂H

∂η
−H

∂G

∂η

)
= 0 (3)

with the following boundary conditions:

H(0, ζ ) = 0, G(0, ζ ) = 1,
∂H(0, ζ )

∂η
= 0 (4)

H(1, ζ ) = 0, G(1, ζ ) = Ω,
∂H(1, ζ )

∂η
= 0 (5)

where, Re = ρd2Ω1
μ

is the Reynolds number, Ω = Ω2
Ω1

is the rotation rate.
The shear stresses of the lower disk (τr and τθ ) can be calculated as:

τr = μ
∂u

∂z

∣∣∣∣
(0,ζ )

= μrΩ1

d
√
ζ

∂2H

∂η2

∣∣∣∣
(0,ζ )

(6)

τθ = μ
∂v

∂z

∣∣∣∣
(0,ζ )

= μrΩ1

d
√
ζ

∂G

∂η

∣∣∣∣
(0,ζ )

(7)

When ζ = 0 (initial unsteady flow), corresponding to τ = 0, we have from (2)
and (3):

∂4H

∂η4 + Re

(
η

2

∂3H

∂η3 −
1

2

∂2H

∂η2

)
= 0 (8)

∂2G

∂η2 +
Reη

2

∂G

∂η
= 0 (9)
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and the relevant boundary conditions are:

H(0, 0) = 0, G(0, 0) = 1,
∂H

∂η

∣∣∣∣
(0,0)

= 0 (10)

H(1, 0) = 0, G(1, 0) = Ω,
∂H

∂η

∣∣∣∣
(1,0)

= 0 (11)

Solutions for Eqs. (8)–(11) are:

H(η, 0) = 0, G(η, 0) = 1+ (Ω − 1)

Erf [
√
Re
2 ]

Erf [
√
Rx

2
] (12)

where Erf [x] is the error function defined by:

Erf [x] = 2√
π

∫ x

0
e−s2

ds (13)

The steady-state equations corresponding to ζ = 1 (τ → ∞) have been dealt with
and discussed in detail by many researchers [3].

3 Solution of the HAM and Analysis of Results

It is to be noted that H(η, ζ ), G(η, ζ ) will contain power terms of η and ζ as these
variables appear explicitly in Eqs. (2) and (3). Therefore, considering the boundary
conditions (4)–(5), we chose the set of base functions {ηiζ j |i ≥ 0, j ≥ 0} and the
initial guesses as:

H0(η, ζ ) = 0 (14)

G0(η, ζ ) = 1+ (Ω − 1)η (15)

Also, we select

LH(f ) = ∂4f

∂η4 (16)

LG(f ) = ∂2f

∂η2 (17)

as the linear operators so that

LH(c1 + c2η + c3η
2 + c4η

3) = 0 (18)

LG(c5 + c6η) = 0 (19)

where ci , i = 1− 6 are arbitrary constants.
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Now, the zero-order deformation equations are constructed as follows

(1−Q)LH [Ĥ (η, ζ ;Q)−H0(η, ζ )] = Qh̄NH [Ĥ (η, ζ ;Q), Ĝ (η, ζ ;Q)]
(20)

(1−Q)LG[Ĝ (η, ζ ;Q)−G0(η, ζ )] = Qh̄NG[Ĥ (η, ζ ;Q), Ĝ (η, ζ ;Q)] (21)

and the relevant boundary conditions are

Ĥ (0, ζ ;Q) = 0, Ĝ (0, ζ ;Q) = 1,
∂Ĥ (η, ζ ;Q)

∂η

∣∣∣∣
η=0

= 0 (22)

Ĥ (1, ζ ;Q) = 0, Ĝ (1, ζ ;Q) = Ω,
∂Ĥ (η, ζ ;Q)

∂η

∣∣∣∣
η=1

= 0 (23)

where, h̄ is the auxiliary parameter and Q ∈ [0, 1] is the embedding parameter. For
Q = 0 and Q = 1, the above zero-order deformation equations (20), (21) have the
solutions:

Ĥ (η, ζ ; 0) = H0(η, ζ ), Ĝ (η, ζ ; 0) = G0(η, ζ ) (24)

Ĥ (η, ζ ; 1) = H(η, ζ ), Ĝ (η, ζ ; 1) = G(η, ζ ) (25)

Thus, as Q varies from 0 to 1, Ĥ (η, ζ ;Q), Ĝ (η, ζ ;Q) deform continuously from
the initial approximations to the solutions of the Eqs. (2) and (3). The nonlinear
differential operators NH and NG are given by:

NH [Ĥ (η, ζ ;Q), Ĝ (η, ζ ;Q)] = ∂4Ĥ

∂η4 − Re(1− ζ )

(
ζ

∂2Ĥ

∂ζ∂η2 −
η

2

∂3Ĥ

∂η3 − 1

2

∂2Ĥ

∂η2

)

+ 2Reζ

(
Ĝ
∂Ĝ

∂η
+ Ĥ

∂3Ĥ

∂η3

)
(26)

and

NG[Ĥ (η, ζ ;Q), Ĝ (η, ζ ;Q)] = ∂2Ĝ

∂η2 − Re(1− ζ )

(
ζ
∂Ĝ

∂ζ
− η

2

∂Ĝ

∂η

)

− 2Reζ

(
Ĝ

∂Ĥ

∂η
− Ĥ

∂Ĝ

∂η

)
(27)

respectively. Next, following Liao [8], the rth-order deformation equations are
derived from (20), (21) as
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LH [Hr(η, ζ )− χrHr−1(η, ζ )] = h̄RH
r (28)

LG[Gr(η, ζ )− χrGr−1(η, ζ )] = h̄RG
r (29)

with the boundary conditions:

Hr(0, ζ ) = 0, Gr(0, ζ ) = 0,
∂Hr(η, ζ )

∂η

∣∣∣∣
η=0

= 0 (30)

Hr(1, ζ ) = 0, Gr(1, ζ ) = 0,
∂Hr(η, ζ )

∂η

∣∣∣∣
η=1

= 0 (31)

where, Hr(η, ζ ) = 1
r !

∂r Ĥ (η,ζ ;Q)
∂Qr

∣∣∣∣
Q=0

and Gr(η, ζ ) = 1
r !

∂r Ĝ(η,ζ ;Q)
∂Qr

∣∣∣∣
Q=0

. And

RH
r = ∂4Hr−1

∂η4 − Re(1− ζ )

(
ζ
∂2Hr−1

∂ζ ∂η2 − η

2

∂3Hr−1

∂η3 − 1

2

∂2Hr−1

∂η2

)
+ 2Reζ

r−1∑

n=0
(
Gn

∂Gr−1−n

∂η
+Hn

∂3Hr−1−n

∂η3

)
(32)

RG
r =

∂2Gr−1

∂η2 − Re(1− ζ )

(
ζ
∂Gr−1

∂ζ
− η

2

∂Gr−1

∂η

)
− 2Reζ

r−1∑

n=0
(
Gn

∂Hr−1−n

∂η
−Hn

∂Gr−1−n

∂η

)
(33)

and

χr =
{

1 r > 1

0 r ≤ 0
(34)

It is to be noted that the Eqs. (28) and (29) are linear and uncoupled ordinary
differential equations (ODEs) that can be solved respectively, in the order r =
1, 2, 3, . . . ., by using symbolic software such as Mathematica. Also note that the
variable for time, ζ , is considered only as a parameter, and as a consequence it
becomes easier solving for Hr(η, ζ ) and Gr(η, ζ ). The presence of the auxiliary
parameter, also known as the convergence control parameter h̄, provides us with a
simple way of guaranteeing the convergence of the solution series. Liao [8] showed
that a suitable value of h̄ can be selected by plotting the h̄-curves. One such curve is
shown in Fig. 1 and it is clear that for −1.5 ≤ h̄ ≤ −0.1 we can obtain convergent
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Fig. 1 h̄-curves at 10th-order
of homotopy approximations
for R = 10,Ω = 0
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Fig. 2 The flow fields for Re = 10,Ω = 0 obtained using 10th-order homotopy analysis method
(HAM) approximations (a) radial, (b) axial, (c) tangential

solutions at ζ = 0 and ζ = 1. In a similar way, we have selected suitable values of
h̄ to guarantee a convergent solution series for any other values of ζ ∈ (0, 1), Re

and Ω . The radial (H ′), axial (H ), and transverse (G) velocity profiles are shown
in Figs. 2 and 3 for different values of Ω keeping Re = 10, fixed for ζ ∈ [0, 1],
obtained using 10th-order HAM approximations. The rotor–stator case, i.e., when
the upper disk is static and the lower disk is rotating (Ω = 0), is shown in Fig. 2.
The flow is radially outward over the rotating disk and inward toward the disk at rest
for all ζ . The axial flow is from the stationary to the rotating one and the transverse
component of velocity varies almost linearly, increasing from its initial unsteady
value to the steady state as ζ increases from 0 to 1.
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Fig. 3 The flow fields for Re = 10,Ω = −1 obtained using 10th-order HAM approximations (a)
radial, (b) axial, and (c) tangential

The case of counter rotation Ω = −1 is presented in Fig. 3. It can be seen that
for ζ = 0.2, 0.4, 0.6, radial velocity is negative near to the disk placed at z = 0
and positive near to the other disk, but as ζ approaches 1 (ζ = 0.8, 1), the flow
region parts into three sections and there is a central core in which ∂H

∂η
is negative.

The value of H is negative for initial values of ζ , but changes its sign from positive
(nearby the disk at z = 0) to negative (nearby the disk at z = d) for ζ = 0.8, 1.
Again, the tangential component of velocity is seen to increase as ζ increases.

In Tables 1 and 2, we report the values of H ′′(0) and −G′(0) for ζ ∈ [0, 1] and
different Ω , keeping Re = 1 fixed. From Table 1 it is clear that, H ′′(0) increases
with increasing ζ , whereas Table 2 shows that G′(0) decreases with increasing ζ , for
all the values of the rotation rate shown. Moreover, good agreement of our results
with those reported by [11] can be seen at ζ = 1 from both the tables.

4 Conclusions

In this paper, an unsteady flow of a viscous incompressible fluid between two
coaxial rotating disks of infinite dimension is considered and analytical solutions
are produced by means of the HAM. Similarity variables reduce the governing
differential equations to a set of fully uncoupled and nonlinear system of PDEs,
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Table 1 10th-order HAM approximations for H ′′(0) when Re = 1 for different ζ and Ω

Ω = −0.3 Ω = 0 Ω = 0.5

ξ HAM results Ref. [11] HAM results Ref. [11] HAM results Ref. [11]

0.0 0 0 0

0.1 0.0102057 0.00996622 0.00674617

0.2 0.0204537 0.0199422 0.0134781

0.3 0.0307441 0.0299271 0.0201944

0.4 0.0410767 0.0399198 0.0268936

0.5 0.0514515 0.0499192 0.0335741

0.6 0.0618682 0.0599242 0.0402344

0.7 0.0723267 0.0699335 0.0468726

0.8 0.0828268 0.0799456 0.0534867

0.9 0.0933683 0.0899591 0.0600747

1.0 0.103951 0.10395088 0.0999722 0.09997221 0.0666342 0.6663419

Table 2 10th-order HAM approximations for −G′(0) when Re = 1 for different ζ and Ω

Ω = −0.3 Ω = 0 Ω = 0.5

ξ HAM results Ref. [11] HAM results Ref. [11] HAM results Ref. [11]

0.0 1.40912 1.08394 0.541969

0.1 1.39921 1.07633 0.538168

0.2 1.3892 1.06865 0.534346

0.3 1.37908 1.06091 0.530499

0.4 1.36885 1.05309 0.526626

0.5 1.35848 1.0452 0.522723

0.6 1.34799 1.03722 0.518787

0.7 1.33734 1.02915 0.514813

0.8 1.32655 1.02098 0.510797

0.9 1.31558 1.01269 0.506732

1.0 1.30442 1.30442355 1.00428 1.00427756 0.502614 0.50261351

which upon application of HAM are replaced by a sequence of linear ODEs.
As a result, this complicated unsteady nonlinear problem could be solved with
great ease. The velocity fields valid for all time are shown graphically under the
influence of the parameters of interest, such as rotation rate and Reynolds number.
Moreover, the quantities of physical interest, such as radial and tangential shear
stresses (H ′′(0),G′(0)) are computed and tabulated. Unlike all other previous
analytic solutions, solutions obtained in this study are valid for all time ζ ∈ [0, 1]
corresponding to τ ∈ [0,∞), in the entire spatial domain.
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Cross Diffusion Effects on MHD
Convection of Casson-Williamson Fluid
over a Stretching Surface with Radiation
and Chemical Reaction

M. Bhuvaneswari, S. Sivasankaran, H. Niranjan, and S. Eswaramoorthi

Abstract The thermal diffusion and diffusion-thermo effects on radiative mixed
convective flow and heat transfer of Casson-Williamson fluid over a stretching
surface are examined in the presence of uniform external magnetic field. The
thermal radiation and chemical reaction effects are included in the study. This
physical model is mathematically modelled by a set of nonlinear partial differential
equations with boundary conditions. The governing system of equations is reformed
into ordinary differential equations with the help of similarity variables, and
then they are solved using homotopy analysis method. The concentration profile
increases on increasing the dufour parameter, and the temperature profile increases
on increasing the radiation parameter.

1 Introduction

The study of boundary layer flow of non-Newtonian fluids has anticipated signifi-
cance in recent years because of its extensive applications in engineering discipline.
Less number of studies on flow of non-Newtonian fluids is available due to more
complex nature of such kind of flows which arise in the chemical processing
industry, plastics processing industry, mining industry, lubrication, and biomedical
flows [1–3]. Eswaramoorthi et al. [1] investigated the convective flow of viscoelastic
fluid over a surface in the presence of radiation and chemical reaction. Rushi Kumar
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and Sivaraj [2] studied the magneto-convection of viscoelastic fluid over a flat plate
and vertical cone with variable viscosity. In another study, they [3] examined the
effect of variable electric conductivity.

The cross diffusion effects are investigated by several researchers [4–6]. Ruhaila
et al. [4] explored the cross diffusion effects on the convective heat and mass transfer
of a nanofluid past a moving wedge with suction. Niranjan et al. [5] numerically
examined the soret and dufour effects on magneto-convection stagnation point flow
with slip condition and radiation. The chemical reaction effect on convection heat
transfer of nanofluid over a wedge in the presence of heat generation and suction was
explored by Ruhaila et al. [7]. Sivasankaran et al. [8] studied the chemical reaction
and slip effects on combined convection stagnation-point flow in a porous medium
with thermal radiation.

In this paper, we extend the study of MHD convective flow of Casson fluid with
chemical reaction and suction done by Shehzad et al. [9]. We include the thermal
radiation and soret and dufour effects on convective flow of Casson-Williamson
fluid over a stretching surface.

2 Mathematical Modelling

We consider the steady two-dimensional boundary layer flow of a Casson-
Williamson fluid over a stretching surface. Assume that the surface is moving
with velocity u = Uw = cx where c > 0. The x-axis is taken parallel to
the surface, and y-axis is perpendicular to the surface. A constant magnetic
field is applied in y-direction and neglected the induced magnetic field because
of the small effect of magnetic Reynolds number. Let Tw and Cw are the
surface temperature and concentration which are greater than the free stream
temperature T∞ and concentration C∞, respectively. Assume that the fluid has heat
absorbing/generating, and the thermal radiation, first-order chemical reaction, and
soret and dufour effects are considered. Under these assumptions, the governing
boundary layer equations with Boussinesq’s approximation are as follows:

∂u

∂x
+ ∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= v

(
1+ 1

β

)
∂2u

∂y2 +
√

2 ν* ∂u
∂y

∂2u
∂y2− σB2

0
ρ

u , (2)

u
∂T

∂x
+ v

∂T

∂y
= αm

(
1+ 16σ ∗T 3∞

3kk∗

)
∂2T

∂y2 +
DekT

cscp

∂2C

∂y2 +
Q

ρcp
(T − T∞) , (3)
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u
∂C

∂x
+ v

∂C

∂y
= De

∂2C

∂y2 +
DekT

Tm

∂2T

∂y2 − k1 (C − C∞) , (4)

where u and v are the velocity components in x and y directions, ν is the kinematic
viscosity, β the non-Newtonian Casson parameter, * is a time constant, σ is the
electrical conductivity of the fluid, ρ is the density, αm is the thermal diffusivity,
σ ∗ is the Stefan-Boltzmann constant, k is the thermal conductivity, k∗ is the mean
absorption coefficient, De is the mass diffusivity, kT is the thermal diffusion ratio,
cs is the free stream concentration, cp is the specific heat, Q is the internal heat
generation (>0) or absorption (<0) of the fluid, Tm is the mean fluid temperature,
and k1 is the coefficient of chemical reaction.

The boundary conditions of the above model are given by

u = Uw = ax, v = −Vw, T = Tw, C = Cw at y = 0

u→ 0,
∂u

∂z
→ 0, T → T∞, C → C∞ as y → ∞ (5)

Define the following similarity variables

η =
√

a

v
y, u = axf ′ (η) , v = −√avf (η) , θ = T − T∞

Tw − T∞
, φ = C − C∞

Cw − C∞
(6)

Substituting Eq. (6) into the Eqs. (2–4), we get the following non-dimensional form

(
1+ 1

β

)
f ′′′ + ff ′′ − f ′2 + λf ′′f ′′′ −Mf ′ = 0 (7)

(
1+ 4

3
Rd

)
θ
′′ + Prf θ ′ + PrDf φ′′ + PrHgθ = 0 (8)

φ′′ + Scf φ′ − ScCrφ + ScSrθ ′′ = 0 (9)

the boundary conditions become,

f (0) = fw, f ′ (0) = 1, f ′ (∞) = 0, f ′′ (∞) = 0, θ(0) = 1 ,

θ (∞) = 0, φ′ (0) = 1 , φ (∞) = 0 (10)

where λ = *x
√

2c2

v
, M = σB2

0
ρc , Pr = ν

αm
, Rd = 4σ ∗T 3∞

kk∗ , Df = DekT
νcscp

(Cw−C∞)
(T w−T∞)

,

Hg = Q
cρcp

, Sc = ν
De

, Sr = DekT
νTm

(T w−T∞)
(Cw−C∞)

, Cr = k1
c

, and fw = Vw√
cv

are the
Williamson parameter, Magnetic field parameter, Prandtl number, thermal radiation
parameter, dufour number, heat generation/absorption parameter, Schmidt number,
Soret number, chemical reaction parameter, and suction/injection parameter.



142 M. Bhuvaneswari et al.

The skin-friction coefficient, local Nusselt number, and the local Sherwood
number are important physical parameters, and the reduced skin-friction coefficient,
local Nusselt number, and local Sherwood number are given by

1

2
Cf

√
Re =

(
1+ 1

β

)
f ′′ (0)+ λ

2
f ′′2 (0) (11)

Nu/
√
Re = −

(
1+ 4

3
Rd

)
θ ′ (0) (12)

Sh/
√
Re = −φ′ (0) (13)

3 HAM Solutions

The initial approximations of homotopy analysis solutions are chosen as f 0 =
fw + 1 − e−η; θ0 = e−η; φ0 = e−η; the auxiliary linear operators Lf ,Lθ , and
Lφ are defined as Lf = f ′′′ − f ′; Lθ = θ ′′ − θ; Lφ = φ′′ − φ with satisfying
Lf

[
C1 + C2e

η + C3e
−η

] = 0; Lθ

[
C4e

η + C5e
−η

] = 0; Lφ

[
C6e

η + C7e
−η

] =
0, where Ci, (i = 1− 7) denotes the arbitrary constants. The general solution
of the Equations (7)–(9) is fm (η) = f ∗m (η) + C1 + C2e

η + C3e
−η, θm (η) =

θ∗m (η) + C4e
η + C5e

−η and φm (η) = φ∗m (η) + C6e
η + C7e

−η where f ∗m (η),
θ∗m (η) and φm (η) are the special solutions.The symbolic calculations are obtained
by Mathematica.

These general solutions contain the auxiliary parameters hf , hθ , and hφ . These
parameters are adjusting and controlling the convergence of the final solutions. The
hf , hθ , and hφ curves are plotted in Fig. 1. From this figure, we found the range
values of hf , hθ and hφ are −0.8 ≤ hf ≤ −0.2 and −1.3 ≤ hθ , hφ ≤ −0.2. It
is observed from our computation results that the HAM solution convergence in the
whole region of η when hf = hθ = hφ = −0.5. The order of approximation for
the converged solutions are given in Table 1.

Fig. 1 h-curve of
f ′′, θ ′, and φ′
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Table 1 Order of
approximations

Order −f ′′(0) −θ ′(0) −φ′(0)
1 0.73333 0.96333 1.13333

5 0.72562 0.98939 1.33811

10 0.72553 0.99719 1.34698

15 0.72553 0.99533 1.34771

20 0.72553 0.99533 1.34768

25 0.72553 0.99533 1.34768

30 0.72553 0.99533 1.34768

35 0.72553 0.99533 1.34768

40 0.72553 0.99533 1.34768

1.0

0.8

0.6

0.4f’(
η

)

f’(
η

)
f’(

η
)

f’(
η

)

0.2

0.0
0 1 2 3

β = 0.3, 0.5, 1, 2, 5

 M = 0, 0.5, 1 fw = –0.5, 0, 0.5

Γ = 0, 0.3, 0.5, 0.6, 0.7

4
η η

η η

5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

(a) (b)

(c) (d)

Fig. 2 Velocity profiles for different values of (a) β, (b) Γ , (c) M, (d) fw

4 Results and Discussion

The results are presented in different combinations of pertinent parameters involved
in the study, (h = −0.5, β = 0.5, λ = 0.5, fw = 0.5, Hg = −0.2, Rd =
0.2, M = 0.1, Cr = 1, Pr = 1.2, Sc = 1, Df = 0.1, Sr = 0.3). Figure 2
shows the velocity profiles for different values of β, Γ , M, fw. It is found that the
velocity of the fluid diminishes by these parameters. The temperature profiles for
different values of fw, Rd, Df, and Hg are plotted in Fig. 3. The thermal boundary
layer thickness reduces with increasing the suction values. The thermal radiation,
dufour, and heat generation effects boosted up the temperature inside the boundary
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Fig. 3 Temperature profiles for different values of (a) fw, (b) Rd, (c) Df, (d) Hg
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Fig. 4 Concentration profiles for different values of (a) Sr, (b) Cr, (c) fw
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Table 2 Shows that the
complete agreement between
the comparison results exists.
This gives confidence in the
numerical results to be
reported subsequently

β M fw Present study Ref. [6]

0.5 0.25 0.5 2.20256 2.20256

0.9 0.25 0.5 1.94558 1.94558

1.4 0.25 0.5 1.75799 1.75799

2.0 0.25 0.5 1.64194 1.64195

0.8 0 0.5 1.77069 1.77069

0.8 0.36 0.5 2.01706 2.01706

0.8 1.44 0.5 2.60637 2.60638

0.8 2.25 0.5 2.96569 2.96570

0.8 0.25 0 1.67705 1.67705

0.8 0.25 0.7 2.06318 2.06318

0.8 0.25 1.4 2.51728 2.51728

0.8 0.25 2 2.95256 2.95256

layer. Figure 4 depicted the effect on concentration profiles for different values
of Sr, Cr, and fw. The soret effect enhances the thickness of the solutal boundary
layer. However, concentration decreases when increasing the chemical reaction and
suction parameters.

5 Conclusion

The soret and dufour effects on radiative mixed convective flow and heat transfer of
Casson-Williamson fluid over a stretching surface are examined in the presence of
uniform external magnetic field and first-order chemical reaction. The governing
equations are solved by homotopy analysis method. It is concluded from the
study that temperature (concentration) enhances with dufour (soret) parameter.
Temperature enhances with increasing radiation parameter, and the thickness of the
solutal boundary layer reduces with chemical reaction.
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Study of Steady, Two-Dimensional,
Unicellular Convection in a
Water-Copper Nanoliquid-Saturated
Porous Enclosure Using Single-Phase
Model

P. G. Siddheshwar and B. N. Veena

Abstract In the present paper, we study Brinkman-Bénard convection in
nanoliquid-saturated porous enclosure with vertical walls being adiabatic and
horizontal walls being isothermal for two velocity boundary combinations, namely,
free-free (FF) and rigid-rigid (RR). Brinkman model has been modified in the
present study to account for added nanoparticles. Thermophysical properties
of nanoliquid in a saturated porous medium as a function of corresponding
properties of base liquid, nanoparticle and porous medium are modelled using
phenomenological laws and mixture theory. An analytical study has been made of
Brinkman-Bénard convection in a porous enclosure using single-phase model. The
effect of nanoparticles is to advance onset of convection and enhance heat transfer,
whereas porous medium facilitates delayed onset and retainment of heat energy in
the system. The present study shows good agreement with those of previous works.

Keywords Porous enclosure · Free-free · Rigid-rigid and single-phase model

1 Introduction

Nanoliquid is a base liquid containing nano-sized particles (termed nanoparticles)
with size ranging from 1 to 100 nm. These liquids are engineered colloidal suspen-
sions of nanoparticles in a base liquid. Masuda et al. [4], Eastman et al. [6] and
Das et al. [7] have reported remarkable enhancements in the thermal conductivity of
nanoliquid with a very low volume fraction of nanoparticles. The word nanoliquid
was first coined by Choi and Eastman [5]. Nanoliquids have many applications in
heat transfer which includes microelectronics, fuel cells, pharmaceutical processes,
hybrid powered engines, engine-cooling/vehicle thermal management, domestic
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refrigerator, chiller, heat exchanger, grinding and machining [13]. The study of heat
transfer in nanoliquids is normally done with one of the three types of models,
namely, single-phase model of Khanafer-Vafai-Lightstone [8, 12, 16], two-phase
model of Buongiorno [10] and modified Buongiorno two-phase model [14]. Heat
transfer in enclosures filled with nanoliquids has been studied by many authors
[8, 15, 16], and review of literature shows that most of the enclosure problems have
been solved numerically, and an analytical study would thus be a welcome effort.

The objectives of the present paper are to study:

• Boundary effects on onset of convection and heat transfer in an enclosure using
single-phase model by considering water-copper as nanoliquid and 30% glass
fibre reinforced polycarbonate as porous material.

• Unicellular convection and the range of aspect ratio, A, in which unicellular
convection is valid.

• The effect of volume fraction, χ , Brinkman number, ", and porous parameter,
σ 2 on the onset of instability and on heat transfer.

2 Formulation of the Problem

A nanoliquid-saturated porous enclosure of breadth b and height h is considered.
The water-copper nanoliquid is assumed to be a Newtonian viscous liquid (water)
with suspended copper nanoparticles. The porous medium is assumed to be
homogeneous and isotropic, and nanoparticles are assumed to be spherical, of same
size, and manufactured at the same temperature and other operating conditions.
The upper and lower boundaries are maintained at constant temperatures T0 and
T0 + !T (!T > 0), respectively, and the vertical walls are insulated. We assume
that the Oberbeck-Boussinesq approximation is valid. The flow configuration is as
shown in Fig. 1.

Fig. 1 Schematic representation of the flow configuration. (a) Square enclosure. (b) Tall enclo-
sure. (c) Shallow enclosure
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The non-dimensional form of equations for studying Brinkman-Bénard convec-
tion are given by:

a"∇4
A% − aσ 2A2∇2

A% − a2RaneA
4 ∂$

∂X
= 0, (1)

− A
∂%

∂X
+ a M∇2

A$+ A
∂(%,$)

∂(X,Z)
= 0. (2)

The non-dimensional parameters appearing in Eqs. (1) and (2) are:

a = αne

αbl

, " = μne

μnl

, σ 2 = b2

K
, A = h

b
, Rane = (ρβ)neg!T b3

φ2.5μneαne

. (3)

The thermophysical properties of nanoliquid as a function of corresponding prop-
erties of base liquid and nanoparticles are modelled using either phenomenological
laws [1, 3] or mixture theory, and the properties of nanoliquid-saturated porous
medium are obtained from mixture theory [9] (see [16]). To solve Eqs. (1) and (2),
we consider two sets of boundary conditions:

• Case (i): Free-free isothermal horizontal boundaries and free-free adiabatic
vertical boundaries

% = ∂2%

∂Z2 = $ = 0 at Z = −1

2
,

1

2
and

−1

2
< X <

1

2

% = ∂2%

∂X2 =
∂$

∂X
= 0 at X = −1

2
,

1

2
and

−1

2
< Z <

1

2

⎫
⎪⎪⎬

⎪⎪⎭
. (4)

• Case (ii): Rigid-rigid isothermal horizontal boundaries and rigid-rigid
adiabatic vertical boundaries

% = ∂%

∂Z
= $ = 0 at Z = −1

2
,

1

2
and

−1

2
< X <

1

2

% = ∂%

∂X
= ∂$

∂X
= 0 at X = −1

2
,

1

2
and

−1

2
< Z <

1

2

⎫
⎪⎪⎬

⎪⎪⎭
. (5)

3 Nonlinear Stability Analysis

Case (i) We consider minimal number of modes in the double Fourier series
solution to describe the steady finite amplitude convection and the same is given
by

%(X,Z) =
√

2Mδ2
Aa

Aπ2 U sin
(
πX + π

2

)
sin

(
πZ + π

2

)
, (6)
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$(X,Z) =1

2
− Z + 1

rπ

[
−√2V cos

(
πX + π

2

)
sin

(
πZ + π

2

)

−W sin (2πZ + π)] , (7)

where r = RaFF
ne

RaFF
nec

and RaFF
nec

represents critical Rayleigh number for free-free

boundary combination given by:

RaFF
nec

= Mδ4
A

π2A3

[
"δ2

A

A2 + σ 2

]
. (8)

Substituting Eqs. (6) and (7) in Eqs. (1) and (2), we get nonlinear algebraic equations
connecting the amplitudes in the form:

V − U = 0, rU − UW − V = 0, UV − b1W = 0, (9)

where U, V and W are the amplitudes of convection, b1 = 4π2

δ2
A

and δ2
A = π2(A2+1).

Estimation of Enhanced Heat Transport
The Nusselt number, Nune, in a nanoliquid-saturated porous enclosure for the
stationary mode of convection evaluated at the lower boundary Z = − 1

2 is given
by

Nune =

[
−kbe

∫ 1
2

− 1
2

d$b

dZ
dX

]

Z=− 1
2

+
[
−kne

∫ 1
2

− 1
2

∂$

∂Z
dX

]

Z=− 1
2[

−kbe
∫ 1

2

− 1
2

d$b

dZ
dX

]

Z=− 1
2

, (10)

where $ = T − T0

!T
, $b = Tb − T0

!T
.

On simplifying Eq. (10), we get Nusselt number expression for free-free bound-
aries as follows:

Nune = 1+ 2
kne

kbe

[
1− 1

r

]
. (11)

Case (ii) The minimal number of modes in the double Fourier series solution to
describe the steady finite amplitude convection in a nanoliquid is given by

%(X,Z) = Mδ2
Aa

2
√

2AP5
UCf e(X)Cf e(Z), (12)
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$(X,Z) =1

2
− Z + P2

rP5

[
−√2V cos

(
πX + π

2

)
sin

(
πZ + π

2

)

−W sin (2πZ + π)] ,

(13)

where Cf e(X) and Cf e(Z) are Chandrashekar even function [2], r = RaRR
ne

RaRR
nec

,

and RaRR
nec

represents critical Rayleigh number expression for rigid-rigid boundary
combination given by:

RaRR
nec
= Mδ2

A

4A3P 2
2

[
"P3(1+ A4)

A2 +"P4 − (1+ A2)P1σ
2
]
. (14)

The various quantities appearing in Eq. (14) are:

P1 = 1

16
P6P7P8, P2 = 16π3μ4

1

(π4 − μ4
1)

2
, μ1 = 4.73004074,

P3 = μ2
1

16
P6P

2
7 , P4 = μ2

1

8
P6P

2
8 , P6 = sec4[μ1

2
] sech4[μ1

2
],

P7 = 2 sin[μ1] cosh2[μ1

2
] + 2 sinh[μ1] cos2[μ1

2
] − μ1(2+ cos[μ1] + cosh[μ1]),

P8 = 2 sin[μ1] cosh2[μ1

2
] − 2 sinh[μ1] cos2[μ1

2
] − μ1(cos[μ1] − cosh[μ1]).

Substituting Eqs. (12) and (13) in Eqs. (1) and (2), we get the algebraic equations
connecting the amplitudes in the form:

V − U = 0, rU − UW − V = 0, UV − b1W = 0. (15)

Note that Eq. (15) is essentially Eq. (9) but with a different scaling of quantities.

Estimation of Enhanced Heat Transport
Following the procedure of free-free boundaries we get the expression for Nusselt
number for nanoliquid-saturated porous medium, Nune , for rigid-rigid boundaries
as follows:

Nune = 1+ 2
kne

kbe

P2

P5

[
1− 1

r

]
, (16)
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where

P5 = 32π3μ4
1(39π4 + μ4

1)

(π4 − μ4
1)

2(81π4 − μ4
1)

,

and the other quantities are as defined earlier.

4 Results and Discussions

Brinkman-Bénard convection in a nanoliquid-saturated porous medium is investi-
gated by considering water as base liquid, copper as nanoparticle and 30% glass
fibre reinforced polycarbonate as porous material. Thermophysical properties of
base liquid [12], nanoparticles [12] and porous medium [17] (see Table 1) are
collected from literature. Thermophysical properties of nanoliquid-saturated porous
medium are calculated by considering nanoparticles’ volume fraction, χ=0.06, and
porous medium with porosity, φ=0.88, at 300 K using phenomenological laws and
mixture theory.

From the study of linear theory, we can rewrite Rayleigh number, Rane, for free-
free and rigid-rigid boundaries as follows:

Rane = F Rabe, F = (ρβ)ne

(ρβ)be

μbe

μne

αbe

αne

. (17)

Hence Rane < Rabe. This shows us that the presence of nanoparticles in base liquid
advances onset of convection.

From Fig. 2a it is observed that onset of convection is advanced with the increase
in aspect ratio, A, and a sudden rise in the scaled Rayleigh number, r, is observed
when value of A decreases below 0.85 which shows the invalidity of the result for
unicellular assumption. The condition A << 1 refers to classical Rayleigh-Bénard
convection problem. Hence we conclude that unicellular convection is possible in
the range 0.85 < A < 1.2. Further, from Fig. 2b, c, it is observed that onset of
convection is delayed with increase in Brinkman number, ", and porous parameter,

Table 1 Thermophysical properties of porous material (30% glass fibre reinforced polycarbonate)
at 300 K [17]

Thermal
expansion Specific Thermal
coefficient heat conductivity

Quantity Density [kgm−3] [K−1 × 105] [J/kg-K] [W/m-K] Porosity

30% glass
fibre
reinforced
polycarbonate

ρs=1430 βs=3.5 (Cp)s=1130 ks=0.24 φ=0.88 [9]
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Fig. 2 Variation of Nusselt number for nanoliquid-saturated porous medium, Nune, or scaled
Rayleigh number, r, for different values of aspect ratio, A, Brinkman number, " and porous
parameter, σ 2. (a) σ 2 = 10 and " = 1.2. (b) A = 1 and σ 2 = 10. (c) A = 1 and " = 1.2

σ 2, for free-free and rigid-rigid boundaries. Hence χ and A have destabilizing
effect, whereas " and σ 2 have stabilizing effect on the onset of convection. Further,
from Fig. 2a, it is observed that enhanced heat transfer is seen in enclosures with
high-aspect ratio, compared to enclosures with low-aspect ratio in the case of both
free-free and rigid-rigid boundaries. From Fig. 2b, c, it is observed that heat transfer
decreases with increase in " and σ 2. From Fig. 2 it is further clear that free-
free boundaries facilitates greater amount of heat transport compared to rigid-rigid
boundaries.

Our results in a limiting case were compared with existing results. In the case
of rigid-rigid boundary condition with χ = 0.08 and RaRR

nl =5000 for water-copper
nanoliquid occupying rectangular enclosures, our results tally with those of Elhajjar
et al. [11] for aspect ratios 0.8687 and 0.8689, respectively.
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Nomenclature β thermal expansion coeffi-
cient

Latin Symbols χ volume fraction

a ratio of thermal diffusivity !T temperature difference

A aspect ratio " Brinkman number

Cp specific heat μ dynamic viscosity

g acceleration due to gravity
(0, 0,−g)

φ porosity

k thermal conductivity % non-dimensional stream
function

K permeability ρ actual density

M ratio of specific heat $ non-dimensional
temperature

Nu Nusselt number

r scaled Rayleigh number Subscripts
Ra Rayleigh number b basic state

T temperature be base liquid-saturated porous
medium

T0 temperature at the lower
boundary

c critical

X non-dimensional horizontal
coordinate

ne nanoliquid-saturated porous
medium

Z non-dimensional vertical
coordinate

nl nanoliquid

Greek Symbols s solid

α thermal diffusivity
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The Effects of Homo-/Heterogeneous
Chemical Reactions on Williamson MHD
Stagnation Point Slip Flow: A Numerical
Study

T. Poornima, P. Sreenivasulu, N. Bhaskar Reddy, and S. Rao Gunakala

Abstract The objective of the present paper is to examine numerically the chemical
reaction and mass transfer effects on magnetohydrodynamic Williamson fluid past
an exponentially stretching sheet. The basic flow field equations are transformed to
coupled, nonlinear ordinary differential equations using suitable similarity variables
and then solved using the Runge–Kutta–Fehlberg method. The effects of various
material parameters on the flow field momentum and species in addition to wall
shear stress are computed effectively and portrayed graphically. The diffusion rate is
low for both homogeneous and heterogeneous reactions. Acceleration in the values
of Williamson fluid parameters accelerates the friction.

1 Introduction

There is an increased need to model the behavior of rheological fluids because
of their huge application in the technological and engineering process such as
coating items with emulsions, polymer solutions, paints, etc., One of these is pseu-
doplastic fluids, which are non-Newtonian fluid exhibiting shear-thinning behaviors.
The model was developed in 1929 by Williamson to examine pseudoplastic
flows. Nadeem et al. [1] investigated the Williamson fluid flow past a stretching

T. Poornima (�)
Department of Mathematics (SAS), VIT University, Vellore, India
e-mail: poornima.t@vit.ac.in

P. Sreenivasulu
Department of Mathematics, SVCET, Chittoor, Andhra Pradesh, India
e-mail: hod_sh@svew.edu.in

N. Bhaskar Reddy
Department of Mathematics, S.V. University, Tirupati, Andhra Pradesh, India

S. Rao Gunakala
Department of Mathematics and Statistics, The University of the West Indies, St. Augustine,
Trinidad and Tobago
e-mail: sreedhara.rao@sta.uwi.edu

© Springer Nature Switzerland AG 2019
B. Rushi Kumar et al. (eds.), Applied Mathematics and Scientific Computing,
Trends in Mathematics, https://doi.org/10.1007/978-3-030-01123-9_17

157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01123-9_17&domain=pdf
mailto:poornima.t@vit.ac.in
mailto:hod_sh@svew.edu.in
mailto:sreedhara.rao@sta.uwi.edu
https://doi.org/10.1007/978-3-030-01123-9_17


158 T. Poornima et al.

sheet. Mabood et al. [2] analyzed the magnetohydrodynamic (MHD) effects on
Williamson nanofluid considering radiation. Bing et al. [3] analyzed the influence of
heat transfer on Williamson nanofluids along a stretching sheet taking into account
thermal radiation.In the world of chemical engineering and in some other industrial
processes, the reaction between the species with the help of a catalyst or occurring
in different media is a reliable concept. If the reaction occurs in a uniform phase it
is termed ‘Homo,’ whereas if the reaction occurs in different phases in the presence
of a catalyst, ‘Hetero’ is coined. The rate of reaction is proportioned directly to the
species concentration (first-order chemical reaction). Shehzad et al. [4] discussed
and portrayed the impact of the chemical reaction on Casson fluid. The effects
of a chemical reaction on a circular cylinder were studied by Poornima et al.
[5]. With heat generation/absorption, Jena et al. [6] investigated the behavior of
Jeffry fluid in porous media, taking into account the chemical reaction. In most
of the problems, no slip is considered. In natural and engineering processes such
as suspensions, emulsions, foams, etc., the slip phenomenon is observed. Recent
application of a boundary slip is the polishing of internal cavities and artificial heart
valves. Sheikh and Abbas [7] discussed the chemical reaction effects on Casson
fluid toward a stretching/shrinking sheet with slip conditions. Ibrahim and Makinde
[8] portrayed their ideas on the stagnation point of Casson nanofluid with a Navier
slip thematically. Poornima et al. [9] analytically discussed the slip flow regime on
Casson rheological fluid.

2 Basic Transport Equations

Consider a steady two-dimensional flow past an exponential stretching sheet on
an MHD Williamson fluid with slip effects. The fluid is confined to y > 0.
The wall is kept stretched exponentially with a stretching velocity Uw = be

x
L

and a stagnant velocity Ue = ae
x
L ,a, b > 0. A variable magnetic field B =

B0e
x

2L , is normally applied to the sheet. The interactions between the homo-
and heterogeneous reactions are examined for this precise model using the given
mathematical representation, which is as follows:

A+ 2B −→ 3B, rate = kccd
2

A −→ B, rate = kscd
2 (1)

with the species constant rates ks, kc and c,d are the concentrations of chemical
species A and B. The schematic representation of the model is portrayed in Fig. 1.
The boundary layer equations with the restricted conditions of the flow field is of
the form:

∂u

∂x
+ ∂u

∂y
= 0 (2)
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x

y

Stagnation point B0

Fig. 1 Flow model representation

u
∂u

∂x
+ v

∂u

∂y
= U∞

dU∞
dx

+ ν
∂2u

∂y2 +
√

2Γ ν
∂u

∂y

∂2u

∂y2 −
σB2(u− U∞)

ρ
(3)

u
∂c

∂x
+ v

∂c

∂y
= DA

∂2c

∂y2 − kccd
2 (4)

u
∂d

∂x
+ v

∂d

∂y
= DB

∂2d

∂y2 + kccd
2 (5)

y = 0 : u = Uw(x)+ Nν

(
∂u

∂y

)
+ Γ√

2

(
∂u

∂y

)2

, V = Vw,

DA
∂c

∂y
= ksc, DB

∂d

∂y
= − ksc

y −→∞ : u = Ue(x), V = 0, c = c0, d = 0 (6)

where u and v denote the velocity components in x and y directions, ν is the
kinematic viscosity, DA,DB are the respective diffusion coefficients. N is the
velocity slip, Vw = −V0e

x
2L the suction/blowing parameter, Γ the Williamson

parameter.
Introducing the similarity variables:

η = y

√
b

2Lν
e

x
2L , g(η) = d

c0
, h(η) = d

c0
,Ω = Γ

√
b3e

3x
L

νL
, S = V0√

bν
2L

, δ = a

b
,

M = 2Lσ B2
0

ρb
, Sc = ν

DA
, ς = DB

DA
,N0 = N

√
νb

2L
, κ = kc c

2
0L

d
, κs = ks√

ReDA

(7)
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The flow field equation turns dimensionless and takes the following form:

f ′′′ + ff ′′ + 2(δ2 − (f ′2))+Ωf
′′
f
′′′ −M(f

′ − δ) = 0 (8)

g′′ + Scfg′ − κgh2 = 0 (9)

h′′ + Scf h′ + κgh2 = 0 (10)

The associated boundary conditions are as follows:

f ′(0) = 1+N0

(
f ′′(0)+Ωf ′′2(0)

)
, f = S, g′(0) = κsg(0), ςh′(0) = −κsh(0)

f ′ −→ δ, g −→ 1, h −→ 0 as η −→∞ (11)

Here, Ω is the Williamson parameter, δ the velocity ratio (stagnation) parameter,
ς ratio of diffusion coefficients, N0 the velocity slip parameter, κ the measure of
strength of the homogeneous reaction, κs the measure of strength of the heteroge-
neous parameter. It is assumed here that ς = 1, i.e., the diffusion coefficients, are
equal. In most practical applications, the diffusion coefficients of chemical species
are required to be of comparable size. Thus, the assumption leads to the relation:
g(η)+ h(η) = 1.

Hence, the species equations (9) and (10) reduce and give the final form

φ′′ + Scf φ′ − κφ
(

1− φ2
)
= 0 (12)

The respective boundary conditions are

φ′ = κsφ at η = 0

φ −→ 1 as η −→∞ (13)

Engineering quantities of our interest are calculated as

Cf = τw

ρU2
w(x)

where τw = μ

[(
∂u

∂y

)
+ Γ√

2

(
∂u

∂y

)2
]

y=0

⇒√
2ReCf = f ′′(0)+ Ω

2
f ′′2(0)

ShRe
1
2 (x) = −φ′(0) (14)
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3 Results and Discussion

To see in detail the effects of various material parameters found in the flow field
on the fluid velocity, concentration in addition to the skin friction coefficient and
Sherwood number is illustrated through graphs and tables. However, for want
of space, here, we have shown the effects of few important parameters using
graphs. The several physical parameters present are the fluid parameter (Williamson
parameter) Ω , slip (N0), the suction/injection (S), and the stretching parameter (δ).

Figure 2 represents the effect of the homogeneous chemical reaction parameter
on solutal concentration. Species concentration decreases near the wall within the
region 0 <= h(η) <= [0, 3], while the trend seems reversed in the region η > 3.
This is due to the fact that reactions occurring near the plate diffuses species more
effectively than in the ambient stream.

Figure 3 represents the effect of heterogeneous chemical reaction parameter on
solutal concentration. If κs = 0, then φ = 1, which implies that the absence of the
reaction is almost linear. As κs increases, greater dispersion of species particles
of the Williamson fluid occurs, thereby decreasing the solutal concentration.
Interestingly, a reverse trend is observed after η > 3. Figure 4 portrays the influence
of the Williamson parameter on the fluid concentration. As the fluid parameter
increases, the solutal concentration decreases as the concentration boundary layer
thickness reduces. It is seen that all the profiles coincide at the point η = 3.0 and
reach a maximum of φ = 1.0.

The velocity profiles versus the stretching parameter is shown in Fig. 5. As both
stretching and stagnant velocity are equal, then the momentum of the fluid is linear.
If a < b, then the profiles are under the case of a = b, i.e., the motion of the fluid
descends near the plate and linear motionobserved as it approaches free stream.
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Fig. 2 Solutal profiles versus homogeneous chemical reaction parameter
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Similarly, if a > b, then the profiles are over the linear profile a = b, i.e., the fluid
momentum ascends and approaches linearly to the free stream. Figure 6 portrays the
influence of partial slip on the motion of the fluid. Owing to the partial slip presence,
near the plate, the fluid slips within the layers, thereby reducing fluid movement.

The influence of the Williamson fluid parameter on the translational velocity
is portrayed in Fig. 7. Near the sheet surface, the profiles are descending and the
profiles coincide at the point of inflection η = 1.5; later they ascend and reach the
free stream.

Table 1 presents the effect of various pertinent parameters on the wall shear
stress and Sherwood number. As Navier’s slip increases, the skin friction coefficient
increases and increases the rate of mass transfer. Homogeneous and heterogeneous
reactions influence the fluid flow, particularly on the mass transfer. The transfer rate
of species is lower if the homogeneous reaction takes place. Suppose if the reaction
between the heterogeneous particles takes place, the diffusion rate decreases. The
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Table 1 Computation of the
skin friction coefficient and
Sherwood number for various
physical parameters

N0 S κ κs Ω δ Cf −φ′(0)
1.0 −0.26252 −1.9310

2.0 −0.1598 −1.5190

0.5 −0.1 −0.4413 −0.0380

1.0 −0.4003 1.8499

0.1 −0.3773 −0.1033

0.5 −0.3773 −0.2075

0.1 −0.3773 −1.8565

0.5 −0.3773 0.1291

0.1 −0.4094 −0.8290

0.5 −0.3773 0.1291

0.4 0.4873 0.0692

0.6 0.3773 0.1291

ascending fluid parameter increases the friction at the wall and also increases the
species transfer rate. For gases, the diffusion transfer rate is 0.1497 in the presence
of a chemical reaction. In the case of water, the rate of species transfer is 0.055 with
chemically reactive substances.

4 Conclusions

A computational analysis is carried out to study the effect of mass transfer with slip
effects on MHD Williamson fluid flow taking the chemical reaction into account.
Numerical computations are performed and the outcomes are: The slip parameter
decreases the motion of the fluid. The Williamson parameter decreases the velocity
near the wall and increases the profiles in the ambient flow. Species diffusion and its
rate is low in cases of both homogeneous and heterogeneous reaction. Acceleration
in the values of the Williamson fluid parameter accelerates the friction.
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The Influence of Wall Properties on the
Peristaltic Pumping of a Casson Fluid

P. Devaki, A. Kavitha, D. Venkateswarlu Naidu, and S. Sreenadh

Abstract Wall properties effect has been investigated on the peristaltic flow of
Casson fluid in a channel by assuming long wavelength and low Reynolds number.
The governing equations are solved analytically to find the expression for velocity
and stream function. The effect of different parameters of wall and fluid properties
on the velocity and stream function is discussed through graphs. The results obtained
create interest among young researchers to concentrate on the wall effects of
different types of Newtonian and non-Newtonian fluids in the presence of peristalsis.

1 Introduction

In general fluid flows from high pressure to low pressure in nature but there are
certain physical situations where it is essential for the transport of fluid from low
pressure to high pressure and this is not possible by normal flow technique. Such
type of fluid transport takes place through the phenomenon of peristalsis. Peristalsis
pumps fluids from one place to another in many physiological ducts of the human
body. This effect of peristalsis has to be considered as an important effect whenever
the study is based on the wall properties of the channel or tube.

Wall properties play a vital role in the study of blood flow in the ducts of living
organisms. As the organs like arteries, capillaries and veins are elastic in nature,
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this elasticity finds its impact on the flow of blood in the tube or channel. The
blood can in general be considered as Newtonian or non-Newtonian fluid. The past
investigations reveal the fact that the blood mostly behaves like a non-Newtonian
fluid. There are many non-Newtonian fluid models among which the blood behaves
like a Casson model at very less shear rates, suggested by Scott Blair [2]. Casson
[3] says that at the yield stress of the blood is zero at low shear rates. The blood
was considered as a two-fluid model by Srivastava and Srivastava [8] and they
also involved the effect of peristalsis and the two fluids considered are Casson and
Newtonian fluids. Vajravelu et al. [6, 7] assumed blood as Herschel–Bulkley fluid
and they obtained many interesting results in the presence of peristaltic pumping of
fluid in a channel and inclined tube, respectively.

The effect of yield stress and peristalsis on the flow of fluid in a tube with
elasticity was studied by Vajravelu et al. [9]. As the Herschel-Bulkley fluid is the
special case of Newtonian, Bingham and Power-law fluids. The same investigation
was also concentrated for these fluids and results were given for all four different
fluids. Micropolar fluid flow with peristaltic pumping under the effect of wall
properties was investigated by Sankad and Radha Krishnamacharya [5] in a channel
with inclination. Nadeem and Ijaz [4] studied on the elastic artery including the
effect of stenosis overlap when the blood flows in a tube. Pseudo plastic features was
involved by Akbar and Nadeem [1] with blood flow and investigated on the stenosis
of the tube. Herschel–Bulkley fluid in a tube with elasticity under the influence of
peristalsis was analysed. Vajravelu et al. [10] investigated on elastic tube by taking
Casson model as the non-Newtonian model of blood along with peristalsis. The
present paper deals with the Casson model under the effect of wall properties and
peristalsis. The mathematical model was solved analytically and obtained velocity
and stream function in terms of various elastic parameters.

2 Mathematical Modeling

A two dimensional channel wall effects of the Casson fluid is investigated including
peristalsis. The peristaltic wave of the channel is given by

y = η(x, t) = d(x)+ ϕSin
2π

λ
(X − ct)) (1)

where d(x) = d +mX,m� 1
φ is the amplitude, λ is the wavelength, d is the mean half width of the channel

and m′ is the dimensional non-uniformity of the channel.
The equations governing the motion for the present problem are

∂u

∂x
+ ∂w

∂y
= 0 (2)
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ρ

(
∂u

∂t
+ u

∂u

∂x
+w

∂u

∂y

)
= −∂p

∂x
+μ

(
∂2u

∂x2

)
+ ∂

∂y

(
τ

1/2

0 +
(
−μ

∂u

∂y

)1/2
)2

(3)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂y

)
= −∂p

∂y
+ μ

(
∂2w

∂x2 +
∂2w

∂y2

)
(4)

where u,w are the components of velocity along x-axis, y-directions, respectively,
ρ is the density, μ is the coefficient of velocity of the fluid, p is the pressure, d is
the mean half width of the channel, Φ is the amplitude, λ is the wavelength, c is the
phase speed of the wave and m′ is the dimensional non-uniformity of the channel.

The governing equations of motion of the flexible wall may be expressed as

C∗(h) = p − p0 (5)

where C∗ is an operator, which is used to represent the motion of stretched
membrane with viscosity damping forces such that

C∗ = −τ
∂2

∂x2 +m1
∂2

∂t2 + c1
∂

∂t
(6)

Here τ is the elastic tension in the membrane, m1 is the mass per unit area, c1 is the
coefficient of viscous damping forces and p0 is the pressure on the outside surface
of the wall due to the tension in the muscles.

Continuity of stress at y = η and using x-momentum equation yields

∂C∗(h)
∂x

= −∂p

∂x
= μ

(
∂2u

∂x2

)
+ ∂

∂y

(
τ

1/2

0 +
(
−μ

∂u

∂y

)1/2
)2

−ρ

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂y

)

(7)

u = 0 at y = η = d +m′x + aSin
2π

λ
(X − ct) (8)

For simplicity, we assume that p0 = 0.
Introducing ζ such that u = ∂ζ

∂y
and w = − ∂ζ

∂x
and the following non-dimensional

quantities:

x ′ = x

λ
, y ′ = y

d
, ζ ′ = ζ

cd
, t ′ = ct

λ
, h′ = h

λ
, p′ = d2p

cλμ
, k′ = k

d2 , τ ′0 =
dτ0

cμ

The non-dimensional governing equations after dropping primes, we get

Rδ

(
∂2ζ

∂t∂y
+ ∂ζ

∂y

∂2ζ

∂x∂y
− ∂ζ

∂x

∂2ζ

∂y2

)
= −∂p

∂x
+δ2

(
∂3ζ

∂x2∂y

)
+ ∂

∂y

(
τ

1/2

0 +
(
−∂2ζ

∂y2

)1/2
)2

(9)

Rδ

(
∂2ζ

∂t∂x
+ ∂ζ

∂y

∂2ζ

∂x2 −
∂ζ

∂x

∂2ζ

∂x∂y

)
= −∂p

∂y
+ δ4

(
∂3ζ

∂x3

)
+ δ2

(
∂3ζ

∂x∂y2

)
(10)
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∂ζ

∂y
= 0 at y = η = 1+mx + εSin2π(x − t) (11)

δ2
(

∂3ζ

∂x2∂y

)
+ ∂

∂y

(
τ

1/2

0 +
(
−∂2ζ

∂y2

)1/2)2

− Rδ

(
∂2ζ

∂t∂y
+ ∂ζ

∂y

∂2ζ

∂x∂y
− ∂ζ

∂x

∂2ζ

∂y2

)

=
(
E1

∂3

∂x3 + E2
∂3

∂x∂t2 + E3
∂2

∂x∂t

)
η

(12)

Non-dimensional boundary conditions are

ζp = 0 at y = 0 ζyy = 0 at y = 0 (13)

where ε = φ
d
, δ = d

λ
are geometric parameters, R = cdρ

μ
is the Reynolds number,

E1 = τd3

λ3μc
, E2 = m1cd

3

λ3μ
, E3 = cd3

λ2μ
are the non-dimensional elastic parameters,

m = λm′
d

is the non-uniform parameter.

3 Solution of the Problem

Using the long wavelength and low Reynolds number approximations, one can find
from Eqs. (9) to (12) that

0 = −∂p

∂x
+ ∂

∂y

(
τ

1/2

0 +
(
−∂2ζ

∂y2

)1/2)2

(14)

0 = −∂p

∂y
(15)

Equation (15) shows that p is not a function of y. On differentiating Eq. (14) with
respect to y, we get

∂2

∂y2

(
τ

1/2

0 +
(
−∂2ζ

∂y2

)1/2)2

= 0 (16)

From Eq. (12) we get

∂

∂y

(
τ

1/2

0 +
(
−∂2ζ

∂y2

)1/2)2

=
(
E1

∂3

∂x3 + E2
∂3

∂x∂t2 + E3
∂2

∂x∂t

)
η (17)
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The closed-form solution for Eq. (16) using the boundary conditions (11), (13)
and (17) can be obtained as

u = E

2
(η2 − y2)− 4

3
(Eτ0)

1/2(η3/2 − y3/2)+ τ0(η− y) y0 ≤ y ≤ η (18)

We find the upper limit of plug flow region using the boundary condition that ςyy =
0 at y = 0. It is given by

y0 = τ0

E
(19)

Taking y = y0 in Eq. (18) and using the relation (19), we get the velocity in the plug
flow region as

up = E

(
η2

2
− 4

3
y

1/2

0 η3/2 + y0η − 17

6
y

2

0

)
, 0 ≤ y ≤ y0 (20)

By using Eqs. (18) and (20), we get

ζ = τ0

(
(y − y0)

2

2
− β(y − y0)− η(y − y0)

)
− E

(
y3 − 4y

3

0

6
− η2

2
− βηy + y

2

0(β + η)

)

(21)

ζp = Ey

(
y

2

0 − βy0 − ηy0 − 1

2
(y

2

0 − η2 − 2βη)

)
(22)

where

E = −8επ

[
(E1 + E2)Cos2π(x − t)− E3

2π
Sin2π(x − t)

]
(23)

4 Results and Discussions

Casson fluid with peristalsis is investigated under the effect of elastic properties
of the wall. The velocity and stream functions were analysed by plotting graphs
for different parameters of elastic wall by using Matlab software. The graphs are
depicted from Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and
20 for the following factors.

1. Non-uniform parameter m determines the non-uniformity of the channel.
2. The yield stress τ0.
3. E1, E2 and E3, flexible wall properties of the channel.
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Fig. 1 E1 on the velocity
distribution
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Fig. 2 E2 on the velocity
distribution
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Fig. 3 E2 on the velocity
distribution
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Fig. 4 m on the velocity
distribution
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Fig. 5 Velocity distribution
for different τ0
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Fig. 6 Stream function if
E1=0.5
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Fig. 7 Stream function if
E1=0.6
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Fig. 8 Stream function if
E1=0.8
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Fig. 9 Stream function if
E2=0.2
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Fig. 10 Stream function if
E2=0.4
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Fig. 11 Stream function if
E2=0.5
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Fig. 12 Stream function if
E3=0.1
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Fig. 13 Stream function if
E3=0.3
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Fig. 14 Stream function if
E3=0.5
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Fig. 15 Stream function if
m=−0.1
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Fig. 16 Stream function if
m=0
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Fig. 17 Stream function if
m=0.1
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Fig. 18 Stream function if
τ0=0.001
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Fig. 19 Stream function if
τ0=0.01
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Fig. 20 Stream function if
τ0=0.1
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Figures 1, 2 and 3 depict, respectively, the behaviours of the velocity u versus y

with changes in elastic parameters, namely E1, E2 and E3. The effect of an increase
in E the rigidity parameter E1 gives rise to an increase in the velocity u when
the other elastic parameters. The same behaviour is observed for the other elastic
parameters, namely E1 and E2. Figure 4 shows the variation of velocity u with y

for different values of non-uniform parameter m [namely convergent channel m <

0, uniform channel m = 0 and divergent channel m > 0]. From the graphical
representation, it is observed that the velocity u in the case of convergent channel
is less than that in the uniform channel and this is less than the divergent channel.
The variation of velocity u with y is calculated for different values of yield stress
τ0 and is depicted in Fig. 5. The numerical results are obtained for different values
of yield stress τ0 in the range 0–0.1. We note that, in cardiovascular system, the
Casson fluid behaves like blood only when lies in between 0 and 0.1. For higher
values, the Casson fluid behaves like industrial fluids possessing yield stress. It can
be seen from Fig. 5 that the velocity depends on yield stress and it decreases with
increasing yield stress τ0.
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4.1 Trapping Phenomenon

In the present study peristalsis is involved, so trapping of the fluid has to be
concentrated. Figures 6, 7 and 8 show that for higher rigidity E1, the size of the
trapped bolus increases. From Figs. 9, 10 and 11 we observe that more trapped
bolus appears with increase in stiffness parameter. Further as viscous damping force
increases, the size of the trapped bolus also increases as seen in Figs. 12, 13 and 14.
The size of the bolus increases on the left-hand side for convergent channel and
decreases for divergent channel, and the size of the bolus is symmetric for uniform
channel which is shown in Figs. 15, 16 and 17. Figs. 18, 19 and 20 depict the fact
that as yield stress increases trapped bolus decreases.
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Peristaltic Flow of a Jeffrey Fluid
in Contact with a Newtonian Fluid
in a Vertical Channel

R. Sivaiah, R. Hemadri Reddy, and R. Saravana

Abstract The flow of a Jeffrey fluid is extended to include a Newtonian fluid
through a vertical symmetric channel with peristalsis under the assumptions of
long wavelength and small Reynolds number. The model is applicable to study
the behavior in physiological systems. The velocity field, stream function, interface
shape, pressure rise (drop), and frictional force at the wall over a cycle of wavelength
are obtained, and the results are shown graphically. It is observed that the variation
of interface shape yields the thinner peripheral region in the dilated region with
increasing Jeffrey parameter λ1 and thicker peripheral region in the dilated region
for low viscosity ratio.

Keywords Jeffrey fluid · Newtonian fluid · interface · vertical channel

1 Introduction

Peristalsis is an inherent biological mechanism in human beings. In practical, the
peristaltic pumps are modelled to pump the corrosive fluids to avoid the contact of
walls of the pumping machinery. In order to understand the effect of fluid coating in
the physiological systems such as esophagus and ureter, the study of peristaltic flow
of single fluid is extended to two-fluid flow. The two-fluid flow natural phenomenon
can be observed in many physiological systems such as swallowing of food bolus
through esophagus, passage of urine through ureter, blood pumping in blood vessels,
etc.
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The Jeffrey fluid model is the simple non-Newtonian fluid model proposed for
biofluids. Hayat et al. [1] analyzed the peristaltic flow of a compressible Jeffrey
fluid in a tube. Nadeem and Akbar [2] studied the peristaltic pumping of an
incompressible viscosity varying Jeffrey fluid in an asymmetric channel. Kavitha
et al. [3] presented the peristaltic transport of a Jeffrey fluid in a permeable channel
with suction and injection. Saravana et al. [4] examined the wall properties effect on
MHD peristaltic flow of a Jeffrey fluid through a porous nonuniform channel.

The peristaltic flow of two-fluid analysis has been reported by several authors
[5–9]. All these authors have specified the interface shape. Very recently, Vajravelu
et al. [10] addressed the peristaltic transport of a Jeffrey fluid in a core region and
a Newtonian fluid in a peripheral region through a horizontal channel with heat
transfer. Saravana et al. [11] investigated the peristaltic pumping of a Bingham
fluid in a core region and a Jeffrey fluid in a peripheral region through a symmetric
channel.

Motivated by the above studies, we propose to study the two-fluid peristaltic
flow of a Jeffrey fluid with a Newtonian fluid in a vertical channel under the
consideration of low Reynolds number and long wavelength. The velocity field, the
stream function, shape of interface, the pressure rise (drop), and the frictional force
per cycle of wavelength are obtained and are shown graphically.

2 Mathematical Formulation and Solution

We choose the peristaltic transport of two incompressible fluids of viscosities and
occupy the core region by a Jeffrey fluid and peripheral region by a Newtonian fluid
through a vertical channel. The half width of the channel is a.

The propagation of an infinite peristaltic wave is represented by

Y = H (X, t) = a + b sin
2π

λ
(X − ct) (1)

where λ indicates the wavelength and b and c represent the amplitude and the wave
speed, respectively.

The subsequent deformation of the interface separating the core and peripheral
layers is represented by and is shown in Fig. 1, which is unknown a priori.

2.1 Equations of the Motion

Following the considerations of two-fluid analysis of Kavitha et al. [9], the
transformation from the laboratory frame to wave frame is as follows:

x = X − ct, y = Y, u(x, y) = U(X − ct, Y )− c, v(x, y) = V (X − ct, Y )

p (x) = P (X, t) , ψ = Ψ − Y (2)
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where ψ and ψ indicate the stream functions in wave and laboratory frames,
respectively. The non-dimensional quantities are as follows:

x̄ = x

λ
, ȳ = y

a
, h̄ = h

a
, h̄1 =h1

a
, t̄ = ct

λ
, v(x, y) = V (X − ct, Y )

ψ̄(i) = ψ(i)

ac
, q̄ = q

ac
, F̄ = Fa

μ1λc
, ū(i) = u(i)

c
= ∂ψ(i)

∂ȳ
,

v̄(i) = v(i)λ

ac
= −∂ψ(i)

∂x̄
(i = 1, 2) , μ̄ =

{
1, 0 ≤ ȳ ≤ h̄1

μ
(
= μ2

μ1

)
, h̄1 ≤ ȳ ≤ h̄

(3)

where ū(i) and v̄(i) (superscript i = 1, 2 represents the flow in core and peripheral
layer) are the velocities along the and directions.

The equations governing the motion of two fluids in wave frame analysis under
the consideration of long wave length and low Reynolds number assumptions are as
follows (dropping the bars):

∂

∂y

[
1

(1+ λ1)

∂2ψ(1)

∂y2

]
+ η = ∂P

∂x
(4)

0 = ∂p

∂y
(5)

and
∂2

∂y2

[
μ
∂2ψ(2)

∂y2

]
= 0 (6)

where η is the gravity parameter.

Newtonian fluid

Jeffrey fluid

Center line

Interface

WallH

H1

b

Y

a

X0

1

2

2







 

Fig. 1 Physical model
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The non-dimensional boundary conditions associated with the flow in wave
frame are

ψ(1) = 0 at y = 0 (7)

ψ(1)
yy = 0 at y = 0 (8)

ψ(2) = q = constant at y = h (9)

ψ(1) = ψ(2) = q1 = constant at y = h1 (10)

ψ(2)
y = −1 at y = h (11)

where q and q1 represent the total and the core fluxes across any cross section in the
wave frame analysis. Further the shear stress and velocity are continuous across the
interface. The peripheral layer flux is followed by q2 = q − q1. It indicates that the
incompressibility of the fluids that q , q1 and q2 are independent of x.

The non-dimensional volume flow rate Q̄ of one period T
(= λ

c

)
of the peristaltic

wave is defined as

Q̄ = 1

T

T∫

0

h∫

0

(u+ 1) dy dt = q + 1 (12)

2.2 Solution

By solving the Eqs. (4)–(6) with suitable boundary conditions (7)–(11), we get the
stream function in the core region and peripheral layer as

ψ(1) =− y +
[

3y (q + h) F2 − μ (1+ λ1) (q + h) y3

2F3

]
f or 0 ≤ y ≤ h1

(13)

ψ(2) = −y + (q + h)+
[

9 (q + h) h2y − 3 (q + h) y2 − 6 (q + h) h2

6F3

]

f or h1 ≤ y ≤ h (14)

Fj = hj + (μ(1+ λ1)− 1)hj
1(j = 2, 3).

The axial pressure gradient obtained from (4) or (6) is as follows

dp

dx
= −3μ(q + h)

F3
+ η (15)
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2.3 The Equation of the Interface

The interface is also a streamline as seen from the boundary condition (10). For a
given geometry of the wave and the time-averaged flux Q̄, the unknown interface
h1(x) is solved from (14) using the boundary condition (10). Substituting (10)
in (14), we get the algebraic equation governing the interface h1(x) as

2[(1+ λ1)μ− 1] h4
1 − [(q + h) [2μ(1+ λ1)− 3]+ 2(1− μ(1+ λ1)q1]h3

1

−
[
h3 + 3qh2

]
h1 + 2q1h

3 = 0 (16)

where q and q1 are independent of x.
The condition h1 = α at x = 0 in Eq. (16) produces q1 as follows:

q1 = Q̄(2μ(1+ λ1)− 3)α3 + (3Q̄− 2)α − 2(μ(1+ λ1)− 1)α4

2((1− (1+ λ1)μ) α3 + 1)
(17)

2.4 The Pumping Characteristics

By integrating Eq. (15) w. r. to x over one wavelength, we get the pressure rise (drop)
over one cycle wave as follows:

Δp = −3μ(Q̄− 1) I1 − 3μ I2 + ηI3 (18)

where I1 =
1∫

0

dx
F3

, I2 =
1∫

0

h
F3

dx, I3 =
1∫

0
dx

The dimensionless frictional force F at the channel wall across one wavelength
is given by

F =
1∫

0

−h
dp

dx
dx (19)

3 Results and Discussion

The shape of the wave interface for different Jeffrey parameter λ1 with φ = 0.6,
μ = 0.1, α = 0.8, and Q̄ = 0.1 is shown in Fig. 2. We observe that the interface
shape gives rise to thinner peripheral region in the dilated region with increasing λ1.
The shape of the interface for different μ with φ = 0.4, λ1 = 0.1, α = 0.5, and
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Fig. 2 Shape of interface for λ1 with φ = 0.6, μ = 0.1, α = 0.8 and Q̄ = 0.1

Fig. 3 shape of interface for
μ with φ = 0.4, λ1 = 0.1,
α = 0.5 and Q̄ = 0.1
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Q̄ = 0.1 is depicted in Fig. 3. The interface shape variation for low viscosity ratio
gives rise to a thicker peripheral region in the dilated region.

The pressure rise with time-averaged flux is obtained from Eq. (18), and the plot
for various values of a Jeffrey parameter λ1 with φ = 0.6, μ = 0.1, α = 0.8 and
η = 1 is shown in Fig. 4. For 0 ≤ Q̄ ≤ 0.37, we found that ΔP decreases with the
increase of Jeffrey number λ1 and increases in the rest of the region. The ΔP with
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Fig. 4 ΔP vs Q̄ for λ1 with
φ = 0.6, μ = 0.1, α = 0.8
and η = 1
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and λ1 = 1
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Q̄ for various values of gravity parameter η with φ = 0.6, μ = 0.1, α = 0.8 and
λ1 = 1 is shown in Fig. 5. From the plot, we find that ΔP increases with increasing
gravity parameter η. The nature phenomenon of enhancement in the pressure rise
exists with increasing the gravity parameter.

The frictional force F with Q̄ is evaluated from Eq. (19), and the plot for various
values of λ1 with φ = 0.6, μ = 0.1, α = 0.8, and η = 1 is depicted in Fig. 6.
For 0 ≤ Q̄ ≤ 0.25, we clearly see that F increases with the increase of λ1 and
decreases in the rest of the region. The variation of F with Q for the chosen values
of η with φ = 0.6, μ = 0.1, α = 0.8 and λ1 = 1 is shown in Fig. 7. We observe
that decreases with the increasing of η.
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Fig. 6 F vs Q̄ for λ1 with
φ = 0.6, μ = 0.1, α = 0.8
and η = 1
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4 Conclusion

In this paper, we study the peristaltic flow of a Jeffrey fluid in the core region and a
Newtonian fluid in the peripheral region through a vertical symmetric channel under
the consideration of long wavelength and low Reynolds number. The pressure rise
variation with time-averaged flux and the interface shape is obtained. Some of the
interesting findings in the analysis are as follows: (1) the interface shape variation
yields the thinner peripheral region with increasing the Jeffrey fluid parameter; (2)
the interface shape for low viscosity ratio yields the thicker peripheral layer in
the dilated region; (3) for time-averaged flux, the pressure rise decreases with the
increase of Jeffrey fluid parameter and enhances in the rest of the region; and (4)
ΔP increases with the increase of viscosity ratio and decreases in the remaining
region.
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MHD and Cross Diffusion Effects on
Peristaltic Flow of a Casson Nanofluid in
a Duct

G. Sucharitha, P. Lakshminarayana, and N. Sandeep

Abstract The Soret and Dufour effects on the peristaltic transport of a conducting
Casson nanofluid in a flexible channel are studied. The influence of dissipation
and Joule heating are also discussed. The governing equations are simplified
by using a long wave length and small Reynolds number approximations. The
analytical solutions for stream function and axial velocity are obtained. Moreover,
the Runge–Kutte-based shooting method is utilized to solve the coupled energy
and concentration equations. The impact of important parameters on the flow is
explained using graphs for both Newtonian and Casson fluid cases. It is observed
that the Casson fluid has more velocity than the Newtonian fluid in the middle of
the channel and the situation is reversed at the channel walls. Further, a higher
temperature is noted for Casson fluid than for Newtonian fluid throughout the
channel, whereas concentration shows the opposite behavior.

1 Introduction

Peristaltic transport problems with different fluids and geometries have been
investigated by many authors because of the important and useful applications in
engineering and medical sciences. Various types of peristaltic pumps are designed
to transport sanitary and some industrial fluids. The study of peristalsis helps to
improve the quality of biomedical instruments such as a blood pump machine,
a heart–lung machine, and a dialysis machine. Latham [1], Fung and Yih [2],
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Shapiro et al. [3] initiated the study of peristalsis. Further several authors [4–
7] have presented their works on this topic. Most of the biofluids and industrial
fluids behave like non-Newtonian fluid and the study of these fluids plays a vital
role in fulfilling the present requirements in engineering and medical sciences. In
view of these observations, many authors have considered the non-Newtonian fluid
flow problems in channels and tubes [8–12, 20–23]. The study of conducting non-
Newtonian fluid flows with heat transfer has important applications in industry and
biosciences, such as the reduction of bleeding during surgery, cancer treatment,
the design of biomagnetic devices, hypothermia, and laser therapy. Hayat et al.
[13] analyzed the influence of heat transfer and an inclined magnetic field on
the peristaltic motion of fourth-grade fluid with variable viscosity. Saleem et al.
[14] analyzed the upper-convected Maxwell fluid flow using the Cattaneo–Christov
heat flux model. Recently, the authors [15–18] have studied the influence of wall
properties and heat transfer on the peristaltic flow of MHD non-Newtonian fluids.
In the present chapter, we examined the impact of Joule heating and cross diffusion
on MHD peristaltic flow of a Casson nanofluid in a channel. The expressions for
the velocity and the stream function are obtained. Further, the Runge–Kutte (R-K)-
based shooting method is applied to solve the energy and concentration equations.
The effects of important parameters on the flow quantities are discussed in detail
with the help of graphs.

2 Formulation of the Problem

We consider the peristaltic transport of a conducting Casson nanofluid in a two-
dimensional channel of width. The fluid flow is produced by a peristaltic wave
spreading along the flexible walls of the channel with a constant speed c (Fig. 1).
The Joule heating and the Soret and Dufour effects on the flow are also considered.
The geometry of the channel wall is given by:

Fig. 1 Physical model
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h′ (x ′, t ′ ) = a Sin
2π

λ

(
x ′ − ct ′

)+ d, (1)

According to the study by Akbar [10] and using a negligible Reynolds number
and protracted wavelength assumptions, the nondimensional momentum equation
for this study is obtained as:

∂p

∂x
=

(
1+ 1

β

)
∂3ψ

∂y3 −M2 ∂ψ

∂y
, (2)

∂p

∂y
= 0, (3)

where we present the stream function as u = ∂ψ
∂y

, V = − ∂ψ
∂x

and β
(
= μβ

√
2πc
py

)

is the Casson fluid parameter, M
(
=

√
σ
μ
B0d

)
is the magnetic parameter, λ is the

wavelength, c is the wave speed, σ is the electrical conductivity, B0 is the magnetic
field, μ is the viscosity, t is the time, p is the pressure, x, y are the Cartesian
coordinates, u, v are the fluid velocities in the x and y directions respectively, d
is the mean width of the channel, and a is the amplitude.

Hayat et al. [19] studied the effects of slip and Joule heating on a mixed
convective peristaltic flow by considering cross diffusion. In the view of this study,
dimensionless energy and concentration equations for the present problem are
presented as:

∂2θ

∂y2 +Br

[(
∂2ψ

∂y2

)2

+M2
(
∂ψ

∂y

)2
]

+ Pr

[
Nt

(
∂θ

∂y

)2

+ Nb
∂θ

∂y

∂φ

∂y
+Du

∂2φ

∂y2

]
= 0, (4)

∂2φ

∂y2 +
[
Sr Sc + Nt

Nb

]
∂2θ

∂y2 = 0, (5)

corresponding dimension-less boundary conditions (Sucharitha et al. [17, 18]) are
given by:

ψ = 0,
∂2ψ

∂y2 = 0,
∂θ

∂y
= 0,

∂φ

∂y
= 0 at y = 0, (6)
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∂ψ

∂y
= 0, θ = 1, φ = 1 at y = h, (7)

(
1+ 1

β

)
∂3ψ

∂y3 −M2 ∂ψ

∂y
−

(
E3

∂2h

∂x∂t
+E1

∂3h

∂x3+E2
∂3h

∂x∂t2

)
=0, at y = h, (8)

where h (= ε sin 2π (x − t) + 1) is the wall deformation, E1

(
= −τd3

λ3μc

)
is the

wall tension parameter, E2

(
= m1cd

3

λ3μ

)
is the wall mass description parameter,

E3

(
= cd3

λ2μ

)
is the damping force parameter, ε

(= a
d

)
is the amplitude ratio, Nt is

the thermophoresis parameter, Nb is the Brownian motion parameter, Sr is the Soret
number, θ, φ are the nondimensional temperature and concentration respectively,
Br (= Ec Pr) is the Brinkman number, Du is the Dufour number, Ec is the Eckert
number, Pr is the Prandtl number.

3 Exact Solution

On differentiation of Eq. (2) with respect to y we obtain:

∂4ψ

∂y4
− N2 ∂

2ψ

∂y2
= 0, (9)

The exact solution of the Eq. (9) by using the boundary conditions (6)–(8) is given
by:

ψ = a1 sinhNy

N3 coshNh
− a1y

N2
(10)

Corresponding axial velocity is:

u = a1 coshNy

N2 coshNh
− a1

N2 (11)

where N2 = M2(
1+ 1

β

)

a1 = 8 ε π3
[
E3
2π sin 2π(x − t)− (E1 + E2) cos 2π(x − t)

]
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4 Numerical Solution

The energy and concentration equations (4) and (5) are coupled and nonlinear.
Thus, these equations are solved numerically by employing the R-K-based shooting
method with the help of the boundary equations (6)–(8). The Nusselt and Sherwood
numbers at the wall are defined by:

Nu = −
(
dθ

dy

)

at y=h

, Sh = −
(
dφ

dy

)

at y=h

(12)

5 Results of the Problem

In this section, we have studied the effects of pertinent parameters on the flow
quantities in both Newtonian and Casson fluid cases with the fixed values: ε =
0.3,β = 2, M = 2, x = 0.2, t = 0.25, E1 = 0.3, E2 = 0.2, E3 = 0.1, Nt = 0.5,
Nb = 0.5, Br = 0.02, Sc = 0.6, Sr = 0.2, Pr = 7, Du = 0.2. Figures 2,
3, and 4 are drawn to study the impact of MHD on the velocity, temperature, and
concentration fields. We observed that the increase in M decreases the velocity in
the middle of the channel as it enhances at the channel wall. We noted that the
rise in M reduces the temperature whereas it improves the concentration. It shows
the influence of the magnetic field on the flow. Also, it is perceived that velocity
and thermal fields are maximal at the midway point of the channel, whereas the
concentration field is minimal near the center of the channel. From Figs. 5, 6, 7,
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Fig. 3 Effect of M on
temperature
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Fig. 4 Effect of M on
concentration
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and 8, we identified that the high values of the thermophoresis parameter boost the
temperature and diminish the concentration. Moreover, reverse behavior is observed
in the case of the Brownian motion parameter. Figures 9, 10, 11, and 12 show that
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Fig. 5 Effect of Nt on
temperature
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Fig. 6 Effect of Nt on
concentration
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the increment in the Soret number decreases both temperature and concentration
fields. The high values of the Dufour number reduces the concentration, whereas it
increases the thermal field. The influence of the Casson fluid parameters β and M

on the formation of a circulating bolus by surrounding streamlines in the fluid flow
is presented in Figs. 13 and 14. The increase in β and M reduces the size of the
trapped bolus.
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Fig. 7 Effect of Nb on
temperature
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Fig. 8 Effect of Nb on
concentration
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Fig. 9 Effect of Sr on
temperature
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Fig. 10 Effect of Sr on
concentration
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Fig. 11 Effect of Du on
temperature
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Fig. 12 Effect of Du on
concentration
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Fig. 13 Influence of β on trapping
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Axisymmetric Vibration in a Submerged
Piezoelectric Rod Coated with Thin Film

Rajendran Selvamani and Farzad Ebrahimi

Abstract This paper is concerned with the axisymmetric elastic waves in a
transversely isotropic submerged piezoelectric rod coated with thin film using a
constitutive form of linear theory of elasticity and piezoelectric equations. The equa-
tions of motion along radial and axial directions are decoupled by using potential
functions. The surface area of the rod is coated by a perfectly conducting material,
and no slip boundary condition is employed along the solid-fluid interactions. The
dispersion equation which contains the longitudinal and flexural modes is derived
and is studied numerically. To observe the variations of mechanical and electric
displacement in the coated piezoelectric rod, the authors compute the numerical
values of the field variables for the ceramic PZT − 4. The effects of fluid and
coating environment on the variation of field variables are analyzed and presented
graphically. This type of study is important in the modeling of underwater sensors
for the navigation applications.

Keywords Axisymmetric waves in piezoelectric rod/glass fiber · Forced
vibration · Bessel function · Actuators/sensors · Thin film

1 Introduction

The piezoelectric materials are the important structural components in devices like
pressure transducers and accelerometers. Initially piezoelectric materials are used as
resonators for ultrasound sources in sonar devices. The piezoelectric materials such
as barium titanate (BiT iO3) are fabricated by the advancement of piezoelectricity
in engineering field. Coated piezoelectric polymers are used in a variety of real-time
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engineering applications and structural components for a large variety of model
from transducers in acoustic, sensor, and actuator applications to microelectrome-
chanical systems and nanoelectromechanical systems, image processing, and some
industrial nondestructive testing instruments. The effect of fluid in the medium will
attenuate the wave and energy transfer. Also, the thin film coating and fluid medium
can highly influence the performance of the wave propagation.

The elastic wave pattern in solid material has been discussed elaborately by
Graff [7] and Achenbach [1]in a more elucidated manner. Wave propagation in
elongated cylinders and plates was analyzed based on linear theory of elastic and
governing equation models by Meeker and Meitzler [9]. Tiersten [12] studied the
modeling and development of piezoelectric plate under cylindrical structures using
theory of linear elasticity. The author developed modeling for small vibrations
of piezoelectric bodies by the linear theory of piezoelectricity through Maxwell’s
equations. In piezoelectricity the quasistatic electric field is coupled to the dynamic
mechanical motion. Electroelastic governing equations of piezoelectric materials
are presented by Parton and Kudryavtsev [13]. Paul and Venkatesan [14] introduced
an elastic wave model in piezoelectric cylinders of noncircular cross section with
infinite extent using Fourier expansion collocation method which is devised by
Nagaya [11]. Ebenezer and Ramesh [6] have rightly analyzed the application of
the Bessel series to study the axially polarized piezoelectric cylinders with arbitrary
boundary conditions on the flat surfaces. Later Botta and Cerri [5] have extended the
same approach further and compared their results with those in which the effect of
variable electric potential was not considered. An investigation was made in radially
polarized piezoelectric cylindrical transducers by Kim and Lee [8]. In that study,
they validated their result with the outcomes from the experiment and quantitative
analysis by the finite element method. Selvamani [15] has developed the modeling
of elastic waves in a submerged piezoelectric circular fiber. It was inferred by him
that the impact of fluids (inner and outer) along with the anisotropy of the material
with thickness on the many considered wave characteristics is more significant and
dominant in the flexural modes of vibration.

Sinha et al.[18] developed a two-part elaborative study on the axisymmetric
waves in a cylindrical shell contact with fluid. In that study, the theoretical derivation
of the wave modes is analyzed in part I, and the vibration modes in the absence of
tension are studied theoretically and numerically in part II. Berliner and Solecki [3]
investigated the wave motion in the transversely isotropic direction of fluid-loaded
cylinder. In their study, part I explains the formulation of the problem which consists
of both solid and outer fluid medium, and part II explains the computed numerical
values.

The influence of rotation in axisymmetric elastic waves of a solid bar submerged
in water was studied by Selvamani and Ponnusamy [16]. In that paper, they
identified the rotational parameter having significance effect with vibrational modes.
Free vibration in a generalized thermo-piezoelectric bar of circular cross section
rotating with a linear angular velocity has been studied by Selvamani and Pon-
nusamy [17] using Bessel function solution. Wang [20] discussed the axisymmetric
wave propagation in a cylinder coated with a piezoelectric layer. Research on its
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application for time-delay devices has been investigated by Sun and Cheng [19]. A
theoretical model of the coated structure is investigated by Minagawa [10] to predict
attenuation characteristics for finding suitable modes for a guided-wave inspection.
Barshinger [2] investigated the guided waves in pipes with viscoelastic coatings.
He found that the presence of attenuative, viscoelastic coatings causes significant
problems for developing a guided-wave, nondestructive inspection of coated pipes.

The axisymmetric elastic wave of coated piezoelectric rod submerged in inviscid
fluid (water) is considered using a constitutive form of equations consisting of
the theory of linear elasticity and electrostatic components. Velocity potentials
updated based on equilibrium equations and are used to uncouple the governing
equations. The surface area of the rod is coated by a perfectly conducting gold
layer. The dispersion equation which consists of longitudinal and flexural modes
of piezoelectric rod is calculated for the ceramic material PZT − 4. The variation
mechanical displacement and electric displacement are investigated and are given
as dispersion curves.

2 Modeling of the Problem

A homogeneous transversely isotropic piezoelectric circular rod of infinite length
coated by a thin film in the axisymmetric direction is considered for this problem.
The governing equations of motion in the absence of body forces are given as

∂

∂r
Trr + ∂

∂z
Trz + Trr

r
= ρ

∂2ur

∂t2
,

∂

∂r
Trz + ∂

∂z
Tzz + Trz

r
= ρ

∂2uz

∂t2
(1)

The Gauss electric conduction equation without free charge is

1

r

∂

∂r
(rDr)+ ∂Dz

∂r
= 0 (2)

The coupled form of stress equations is given as

Trr = c11err + c13ezz − e31Ez, Tzz = c13err + c33ezz − e33Ez,

Trz = 2c44erz − e15Er

Dr = e15erz + ε11Er, Dz = e31(err + eθθ )+ e33ezz + ε33Ez (3)

where Trr and Tzz are the normal stresses in the radial and thickness directions;
Trz is the shear stress element; err and ezz are the normal strains in the radial and
thickness directions; erz is the shear strain element; ur and uz are the displacement
components; c11, c13, c33, and c44 are the elastic constants; e31, e15, and e33 are the
piezoelectric constants; ε11 and ε33 are the dielectric constants; and ρ is the density
of the material under consideration.
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The strain displacement relations and the electric field vector Ei, (i = r, z) with
electric potential E are defined as

err = ur,r , ezz = uz,z, erz = uz,r + ur,z, Er = −∂E

∂r
and Ez = −∂E

∂z
(4)

The comma in the subscripts represents the differentiation with respect to the
variables. Substituting Eqs. (3) and (4) in Eqs. (1) and (2) results in

c11(urr,r + r−1ur,r − r−2ur)+ c44ur,zz

+(c44 + c13)uz,rz + (e31 + e15)V,rz = ρur,t t

c44(uz,rr + r−1uz,r )+ r−1(c44 + c13)(ur,z)+ (c44 + c13)ur,rz + c33uz,zz

+e33V,zz + e15(V,rr + r−1V,r) = ρuz,t t

e15(uz,rr + r−1uz,r)+ (e31 + e15)(ur,zr + r−1ur,z)+ e33uz,zz − ε33V,zz

−ε11(V,rr + r−1V,r) = 0. (5)

3 Solution Methodology

The time-harmonic elastic waves in piezoelectric material are obtained by assuming
the displacement components in the following form which will also satisfy the equa-
tion of motion and boundary conditions (Paul and Venkatesan [11]): ur(r, z, t) =
(φ,r)e

i(kz+ωt), V (r, z, t) = iV ei(kz+ωt), Ez(r, z, t) = E,ze
i(kz+ωt), uz(r, z, t) =

( i
a
)Wei(kz+ωt), Er(r, z, t) = −E,re

i(kz+ωt) where i = √−1, k is the wave number,
ω is the angular frequency, φ(r) and W(r) are the displacement potentials, and the
parameter a describes the geometric component of the rod and V (r, θ) is the electric
potential. By applying the following nondimensional components x = r/a, ϑ = ka,
- 2 = ρω2a2/c44, c̄11 = c11/c44, c̄13 = c13/c44, c̄33 = c33/c44, c̄66 = c66/c44,
ε̄11 = ε11c44/e

2
33, ē31 = e31/e33, and ē15 = e15/e33, Eq. (5) can be rewritten as

(c̄11∇2 + (- 2 − ϑ2)) −ϑ(1 + c̄13) −ϑ(ē31 + ē15)

ϑ(1 + c̄13)∇2 (∇2 + (- 2 − ϑ2c̄33)) (ē15∇2 − ϑ2)

ϑ(ē31 + ē15)∇2 (ē15∇2 − ϑ2) (ϑ2ε̄33 − ε̄11∇2)

(φ,W,V ) = 0

(6)

where ∇2 = ∂2

∂x2 + x−1 ∂
∂x
+ x−2 ∂2

∂θ2 . Evaluating the determinant given in Eq. (6),
we obtain a partial differential equation of the form

(P∇6 +Q∇4 + R∇2 + S)(φ,W,V ) = 0 (7)
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From Eq. (7), the following solutions are obtained:

φ =
3∑

i=1

AiJn(τiax) cosnθ,W =
3∑

i=1

aiAiJn(τiax) cosnθ,

V =∑3
i=1 biAiJn(τiax) cosnθ (8)

Here (τia)
2 > 0 and (i = 1, 2, 3) are the roots of the algebraic equation:

A(τa)6 − B(τa)4 + C(τa)2 +D = 0 (9)

In the above solutions, Jn represents Bessel function which will take the real or
complex roots (τia)

2, (i = 1, 2, 3), and In represents the modified Bessel function
which will take imaginary roots. In case (α4a)

2 < 0, Jn is replaced by In.
The constants ai , bi defined in the Eq. (8) is derived from the following equations:

(1+ c̄13)ϑai + (ē31 + ē15)ϑbi = −(c̄11(τia)
2 −- 2 + ϑ2) (10)

((τia)
2 −- 2 + ϑ2c̄33)ai + (ē15(τia)

2 + ϑ2)bi = −(c̄13+ 1)ϑ(τia)
2 (11)

4 Modeling and Solutions of the Fluid Medium

The radial movement and acoustic pressure equations of the inviscid fluid in polar
form are taken from Berliner [3]:

pf = −bf (u
f
,r + r−1(uf )+ w

f
,z) and c−2

f u
f
,t t = Δ,r (12)

where bf and ρf are the bulk modulus and density of the fluid, cf = √
bf /ρf is

the acoustic phase velocity in the fluid, and (uf ,wf ) is the displacement vector, and
assume the solution of (12) in the form

ϕf (r, θ, z, t) = [ϕf (r)]eiωt , (13)

the wave propagation of the fluid medium is given by

ϕf = A33Hn(δax) (14)

where (δa)2 = Ω2/ρ̄f b̄f − ϑ2, in which ρ̄f = ρ/ρf , b̄f = bf /c44, Hn is the
Hankel function. If (σa)2 < 0, then the Hankel function of the first kind is to be
replaced by the modified Bessel function of the second kind Kn. From Eqs. (13),
(12), and (14), the value of acoustic pressure is calculated as

pf = A33Ω
2ρ̄Hn(δax)e

i(ΩTa) (15)
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5 Interfacial Boundary Conditions and Frequency Equations

The axisymmetric free vibration of the transversely isotropic piezoelectric rotating
rod coated with a thin film is considered. For the coated surface, the boundary
conditions can be written as

σrj = −δjb2μ′h′
[(

3λ′ + 2μ′

λ′ + 2μ′

)
Ua,ab + Ub,aa

]
+ 2h′ρ′Üj , V = 0 (16)

where λ′, μ′, ρ′, and h′ are Lame’s constants, density, and thickness of the material
coating, respectively; δjb is the Kronecker delta function with a; b takes the value
of θ and z; and j takes r , θ and z. In order to get the axisymmetric waves, a and b

can take only z. Then the transformed boundary conditions are as follows:

σrr +pf = 2h′ρ′Ü , σrz = −2h′μ′G2W,zz+2h′ρ′Ẅ , (u−uf ) = 0, V = 0
(17)

at r = a and where G2 = 1+C ′12
C ′11

.

By using Eqs. (8) and (15) in Eq. (17), we can get the following linear equation:

[L]{Z} = {0} (18)

where [L] is a 4× 4 matrix of unknown wave amplitudes and {Z} is a 4× 1 column
matrix with the amplitudes L1, L2, and L3. To obtain the nontrivial solution of
Eq. (18), the determinant of the coefficient of the amplitudes {Z} will be equal to
zero.

6 Numerical Results and Investigations

For the graphical illustration, the axisymmetric free vibration of the transversely
isotropic piezoelectric rotating rod coated with a thin film is considered. Equation
(18) is solved numerically for the mechanical and electrical displacements. The
material chosen for the numerical calculation is PZT − 4 ceramics coated with
gold material which is taken from Berlincourt et al. [4].

c11 = 13.9× 1010Nm−2, c12 = 7.78× 1010Nm−2, c13 = 7.43× 1010Nm−2,

c33 = 11.5× 1010Nm−2, c44 = 2.56× 1010Nm−2, c66 = 3.09× 1010Nm−2,

e31 = −5.2Cm−2, e33 = 15.1Cm−2, e15 = 12.7Cm−2,

ε11 = 6.46× 10−9C2N−1m−2, ε33 = 5.62× 10−9C2N−1m−2,

ρ = 7500Kgm−2, ρf = 1000Kgm−3.

For Gold material, ρ′ = 19.28gcm−3, λ′ = 1.63 ∗ 1010Nm−2, andμ′ = 0.42 ∗
1010Nm−2
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In the figures, FSM and FASM , respectively, denote the flexural symmetric
mode and flexural antisymmetric mode. The numbers 1 and 2 represent the first and
second mode, respectively.

The variation of mechanical displacement versus the dimensionless wave number
for flexural modes of coated piezoelectric circular rod with and without fluid
medium is considered in Figs. 1 and 2. Figure 1 shows the oscillation in the lower
range of wave number and becomes linear propagation with respect to its higher
wave number in different flexural modes of the rod with fluid environment. But in
Fig. 2, there is a small energy transfer between the modes in the lower range of
wave number which might happen due to the coating of the rod and the absence
of fluid medium. The coating and fluid environment decrease the magnitude of the
mechanical displacement in Figs. 1 and 2. Figures 3 and 4 exhibit the propagation
of electric displacement with respect to the thickness of the coated layer. Whenever
the thickness of the rod increases, the electric displacement is decreasing and again
increasing and travels in the wave propagation. These trends of the curves admit the
elastic properties of the solid due to the effect of fluid and coating of the material.

Fig. 1 Dispersion of
mechanical displacement
versus nondimensional wave
number of coated
piezoelectric rod with fluid
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Fig. 2 Dispersion of
mechanical displacement
versus nondimensional wave
number of coated
piezoelectric rod without
fluid
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Fig. 3 Variation of electric
displacement versus thickness
of the coating material for
piezoelectric rod with fluid
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Fig. 4 Variation of electric
displacement versus thickness
of the coating material for
piezoelectric rod without
fluid
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7 Conclusions

The modeling and analysis of axisymmetric elastic waves of a coated piezoelec-
tric rod submerged in an infinite fluid (water) are considered in the context of
constitutive equations consisting of the theory of linear elasticity and electrostatic
components. Velocity potentials are updated based on equilibrium equations and
are used to uncouple the governing equations. The surface area of the rod is coated
by a perfectly conducting gold layer. The dispersion equation which consists of
longitudinal and flexural modes of piezoelectric rod is calculated for the ceramic
material PZT − 4. The computed mechanical and electric displacements are
presented in the form of dispersion curves. From the graphical pattern, it is observed
that the fluid and the coating of the piezoelectric rod highly influence the variations
of the mechanical parameters in flexural symmetric and flexural antisymmetric
modes.
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Numerical Exploration of 3D
Steady-State Flow Under the Effect
of Thermal Radiation as Well as Heat
Generation/Absorption over
a Nonlinearly Stretching Sheet

R. Jayakar and B. Rushi Kumar

Abstract This paper aims at the study of numerical investigation into the three-
dimensional steady-state flow of a nanofluid under the effect of thermal radiation
as well as heat generation/absorption over a nonlinearly stretching sheet. The set
of partial differential equations is transformed into ordinary differential equations
by employing the suitable similarity transformations. The solution to the governing
equation is obtained by using numerical techniques specifically the bvp4c function
in MATLAB. A nonuniform velocity with power-law index is the boundary
condition specified for solving the governing equation.

Keywords MHD · Stagnation point · Homogeneous-heterogeneous reactions ·
Nanofluid flow · Non-uniform heat source/sink

1 Introduction

Numerous investigators have been spurred to examine magnetohydrodynamic
steady-state flow of nanofluid over solid surfaces, keeping in perspective to their
captivating heat energy transfer and thermophysical properties in addition to the
tremendous potential application. References [1–5] gave a numerical way to deal
with MHD transport of nanofluid past a vertical stretching sheet considering
exponential temperature-dependent viscosity and lightness effects; furthermore,
thermal physical properties of water built nanofluid past a stretching sheet were
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investigated by Akbar et al. [6], Sheikholeslami and Bhatti [7], Akbar et al.
[8], and Bhatti et al. [9]. Nanofluids are fluids that have nanoparticles such as
metals along with numerous traditional base fluids such as kerosene, railway
locomotive oil, triethylene dihydric alcohol and ethane, and so on. Through the
most recent decade, numerous specialists have been pulled in light of a legitimate
concern for doing research on nanofluids that are crucial in perspective of their
huge designing applications that incorporate more secure surgery, coolants in
PCs and atomic reactors, a few electronic gadgets for use in military segments,
major fabricating ventures including materials and chemicals, polymer expulsion,
vehicles and transformers, cooling of microelectronics, and nourishment and drink,
empowering to chill or cool structures. In the current decades, heat transfer is one
of the basic key highlights in the vitality advancement at the modern level and
assembling procedure of any hardware. In spite of that reality, heat addition, starting
with one place then to the next place during the assembling procedure, is completely
in view of the heat execution of working fluid. In a few cases, water, motor oil,
lubricants, and other basic working fluids have poor heat conductivity in contrast
with the required conductivity at the modern level. Addition of modest particles
inside the working liquid plays a vital role in enhancing the poor warm conductivity
of base fluid. The above overview uncovers the fact that no one hitherto has explored
yet the three-dimensional MHD flow of nanofluids over a permeable stretching
sheet, observing heat radiation accompanied by heat generation and absorption
with power-law index. In this way in the present examination, we pioneered the
exploration of the effect of magnetic field, heat generation , heat radiation, and other
physical parameters on the three-dimensional flow of a nanofluid over a permeable
stretching sheet. In our view, the nanofluid volume fraction on the boundary will
be more easily controlled, making our investigation totally unique and physically
more practical. The governing equations have been numerically solved using Runge-
Kutta method with shooting technique. Graphical representation for the various
parameters including velocity, temperature, and concentration has been discussed
in detail for the said boundary conditions.

2 Mathematical Analysis

Consider a steady three-dimensional electrically conducting magnetohydrodynamic
nanofluid flow past a nonlinearly permeable stretching sheet. Assume that a
uniform transverse magnetic field of strength B0 is applied parallel to the z-axis
as shown in Fig. 1. Also the induced magnetic and electric fields are assumed to
be neglected. The sheet is maintained at constant temperature Tw. The mass flux
of the nanoparticles near the surface is assumed to be zero. T∞ and C∞ denote the
ambient values of temperature and nanoparticle volume fraction, respectively. The
governing equations describing flow pattern are as follows:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (1)
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Fig. 1 Schematic interpretation of 3D MHD flow over a permeable stretching sheet
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− 1(
ρCp

)
f

∂qr
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+ Q0(

ρCp

)
f

(T − T∞)

u
∂C

∂x
+ v

∂C

∂y
+w

∂C

∂z
= DB

∂2C

∂z2 +
DT

T∞
∂2T

∂z2 (5)

with the boundary conditions

u = uw = a(x + y)n, v = vw = b(x + y)n at w = 0

T = Tw, DB
∂C

∂z
+ DT

T∞
∂T

∂z
= 0 at z = 0 (6)

u→ 0, v → 0, T → T∞, C → C∞ at z→∞,
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where u, v and w are the velocity components in the x, y and z directions,
respectively, ρ is the fluid density, p is the pressure, υ represents kinematic
viscosity, σ is the electrical conductivity, B0 is the magnetic field, and Kp is the
porosity parameter. The radiative heat flux using Rosseland’s approximation is
given by

qr = −4σ ∗

3k1

∂T 4

∂z
(7)

Assume that the differences in the temperature within the flow are such that T 4 can
be expressed as a linear combination of the temperature. Thus, expanding T 4 in a
Taylor series about T∞ and neglecting higher-order terms, we obtain

T 4 = 4T 3∞T − 3T 4∞ (8)

Thus,

∂qr

∂z
= −16σ ∗T 3∞

3k1

∂2T

∂z2 (9)

So, Eq. (4) becomes

u
∂T

∂x
+ v

∂T

∂y
+w

∂T

∂z
= α

∂2T

∂z2 + τ

[
DB

∂C

∂z

∂T

∂z
+ DT

T∞

(
∂T

∂z

)2
]

+ 1(
ρCp

)
f

16σ ∗T 3∞
3k1

∂2T

∂z2 +
Q0(

ρCp

)
f

(T − T∞) (10)

by introducing the following nondimensional variables:

η =
√

a

vf
(x + y)n−1/2z, u = a(x + y)nf ′ (η) , v = b(x + y)ng′ (η)

w = −√avf (x + y)n−1/2
(
n+ 1

2
(f + g)+ n− 1

2
η
(
f ′ + g′

))
,

T = T∞ + (Tw − T∞) θ (η) , C = C∞ + C∞φ (η) , (11)

and substituting Eq. (11) in (2), (3), (10), and (5) takes the form

g′′′ +
(
n+ 1

2

)
(f + g) g′′ − n

(
f ′ + g′

)
g′ − (M +K)g′ = 0 (12)

f ′′′ +
(
n+ 1

2

)
(f + g) f ′′ − n

(
f ′ + g′

)
f ′ − (M +K) f ′ = 0 (13)
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(
1+ R

Pr

)
θ ′′ + Nbφ′θ ′ +Ntθ ′2 + θ ′ (n+ 1) (f + g)

2
+Qθ = 0 (14)

φ′′ + n+ 1

2
Sc (f + g) φ′ + Nt

Nb
θ ′′ = 0 (15)

Subject to the transformed boundary conditions are as follows:

f (0) = g (0) = 0, f ′ (0) = 1, g′ (0) = λ, θ (0) = 1,

Nbφ′ (0)+Ntθ ′ (0) = 0, (16)

f ′ (∞)→ 0, g′ (∞)→ 0, θ (∞)→ 0, φ (∞)→ 0,

Here M is the magnetic field parameter, K is the porosity parameter, Pr is the
Prandtl number, Nb is the Brownian motion parameter, Nt is the thermophoresis
parameter, λ is the ratio of the stretching rate along the y direction to the stretching
rate along the x direction, and Sc is the Schmidt number. These parameters can be
given as

M = σB2
0/ρa, K = 1/ak0, Pr = v/α, Nb = τDBC∞/v,

Nt = τDT (Tw − T∞) /vf T∞, λ = b/a, Sc = vf /DB, (17)

The above equation reduces to the case of two-dimensional flow when λ = 0. At
λ = 1, the differential system governing the axisymmetric flow of nanofluid due
to nonlinearly stretching sheet is recovered. The dimensionless form of the skin-
friction coefficient and the local Nusselt number is calculated by the following
equation:

NuRe−1/2
x = −θ ′ (0)

where Rex = uw (x + y) /vf and Rey = vw (x + y) /vf are the local Reynolds
numbers along the x and y directions, respectively. The component of velocity at
far field condition can be expressed as

w (x, y, ∞) = −
√
avf (x + y)n−1 n+ 1

2
[f (∞)+ g (∞)]

3 Results and Discussions

The array of governing equations is solved by using the numerical technique bvp4c
MATLAB. For numerical effects, we have recognized n = 1, Nt = Nb =
0.5, λ = 0.5, Pr = 1, Sc = 20, k = 0.5, R = 0.5, and Q = 0.5. These
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values are kept as regular in whole investigation except the varied values as shown
in the respective figures. The figures have been drawn using different physical
parameters on the velocity, temperature, and concentration profiles for n = 1
and n = 3 cases. Figures 3, 7, and 10 demonstrate the velocity, temperature, and
concentration profile for various values of magnetic parameter M . An expansion
of the magnetic parameter depreciates the velocity while expanding the thermal
and concentration profile. The magnetic parameter reduces the fluid velocity which
in turn causes the momentum boundary layer to stretch. It is recognizing the way
in which the transverse magnetic field, in interaction with conducting nanofluid,
develops a retarding Lorentz force which slows down the fluid motion. We might

Fig. 2 Velocity for
different λ
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Fig. 3 Velocity for
different M
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want to comment here that unless and until the magnetic field was applied to the
conducting fluid, it would not have been contradicted by Lorentz force so that
the deceleration of fluid motion would not have been accomplished. It is indeed
additionally fascinating to say that expansion in power-law index diminishes the
velocity, temperature, and concentration boundary layers.

Figures 2, 4, and 8 reveal that enhancing the stretching rate ratio parameter
reduces the velocity in x direction and temperature profile. But it helps to enhance
the velocity in the y direction. Generally increasing the stretch in parameter tends
to increase the pressure on the flow, and due to this reason, we have seen a
decrease in temperature of the flow. From Fig. 5, we see that an increase in the

Fig. 4 Velocity for
different λ
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Fig. 5 Temperature for
different Q
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Fig. 6 Temperature for
different Nt
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Fig. 7 Temperature for
different M
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nature of the heat source enhances the temperature. This is because the heat source
can add more heat to the stretching sheet which extends its temperature, and in
this way, the temperature of the fluid is enhanced. Additionally the temperature
boundary layer also starts increasing by extending the nature of heat source.
Fig. 11 noticed that the concentration for various values of heat sink. It is also
noticed that the nature of the heat sink is quite opposite to the nature of heat
source; i.e., the temperature diminishes by expanding the nature of the heat sink.
This is in light of the fact that when the nature of the heat sink expands, more
heat is expelled from the stretching sheet and also diminishes the thickness of
temperature boundary layer. Thermophoresis is a phenomenon observed in mixtures
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Fig. 8 Temperature for
different λ
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Fig. 9 Concentration for
different Nt
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of mobile particles where the different particle types exhibit different responses
to the force of a temperature gradient. Figure 6 noticed the temperature for
various Nt . It is noticed that an expansion in Nt expands the temperature of the
fluid. At the point when Nt expands, the heat diffusivity of the nanoparticles will
accelerate the temperature of the nanofluid. Figure 9 indicates the concentration
for various values of Nt . It is obvious that the increase in the thermophoresis
parameter Nt expands the boundary layer thickness of concentration. Due to
this reason, the various nanoparticles have the various values of thermophoresis
parameter Nt .
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Fig. 10 Concentration for
different M
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Fig. 11 Concentration for
different Q
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4 Conclusion

The imperative points of conclusion are as follows:

1. Expanded power of the cold fluid at the periphery of the stretching sheet with an
expansion in λ diminishes the fluid temperature.

2. Additionally it is indeed fascinating to say that expansion in power-law index
diminishes the velocity, temperature, and concentration boundary layers.



Numerical Exploration of 3D Steady-State Flow Under the Effect of Thermal. . . 223

3. An expansion of the heat source improves the temperature. Due to this reason,
the heat source can add more heat to the stretching sheet which expands its tem-
perature along with the temperature of fluid upgrades. Moreover, the temperature
boundary layer begins to increment by expanding the nature of the heat source.
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Radiated Slip Flow of Williamson
Unsteady MHD Fluid over a Chemically
Reacting Sheet with Variable
Conductivity and Heat Source or Sink

Narsu Siva Kumar and B. Rushi Kumar

Abstract This study addresses the effects of unsteady MHD radiative slip flow of
Williamson fluid due to the chemically reacting sheet with variable conductivity and
heat source or sink. The boundary layer equations of the Williamson fluid model for
heat and mass transfer are deliberated. The governing partial differential equations
are transformed into a set of coupled ordinary differential equations of motion for
Williamson fluid are modeled under the sheet and then solved numerically by the
shooting technique with BVP4C package. The physical features of the model are
presented and discussed in graphs and tables.

1 Introduction

In non-Newtonian fluids, the most generally encountered fluids are pseudoplastic
fluids with lessening viscosity when considered shear strain. The concept of
pseudoplastic fluids has a wide range of applications in engineering and industry
in the extrusion of polymer sheets. Especially, recent paints are pseudoplastic
materials.

The Navier-Stokes equations are inadequate to illustrate the physical properties
of pseudoplastic fluids. The behavior of pseudoplastic fluids was insinuated to fill
this gap such as Ellis model, Carreau model, and power law, but little attention has
been paid to the Williamson fluid model. In 1929, Williamson [1] first introduced
a model to study the pseudoplastic fluid flow. This model verifies both the minimal
maximal viscosity (μ∞ and μ0) of the fluid wanted for pseudoplastic fluids. Later
on, different channels were investigated due to Williamson fluid [2]. Lyubimov and
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Perminov [4] investigated a thin layer of a Williamson fluid flow over an inclined
surface due to the gravitational field. Khan et al. [3] investigated the Homotopy
analysis of boundary layer flow of Williamson fluid by scaling transformation.

The fluid flow over a stretching surface has evolved the attention of several
researchers in the presence of good applications in engineering processes, for
example, manufacture of foods, polymer extrusion, crystal growing, and drawing
of plastic films. The flow caused by a linear velocity due to the stretched surface
has been broadly studied. To the best of our knowledge, the flow of heat transfer
peculiarity over a nonlinear stretching sheet has been studied [5–8]. Babu et al.
[9] demonstrated MHD non-Newtonian fluid flow over a slender sheet due to
cross-diffusion effects. It is also observed that the Soret and Dufour effects on
the Williamson fluid flow across variable thickness stretching sheet by viewing
slip parameters. MHD boundary layer flow of Williamson fluid due to ohmic
dissipation and thermal radiation was demonstrated by Hayat et al. [10]. In this
paper momentum and thermal boundary layer thickness lessen with an increasing
suction parameter. Hakeem et al. [11] have discussed the effect of partial slip
on MHD boundary layer flow over stretching surface with temperature-dependent
heat generation, thermal radiation, and wall mass transformation through a porous
medium. Later on, three-dimensional MHD Williamson fluid flows over a nonlinear
stretching surface were investigated by Malik et al. [12]. Zehra et al. [13] examined
the flow of Williamson fluid in an inclined channel with pressure-dependent
viscosity. A detailed observation of the literature displays that, to the best of author’s
cognition, nobody has discussed the radiated slip flow of Williamson unsteady
MHD fluid over a chemically reacting sheet with variable conductivity and heat
source/sink.

The governing partial differential equations are first transformed into ordinary
ones, before being solved shooting approximation. We have extended the work of
Vajravelu et al. [14] to study the effect of unsteady convective boundary layer flow
of viscous fluid properties. It is worth mentioning that the velocity and temperature
boundary layer thickness decrease with an increase in the unsteady parameter.

2 Mathematical Formulation

Consider an unsteady laminar two-dimensional boundary layer flow of incompress-
ible electrically conducting Williamson fluid through a semi-infinite porous plate
coinciding with plane y = 0. The effects of different physical parameters namely,
thermophoresis parameter, Brownian motion parameter, magnetic field parameter,
chemical reaction parameter, Williamson slip parameter, slip parameter and heat
source parameter have been taken into account. The Cartesian coordinate system has
chosen its origin located at the leading edge of the sheet with the positive x−axis
extending along the sheet and is positive in the direction of the sheet to the fluid.
We assume that for time t < 0, the fluid and heat flows are steady. The unsteady
fluid and heat flow starts start at t = 0, and the sheet is being stretched with the
velocity Uw(x, t) along the x−axis keeping the origin fixed. The temperature of the
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sheet Tw(x, t) and the concentration of the sheet Cw(x, t) are assumed to be a linear
function of x. Under the aforesaid assumptions, the governing equations boundary
layer equations can be expressed as

∂u

∂x
+ ∂u

∂y
= 0. (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ϑ

∂2u

∂y2 +
√

2ϑ Γ
∂u

∂y

∂2u

∂y2

±gβT (T − T∞)± gβC(C − C∞)− σB2
0

ρ
u− ϑ

K0
u (2)

ρCp

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)

= ∂

∂y

(
K(T )

∂T

∂y

)
−Q(T − T∞)+ τ

[
DB

∂C

∂y

∂T

∂y
+ DT

T∞

(
∂T

∂y

)2
]
− ∂qr

∂y
(3)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2 −K0(C − C∞)+ DT

T∞
∂2T

∂y2 (4)

Subject to the boundary conditions

u = Uw + l
du

dy
, v = vw(t), T = Tw at y = 0

u→ 0, T → T∞, C → C∞ as y →∞
(5)

where u and v are the velocity components in the x and y directions, respectively, g
is the acceleration due to gravity, ϑ is the kinematic viscosity, β is the coefficient of
thermal expansion, T is the fluid temperature, T∞ is the ambient temperature, ρ is
the density, Cp is the specific heat at constant pressure, K(T ) is the variable thermal
conductivity, vw(t) = v0√

1−ct
is the suction/injection velocity, and qr is the radiative

heat flux. The third term in Eq. (2) is due to the buoyancy force. The “+” and
“−” signs refer to the buoyancy assisting and buoyancy opposing flow conditions,
respectively. Here we assumed that the thermal conductivity varies linearly with
temperature [14] as

K(T ) = K∞
(

1+ ε

ΔT
(T − T∞)

)
.



228 N. S. Kumar and B. Rushi Kumar

Here, ΔT = (Tw − T∞),Tw, where ε is a small parameter called thermal
conductivity parameter, Tw is the surface or wall temperature, and K∞ is the thermal
conductivity of the fluid far away from the sheet. The radiative heat flux can be
expressed [15] as

qr = −4σ ∗

3k∗
∂T 4

∂y
.

Here, σ ∗ and k∗ are Stephan-Boltzmann constant and mean absorption coefficient.
We assume that (T−T∞), i.e., the temperature difference within the flow is such that
the term T 4 can be expressed as a linear function of temperature. So now, expanding
T 4 by a Taylor series about T∞ and ignoring higher order terms, we get

T 4 ≈ 4T 3∞T − T 4∞.

Following Ishak et al. [16], the stretching velocity is assumed as Uw(x, t) =
ax
/
1− ct , where a and c are constants (with a ≥ 0 and c ≥ 0 where ct < 1). We

have a as the initial stretching rate a
1−ct

and it is increasing with time. We assume
Tw (x, t) and Cw (x, t) are surface temperature and concentration of the stretching
sheet to vary with distance x and inverse square law for its decrease with time in
the following form: Tw (x, t) = T∞ + bx

(1−ct)2 , Cw (x, t) = C∞ + φ bx

(1−ct)2
Here

b is a constant and has dimension temperature or length, with b > 0 (assisting
flow), b < 0 (opposing flow), and b = 0 for the forced convection limit (absence
of buoyancy force). These particular forms of Uw(x, t), Tw (x, t), and Cw (x, t)

have been preferred in order to obtain a new similarity transformation, which
transforms the governing equations (PDEs) (1)–(4) into a set of coupled ordinary
differentiable equations (ODEs), thereby facilitating the exploration of the effects
of the controlling parameters.

Following dimensionless functionsf , θ , and φ with the similarity variable ς (see
Vajravelu et al. [14]):

ς =
(

a

ϑ (1− ct)

) 1
2

y, ψ =
(

ϑa

(1− ct)

) 1
2

xf (ς) , θ (ς) = (T − T∞)

(Tw − T∞)
,

φ (ς) = (C − C∞)

(Cw − C∞)
, A = c

a
, Λ = Γ x

(
a3

√
1− ct

) 1
2

,

P r = ρCp

K∞
, fw = − v0√

υa
,

Nr = 16T 3∞σ ∗

3k∗K∞
, M = σB2

0

ρU∞
, Nb = τDB(Cw − C∞)

ϑ
,
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Nt = τDT (Tw − T∞)

T∞
ϑ,

λT = gβT b

a2 , λC = gβb

a2 (6)

where ψ(x, y, t) a stream function is defined as (u, v) =
(
∂ψ
∂y

,− ∂ψ
∂x

)
which

identically satisfies the continuity equation (1). Substituting Eq. (6) in Eqs. (2)–(4),
we obtain

f ′′′ + ff ′′ − f ′2 − A

(
f ′ + 1

2
ςf ′′

)
+Λf ′′f ′′′ ± λT θ ± λCφ − (M +K)f ′ = 0

(7)

1

Pr

(
θ ′′ + εθ ′2 + εθθ ′′

)
−QHθ + Nr

Pr
θ ′′ + f θ ′ − θf ′ − A

2
ςθ ′ − 2Aθ

+Nbθφ
′ + Ntθ

′2 = 0 (8)

1

Sc
φ′′ + (

f φ′ − φf
)− A

2
ςφ′ − 2Aφ −KrAφ = 0 (9)

Corresponding the following boundary conditions are

f ′(0) = 1+ Lf ′′(0), f (0) = fw, θ(0) = 1, φ(0) = 1 at

f ′(∞)→ 0, θ(∞)→ 0 φ(∞)→ 0
(10)

where primes denote differentiation with respect to ς . The physical quantities of
interest are the local heat flux and local mass flux, which is defined as

Cf = τw

ρU2
w/2

, Nux = xqw

K∞ (Tw − T∞)
,

where the skin friction τw and the heat transfer qw from the sheet are given by

τw = μ

(
∂u

∂y

)

y=0
, qw = −K∞

(
∂T

∂y

)

y= 0

3 Results and Discussion

The present investigation is extended out by determining the impact of pertinent
parameters on fluid velocity, temperature, and concentration distribution presented
in Figs. 1, 2, 3, 4, 5, 6, 7, and 8. The numerical values of some important physical
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Fig. 1 Impact of Nt on θ(ς)
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Fig. 2 Impact of Nb on θ(ς)
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quantities are presented in Tables 1 and 2. For simplicity, the constants assumed for
several parameters are K = 0.5,QH= 0.5, Pr = 0.7, Nt = 1, Nb = 1, Λ =
0.2 , A = 0.2, ε = 0.1, M = 2, Kr = 0.1, Nr = 0.2, ς = 0.5, L = 0.3. The
effects of the thermophoresis parameter Nt on temperature profiles is presented in
Fig. 1. It is noted that the rising of Nt enhances the thickness of thermal boundary
layer. Figure 2 displays the effect of Nb (the Brownian motion parameter) on
the temperature for both the cases of the absence and presence of porosity. The
temperature increases for increasing values of Brownian motion parameter. The
dimensionless temperature distribution for various values of the thermal radiation
parameter Nr is shown in Fig. 3 for both the absence and presence of porosity. It
reveals that the greater values of Nr enhance the thermal boundary layer thickness.
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Fig. 3 Impact of Nr on θ(ς)
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Fig. 4 Impact of Kr on φ(ς)
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It is also observed that the presence of porosity is very high compared with the
absence of porosity.

The effects of the chemical reaction parameter Kr on concentration fields are
displayed in Fig. 4. The depreciation in the concentration field has been noted
for both presence and absence of porosity. The influence of magnetic parameter
M on velocity profiles is exhibited in Fig. 5 for both porosity parameters on
the presence and absence, respectively. We observed the velocity depreciates for
increasing values of the magnetic parameter. Figures 6 and 7 present the effects of
the Williamson parameter Λ and the slip parameter L on velocity field for both the
presence and absence of porosity parameter. The velocity field is improved with
higher values of Λ and L. Due to this reason, we have a seen a hike in velocity field.
Figure 8 demonstrates the effect of QH on temperature distribution of the flow. It is
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Fig. 5 Impact of M on f ′(ς)
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Fig. 6 Impact of Λ on f ′(ς)
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seen that increasing values of the heat source parameter QH suppressed the thermal
boundary layer thickness of the flow.

Tables 1 and 2 depict the effect of nondimensional parameters on friction factor
coefficient, local Nusselt, and Sherwood numbers for both the cases (absence and
presence of porosity). It is apparent from Table 1 (absence of porosity) that rising
values of Nb, Nr, L intensifies and Nb, Kr, M, QH ,Λ lessens the friction factor
coefficient. Higher values of Nt , Nr, Kr, M, L,Λ lessen and Nt , QH improve
the heat transfer rate. The rate of mass transfer has been decreased by increasing the
values of Nt , Nr, M, QH , whereas it has been increased by increasing the values
of Nb, Nr, Kr, L, Λ. The same strategy has been observed quantitatively in the
presence of porosity, which is portrayed in Table 2.
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Fig. 7 Velocity profile for
various L
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Fig. 8 Temperature profile
for QH
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4 Conclusions

The investigated problem explores the influences of various parameters on velocity,
temperature, and concentration. The present analysis also elaborates the radiated
slip flow of Williamson unsteady MHD fluid over a chemically reacting sheet with
variable conductivity and heat source/sink. Some of the interesting conclusions are
as follows:
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Table 1 Values of skin friction, Nusselt and Sherwood number for various values Nt , Nb, Nr ,
Kr , M , QH , L, Λ when K = 0

Nt Nb Nr Kr M QH L Λ f ′′(0) −θ ′(0) −φ′(0)
0.1 0.222699 0.245502 0.266937

0.5 0.454265 0.457273 0.249630

0.9 0.728861 0.474866 0.226946

0.1 0.250135 0.464364 0.402339

0.2 0.233904 0.458243 0.599029

0.3 0.228544 0.455087 0.664762

0.5 0.080354 2.605393 0.087209

1.5 0.122236 1.221540 0.286496

2.5 0.148632 0.893089 0.398128

1.0 −0.173419 55.851104 −1.709512

2.0 −0.182086 54.899934 −1.573263

3.0 −0.189631 54.061307 −1.451098

1.5 −0.223987 56.269999 −1.863575

2.5 −0.316713 55.576415 −1.919693

3.5 −0.386487 55.059958 −1.965386

0.5 0.072783 2.753548 0.041842

1.5 0.052473 3.192599 −0.090618

2.5 0.037057 3.572928 −0.203450

0.2 −1.192513 4.391221 −0.158618

0.4 −0.867385 4.313113 −0.155426

0.6 −0.685916 4.265128 −0.153488

0.2 −1.002530 4.346763 −0.156795

0.4 −1.056346 4.324802 −0.156747

0.6 −1.135629 4.297181 −0.156295

• It is observed that an increase in Nr produces significant intensities in the
thickness of the temperature boundary layer of the fluid.

• The momentum boundary layer diminishes with higher values of the magnetic
parameter.

• Increasing values of QH suppressed the thermal boundary layer thickness of the
flow.

• The temperature increases for increasing values of Nb and in the reverse
phenomena of concentration respectively.
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Table 2 Values of skin friction, Nusselt and Sherwood number for variou svalues Nt , Nb, Nr ,
Kr , M , QH , L, Λ when K = 0.5

Nt Nb Nr Kr M QH L Λ f ′′(0) −θ ′(0) −φ′(0)
0.1 0.125439 0.440820 0.688181

0.5 0.146232 0.443727 0.437762

0.9 0.165843 0.446018 0.193734

0.1 0.150523 0.450579 0.366330

0.2 0.135659 0.444655 0.560123

0.3 0.130761 0.441613 0.624939

0.5 0.001676 2.541169 0.056138

1.5 0.039081 1.188685 0.253994

2.5 0.062225 0.868082 0.364298

1.0 −0.104892 56.437691 −1.682630

2.0 −0.114365 55.541383 −1.554807

3.0 −0.122703 54.743334 −1.439173

1.5 −0.273841 55.895873 −1.893058

2.5 −0.353918 55.300798 −1.943722

3.5 −0.415237 54.848704 −1.985003

0.5 −0.005635 2.694255 0.008741

1.5 −0.025128 3.144790 −0.128497

2.5 −0.039849 3.532450 −0.244439

0.2 −1.294271 4.344928 −0.162493

0.4 −0.932662 4.263959 −0.158966

0.6 0.733977 4.214626 −0.156833

0.2 −1.082027 4.298730 −0.160472

0.4 −1.146237 4.273752 −0.160180

0.6 −1.245774 4.241481 −0.159360
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Approximate Analytical Solution of a
HIV/AIDS Dynamic Model During
Primary Infection

Ajoy Dutta and Praveen Kumar Gupta

Abstract HIV/AIDS is a very challenging epidemic disease all over the world. In
the present chapter, the homotopy analysis method (HAM) is functional for evalu-
ating the estimated solution of the HIV dynamic model during primary infection.
By using the HAM, we have adjusted and controlled the area of convergence of
the infinite series solution with the help of auxiliary parameters. Numerical results
for different cases obtained graphically show that series solutions are convergent
and the residual errors curve shows that the HAM is very effective at gaining an
accurate approximation.

1 Introduction

The infectious disease AIDS is not yet fully curable and is the cause of HIV. Various
nonlinear models have been developed to explain HIV [6, 8–10]. A model with
different classes was devised.

Here, the HAM is established for the model Srivastava et al. [14], where they
consider three classes: A(η), B(η) and C(η) are uninfected, infected CD4+ T cells
and the virus respectively. According to Rong et al. [12] and Essunger and Perelson
[1], some portion of B(η) due to natural recovery of CD4+ T cells back to the
uninfected class. The model is [14].

dA
dt
= r − α1AC − β1A+ α2B

dB
dt
= α1AC − α2B − β2B
dC
dt
= Vβ3B − β4C

⎫
⎬

⎭ (1)

with

A(0) = A0 > 0, B(0) = B0 > 0, C(0) = C0 > 0 (2)
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Here, η represents the time, r is the inflow rate of A(η), α1 is the rate of infection
of CD4+ T-cells becoming active, α2 is the rate of infected cells transforming back
to uninfected cells, β1 is the removal rate of A(η), β2(≥ β2) is the removal rate of
B(η), β3 is the lytic death rate for Y (η), β4 is the removal rate of C(η) , and V is
the average number of viruses produced by B(η).

In [14], the authors have discussed the stability and existence of the model (1).
The literature shows that the HAM [2–5, 11, 13] is applied to various nonlinear
problems to find approximate solution.

2 The HAM Solution of the HIV Model

First, we define the homotopy map:

HA(Â(η, τ ), B̂(η, τ ), Ĉ(η, τ )) = (1− τ )LA[Â(η, τ )− A0(η)]
−τ h̄hA(η)NA[Â(η, τ ), B̂(η, τ ), Ĉ(η, τ )] (3)

HB(Â(η, τ ), B̂(η, τ ), Ĉ(η, τ )) = (1− τ )LB [B̂(η, τ )− B0(η)]
−τ h̄hB(η)NB [Â(η, τ ), B̂(η, τ ), Ĉ(η, τ )] (4)

HC(Â(η, τ ), B̂(η, τ ), Ĉ(η, τ )) = (1− τ )LC [Ẑ(η, τ )− Z0(η)]
−τ h̄hZ(η)NC [Â(η, τ ), B̂(η, τ ), Ĉ(η, τ )] (5)

where τ ∈ [0, 1], h̄ are embedding, auxiliary parameters and hA, hB and hC are
auxiliary functions. The nonlinear operators are defined as:

NA(Â(η, τ ), B̂(η, τ ), Ĉ(η, τ )) = ∂Â(η, τ )

∂η
− r + α1Â(η, τ )Ĉ(η, τ )

+β1Â(η, τ )− α2B̂(η, τ ) (6)

NB(Â(η, τ ), B̂(η, τ ), Ĉ(η, τ )) = ∂B̂(η, τ )

∂η
− α1Â(η, τ )Ĉ(η, τ )

+ α2B̂(η, τ )+ β2B̂(η, τ ) (7)

NC(Â(η, τ ), B̂(η, τ ), Ĉ(η, τ )) = ∂Ĉ(η, τ )

∂η
− Vβ3B̂(η, τ )+ β4Ĉ(η, τ ). (8)
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We take τ = 0 and τ = 1 in the homotopy map (3)–(5) and:

HA(Â(η, τ ), B̂(η, τ ), Ĉ(η, τ )) = HB(Â(η, τ ), B̂(η, τ ), Ĉ(η, τ ))

= HC(Â(η, τ ), B̂(η, τ ), Ĉ(η, τ )) = 0. (9)

We can find:

(1− τ )LA[Â(η, τ )− A0(η)] = τ h̄hA(η)NA[Â(η, e), B̂(η, τ ), Ĉ(η, τ )], (10)

(1− τ )LB [B̂(η, τ )− B0(η)] = τ h̄hB(η)NB[Â(η, τ ), B̂(η, τ ), Ĉ(η, τ )], (11)

(1− τ )LC [Ĉ(η, τ )− Z0(η)] = τ h̄hC(η)NC[Â(η, τ ), B̂(η, τ ), Ĉ(η, τ )]. (12)

Applying the Taylor series with respect to τ yields:

Â(η, τ ) = A0(η)+
∞∑

m=1

Am(η)τm, B̂(η, τ )

= B0(η)+
∞∑

m=1

Bm(η)τm, Ĉ(η, τ ) = Z0(η)+
∞∑

m=1

Zm(η)τm, (13)

where

Am = 1

m!
[
∂mÂ(η, τ )

∂τm

]
, Bm = 1

m!
[
∂mB̂(η, τ )

∂τm

]
, Cm = 1

m!
[
∂mĈ(η, τ )

∂τm

]
.

(14)

After simplifying (10)–(12) we get:

LA[Am(η)− χmAm−1(η)] = h̄hA(η)Rm,A(
−→
Am−1,

−→
B m−1,

−→
C m−1) (15)

LB[Bm(η)− χmBm−1(η)] = h̄hB(η)Rm,B(
−→
Am−1,

−→
B m−1,

−→
C m−1) (16)

LC [Cm(η)− χmCm−1(η)] = h̄hB(η)Rm,C(
−→
Am−1,

−→
B m−1,

−→
C m−1) (17)

with initial condition:

Am(0) = 0, Bm(0) = 0, Cm(0) = 0, (18)

where

Rm,A(η) = dAm−1(η)

dη
− (1− λm)r + α1

m−1∑

i=0

Ai(η)Cm−1−i (η)

+ β1

m−1∑

i=0

Ai(η)Am−1−i (η)− α2

m−1∑

i=0

Bi(η)Bm−1−i (η),
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Rm,B(η) = dBm−1(η)

dη
− α1

m−1∑

i=0

Ai(η)Cm−1−i (η)+ β2

m−1∑

i=0

Bi(η)Bm−1−i (η)

+ α2

m−1∑

i=0

Bi(η)Bm−1−i (η),

Rm,C(η) = dCm−1(η)

dη
− Vβ3

m−1∑

i=0

Bi(η)Bm−1−i (η)+ β4

m−1∑

i=0

Ci(η)Cm−1−i (η).

Using hA(η) = hB(η) = hC(η) = 1, the solution of the m-order deformation
Eqs. (15)–(17) for m ≥ 1 becomes:

Am(η) = λmAm−1(η)+ h̄

∫ η

0
Rm,A(s)ds, (19)

Bm(η) = λmBm−1(η)+ h̄

∫ η

0
Rm,B(s)ds, (20)

Cm(η) = λmCm−1(η)+ h̄

∫ η

0
Rm,C(s)ds. (21)

In-depth study of the convergence of the HAM can be found in [3, 7].

3 Numerical Results

To demonstrate the capacity of the HAM, the values of the variables and parameters
of the model (1) are given in following Table: A(0) = 1000, B(0) = 0 and C(0) =
0.001.

With the help of Mathematica software, we have drawn the following figure.

Table 1 List of parameters
and their values

Parameter Value Data source

r 10 mm−3 day−1 [14]

α1 0.000024 mm−3 day−1 [14]

α2 0.2 day−1 [14]

β1 0.01 day−1 [14]

β2 0.5 day−1 [14]

β3 0.16 day−1 [14]

β4 3.4 day−1 [14]

V 1000 [14]
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Fig. 1 The h̄-curves of obtained by the (a) 4th-order and (b) 5th-order approximation of the HAM
for T ′(0)
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Fig. 2 The h̄-curves of obtained by the (a) 4th-order and (b) 5th-order approximation of the HAM
for I ′(0)
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Fig. 3 The h̄ curves obtained by the (a) 4th-order and (b) 5th-order approximation of the HAM
for V ′(0)

Figures 1a, b, 2a, b, and 3a, b are the h̄ curves obtained by the 4th-order and
5th-order approximation of the HAM respectively.

From Figs. 1, 2, and 3 it was observed that the line segment of h̄ curves is nearly
parallel to the horizontal axis, and ensures that the series solutions obtained are
convergent.
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Table 2 The above values of
h̄ derive from Figs. 1, 2, and 3

A(η) −1.5 ≤ h̄ ≤ −0.5

B(η) −1.5 ≤ h̄ ≤ −0.5

C(η) −1.5 ≤ h̄ ≤ −0.5

Table 3 The minimum
values of RA(h̄∗1), RB(h̄∗1),
RC(h̄∗1)

h̄∗ Minimum value

RA(h̄1) −0.639467 8.06216 × 10−13

RB(h̄2) −0.643968 9.26825 × 10−13

RC(h̄3) −0.51468 1.0034 × 10−6

Table 4 The residual errors for various values η

t ER1(A,B,C;−0.639467) ER1(A,B,C;−0.643968) ER1(A,B,C;−0.51468)

0 1.12472 × 10−6 −1.08312 × 10−6 0.000388654

0.1 −3.76069 × 10−7 4.38038 × 10−7 −0.000179256

0.2 −8.20159 × 10−7 −4.60439 × 10−7 −0.000580455

0.3 −5.70582 × 10−7 8.97059 × 10−7 −0.000848859

0.4 4.9731 × 10−8 6.27566 × 10−7 −0.00101581

0.5 7.5653 × 10−7 −3.61895 × 10−8 0.00111014

0.6 1.13028 × 10−6 −7.99505 × 10−7 0.00115823

0.7 1.47749 × 10−6 −1.4058 × 10−6 0.0011841

0.8 1.10376 × 10−6 −1.30321 × 10−6 −0.00120947

0.9 3.79016 × 10−6 −2.590007 × 10−7 −0.00125381

1 −1.83226 × 10−6 1.61566 × 10−6 0.00133441

For residual functions for the model (1) are

RA(h̄1) =
∫ 1

0
(ER1(A,B,C, h̄1))

2dt (22)

RB(h̄2) =
∫ 1

0
(ER2(A,B,C, h̄2))

2dt (23)

RC(h̄3) =
∫ 1

0
(ER3(A,B,C, h̄3))

2dt (24)

The residual errors ER1, ER2, and ER3 are shown in Fig. 4 for η ∈ (0, 1) and for
different h̄. In Fig. 4, we can observe that the results acquired by applying the HAM
provide an analytical solution with a high order of accuracy and with only a few
iterations.
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Fig. 4 Fourth-order residual error plot for various values of h̄ and η ∈ (0, 1)

4 Conclusion

It is observed that the HAM has the intended result after solving a model for HIV
and CD4+ T cells during primary infection. The HAM avoids the difficulties and
huge amount of computational work of other numerical methods.
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Stratification and Cross Diffusion Effects
on Magneto-Convection Stagnation-Point
Flow in a Porous Medium with Chemical
Reaction, Radiation, and Slip Effects

M. Bhuvaneswari, S. Sivasankaran, S. Karthikeyan, and S. Rajan

Abstract The analysis on the changes due to mass and heat transfer in the presence
of chemical reaction, thermal radiation, internal heat generation, and Dufour-Soret
effects on an unsteady hydromagnetic combined convection stagnation-point flow
toward a vertical plate embedded in a solutally and thermally stratified porous
surrounding subjected to the slip conditions on velocity, thermal, and solutal fields
is presented deliberately in this paper. Relations of similarity are inducted for the
conversion of flow relations as ordinary differential equations and the solution is
obtained upon the application of shooting method combined with Runge-Kutta
algorithm. An analysis is presented upon the graphical depictions on the profiles
of velocity of the liquid, its temperature, and its concentration with respect to some
physical entities, and conclusions thereby are drawn.

Keywords: Stagnation-point; Porous medium; Thermal radiation; Stratification;
Slip conditions; Chemical reaction.

1 Introduction

Transfer of mass and energy in MHD convection with chemical reaction and
radiation occupies a pivotal place in haystack burning, fluidized bed catalysis,
drying processes of porous solids, and temperature reduction of reactors in atomic
power stations. The changes due to chemical reaction and radiation on different
configurations of the problem have been researched by many authors. By employing
Lie group analysis, Bhuvaneswari et al. [1] explored the convective double-
diffusive flow of an incompressible liquid past an inclined semi-infinite surface
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with first-order homogeneous chemical reaction. The effect of flow, mass, and heat
transfer on hydromagnetic chemically reacting flow in a two-dimensional irregular
channel subject to radiation and Dufour effect is investigated by Ruchi Kumar and
Sivaraj [2].

In recent years, quite a large number of studies dealing with Dufour-Soret effects
on mass and heat transfer of viscoelastic fluids have appeared. Dufour-Soret effects
combined with chemical reaction and radiation on viscoelastic flow upon a stretched
surface with convective boundary condition was the case dealt by Eswaramoorthi
et al. [3]. Radiation, internal heat generation, and Dufour-Soret effects on MHD
combined convection stagnation-point flow toward a vertical plate in a porous
neighborhood with mass and heat transfer were examined by Karthikeyan et al.
[4]. Aman et al. [5] have concentrated upon the action of hydromagnetic stagnation-
point flow toward a shrinking/stretching sheet with boundary slip effect. Variations
in temperature and concentration differences or existence of fluids having different
densities are the causes for stratification. The analysis of free/combined convection
in a stratified medium is a problem of fundamental interest because of its important
applications in engineering. MHD combined convection from a vertical plate over
a stratified porous surrounding with thermal dispersion was probed by Chamkha
et al. [6]. Changes due to slip conditions are significant for fluids that show wall
slip such as polymer solutions, foams, emulsions, etc. In many of the technological
applications such as the polishing of internal cavities and artificial heart valves,
fluids exhibiting slip are important. Slip effects in the flow of a nanofluid in a
stretching cylinder with double stratification and radiation were analyzed by Hayat
et al. [7]. Partial slip on steady stagnation-point flow of an incompressible liquid
toward a shrinking sheet was considered by Bhattacharyya et al. [8]. Rohini et al. [9]
have made a study on the action of suction and temperature slip upon the unsteady
combined convection boundary layer flow near the stagnating point on a permeable
vertical surface encompassed in a porous medium. By drawing motivation from the
above works, we attempt this study to analyze the changes due to the stratification
and slip on hydromagnetic stagnation-point flow in a porous medium with cross
diffusion, chemical reaction, and radiation.

2 Flow Analysis

Steady-state two-dimensional hydromagnetic flow of an incompressible electrically
conducting viscous liquid in the vicinity of a point of stagnation at the surface y = 0
with the flow region as y > 0 is considered. By setting the origin fixed, two forces
of equal magnitude and opposite direction are employed along x-axis. The liquid
arriving from y-axis make an impact on the wall at y = 0, and as a result, there
are two streams leaving in upper and lower directions. In nearby surrounding of a
stagnating point, flow velocity is taken as U∞ = nx, where n is positive. A magnetic
domain B0, a constant, is employed in y direction. The electric field as well as
the magnetic field is negligible because of polarization. The concentration and the
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temperature of the liquid are C∞ and T∞ and that of the liquid at stretching wall
are Cw and Tw, respectively. We assume that the plate gets heated due to convection
by a hot liquid having Tf as temperature. Further, we assume that the electrical
and viscous dissipation are negligibly small. The equations pertaining to this MHD
stagnating-point flow of mass and energy transfer upon a hot vertical plate are

∂u

∂x
+ ∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+ gβ(T − T∞)+ gβ∗(C − C∞)

−
(
σeB

2
0

ρ
+ v

K̃

)
(u− U∞)+ U∞

dU∞
dx

(2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2 −
α

k

∂qr

∂y
+ DmKT

cscp

∂2C

∂y2 +Q(T − T∞) (3)

u
∂C

∂x
+ v

∂C

∂y
= Dm

∂2C

∂y2 +
DmKT

Tm

∂2T

∂y2 −K1C (4)

with

u = uw + L
∂u

∂y
, v = 0, T = Tw +K1

∂T

∂y
,C = Cw +K2

∂C

∂y
at y = 0,

u→ 0, T → T∞, C → C∞, as y →∞ (5)

where uw = u0x
l

, Tw = T0+a x
l
, Cw = C0+b x

l
, T∞ = T0+d x

l
, and C∞ = C0+e x

l
,

where L, K1, and K2 are, respectively, the slip factors with respect to velocity,
thermal effect, and concentration; a, b, d , and e are the constants of dimensionality;
and l is the reference length. Here, with usual notations, we take

qr = −4σ ∗

3K ′
∂T 4

∂y
(6)

On the assumption that the temperature variations are too minimal, we can
take T 4 as

T 4 ∼= 4T 3∞T − 3T 4∞. (7)

We incorporate the nondimensional expressions listed below.

Gr = gβ(Tw − T∞)x3

v2 , Gc = gβ(Cw − C∞)x3

v2 , S = Qv

αn
, Rd = 4σ ∗T 3∞

kK ′ ,
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Df = KTDm(Cw − C∞)

cpαcs(Tw − T∞)
,K = v

nK̃
, P r = ν

α
, Sc = ν

Dm

, M = B2
0σe

ρn
,

ν = μ

ρ
, Sr = KT (Tw − T∞)

Tmv(Cw − C∞)
, Cr = K1

n
,Rex = U∞x

v
, RiT = Gr

Re2
x

, (8)

RiC = Gc

Re2
x

, ST = d

a
, dT = K1

√
U0

lv
, Sc = e

b
, dC = K2

√
U0

lv
.

Here SC , ST , d, dC , and dT are, respectively, the parameters corresponding to solutal
stratification, thermal stratification, velocity slip, solutal slip, and thermal slip. We
now introduce the following similarity relations:

η = y

√
n

ν
, ψ = √vnxf (η), θ = T − T∞

Tw − T0
, φ = C − C∞

Cw − C0
(9)

where ψ(x, y) is the stream function defined by u = ∂ψ
∂y

and v = − ∂ψ
∂x

so as
to satisfy Eq. (1) identically. Equations (2)–(5), on the application of Eqs. (7)–(9),
yield the equivalent set of ordinary differential equations as

f ′′′ + ff ′′ − f ′2 + θRiT + φRiC + (K +M)(1− f ′) = −1 (10)

(1+ 4Rd/3) θ ′′ − ST Prf ′ − Prf ′θ + Prf θ ′ + Sθ +Dfφ′′ = 0 (11)

φ′′ − ScScf
′ − Scf ′φ + SrScθ ′′ + Scfφ′ − ScCrφ = 0. (12)

where K , Rd M , Cr , and S are, respectively, the parameters corresponding to
porous surrounding permeability, thermal radiation, magnetic domain, chemical
reaction, and internal heat generation. On the substitution of Eqs. (7)–(9), conditions
in (5) are modified as

f ′ = 1+ df ′′, f = 0, θ = 1− ST + dT θ
′, φ = 1− Sc + dCφ

′ at η = 0

f ′ = 0, θ = 0, φ = 0 as η →∞ (13)

Solutions of Eqs. (10)–(12) subject to (13) are attained by the application of shooting
method combined with Runge-Kutta fourth-order algorithm. Localized Nusselt and
Sherwood numbers and then the coefficient of skin-friction are given by

Cf = 2τw
ρU2∞

, Nu = xqw

k(Tw − T∞)
, Sh = xqm

Dm(Cw − C∞)
. (14)

where

τw=μ
∂u

∂y

∣∣∣∣
y=0

, qw=−k
∂T

∂y

∣∣∣∣
y=0

=− 4σ ∗

3K ′
∂T 4

∂y

∣∣∣∣
y=0

, qm=−D
∂C

∂y

∣∣∣∣
y=0

. (15)
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The relations for localized Nusselt and Sherwood numbers and then the coefficient
of skin-friction are derived as

CfRe
1
2 = f ′′(0), Nu/Re

1
2 = −

(
1+ 4

3
Rd

)
θ ′(0), Sh/Re

1
2 = −φ′(0). (16)

3 Results and Discussion

Throughout the numerical computations, we fix the values for the parameters as
RiT = 1, RiC = 1, K = 1, M = 1, Pr = 0.7, Sc = 0.5, a = 1, d = 0.5,
S = 1.0, Df = 0.5, Rd = 0.5, Sr = 0.5, Cr = 0.5, dT = 1.0, dC = 1.0,
ST = 0.5, SC = 0.5 unless stated otherwise. It is seen in Fig. 1 that rising the
velocity due to ascending values of d . Figure 2a–c indicates the changes due to
radiation parameter on f ′, θ , and φ. From Fig. 2a–b, it is observed that a rise in
radiation parameter initially tends to diminish the velocity and temperature, while
the reverse trend occurs when η > 1. Figure 2c indicates that, for the accelerating
values of radiation parameter, concentration picks up first and it declines after η = 1
and again it reverses when η > 3. From Fig. 3a–b, it is observed that the changes of
ascending Dufour number raise the fluid temperature significantly. It is seen that the
concentration lowers down and it rises again slightly as it reaches the free stream
value.

Figure 4a–b represents the concentration profiles for Soret number and chemical
reaction parameter, respectively. Rise in chemical reaction parameter reduces the
concentration. However, the concentration lowers down near boundary and it rises
again slightly as it reaches the free stream value as presented in Fig. 3b.

Figure 5a–b displays the rise in both temperature and velocity because of a rise
in temperature slip parameter dT . The changes due to concentration slip parameter
dC on velocity and concentration are depicted in Fig. 6a–b. Both the velocity and
concentration become low with ascending values of dC . It is noticed in Fig. 7a–b that

Fig. 1 Effect of d on velocity
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(a) (b)

(c)

Fig. 2 Effect of Rd on velocity (a), temperature (b), and concentration (c)

(a) (b)

Fig. 3 Effect of Df on temperature (a), and concentration (b)

(a) (b)

Fig. 4 Effect of Sr (a) and Cr (b) on concentration
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(a) (b)

Fig. 5 Effect of dT on velocity (a) and temperature (b)

(a) (b)

Fig. 6 Effect of dC on velocity (a) and concentration (b)

(a) (b)

Fig. 7 Effect of ST on velocity (a) and temperature (b)

a rise in thermal stratification parameter diminishes the temperature and velocity and
thus shrinks thermal boundary layer thickness. Descending trends in the velocity and
concentration profiles are observed due to the rise in solutal stratification parameter
in Fig. 8a–b.
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(a) (b)

Fig. 8 Effect of SC on velocity (a) and concentration (b)

4 Conclusion

The changes due to stratification and velocity, thermal, and solutal slip conditions
on hydromagnetic combined convection stagnating-point flow upon a plate placed
upright in a porous surrounding with mass and heat transfer in the influence
of internal heat generation, radiation, and Dufour-Soret effects are deliberately
analyzed in this paper. Shooting method with Runge-Kutta algorithm is applied for
finding the solution. Conclusions of the study are as follows:

• Radiation parameter initially tends to diminish temperature and velocity profiles;
but when η > 1, the reverse trend occurs.

• Ascending values of chemical reaction parameter leads to diminish the species
concentration at the boundary layer.

• Both temperature and velocity enhance on rising the thermal slip parameter.
• A rise in thermal stratification parameter brings down the temperature and

velocity and thus thermal boundary layer thickness slims down.
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Natural Convection of Newtonian Liquids
and Nanoliquids Confined in
Low-Porosity Enclosures

P. G. Siddheshwar and K. M. Lakshmi

Abstract Natural convection of nanoliquids confined in a low-porosity enclosure
when the lateral walls are subject to constant heat and mass fluxes is studied analyti-
cally using modified Buongiorno-Darcy model and Oseen-linearised approximation.
For the study we considered water-copper nanoliquid and aluminium foam, glass
balls as porous materials. The effective thermophysical properties are calculated
using phenomenological laws and mixture theory. An analytical solution is obtained
for boundary layer velocity and Nusselt number. The study shows that dilute
concentration of high thermal conductivity nanoparticles significantly facilitates
enhanced heat transport. The porous medium, however, diminishes heat transport
when the thermal conductivity of the porous material, kpm, is less compared to that
of nanoparticles, knp. When kpm ≥ knp then the presence of nanoparticles does not
affect the heat transport.

1 Introduction

Natural convection heat transfer in a low-porosity medium due to the temperature
difference between the vertical walls is frequently encountered in design of thermal
insulation systems, geothermal reservoirs, grain storage, heat exchangers, electron-
ics cooling, nuclear reactors, etc. In all these applications, the primary limitation
of using Newtonian liquids as a medium for heat exchange is its low thermal
conductivity. We can overcome this limitation by introducing nanoscaled engineered
particles, i.e., nanoparticles of high thermal conductivity into the Newtonian liquids
as this will significantly increase the effective thermal conductivity of the liquid
system.

Natural convection in nanoliquids is generally studied using KVL single-phase
model [6, 10, 15] and Buongiorno two-phase model [5, 8, 11–13, 17, 20, 22]. The
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limitation of using KVL model is that this model does not account for important
effects such as Brownian motion and thermophoresis. In the present paper, we have
modelled the conservation equations for nanoliquid-saturated porous medium using
modified Buongiorno-Darcy model (MBDM) with the effective thermophysical
properties being modelled using phenomenological laws [4, 9] and traditional
mixture theory. These are few works that consider natural convection due to heating
of vertical walls in enclosures [1, 2, 7, 10, 19]. In many practical situations such as
design of insulating systems, the fluid layer will be exposed to radiation heating. Our
problem is the simulation of such situations. Many researchers have studied natural
convection subjected to uniform heat and mass fluxes in Newtonian liquid-saturated
porous medium [3, 14, 16, 18]. We extend the problem to a nanoliquid-saturated
porous medium with actual thermophysical properties of water-copper nanoliquid
and aluminium foam, glass balls porous materials being used.

Nomenclature

A aspect ratio R1 thermal Rayleigh number

a core temperature gradient R2 concentration Rayleigh number

b core concentration gradient T effective temperature

Cp effective specific heat capacity t(x) temperature profile

C concentration of nanoparticles u, v velocity components

c(x) concentration profile x, y spatial coordinates

DB Brownian diffusion coefficient α volume fraction (0 ≤ α < 1)

dnp diameter of nanoparticles β1 thermal expansion coefficient

DT thermophoresis coefficient β2 solutal analog of β1

g acceleration due to gravity χ effective thermal diffusivity

H height of the enclosure ΔT temperature difference

j” mass flux ΔC concentration difference

k effective thermal conductivity μ dynamic coeffecient of viscosity

K permeability φ porosity (0 < φ ≤ 1)

KB Boltzmann constant ρ0 effective density

L enclosure thickness

Le Lewis number Subscripts
M ratio of specific heats bl base liquid

NA modified diffusivity ratio c critical

NT Thermophoresis parameter bleff base liquid porous medium

n buoyancy ratio L, R left and right boundary layer region

Nu Nusselt number nl nanoliquid

P dynamic pressure np nanoparticle

q velocity of the nanoliquid pm porous material

q” heat flux 0 at reference value
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2 Mathematical Formulation

Two-dimensional rectangular enclosures are filled with nanoliquid-saturated low-
porosity medium whose horizontal walls are insulated and impermeable to nanopar-
ticles and base liquid, while the vertical walls are subjected to uniform heat and
mass fluxes:

q ′′ = −k

(
∂T

∂x

)

x=0,L
, (1)

j ′′ = −DB

(
∂C

∂x

)

x=0,L
. (2)

Since equal quantities of influx and outflux are given to the system, it allows the
system to generate a static core region between the cells as shown in Fig. 1.

Fig. 1 Schematic representation of nanoliquid-saturated porous enclosures. (a) Tall. (b) Square.
(c) Shallow
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The modified Buongiorno-Darcy governing equations are:

∇ · q = 0, (3)

−∇P − μnl

K
q+ [ρ0 − ρ0β1 (T − T0)+ ρ0β2 (C − C0)] g = 0, (4)

(q · ∇) T = M χ ∇2T , (5)

(q · ∇)C = DB∇2C + DT

T0
∇2T , (6)

where

∇ = î
∂

∂x
+ k̂

∂

∂z
, DB = φ KBT

3πμ dnp
, DT = 0.26 φ k

2k + kp

μ

ρ0
C

and other nanoliquid properties are found from phenomenological laws and mixture
theory [16].

Oseen-Linearisation Transformation and Boundary Layer Regime
The assumptions required in the study are:

1. constant boundary layer thickness which is y-independent,
2. u=0 and v=0 in the core,
3. linearly stratified temperature and concentration in the core
4. linearly increasing temperature and concentration along vertical walls.

According to Weber [21], Oseen-linearisation transformation is an analytical
technique for a porous medium and it takes the form:

T (x, y) = t (x)+ T0 + ay

C(x, y) = c(x)+ C0 + by

}
. (7)

Here T0 and C0 represent the temperature and concentration found at the centre
of the static core (x=L/2, y=0), and t(x), c(x) satisfy the following core-limiting
condition:

lim
t→∞(v, t, c) = 0. (8)

Applying the transformation (7) in the governing equations (3)–(6), the boundary
layer equations take the form:

v − (ρ0β1)gK

μnl

t + (ρ0β2)gK

μnl

c = 0, (9)

av = Mχt ′′, (10)
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bv = DB c′′ + DT

T0
t ′′. (11)

Eliminating t from the above equations and making use of core-limiting condi-
tion (8) and uniform heat flux condition (1), we get:

t (x) = q ′′

kγ
e−γ x, γ 2=gK

μnl

(ρ0β1)

Mχ
a(1+n), n=−Mχ

DB

b(ρ0β2)

a(ρ0β1)

[
1− a

b

DT

T0Mχ

]
.

(12)

Using (12), the concentration and velocity profiles can be obtained in the form:

c(x) = Mχq ′′b
DBkγ a

[
1− a

b

DT

T0Mχ

]
e−γ x, v(x) = Mχγq ′′

ak
e−γ x. (13)

Invoking the mass flux condition (2) into the c(x) gives us the following important
result connecting core temperature and concentration gradients:

a

b
= Mχ q ′′

[kj ′′ +DT /T0 q ′′]
(14)

The unknowns a and b appearing in Eqs. (12) and (13) can be found from the
condition that the net flow of enthalpy through the porous layer at all points of
y must be balanced by vertical thermal diffusion downward through the static
core, i.e.,

∫ ∞

0
ρ0CpvL TLdx +

∫ ∞

0
ρ0CpvRTRdx_ =

∫ L

0
k
∂T

∂y
dx. (15)

Similarly equivalent mass transfer condition with impermeable horizontal walls is

∫ ∞

0
vL CLdx +

∫ ∞

0
vRCRdx_ =

∫ L

0
DB

∂C

∂y
dx, (16)

In Eqs. (15) and (16), the quantities TL, CL, vL and TR, CR, vR are the
temperature, concentration and velocity profiles at the left and right of the static
core, respectively. The quantity x_ is the x-coordinate measured from right lateral
wall to the static core.

Solving Eqs. (15) and (16) for a and b, we get:

a = q ′′

k

√
M

γL
, b = j ′′

DB

1√
γL

√

1+ DT

T0k

q ′′

j ′′
. (17)
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The heat and mass transports in the system can be found using the Nusselt and
Sherwood numbers and the analytical expression for the same is given by

Nu = k

kbleff

1

2
R

2/5
1 (1+ n)2/5

(
H

L

)−4/5

M−1/5, (18)

Sh = 1

2
R

2/5
1 (1+ n)2/5

(
H

L

)−4/5

M−1/5
(

1+ 1

NT

)
, (19)

where

R1 = ρ0β1gKH 2q ′′

kμnlχ
.

3 Results and Discussion

Natural convection in a nanoliquid-saturated low-porosity medium is studied analyt-
ically. The thermophysical properties of nanoliquid and nanoliquid-saturated porous
medium are taken from various sources [15–17]. From the tabulated values from
various papers, the following inequalities are found to hold good:

ρ0β1 < (ρ0β1)ble, μnl > μbl, k > kble, χble < χ. (20)

On rewriting the definition of Darcy-Rayleigh number, we have

R1 = F R1ble , F = μblkbleχble(ρ0β1)

μnl k χ (ρ0β1)ble
< 1 ⇒ R1 < R1ble . (21)

This clearly explains the advanced onset of convection in nanoliquid-saturated
porous medium compared to base liquid-saturated porous medium.

In Table 1 we have tabulated the values of Nusselt number for different values
of volume fraction in both aluminium foam and glass balls’ porous medium. We
observe the heat transport enhancement in the presence of water-copper-saturated
glass balls’ porous medium, whereas in the case of water-saturated glass balls’
porous medium (in the absence of copper nanoparticles), the heat transport is

Table 1 Contribution of nanoparticles on thermal conductivity of nanoliquid-saturated porous
medium

Porous materials kble k

k

kble

Aluminium foam 102.8065 102.865 1.00057

Glass balls 000.8315 000.8899 1.0702
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diminished. However, in the case of water-copper-saturated aluminium foam porous
medium, the presence of nanoparticles does not affect the heat transport at all. To
find the reason for this situation, we consider the definition of Nusselt number as
in Eq. (18). From this equation, we observe that the contribution of nanoparticles

on heat transfer comes from the term
k

kbleff
. On looking at the tabulated values of

k

kbleff
in Table 1 of water-copper-saturated aluminium foam porous medium case,

we observe the following.
The addition of dilute concentration of nanoparticles increases the effective

thermal conductivity of the system in both the types of porous medium. But the
contribution of nanoparticles on heat transport is very less in the case of aluminium
foam saturated by water-copper compared to that in the case of glass balls’ porous
medium. Thus we conclude that the participation of nanoparticles in heat transport
is only in case of a porous medium that has low thermal conductivity. When the
thermal conductivity of the porous medium is very high or near to the thermal
conductivity of nanoparticles, then the heat transport rates in both base liquid-
saturated porous medium and nanoliquid-saturated porous medium are the same
(Table 2).

Table 2 Values of Nusselt number for R1=30, M=0.775028(Glass Balls),
M=0.615132(Aluminium foam) and n=2 for different values of volume fraction, α, in the
case of a square enclosure

Volume fraction Glass balls Aluminium foam

0 3.18513 3.16999

0.02 3.25587 3.16987

0.04 3.32954 3.16965

0.06 3.40632 3.16945

Table 3 Values of Nusselt number for R1=30, α=0.06, M=0.775028(Glass balls),
M=0.615132(Aluminium foam) and n=2 for different types of enclosures

Aspect ratio Glass balls Aluminium foam

0.9 3.70588 3.44818

1 3.40632 3.16945

1.2 2.94402 2.73929

Table 4 Values of Nusselt number at R1=30, α=0.06, M=0.775028(Glass Balls)and
M=0.615132(Aluminium foam) for different values of buoyancy ratio, n, in the case of a
square enclosure

Buoyancy ratio Glass balls Aluminium foam

0 2.19501 2.04237

2 3.40632 3.16945

4 4.17854 3.88797
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Different values of aspect ratios are tabulated in Table 3 to get the results of
shallow, square and tall porous enclosures. We observe that the heat transport is
minimum in case of tall enclosures and maximum in the case of shallow enclosures.

We have tabulated the values of Nusselt number in Table 4 for different values of
buoyancy ratio. We observe that the heat transport is more in heat and mass-driven
convection than in the case of heat-driven convection.

References

1. Bejan, A.: On the boundary layer regime in a vertical enclosure filled with a porous medium.
Lett. Heat Mass Transfer 6, 93–102(1979)

2. Bejan, A.: Natural convection in a vertical cylindrical well filled with porous medium. Int. J.
Heat Mass Transfer 23, 726–729(1980)

3. Bejan, A.: The boundary layer regime in a porous layer with uniform heat flux from the side.
Int. J. Heat Mass Transfer 26, 1339–1346(1983)

4. Brinkman, H. C.: The viscosity of concentrated suspensions and solutions. J. Chem. Phy. 20,
571–571(1952)

5. Buongiorno, J.: Convective transport in nanofluids. ASME J. Heat Transfer 128, 240–
250(2006)

6. Corcione, M.: Rayleigh-Bénard convection heat transfer in nanoparticle suspensions. Int. J.
Heat Fluid Flow 32, 65–77(2011)

7. Dastmalchi, M., Sheikhzadeh, G.A., Arani, AAA.: Double-diffusive natural convective in a
porous square enclosure filled with nanofluid. Int. J. Therm. Sci. 95, 88–98(2015)

8. Grosan, T., Revnic, C., Pop, I., Ingham, D.B.: Free convection heat transfer in a square cavity
filled with a porous medium saturated by a nanofluid. Int. J. Heat Mass Transfer 87, 36–
41(2015)

9. Hamilton, R.L., Crosser, O.K.: Thermal conductivity of heterogeneous two-component sys-
tems. Ind. Eng. Chem. Fundam. 1, 187–191(1962)

10. Khanafer, K., Vafai, K., Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-
dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transfer 46, 3639–3653(2001)

11. Nield, D.A., Kuznetsov, A.V.: Thermal instability in a porous medium layer saturated by a
nanofluid. Int. J. Heat Mass Transfer 52, 5796–5801(2009)

12. Sheikhzadeh, G.A., Dastmalchi, M., Khorasanizadeh, H.: Effects of walls temperature varia-
tion on double diffusive natural convection of Al2O3 water nanofluid in an enclosure. Heat
Mass Transf. 194, 1209–1–1209–12(2013)

13. Sheikholeslami, M., Gorji-Bandpy, M., Ganji, D.D., Soleimani, S.: Thermal management for
free convection of nanofluid using two phase model. J. Mol. Liq. 194, 179–187(2014)

14. Siddheshwar, P.G., Abraham, A.: Convection in a ferromagnetic fluid occupying a vertical
enclosure. Indian J. Eng. Mater. Sci., 5, 423–426(1998)

15. Siddheshwar, P.G., Meenakshi, N.: Amplitude equation and heat transport for Rayleigh–
Bénard Convection in Newtonian Liquids with Nanoparticles. Int. J. Appl. and Comp. Math.
2, 1–22(2015)

16. Siddheshwar, P.G., Veena, B.M.: A theoretical study of natural convection of water-based
nanoliquids in low-porosity enclosures using single-phase model. J. nanofluids 7, 1–22(2018)

17. Siddheshwar, P.G., Kanchana, C., Kakimoto, Y., Nakayama, A.: Steady finite-amplitude
Rayleigh-Bénard convection in nanoliquids using a two-phase model-theoretical answer to
the phenomenon of enhanced heat transfer. ASME J. Heat Transfer 139, 012402–1–012402–
8(2016)

18. Trevisan, O.V., Bejan, A.: Mass and heat transfer by natural convection in a vertical slot filled
with porous medium. Int. J. Heat Mass Transfer 29, 403–415(1986)



Natural Convection of Newtonian Liquids and Nanoliquids Confined in Low-. . . 263

19. Trevisan, O.V., Bejan, A.: Mass and heat transfer by high Rayleigh number convection in a
porous medium heated from below. Int. J. Heat Mass Transfer 30, 2341–2356(1987)

20. Vanaki, S.M., Ganesan, P., Mohammed, H.A.: Numerical study of convective heat transfer of
nanofluids: A review. Renew. Sustainable Energy Rev. 54, 1212–1239(2016)

21. Weber, J.W.: The boundary layer regime for convection in a vertical porous layer. Int. J. Heat
Mass Transfer 18, 569–573(1975)

22. Yang, C., Li, W., Sano, Y., Mochizuki, M., Nakayama, A.: On the anomalous convective heat
transfer enhancement in nanofluids: a theoretical answer to the nanofluids controversy. ASME
J. Heat Transfer 135, 054504–1–054504–9(2013)



Study of Viscous Fluid Flow Past an
Impervious Cylinder in Porous Region
with Magnetic Field

D. V. Jayalakshmamma, P. A. Dinesh, N. Nalinakshi, and T. C. Sushma

Abstract The flow of viscous, incompressible and electrically conducting fluid
past and impermeable cylinder present in a cylindrical porous region is considered
for the steady case in presence of magnetic field applied in vertical direction.
The flow is governed by modified Brinkman and Stokes equations in porous and
nonporous regions, respectively. The matching boundary conditions are used at the
interface with no-slip condition at the solid surface and uniform velocity away from
the nonporous region. This boundary layered problem is solved analytically and
obtained solutions in terms of modified Bessel’s functions.

Keywords Incompressible · Brinkman equation · Stokes equation · No-slip

1 Introduction

The flows of the fluids through/past a porous medium are of principal interest
because of its natural occurrence and its importance in industrial, geophysical, and
biomedical applications. The study of hydrodynamic flows in presence of magnetic
field has attracted many authors due to its vast applications in astrophysical,
geophysical, and industrial fields. Many practical problems need a mechanism to
control the motion of the fluid past solid bodies with magnetohydrodynamic (MHD)
effects.
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In the literature, Anjali Devi and Raghavachar [1] studied the horizontal flow of
a vertically stratified, conducting fluid past a nonconducting sphere in the presence
of uniform magnetic field. Kyrlidis et al. [8] presented the study of conducting
fluid past axisymmetric bodies in the presence of magnetic field for small inertial
and magnetic Reynolds numbers. Chandran et al. [3] have analyzed the effect of
magnetic field on the flow of heat transfer past a continuously moving porous plate
in a stationary fluid. The flow of conducting fluid around a circular cylinder in the
presence of magnetic field applied parallel to the main flow was investigated by
Raghava Rao and Sekhar [11]. Jayalakshmamma et al. [5] presented a creeping
flow past a composite sphere in presence of magnetic field. The steady flow of two
immiscible fluid spheres of different viscosities was analyzed in the presence of
unvarying magnetic field by Jayalakshmamma et al. [7].

Pal and Talukdar [10] analyzed the unsteady flow of a laminar two-dimensional
oscillatory flow of conducting fluid between two nonconducting parallel plane
surfaces in the presence of suction/injection. The effect of the magnetic field on
the permeability of a membrane of solid cylindrical particle was considered by
Ashish Tiwari et al. [2]. Pankaj Shukla [9] studied an axisymmetric, stokes flow
past a swarm of porous cylindrical particles enclosing a solid core. The influence
of transverse magnetic field on the flow of conducting fluid was investigated by
Jayalakshmamma et al. [6]. Viscous fluid flow in porous media for spherical region
with magnetic was investigated by Dinesh et al. [4].

The present study projects on certain practical applications such as metallurgy
and metal processing and lubrication and in nuclear reactors, where an additional
force such as magnetic field is applied to control the fluid flow. In the view
of these applications, in this paper we considered the flow behavior of viscous,
incompressible, conducting fluid past a solid cylinder embedded in a cylindrical
porous medium in presence of external magnetic field.

2 Mathematical Formulation

The steady flow of viscous, incompressible, and conducting fluid through a porous
cylindrical region of radius b comprising a solid cylindrical core of radius a is
investigated in the presence of transverse magnetic field. It is assumed that the
induced magnetic field is insignificant, as the magnetic Reynolds number is small.
Also the flow domain has been divided into two regions as nonporous and porous
region. The governing equations which describe the flow of a conducting fluid in
nonporous region under the assumption made are modified Stokes equation with the
equation of continuity, given, respectively, as:

∇. &q1 = 0 (1)

∇p1 = μ∇2 &q1 + μ2
hσe

(
&q1 × &H

)
× &H (2)
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where &q1 = (u1, v1, w1) is the velocity in the nonporous region; μ is the viscosity
of the fluid; μ2

h is the magnetic permeability; σe is the electrical conductivity, which
is very small so that the induced magnetic field is negligible; &H is the uniform
magnetic field; and p1 is the hydrostatic pressure of the nonporous region.

The flow in the porous region a < r ≤ b is governed by the modified Brinkman
equation along with equation of continuity, given respectively by:

∇. &q2 = 0 (3)

∇p2 = μ̄∇2 &q2 − μ

k
&q2 + μ2

hσe

(
&q2 × &H

)
× &H (4)

where, &q2 = (u2, v2, w2) is the velocity in the porous region, μ̄ is the Brinkman
viscosity, p2 the hydrostatic pressure of the porous region and k the permeability of
the porous region.

In this study, the cylindrical polar coordinates are used. Thus, for an axisymmet-
ric, two-dimensional flow in a cylindrical coordinate system (r, θ, z) with the origin
at the center of the cylinder and the axis θ = 0 is chosen along the direction of
the uniform velocity u∞ far from the nonporous region. Also due to axisymmetry,
we have ∂

∂z
= 0. The flow characteristics of the problem which are described by

Eqs. (1)–(4) can be analyzed in terms of nondimensional parameters pertaining to
the flow processes. In view of this, the following dimensionless similarity variables
are introduced:

r∗ = r

a
, &q∗1 =

&q1

u∞
, &q∗2 =

&q2

u∞
, &H ∗

1 =
&H1

H0
, &p∗1 =

&ap1

μu∞
, &p∗2 =

&ap2

μu∞
(5)

where H0 is the applied constant magnetic field.
After nondimensionalizing the governing equations (1)–(4) using the nondimen-

sional variables as defined in Eq. (5) for cylindrical polar coordinate system in
nonporous region, we get:

∂

∂r
(ru1)+ ∂v1

∂θ
= 0 (6)

− ∂p1

∂r
= M2u1 −

(
∂2u1

∂r2 + 1

r

∂u1

∂r
+ 1

r2

∂2u1

∂θ2 −
u1

r2 −
2

r2

∂v1

∂θ

)
(7)

− 1

r

∂p1

∂θ
= M2v1 −

(
∂2v1

∂r2 + 1

r

∂v1

∂r
+ 1

r2

∂2v1

∂θ2 −
v1

r2 +
2

r2

∂u1

∂θ

)
(8)

Here (u1, v1, 0) represents the velocity of the fluid in the nonporous region.
Similarly, the nondimensionalized governing equation for the porous region takes
the form:



268 D. V. Jayalakshmamma et al.

∂

∂r
(ru2)+ ∂v2

∂θ
= 0 (9)

− ∂p2

∂r
= S2u2 −

(
∂2u2

∂r2 + 1

r

∂u2

∂r
+ 1

r2

∂2u2

∂θ2 −
u2

r2 −
2

r2

∂v2

∂θ

)
(10)

− 1

r

∂p2

∂θ
= S2v2 −

(
∂2v2

∂r2
+ 1

r

∂v2

∂r
+ 1

r2

∂2v2

∂θ2
− v2

r2
+ 2

r2

∂u2

∂θ

)
(11)

Here (u2, v2, 0) are components of velocity in normal and tangential direction in
porous medium, p2 is the static pressure in porous region and S2 = M2 + σ 2

in which σ = a√
k

is the porous parameter, M =
√

μ2
hσeH

2
0 a

2

μ
is the Hartmann

number, and k is the permeability of the fluid.
As the flow is axisymmetric and two dimensional, the stream function ψi(r, θ)

(where i = 1, 2 correspondingly for nonporous and porous regions) is introduced,
which satisfies the equation of continuity in cylindrical polar coordinate system for
both nonporous and porous regions, respectively:

ui = 1

r

∂ψi

∂θ
; vi = −∂ψi

∂r
(12)

Here ui is the normal component of velocity and vi is the tangential velocity. By
eliminating the pressure term from Eqs. (6) and (7) of nonporous region and Eqs. (9)
and (10) of porous region by cross differentiation, we get a fourth-order linear partial
differential equation in terms of corresponding stream function as:

∇4ψ1 −M2∇2ψ1 = 0, b ≤ r <∞ (13)

∇4ψ2 − S2∇2ψ2 = 0, a ≤ r < b (14)

where∇2 = ∂2

∂r2 + 1
r

∂
∂r
+ 1

r2
∂2

∂θ2 is Laplacian operator in cylindrical polar coordinate
system.

In the present problem, boundary conditions used are as follows: no-slip
conditions on the surface of the solid cylindrical core are:

u2(a, θ) = 0, 0 ≤ θ ≤ 2π (15)

v2(a, θ) = 0, 0 ≤ θ ≤ 2π (16)

The interfacial conditions, continuity of normal and tangential velocity components,
and continuity of normal and tangential stress components at the interface of the
porous and nonporous region are given by:
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u2(b, θ) = u1(b, θ) 0 ≤ θ ≤ 2π (17)

v2(b, θ) = v1(b, θ) 0 ≤ θ ≤ 2π (18)

τrθ(2)(b, θ) = τrθ(1)(b, θ) 0 ≤ θ ≤ 2π (19)

τrr(2)(b, θ) = τrr(1)(b, θ) 0 ≤ θ ≤ 2π (20)

where τrθ(i) and τrr(i) are the dimensionless tangential and normal components of
stress tensors, written in cylindrical coordinate as:

τrθ(i) = 1

r

∂ui

∂θ
+ ∂vi

∂r
− vi

r
(21)

τrr(i) = −pi + 2
∂ui

∂r
(22)

The continuity of the normal stress at the interface of the two regions from the
boundary condition (20) shows the continuity of pressure across the interface, since
the viscosity of the fluid is equal to the Brinkman viscosity μ̄ = μ . Therefore,
Eq. (20) reduces to:

p2(b, θ) = p1(b, θ) 0 ≤ θ ≤ 2π (23)

Also, the uniform velocity far away from the fluid cylindrical region is
given by:

ψ1(r, θ) ∼ rsinθ as r →∞ (24)

3 Method of Solution

The boundary condition of uniform velocity far away from the porous cylindrical
region leads to find the solution for the fourth-order partial differential equations
of (13) and (14) by similarity solution method as:

ψi(r, θ) = fi(r)sinθ (25)

Substituting Eq. (25) in Eqs. (13) and (14) in respective regions, we obtain the
ordinary differential equation of order four in fi(r) as:

f iv
i + 2

r
f ′′′i − 3

r2 f
′′
i +

3

r3 f
′
i −

3

r4 fi − J 2
i

[
f ′′i +

1

r
f ′i −

1

r2 fi

]
= 0 (26)
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where, J 2
i =

{
M2 i = 1

S2 i = 2

The corresponding boundary conditions are:
No-slip condition at the surface of the solid cylinder is given by:

f2(a) = 0 (27)

f ′2(a) = 0 (28)

The continuity of the velocity and stresses at the interface of the porous and
nonporous region is given by:

f2(b) = f1(b) (29)

f ′2(b) = f ′1(b) (30)

f ′′2 (b) = f ′′1 (b) (31)

f ′′′2 (b)− σ 2f ′2 = f ′′′1 (b) (32)

Further, the uniform velocity far away from the nonporous region is:

f1(r) ∼ r as r →∞ (33)

The fourth-order ordinary differential equation (26) is converted into second-order
differential equation with variable coefficient (see Jayalakshmamma et al. [6]) which
can be solved by the method of variation of parameter and the obtained complete
solution as:

f1(r) = A1

r
+ B1r + C1K1(Mr)+D1I1(Mr) b ≤ r <∞ (34)

f2(r) = A2

r
+ B2r + C2K1(Sr)+D2I1(Sr) a < r < b (35)

where A1, B1, C1,D1, A2, B2, C2, and D2 are arbitrary constants. In the fluid
region as r →∞, then I1(Mr)→∞ . Therefore the solution is valid for D1 = 0,
and also due to the boundary condition for uniform velocity far away from the
medium, from Eq. (33) we get B1 = 1. Thus Eq. (34) reduces to:

f1(r) = A1

r
+ r + C1K1(Mr) b ≤ r <∞ (36)

Hence the stream function in both the regions takes the form



Study of Viscous Fluid Flow Past an Impervious Cylinder in Porous Region. . . 271

ψ1(r, θ) =
(
A1

r
+ r + C1K1(Mr)

)
sinθ b ≤ r <∞ (37)

ψ2(r, θ) =
(
A2

r
+ B2r + C2K1(Sr)+D2I1(Sr)

)
sinθ a < r ≤ b (38)

The arbitrary constants present in Eqs. (37) and (38) are evaluated using the
boundary conditions; for the want of space, the expressions of constants are
not mentioned in this paper. Further, the expression for normal and tangential
component of velocities for both porous and nonporous regions can be obtained
in terms of stream function from Eq. (12).

4 Results and Discussion

The considered boundary value problem is solved analytically, and expression for
stream function is obtained as a function of r with nondimensional parameters.

The effect of magnetic field M for a fixed porous parameter σ on the flow patterns
is discussed through the streamlines. For σ = 5 and for small magnetic field M =
0.1, it is noticed that the fluid is flowing past the porous cylinder rather than passing
through it, shown in Fig. 1(i). This can be attributed to the lower permeability of the
porous medium. For the same σ , when the magnetic field strength is increased, the
fluid starts to move inside the porous region. As a result the streamlines are moving
closer to the solid surface of a cylinder and the same is illustrated in Fig. 1(ii)–(iv).

The effect of magnetic field on the tangential velocity along the line θ = π
2

is analyzed for both the regions and is depicted in Fig. 2. For σ = 25, a smooth
flow is observed at the interface of the two regions for magnetic field of strength
M = 1. As the magnetic field strength is increased, the tangential velocity increases
in the porous medium and accelerates near the boundary of the two regions, reaches
its maximum value, and maintains a uniform velocity far away from the porous
cylinder. Also, the viscous sublayer decreases near the surface of porous cylindrical
region with increase in Hartmann number as given in Fig. 2 (i). For σ = 50
and increasing Hartmann number, it is observed that the curve is sharpened at
the interface, i.e., the viscous sublayer is decreased with an increase in Hartmann
number and is shown in Fig. 2 (ii).

5 Conclusions

In this article, the influence of Hartmann number is discussed on the streamline
patterns. From the graph, the meandering of streamlines near the surface of the
solid cylinder is noticed for the increase in magnetic field strength with fixed porous
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parameter. This shows that the fluid flow is effectively controlled by the magnetic
field; as a result more amount of fluid flows through the porous region/on the surface
of the solid core.

The tangential component of velocity increases with increasing the magnetic
field strength for fixed porous parameter, i.e., the tangential component of velocity
amplifies and reaches its maximum and maintains the uniform velocity as distance
moved away from the surface.

Acknowledgements The authors are grateful to research centers Vemana IT, M.S.R.I.T., and Atria
IT, Bangalore, India, for their support and encouragement to carry out our research work.

References

1. Anjali devi, S.P., Raghavachar M. R.:Magneto hydrodynamic stratified flow past a sphere. Int.
J. Engng Sci.20(10), 1169–1177 (1982).

2. Ashish, Tiwari, Satya Deo., Anatoly Filipov.: Effectof the Magnetic field on the hydrodynamic
permeability of a Membrane, Colloid Journal.74(4), 515–522 (2012).

3. Chandran, P., Sacheti,N.C., Singh,A.K.,: “Hydromagnetic flow and heat transfer past a
continuously moving porous boundary”. Int. Comm. Heat Mass Trans.23 (6), 889–898 (1996).

4. Dinesh, P.A., Jayalakshmamma D.V., Chandrashekhar D.V.: Exact solution for viscous fluid
flow in porous media with magnetic field, Proceedings of the 6th International Conference on
Porous Media and Its Applications in Science and Engineering- ICPM6, July 3–8, Waikoloa,
Hawaii (2016).

5. Jayalakshmamma, D.V., Dinesh, P.A.,Sankar M,: Analytical study of creeping flow past a
composite sphere: solid core with porous shell in presence of magnetic field. Mapana Journal
Science.10 (2), 11–24 (2011).

6. Jayalakshmamma, D.V., Dinesh, P.A., Sankar, M., Chandrashekhar, D.V.: “Flow of conducting
fluid on solid core surrounded by porous cylindrical region in presence of transverse magnetic
field”. Mapana Journal Science.13 (3), 13–29 (2014).

7. Jayalakshmamma, D.V., Dinesh, P.A., M. Sankar., Chandrashekhar D.V.: MHD Effect on
Relative Motion of Two Immiscible Liquid Spheres”, International Journal of Fluid Dynamics
and Material Processing. 10(3), 343–357, (2014).

8. Kyrlidis, A., Brown, R. A., Walker, J.S.: Creeping flow of a conducting fluid past axisymmetric
bodies in the presence of an aligned magnetic field. Phys. Fluids.A2, 2230–228 (1990).

9. Pankaj Shukla.: Stokes flow through porous cylindrical particle in cell enclosing a solid
cylindrical core, Asian Journal of Current Engineering and Math 2, 59–64 (2013).

10. Pal, D., Talukdar, B.: Unsteady hydromagnetic oscillating flow past a porous medium with
suction/injection and slip effects. Int. J. Appl. Math. Mech. 7(15), 58–71 (2011).

11. Raghava, Rao, C.V., Sekhar, T.V.S.: “MHD flow past a circular cylinder-a numerical study”.
Computational Mechanics. 26, 430–436 (2000).



Numerical Solution of Steady
Powell-Eyring Fluid over a Stretching
Cylinder with Binary Chemical Reaction
and Arrhenius Activation Energy

Seethi Reddy Reddisekhar Reddy and P. Bala Anki Reddy

Abstract The present work addresses the two-dimensional boundary layer flow
of a Powell-Eyring fluid over a stretching cylinder with binary chemical reaction
and Arrhenius Activation energy. Also, considered Cattaneo-Christov heat flux
model in the place of conventional Fourier’s law of heat conduction. Suitable
transforms lead to strongly nonlinear differential equations, which are solved
through R-K method along with shooting scheme. The effects of various parameters
are shown graphically on velocity, temperature and concentration fields. The
numerical values for skin friction(

√
RexXCf /2), local Nusselt(NuxRe−1/2

x X−1)

and Sherwood numbers(ShxRe−1/2
x X−1) are reported. A relative revision among

the earlier published results and the present results for a special case is found to be
in an excellent agreement. Rising the values of thermal relaxation time, reduces the
temperature at near the cylinder due to domination of mixed convection in the flow.

Keywords Powell-Eyring fluid · Cattaneo-Christov heat flux · MHD · Arrhenius
activation energy

Nomenclature

A Ratio parameter v Velocity component in the r
direction (ms−1)

B Total magnetic field ue Free stream velocity
B0 Magnetic field U0 Reference velocity
c Fluid parameter x, r Coordinates along and normal
C Concentration of the fluid

(
kmol m−3

)
to the stretching cylinder (m)

C0 Reference concentration
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Cw Stretching cylinder concentration Greek symbols
C∞ Concentration of the ambient fluid υ Kinematic viscosity
cp Specific heat at constant pressure ζ Similarity variable
D Mass diffusion coefficient β Fluid parameter
Ea Activation energy (J kg−1 k−1) μ Dynamic viscosity of the fluid
E Non-dimensional activation energy ρ Density of the fluid (kg m−3)
F Dimensionless velocity δ, ε Fluid parameters
J Current density Φ Dimensionless concentration
k Thermal conductivity (w m−1 k−1) γ Curvature perameter
kr Reaction rate Γ Chemical reaction parameter
l Characteristic length Θ Dimensionless temperature
M Magnetic parameter σ Electrical conductivity of the
n Unit less exponent fitted rate constant fluid
Nux Local Nusselt number λ2 Relaxation time for heat flux
Pr Prandtl number Γ Chemical reaction rate
p Fluid pressure

(
kmol m−3

)

Rex Local Renolds number Λ Non-dimensional thermal
Sc Schmidt number relaxation time
T Temperature of the fluid (K) τw Surface shear stress (N m−2)

T0 Reference temperature Subscripts
Tw Cylinder temperature (K) w Conditions at the wall
T∞ Temperature of the ambient fluid ∞ Ambient condition

u Velocity component in the x Superscript
direction (ms−1) ′ Differentiation with respect to

ζ

1 Introduction

The rheology of non-Newtonian fluid models has attained a great importance in
technical and growing industrial applications. A few applications of non-Newtonian
fluid can be used as shoe manufacturing, manufacturing lubricants for vehicles,
metal extrusion and metal spinning, flexible military suits for soldiers, food and
medicine industries. Some empirical models of non-Newtonian fluids are Power-
law fluids, Williamson fluids, Rivlin-Ericksen fluids, Powell-Eyring fluids, Casson
fluids, Viscoelastic fluids, Maxwell fluid, Jeffrey fluid, Walter’s liquid B fluids.
Among these the Powell-Eyring model [1–3] is the simplest subclass of the rate
type. In this model, reduces the Newtonian behavior for both low shear stress
and high shear stress. The mathematical model of Powell-Eyring fluid plays an
important role in various natural, geophysical and industrial applications. Such
applications include the formation and dispersion of fog, enhanced oil recovery,
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designing of many chemical processing equipment, damaging of crops due to
freezing, environmental pollution, distribution of temperature and moisture over
agricultural fields, thermal insulation, groves of fruit trees, packed bed catalytic
reactors and underground energy transport. Akbar and Nadeem [4] investigated
the importance of peristaltic flow of Eyring-Powell fluid flow with heat and mass
transfer analysis in an endoscope. The steady magnetohydrodynamic (MHD)
boundary layer flow of Powell-Eyring nanofluid over a stretching cylinder in the
presence of thermal radiation effects was discussed by Hayat et al. [5]. Hayat and
Nadeem [6] examined the three-dimensional exponential flow of Powell-Eyring
fluid flow over an exponentially stretching surface and also, they explained the
impact of variable thermal conductivity, non-Fourier’s model, using generalized
Fick’s law, to inscribe the investigation of heat and mass transfer. The objective
of the present paper, a numerical analysis is made of the two-dimensional boundary
layer flow of a Powell-Eyring nanofluid over a cylinder with Arrhenius Activation
energy and Cattaneo-Christov heat flux model. Some recent efforts in the effect
of Cattaneo-Christov heat flux model are labelled in ref. no. [7–9]. Some other
applications related to magnetohydrodynamic flow was discussed in [10–17].

2 Mathematical Formulation

We examine the two-dimensional (x, r) hydromagnetic Eyring-Powell fluid flow
over a stretching cylinder (see Fig. 1). The flow analysis is explored with Cattaneo-
Christov heat flux and Arrhenius Activation Energy. In a coordinate system, x
and r are the surface of the geometry and vertical to the cylinder respectively.
The stretching velocity of the cylinder is Uw = U0 (x/l). The temperature and
concentration distribution are T = Tw − T∞ = T0 (x/l) and C = Cw =

ue ueu x

r

Uw(x)

R

v

Fig. 1 Physical model of the problem
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C∞+C0 (x/l) respectively. A uniform magnetic field of strength B0 is implemented
in r direction. Here induced magnetic field is neglected due to small magnetic
Reynolds number. The system of equations based on [5]. regulating the above
considerations are:

∂ (rv)

∂r
+ ∂ (ru)

∂x
= 0 (1)

v
∂u

∂r
+u

∂u

∂x
−
⎡

⎣
μ
ρ

(
∂2u

∂r2 + 1
r
∂u
∂r

)
+ 1

ρβc

(
∂2u

∂r2 + 1
r
∂u
∂r

)

− 1
6ρβc3

(
3 ∂2u
∂r2

(
∂u
∂r

)2 + 1
r

(
∂u
∂r

)3
)

⎤

⎦ = ue

due

dx
− σB2

0

ρ
(u− ue)

(2)

v
∂T

∂r
+u

∂T

∂x
+λ2

[(
u∂u

∂x
+ v ∂u

∂r

)
∂T
∂x
+ (

u∂v
∂x
+ v ∂v

∂r

)
∂T
∂r

+2uv ∂2T
∂x∂r

+ u2 ∂2T

∂x2 + v2 ∂2T

∂r2

]
= k

ρcp

(
∂2T

∂r2 +
1

r

∂T

∂r

)

(3)

v
∂C

∂r
+ u

∂C

∂x
= D

∂2C

∂x2 − Γ 2 (C − C∞)

(
T

T∞

)n

e
−Ea
kT (4)

The corresponding boundary conditions are:

u = Uw= U0x

l
, v=0, T =Tw −T∞= T0 (x/l) , C=Cw −C∞=C0 (x/l)

at r= 0 (5)

u→ ue = U∞x/l, T → T∞, C→C∞ as r→∞

In Eq. (4), the term
(

T
T∞

)n

e
−Ea
k∗T is the modified Arrhenius function in which the

Boltzmann constant is k∗ = 8.61× 10−5eV/K and the range of n is −1 < n < 1.
We introduce the similarity variables as

ζ =
(
U0
υl

) 1
2
(

r2−R2

2R

)
, ξ = (Uwvx)

1
2 RF(ζ ), u = 1

r
∂ξ
∂x

,

Θ (ζ ) = T−T∞
Tw−T∞ , Φ (ζ ) = C−C∞

Cw−C∞ , v = −1
r

∂ξ
∂r

(6)

Equations (2–4) are transformed by means of Eq. (6) and stated below,

(1+ 2γ ζ) (ε + 1) F ′′′ + FF ′′ − (
F ′

)2 + A2 + γ (1+ 2ε) F ′′

− 4
3εδγ (1+ 2γ ζ)

(
F ′′

)3 − εδ(1+ 2γ ζ)2F ′′′
(
F ′′

)2 −M2
(
F ′ − A

) = 0
(7)

(1+ 2γ ζ)Θ ′′+2γΘ ′+Pr
(
FΘ ′ − F ′Θ

)−Λ Pr

(
F 2Θ ′′ − FF ′Θ ′
+F ′2Θ − FF ′′Θ

)
= 0 (8)

(1+2γ ζ)Φ ′′+2γΦ ′+Sc
(
FΦ ′ −F ′Φ

) − ScΓΦ[1+Θ (Θw−1)]ne
−E

1+Θ(Θw−1) = 0
(9)
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With the boundary conditions are:

F ′ (0) = 1, F (0) = 0, Θ (0) = 1, Φ (0) = 1
F (∞) = A, Θ (∞) = 0, Φ (∞) = 0

(10)

The non-dimensional parameters which are expressed as:

δ = U3
0 x

2

2νl3c2 , ε = 1
μβc

, γ =
(

lν
U0R2

)1/2
, M =

(
σB2

0 l

ρU0

)1/2

, A = U∞
U0

Pr = μcp
k

, Λ = λ2U0
l

, Sc = ν
D
, Γ = k2

0 l

U0
, E = Ea

k∗T∞ , Θw = Tw
T∞

(11)

Skin friction(Cf ), local Nusselt(Nux) and Sherwood numbers(Shx) are
represented as

Cf = 2τw
ρU2

w

, Nux = xqw

k(Tw − T∞)
and Shx = xJw

D(Cw − C∞)
. (12)

where τw = μ
(

∂u
∂r
+ 1

βc

(
∂u
∂r

)− 1
6βc3

(
∂u
∂r

)3
)

r=R
, qw = −k

(
∂T
∂r

)
r=R

and Jw = −D
(
∂C
∂r

)
r=R

.
(13)

The dimensionless Skin friction, local Nusselt and Sherwood numbers are respec-
tively formed as

Cf

√
RexX

2 = (ε + 1) F ′′ (0)− 1
3εδ

(
F ′′ (0)

)3
, NuxRe−1/2

x X−1 = −Θ ′ (0)
and ShxRe−1/2

x X−1 = −Φ ′ (0)
(14)

where Rex = lUw

ν
and X = √x/l

3 Results and Discussions

In the present study, ε = 0.4, δ = 0.5, M = 0.2, A = 0.3, Θw = 1.5, n = 0.3, E =
1, Sc = 1, Pr = 0.7, Λ = 0.5, γ = 0.2, Γ = 2.0 are considered as default values.
The effect of ratio of velocities is provided in Fig. 2. It is important to notice that
improving the values of A, maximize the velocity profile. Actually, improving the
values of ratio velocities means, speed up the flow, which tends to boost up the
velocity profile. The characteristics of M on velocity profile is described in Fig. 3. It
is recorded that, we increasing the magnetic parameter (M), decreases the Velocity
profile. Physically when the Lorentz force increases for large values of M due to
resistive force, which tends to the velocity of the fluid reduces. Figure 4 lays out the
influence of ε on velocity profile. It can be seen that the large values of ε the velocity
profile increases. This is due to the less viscous which tends to increasing the fluid
velocity. Figure 5 elucidates the variation of fluid parameter δ on the velocity profile.
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It is found that the velocity of the fluid profile reduces when δ is large. The effect
of thermal relaxation time on temperature profile is plotted in Fig. 6. By increasing
the thermal relaxation time, reduces the temperature at near the cylinder due to
domination of mixed convection in the flow. Rising the values of thermal relaxation
parameter takes long time to transfer the heat to its neighbouring particles. Figure 7
elucidates the variation of chemical reaction parameter on concentration profile. It is
found that the concentration profile reduces for an increasing the values of chemical
reaction parameter. Physically large values of a chemical reaction which generates
the fluid species more inefficiently. Variation of non-dimensional activation energy
on concentration profile is sketched in Fig. 8. It is noticed that the mass transfer
rate increases for large values of E. Variation of temperature ratio parameter on
concentration profile is drawn in Fig. 9. It is observed that the mass transfer rate
decreases for large values of temperature ratio parameter.
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Table 1 Numerical values of√
RexXCf /2 for different

parameters

M γ δ ε A
√
RexXCf /2

0.2 0.2 0.5 0.4 0.3 −1.1448

0.4 0.2 0.5 0.4 0.3 −1.2059

0.2 0.6 0.5 0.4 0.3 −1.2988

0.2 0.2 1.0 0.4 0.3 −1.1329

0.2 0.2 0.5 0.6 0.3 −1.2280

0.2 0.2 0.5 0.4 0.5 −0.8904

Table 2 Comparison values of F ′′(0) and
√
RexXCf /2 for different values of ε and δ

δ ε F ′′(0)
√
RexXCf /2

Hayath et al. [5] Javed et al. [1] Present Hayath et al. [5] Javed et al. [1] Present

0 0 −1 −1 −1 −1 −1 −1

0.2 −0.91287 −0.9131 −0.912871 −1.09545 −1.0954 −1.0954

0.4 −0.84516 −0.8452 −0.845154 −1.18322 −1.1832 −1.1832

0.3 0 −1 −1 −1 −1 −1 −1

0.2 −0.92218 −0.9222 −0.922192 −1.09092 −1.0909 −1.0909

0.4 −0.85804 −0.8580 −0.858035 −1.17598 −1.1776 −1.1760

0.6 0 −1 −1 −1 −1 −1 −1

0.2 −0.93221 −0.9322 −0.932209 −1.08625 −1.0862 −1.0862

0.4 −0.87252 −0.8725 −0.872512 −1.16838 −1.1684 −1.1684

Table 3 Local Nusselt number−Θ ′(0) for diverse parameters

M γ δ ε Pr Λ Θw E Γ −Θ ′(0)
0.2 0.2 0.5 0.4 0.7 0.5 1.5 1.0 2.0 1.224010

0.4 0.2 0.5 0.4 0.7 0.5 1.5 1.0 2.0 1.213033

0.2 0.6 0.5 0.4 0.7 0.5 1.5 1.0 2.0 1.369423

0.2 0.2 1.0 0.4 0.7 0.5 1.5 1.0 2.0 1.220884

0.2 0.2 0.5 0.6 0.7 0.5 1.5 1.0 2.0 1.236414

0.2 0.2 0.5 0.4 1.0 0.5 1.5 1.0 2.0 1.488515

0.2 0.2 0.5 0.4 0.7 0.6 1.5 1.0 2.0 1.272492

0.2 0.2 0.5 0.4 0.7 0.5 2.0 1.0 2.0 1.224010

0.2 0.2 0.5 0.4 0.7 0.5 1.5 1.5 2.0 1.224010

0.2 0.2 0.5 0.4 0.7 0.5 1.5 1.0 2.5 1.224010

The numerical values of
√
RexXCf /2 for different parameters are presented in

Table 1. The magnitude of skin friction increases with an increasing of δ and A.
However, it reduces when increasing M, γ and ε. Table 2 shows that the comparison
the present values of F ′′(0) and

√
RexXCf /2 with the existed literature for better

accuracy. Tables 3 and 4 provides the impact of numerous physical parameters
on −Θ ′(0) and −Φ ′(0) at the cylindrical surface. It is revealed that −Θ ′(0) and
−Φ ′(0) increases for fluid parameters when increasing γ and ε. However, it reduces
when M and δ increases. The rate of heat transfer coefficient (−Θ ′(0)) increases and
rate of mass transfer coefficient (−Φ ′(0)) decreases with an increasing the thermal
relaxation time and Prandtl number.
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Table 4 Local Sherwood number−Φ ′(0) for diverse parameters

M γ δ ε Pr Λ Θw E Γ −Φ ′(0)
0.2 0.2 0.5 0.4 0.7 0.5 1.5 1.0 2.0 2.272187

0.4 0.2 0.5 0.4 0.7 0.5 1.5 1.0 2.0 2.267324

0.2 0.6 0.5 0.4 0.7 0.5 1.5 1.0 2.0 2.440279

0.2 0.2 1.0 0.4 0.7 0.5 1.5 1.0 2.0 2.270477

0.2 0.2 0.5 0.6 0.7 0.5 1.5 1.0 2.0 2.277377

0.2 0.2 0.5 0.4 1.0 0.5 1.5 1.0 2.0 2.263917

0.2 0.2 0.5 0.4 0.7 0.6 1.5 1.0 2.0 2.270577

0.2 0.2 0.5 0.4 0.7 0.5 2.0 1.0 2.0 2.400595

0.2 0.2 0.5 0.4 0.7 0.5 1.5 1.5 2.0 2.108908

0.2 0.2 0.5 0.4 0.7 0.5 1.5 1.0 2.5 2.397559

4 Conclusion

• Velocity decreases with an increase in magnetic parameter and the Eyring-Powell
fluid parameter.

• Rising the values of thermal relaxation time, reduces the temperature at near the
cylinder due to domination of mixed convection in the flow.

• With the larger values of non-dimensional activation energy and curvature
parameters, the concentration distribution decreases.

• The rate of heat transfer coefficient increases and rate of mass transfer coefficient
decreases with an increase the thermal relaxation time.

• Skin friction coefficient increases with an increasing in Eyring-Powell fluid
parameter δ and ratio parameter.
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Effect of Homogeneous-Heterogeneous
Reactions in MHD Stagnation Point
Nanofluid Flow Toward a Cylinder with
Nonuniform Heat Source or Sink

T. Sravan Kumar and B. Rushi Kumar

Abstract The study investigates the effect of homogeneous-heterogeneous reac-
tions in the stagnation point nanofluid flow toward a cylinder. In the presence
of uniform magnetic field, thermal radiation, and non uniform heat source or
sink. As per the geometry of the flow configuration, the conservation laws are
transformed into a nonlinear model. Using the appropriate analogue transforma-
tions, the resultant equations are employing RK-4th order approach along with
shooting technique to derive closed-form solutions for momentum, angular velocity,
temperature, and concentration fields as well as skin friction, local Nusselt number,
and Sherwood number. It is observed that heat generation parameter leads to
enhance the temperature distribution. The concentration boundary layer thickness
decreases for larger homogeneous reaction rate parameter.

Keywords MHD · stagnation point · homogeneous-heterogeneous reactions ·
nanofluid flow · non-uniform heat source/sink

1 Introduction

The heat and mass transfer is affected by nanofluid over a stretching sheet with
thermal radiation. It has tremendous applications in many areas such as stretching
of plastic film, industrialization of polymer sheet, crystal growing, electronic chips,
filaments and wires, glass blowing, cooling of metallic sheet, artificial fibers, paper
production, metallurgical processes, tinning of copper wires, and many others which
can be found in Pop and Ingham [1] and Vafai [3]. Nanofluid is a kind of heat and
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mass transfer fluids that contains base fluid and nanoparticles. These nanoparticles
are dissolved in the base fluid; it might be water or natural dissolvable.

Nanoparticles used as a part of nanofluids are normally formed metals, oxides,
nitriles, and carbides. Base liquid is normally a conductive liquid, for example,
water engine oil and C2H6O2. Effective thermal conductivity of ethylene glycol is
stretched out by up to 40% for a nanofluid including C2H6O2 containing around
0.3% vol. copper nanoparticles of mean width <10 nm, analyzed by Choi [4]
and Choi et al. [5]. Das et al. [6] examined a two- to fourfold rise in thermal
conductivity development for nanofluid containing T iO2-water or Al2O3-water
nanoparticles over a small temperature varying from 21◦ to 51 ◦C. To study the
effects of the concentration and size variation of the nanoparticles, the concentration
and size are varied from 0% to 5% and 25 to 100 nm, respectively, over the
Reynolds number range of 250–1500 for Au-water nanofluid. Lawrence and Crane
[7] investigated the Brownian motion, thermophoresis, and other thermophysical
properties of nanofluids. Eastman et al. [8] displayed that an improvement in the
thermal conductivity relies on upon the shape, estimate, and thermal attributes
of nanoparticles. The existing literature shown that ensures the enlargement of
nanoparticles in the base fluid may accomplish an essentially reducing in the heat
transfer; for comprehensive review, see (Makinde and Aziz [9], Khan and Pop [10],
Nadeem and Haq [11], Nadeem et al. [12], and Sheikholeslami et al. [13]).

The investigation of magnetohydrodynamics with heat and mass transfer within
the sight of thermal radiation effects has gained a great consideration due to its
diversified applications involved in designs of the fins, steel rolling, manufacturing
engineering and various propulsion devices for aircraft, in cooling of reactors in
geophysics and astrophysicist. It is associated with examined stellar and solar
structures, radio spread by the ionosphere, etc. It is because of the interaction of
electromagnetic fields and electrically conducting fluids. Conducting fluid moves
through the magnetic field and an electric field, and therefore a current may be
started, and in this manner, the current interacts with the magnetic field to make a
body force on the fluid. Such interactions occur both in nature and in new man-made
devices. In the research center, numerous devices have been made based on the
principle of the magnetohydrodynamic interaction directly, such as impetus units
and power generators or which include liquid electromagnetic field interactions,
for example, electrical discharges, MHD pumps, electron beam dynamics, MHD
bearing, traveling wave tubes, etc. Magnetohydrodynamic convective flow issues
are very imperative, and some of the works on chemical engineering, planetary
and stellar magnetospheres, and aeronautics can be found in (Ellahi [14], Ali [15],
Zeeshan et al. [16], Nadeem et al. [17], Noghrehabadi et al. [18], and Mabood
et al. [19]).

Most chemically reacting systems involve both heterogeneous and homogenous
reactions (biochemical systems, catalysis, and combustion). The simple combustion
model helps us to recognize the combustion phenomenon in lots of complicated
engineering features such as in rocket engines and aircraft. A model for isothermal
heterogeneous-homogeneous reactions in the boundary layer flow of a viscous fluid
past a flat plate was presented by Merkin [20].
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chemical species A

chemical species B

Nanofluid

y

x
0

B0

Fig. 1 Schematic nanofluid flow model

In this paper, we have talked about heat and mass transfer examinations;
nanofluid model is seen to be decisively applicable to various suitable conditions
in wings of polymer taking care of organizations, biomechanics, etc. It is assumed
that a simple homogeneous-heterogeneous reaction model as shown in Fig. 1.

2 Mathematical Analysis

Consider a steady, laminar, boundary layer flow of a nanofluid near toward the stag-
nation point region of a 2D cylinder in the presence of homogeneous-heterogeneous
reactions. Uniform magnetic field, thermal radiation, and non uniform heat source
or sink are account. The x-coordinate is taken along the sheet, and the y-coordinate
is measured normal to the sheet. An external magnetic field of constant strength B0
is applied normal to the sheet. All the flow properties are assumed to be constant
except the smaller variations in density caused by the temperature differences of
force vector in the fluid region. The electric field is neglected. We additionally
considered a simplest model of homogeneous reaction and heterogeneous reaction
involving two chemical species A and B in a boundary layer flow expressed by
Chaudhary and Merkin [2] and Merkin [20]:

A+ 2B → 3B, rate = k1cac
2
b (1)

A→ B, rate = ksca (2)

The governing equations describing flow pattern are as follows:
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∂x
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∂y2
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b (7)

Associate boundary conditions (4)–(7) are given by:

u=Uw=ax, v=0, T =Tw, DA
∂Ca

∂y
=ksCa, DB

∂Cb

∂y
=−ksCa, at y=0

u→ U∞ = bx, T → T∞, Ca → C∞, Cb → 0, as y →∞ (8)

The radiative heat flux for an optically thick fluid can be taken from Rosseland
approximation, and its formula is derived from the diffusion concept of radiative
heat transfer in the following way:

qr = − 4σ ∗

3K∗
∂T 4

∂y
(9)

q ′′′ = [
A∗(Tw − T∞)f ′(η)+ B∗(T − T∞)

] (κUw(x)

xν

)
(10)

where A∗ is the space dependent and B∗ is the temperature-dependent parameter.
Since θ is a dimensionless temperature of the nanofluids defined as θ = (T−Tw)

(Tw−T∞)
,

T 4 appeared in Eq. (9):

T 4 = (1+ (θw − 1)θ)4 T 4∞, (11)

where θ = Tw
T∞ and is the wall temperature excess ratio parameter.

The similarity components are also introduced by
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u = axf ′(η), v = −√aνf (η), ξ(η) = Ca

C∞
, φ(η) = Cb

C∞
, η =

√
a

ν
y,

ψ = √aνxf (η) (12)

An equation due to mass conservation (1) is fulfilled by presenting a stream function
ψ with u = ∂ψ

∂y
and u = − ∂ψ

∂x
.

Substituting Eqs. (9)–(12) into Eqs. (4) to (7) transforms into the accompanying
nonlinear ODEs.

f ′′′ + ff ′′ − f ′2 + A2 +M
(
A− f ′

) = 0 (13)
((

1

Pr
− R [1+ (θw − 1)θ ]3

)
θ ′
)′
+ f θ ′ +Nbφ′θ ′ +Ntθ ′2

+ 1

Pr

(
A∗f ′ + B∗θ

) = 0 (14)

1

ScA
ξ ′′ + f ′ξ ′ −Kξφ2 = 0 (15)

1

εScA

(
φ′′ + Nt

Nb
θ ′′

)
+ f φ′ +Kξφ2 = 0 (16)

The corresponding boundary conditions become

f (0) = 0, f ′(0) = 1, θ(0) = 1, ξ ′(0) = Ksξ(0), φ′(0) = −εKsξ(0)

f ′(∞) = A, θ(∞) = 0, ξ(∞) = 1, φ(∞) = 0 (17)

The dimensionless constants appearing in Eqs. (13) and (16) are defined as follows:

Pr = ν
α

, M = σB2
0

aρ
, A = b

a
, Nb = τDBC∞

ν
, Nt = τΔTDT

νT∞ , K = k1C
2∞

a
,

ScA = ν
DA

, Ks = ks
DA

1√
a
ν

, ε = DA

DB
, R = 16σ ∗T 3∞

3K∗κ .

It is expected that the diffusion coefficient of chemical species A and B is of
a comparable size which leads us to make a further assumption that the diffusion
coefficients DA and DB are equal, i.e., ε = 2 [2]. This assumption leads to the
following relation:

ξ(η)+ θ(η) = 1 (18)

Equations (15) and (16) under this assumption reduced to

1

ScA
ξ ′′ + f ′ξ ′ −Kξ (1− ξ)2 = 0 (19)

and are subject to the boundary conditions
ξ ′(0) = Ksξ(0), ξ(∞) = 1
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3 Results and Discussion

The nonlinear ODEs (13)–(16) with the boundary condition equation (17) have
been solved numerically using the shooting technique with fourth-order RK method.
The influence of various governing dimensionless parameters is examined, namely,
the magnetic parameter (M), Prandtl number (P r), wall temperature excess
ratio parameter (θw), radiation parameter (R), Brownian motion parameter (Nb),
thermophoresis parameter (Nt), homogeneous reaction rate (K), ratio diffusion
constants (ε), and Schmidt number (Sc) in transit of flow field f ′(η), θ(η), ξ(η)
which are analyzed and discussed through graphs, which are plotted in Figs. 2, 3, 4,
5, 6, 7, 8, 9, 10, and 11. Throughout the computations it is considered that Pr = 1,
Nt = 0.05, Nb = 1, K = 1, Sc = 1, ε = 1.5, A∗ = 0.1, B∗ = 0.1, M = 1,
θw = 1.5, R = 0.5, and A = 0.1. The comparative results are reported. The
results obtained from this study are very good in agreement. Gives the information
of f ′′(0), −θ ′(0), and ξ ′(0) for different values of M , R, θw, K , and Ks .

Figure 2 depicts the variation in velocity of nanofluid with respect to magnetic
field parameter. It is observed that an increase in M depreciates the velocity profiles
of the nanofluid flow. It is because of the physical occurrence that the application
of transverse magnetic lines will result in a Lorentz force similar to drag force,
which leads to restricting the fluid flow and therefore reducing its velocity. And it is
even noticed that the momentum boundary layer thickness decreases with increasing
value of M . The effect of the magnetic parameter on the temperature field is shown
in Fig. 3; it is noticed that the temperature increases with an increment of the
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Fig. 2 Influence of M on velocity
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Fig. 4 Influence of A on velocity

magnetic parameter. Owing to the nanofluid has thick thermal boundary layer and
also temperature increments in the nanofluid due to its high thermal conductivity.
The influence of ratio parameter A on velocity profile is displayed in Fig. 4; it is
noticed that velocity profiles increase for A > 0 and for A < 1, the momentum
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boundary layer thickness has opposite effects. It is additionally analyzed that there
is no pattern of velocity boundary layer for A = 1, that is, fluid and sheet move with
the same velocity. Figure 5 demonstrates the variation in temperature of nanofluid
with respect to ratio parameter. It is observed that an increase in A depreciates the
temperature profiles of the nanofluid flow. Consequently, higher estimations of ratio
parameter infer higher pressure which gives less resistance to nanofluid motion and
thus rate of heat transfer rise.

The behavior of fluid temperature by the influence of nanoparticles, Nb, Nt ,
Pr , and R, is illustrated in Figs. 6–11. The influences of Nb on the temperature
profile are sketched in Fig. 6. It is observed that with rising Brownian motion
parameter, the temperature of the fluid increases and, as a consequence, the thermal
boundary layer thickness increases with increasing values of Nb. Fig. 7 demonstrate
the impacts of thermophoresis parameter on temperature profiles. The temperature
of the nanofluid increments with an increment of thermophoresis parameter. We
observed that positive thermophoresis parameter shows a cool surface but is negative
to a hot surface. For hot surfaces, thermophoresis tends to blow the nanoparticle
volume fraction boundary layer far from the surface since a hot surface repels the
sub-micrometer-sized particles from it, in this way shaping a generally particle-free
layer close to the surface. As an outcome, the nanoparticle circulation is formed just
outside, specifically, the impact of escalating the thermophoresis parameter.

In Fig. 10, it is observed that the concentration due to variation in Schmidt
number for gases like hydrogen (Sc = 0.22), helium (Sc = 0.30), water vapor
(Sc = 0.60), and ammonia (Sc = 0.78) is reduced. It is noticed that concentration
field is arrived regularly for hydrogen and accrues for ammonia in comparison to
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water vapor. Thus, water vapor can be used for maintaining concentration field,
and hydrogen can be used for maintaining good concentration field. An increasing
Sc leads to decreases in the boundary layer thickness. Figure 11 illustrates that
the concentration decreases with increasing values of homogeneous reaction rate
parameter.
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Effects of Thermal Radiation
on Peristaltic Flow of Nanofluid
in a Channel with Joule Heating
and Hall Current

R. Latha and B. Rushi Kumar

Abstract The present article has been arranged to study the Hall current and Joule
heating effects with thermal radiation on peristaltic flow of nanofluid in a channel
with flexible walls. Convective conditions for heat transfer in the formulation are
adopted. Viscous dissipation in energy expression is taken into account. Resulting
differential systems after invoking small Reynolds number and long wavelength
considerations are numerically solved. Runge-Kutta scheme of order four is imple-
mented for the results of axial velocity, temperature, and concentration. Outcomes
of new parameters like Brownian motion parameter, thermophoresis parameter,
thermal radiation parameter, Prandtl number, and Eckert number on the physical
quantities of interest are discussed. It is found that the influence of thermal radiation
parameter and the Biot number on the temperature is the same fashion.

Keywords peristaltic flow · Hall current · Nano fluid · heat dissipation ·
permeability · joule heating.

1 Introduction

Examination as for the flow of non-Newtonian fluid cannot be disregarded in view of
its wide applications in combination of fields like industry, physiology, and design
engineering. Almost certainly different constitutive relations are recommended for
the flow portrayal of such fluids differing in characteristics. Some current specialists
are even at this point connected with the flow investigation of such fluids. Regarding
peristalsis, the non-Newtonian fluid increased much consideration due to their
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different applications in mechanical and physiological procedures. Spontaneous
pressing and loosening up development along the walls of tabular structures is
named as peristalsis. Stomach-related tract and blood flow in lymphatic transport
are a couple of cases that can be seen inside the human body. The wonder is
moreover engaged with outlining numerous devices like blood direct machine to
blood pump during surgical procedures, dialysis machine, and heart lung machine.
A few worms also utilize this wonder for their locomotion. Some important studies
which described the peristaltic flows are defined in [1–6]. Kothandapani et al. [7]
have analyzed the peristaltic transport of a Jeffery fluid under the effect of magnetic
field in an asymmetric channel. They have discussed the problem in wave frame
moving with a constant axial velocity under the approximations of long wavelength
and low Reynolds number. Peristaltic flow with long wavelength at low Reynolds
number has been considered in this study, where a number of waves are small
depending on the half width of the channel to the wavelength of the fluid. If the
number of waves is small, then the slope of the channel wall is also small, where
it is occurring in the human ureter. Another way, the size of the Reynolds number
of the fluid flow is small in the human ureter. In each cross section, the pressure
gradient and axial velocity are small, when the size of the slope wall is small
compared to the longitudinal values. Radius of the channel and size of wavelength
both are large compared to half width of the channel, when the long wavelength
theory is applicable. Manton [8] points out the fluid mechanics of peristaltic wave
with an arbitrary shape in order to get the general properties of peristalsis. Kaimal
[9] carried out the peristaltic transport of Newtonian fluid with lubrication theory,
and he discussed special phenomena like reflux and trapping. Shapiro et al. [10]
found the peristaltic pumping with long wavelengths at low Reynolds number. In the
greater part of the MHD flows detailed in the composed work, the Hall current term
in Ohm’s law was overlooked as it has no significant effect for littler values of the
magnetic field. Regardless, when the greater magnetic field is utilized, the influence
of Hall current is more significant. Henceforth, the investigation of Hall current
effect on MHD flows has extended much significance because of its wide range
of utilization, for example, in electric generators and pumps, power transformers,
refrigeration cycles, etc. Another imperative part of MHD peristaltic flow is to
deal with Hall current. This impact can happen; when the electron-molecule crash
repeatable will be low, alternately the magnetic field is strong. Additionally, joule
heating happens when the power of an electric current is transformed into heat
as it travels through a resistance. It has reasonable applications, in geophysical
streams, atomic designing, and biomedical field. A few cases of this impact in
daily life are electric stoves, welding irons, electrical radiators, and thermometers.
Porous medium is a solid body that contains pores. The definition of the porosity of
the porous medium can be given as the ratio of pore volume to the total volume
of a given sample of material. Porous medium has very fine holes, the fluid is
not flowing through solid, and it is only flowing through the open edge. The
phenomenon of porosity is important with regard to tremendous applications such
as human lugs, vascular beds, kidney and bone etc. Darcy law is proportionality
between the flow velocity and the pressure difference for low speed in an unbounded
porous medium. Due to the numerous applications in biomedical engineering,
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medicine, and industry, like heat conduction owing the blood flow in tissues,
oxygenation process, biomass transfer, heat exchanges in the environment, heat
generation, hypothermia, cooling system of industrial equipment, etc., and inspired
by the abovementioned studies, in this study, we investigated the influence of wall
flexibility and joule heating on the peristaltic transport of a conducting nanofluid
in uniform porous channel. The exact solution is obtained for stream function and
velocity. Further, R-K Fehlberg integration scheme is applied for solving the energy
and concentration equations. Results are obtained and discussed for the flow of
uniform geometry at different values of relevant parameters.

2 Mathematical Model and Governing Equations

Consider the peristaltic flow of a conducting nanofluid in a 2D porous uniform or
nonuniform channel; it is assumed that the x-axis is along the channel wall and y-
axis is perpendicular to it. The flow is formed by a sinusoidal wave propagating
along the elastic walls of the channel with a constant speed c. Joule heating,
Hall current, and dissipation effects are considered (Fig. 1). The channel wall
deformation is defined as:

y = ±η̄
(
x̄, t̄

) = ±
(
a sin

2π

λ

(
x̄ − ct̄

)+ d (x)

)
, d (x)

= m̄x + d, m̄� 1 (1)

Consider the following nondimensional variables:

x∗ = x̄

λ
, y∗ = ȳ

d1
, u∗ = ū

c
, v∗ = v̄

c
, p∗ = d2

1

λμc
p̄, t∗ = ct̄

λ
,

Re = ρf cd1

μ
, η∗ = η̄

d

Fig. 1 Geometry of the
problem
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M =
√

σ

μ
B0d1, δ = d1

λ
, Rd = 16σ ∗T 3

0

3kk∗
, θ = T − T0

T1 − T0
,

Ec = c2

cf (T1 − T0)
, Pr = v

α

σ = C − C0

C1 − C0
, k = k1

d2
1

, ψ ′ = ψ

cd1
, u = ∂ψ

∂y
, v = −δ

∂ψ

∂x
,

Nb = τDB (c1 − c0)

v
,

Nt = τDT (T1 − T0)

Tmv
, Bi = hd1

k
, E1 = −τd3

1

λ3μc
, E2 = mcd3

1

λ3μ
,

E3 = dd3
1

λ2μ
, Sc = v

DB

The governing equations describing flow pattern are as follows:

∂u

∂x
+ ∂v

∂y
= 0 (2)

Re

[
δu

∂u

∂x
+ v

∂u

∂y

]
= −∂p

∂x
+

(
δ2 ∂

2u

∂x2 +
∂2u

∂y2

)

+ M(
1+m2

) (−u+mv)− u

k
(3)

Re

[
δu

∂v

∂x
+ v

∂v

∂y

]
= −∂p

∂y
+

(
δ2 ∂

2v

∂x2 +
∂2v

∂y2

)
+ M(

1+m2
) (v +mu)− v

k
(4)

Re

[
δu

∂θ

∂x
+ v

∂θ

∂y

]
= 1

Pr

(
δ2 ∂

2θ

∂x2 +
∂2θ

∂y2

)
+Nb

(
δ2 ∂φ

∂x

∂θ

∂x
+ ∂φ

∂y

∂θ

∂y

)
(5)

+Nt

{(
δ
∂θ

∂x

)2

+
(
∂θ

∂y

)2
}
+ Ec

[
4

(
δ
∂u

∂x

)2

+
(
δ
∂v

∂x
+ ∂u

∂y

)2
]

+ M2Ec(
1+m2

)
(
v2 + u2

)
+ Rd

Pr

∂2θ

∂y2

Re Sc

[
δu

∂φ

∂x
+ v

∂φ

∂y

]
=

(
δ2 ∂

2φ

∂x2 +
∂2φ

∂y2

)
+ Nt

Nb

(
δ2 ∂

2θ

∂x2 +
∂2θ

∂y2

)
(6)
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The subject boundary conditions can be put into the forms

u = 0,
∂θ

∂y
=

{−Biθ

−Bi (1− θ)

}
, φ =

{
1
0

}
at y = ±η

[
E1

∂3

∂x3 + E2
∂3

∂x∂t2 + E3
∂3

∂t∂x

]
η =

(
δ2 ∂2u

∂x2 + ∂2u
∂y2

)

−Re
[
δ ∂u
∂t
+ δu∂u

∂x
+ v ∂u

∂y

]
+ M2

(1+m2)
(−u+mv)− u

k

at y = ±η (7)

where η = 1+ ε sin 2π (x − t). Now we introduce the stream function in the above
nondimensional system as follows:

u = ∂ψ

∂y
, v = −δ

∂ψ

∂x

And adopting long wavelength and low Reynolds number approximations,
we obtain

∂4ψ

∂y4
−

(
M2

1+m2
+ 1

k

)
∂2ψ

∂y2
= 0 (8)

(1+Rd)
Pr

(
∂2θ
∂y2

)
+Nb

(
∂φ
∂y

∂θ
∂y

)
+Nt

(
∂θ
∂y

)2 + Ec
(
∂2ψ

∂y2

)2 + M2Ec

(1+m2)

(
∂ψ
∂y

)2 = 0 (9)

∂2φ

∂y2
+ Nt

Nb

∂2θ

∂y2
= 0 (10)

with the boundary conditions

∂ψ

∂y
= 0 at y = ±η

[
E1

∂3

∂x3 + E2
∂3

∂x∂t2 + E3
∂3

∂t∂x

]
η =

(
∂3ψ

∂y3

)
−

(
M2

(1+m2)
+ 1

k

)
∂ψ
∂y (11)

∂θ

∂y
=

{−Biθ

−Bi (1− θ)

}
, φ =

{
1
0

}
at y = ±η,

The exact solution of Eq. (8) with boundary conditions (11) has the form

ψ = 8επ3
[
(E1+E2) cos 2π(x−t)− E3

2π sin2π(x−t)
]

(
M2

1+m2+ 1
k

)

⎡

⎣
sinh

(√
M2

1+m2+ 1
k

)
y

√
M2

1+m2 + 1
k

cosh

(√
M2

1+m2+ 1
k

)
η

− y

⎤

⎦ (12)
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3 Numerical Procedure

Equations (9) and (10) with the help of (11) and (12) are solved numerically by
employing Runge-Kutta Fehlberg integration scheme with step size as η = 0.001
and relative error as 0.0001. The set of nonlinear ordinary differential equations of
second order in θ and φ are first reduced into a system of simultaneous ordinary
equations. In order to solve this system using Runge-Kutta Fehlberg integration
scheme, one should require the missed initial conditions. However, the values of θ
and φ are known aty = h. These end conditions are used to obtain unknown initial
conditions at y = 0 using shooting technique. In shooting method, the boundary
values calculated have to be matched with the real boundary values. Using trial and
error or some scientific approach, one attempts to get as close to the boundary value
as possible, the most essential step of this method is to choose the appropriate finite
values for far-field boundary condition. We took y = h condition at a large but finite
value of y where no considerable variations in temperature and concentration occur.

4 Results and Discussions

The motivation behind this part is to predict the acts of velocity, temperature, and
concentration under the effect of rising parameters. Consequently the graphical
outcomes are gotten numerically through Runge-Kutta with shooting technique
in MATLAB. The appropriate physical clarifications are exhibited in this section.
The effects of E1 , E2, and E3 on velocity profile are demonstrated in Figs. 2, 3,
and 4. The velocity upgrades with an expansion in E1 and E2, while it diminishes
wheneverE3is expanded. The heart functions as a pump carrying the blood over
the veins. The walls of these vessels are expanded in flexibility, and adaptability of
these walls upgrades the velocity of the blood flow. Then again, the blood vessels
involve the more amount of force to develop and take up the blood expelled from
the heart. This prompts diminishing in the velocity of the blood inside the channel
wall. The effects of E1 , E2, and E3 on temperature profile are demonstrated in
Figs. 5, 6, and 7. The temperature upgrades with an expansion in E1 and E2, while
it diminishes wheneverE3is expanded. The effect of Bi on temperature profile
is portrayed in Fig. 8. The decline in temperature profile as Bi enhances. The
convective heat transfer reduces the thermal conductivity inside the channel and
hence declines the temperature of the fluid. The effects of E1 , E2, and E3 on
concentration profile are demonstrated in Figs. 9, 10, and 11. The concentration
diminishes with an expansion in E1 and E2, while it upgrades whenever E3 is
expanded.
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Fig. 2 Velocity for
different E1
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Fig. 3 Velocity for
different E2
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Fig. 4 Velocity for
different E3
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Fig. 5 Temperature for
different E1
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Fig. 6 Temperature for
different E2
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Fig. 7 Temperature for
different E3
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Fig. 8 Temperature for
different Bi
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Fig. 9 Concentration for
different E1
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Fig. 10 Concentration for
different E2
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Fig. 11 Concentration for
different E3
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5 Conclusions

The major findings of the analysis are as follows:

1. An expanding hall parameter m upgrades the velocity. It causes a diminish in
magnetic damping power, and henceforth the velocity upgrades.

2. The effects of E1 , E2, and E3 are the same fashion on velocity and concentration
profile; compared to this fashion, the temperature profile is different.

3. Decline in temperature profile as Bi enhances because the convective heat
transfer reduces the thermal conductivity inside the channel and hence declines
the temperature of the fluid.
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Chemically Reactive 3D Nonlinear
Magneto Hydrodynamic Rotating Flow
of Nanofluids over a Deformable Surface
with Joule Heating Through Porous
Medium

E. Kumaresan and A. G. Vijaya Kumar

Abstract This article presents a numerical investigation on free convective heat
and mass flow characteristics in a 3-dimensional MHD nonlinear boundary layer
flow of nanofliuids past a deformed revolving surface through porous medium in
the presence of Joule heating and radiation absorption as part of the chemical
reaction mechanism. It is assumed that the Ag- water and Cu- water nanofluids
which flow in parallel layers in a stream line. The phenomenon presided when
modelled the flow transport leads to obtain a coupled nonlinear partial differential
equations and further in the process of attaining an approximate solution, the system
of equations were transformed in to a set of nonlinear ordinary differential equations
using appropriate similarity transformation. The resulting equations were solved
numerically with by using the R-K-Felhberg-integration with shooting method. It is
found that the temperature increases with increasing radiation absorption parameter,
We also seen that the Ag-water nanofluid has high thermal conductivity than Cu-
water nanofluid.

Keywords MHD · Nano fluid · Porous medium · Joule heating · Heat source ·
Radiation absorption · Chemical reaction

1 Introduction

Initially the examination of the 3-D boundary-layer flow is caused by a stretching
flat surface in two tangential directions by Wang [1]. Takhar et al. [2] studied
3-D magneto hydrodynamic boundary-layer flow due to the impulsive stretching
of the surface in two lateral directions and by suddenly increasing the surface
temperature from that of the surrounding fluid. Kumari and Nath [3] presented an
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analytical solution by using HAM method for unsteady 3-D magneto hydrodynamic
boundary-layer flow and heat transfer due to impulsively stretched plane surface.
Choi [4] was pioneer in introducing this colloidal suspension. Boundary layer
analysis in the presence of MHD flow of nanofluid has wide range of applications
in industrial and engineering problems. Mohaghegh et al. [5] investigated 3-D
stagnant-point flow and heat transfer of a dusty fluid toward a stretching sheet.
Mondal et al. [6] analyzed the effects of radiation, heat and mass transfer on
the unsteady MHD flow of three dimensional casson nanofluids with the help
of spectral quasi linearization method. Stanford Shateyi [7] presented numerical
analysis of 3-D magneto hydrodynamic nanofluid flow over a stretching sheet with
convective boundary conditions through a porous medium. Nayak et al. [8, 9]
studied 3-D magneto hydrodynamic nanofluid flow with thermal radiation by using
Runga-Kutta method of fourth order along with shooting technique as well as
Secant method for better approximation. Jusoh et al. [10] investigated the MHD
three dimensional Maxwell nanofluid flow over a permeable stretching/shrinking
surface with convective boundary conditions. Chen [11] studied 3-D with power-
law stretching in a nanofluid containing gyrotactic microorganisms. Forghani et al.
[12] elaborated effect upon Hartmann number on flow and heat transfer of Ag-
water nanofluid with variable heat flux. However, most studies revolved around
two-dimensional flows. Motivated by this, the primary purpose of this paper is to
solve the problem of chemically reactive three-dimensional magneto hydrodynamic
rotating flow of nanofluids over a deformable surface with joule heating through
porous medium.

2 Mathematical Formulation

We investigate copper and silver nanofluid three-dimensional rotating flow over
deformable surface. The surface is deformed with the velocity uw = ax. With
invariable angular velocity Ω the fluid is rotated about z-axis (see Fig. 1). The
transverse magnetism is also investigated. Surface temperature is adjusted by
convection process through the hotted fluid with temperature Tf and T∞ denotes
the ambient temperature.

Relevant equations are:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z
− 2Ωv = 1

ρnf

[
μnf

∂2u

∂z2 − σnf B0
2u− μnf

k
u

]
(2)

u
∂v

∂x
+ v

∂v

∂y
+w

∂v

∂z
+ 2Ωu = 1

ρnf

[
μnf

∂2v

∂z2 − σnf B0
2v − μnf

k
v

]
(3)
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Fig. 1 Physical geometry of the model

u
∂T

∂x
+ v

∂T

∂y
+w

∂T

∂z
= αnf

∂2T

∂z2 −
1(

ρCp

)
nf

∂qr

∂z
+ μnf(

ρCp

)
nf

[(
∂u

∂z

)2

+
(
∂v

∂z

)2
]

+ σnf B0
2

(
ρCp

)
nf

[
u2 + v2

]
+ Q0(

ρCp

)
nf

(T − T∞)+Q′
1 (C − C∞) (4)

u
∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= Dm

∂2C

∂z2 − k0 (C − C∞) (5)

The relevant boundary conditions are;

u = uw = ax, v = 0,W = 0,−knf
∂T

∂z
= hf

(
Tf − T

)
, C = CW at Z = 0.

u→ 0, v → 0, T → T∞, C → C∞ as z→∞ (6)

The properties of nanofluids are given as follows

μnf = μf

(1−ϕ)2.5 , ρnf = (1−ϕ)ρf + ϕρs, (ρCP )nf = (1−ϕ) (ρCP )f + ϕ(ρCP )s

knf = kf

[
ks+2kf+2ϕ(ks−kf )

ks+2kf + ϕ(kf−ks)

]
, σnf = σf

[
1+ 3

(
σs − σf

)
ϕ

(
σs + 2σf

)− (
σs − σf

)
ϕ

]

(7)
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The radiative heat flux is denoted by q. Using the Rosseland approximation for
radiation, we have:

qr = −4σ ∗

3k∗
∂T 4

∂z
(8)

T 4 ∼= 4T 3∞T − 3T 4∞ (9)

Thus, substituting Eq. (9) into Eq. (8) we get

∂qr

∂z
= −16σ ∗T 3∞

3k∗
∂2T

∂z2 (10)

Therefore Eq. (4) reduced to

u∂T
∂x
+ v ∂T

∂y
+w∂T

∂z
= αnf

∂2T
∂z2 + 1

(ρCP )nf

16σ ∗T 3∞
3k∗

∂2T
∂z2 + μnf

(ρCp)nf

[(
∂u
∂z

)2 +
(
∂v
∂z

)2
]

+ σnf B
2
0

(ρCp)nf

[
u2 + v2

]+ Q0

(ρCp)nf
(T − T∞)+Q′

1 (C − C∞)

(11)
The following similarity transformations are introduced to simply the mathemat-

ical analysis of the problem

u = axf ′ (η) , v = axg (η) ,w = −√avf f (η) , η

=
√

a

vf
z, θ (η) = T − T∞

Tf − T∞
, ϕ (η) = C − C∞

Cf − C∞
(12)

Using Eqs. (11) and (12) the governing non-linear partial differential equations
(1–5) together with the boundary condition (6) reduce to ordinary differential
equations that are locally valid as follows:

Momentum boundary layer equation:

f ′′′ −
[
(1− φ)2.5 σnf

σf

Mf ′ + (1− φ)2.5

A1

[
f ′2 − ff ′′ − 2λg

]
+Kf ′

]
= 0 (13)

g′′ −
[
(1− φ)2.5 σnf

σf

Mg + (1− φ)2.5

A1

[
f ′g − fg′ + 2λf ′

]+Kg

]
= 0 (14)

Thermal boundary layer equation:

θ ′′ + Pr

A2

(
knf
kf
+ R

)
[

A2Ec

(1− φ)2.5

(
f ′′2 + g′2

)

+σnf

σf

A2MEc
(
f ′2 + g2

)
+ A2Qθ +Q1ϕ + f θ ′

]
= 0 (15)
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Concentration boundary layer equation:

ϕ′′ − krScϕ + Scf ϕ′ = 0 (16)

The corresponding transformed boundary conditions are

f (η) = 0, f ′ (η) = 1, g (η) = 0,
knf
kf

θ ′ (η) = Bi [θ (η)− 1], ϕ (η) = 1 at η = 0

f ′ (η)→ 0, g (η)→ 0, θ (η)→ 0, ϕ (η)→ 0asη →∞ (17)

The Cfx is the skin friction coefficient along xdirection, Cfy is the skin
friction coefficient along ydirection and Nux is the local Nusselt number. They are
defined as;

Cfx = τwx

ρf u2
w

,Cfy = τwy

ρf u2
w

,Nux = xqw

kf
(
Tf − T∞

) (18)

Where τwx = τzx |z=0and τwy = τzy
∣∣
z=0 are the surface shear stresses and qwis

the surface heat flux given by,

τwx = μnf

∂u

∂z

∣∣∣∣
z=0

, τwy = μnf

∂v

∂z

∣∣∣∣
z=0

, qw = −knf
∂T

∂z

∣∣∣∣
z=0

+ qr |z=0 (19)

Substituting the similarity transformations Eq. (12) into Eqs. (18) and (19), we
get

√
RexCf x = (1− φ)−2.5f ′′(0),

√
RexCfy

= (1− φ)−2.5g′(0), Nux√
Rex

= −
(
knf

kf
+ R

)
θ ′(0)

Here Rex =
(
uwxvf

)
- local Reynolds number.

3 Results and Discussion

The simplified Eqs. (13)–(16) are nonlinear and coupled. They can be solved numer-
ically using Runge-Kutta fourth order with shooting technique for different values of
parameters such as Magnetic field (M), Radiation parameter (R), Chemical reaction
parameter (k), porous medium (K), Eckert number (Ec), Heat absorption (Q),
Radiation absorption (Q1), Rotation parameter (λ), Prandtl number (Pr), Schmidt
number (Sc) and nanoparticle volume fraction (φ). The effects of the emerging
parameters on the axial velocity f ′(η), transverse velocity g(η), temperature θ(η),
concentration ϕ(η), skin friction coefficient and the rate of heat transfer profiles
are investigated. The physical properties of the pure water and the nanoparticles
are given in Table 1. The results of velocity, temperature, concentration, skin
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Table 1 Thermophysical properties of water based nanoparticles

Thermo physical properties Base fluid (water) Cu (Copper) Ag(Silver)

ρ(kg/m3) 997.1 8933 10,500

CP (J/kg K) 4179 385 235

k(W/mK) 0.613 401 429

σ (Ωm)−1 0.05 59.6×106 6.3×107

Fig. 2 Influence of M
on f ′ (η)
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friction coefficient and the rate of heat transfer profiles have been studied for a
different values of physical parameters, during the whole manipulation, we take
the values M = 2, Pr = 6.2, R = 2, Ec = 0.2,K = 0.5, Bi = 0.4,
Sc = 0.78, k = 0.5, Q = 0.1, Q1 = 0.5, λ = 0.5, φ = 0.05. In order to
highlight the important features of the flow and the heat transfer characteristics, the
numerical values are plotted in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11. The effect
of the transverse magnetic field parameter on f ′ (η), g (η) and θ (η) is shown in
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Skin friction f ′′ (0) Skin frictiong′ (0) Nusselt number −θ ′ (0)
Parameter Cu Ag Cu Ag Cu Ag

φ 0 −1.892 −1.892 −0.2778 −0.2778 −0.5921 −0.5921

0.05 −1.97 −1.99 −0.3305 −0.3463 −0.674 −0.7182

0.08 −2.001 −2.031 −0.3526 −0.3752 −0.7209 −0.8051

0.1 −2.017 −2.052 −0.3639 −0.3904 −0.7509 −0.8697

M 1.0 −1.706 −1.73 −0.3899 −0.407

1.5 −1.841 −1.864 −0.3568 −0.3732

2.0 −1.97 −1.99 −0.3305 −0.3463

2.5 −2.092 −2.111 −0.3091 −0.3242

Q 0 −0.2873 −0.294

0.05 −0.41 −0.4235

0.07 −0.4865 −0.5062

0.1 −0.674 −0.7182

Q1 0.5 −0.674 −0.7182

1 −1.259 −0.1331

1.5 −1.844 −0.1994

2 −2.429 −2.557

λ 0 −1.941 −1.959 0 0 −0.5932 −0.6212

0.5 −1.97 −1.99 −0.3305 −0.3463 −0.674 −0.7182

1 −2.045 −2.071 −0.6335 −0.6618 −0.9787 −1.111

1.5 −2.146 −2.718 −0.9006 −0.9381 −2.075 −3.146

Figs. 2, 3, and 4 for both Ag-water and Cu -water based nanofluids. From Figs. 2
and 3 it is found that the velocity is decreases in increase the magnetic field
parameter because that the reason behind this phenomenon is that application of
magnetic field to an electrically conducting nanofluid gives rise to a resistive type
force called the Lorentz force. This force has the tendency to slow down the motion
of the nanofluid in the boundary layer. However opposite reaction is found for trans-
verse velocity. It is prominent to mention here that magnetic field effect is highly
significant on Cu–water nanofluid while compared with Ag-water nanofluid. From
Fig. 4 the temperature is increases for increasing magnetic field parameter, further,
we also observe that the Cu-water based nanofluid exhibits relatively less thermal
conductivity than that of the Ag-water based nanofluid. Figures 5, 6, and 7 present
λon f ′ (η), g (η) and θ (η). Here the f ′ (η) and g (η)decreases by increasing λ. The
Coriolis force turns to stronger and stronger by escalating λ that leads to increase
in f ′ (η) profile. It is notice that the values of g (η) are negative which means
that the fluid is moving along negative y-axis. Further, for large values of rotation
parameter the function f ′ (η) happen to negative near η = 0, which implies that the
fluid flows along x-direction at small region. This is all because of the significant
influence of Corioils force along with the stretching influence. It is seen that the
temperature significantly increases as strength of Lorentz and Corioils forces are
increased.
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Fig. 4 Influence of M
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Fig. 7 Influence of λ
on θ (η)
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Fig. 10 Influence of Q
on θ (η)
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The impact of heat generation/absorption and radiation absorption on the
dimensionless temperature profiles are shown in Figs. 8 and 10, respectively for both
Cu-water and Ag-water based nanofluids. It is evident that the temperature increase
with an increase in the heat source parameter. These results qualitatively agree with
expectation since the effect of internal heat generation is to increase the rate of heat
transport to the fluid there by increasing the temperature, we also observe that an
increase the radiation absorption parameter the nanofluid temperature increases for
both the fluids. The effect of Bi on temperature profile is show in Fig. 9. On viewing
this figure, the temperature of both Cu-water nanofluid and Ag-water nanofluid is
increases with the increasing parameter Bi . The concentration profiles are presented
for different values Sc in Fig. 11. It is noticed that increase of Schmidt number leads
to decrease in concentration of the species.
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MHD Carreau Fluid Flow Past a Melting
Surface with Cattaneo-Christov Heat
Flux

K. Anantha Kumar, Janke V. Ramana Reddy, V. Sugunamma,
and N. Sandeep

Abstract In this article, we presented simultaneous solutions for magnetohydrody-
namic Cattaneo-Christov flow of Carreau fluid over a variable thickness melting
surface. Firstly, proper transformations are considered to convert the basic flow
equations as ODE. The solution of these ODEs is obtained by the consecutive
application of shooting and R.K. fourth-order methods. Graphs are plotted with
the assistance of MATLAB package to emphasize the impact of various physical
parameters on the flow fields. Further, the rate of heat transfer and friction factor
are also intended and depicted with the help of a table. Results indicate that
fluid velocity has inverse relationship with melting and magnetic field parameters.
Also the nonuniform heat source/sink parameters play a key role in heat transfer
performance.

1 Introduction

The investigation of non-Newtonian fluid flows due to stretching surface has
countless applications in mechanical engineering, biomechanics, aeronautical engi-
neering and some industrial processes like thermal insulation, production of paper,
biochemical processes, crystal growth, food processing, pasteurization of milk, hot
rolling, glass fibre, plastic sheet extrusion, etc. Carreau fluid is also a non-Newtonian
fluid. Hanks and Larsen [5] discussed the non-Newtonian fluid flow through a ring-
shaped region. Khan and Azam [8] and Shah et al. [14] have analysed the flow and
heat transport phenomenon of Carreau fluid flow over a stretching surface. Further,
Kumar et al. [9] analysed the flow and heat transfer attributes of Casson fluid over a
stretching surface with cross-diffusion.
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In 1948, Cattaneo [3] proposed a model to acquire effective heat transfer
rate with the inclusion of thermal relaxation time to Fourier’s model. Later,
Christov [4] proposed the time-derivative model to Cattaneo’s model, and it is
termed as Cattaneo-Christov heat flux model. This mechanism plays a vital role
in various processes like thermization of milk and making of microchips and
electronic devices. Hayat et al. [6] utilized this model to examine the heat transport
phenomenon. Kumar et al. [10] proposed a model to analyse the heat transfer
behaviour of MHD flow over a cone/wedge in the presence of nonuniform heat
sink/source.

Babu and Sandeep [2] and Kumar et al. [11] analysed the impact of cross-
diffusion on MHD viscoelastic liquid flow over a melting surface. The heat transfer
attributes on MHD nanofluid flow over a stretching surface were reported by
Sandeep and Animasaun [13]. Recently, Reddy et al. [12] reported the com-
bined influence of heat and mass transport on MHD Casson and Maxwell fluids
over a linearly stretched surface. Shateyi [15] analysed the magnetohydrody-
namic flow of non-Newtonian fluid past a stretched surface with heat and mass
transfer.

The melting heat transport aspect has auspicious importance in mechanical and
chemical engineering processes. Hayat et al. [7] presumed a problem to analyse the
stagnation point flow of non-Newtonian liquid over a linear surface with melting
heat transport. The impact of exponential heat source on non-Newtonian liquid flow
via melting surface with variable fluid properties was studied by Adegbie et al. [1].

2 Modelling of the Problem

Here an unsteady, two-dimensional flow of an incompressible Carreau fluid over
a linear/nonlinear variable thickness surface is considered. The Cattaneo-Christov
heat flux is implemented to scrutinize the heat transport performance. Let us imagine

the variable thickness of the sheet is y = L (x + p1)
1−p

2 , where p1, L are constants
and p is the velocity power law index. Here p = 1 refers to the flow past a linear
surface, and p > 1 refers to the flow past a nonlinear stretching surface. The flow
is imagined in the region y≥0. The x and y axes are taken along and normal to
the surface, respectively, as depicted in Fig. 1. The varying magnetic field B(x) =
B0(x + p1)

p−1
2 is applied normal in the flow direction as displayed in Fig. 1. Here

B0 is the strength of the magnetic field. The impact of variable heat sink/source and
melting heat transfer is accounted.

Owing to the afore taken presumptions, the governing equations of the flow are
(see Ref. [8])

∂u

∂x
+ ∂v

∂y
= 0, (1)
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Fig. 1 Flow Geometry
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+

∂T

∂y

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

))
= k

ρCp

∂2T

∂y2 +
Q∗

ρCp

,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)

Here (u, v) are the velocity components of (x, y) directions, respectively, t is the
time, ν is the kinematic viscosity, ρ is fluid density, σ is electrical conductivity of
the fluid, n is the non-Newtonian power law index, Γ is the relaxation time, T is
the fluid temperature, k is thermal conductivity, Cp is the heat capacitance and δ is
relaxation time of the heat flux.

In Eq. (3), the second term in the R.H.S, Q∗ is added to discuss the concept of
nonuniform heat source or sink, and it is given by (see Ref. [10])

Q∗ = kus(x, t)

(x + p1)ν

(
A∗(T∞ − Tm)f ′ + B∗(T − Tm)

)
, (4)
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Here Tm−T∞ = T0(x+p1)
(1−p)

2 (1− α1t)
−0.5; Tm is the melting temperature; T∞, T0

are the ambient and reference temperatures of the fluid, respectively; A∗, B∗ > 0
represents the internal heat source; and A∗, B∗ < 0 represents the internal heat
sink.

The corresponding boundary conditions of the problem are given by (see
Ref. [7])

u = us(x, t), v = 0, k ∂T
∂y
= [δ+cs (Tm−T0)]

ρcs−1 v(x, y), T = Tm at y = (x+p1)
1−p

2

L−1 ,

u→ 0, v → 0, T → T∞ as y →∞,

⎫
⎬

⎭

(5)

Here us(x, t) is the stretching velocity of the sheet, p0 > 0 is a constant, α1 is
the unsteadiness constant, and cs is the concentration susceptibility.

Consider the following transformations in order to get the non-dimensional
expressions of the flow equations (see Ref. [8]):

u = ∂ζ

∂y
= p0(x + p1)

p

(1− α1t)
f ′(χ), T = Tm + (T∞ − Tm)θ(χ),

v = −∂ζ

∂y
= −

√
(p + 1)νp0(x + p1)p−1

2(1− α1t)

[
f (χ)+ χ

(
p − 1

p + 1

)
f ′(χ)

]
,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(6)

Here χ = y

√
(p+1)p0

2ν is the similarity variable, ζ =
√

2νp0(x+p1)p−1

(p+1) f (χ) is the

stream function, f ′ and θ (functions of χ) signify the dimensional velocity and
temperature fields with domain [λ,∞). (u, v) satisfies trivially the equation of
continuity.

Using Eqs. (4) and (7) in Eqs. (1)–(3) and (5)–(6), we obtain the nonlinear ODEs
in terms of f and θ with the domain [λ,∞). In order to facilitate the computation,
we change the domain [λ,∞) into [0,∞) using the following transformations (see
Ref. [2]):

F(η) = F(χ − λ) = f (χ),Θ(η) = Θ(χ − λ) = θ(χ), (7)

Here η is the new similarity variable.
In view of the above transformation, we obtain

F ′′′ + FF ′′ + 3(n− 1)We2

4(p + 1)−1
(F ′′)2F ′′′ =

2

(
p(F ′)2 +MF ′ + A(F ′ − χF ′′)

)

(p + 1)
,

(8)
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2

(
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(
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2
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2

(
4F ′Θ + χF ′′Θ − 2χFΘ ′)
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= 0 ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)

F ′(0) = 1,MlΘ
′(0) = Pr

(
F(0)+ p − 1

p + 1
λ

)
,Θ(0) = 1 at η = 0,

F ′(∞)→0,Θ(∞)→1 as η→∞,

⎫
⎪⎬

⎪⎭
(10)

Here (′) signifies the derivative w.r.t. η, We=

(
Γ 2p0

3(x+p1)
3p−1

ν(1−α1t)

)
is the Weissenberg

number, M = σB0
2

p0ρ
is the magnetic field parameter, A = α1(x+p1)

1−p

p0
is the unsteadi-

ness parameter, Pr = μCp

k
is Prandtl number, β= δp0

√
(x+p1)(1−p)

(1−α1t )
is the thermal

relaxation parameter, λ = L

√
(p+1)p0

2ν(1−α1t)
is the wall thickness parameter, and Ml =

Cp(Tm−T∞)

(δ+cs(Tm−T0))
is the melting parameter.

The physical quantities in view of scientific applications are friction factor (Cf )

and heat transfer rate ( Nu). These are derived for present problem as

Cf = 2

√
p + 1

2
(Rex)

−1
2

(
1+ (n− 1)(P + 1)(We)2(F ′′(0))F ′′′(0)

4

)
F ′′(0),

(11)

Nu = −
√

p + 1

2
(Rex)

1
2 Θ ′(0), (12)

where Rex= (x+p1)us

ν
is the local Reynolds number.

3 Deliberation of Results

The nonlinear ODEs (8) and (9) with the boundary conditions (10) are solved
numerically by utilizing the well-known fourth-order Runge-Kutta-based shooting
methods. The impact of sundry physical parameters on the fluid temperature and
velocity field is shown through plots. Further, we examine the effect of same



330 K. Anantha Kumar et al.

η
0 0.5 1 1.5 2 2.5 3 3.5 4

F
I (η

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M = 1, 3, 5, 7

Solid    : p = 1.0

Dashed : p = 1.5

Fig. 2 Impact of M on F ′(η)

parameters on Cf and Nu, and results are displayed in a table. Results are obtained
by allotting the values of dimensionless parameters as We = 0.5, p = 1.5 , M = 5,
A = 1.2, A∗ = B∗ = 0.3, β = 0.5, λ = 0.2, Pr = 7, η = 1 and Ml = 0.7. We
have been taken these values as common for the entire analysis of results, unless
otherwise stated in figures and tables.

Figure 2 reveals the nature of F ′(η) for different values of M . It is fascinating
to see that the fluid velocity is a decreasing function of M . The attendance of M

in an electrically conducting fluid pioneers a force called Lorentz force which acts
against the flow direction. This frictional force has a tendency to slow down the
flow. Figure 3 displays the impact of F ′(η) on We. The ratio between relaxation
time of the fluid and a particular process time is termed as Weissenberg number.
It is discerned that when We increases, the velocity profile and its boundary layer
enhance for the flow past a nonlinear surface. But the fluid velocity past a linear
surface does not impacted by We.

The influence of thermal relaxation parameter β on velocity and temperature
distribution can be seen in Figs. 4 and 5, respectively. We claim that β helps to
diminish the velocity and temperature of the fluid. The physical reason for these
results is that as we increase the values of β, fluid particles exhibit non-conducting
nature owing to which they require more time to bring the heat to their surrounding
particles.

The variation in the graphs of F ′(η) and Θ(η) using different values of
Ml is manifested in Figs. 6 and 7 correspondingly. It is fascinating to detect
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that both the profile velocity and temperature are decreasing functions of Ml .
Generally, an increase in Ml causes an enhancement in the potency of the melting,
and hence more thermal energy is released from melting sheet to the fluid. It
is detected that influence of Ml is more on fluid velocity when compared to
temperature.

Figures 8 and 9 are plotted to know the essence of velocity and thermal fields for
disparate irregular heat parameter (A∗) values. These figures enable us to conclude
that increasing values of A∗ enhance the thermal field but a divergent result is
perceived for the velocity field. Physically, increasing values of A∗ enhances the
thermal boundary layer thickness, and hence it serve as an agent to generate heat
in the fluid. Owing to this, a magnification in thermal field and a reduction in fluid
velocity are observed for raising values of A∗.

From Table 1 it is found that rising values of M , A and Pr enhance the heat
transfer rate, but an opposite result is noticed in friction factor. A strength in
Weissenberg number causes a reduction in local Nusselt number, but a hike in
friction factor is noticed for both cases. Both heat transfer rate and friction factor
reduce with rising values of A∗, B∗, Ml and β. Boosting values of λ enhance the
friction factor and heat transfer performance for the flow over a nonlinear stretching
surface.
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Table 1 Variation of Cf and Nu for sundry physical parameters of the flow past a linera/nonlinear
variable thickness surface

λ β A∗ Ml We Cf (p = 1.0) Cf (p = 1.5) Nu (p = 1.0) Nu (p = 1.5)

0.1 −1.4306 −1.4040 −0.5918 −0.9681

0.2 −1.4306 −1.3907 −0.5918 −0.8892

0.3 −1.4306 −1.3773 −0.5918 −0.8123

0.4 −1.4306 −1.3641 −0.5918 −0.7374

1.0 −3.8501 −3.3694 −2.8557 −2.3722

2.0 −3.5334 −3.1105 −2.2102 −1.8257

3.0 −3.4016 −3.0028 −1.9306 −1.5888

4.0 −3.3261 −2.9410 −1.7670 −1.4500

0.0 −1.3986 −1.3751 −0.3525 −0.4599

2.0 −1.4014 −1.3773 −0.4243 −0.5186

4.0 −1.4041 −1.3795 −0.4962 −0.5773

6.0 −1.4069 −1.3817 −0.5682 −0.6362

0.5 −1.2844 −1.2692 −0.9103 −0.9634

1.0 −1.3487 −1.3291 −1.1880 −1.1983

1.5 −1.4684 −1.4258 −1.6540 −1.5297

2.0 −1.6722 −1.5640 −2.2557 −1.8789

1.0 −1.4341 −1.3409 −1.6715 −0.7553

3.0 −1.4341 −1.2853 −1.6715 −0.7706

5.0 −1.4341 −1.2519 −1.6715 −0.7815

7.0 −1.4341 −1.2288 −1.6715 −0.7899

4 Important Findings

• Fluid velocity suppresses for swelling values of M , A and Ml .
• Temperature field unveils reducing behaviour for higher values of β, Pr and M .
• Temperature gradient raises for higher values of A∗, B∗and Ml .
• Cf can be decreased by rising Pr , but a reverse trend is detected for λ and Ml .
• Nusselt number increases with increasing values A and M .
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Effect of Porous Uneven Seabed
on a Water-Wave Diffraction Problem

Manas Ranjan Sarangi and Smrutiranjan Mohapatra

Abstract Utilizing the linearized wave theory, the issue of the diffraction of
obliquely progressive waves by a little contortion on a porous sea-bed is investi-
gated. By the help of perturbation hypothesis, the related problem is diminished to a
boundary value problem (BVP) for the first-order velocity potential function. Then
the first-order potential function and, henceforth, the first-order reflection as well as
transmission coefficients are evaluated by Fourier transform technique. A particular
frame of sinusoidal ripples has been considered for verifying the theoretical
results.

1 Introduction

In late decades, there has been a growing interest in the problems of the propagation
of waves over a submerged object at the base of a sea because of growing
experimental activities in the field of coastal engineering. Different techniques have
discussed to analyze the reflected as well as transmitted energy in water waves due
to a submerged structure in a sea with rigid base surface.

A diffraction of waves by a little base contortion in a sea with free surface creates
exciting problems pulling the attention of different cases for getting their required
results (Davies [2], Mohapatra and Bora [6] and Mohapatra [7, 8]). Mei [5] evolved
the wave evolution as well as the reflection theory near the case of Bragg resonance
for a beach sinusoidal bars. Davies and Heathershaw [3] studied the issue of wave
diffraction by a contortion surface in a sea. For the issue of internal waves over a
contortion surface, the mild-slope condition was first introduced by Kirby [4], and
then Chamberlain and Porter [1] proposed an approximate theoretical hypothesis
which originally involves depth averaging, along with the consideration of the
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little discrepancy of the rigid bottom surface. Recently, Mohapatra and Sarangi [9]
studied a water-wave diffraction problem in a channel which is bounded by an
infinite rigid horizontal upper surface, and the bed is having a porous surface with a
little bottom contortion.

In the present study, we examine a diffraction problem of obliquely incident
progressive waves in a sea where the base is taken as a porous surface having a
little contortion. Here, the fluid movement beneath the porous surface of the seabed
is not investigated. It is considered that the movement of the fluid particles is such
a way that the assuming condition at the porous base surface holds good in this
study and only depends on a known parameter D, named as the porosity parameter.
Under the typical suspicions of linear wave hypothesis and then by utilizing Fourier
transform hypothesis, we evaluated the reflection as well as transmission coefficients
approximately in terms of integral involving the frame of the base contortion. We
exhibit a particular frame of base contortion, that is, a patch of sinusoidal ripples and
the first-order reflection coefficient is portrayed graphically for several estimations
of the various parameters.

2 Formulation of the Physical Problem

Assume an incompressible and inviscid fluid flow on a sea with the porous base
surface which is having a little contortion. The fluid region is extended horizontally
in x-direction, and its depth is taken vertically downward in y-direction. Let the
line x = 0 indicate the mean position of the free surface and y = h as the base
surface. Furthermore, the motion of the fluid is assumed to be irrotational and time
harmonic with angular frequency ω. The base surface of the sea is represented as
y = h+εc(x), where the ε(� 1) is a measure of the smallness of the contortion and
c(x) is a differentiable function. Assuming the linear wave hypothesis, the potential
function χ̃(x, y, z, t) in the fluid can be described as

χ̃(x, y, z, t) = Re{ei(νz−ωt)χ(x, y)} on −∞ < x <∞, 0 < y < h+ εc(x),

(1)

where ν is the component of the incident field wavenumber along z-direction. The
spatial velocity potential function χ(x, y) follows the modified Helmholtz equation:

(∇2
x,y − ν2) χ = 0 on −∞ < x <∞, 0 < y < h+ εc(x), (2)

where∇2
x,y = ∂2/∂x2+∂2/∂y2. The linearized conditions near the free surface and

at the porous base surface are

χy +Kχ = 0 on −∞ < x <∞, y = 0, (3)
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χn −Dχ = 0 on −∞ < x <∞, y = h+ εc(x), (4)

where K = ω2/g, g denotes the acceleration due to gravity, ∂/∂n represents the
normal derivative to the base surface, and D represents the porous effect parameter
on the base surface. In the above fluid region, a train of obliquely incident waves
which propagates along the positive horizontal direction is:

χ0(x, y) = ei(
√

k2−ν2)x f (k, y), (5)

where

f (k, y) =
[
(D/k) sinh k(h−y)−coshk(h−y)

(D/k) sinh kh−cosh kh

]
, −∞ < x <∞, 0 ≤ y ≤ h,

(6)
with cosh kh−(

D
k

)
sinh kh which is non-zero, and the positive number k ∈ R needs

to satisfy the dispersion condition:

Δ(k) ≡ [(D/k)K + k] tanh kh− (D +K) = 0. (7)

In Eq. (7), there exists a real root k = u0(> 0) that demonstrates the engendering
modes and an infinite number of purely imaginary roots ikn (n ∈ N) that correspond
to a set of evanescent modes, where the positive real numbers kn satisfy the
following equation:

K +D + [̃k +K(D/̃k)] tanh k̃h = 0. (8)

Assuming, for little bottom contortion, ε to be small enough, and avoiding the
second- and higher-order terms, Eq. (4) can be written as

χy − ε
d

dx
[c(x)χx] − c(x)ν2χ−D[χ + εc(x)χy] +O(ε2) = 0 on y = h. (9)

The far-field condition of χ(x, y) is

χ ∼
{
(e−ikxR + e+ikx) f (k, y), x →−∞,

e+ikxT f (k, y), x →∞,
(10)

where R and T ∈ C, respectively, are the reflection and transmission coefficients
and the values of these constants are to be evaluated. Now, the perturbation
hypothesis can be utilized to get these constants up to the first order. By utilizing the
perturbation hypothesis, the whole fluid domain−∞ < x <∞, 0 ≤ y ≤ h+εc(x)

is transferred to the uniform finite strip,−∞ < x <∞, 0 ≤ y ≤ h in the following
analysis.
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3 Solution of the Problem

Let us consider a train of obliquely transit waves engenders on the porous base
contortion of a seabed. When there is no base contortion, the obliquely transit waves
will pass on without any disturbance, and, in this case, the only transmission will
appear. Now, the above assumption along with the convenient form of the condition
(9) proposes that χ(x, y), R, and T can be formulated in terms of ε as:

χ(x, y) = χ0(x, y)+ ε χ1(x, y)+O(ε2),

R = ε R1 +O(ε2),

T = 1+ ε T1 +O(ε2),

⎫
⎬

⎭ (11)

where χ0(x, y) is given by (5). In the case of a huge reflection, the perturbation
series, described in Eq. (11), needs to filter so that it can easily handle for the Bragg
resonance case which was studied in Mei [5]. Utilizing Eq. (11) in Eqs. (2), (3), (9),
and (10) and then comparing the first-order terms of ε in these equations, we obtain
a BVP for the function χ1 which follows:

(∇2
x,y − ν2) χ1 = 0 on −∞ < x <∞, 0 ≤ y ≤ h+ εc(x), (12)

χ1y +Kχ1 = 0 on −∞ < x <∞, y = 0, (13)

χ1y −Dχ1 = iu0 cos θ d
dx
[c(x)eiu0x cos θ ] + (D2 − u2

0 sin2 θ)c(x) eiu0x cos θ

coshu0h−(D/u0) sinhu0h

≡ U(x, u0), −∞ < x <∞, y = h, (14)

χ1 ∼
{

e−ikxR1 f (k, y), x →−∞,

e+ikxT1 f (k, y), x →∞.
(15)

3.1 Fourier Transform Technique

Let us assume that the Fourier transform of the first-order potential χ1 with respect
to the variable x, which is denoted by χ1(ξ, y), exists and is defined as

χ1(ξ, y) =
∫ ∞

−∞
e−iξxχ1(x, y) dx. (16)

Taking Fourier transform to Eqs. (12)–(14), we obtain a new BVP for χ1(ξ, y), that
is,

χ1yy − ξ̃2 χ1 = 0, 0 ≤ y ≤ h, (17)

χ1y +Kχ1 = 0, y = 0, (18)
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χ1y −Dχ1 = U(ξ, u0), y = h, (19)

where χ1yy, χ1y, χ1, and U(ξ, u0) are the Fourier transforms of χ1yy, χ1y, χ1, and

U(x, u0), respectively, and ξ̃2 = ξ2 + ν2. The solution of the above BVP is

χ1(ξ, y) =
U(ξ, u0)[cosh ξ(h− y)− (D/ξ) sinh ξ(h− y)]

Δ(ξ)[cosh ξh− (D/ξ) sinh ξh] , (20)

where

U(ξ, u0) = (D2 + u2
0 cos 2θ) sec θ

coshu0h− (D/u0) sinhu0h

∫ ∞

−∞
c(x)ei(u0−ξ)x cos θdx. (21)

Δ(ξ) ≡ [ξ +K(D/ξ)] tanh ξh− (D +K). (22)

The inverse Fourier transform is defined as

χ1(x, y) = 1

2π

∫ ∞

−∞
eiξxχ1(ξ, y) dξ. (23)

Applying Eq. (23) to Eq. (20), we get the final expression for χ1(x, y) as follows:

χ1(x, y) = i[coshu0(h− y)− (D/u0) sinhu0(h− y)]
Δ′(u0)[coshu0h− (D/u0) sinhu0h]
×[U(−x)e−iu0x cos θ + U(x)eiu0x cos θ ]. (24)

3.1.1 Determination of Reflection and Transmission Coefficients

Now to obtain the first-order reflection as well as transmission coefficients, we
compare the behaviors of χ1(x, y) when x → ∓∞ from Eq. (24) with the far-field
behaviors given in Eq. (15). To get the behavior of χ1(x, y) as x →∞, we turn the
contour in the integral having eiξx in the first quadrant by an angle β(0 < β < π/2)
and the contour in the integral having e−iξx in the fourth quadrant by the same angle
β. When x tends to∞, the integral having eiξx will just add a term getting from the
residue at ξ = p0, whereas there is no result from the integral having e−iξx . Hence,
when x tends to∞, the resultant integral of Eq. (24) is as follows:

χ1(x, y) = i[coshu0(h− y)− (D/u0) sinhu0(h− y)]
Δ′(u0)[coshu0h− (D/u0) sinhu0h] × U(x)eiu0x cos θ . (25)

Now comparing the above estimation for χ1(x, y) with the corresponding expres-
sion in Eq. (15), we obtain

T1 = i(D2 − u2
0) sec θ

Δ′(u0)[coshu0h− (D/u0) sinhu0h] ×
∫ ∞

−∞
c(x)dx. (26)
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In a similar way, taking x → −∞ in Eq. (24) and then comparing with the
corresponding expression in Eq. (15), we get the first-order refection coefficient R1
as follows:

R1 = i(D2 + u2
0 cos 2θ) sec θ

Δ′(u0)[coshu0h− (D/u0) sinh u0h] ×
∫ ∞

−∞
c(x)e2iu0x cos θdx. (27)

Consider a fixed frame of sinusoidal ripples on the base surface of the sea with
amplitude a on an otherwise flat base has the form:

c(x) =
{
a sin lx, −nπ/l ≤ x ≤ mπ/l,

0 otherwise,
(28)

where m,n ∈ N, and l denote the wave number of the patch of sinusoidal ripples.
Substituting c(x) from Eq. (28) into Eqs. (26) and (27), we get

T1 =
{

ia(D2 − u2
0) sec θ

Δ′(u0)[coshu0h−(D/u0) sinhu0h]
}
×

[
(−1)n − (−1)m

l

]
, (29)

R1= ial(D2 + u2
0 cos 2θ) sec θ

Δ′(u0)[coshu0h−(D/u0) sinhu0h] ×
[
(−1)ne2i(u0 cos θ)(−nπ/l) − (−1)me2i(u0 cos θ)(−mπ/l)

l2 − 4u2
0 cos2 θ

]
. (30)

It can be noticed that when 2u0 tends to l, the first-order reflection coefficient ends
up noticeably unbounded opposite to our presumption that R1 is a little amount,
being the first-order improvement of the minute reflection. Thus, we assume just the
cases barring this condition to escape the contradiction emerging out of the Bragg
resonant case. Moreover, near the resonance case, R1 turns a constant multiple of
the total number of ripples in the patch of contortion. Also, R1 raises linearly with
the numbers m and n. Though the entire hypothesis collapses when l = 2u0, a huge
quantity of reflection of the incident wave energy by this uncommon type of bed
surface will produce in the adjacent of the peculiarity at l = 2u0.

3.2 Numerical Results

The various plots in Fig. 1 relate to different incident angles, θ = 0, π/10, π/6,
and π/5. For each of these plots, m = 2, n = 3, Dh = 0.1, a/h = 0.1, and
lh = 1. It is noticed that when θ = 0 (i.e., for normal incidence case), the extreme
estimation of |R1| is 0.20815, achieved at u0h = 0.50700 (when Kh = 0.151), i.e.,
whenever the ripple wavenumber lh of the base contortion on the porous seabed
turns out to be roughly twice as bigger as the element of the incident wavenumber
u0h cos θ along horizontal direction. The similar observation can be drawn for θ > 0
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(i.e., for oblique incidence case). Another general attribute in Fig. 1 is the oscillating
behavior of the absolute value of |R1| as a function of the wavenumber Kh. As θ

increases, the crest estimation of |R1| reduces. When θ tends to π/4, the reflection
coefficient |R1| is considerably less as compared to other angles of incident waves.
In the normal incidence case, the crest estimation of |R1| is the highest. In Fig. 2,
|R1| is plotted for various porosity parameters Dh of the seabed, whereas we settled
θ = π/6, lh = 1, m = 2, and n = 3. This is most apparent in the plots that
the crest estimation of |R1| raises as the porosity parameter of the seabed raises. It
demonstrates that |R1| is pretty sensitive to the changes in the porosity parameter of
the seabed. In Fig. 3, various plots relate to a different number of ripples in the fix of
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Fig. 4 |R1| for m = 2, n = 3 and θ = π/6

contortion on the porous seabed. For each of these plots, we have taken Dh = 0.1,
θ = π/6, and lh = 1. It is observed from this figure that when the number of ripples
in the fix of the base contortion becomes more, the estimation of u0h cos θ tends to
a number which lies in the neighborhood of lh/2 and the crest estimation of |R1|
increases. However, as the number of ripples turns out to be bigger, the reflection
coefficient becomes unbounded. Its oscillatory behavior is more perceptible with
the number of zeros of |R1| raised; however the general behavior of |R1| remains
the same as before.

In Fig. 4, various plots relate to particular ripple wavenumbers lh = 0.8, 1, 1.2,
and 1.4 in the fix contortion on the porous seabed. For all plots in this figure, we
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have taken m = 2, n = 3,Dh = 0.1, and θ = π/6. In this case, also, it has been
noticed that the crest estimations of the reflection coefficient are achieved at various
estimations of Kh. That means, the estimations of reflection coefficient |R1| become
most extreme, only when lh ≈ 2u0h cos θ . That implies when obliquely incident
waves propagate over a porous seabed having a little ripple wavenumber in the fix
bottom contortion, a considerable amount of reflected energy can be generated.

4 Conclusion

In this paper, the issue of diffraction of obliquely incident progressive waves by
a little base contortion on the porous seabed is investigated. In this case, the
progressive waves with only one wavenumber exist for any particular frequency. The
BVP which is derived from the physical issue is tackled by utilizing perturbation
hypothesis in combination with Fourier transform method. For the support of the
theoretical results, a special frame of sinusoidal ripples is considered. The first-order
approximations to the velocity potential function, reflection, as well as transmission
coefficients are evaluated in terms of integrals, and the reflection coefficients are
drawn graphically for various parameters. The results obtained here are relied to
be subjectively useful for a wide class of water-wave diffraction issues including a
bottom contortion on the porous seabed.
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Nonlinear Wave Propagation Through
a Radiating van der Waals Fluid with
Variable Density

Madhumita Gangopadhyay

Abstract We examine a quasilinear system of PDEs governing the one-
dimensional unsteady flow of a radiating van der Waals fluid in radial, cylindrical
and spherical geometry. The local value of the fundamental derivative (Γ )
associated with the medium is of order O(ε) and changes sign about the reference
state (Γ = 0); the undisturbed medium is assumed to be spatially variable. An
asymptotic method is employed to obtain a transport equation for the system of
Navier Stokes equations; the impact of radiation and the van der Waals parameters
on the evolution of the initial pulse is studied.

Keywords Hyperbolic system · Mixed nonlinearity · van der Waals fluid ·
Radiation

1 Introduction

The development of science and technology in the present age has brought forth
hypersonic flight, power plants for space exploration, gas-cooled nuclear reactors
and fission and fusion reactions in which the temperature attained by the medium
is very high and thermal radiation comes into play. An analysis of the resulting
flow field therefore calls for a study of both the gas dynamic field and the thermal
radiation fields simultaneously.

A linearized and nonlinear analysis of small amplitude disturbances in a perfectly
conducting and radiating gas has been considered by Radha and Sharma [8]. Small-
amplitude waves in relaxing and radiating gases have been investigated by Clarke
and McChesney [2], Vincenti and Kruger [15], Varley and Cumberbatch [14] and
Fusco [4]. The ideal gas has been the subject of study in each of these cases.
However real gases may not be exactly described by the ideal gas model. The
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shock-wave phenomena exhibited by real gases may be significantly different from
that of an ideal medium [16].

Bethe [1], Zeldovich [17] and Thompson [12] are pioneers in the study of
nonlinear waves in real fluids; the formation of negative shock waves in real single-
phase fluids was independently identified by Bethe and Zeldovich. Thompson [12]
and Thompson and Lambrakis [13] is credited to having identified a class of fluids
for which thermodynamic parameter Γ changes sign about a reference line in the
pressure-density space. The van der Waals fluid is an example of such a fluid. Some
interesting studies related to wave propagation in a van der Waals fluid having
mixed nonlinearity can be found in the works of Shukla and Sharma [10] and Fan
and Slemrod [3]. In the present paper, we have made an attempt to examine the
wave motion in a one-dimensional unsteady flow of a radiating van der Waals gas
exhibiting mixed nonlinearity.

The fundamental derivative (Γ ) inherent in the medium is of order O(ε) where

Γ = 1+ ρ

c

(
∂c

∂ρ

)

s

,

c = √∂p/∂ρ, being the sound speed, p = p(ρ, s) the pressure, ρ, the fluid density
and s, the entropy of the fluid. The behaviour of the wave is significantly different
from the cases when Γ > 0 or Γ < 0; see, for instance, Kluwick and Cox [5] and
Shukla and Sharma [10]. The main purpose of the present study is to investigate the
effects of radiation, the van der Waals parameters and the varying medium ahead on
the evolving wave.

2 Basic Equations

Estimating the effects of thermal radiation by optically thin approximation of the
radiative transfer equation as given by Pai [6] and Penner and Olfe [7], the Euler’s
equations for the propagation of planar (m = 0), cylindrical (m = 1) and spherically
(m = 2) symmetric motion of a radiating gas are given by

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
+ mρu

x
= 0 (1)

∂u

∂t
+ u

∂u

∂x
+ 1

ρ

∂p

∂x
= 0 (2)

∂s

∂t
+ u

∂s

∂x
+ (γ − 1)Q = 0, (3)

where u is the fluid velocity, ρ the density, p the pressure, γ the constant specific
heat ratio, t the time and x the space coordinate. The rate of energy loss by the gas
per unit volume through radiation is given by
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Q = 4ασ(T 4 − T 4
0 ) (4)

where T is the temperature, T0 is the reference temperature of the medium ahead,
σ is the Stefan-Boltzmann constant and α is the Planck mean absorption coefficient
given by

α = KρΓ T β, (5)

where K,Γ and β are constants pertaining to the gas. The caloric and thermal
equations of state of the van der Waals fluid are given by [16]

e = cvT − aρ, p = ρRT

1− bρ
− aρ2, (6)

where e is the specific internal energy, T is the absolute temperature, R is
the specific gas constant, cv is the specific heat at constant volume which is a
constant assuming the medium to be a polytropic gas and a and b are van der
Waals parameters representing, respectively, a measure of attraction between the
constituent particles and the effective volume of each particle.

The specific entropy of the van der Waals gas is given by

s = R ln

(
KT 1/δ 1− bρ

ρ

)
(7)

where δ is a dimensionless quantity given by δ = R/cv , 0 < δ ≤ 2/3.
The system of Equations (1)–(3) can be written comprehensively as

U,t + A(U)U,x + F(U) = 0, (8)

where the variable in the subscript preceded by a comma indicates partial derivative

with respect to the variable; U = (ρ, u, s)tr , F(U) =
(mρu

x
, 0, (γ − 1)Q

)t r

, and

A(U) is a 3× 3 matrix given by

A(U) =
⎡

⎣
u ρ 0

pρ/ρ u ps/ρ

0 0 u

⎤

⎦ , (9)

tr denoting transposition. Assuming the reference state to be spatially variable, we
have at time t = 0 u0s0,x = 0, i.e. either u0 = 0 or s0,x = 0. If u0 = 0, p0 =
constant, i.e. the medium ahead is stationary and is at a constant pressure. If s0,x =
0, then s0 =constant or the medium ahead has a constant entropy. In the subsequent
analysis, we assume the undisturbed medium to be at rest with a variable density.
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3 Nonlinear High-Frequency Waves

We consider a small-amplitude, high-frequency signal entering the undisturbed
medium U0 = (ρ0(x), u0(x), s0(x)). We assume that the perturbations are of size

O(ε) and they depend on the fast variable ξ = φ(x, t)

ε2 , where φ is the phase

function identified with the wavefront. Using the method of multiple scales, the
solution to Eq. (8) may be expressed as

Ui(x, t) = U
(0)
i (x)+ εU

(1)
i (ξ, x, t) + ε2U

(2)
i (ξ, x, t) + ε3U

(3)
i (ξ, x, t)+O(ε4),

(10)
where U

(0)
i (x) is the known reference state. With this change in variables, Eq. (8)

assumes the form

ε2(U,t + A(U)U,x + F(U))+ U,ξ (φ,t I + A(U)φ,x) = 0, (11)

where I is the 3× 3 unit matrix.
The coefficient matrices A and F are expanded in a Taylor’s series about U = U0

as follows:

Aij (U) = A
(0)
ij + A′ijk(εU

(1)
k + ε2U

(2)
k )+ A′′ijklε2U

(1)
k U

(1)
l +O(ε3), (12)

Fi(U) = F
(0)
i + F ′ij (εU

(1)
j + ε2U

(2)
j )+O(ε2), (13)

where A
(0)
ij = Aij (U

(0)
m ), A′ijk = ∂Aij

∂Uk
|
Um=U

(0)
m

and F
(0)
i = Fi(U

(0)
m );

the indices i, j, k, etc. take values from 1 to 3. It is assumed that A′ijk, A′′ijklandF ′ij
are smooth and admit expansions:

A′ijk = A′0ijk + εA′1ijk +O(ε2) (14)

A′′ijkl = A′′0ijkl + εA′′1ijkl +O(ε2) (15)

F ′ij = F ′0ij + εF ′1ij +O(ε2). (16)

Substituting (10) and (12)–(16) in (11) and matching the coefficients of successive
powers of ε on either sides of the resulting equation, we have the following system
of equations:

Giju
(1)
j,ξ = 0 (17)

Giju
(2)
j,ξ = −u

(1)
j,ξA

′
0ijku

(1)
k φ,x (18)

Giju
(3)
j,ξ = −φ,x

{
A′0ijku

(2)
j,ξ u

(1)
k + A′1ijku

(1)
j,ξ u

(1)
k + A′0ijku

(1)
j,ξ u

(2)
k

+A′′ijklu
(1)
j,ξ u

(1)
k u

(1)
l

}
−u

(1)
i,t −A0ij u

(1)
j,x−F ′0ij u

(1)
j −A′0ijku

(1)
k u

(0)
j,x (19)
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where Gij = (δij φ,t +A0ij φx), δij , being the Kronecker symbol. In order to obtain
a nontrivial solution, we assume det(Gij ) = 0, i.e. φt(φ

2
t − c2

0φ
2
x) = 0, where

c2
0 = (1+ δ)

(p0 + aρ2
0)

ρ0(1− bρ0)
−2aρ0 is the square of the sound speed in the undisturbed

van der Waals fluid. Thus the initial signal splits into distinct pulses associated with
the different eigen values of (9); φt = 0 corresponds to convection of entropy with
particle velocity, while φt = c0φx and φt = −c0φx are the left and right moving
acoustic waves, respectively. We take a simple phase function φ(x, t) = x − c0t

and the right running acoustic wave, the left and right eigenvectors of which are,
respectively,

L =
(
c0

ρ0
, 1,

ps0

ρ0c0

)
, R =

(
ρ0

c0
, 1, 0

)t r

,

tr denoting transposition. Equation (17) implies

U(1) = α(ξ, x, t)R(x, t) (20)

where α(ξ, x, t) is a scalar function that can be thought of as the amplitude of the
dominant term of the asymptotic solution. Scalar product of Eq. (18) with L yields

LiA
′
0ijkRjRkαα,ξ = 0, (21)

where we assume that U(2)
j is a nontrivial correction to U

(1)
j . Similarly the scalar

product of (19) with L and subsequent division by LiRi yields

α,t + V0α,x + bju
(2)
j,ξ α + cku

(2)
k αξ +

(
LiA

′
1ijkRjRk

LiRi

+ LiA
′′
0ijklRjRkRl

LiRi

α

)
αα,ξ

+
(
LiF

′
0ijRj + LiA

′
0ijkRku

0
j,x + LiA0ijRj,x

LiRi

)
α = 0

(22)

where V0 = LiA0ijRj

LiRi

, bj =
LiA

′
0ijkRk

LiRi

, ck =
LiA

′
0ijkRj

LiRi

. (23)

Equation (22) describes the evolution of the amplitude function α(ξ, x, t) of the
first-order approximation to the signal. Second-order terms are still unknown; in
view of Eq. (21), bj is orthogonal to Rj , and ck is orthogonal to Rk . Hence each of
them lies in the two-dimensional row space of Gij and can be expressed as bj =
δλGλj , and ck = βλGλk, λ = 1, 2, j, k = 1, 2, 3 where δλ and βλ are scalars.
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In order to simplify the second-order terms cku
(2)
k and bju

(2)
j,ξ , we consider Eq. (18)

above which reduces to

Giju
(2)
j,ξ = −A′0ijkRjRkααξ (24)

Integrating with respect to ξ , we have

Giju
(2)
j = −1

2
A′0ijkRjRkα

2 (25)

where we assume that u(2)
j = 0 when u

(1)
j = 0. Therefore,

cku
(2)
k = −1

2
βλA

′
0λklRkRlα

2 (26)

bju
(2)
j,ξ = −δλA

′
0λjlRjRlααξ (27)

Using (23), (26) and (27), the evolution equation can be written as

αt + V0αx + (P +Qα)ααξ + Rα = 0, (28)

where

P = LiA
′
1ijkRjRk

LiRi

, Q = LiA
′′
0ijklRjRkRl

LiRi

− 1

2
(βλ + 2δλ)A′0λklRkRl,

R = LiF
′
0ijRj + LiA

′
0ijkRku

(0)
j,x + LiA0ijRj,x

LiRi

Since the medium ahead is stationary, U0 = (ρ0(x), 0, s0(x)). Expanding the
sound speed c(ρ) in a Taylor’s series about ρ0, we have in non-dimensional
variables

c̄(ρ̄) = 1+ (ρ̄ − 1)(Γ0 − 1)+ (ρ̄ − 1)2

2! (Λ− Γ0 + 2)+O[(ρ̄ − 1)3], (29)

where c̄ = c
c0
, ρ̄ = ρ

ρ0
, Γ0= ρ0

c0
Γ (ρ0, c0) = O(ε), Λ= ρ2

0
c0

∂Γ
∂ρ
|(ρ0,s0)=O(1).

In order to construct the evolution equation (28), we compute the nonzero terms
of A′ijk and A′′ijkl as follows:

A′ii2 = 1, A′121 = 1, A′211 = −
c2

0

ρ2
0

+ 2c0cρ0

ρ0
, A′213 =

2c0cs0

ρ0
,

A′231 =
2c0cs0

ρ0
− ps0

ρ2
0

, A′233 =
pss0

ρ0
, A′′02111 =

2c2
0(Λ+ 6)

ρ3
0

,
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where the values have been obtained in the undisturbed reference state; using the
above values, Eq. (21) yields

LiA
′
0ijkRjRk

LiRi

= c0

ρ0
+ cρ0 = O(ε), (30)

which is comparable with the fundamental derivative Γ discussed in the introduc-
tion. Using (23), the bj and ck are given by

b1 = c1 = cρ0, b2 = c2 = 1, b3 = c3 = cs0.

Hence the values of βλ and δλ are as follows:

β1 = δ1 = 1

ρ0
+ c0cs0

ps0
, β2 = δ2 = ρ0cs0

ps0
.

The nontrivial values of F ′ij in the medium ahead are computed as:

F ′012 =
mρ0

x
, F ′031 =

16(γ − 1)σK1−δδeδs0/RρΓ+δ−1
0 T

β+3
0

(1− bρ0)δ+1

Using the above values,

V0=c0=O(1), P=Γ0

ε
= O(1), Q = (Λ+ 6)

ρ0

c0
− 3

c0
− 3ρ0cs0

ps0
Γ0 = O(1)

and R = mC0

2x
+ 8(γ − 1)ps,0σδK1−δeδs0/RρΓ+δ−1

0 T
β+3

0

c0(1− bρ0)δ+1 + 3c0,x

2
− c0

2ρ0
ρ0,x

= O(1). (31)

Hence P ,Q and R are all functions of x for planar, cylindrical or spherical flow.
Along a ray x − c0t = constant, Eq. (28) reduces to

αt + (P +Qα)ααξ + Rα = 0. (32)

This resembles an inviscid Burgers equation with quadratic and cubic nonlin-
earities and a source term; P represents Lax’s genuine nonlinearity parameter, Q
measures the degree of material nonlinearity, and R depicts the impact of the flow
geometry, radiation and the van der Waals parameters a and b. Also the effect of the
varying medium is inherent in each of P , Q and R. The nonlinearity coefficients
P and Q are instrumental in shock formation and the eventual breaking of the
wave; the source term however delays the shock formation by bringing about an
attenuation in the wave amplitude α due to wave interactions with the varying
medium ahead, radiation and the wavefront curvature.
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4 Conclusion

In the present work, we have examined a quasilinear system of partial differential
equations governing the one-dimensional unsteady planar, cylindrical or spherically
symmetric motion of sound waves through a radiating van der Waals gas. The
fundamental derivative associated with the medium is of order O(ε) and changes
sign about the base state Γ = 0. A method of multiple scales has been employed
which reduces the system of equations to a single equation that determines the
evolution of the initial pulse; it contains quadratic and cubic nonlinearities and a
source term.

A general property of nonlinear hyperbolic equations is the eventual formation
of discontinuities in the propagating signal. Hence the evolving wave gets distorted
with time and a shock is formed. But the presence of the source term brings about
a decay in the wave amplitude and delays the shock formation. We observe that
the quadratic and cubic nonlinearities depend on the initial density and entropy of
the medium along with the van der Waals parameters a and b; the source term is
influenced by the flow geometry, the van der Waals parameters and radiation. Thus
suitable values of the van der Waals parameters and radiation may bring about a
considerable decay in the amplitude of the evolving wave and may thereby reduce
the possibility of a shock. Shukla et al. [11] have given an in-depth analysis of the
solution of a similar evolution equation in the presence of a magnetic field but in the
absence of radiation. If a = b = 0, the medium reduces to an ideal medium; in the
absence of radiation, Eq. (32) matches with the evolution equation of Sharma and
Madhumita [9].
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Effect of Slip and Convective Heating on
Unsteady MHD Chemically Reacting
Flow Over a Porous Surface with Suction

A. Malarselvi, M. Bhuvaneswari, S. Sivasankaran, B. Ganga,
and A. K. Abdul Hakeem

Abstract The influence of slip and convective boundary heating on unsteady forced
convective heat transfer of an electrically conducting incompressible fluid over a
flat plate in the presence of uniform magnetic field along with chemical reaction is
examined. The governing partial differential equations are transformed into ordinary
differential equations by applying similarity transformations. Then the reduced
equations are solved numerically by shooting technique and Runge-Kutta method
and are solved analytically by homotopy analysis method.

Keywords Chemical reaction · Forced convection · MHD · Unsteady flow ·
Slip effect

1 Introduction

The studies pertaining to the boundary flow along with heat and mass transfer of
an electrically conducting fluid play a vital role in many industrial and geophysical
problems in current years. It has gained the global attention of many researchers
because of its wide applications in industries and engineering. To mention few of
them, it is used in cooling of nuclear reactors, rocket engine, production of polymer
and metallic sheets and thermal insulation. In the generation of the metallic plates
and polymer sheets, perfection of the final product relies upon the rate of cooling.
Makinde [1] reported on the natural convection from a moving vertical plate in the
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existence of internal heat generation and convective surface boundary condition.
Boundary layer flow and heat transfer of a viscoelastic fluid over a stretching
surface was investigated by Eswaramoorthi et al. [2, 3]. Merkin and Pop [4]
analysed the forced convective heat transfer over a flat surface of a uniform stream
with a convective boundary condition. Bhattacharyya and Layek [5] performed an
investigation on the influence of chemical reaction on the boundary flow in the
existence of magnetic field over a porous plate.

Nabil et al. [6] discussed the effect of the chemical reaction and radiation on
the unsteady MHD free convective flow past a semi-infinite vertical permeable
moving plate through a porous medium. Ferdows et al. [7] studied free convective
heat transfer and fluid flow in an inclined porous plate. Bhuvaneswari et al. [8]
performed Lie group analysis on the convective flow, heat and mass transfer of an
incompressible viscous fluid in an inclined surface with first-order homogeneous
chemical reaction. Chamkha and Rashad [9] performed the investigation on the
Soret and Dufour effects in the unsteady coupled heat and mass transfer by MHD
mixed convective flow from a rotating vertical cone with magnetic field in the
presence of chemical reaction. Soret and Dufour effects on MHD mixed convection
of a stagnation point flow towards a vertical plate in a porous medium with
chemical reaction, radiation and heat generation were investigated by Karthikeyan
et al. [10]. Soret and Dufour effects on MHD mixed convection stagnation point
flow with radiation were investigated by Niranjan et al. [11]. Sivasankaran et al.
[12] investigated the effects of chemical reaction and radiation on MHD mixed
convection stagnation point flow in a porous medium with slip and convective
boundary conditions.

It is observed from the survey of the literature that so far no attempt has been
made for analysing the effect of convective surface heating and slip on unsteady
MHD boundary layer flow in the presence of chemical reaction over a porous plate.
The aim of the present work is to find the numerical and analytical solution of the
influence of convective surface heating on hydromagnetic convective boundary layer
flow over a porous plate with suction and chemical reaction.

2 Mathematical Formulation

We consider an unsteady two-dimensional hydromagnetic flow of a viscous incom-
pressible electrically conducting fluid and solute distribution with convective
surface heating in the presence of chemical reaction over a flat plate. The flow
is assumed to be in x direction which is taken along the flat plate and y-axis
normal to it. A magnetic field of uniform strength B0 is applied in the transverse
direction of the flow. The surface is maintained at a constant temperature Tw which
is higher than free stream temperature T∞, and the concentration Cw is greater than
the concentration in the free stream C∞. The continuity, momentum, energy and
concentration equations describing such type of flow can be written as
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∂u

∂x
+ ∂v

∂y
= 0, (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2 +
σB2

0

ρ
(u∞ − u), (2)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= k

ρcp

∂2T

∂y2 (3)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2 −Kn(t)(C − C∞)n. (4)

where ν = μ
ρ

is the kinematic viscosity of the fluid, μ is the viscosity, ρ is the
fluid density, σ is the electrical conductivity of the fluid, n is the order of chemical
reaction, Kn(t) = kn(1 − αt) is the rate of chemical reaction with αt < 1 and

u∞
(
= ax

1−αt

)
is the free stream velocity. The boundary conditions subjected to the

above-described Eqs. (2)–(4) are as follows:

u = U∞ + l
∂u

∂y
, v= vw = v0√

x
, C=Cw, −k

∂T

∂y
= hf (Tw − T ), y= 0;

u→ u∞, T → T∞, C → C∞, as y →∞. (5)

where vw is the prescribed suction/blowing at the plate and is given by vw = v0/
√
x,

v0 is constant with v0 < 0 which corresponds to suction and v0 > 0 corresponds
to blowing and ψ is the stream function defined in usual notation as u = ∂ψ

∂y
and

v = − ∂ψ
∂x

. We now introduce the following similarity variable η and dimensionless
stream function f (η) and temperature θ(η) and concentration ϕ(η) as follows:

η = y

√
a

ν(1− αt)
, ψ =

√
aν

(1− αt)
xf (η), (6)

T = T∞ + (Tw − T∞)θ(η), C = C∞ + (Cw − C∞)ϕ(η).

Under the above transformation, the governing momentum, energy and concentra-
tion equation can be expressed in a non-dimensional form as

f ′′′(η)− f ′(η)2+f ′′(η)
[
f (η)− η

2
A
]
−Af ′(η)+ Ha2

Re

[
1−f ′(η)

] = 0, (7)

(
1

Pr

)
θ ′′(η)+ f θ ′(η)− A

[
3

2
θ(η)+ η

2
θ ′(η)

]
= 0, (8)

(
1

Sc

)
φ′′(η)−

[η
2
A− f (η)

]
φ′(η)− Crφn(η) = 0, (9)

f (η)= s, f ′(η)= 1+ df ′′(0), θ ′(η)= − Bi(1− θ(η)), φ(η)= 1atη= 0, (10)

f ′(η)→ 0, θ(η)→ 0, φ(η)→ 0, as η→∞. (11)
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where Ha = σB2
0x

2

ρν
is the Hartmann number, Sc = ν/D is the Schmidt number,

Cr = Kn(Cw−C∞)n−1

u∞ is the chemical reaction parameter, A = α
a

is the unsteadiness

parameter, Pr = μCp

k
is the Prandtl number, Rex = u∞x

ν
is the local Reynolds

number, s = −v0√
νU∞

is the suction parameter, d =
√
U∞√
νx

is the slip parameter and

Bi = −hf

k

√
νx
U∞ is the Biot number.

The non-dimensional form of the skin friction or skin friction coefficient at the

wall can be calculated as Cfx =
μ
(

∂u
∂y

)

y=0

ρu2
w

and is given by Cfx

(√
Rex

) = f ′′(0).
The rate of heat transfer at the plate in the form of Nusselt number is given by

Nux = xqw
k(Tw−T∞)

where qw = −k
(

∂T
∂y

)

y=0
. We get Nux√

Rex
= −θ ′(0). The local

Sherwood number which is proportional to the rate of solute transfer from the plate

and is given by Shx = xMw

D(Cw−C∞)
where Mw = D

(
∂C
∂y

)

y=0
; using the above result,

we finally get Shx√
Rex

= −φ′(0).
The governing partial differential equations are transformed into ordinary dif-

ferential equations by applying similarity transformations, and then the reduced
equations are solved numerically by shooting technique with Runge-Kutta integra-
tion scheme.

3 Analytical Solution

The governing boundary layer equations (7)–(9) with the boundary conditions (10)
are solved using homotopy analysis method (HAM). The initial approximations of
the given problem are

f0(η) = s + a
(1+λ)

[
1− e−η

]
, θ0(η) = Bi

(1+Bi)
e−η and φ0(η) = e−η.

These convergent series solution contains the auxiliary parameters hf , hθ and
hφ . These parameters adjust and control the HAM series solutions. The hf , hθ and
hφ curves are displayed in Fig. 1. It is concluded from this figure the range values

Fig. 1 h-curve for f ′′(0),
θ ′(0) and φ′(0)
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of −0.8 ≤ hf ≤ −0.1, −2.1 ≤ hθ ≤ −0.5 and −0.8 ≤ hφ ≤ −0.2, respectively.
It is observed that our HAM solutions convergence in the whole region of η when
hf = hφ = −0.5 and hθ = −1.

4 Results and Discussion

The analysis of fluid flow, heat and mass transfer for various parameters is discussed
in order to get the physical insight of the problem in the area of applications.
This investigation focuses on the influence of convective heating and slip effect
on unsteady incompressible fluid. The velocity profile for various values of slip
and suction/injection parameters is displayed in Fig. 2. It is vivid from this figure
that velocity is decreased due to the increment in the slip values with Ha = 0.5,
A = 1, a = 1, s = 1 and Cr = 0.1. It is elucidated from the graph that the
velocity is decreased while the values of s (suction /injection) are increased. The
physical phenomenon of the graph is that the existence of the heat generation has
the tendency to affect the fluid velocity. The temperature profile for various values
of Biot number is displayed in Fig. 3. It is seen that convective heating enhances the
temperature boundary layer. It is observed from Fig. 4 that as s (suction /injection)
increases, the concentration boundary layer also increases. The effect of chemical
reaction parameter over a concentration profile is shown in Fig. 4b. It is depicted
from the graph that rising values of chemical reaction parameters diminishes the
solutal boundary layer thickness. The influence of unsteady parameter over velocity,
temperature and concentration profiles is noted in Fig. 5a–c. It is noticed that the
increase of unsteadiness leads to the decrease in the velocity boundary layer for
the fixed values of Hartmann number, slip and chemical reaction parameter. The
thickness of the temperature boundary layer is increased for the decrement in the
unsteady parameter. The concentration boundary layer thickness decreases with
increasing unsteady parameter with Ha = 0.2, Bi = 0.1, d = 1 and s = 1.

(a) (b)

Fig. 2 Velocity profiles for different d and s values with (a) Ha = 0.5, A = 1, a = 1, Cr = 0.1,
s = 1 and (b) Ha = 0.2, Bi = 1, d = 1, a = 1, Cr = 1, A = 1
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Fig. 3 Temperature profiles for different Biot numbers with Ha = 0.5, A = 1, Cr = 1, a = 1,
d = 1, s = 1

(a) (b)

Fig. 4 Concentration profiles for different s and Cr values with (a) Ha = 0.2, Bi = 1, d = 1,
a = 1, Cr = 1, A = 1 and (b) Ha = 0.5, Bi = 1, A = 1, a = 1, d = 1, s = 1

The numerical computation of skin friction, Nusselt number and Sherwood
number is obtained and presented in Table 1. It is apparent from the data that the
effect of Biot number and suction/injection parameter is to accelerate the local
Nusselt number. We infer from the table that the enhancing values of s are to
decelerate the local skin-friction coefficient. It is interesting to note that there is
a significant decrease in the Sherwood number when raising the values of suction
parameter. It is noted that the considerable increase in the rate of solute transfer due
the enhancing values of chemical reaction parameter. It is found that increment of
slip parameter (d) produces the increment in the coefficient of local skin friction
and the rate of solute transfer with Ha = 0.2, A = 1, s = 1 and Bi = 1.
The opposite behaviour is found for local Nusselt number with slip parameter.
The local skin-friction coefficient is decreased when unsteadiness parameter is
increased. It is quite interesting to note that both the rate of heat transfer and
the rate of solute transfer are increased because of the increment in the unsteady
parameter (A).
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(a) (b)

(c)

Fig. 5 Velocity, temperature, concentration profiles for different A values with Ha = 0.2, Bi =
0.1, d = 1, a = 1, Cr = 0.1, s = 1

5 Conclusion

In this investigation, we studied the influence of convective heating of an electrically
conducting fluid over a flat plate in the existence of uniform magnetic field along
with the chemical reaction.

• The velocity profile decreases with the enhancing values of slip parameter,
suction/injection parameter and the unsteadiness parameter.

• The Biot number has the great influence on the temperature. It accelerates the
dimensionless temperature in the presence (or in the absence) of suction/injection
parameter. There is a prominent decrease in the dimensionless temperature due
to the incremented values of unsteadiness parameter.

• The raising values of chemical reaction and unsteadiness parameters diminish the
thickness of the solutal boundary layer. The enhancing values of suction/injection
parameter are to increase concentration boundary layer.

• The effect of Biot number, unsteadiness and suction/injection parameters are to
accelerate the local Nusselt number.
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Table 1 The calculated values of Cfx , −θ(0), −φ′(0) with Re= 10, P r = 0.1, Sc= 1 and a= 1

Ha A Bi d s Cr Cfx Nu/
√
Re Sh/

√
Re

0.5 1 0.1 1 1 1 −0.609747 0.080605 0.654116

0.3 0.174233

0.5 0.226958

0.8 0.273516

1 0.293591

0.5 1 0.1 1 −1 1 −0.437246 0.076748 1.640686

0.3 0.157158

0.5 0.198820

0.8 0.233663

1 0.248160

0.5 1 1 1 −1.0 1 −0.440469 0.247960 1.640686

−0.5 −0.481069 0.258661 1.319565

0.0 −0.525298 0.269722 1.046737

0.5 −0.571758 0.281188 0.826351

1.0 −0.618149 0.293119 0.655800

0.5 1 1 1 1 −0.2 −0.609747 0.293591 −0.160804

−0.1 −0.034582

0.0 0.065310

0.1 0.149839

0.2 0.224239

0.2 1 1 1 1 1 −0.618149 0.293119 0.655800

2 −0.377954 0.291575 0.667321

3 −0.273073 0.290838 0.672868

4 −0.213974 0.290402 0.676160

5 −0.175979 0.290114 0.678346

0.2 0.0 1 1 1 1 −0.558514 0.135674 0.584982

0.2 −0.574788 0.188902 0.597832

0.5 −0.593714 0.239557 0.618167

0.8 −0.609046 0.274527 0.640155

1.0 −0.618149 0.293119 0.655800

• The coefficient of local skin friction is decreased by the incremented values of
unsteadiness and suction/injection parameters, and it is boosted with the values
of slip parameter.

• The rate of solute transfer is improved by chemical reaction, slip and unsteadiness
parameters, and it is decelerated by suction/injection parameter.
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Solution of Wave Equations and Heat
Equations Using HPM

Nahid Fatima and Sunita Daniel

Abstract In this paper, the homotopy perturbation method (HPM) has been used
to solve some wave equations and a few heat equations. The resultant solution
helps to substantiate that HPM is a useful and robust mechanism to solve these
equations. An accurate approximation is possible while solving complex and
complicated problems using semi-analytical methods, an example of which is the
HPM. However, we consider the boundary conditions as one-dimensional when
we use this method, and hence these approximations can be considered only for a
small range. HPM was developed by J. H. He for solving wave and heat equations.
To obtain accurate results for these equations using HPM, standard homotopy
technique is merged with the perturbation technique along with some modifications.

1 Introduction

Partial differential equations have wide and varied applications in various fields of
science. One has to construct these partial differential equations and also find exact
and explicit solutions for them. Because of its importance, solving them and finding
the exact solutions of these equations have always been an active area of research.
Most of the linear and nonlinear partial differential equations can be split into two
components, namely, the integrable component and the non-integrable component.
Infinite number of solutions can be found if the equations are integrable. However,
if the equations are not integrable, it is difficult for one to find an exact solution, and
hence some other techniques have to be used to obtain them.

During the recent years, many methods have been developed for finding the exact
solutions of nonlinear equations. Each method has its own merits and demerits, and
hence we cannot pinpoint any particular method and say that it is the best method.
All the methods which have been developed so far are problem dependent and so
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may work for only some type of problems and not for others. Hence we can apply
these methods to solve the nonlinear equations which have not yet been solved using
them, and we can check if the solutions so obtained by these methods are the same
as the exact solutions.

In this paper, we use the homotopy perturbation method to find the accurate
solution of the wave and heat equations. Prior to the introduction of this method
by J. He, Wazwaz and Gorguis studied the wave equation and nonlinear diffusion
equation subject to initial conditions by using Adomian decomposition method [15].
J. He developed the HPM to solve linear and nonlinear, initial, and boundary value
problems [8, 10–14, 16]. In this method, we assume the solution to be the sum of an
infinite series, and this infinite series converges rapidly to accurate solutions. This
method has been used by various authors [2–4, 7, 9, 17] to solve several functional
equations. Modified homotopy perturbation method has also been developed and
used for solving various partial differential equations [1, 5, 6].

2 Homotopy Perturbation Method

In the current segment, we explain the HPM for a general differential equation
with given boundary conditions. We shall then see as to how this method works
for various wave and heat equations under different boundary conditions.

Let us assume the function:

S(u)− t (r) = 0, r ∈ φ (1)

with the given condition

A

(
u,

∂u

∂π

)
= 0, r ∈ λ (2)

where S represents the general operator, t (r) is an analytic function, A is a boundary
operator, and λ is the domain boundary. The operator S can be generally split
into two operators, K and M , where K is a linear and M a nonlinear operator.
Equation (1) now becomes

K(u)+M(u)− t (r) = 0. (3)

Applying the homotopy method, we now construct a homotopy v(r, p) : φ ×
[0, 1] → R, which satisfies

H(v, p) = (1− p)[K(v)−K(u0)] + p[S(v) − t (r)] = 0 (4)

or

H(v, p) = K(v)−K(u0)+ pK(u0)+ pK(u0)+ p[M(v)− t (r)] = 0 (5)
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where p ∈ [0, 1] is called homotopy parameter and u0 is an initial approximation for
the solution of (1), which satisfies the boundary condition. Evidently, from Eqs. (4)
and (5), we shall have

H(v, 0) = K(v)−K(u0) = 0 (6)

H(v, 1) = S(v)− t (r) = 0 (7)

After performing some manipulations, we get

V = v0 + pv1 + p2v2 + p3v3 + . . . (8)

Putting p = 1 in (8) gives

U = lim
p→1

v = v0 + v1 + v2 + v3 + . . . (9)

Having discussed the homotopy perturbation method, we shall now solve some
examples of wave equations and heat equations and show that the solution derived
by this method is precisely the same as the solution found by the analytical
procedure.

2.1 Examples of Wave Equations

In this section we consider the various examples of wave equations with different
boundary conditions.

2.1.1 Illustration 1

Assume the wave formula

urr − s2

2
uss = 0 (10)

with the initial conditions as

U(s, 0) = s2, ur = −s2 (11)

By the homotopy method, we get

∂2u

∂r2 = p

[
∂2u

∂r2 +
s2

2
uss −D2

r u

]
(12)
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Now by HPM we have

U = u0 + pu1 + p2u2 + p3u3 + . . . (13)

Using the Eq. (12) in Eq. (11) and correlating the coefficient of different powers of
p, the resultant equation will be

p0 : ∂2u0
∂r2 = 0, ∂u0

∂r
= −s2, u0 = s2 − rs2

p1 : ∂2u1
∂r2 = s2

2 (u0)ss, u1 = ( r
2

2! − r3

3! )s
2

p2 : ∂2u2
∂r2 = s2

2 (u1)ss, u2 = ( r
4

4! − r5

5! )s
2

p3 : ∂2u3
∂r2 = s2

2 (u2)ss, u3 = ( r
4

4! − r5

5! )s
2

Continuing this process we get

U = u0 + pu1 + p2u2 + p3u3 + . . .

U = (s2 − rs2)+ ( r
2

2! − r3

3! )s
2 + ( r

4

4! − r5

5! )s
2 + ( r

4

4! − r5

5! )s
2 + . . .

U = s2(1+ r2

2! + r4

4! + . . .)− s2( r
1! + r3

3! + r5

5! + . . .)

U = s2 ∑∞
n=0(−1)n rn

n!
U = s2e−r

This is same as the exact solution of the equation given by (10).

2.1.2 Illustration 2

Assume the wave formula

urr − s2

2
uss = 0 (14)

where the conditions are given as

U(s, 0) = s2, ur = 0 (15)

By the homotopy method we get, U = s2 cosh(r) which is same as the exact
solution.

2.2 Examples of Heat Equations

In this section we consider the various examples of heat equations with different
boundary conditions.
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2.2.1 Illustration 1

Assume the heat formula

ur = i
u

ss
(16)

with the conditions given as

U(s, 0) = sinh(s), ur = 0 (17)

By the homotopy method, we get

∂2u

∂r2
= p

[
∂u

∂r
+ iuss −Dru

]
(18)

Now by HPM we have

U = u0 + pu1 + p2u2 + p3u3 + . . . (19)

Using the formula (19) in formula (18) and analyzing the coefficient of different
powers of p, we get

p0 : ∂2u0
∂r

= 0, ∂u0
∂r
= −s2, u0 = sinh(s)

p1 : ∂2u1
∂r

= i(u0)ss, u1 = i(r) sinh(s)

p2 : ∂2u2
∂r

= i(u1)ss, u2 = i2( r
2

2! ) sinh(s)

p3 : ∂2u3
∂r

= i(u2)ss, u3 = i3( r
3

3! ) sinh(s)

Continuing this process we get

U = u0 + pu1 + p2u2 + p3u3 + . . .

U = (1+ ri + i2 r2

2! + . . .) sinh(s)

U = s2(1+ r2

2! + r4

4! + . . .)

U = eir sinh(s)

which is same as the accurate solution.

2.2.2 Illustration 2

Assume the heat formula

ur = λuss, −∞ < s <∞, r > o (20)
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with the initial conditions as

U(s, 0) = f (s), ur = 0 (21)

By the homotopy method, we get

∂u

∂r
= p

[
∂u

∂r
+ λuss −Dru

]
(22)

Now by HPM we have

U = u0 + pu1 + p2u2 + p3u3 + . . . (23)

Using the Eq. (22) in Eq. (21) and comparing the coefficient of different powers of
p, we get

U = f (s)+∑∞
n=1

(λr)n

n! f 2n(s)

which is same as the accurate solution.

2.2.3 Illustration 3

Consider the Schrodinger formula

ur + iuss = 0, −∞ < s <∞, r > o (24)

where the conditions are given as

U(s, 0) = f (s), ur = 0 (25)

Using the homotopy method, we get

∂u

∂r
= p

[
∂u

∂r
− iuss −Dru

]
(26)

Now by HPM we have

U = u0 + pu1 + p2u2 + p3u3 + . . . (27)

Using the formula (27) in formula (26) and analyzing the coefficient of different
powers of p, we get

p0 : ∂u0
∂r
= 0, ∂u0

∂r
= 0, u0 = f (s)

p1 : ∂u1
∂r
= −i(u0)ss, u1 = −i(r)f "(s)
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p2 : ∂u2
∂r
= −i(u1)ss, u2 = i2( r

2

2! )f
4(s)

p3 : ∂2u3
∂r

= i(u2)ss, u3 = −i3( r
3

3! )f
6(s)

Continuing this process we get

U = u0 + pu1 + p2u2 + p3u3 + . . .

U = (1+ ri + i2 r2

2! + . . .) sinh(s)

U = f (s)− i(r)f "(s)+ i2( r
2

2! )f
4(s)− i3( r

3

3! )f
6(s)+ . . .

U = f (s)+∑∞
n=1

(−ir)n

n! f 2n(s)

which is same as the accurate solution.

3 Conclusion

Successful administration of HPM process was introduced in the above illustrations
to achieve explicit solutions for wave and heat equations. Additionally, this method
is a productive tool to determine the solution of different types of PDE. The HPM
is capable in observing the comparative or analytic explanation of the linear and
nonlinear partial differential equation. Since the solution is in the form of infinite
series, many complex problems can be made simple using this technique, and hence
it takes limited duration to reach a conclusion. This is also a helpful and useful
procedure to obtain the solution of differential equations.
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Nonlinear Radiative Unsteady Flow of a
Non-Newtonian Fluid Past a Stretching
Surface

P. Krishna Jyothi, G. Sarojamma, K. Sreelakshmi, and K. Vajravelu

Abstract Analysis of nonlinear radiative heat transfer on the MHD Maxwell
fluid flow in the boundary layers adjacent to a sheet with continuous stretching
is discussed. Numerical solution of the PDEs governing the flow is obtained by
the successive application of suitable similarity variables and BVP4c method. The
flow variables, surface frictional coefficient, and local gradients of temperature and
concentration are discussed through the graphs and tables. Results of the present
analysis are compared with the previously published work and are found to be in
close agreement.

1 Introduction

We deal with several nonclassical fluids in industries and in our daily routine.
For example, polymers, paints, jellies, medicines, physiological fluids, etc. exhibit
rheological properties. Maxwell fluid is a special kind of fluid processing the
properties of elasticity and viscosity while undergoing deformation. The upper
convective Maxwell model is said to be the generalization of Maxwell material with
large deformation using the upper convective time derivative. Roy [1] studied the
Maxwell fluid flow pattern past an infinite plate when the plate is moving parallel
to itself with an arbitrary time-dependent velocity. Assuming the pressure to be
uniform and velocity in an exponential form, exact solutions are obtained. Kumari
and Nath [2] studied the heat and flow characteristics of a Maxwell fluid of a
vertical sheet with exponential stretching. Nonlinear radiative heat flux is significant
when the temperature differences in the fluid layers are not small and the energy
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transport equation contains a new diffusion term owing to energy conservation.
Solar power devices, nuclear power generators, and chemical processes involving
very high temperatures are some of the areas that contain nonlinear thermal radiative
heat transfer. Investigations on nonlinear radiative heat transfer with different
aspects in different fluid flow conditions have been studied by Animasaun et
al. [3], Mahanthesh et al. [4], Hayat et al. [5], Vijaya et al. [6]. Stratification
refers to the formation of layers due to concentration differences, temperature
variations, or the presence of fluids with different densities. Double stratification
occurs when both heat and mass mechanisms take place simultaneously. Study of
mass and energy stratification in fluid flows is very important due to its varied
applications. Thermal stratification of reservoirs and oceans; salinity stratification
in rivers, estuaries, groundwater reservoirs, and oceans; heterogeneous mixtures
in atmosphere; and industrial, food, and manufacturing processes are some of the
examples of stratification. Chen and Eichhorn [7] explored the flow characteristics
of a free convective fluid flow along a vertical plate with thermally stratification.
Singh et al. [8] obtained the flow characteristics of a steady Newtonian fluid flow
over a moving vertical plate considering the effect of temperature stratification.
Sarojamma et al. [9] investigated dual stratification effect on the oblique stagnation
point flow of a nonclassical Casson fluid. In this analysis we investigate the influence
of nonlinear thermal radiation, thermal and solutal stratification on the energy,
and mass transport in hydromagnetic flow of UCM fluid induced by a surface of
continuous linear stretching.

2 Mathematical Formulation

We propose the transfer of mass and heat in a UCM fluid flow due to an unsteady
stretching surface. The surface comes forth from a narrow slit at origin (x=0,y=0)
and proceeds with a velocity uw(x, t) = bx/(1 − αt), where b and α are positive
constants with dimensions of (time)−1. The flow is exposed to a variable magnetic
field B(x) = B0/

√
1− αt applied normally to the surface with B0 as its initial

strength. Tw(x) = T0+m1x/(1−αt) and Cw(x) = C0+n1x/(1−αt), respectively,
are the temperature and concentration of the sheet, while T∞(x) = T0 +m2x/(1−
αt) and C∞(x) = C0 + n2x/(1 − αt) correspond to the ambient fluid where m1,
m2, n1, n2 are dimensional constants and T0, C0 are, respectively, the reference
temperature and concentration. Governing equations of the problem under study are
given here under:

∂u

∂x
+ ∂v

∂y
= 0 (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ λ(u2(

∂2u

∂x2 )+ v2(
∂2u

∂y2 )+ 2uv(
∂2u

∂x∂y
)) (2)

= ν(
∂2u

∂y2 )−
σB2

ρ
(u+ λν

∂u

∂y
)



Nonlinear Radiative Unsteady Flow of a Non-Newtonian Fluid Past a Stretching. . . 377

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= k

ρCp

∂2T

∂y2 +
16σ ∗

3k∗ρCp

∂

∂y
(T 3 ∂T

∂y
)+ Q∗

ρcp
(T − T∞) (3)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2 −K1 (C − C∞) (4)

where, u and v are fluid velocity components along x and y-axes, respectively;
the nomenclature of ν, ρ, σ, k, cp, σ

∗, k∗, μ,D is same as that used in [9]; λ =
λ0(1− αt) is the relaxation time; λ0 is a constant; T is fluid temperature; C is fluid
concentration; Q∗(t) = Q0/(1 − αt) is heat generation (Q∗ > 0) or absorption
(Q∗ < 0) coefficient which changes with time; Q0 being the initial value of
heat generation/absorption coefficient; k1(t) = kc/(1 − αt) is the time-dependent
reaction rate; and kc is a constant.

The pertinent boundary conditions controlling the problem are given by

u = uw, v = 0, T = Tw = T0+ m1x

1− αt
, C = Cw = C0 + n1x

1− αt
at y = 0 (5)

u→ 0, T → T∞ = T0+ m2x

1− αt
, C → C∞ = C0+ n2x

1− αt
as y →∞ (6)

3 Method of Solution

The stream function ψ(x, y, t) is defined as

u = ∂ψ

∂y
= bx

1− αt
f ′(η) (7)

v = −∂ψ

∂x
= −

√
νb

1− αt
f (η) (8)

which satisfies Eq. (1). The governing PDEs (3)–(4) can be recast to a set of ODEs
on introduction of the given similarity variables

ψ(x, y, t) =
√

νb

1− αt
xf (η), η =

√
b

ν(1− αt)
y, θ(η) = T − T∞

Tw − T0
, φ(η) = C − C∞

Cw − C0

(9)
Substitution of (9) into Eqs. (3) to (4) yields

f ′′′+ff ′′−(f ′)2+β(2ff ′f ′′−f 2f ′′′)−S(f ′+η

2
f ′′)−M(f ′−βff ′′) = 0 (10)

θ ′′ + Nr[(1+ (θr − θs)θ)
3]θ ′′ + 3Nr[(θr − θs)(1+ (θr − θs)θ)

2](θ ′)2 (11)
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+ Pr(f θ ′ − f ′θ − ε1f
′ − S(ε1 + θ + η

2
θ ′)+Qθ) = 0

φ′′ + Sc(f φ′ − f ′φ − ε2f
′ − S(ε2 + φ + η

2
φ′)− γφ) = 0 (12)

with boundary conditions

f (0) = 0, f ′(0) = 1, θ(0) = 1− ε1, φ(0) = 1− ε2 (13)

f ′(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0 (14)

where β = λ0b is the elastic parameter. It may be noted that β is the nondimensional
elastic number that involves the relaxation time of the fluid (λ) as well as the
kinematical parameter (b). In view of the presence of λ0, β represents the measure
of elasticity of the fluid and is also known as Deborah or Weissenberg number.
S = α/b is the unsteadiness parameter, M = σB2

0/ρb is the magnetic field
parameter, Pr = (ρcpν)/k is the Prandtl number, Nr = 16σ ∗T 3∞/3kk∗ is
thermal radiation parameter, θr = Tw/T∞ and θs = T0/T∞ are temperature ratio
parameters, Q = Q0/ρcpb is the heat source/sink parameter, ε1 = m2/m1 is
thermal stratified parameter, ε2 = n2/n1 is solutal stratified parameter, Sc = ν/D

is the Schmidt number, and γ = kc/b is the chemical reaction parameter.
The Cf , Nux , and Shx coefficients of surface drag, heat, and mass transfer,

respectively, are defined by

Cf = τw

ρu2
w

,Nux = xqw

k(Tw − T∞)
, Shx = xmw

D(Cw − C∞)
(15)

where the wall shear stress τw, the surface heat flux qw, and the mass flux mw are
given by

τw = ((μ+k)
∂u

∂y
+kN)y=0, qw = −K(1+16σ ∗T 3

3Kk∗
)(
∂T

∂y
)y=0,mw = −D(

∂C

∂y
)y=0

(16)
Making use of Eq. (16) in Eq. (15), we obtain

Cf

√
Rex = (1+ β)f ′′(0), Nux√

Rex

= −(1 +Nr[1+ (θr − θs)θ(0)]3) 1

1− ε1
θ ′(0), Shx√

Rex
= −φ′(0)( 1

1 − ε2
)

where Rex = uwx/ν is a local Reynolds number.
The governing Eqs. (10)–(12) are nonlinear equations, and its exact solution

is not possible. Hence, we have solved the equations numerically using BVP4c
method. The numerical scheme is validated by comparing the present results, i.e.,
f ′′(0) with those calculated by Sharidan [10] and Chamkha et al. [11] in Table 1 for
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Table 1 Values of−f ′′(0)
for different values of S with
β = M = 0

Sharidan Chamkha Present
S et al. [10] et al. [11] results

0.8 −1.261042 −1.261512 −1.261043

1.2 −1.377722 −1.378052 −1.377724

Table 2 Values of −θ ′(0)
for values of P r when
M = S = β = θr = θs =
Nr = Sc = γ = ε1 = ε2 = 0

Pr Grubka and Bobba [12] Chen [13] Present results

0.01 0.0294 0.02942 0.02942

0.72 1.0885 1.08853 1.088623

1.00 1.333 1.3334 1.3334

3.00 2.5097 2.50972 2.50972

a Newtonian fluid in absence of magnetic field (i.e., β = 0,M = 0). Table 2 gives
the comparison of−θ ′(0) with those of [12] and [13]. We observe a good agreement
of our results with theirs.

4 Results and Discussion

The intent of this analysis is to explore the effect of nonlinear radiative heat flux and
stratifications of thermal and mass on the unsteady flow of a hydromagnetic UCM
fluid over a sheet of continuous stretching. Influence of selected flow parameters on
the flow variables is examined.

Figure 1 illustrates that the presence of magnetic field suppresses the velocity
near the plate, i.e., 0 ≤ η ≤ 5 and outside this range its influence is negligible.
Velocity is seen to decrease with increase in M accompanied by thinning of
boundary layers. This reduction is attributed to the Lorentz force generated due to
the application of the transverse magnetic field which has a tendency to oppose
the flow, and consequently the motion of the fluid slows down leading to the
depreciation of velocity. Figure 2 indicates the effect of elastic parameter (β)
on velocity. It is clear that velocity decreases with increasing β as expected.
Figure 3 shows that increasing unsteadiness parameter enhances the velocity near
the boundary and shows an opposite trend away from the boundary. Figure 4 reveals
that the temperature ratio parameters θr enhances temperature, while θs shows an
opposite effect as illustrated in Fig. 5. It is seen from Fig. 6 that temperature is
depreciated with an increase in ε1. It is clear from Fig. 7 that the mass concentration
of the fluid is diluted for an increment in ε2.The plots presented in Fig. 8 elucidate
the relation between CfRe1

x/2 and M for different values of β. All profiles are
straight lines with a negative slope showing a reduction with increasing M . It
is seen that with increasing β we observe that all the curves of surface drag
are parallel indicating a consistent reduction in surface drag. Profiles of Nusselt
number drawn in Fig. 9 reveal that it increases with Pr . The profiles originate
from higher values of Nusselt number for larger values of ε1. Initially a marginal
difference between the curves occurs when Pr = 0.1, and the difference increases



380 P. Krishna Jyothi et al.

Fig. 1 Variation of M on
f ′(η)
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Fig. 4 Variation of θr on
θ(η)
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Fig. 7 Variation of ε2 on
φ(η)
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Fig. 10 Variation of
Sherwood number with γ for
Sc
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as Pr tends to 1. Figure 10 shows the relationship between ShxRe
−1/2
x and γ for

different values of Sc. We note that Sherwood number enhances with both γ and
Sc. However, the enhancement in Sherwood number with Sc is more compared to
that of γ .

5 Conclusion

Some of the findings of the study are:

• The elastic parameter is seen to have a reducing influence on velocity.
• The unsteadiness parameter suppressed the velocity near the boundary and

accelerated the flow away from the boundary.
• The temperature is seen to be enhanced for increasing values of temperature ratio

parameter θr .
• The effect of excessive solutal stratification resulted in dilution of species

concentration.
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Heat Transfer Analysis in a Micropolar
Fluid with Non-Linear Thermal
Radiation and Second-Order Velocity
Slip

R. Vijaya Lakshmi, G. Sarojamma, K. Sreelakshmi, and K. Vajravelu

Abstract This study addresses the thermal energy transport in a slippery sheet-
driven flow of a micropolar fluid analysing the effect of radiative heat flux. The
solution of PDEs of the governing the flow is derived numerically by the application
of self-similarity transformations and Runge-Kutta Fehlberg algorithm along with
shooting method. The computational results are discussed graphically for several
selected flow parameters. Results of this analysis are compared with the published
results and are seen to tally very closely.

Keywords Micropolar liquid · Non-linear radiative heat flux · Second-order
velocity slip

1 Introduction

Micropolar fluids are used to model liquids containing arbitrarily oriented rigid
spherical particles dispersed in a viscous medium, neglecting the fluids parti-
cles deformation. The mechanics of micropolar fluids, emerged from the theory
developed by Eringen [1], has been an interesting area of research owing to
the wide range of applications in industry. For example, polymeric liquids, real
fluids with suspensions, liquid crystals, animal blood and exotic lubricants are
modelled by micropolar fluids. Yacob and Ishak [2] obtained dual solutions to
the problem of a micropolar fluid due to a sheet of shrinking. Energy transfer
in fluids flowing over surfaces of stretching on account of thermal radiation has
effective industrial applications in solar power technology, furnace design, solar
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ponds, heat exchangers, satellites and space vehicles. Sarojamma et al. [3] explored
dual stratification effect on the oblique stagnation point flow of a non-classical
Casson fluid. Recently, researchers are investigating the non-linear thermal radiative
heat transfer and consequently the equation governing the temperature becomes
strongly non-linear. Mahantesh et al. [4] reported the effects of non-linear thermal
radiation coupled with dual diffusion on the 3-D flow of a nanofluid. Wall slip
flows with different aspects have been analysed [5, 6]. All these studies pertain
to slip flows of first order. However, slip flows with second order occur in many
fields of industry. In spite of the need to analyse the slip effect of second order on
fluid flows, not much attention has been paid on it. Fang and Aziz [7] analysed
the flow of a viscous liquid with second-order slip considering the stretch and
shrink effects, respectively. Ibrahim [8] examined the MHD micropolar fluid flow
considering the first and second-order slips. Analysis of heat transfer with non-linear
thermal radiation and second-order slip flow of a micropolar fluid has not yet been
addressed. This investigation addresses the effect of non-linear thermal radiation
and velocity slip of order two in a micropolar fluid flow.

2 Mathematical Formulation

We propose a thin elastic sheet which issues from a narrow slit at the origin of a
Cartesian co-ordinate system. The sheet at y = 0 is taken to be parallel to the x-axis
and moves in its own plane with a velocity uw = ax. The surface temperature Tw is
assumed as constant. The flow is subjected to a constant transverse magnetic field
of strength B0 which is assumed to be applied in the positive y-direction, normal to
the surface. The flow equations after boundary layer approximations are given by

∂u

∂x
+ ∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂v

∂y
= (μ+ k)

ρ

(
∂2u

∂y2

)
+ k

ρ

∂N

∂y
− σB2

0

ρ
u+ g1βT (T − T∞) (2)

u
∂N

∂x
+ v

∂N

∂y
= Ω

ρj

∂2N

∂y2 −
k

ρj

(
2N + ∂u

∂y

)
(3)

u
∂T

∂x
+ v

∂T

∂y
= K

ρcp

∂2T

∂y2 +
16σ ∗

3k∗ρcp
∂

∂y

(
T 3 ∂T

∂y

)
(4)

The boundary conditions are

u = uw + Uslip, v = 0, N = −n
∂u

∂y
, T = Tw at y = 0 (5)

u→ 0, N → 0, T → T∞, as y →∞
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where, u and v are velocity components along x and y directions, respectively. The

nomenclature of uw, a, μ, k, σ , ρ, j , K , cp, A, B, Kn, l = min
[

1
Kn

, 1
]
, α (0 ≤

α ≤ 1), λ,ν, Ω , n (0 ≤ n ≤ 1) can be found in [8] and σ ∗, k∗ can be found in
[3]; g1 is acceleration due to gravity, βT is coefficient of thermal expansion, T is the
temperature inside the boundary layer, and T∞ is ambient temperature. Slip velocity
at the surface, following Wu [9], is given by

Uslip = 2
3

(
(3−αl3)

α
− 3

2
(1−l2)
Kn

)
λ∂u

∂y
− 1

4

(
l4 + 2

K2
n
(1− l2)

)
λ2 ∂2u

∂y2

Uslip = A
∂u

∂y
+ B

∂2u

∂y2
(6)

N is the microrotation or angular velocity, whose direction of rotation is normal to
the x − y plane, Ω is given by Ω = (μ + k/2)j = μ(1 + β/2)j , where β = k/μ

is the material parameter which describes the coupling of the linear and angular
motion which arises due to the microrotation of the fluid molecules. Therefore β

symbolises the coupling between Newtonian and rotational viscosities. If β → 0
we see that k → 0 which corresponds to the case of Newtonian fluid; hence β → 0
corresponds to a viscous fluid.

3 Method of Solution

We define

u = ∂ψ

∂y
= axf ′, v = −∂ψ

∂x
= −√aνf (7)

where ψ(x, y) is the stream function. We define the following similarity transfor-
mations for dimensionless variables

η =
√

a

ν
y,ψ = √aνxf (η),N = ax

√
a

ν
g(η), θ(η) = T − T∞

Tw − T∞
(8)

where f , θ , g are dimensionless variables. Using the above similarity transformation
and dimensionless variables, the governing equations (1)–(4) are reduced into the
ordinary differential equations as follows:

(1+ β)f ′′′ + ff ′′ − (f ′)2 + βg′ −Mf ′ +Grθ = 0 (9)

(
1+ β

2

)
g′′ − β(2g + f ′′)+ fg′ − f ′g = 0 (10)
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θ ′′ + Nr[(1+ (θw − 1)θ)3]θ ′′ + 3Nr[(θw − 1)(1+ (θw − 1)θ)2](θ ′)2 (11)

+Prf θ ′ = 0

With boundary conditions

f (0) = 0, f ′(0) = 1+ h1f
′′(0)+ h2f

′′′(0), g(0) = −nf ′′(0), (12)

θ(0) = 1 at η = 0

f ′(∞)→ 0, g(∞)→ 0, θ(∞)→ 0 as η →∞ (13)

where M = σB2
0

ρa
is the magnetic parameter, Gr = g1βT (Tw − T∞)/auw is

the thermal Grashof number, Pr = (ρcpν)/K is the Prandtl number, Nr =
(16σ ∗T 3∞)/(3Kk∗) is the thermal radiation parameter, θw = Tw/T∞ is the
temperature ratio parameter and

h1 = A
√
a/ν, h2 = Ba/ν Nux are the first- and second-order velocity slip

parameters, respectively.
The skin friction coefficient Cf and local Nusselt number Nux are defined by

Cf = τw

ρu2
w

,Nux = xqw

K(Tw − T∞)
(14)

where the wall shear stress τw and the surface heat flux qw are given by

τw =
(
(μ+ k)

∂u

∂y
+ kN

)

y=0
, qw = −K

(
1+ 16σ ∗T 3

3Kk∗

)(
∂T

∂y

)

y=0
(15)

Using Eq. (15) in Eq. (14), we obtain

Cf

√
Rex = − (1+ β(1− n)) f ′′(0),

Nux√
Rex

= −
(

1+Nr [1+ (θw − 1)θ(0)]3
)
θ ′(0)

where Rex = Uwx/ν is a local Reynolds number.
The set of differential equations (9)–(11) along with the conditions (12) and (13)

are solved numerically standard RKF-45 method.
In order to confirm the accuracy of our numerical procedure, we compared our

results, viz. −f ′′(0) for various slip factors h1 with those of Sahoo and Do [6] and
Ibrahim [8] when β = M = h2 = n = Gr = Pr = Nr = 0. Values of −θ ′(0) are
compared with those of Ishak [10] and Ibrahim [8] for various values of Pr in the
absence of β,M, h1, h2, n,Gr,Nr and are presented in Table 1. It is seen that there
is an excellent agreement with them. Table 2 shows that −f ′′(0) and −θ ′(0) are
compared with Ibrahim [8] in the absence of thermal buoyancy force and thermal
radiation for various M,β, h2. From this we observe that our results are very close
to those evaluated by Ibrahim [8].
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Table 2 Comparison values of −f ′′(0) and −θ ′(0) with M,β, h2 when h1 = 1, P r = 1, n =
0.5,Gr = 0, Nr = 0

M β h2 −f ′′(0) Ibrahim [8] −f ′′(0) Present −θ ′(0) Ibrahim [8]
−θ ′(0)
Present

0.1 0.1 −1 0.3220 0.32197 0.3816 0.38161

0.2 0.3262 0.32620 0.3603 0.36040

0.4 0.3315 0.33147 0.3239 0.32391

0.2 1 −1 0.3173 0.31728 0.4066 0.40659

2 0.3068 0.30678 0.4431 0.44308

3 0.2971 0.29709 0.4703 0.47033

0.2 2 −1 0.3068 0.30675 0.4431 0.44315

−2 0.2588 0.25883 0.4143 0.41438

−3 0.2262 0.22622 0.3927 0.39281

4 Results and Discussion

Influence of the various physical parameters that emerged in this study on the flow
variables has been presented through graphs and discussed.

Figure 1 shows the variation of the material parameter (β) on the velocity,
and its influence is seen to increase the velocity. From Fig. 2 for any value of
β , microrotation is observed to diminish near the boundary till η = 0.75, and
afterwards it increases and eventually satisfies the free stream condition. Further
microrotation is seen to enhance with β.

Figure 3 indicates that presence of magnetic field suppresses the velocity due
to the Lorentz force developed as a result of the applied magnetic field which has
a tendency to resist the fluid flow. Also, increase in the strength of magnetic field
causes further reduction in the velocity due to stronger Lorentz forces. Magnetic
field is seen to have a decreasing influence on the microrotation.

Figure 4 displays the variation of both velocity and microrotation in the boundary
layer for different values of Gr . It is seen that velocity increases with increase in the
buoyancy parameter Gr as thermal buoyancy assists the fluid flow in the boundary
layer. The microrotation is observed to diminish near the boundary till η = 1.4, and
later it increases up to η = 7 and eventually attains the free stream velocity. It can be
noticed that temperature has an exactly opposite trend to that of the two velocities
for the same variation of Gr .

Influence of first-order slip parameter on both velocity and microrotation com-
ponents is to reduce in their magnitude as illustrated in Fig. 5. Second-order slip
variations on velocities are plotted in Fig. 6. The impact of second-order slip
parameter on velocities is qualitatively similar to that of first-order slip parameter.
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Fig. 1 Effect of β on f ′

Fig. 2 Effect of β on g

Figure 7 indicates the variation of thermal radiation parameter on temperature.
When θw > 1, i.e., when heat flow takes place from boundary to the fluid, the
temperature is increased as Nr increases. For the same set of values of Nr , a reversal
trend is seen in temperature when θw < 1 since heat flow is towards the boundary.
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Fig. 3 Effect of M on f ′, g

Fig. 4 Effect of Gr on f ′, g, θ

The effect of (n) on microrotation g is shown in Fig. 8. The microrotation g
is found to increase rapidly near the boundary with increasing values of n due to
larger velocity gradients and away from the boundary velocity shows an opposite
trend.



Fig. 5 Effect of h1 on f ′, g

Fig. 6 Effect of h2 on f ′, g

Fig. 7 Effect of Nr on θ
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Fig. 8 Effect of n on g

5 Conclusion

Some of the highlights of the analysis are:

• Microrotation across the flow shows a decreasing trend near the boundary, while
it increases in the region for an increment in (Gr).

• Microrotation is seen to have an increasing trend for with increase in n.
• Thinner momentum boundary layers are formed for higher values of the slip

parameters.

References

1. Eringen, A.C.: Theory of micropolarfluids. J. Math. Mech. 16, 1–8 (1966)
2. Yacob, N.A. and Ishak, A.: Micropolar fluid flow over a shrinking sheet. Meccanica 47, 293–

299 (2012)
3. Sarojamma, G. Sreelakshmi, K. and Vajravelu, K.: Effects of dual stratification on non-

orthogonal non-Newtonian fluid flow and heat transfer. J. Heat and Tech. 36, 207–214 (2018)
4. Mahanthesh, B. Gireesha, B.J. and Rama Subba Reddy, G.: Nonlinear radiative heat transfer

in MHD three-dimensional flow of water based nanofluid over a non-linearly stretching sheet
with convective boundary condition. J. Nigerian Mathematical Society 35, 178–198 (2016)

5. Wang, C.Y.: Flow due to a stretching boundary with partial slip an exact solution of the Navier
Stokes equation. Chem. Eng. Sci. 57, 3745–3747 (2002)

6. Sahoo, B. and Do, Y.: Effects of slip on sheet-driven flow and heat transfer of a third grade
fluid past a stretching sheet. Int. Comm. Heat and Mass Trans. 37, 1064–1071 (2010)

7. Fang, T. and Aziz, A.: Viscous flow with second order slip velocity over a stretching sheet. Z
Natuforsch 65, 1087–1092 (2010)



Heat Transfer Analysis in a Micropolar Fluid with Non-Linear Thermal. . . 395

8. Ibrahim, W.: MHD boundary layer flow and heat transfer of micropolar fluid past a stretching
sheet with second order slip. J. Braz. Soc. Mech. Sci. Eng. 39, 791–799 (2017)

9. Wu, L.: A slip model for rarefied gas flows at arbitrary Knudsen number. Appl. Phys. Lett. 93,
253103-1-3 (2008)

10. Ishak, A.: Thermal boundary layer flow over a stretching sheet in micropolar fluid with
radiation effect. Meccanica 45, 367–373 (2010)



Analytical Study on Heat Transfer
Behavior of an Orthotropic Pin Fin with
Contact Resistance

M. A. Vadivelu, C. Ramesh Kumar, and M. M. Rashidi

Abstract In this paper, analytical solutions for dimensionless fin temperature
distribution and dimensionless fin heat transfer rate are derived and offered for
a two-dimensional orthotropic, pin fin structure with contact resistance at the fin
base in a convective environment. Fin performance was evaluated based on the
different forms of ratio of conductive resistance to convective resistance parameters
Bir, Biz, Bic, thermal conductivity ratio K∗, and dimensionless length of fin con-
tact space at the base δ∗. The detailed discussions on dimensionless parameters lead
to the deterministic design and optimization of polymer composite fin structures
under all types of convective situations in many real-time applications.

1 Introduction

The present-day heat sink domain requires high performance materials with high
economic factors. Thermal sink management plays a vibrant part in the qualitative
and quantitative performance parameters of all the heat transfer units. The pro-
duction of thermal systems using conventional materials depends on mechanical
and economic constraints such as higher weight, manufacturability, corrosion, and
continuous maintenance [4, 6, 7].

The new system designs pertain to shape, surface area enlargements, fin structure
variations, alignment of tubes and fins, and advancements using regenerators. These
kinds of modification and adjustments can be performed on the thermal systems only
by embracing polymer materials owing to its low density, low thermal expansion
coefficient value, and ease in the manufacturing of the complicated shapes of the
desired systems.
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Although polymer materials are insulators, the perfect reinforcement of fillers
can make these materials produce heat sinks with less effort. Recent developments in
polymer composite materials provide a path to achieving high thermal conductivity
with the help of carbon fillers, fibers, and graphite fillers. Contemporary research
into the use of single-wall carbon nanotubes, multi-wall carbon nanotubes, and
graphene in a polymer matrix may lead to supplementary enhancements in such
composites [4, 6]. Conventional polymeric materials have low thermal conductivity
value of 0.1–0.6 W/m-K, but the addition of carbon fiber and filler enhances the
thermal conductivity of resulting polymer composites [1, 4, 7]. The addition of
continuous carbon fiber improves the value of thermal conductivity to 300 W/m-
K in the fiber axial direction [4]. However, these types of composites exhibit very
low thermal conductivity values in another direction perpendicular to the fiber axis.
For these kinds of problem, one-dimensional heat equation-based solutions are not
valid [2, 3, 5].

In this research, temperature distribution and the heat transfer rate of the pin fin of
a orthotropic nature were derived and presented. The effect of the orthotropic nature
on pin fin performance was discussed with the help of parametric analysis. The
two-dimensional orthotropic cylindrical coordinate-based energy equations for the
pin fin with a contact resistance problem was solved and the solutions are presented.
The effects of the thermal conductivity parameter, the contact resistance parameter,
and the Biot number on the overall performance of the pin fin system are analyzed
(Fig. 1).

2 Mathematical Formulations

By considering a convective environment at the fin’s base, sides, and tip, the steady-
state energy equation with no internal heat generation for a orthotropic fin in a
cylindrical coordinate system can be written as:

1

r

∂

∂r

(
rkr

∂T

∂r

)
+ kz

∂2T

∂z2
= 0. (1)

The contact resistance at fin base was assumed, with uniform contact conductance.
The convective film coefficients at the fin’s base, sides, and tip are assumed to be

Fig. 1 Representation of
present pin fin problem with
contact resistance
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uniform and different in nature. By taking δ as a thickness of the contact space at
the fin base, the boundary conditions are introduced as:

r = 0, 0 ≤ r ≤ R,
∂T

∂r
= 0 (2)

z = 0, 0 ≤ z ≤ H, kz
∂T

∂z
= h(T − T∞) (3)

r = R, 0 ≤ r ≤ R,−kr
∂T

∂r
= h(T − T∞) (4)

z = H − δ, 0 ≤ z ≤ H, kz
∂T

∂z
= hc(Tb − T ) (5)

z = H, 0 ≤ z ≤ H,T = Tb. (6)

By presenting the following nondimensional parameters

θ = (T − T∞)

(Tb − T∞)
, γ = r

R
, ϕ = z

H
(7)

K∗ = kr

kz
, ω = R

H
, δ∗ = 1− δ

H
, (8)

and different Biot numbers as representatives of different convective environments

Bir = hR

kr
, Biz = hH

kz
Bic = (hcδ)

kz
Bigm = hR

(krkz)
1
2

. (9)

The two-dimensional energy equation for the present problem can be formulated as

K∗ ∂2θ

∂γ 2
+ K∗

γ

∂θ

∂γ
+ ω2 ∂

2θ

∂ϕ2
= 0 (10)

and subjected to the boundary conditions

γ = 0, 0 ≤ γ ≤ 1,
∂θ

∂γ
= 0 (11)

ϕ = 0, 0 ≤ ϕ ≤ 1,
∂θ

∂ϕ
= Bizθ (12)

γ = 1, 0 ≤ γ ≤ 1,
∂θ

∂γ
= −Birθ (13)
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ϕ = δ∗, 0 ≤ ϕ ≤ 1,
∂θ

∂ϕ
= Bic(1− θ) (14)

ϕ = 1, 0 ≤ ϕ ≤ 1, θ = 1. (15)

3 Solution Procedure

The solution of the two-dimensional, orthotropic pin fin system with contact
resistance at the fin base can be solved with the help of the separation of variables
method. The dimensionless temperature distribution θ of the present fin system
can be expressed in terms of two variables, which are the function of two major
coordinates. Let

θ = P(γ )

S(ϕ)
. (16)

The solution for the proposed fin system based on the above formulations can be
expressed in terms of a Bessel function as:

θ =
[
CJ0

(
βγ

(K∗) 1
2

)
+DY0

(
βγ

(K∗) 1
2

)][
Asinh

(
βϕ

ω

)
+ Bcosh

(
βϕ

ω

)]
.

(17)
By substituting the required boundary conditions in Eq. (17), we obtain:

θ = T − T∞
Tb − T∞

= 2
∞∑

n=1

αnBicJ1(αn)J0(αnγ )
[
Biz
γ

sinh(τϕ)+ cosh(τϕ)
]

J 2
0 (αn)[Bi2

r + α2
n][(Biz + Bic)cosh(τδ∗)+ (τ + BicBiz

τ
)sinh(τδ∗)]

(18)

where

αn = βn

(K∗) 1
2

, τ = βn

ω
. (19)

The dimensionless form of heat conduction by the pin fin from the fin base is
expressed as:

Q =
∞∑

n=1

[Bi2
r Bic]

[
Biz
γ

sinh(τϕ)+ cosh(τϕ)
]

αn[Bi2
r + α2

n][τ (Biz + Bic)cosh(τδ∗)+ (τ + BicBiz
τ

)sinh(τδ∗)] .
(20)
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Fig. 2 Dimensionless
temperature distribution plots
for an orthotropic pin fin with
an aspect ratio (H/R) of 10
and zero contact resistance
for radial and axial Biot
numbers 0.1 and 0.1

The eigenvalues are calculated by the following equation based on a Bessel function
and the convective boundary condition as:

J1(αn) = Bir

αn

J0(αn). (21)

4 Results and Discussion

The closed-form semi-analytical solution for the present orthotropic pin fin problem
was formulated. Solutions were performed on MATLAB using the algebraic mathe-
matical expressions developed in the previous section. Eigenvalues were calculated
based on Eq. (21) to execute the calculation of fin performance parameters. For the
complete research, the fin aspect ratio (H/R) was maintained at 10.

The temperature distribution in the two-dimensional orthotropic pin fin was
shown in Figs. 2 and 3. The temperature distributions of the two-dimensional
orthotropic pin fin in the absence of contact resistance are also depicted in Figs. 2
and 3 for various radial and axial Biot numbers. The effect of contact resistance
was neglected to intensify the effect of radial thermal conductivity and the Biot
number on the pin fin performance. The first image in Fig. 2 displays the isotropic
fin system-based temperature contours due to Biz = Bir.

Although Fig. 2 related to the isotropic system, it shows an observable tempera-
ture gradient in the radial direction compared with others. This comparison shows
the dominant behavior of radial direction heat transfer at higher values of Biz, which
obviously reduces the overall heat transfer rate of the fin system for a fixed thermal
conductivity ratio.
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Fig. 3 Dimensionless
temperature distribution plots
for an orthotropic pin fin with
an aspect ratio (H/R) of 10
and zero contact resistance
for radial and axial Biot
numbers 2.0 and 0.1

Fig. 4 Dimensionless heat
transfer rate (Q) plots for an
orthotropic pin fin with an
aspect ratio (H/R) of 10 and
zero contact resistance for
various radial Biot numbers
and thermal conductivity
ratios, K*

Figure 3 encompasses the effect of a larger radial Biot number, which cor-
responds to high thermal resistance in that direction and consequently a high
temperature gradient in that particular direction. Further improvement in the axial
directional Biot number to ten times that of the above case does not improve the
temperature distribution of the fin system.

The dimensionless heat transfer rate of the pin fin system with orthotropic nature
is plotted in Figs. 4 and 5 for different values of radial and axial Biot numbers in
the absence of contact resistance. The plots were constructed for the fin aspect ratio
(H/R) of 10. Figure 4 represents the effect of the radial Biot number, Bir, on the
heat transfer rate for various thermal conductivity ratios, K*. The dimensionless
heat transfer rate of the pin fin system significantly increases with the continuous
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Fig. 5 Dimensionless heat
transfer rate (Q) plots for an
orthotropic pin fin with an
aspect ratio (H/R) of 10 and
zero contact resistance for
various axial Biot numbers
and thermal conductivity
ratios, K*

hike in radial Biot number as shown in Fig. 4. However, the heat transfer rate is
considerably independent of the thermal conductivity ratio for larger Biot numbers.
The dimensionless heat transfer rate of the pin fin system increases when the thermal
conductivity ratio increases for a particular interval of the radial Biot number. The
effect of the thermal conductivity ratio on the heat transfer rate for a respective radial
Biot number shrinks when the value of K* approaches 1, an isotropic natural limit,
as shown in Fig. 4.

Plot 4 also demonstrates that the effect of the thermal conductivity ratio on the
heat transfer rate for a particular radial heat convective environment is insignificant
in nature. The polymer composites with low radial thermal conductivity properties
can be adopted for the application of heat transfer with a high axial convective
environment. Similarly, Fig. 5 represents the effect of the axial Biot number on
the heat transfer rate for different values of the thermal conductivity ratio. The
dimensionless heat transfer rate Q decreases with increases in K* values over all
ranges of axial Biot number, as shown in Fig. 5. Figure 6 represents the effect of the
contact Biot number or contact resistance on the dimensionless heat transfer rate
for different values of the radial Biot number and the thermal conductivity ratio.
As discussed in Fig. 4, here also, the thermal conductivity ratio does not have a
significant effect on the heat transfer rate.

In contrast, the contact Biot number has a significant effect on the dimensionless
heat transfer rate. As predicted, the low contact Biot number 0.01 shows a higher
heat transfer rate compared with other cases owing to lower contact resistance δ/L
or high conduction through the contact area.

5 Conclusion

The heat transfer performance characteristics of the fin system formulated by
polymeric materials can be investigated using the methods presented in this research
article. The effect of the thermal conductivity ratio, the radial Biot number, and the
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Fig. 6 Dimensionless heat transfer rate (Q) plots for an orthotropic pin fin with an aspect ratio
(H/R) of 10 for various radial Biot numbers, contact Biot numbers, and thermal conductivity
ratios, K*

contact Biot number on the dimensionless heat transfer rate was investigated and
presented. The adverse effect of contact resistance on the heat transfer performance
of the fin system was extensively covered. It is expected that the investigation
performed, solutions provided, and results declared in this research can be adopted
to design the extended surfaces based on polymer composites.

Nomenclature

Symbol

Bi Biot number
H Fin height in meters
h Convective heat transfer coefficient in W/m2K
K Thermal conductivity ratio
k Thermal conductivity in W/mK
Q Dimensionless heat transfer rate
R Fin outer radius in meters
r Radial co-ordinate
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T Temperature in ◦C
z Axial co-ordinate

Greek Symbol

δ Contact thickness
γ Dimensionless radial co-ordinate
ϕ Dimensionless axial co-ordinate
ω Reciprocal of aspect ratio
θ Dimensionless temperature

Subscripts

b base
c contact
gm geometric mean
∞ Ambient

Superscripts

* Dimensionless
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Numerical Investigation of Developing
Laminar Convection in Vertical
Double-Passage Annuli

Girish N, M. Sankar, and Younghae Do

Abstract This work numerically explored the developing laminar natural convec-
tion in the vertical double-passage cylindrical annuli. The double-passage annuli
are designed from three upright coaxial cylindrical tubes with the intermediate
cylinder treated as a thin and conductive baffle. In the present study, two thermal
conditions are imposed, namely, interior or exterior cylindrical wall is constantly
heated, whereas the opposite wall is thoroughly insulated. Using the boundary layer
approximation, the nonlinear and coupled governing partial differential equations
are numerically solved by employing an implicit finite difference technique. The
flow and thermal distributions, heat transfer rates are portrayed for various axial
locations, Grashof number and baffle position. The results reveal that the velocity
and temperature profiles significantly altered with Grashof number and axial
locations. Further, the baffle location plays a major role in controlling the heat
transfer in the annular passages.

1 Introduction

The development of free, forced, and mixed convection is explored numerically
by many researchers under various thermal boundary conditions, with or without
viscous dissipation in different geometries, namely, in vertical channels designed
by parallel plates, vertical pipes, vertical annulus formed by concentric cylinders,
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and double-passage channels formed by inserting baffle in vertical channel. Aung
et al. [1] made a combined numerical and experimental study on developing
laminar convection by considering constant wall temperature and constant wall heat
fluxes in a vertical passage and also revealed that numerical solutions approached
to exact solutions for fully developed flow. Aung and Worku [2] investigated
developing flow and flow reversal using finite difference method in a vertical
channel by considering asymmetric thermal temperatures and found that buoyancy
effect considerably increases the hydrodynamic entry length whereas decreases
thermal development distance. Utilizing finite difference scheme, Davis and Per-
ona [3] investigated developing natural convection in a vertical tube maintained
either CWT or CHF thermal conditions and found that both heating conditions
have significant effects on heat transfer rate. The development of laminar mixed
convection has been numerically examined by El-Shaarawi and Sarhan [4] in
vertical concentric annuli for isothermal and adiabatic thermal conditions. El-
Din [5] investigated developing laminar convective flow numerically in a vertical
double-passage channel to reveal the consequence of thin perfectly conductive
baffle. After a thorough literature survey, it has been found that the influence of
baffle insert on developing natural convection in vertical annulus has not been
attempted in the literature. The aim of present work is to study the impact of baffle
position on developing buoyancy-driven convection in the vertical double-passage
annuli.

2 Mathematical Formulation

The physical configuration and coordinate system for the present study, as shown in
Fig. 1, are the vertical double-passage annuli, designed from three upright coaxial
cylinders with the intermediate cylinder (or baffle) assumed to be thin and highly
conductive. The annulus is of finite length, open at both ends with the radii of inner,
middle, and outer cylinders, and are ri , rm, and ro, respectively. In the present
analysis, two boundary conditions are considered for temperature, viz., case (I)
refers to the thermal condition where the interior cylinder is kept at isothermal
and outer cylinder is maintained at adiabatic, and case (O) refers to isothermal
outer cylinder and insulated inner cylinder. The temperature difference between
the annular walls generates an ascending buoyancy-driven convective flow in the
passages between three cylindrical boundaries. The fluid, with a flat velocity profile,
is assumed to pass through the annulus whose value is same as that of the average
vertical velocity inside the annuli gaps and with a constant temperature having the
magnitude of ambient temperature. The physical properties of the fluid taken to be
constant, however, obey the Boussinesq approximation. Also the axisymmetric flow
is assumed to be steady; internal heat generation and viscous dissipation effects are
neglected. Further, the Prandtl boundary layer assumptions are imposed, and, in the
energy equation, the axial diffusion term is ignored compared to the radial diffusion
term. Under the above assumptions, the dimensionless equations governing the
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Fig. 1 Physical configuration
and coordinate system

conservation of mass, momentum, and energy are as follows (El-Shaarawi and
Sarhan [6]):

∂U

∂R
+ U

R
+ ∂V

∂Z
= 0 (1)

U
∂V

∂R
+ V

∂V

∂Z
= −∂P

∂Z
+ ∂2V

∂R2 +
1

R

∂V

∂R
+ θ

16(1− λ)4 (2)

U
∂θ

∂R
+ V

∂θ

∂Z
= 1

Pr

[
∂2θ

∂R2
+ 1

R

∂θ

∂R

]
(3)

The continuity equation is recast into the below mentioned integral form for both
passages.

Q = (N2 − λ2)V0 = 2
∫ N

λ

RV dR & Q = (1−N2)V0 = 2
∫ 1

N

RV dR (4)

The above dimensionless equations are made using the following relations:

U = ur0

ν
, V = vr2

0

lνGr
, θ = T − T0

Tw − T0
, R = r

r0
, Z = z

lGr
, λ = ri

ro
, P r = ν

α
,
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Q = q

πlνGr
, V0 = v0r

2
0

lνGr
, P = p ∗ r4

0

ρ0l2ν2Gr2 , Gr = gβD4(Tw − T0)

lν2 , N = rm

ro
.

Here Pr and Gr are the Prandtl and Grashof numbers and λ is the radius ratio.
The corresponding dimensionless boundary conditions are

U1 = U2 = 0, V1 = V2 = 0, θ1 = θ2 = 0, P = −V 2
0

2
at Z = 0, and λ < R < 1.

U1 = U2 = 0, V1 = V2 = 0,

{
θ1 = 1 for case (I)
∂θ1
∂R
= 0 for case (O)

at R = λ and Z ≥ 0,

U1 = U2= 0, V1=V2= 0, θ1= θ2 for case(I) and case (O) at R = N and Z ≥ 0

U1 = U2 = 0, V1 = V2 = 0,

{
∂θ2
∂R
= 0 for case (I)

θ2 = 1 for case (O)
at R = 1 and Z ≥ 0,

P1 = 0, P2 = 0 at Z = 1

Gr
= L

From the temperature distribution, the local Nusselt number, a major parameter
of practical interest in the analysis of convective heat transfer at any cross section,
may be calculated. Thus, the global Nusselt number across the cylindrical boundary
is given by

Nu=
∫ L

0 NudZ
∫ L

0 dZ
= 1

L

∫ L

0
NudZ, where Nu= − ∂θ

∂R
is the local Nusselt number.

3 Numerical Solution

Since the model equations governing the physical problem are nonlinear and
coupled, a general analytical solution is not possible. Hence, a group of coupled
differential equations subjected to the chosen boundary conditions are numerically
solved by an implicit finite difference technique used previously by many authors
for both parallel plates and annular geometries with great success. Since we consider
a boundary layer type flow in our investigation, the solution of governing equations
is marched in the downstream direction. Initially, we take two guess values of Q

such that the product of pressure at the annulus exit is negative. Then the method
of bisection is used to obtain the exact value of Q for which the pressure becomes
zero at the exit of the annulus. Further, it is found that for the same value of Q, the
overall mass balance at the upper and lower portions of the annulus are same.
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4 Results and Discussion

In this section, we presented the numerical simulations to illustrate the effect of
baffle position and Grashof number on the flow and thermal distributions and on
heat transfer rates. Figure 2 illustrates the influence of Grashof number on radial
velocity profiles for both the thermal cases (I) and (O). The development of radial
velocity at different heights of the channel length is plotted in Fig. 2 for two different
values of Gr, namely, 5× 102 and 5× 103, by fixing the radius ratio at λ = 0.5, and
the baffle is positioned in the middle of the annulus. The magnitude of radial velocity
increases with an increase in the value of Gr in passage-1 for case (I) but decreases
with channel height, and maximum velocity is observed in passage-1 for Z = 0.16,
near the annulus entrance. At higher values of Grashof number, Gr = 5 × 103,
the phenomenon of flow reversal is witnessed in passage-2 for both case (I) and
case (O).

The development of axial velocity is presented in Fig. 3 by fixing λ = 0.5 and
N = 0.75 at different locations of the channel to analyze the effect of Grashof
number. It can be noticed that the axial velocity strength decreases with an increase
in the Grashof number but it remains invariant with channel length for lower value
of Gr = 5×102 for both the thermal cases, but for Gr = 5×103 slight variation in
velocity profile is visible in passage-1 for case (I), whereas it appears in passage-2
for case (O). Also, the maximum velocity appears in the first passage for both the

Fig. 2 Development of radial velocity profiles at λ = 0.5 and N = 0.75 for different Gr . (a)
Gr = 5× 102 and (b) Gr = 5× 103 for case (I) (left) and case (O) (right)



412 Girish N et al.

Fig. 3 Development of axial velocity profiles at λ = 0.5 and N = 0.75 for different Gr . (a)
Gr = 5× 102 and (b) Gr = 5× 103 for case (I) (left) and case (O) (right)

Fig. 4 Development of temperature profiles at λ = 0.5 and N = 0.75 for different Gr . (a) Gr =
5× 102 and (b) Gr = 5× 103 for case (I) (left) and case (O) (right)
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Fig. 5 Development of radial velocity profiles at λ = 0.5 and Gr = 3 × 102 for different N . (a)
N = 0.65, (b) N = 0.75 and (c) N = 0.90, for case (I) (left) and case (O) (right)

thermal cases. Figure 4 depicts variation in thermal distributions for different values
of Gr . The magnitude of temperature declines with an intensification of Grashof
number toward the outer wall but increases with channel height in case (I), whereas
in case (O) temperature profiles increase toward outer wall due to opposite thermal
conditions.

The influence of baffle position on radial velocity distributions is portrayed in
Fig. 5 for four distinct values of Z by fixing λ = 0.5 and Gr = 3 × 103. For
a wider passage, a significant variation in velocity profile is observed, whereas a
minor variation in velocity profile is observed in narrow passage. However, velocity
variation is insignificant in the narrow passage formed by positioning the baffle near
to outer wall. Also, the velocity profiles for case (O) are mirror images of case
(I) due to opposite thermal conditions. The effect of baffle position and Grashof
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Fig. 6 Development of local Nusselt number distributions at (a) λ = 0.5 and Gr = 3 × 102 for
different N (left) and (b) λ = 0.5 and N = 0.75 for different values of Gr (right) for case (I)

number on heat transfer rate is shown in Fig. 6 for case (I). The local Nusselt number
enhancement could be achieved either by increasing the values of Gr or moving
baffle closer to isothermal wall.

5 Conclusions

The developing natural convection in the vertical double-passage annuli is numeri-
cally investigated in this analysis. Based on the influences of Grashof number and
baffle position on the development of velocity and temperature profiles, and also on
heat transfer rate, the following conclusions are drawn:

The radial velocity increases with increase in the values of Gr but decreases
with channel height in passage-1 for case (I). Flow reversal phenomenon in radial
velocity profiles are observed in passage-2 for case (O) for both the values of Gr
and at all locations of the channel. Axial velocity decreases with an increase in the
values of Gr, but velocity profile remains invariant with channel length. Temperature
decreases with an increase in Gr toward the adiabatic wall. In wider passages, the
variation in radial velocity is significant.
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Heat and Mass Transfer on MHD
Rotating Flow of Second Grade Fluid
Past an Infinite Vertical Plate Embedded
in Uniform Porous Medium with Hall
Effects

M. Veera Krishna, M. Gangadhar Reddy, and A. J. Chamkha

Abstract We discussed Hall effects on unsteady hydromagnetic natural convective
rotating flow of second grade fluid past an impulsively moving vertical plate
entrenched in a fluid inundated porous medium, while temperature of the plate has
a temporarily ramped profile. Analytical solutions of the governing equations are
obtained by Laplace transform technique. The precise solution is also obtained in
case of unit Schmidt number. The analytical phrases for skin friction due to primary
and secondary flows and Nusselt number are derived for both ramped temperature
and isothermal plates. Expression for Sherwood number is also obtained. The
velocity, temperature, and concentration are displayed graphically, whereas those
of skin friction, Nusselt number, and Sherwood number are presented in tabular
form with reference to momentous flow parameters.

Nomenclature

u,w Fluid velocity in x and z

direction
K1 Permeability of the porous medium

g Acceleration due to gravity qr Radiative flux vector
k∗ Rossland mean absorption

coefficient
k Thermal conductivity of the fluid
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Cp Specific heat at constant
pressure

D Chemical molecular
diffusivity

q The velocity vector, H The magnetic field
intensity vector,

E The electric field, J The current density vector,
U0 Uniform velocity of the plate M2 Hartmann number,
m Hall parameter R Rotation parameter,
K Permeability parameter, Gr Thermal Grashof number,
Gc Mass Grashof number, Pr Prandtl number
N Thermal radiation parameter

and
Sc The Schmidt number

H(t − 1) Unit step function B0 Strength of magnetic field
K Permeability parameter erf c(x) Complementary error

function

Greek Symbols
τe The electron collision time ωe The cyclotron frequency
β Volumetric coefficient of

thermal expansion
Ω Uniform angular velocity

β∗ Volumetric coefficient of
expansion for species
concentration

σ ∗ Stefan-Boltzmann constant.

μe The magnetic permeability ν Coefficient of kinematic
viscosity

ρ Fluid density σ Electrical conductivity
θ Fluid temperature φ Species concentration
θ∞ Free stream temperature λ Visco elastic parameter

1 Introduction

Natural convective stream persuaded by thermal and solutal buoyancy forces
performing above bodies through dissimilar geometries in a fluid-soaked porous
medium is prevalent in a large number of usual development together which has
assorted as well as ample collection of industrial applications. Taking into account
the priority of aforesaid fluid flow issues, vast moreover in detail research works
have been borne out by several researchers [1, 2] performed. Many researchers [3–
7] studied in-depth survey of usual convection boundary layer flow above several
geometrical bodies with heat and mass transfer in spongy(porous) and non-spongy
media. Recently, Veera Krishna and Swarnalathamma [8] deliberated the peristaltic
MHD stream of Williamson fluid. Swarnalathamma and Veera Krishna [9] discussed
the ideological and computational attention of peristaltic hemodynamic flow of cou-
ple stress fluids. MHD-free convective rotating flow deliberated by Veera Krishna
and Gangadhar Reddy [10]. Veera Krishna and Subba Reddy [11] studied unsteady
MHD convective flow of second grade fluid. Veera Krishna et al. [12] performed
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heat and mass transfer on unsteady MHD oscillatory flow of blood all the way
through spongy arteriole. In this paper, we have discussed the things of Hall effects
on unsteady hydromagnetic usual convective rotating flow of second grade fluid
past an impetuously moving vertical plate entrenched in a fluid inundated porous
medium. El-Kabeir et al.[14] studied the problem on heat transfer in an unsteady,
three-dimensional, laminar, boundary layer flow of a viscous, incompressible, and
electrically conducting fluid over inclined permeable surface embedded in porous
medium in the existence of a stable magnetic field and heat generation/absorption
effects by making use of Lie group method. The coupled heat and mass transfer
in fleeting flow by a mixed convection boundary layer past an impervious vertical
stretching sheet embedded in a fluid-soaked porous medium in the existence of a
chemical reaction effect by Rashad [15]. The effects of chemical reaction on mixed
convection flow along a sphere in non-Darcian porous media studied by Rashad
[16]. The Soret and Dufour effects on unsteady coupled heat and mass transfer
by mixed convection flow over a vertical cone rotating in an current fluid with a
time-dependent angular velocity in the presence of a magnetic field and chemical
reaction studied by Ali and Rashad [17]. El-Kabeir et al. [18] deliberated the thermal
diffusion as well as diffusion-thermo effects on heat and mass transfer by fleeting
free convection flow of above an impetuously initiated isothermal vertical plate
embedded in a inundated porous medium. In this paper, we discussed Hall effects
on unsteady hydromagnetic natural convective rotating flow of second grade fluid
past an impulsively moving vertical porous plate.

2 Formulation and Solution of the Problem

We considered unstable hydromagnetic natural convective flow of an electrically
conducting, viscous, incompressible , and optically substantial revolving fluid over
an infinite upright plate entrenched in a consistent porous medium in a very
revolving structure taking Hall current into account. The physical configuration of
the problem is as shown in Fig. 1. The temperature of plate is raised or lowered,
whereas 0 < t ≤ t0, and it is maintained at consistent temperature when t > t0
(t0 being characteristic time). Moreover, at time t > t0, species concentration at the
surface of the plate is lifted to invariable species concentration and is maintained
thenceforth. Since plate is of infinite extent in x and z directions, all physical
quantities except pressure depend on y and t only. The equations for governing
flow through porous medium in a rotating frame taking Hall current into account,
under Boussinesq approximation, are specified by

∂u

∂t
+ 2Ωw = ν

∂2u

∂y2 +
α1

ρ

∂3u

∂y2∂t
− σB2

0

ρ(1+m2)
(u+mw)

− ν

K1
u+ gβ(θ − θ∞)+ gβ∗(φ − φ∞) (1)
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Fig. 1 The physical
configuration of the problem

∂w

∂t
− 2Ωu = ν

∂2w

∂y2 +
α1

ρ

∂3w

∂y2∂t
+ σB2

0

ρ(1+m2)
(mu−w)− ν

K1
w (2)

ρCp

∂θ

∂t
= k

∂2θ

∂y2 −
∂qr

∂y
(3)

∂φ

∂t
= D

∂2φ

∂y2 (4)

Initial and boundary conditions are

u = w = 0, θ = θ∞, φ = φ∞ for y ≥ 0 and t ≤ 0, (5)

u = U0, w = 0 at y = 0 for t > 0, φ = φw at y = 0 for t > 0, (6)

θ = θw at y = 0 for t > t0, θ = θ∞ + (θw − θ∞)
t

t0
at y = 0 for 0 < t ≤ t0,

(7)

w → 0; θ → θ∞;φ → φ∞ as y →∞ for t > 0. (8)

For an optically substantial fluid, discharge, and self-importance, we adopted
Rosseland approximation for radiative flux vector qr [13],

qr = −4σ ∗

3k∗
∂θ4

∂y
, (9)
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Assume little temperature disparity among θ and θ∞, θ4 is extended in Taylor series
concerning θ∞ to linearize Eq. (9), after leaving second and greater order terms in
θ − θ∞,

θ4 ∼= 4θ3∞θ − 3θ4∞ (10)

Equation (3) with the help of Eq. (9) as well as (10) reduces to

∂θ

∂t
= k

ρCp

∂2θ

∂y2 +
1

ρCp

16σ ∗θ3∞
3k∗

∂2θ

∂y2 (11)

Introducing the dimensionless variables,

y∗ = y

U0t0
, u∗ = u

U0
, w∗ = w

U0t0
, t∗ = t

t0
, θ∗ = θ − θ∞

θw − θ∞
, φ∗ = (φ − φ∞)

(φw − φ∞)
,

M2 = σB2
0ν

ρU2
0

, R2 = νΩ

U2
0

,m = wete,K = K1U
2
0

ν2 , α = U2
0 α1

ρν2 ,

Gr = gβν(θw− θ∞)

U3
0

,Gc= gβ∗ν(φw −φ∞)

U3
0

, P r = νρCp

k
,N = 16σ ∗θ3∞

3kk∗
, Sc= ν

D

Using dimensionless variables, Eqs. (1), (2), (4), and (11) are

∂u

∂t
+ 2R2w = ∂2u

∂y2
+ α

∂3u

∂y2∂t
− M2

(1+m2)
(u+mw)− u

K
+Grθ +Gcφ

(12)

∂w

∂t
− 2R2u = ∂2u

∂y2 + α
∂3u

∂y2∂t
+ M2

(1+m2)
(mu−w)− w

K
, (13)

∂θ

∂t
= (1+N)

Pc

∂2θ

∂y2 , (14)

∂φ

∂t
= 1

Sc

∂2φ

∂y2 , (15)
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Fig. 2 The velocity profile for u and w against M with R = 1, K = 0.5, m = 1, α = 1,
P r = 0.71, N = 1, Sc = 0.22, Gr = 3, Gc = 5, t = 0.2

Characteristic time t0 is according to the dimensionless method discussed as t0 =
ν/U2

0 . Combining Eqs. (12) and (13),

∂F

∂t
= ∂2F

∂y2
+ α

∂3F

∂y2∂t
− λF +Grθ +Gcφ (16)

Where F = u+iw as well as λ = M2/(1−im)+(1/K)−2iR2. The dimensionless
initial and boundary conditions are

F = 0, θ = 0, φ = 0 for y ≥ 0 and t ≤ 0 (17)

F = 1 at y = 0 for t > 0, φ = 1 at y = 0 for t > 0, (18)

θ = t at y = 0 for 0 < t ≤ 1, θ = 1 at y = 0 for t > 1, (19)

F → 0; θ → 0;φ → 0 as y →∞ for t > 0. (20)

Taking Laplace transforms to Eqs. (14)–(16) and using initial and boundary condi-
tions, we obtain velocity, temperature, and concentration.

3 Results and Discussion

We noticed that Fig. 2 portrays the impact of magnetic field on the primary velocity
u along with secondary velocity w for both plates. It is evident starting Figs. 2 and 3
that, for the plates, u as well as w decreases on growing M in an area close to the
plate and the same nature the area left from the plate. It is evident from Fig. 3 that
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Fig. 3 The velocity profile for u and w against α with M = 0.5, R = 1, K = 0.5, m = 1,
P r = 0.71, N = 1, Sc = 0.22, Gr = 3, Gc = 5, t = 0.2

Fig. 4 The velocity profile for u and w against m with M = 0.5, R = 1, K = 0.5, α = 1,
P r = 0.71, N = 1, Sc = 0.22, Gr = 3, Gc = 5, t = 0.2

Fig. 5 The velocity profile for u against Gr with M = 0.5, R = 1, K = 0.5, m = 1, α = 1,
P r = 0.71, N = 1, Sc = 0.22, Gc = 5, t = 0.2

both u and w enhance with increasing second grade fluid parameter for both plates.
It is professed from Fig. 4 that, in both cases, u decreases on rising m, whereas
w increases on enhancing m all over the boundary layer region. For both cases, Hall
current tends to speed up secondary fluid velocity throughout the boundary layer
region which is dependable that Hall current brings secondary flow in the entire fluid
region. Figure 5 depicts the possessions of thermal buoyancy forces on the primary
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Fig. 6 The temperature profile against N and P r with t = 0.5

Fig. 7 The concentration profile against Sc and t

and secondary fluid velocities. We noticed that, in both cases, u and w increase
on increasing Gr . We also noticed from Fig. 6 that the temperature enhances with
increasing N for both plates. Therefore thermal radiation is inclined to increase
fluid temperature all over the boundary layer region in both cases. Hence thermal
radiation offers diffuse energy, since an enhance in N implies a reduce in k∗ for
fixed values of θ∞ and k. It is evident that fluid temperature reduces with growing
Pr . Figure 7 divulges that φ diminishes with increasing Sc whereas increases with
rising t . We noticed that, from the Table 1, the skin friction τx enhances and τz
decreases with growing M for the ramped temperature; the reversal behavior is
observed for isothermal plate. For both plates τx reduces and τz increases with rising
m, Gr , Gc, N , and t , whereas τx enhances and τz decreases with increasing Pr or
Sc. Therefore, for plates, Hall current, thermal and concentration buoyancy forces,
thermal and mass diffusions, and thermal radiation have propensity to decrease
τx , while these physical quantities have turnover effect on τz. For both the plates,
τx and τz increases with increasing R or α. Rotation tends to enhance both τx
and τz for both plates. Both τx and τz increase for the ramped temperature and
decrease for isothermal plate on increasing K . From Table 2, the Nusselt number
Nu reduces with increasing N and is augmented on increasing time for both
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cases, whereas it is diminished initially and then increases with the growth of
Pr . Likewise from Table 3, Sherwood number enhances with increasing Schmidt
number at the plate and reduces with increasing on time.

Table 1 Skin friction

Ramped temperature Isothermal plate

M K R α m P r Gr Gc N Sc t −τx τz −τx τz

0.5 0.5 1 1 1 0.71 3 5 2 0.22 0.2 2.85669 1.98552 2.15589 2.41522

1 3.14528 1.54278 1.85662 2.66089

1.5 3.41014 1.35524 1.70014 2.87490

1 3.25445 2.32566 1.70544 1.85447

1.5 3.64785 2.66502 1.24458 1.41178

2 3.25547 2.14478 2.48012 2.85546

3 3.65289 2.58790 2.87485 3.22145

2 3.11145 2.29044 2.47996 2.88878

3 3.52256 2.62546 2.80995 3.14520

2 2.45226 2.22214 1.89958 2.66985

3 2.22147 2.55489 1.52415 2.99968

3 3.32202 1.82568 2.33256 2.22101

7 3.66589 1.70145 2.61889 2.01255

4 2.56996 2.33652 2.05685 2.66587

5 2.01452 2.50785 1.88959 2.80145

6 2.45228 2.15025 1.88019 2.85565

7 2.14458 2.36960 1.52289 3.21014

3 2.71245 1.99552 2.01455 2.45228

4 2.60447 2.00145 1.89965 2.47885

0.3 2.99258 1.80025 2.35562 2.22014

0.6 3.14522 1.65278 2.52887 2.01478

0.5 2.71145 2.13325 2.01025 2.89782

0.8 2.51004 2.41890 1.89046 3.20478

Table 2 Nusselt number Nu Nu

ramped isothermal

N P r t temperature plate

2 0.71 0.5 0.274469 0.194079

5 0.194079 0.137235

8 0.158465 0.112052

3 0.164682 0.150333

7 0.439151 0.245493

0.3 0.564190 0.398942

0.8 0.861814 0.609394
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Table 3 Sherwood number Sc t Sh

0.22 0.2 −0.591727

0.3 −0.690988

0.6 −0.977205

0.78 −1.114190

0.4 −0.418414

0.6 −0.341634

0.8 −0.295864

4 Conclusions

For both plates, Hall current and rotation tends to accelerate w and decelerate u

throughout the boundary layer region. u and w are accelerated with increasing time
throughout the boundary layer region. Thermal radiation and thermal diffusion tends
to enhance fluid temperature throughout the boundary layer region. Mass diffusion
tends to enhance concentration throughout the boundary layer region. Rotation and
second grade fluid parameter tend to enhance τx and τz. Nu reduces with increasing
N and is augmented on increasing time.
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High-Power LED Luminous Flux
Estimation Using a Mathematical Model
Incorporating the Effects of Heatsink and
Fins

A. Rammohan, C. Ramesh Kumar, and M. M. Rashidi

Abstract High-power light emitting diode (HPLED) is an emerging technology in
automotive, aerospace, domestic, and industrial lighting applications. Application
of HPLED in the above mentioned areas are challenging, as effective cooling is
required for maximal luminous output and longer life. This chapter deals with
estimation of the total luminous flux of HPLED using a mathematical model
for a given heat sink configuration, and electric and thermal conditions. The
parameters that are considered in this model are voltage, current, the power of
HPLED, the number of the LEDs in the module, thermal parameters such as the
junction temperature of LED, heat sink and fin temperature, ambient temperature,
and thermal resistances. The proposed model will be helpful for designing and
predicting the luminous output of LED and also arriving at optimal heat sink and fin
configurations for a given design.

1 Introduction

A light-emitting diode (LED) is an opto-semiconductor device that produces light
when power is supplied using forward bias. In other words, LED is a semiconductor
device that transforms electrical energy into light energy. The intensity of light
emitted by the LED is governed by the current flowing through the LED [5].
Hence, the illumination of the LED can be controlled in a straightforward manner
by changing the current supplied. Even though the LED has greater efficacy than
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conventional halogen and CFL lamps, LEDs still generate heat. Dissipating the heat
generated is difficult as these are very compact systems. As heat transfer is directly
proportional to area and compact size, the junction temperature increases owing
to the accumulation of heat. This extreme temperature has unwanted effects such
as chromaticity shift and catastrophic failure. Considering these effects, thermal
management is an important aspect of high-power lighting design [1]. For the given
set of operating conditions, the internal thermal resistances of the LEDs have a
direct impact on the junction temperature. The higher the internal thermal resistance,
the more rapidly the junction temperature rises. Thermal management of LED
involves the design of a heat sink, its thickness, and the number of fins based on
the operating conditions [6]. The operating conditions include a number of LEDs in
the array and also the operating location, such as in the headlights of an automobile,
streetlights or in industrial flood lighting etc. This chapter deals with the estimation
of total luminous flux by considering the photo-electrothermal model along with the
effects of temperature and thermal resistance. The developed model is simulated in
MATLAB. By using this model for a given luminescence, it is possible to estimate
the number of fins and the length of the fins.

2 Thermal Model of High-Power LED

The study of LED thermal behavior is a necessity for every new HPLED product
designed before introduction onto the market. The thermal behavior directly relates
to the life of HPLED [3]. With increased power, the introduction of polymer-based
materials, complex shapes, and increased chip density, the estimation of the heat
dissipation of an HPLED package is becoming challenging to model.

2.1 Junction Temperature of High-Power LED

In a typical high-power LED system, the LED is soldered onto a printed circuit
board (PCB) through solder points and further to the metal core or FR4 (fire
retardant 4), which is usually attached to the heat sink. Also, to maximize heat
transfer between the heat sink and the PCB, a good thermal interface material (TIM)
is required to fill air voids in the surface roughness of the surfaces. This TIM is
a thermal grease that has better thermal conductivity. TIMs are generally in the
form of grease, pads, and epoxy. Thermal grease (gel) also helps in bonding the
surfaces, making it possible to rework the surfaces aids to stress relief [2, 4]. Various
temperatures between junction and ambient are given in Eq. (1) and the details are
shown in Fig. 1:

Tjunc−ambient = Tjunc−sp + Tsp−pcb + Tpcb−T IMa + Theatsink−ambient (1)
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PCB-printed circuit board
TIM-thermal interface material
n-number of LED on the heat sink

FINS

TIM

JUNCTION

SOLDER POINT

PCB

HEAT SINK

Fig. 1 LED assembly with heatsink and fins

where,

Tjunc−ambient is a temperature between LED junction and ambient
Tjunc−sp is a temperature between LED junction and solder point
Tsp−pcb is a temperature between the solder point and the PCB
Tpcb−T IMa is a temperature between the PCB and the thermal interface material

(TIMa)
Theatsink−ambient is a temperature between heatsink and ambient

The generated heat at the junction of an HPLED has to be conducted outward
to the ambient temperature through the heat sink and cooling fins. Considering the
HPLED construction shown in Fig. 1, the solder point, PCB, and TIM performance
solely depend on the design of the manufacturer. In general, standard LED
manufacturers provide the material properties of the solder point, PCB, and TIM in
the data sheet and application notes. In the proposed model, the junction, heatsink,
and fin resistances are considered relatively high compared with all other resistances
[2] in the LED. The luminous flux solely depends on (Vf ), current (If ) and the
junction temperature [5]. Practically, the heat sink should be designed in such a way
as to dissipate the heat at a maximum junction temperature of around 120 ◦C and
above.

2.2 Modeling the Total Luminous Flux of High-Power LED

Consider χv as the total luminous flux value [5] of a high-power LED consisting of
N number of LED in the array.

χv = N × ξ × Pd (2)

ξ = Eo[1+ ke(Tj − To)] (3)
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Tjunc

Pheat

Pheat

Rjunc

Ths

Ta

R

Heatsink Fins

hs

Rjunc

LED N

LED 1

Fig. 2 Dynamic model of LED including thermal resistance of heatsink and fins

ξ is the luminous efficacy (lumen/watt) and Pd is the total power of one LED in
watts. Eo is the rated efficacy at the rated temperature To (typically 25 ◦C in most
LED data sheets) [5] and ke is the relative rate of reduction of efficacy with the
rise in temperature. Suppose that ξ reduces by 35% over a temperature increase of
100 ◦C, then the ke = −0.035. In general, the LED power is defined as Pd = Vf If ,
where Vf is a forward voltage and If is a forward current of the LED. Once
a portion of the power has been utilized to convert into light energy, then the
remaining energy is dissipated as heat. Thus, the heat generated in one LED is
given as Ph = kh × Pd = kh × Vf × If where kh is a constant value, should
be less than 1, and represents the part of the LED power that is converted into
heat. For example, if 80% of the LED power is dissipated as heat, then kh = 0.80.
A simplified dynamic thermal equivalent circuit of the LED system is shown in
Fig. 2, assuming that the N numbers of the LED in the array are fixed on the single
heatsink and fins with a total thermal resistance of Rhs and the LED consist of
junction thermal resistance, which is given asRjunc. Practically, the TIM may be
used among the LEDs and the heatsink to guarantee the perfect thermal contact.
The thermal resistance of such compound is comparatively small when compared
with junction resistance of LEDs and is not considered in the proposed model.
Based on these considerations, the steady-state heatsink temperature Ths can be
stated as:

Ths = Tamb + Rhs(N × Pheat ) (4)

where Tamb is the ambient temperature and Rhs is the heatsink resistance of the
LED.

Tjunc = Ths + (Rjunc × Pheat ) (5)

The junction thermal resistance is given by:

Rjunc = Rjcoo(1+ kjunc × Pd) (6)
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where Rjcoo is the rated junction-to-case thermal resistance at 25 ◦C and kjunc is a
positive coefficient

Tjunc = Tamb + Rhs(N × Ph)+ Rjunc × kh × Pd (7)

Tjunc = Tamb + (Rjunc +NRhs)khPd (8)

where Tjunc is the junction temperature and Rhs is a total heatsink and fin thermal
resistance, which was modeled separately. Further, substituting Eqs. (7) and (8) to
obtain the total luminous flux [5] given in Eq. (10):

χv = Eo{1+ ke[Tamb + (Rjunc +NRhs)khPd − To]} (9)

χv = NEo{[1+ ke(Tamb − To)]Pd + [kekh(Rjcoo +NRhs)]P 2
d } (10)

2.3 Modelling the Overall Efficiency and the Total Thermal
Resistance of the Heatsink with Fins

The thermal resistance of the heatsink played an important role in thermal man-
agement. The heat flow between the integrated chip (IC) die and the ambient air
is designed based on a series of resistances [6]. The following resistances need to
considered from the LED junction to the heat sink, and from the heat sink to the fins,
and then to the ambient temperature. The sum of these resistances is the total thermal
resistance from the junction temperature to the ambient temperature. Thermal
resistance is generally defined as the temperature rise per unit of power, which
is similar to common electrical resistance, and is represented in units of degrees
Celsius per watt (◦C/W).The temperature rise in the LED junction over ambient can
be calculated with the help of total thermal resistances. The nomenclature for the
heat transfer from a heatsink and fin array is shown in Fig. 3.

Let us consider Af as the total area of fins and At as the total exposed area,
including the fins. Then, the exposed parent area on the LED side is given by Aex =
At − Af . The total heat transferred from the exposed LED-mounted parent area is
given in Eq. (11). The total heat transfer is then given in Eq. (13).

Qtotal = Qex +Qf in = [Aex × h× θb] + Af × h× θb × η (11)

θb = Tb − Tamb (12)

Qtotal = Ae × h× θb

[
1− Af

At

× (1− η)

]
(13)
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Heatsink length La

R1 R2
R3

Ambient
Temperature Tamb

Junction
Temperature Tjunc

Fin Spacing S

Fin Length L

Fig. 3 Heat sink and fins with thermal resistances

In the derived Eq. (13), the η is the efficiency of every individual fin array and θb
is the temperature excess on the LED side (based structure) with respect to ambient
temperature. Also, h, ha and hb are heat transfer coefficients by convection in the
heatsink and fins respectively. The maximum possible heat transfer rate is given in
Eq. (14). Based on this, the overall efficiency is denoted as ηsurf ace in Eq. (15) [6].

Qmaximum = At × h× θb (14)

ηsurf ace = Qtotal

Qmaximum

=
[

1− Af

At

× (1− η)

]
(15)

The fin efficiency is calculated using Eq. (16)

η = tanh(ω)

ω
(16)

where the nondimensional fin parameter ω = mL and the fin parameter m is given

as m =
√

h
k×t

. The total exposed area of the heatsink and fin is calculated [6] as
given in Eq. (17) and the area of the fins is given in Eq. (18).

At = [2× L×W × nf ] + [S ×W × (nf − 1)] (17)

Af = 2× L×W × nf (18)
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where At is a totally exposed area, Af is the area of the fins, nf is the number of
fins, W is the fin array width, S is the space between the fins, and L is length of the
fin. Also, the total heat sink resistance is given in Eq. (19) based on Fig. 3.

Rhs = R1+ R2 + R3 = 1

ha × A
+ La

k × A
+ 1

hb ×At × ηsurf ace

(19)

where, R1 = inside film resistance, R2 = conduction resistance of the heatsink, R3 =
thermal resistance of the fins, and La is length of the heatsink. The total heat transfer
is given based on the thermal resistance [6] in Eq. (20).

Qht = Tjunc − Tamb

Rhs

(20)

where Tjunc is the temperature directly available on the parent surface (heatsink),
which is exposed from the LED junction, and Tamb is the ambient temperature,
which is same as that mentioned in Eq. 12. The following assumptions are made to
model the above equations:

• The analysis is performed for one-dimensional, steady-state heat conduction and
the material properties are assumed to be constant

• The fin tip is assumed to be insulated at the end
• As per the datasheets of the LED, the junction temperature is a minimum of about

25 ◦C, 85 ◦C as peak and 105 ◦C is extremely high.

3 Simulation Results and Analysis

The above equations are modeled in SIMULINK, which is available in the MAT-
LAB tool as a model-based design. The following data are considered for simulation
based on the CREE LED datasheet and the total luminous output executed.

Ke = −0.0045, Kjc = 0.13, Eo = 78.5 lumen/Watt, N = 8, Rjcoo = 8, Vf =
34.54 V, If = 0.25 A, h = 16.5 W/m2 ◦C, t = 0.0006 m, k = 187 W/m ◦C,
L = 0.035 m, La = 0.017 m

nf = 8, S = 0.004 m, W = 0.098 m, T 1 = 65◦C, T 2 = 22◦C
ha = 270 W/m2 ◦C, h2 = 45 W/m2 ◦C

The total luminous output is 546.2 lumens based on Eq. (10). The heatsink
resistance is calculated as 1.79 by the tool. This heatsink resistance is directly
substituted for the total luminous flux to obtain the optimal output, which is the
novelty in our proposed model. The fin efficiency is calculated as 0.944.
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Fig. 4 Number of fins with heat loss and total luminous output

Figure 4 is simulated output, which clearly shows that:

• The number of fins on the x-axis and the heat loss or transfer and total luminous
flux on the y-axis

• The number of fins increased from 6 to 14 and the junction temperature at the
base of the heatsink given by the LED is 25, 45, 65, 85, and 105 ◦C

• When the junction temperature increases the heat loss is increased along with an
increase in the number of fins

• The optimal thermal management for the required luminous flux can also be
calculated from the proposed design. For example, under 85 ◦C, it is not optimal
to fix fewer than eight fins. This means that the best luminous output is obtained
if the designer uses more than eight fins. The negative results shown in Fig. 4 are
not optimal for choosing the number of fins under a particular temperature.

From Fig. 5 the simulated output, which clearly shows that:

• The fin length is on the x-axis and thermal resistance, heat loss, total luminous
flux on the y-axis

• The fin length is increased from 0.035 m to 0.08 m with 0.05 m on each step and
the given junction temperature at the base of the heatsink is 85 ◦C

• When the fin length is increased, the thermal resistance is decreased and the heat
transfer and total luminous flux are also increased.

• The optimal thermal management for the required luminous flux, which can also
be calculated from the proposed design by varying the fin length, is proven. For
example, under 85 ◦C, although the fin length is 0.055 m, the total luminous flux
is 208.5 lumens, thermal resistance is 1.667 and heat loss is 37.79 W.
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Fig. 5 Variation of fin length with thermal resistance, total luminous flux, and heat loss

4 Conclusion

In this paper, a mathematical model is proposed for the thermal management of
a high-power LED by considering electrical and thermal aspects. In this model,
heatsink resistance is modeled separately and included in the total luminous flux
equation. The model helps to easily estimate the total luminous flux and required
thermal management. The simulated results show that with an increase in the
number of fins or an increase in the fin length, the total luminous flux improves,
whereas the thermal resistance decreases. This mathematical model can also help
to predict the life of an LED while relating the operating hours using this total
luminous flux model.
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Soret and Dufour Effects on
Hydromagnetic Marangoni Convection
Boundary Layer Nanofluid Flow Past a
Flat Plate

D. R. V. S. R. K. Sastry, Peri K. Kameswaran, Precious Sibanda,
and Palani Sudhagar

Abstract The present study explores the effects of thermal radiation, chemical
reaction, viscous dissipation, Soret and Dufour on Marangoni convection over a
steady and laminar boundary layer flow. A nanofluid, consisting of copper, silver,
and alumina metallic nanoparticles suspended in water, is considered. Similarity
transformations are used to solve the governing equations of motion. The trans-
formed ordinary differential equations are then solved numerically using MATLAB
‘bvp4c’ residual method. The upshots of various physical properties influenced by
Eckert, Nusselt, Sherwood, Soret, and Dufour numbers are delineated.

1 Introduction

The low sedimentation and high stability uniquely brought nanofluids into the focus
of research. Choi [1] identified that nanofluids possess high thermal conductivity
compared to base fluids however small volume fraction might be. Free convection
boundary layer flow over a horizontal plate is studied by Aziz et al. [2]. Natural
convection boundary layer flow of Cheng-Minkowycz is examined by Nield
and Kuznetsov [3]. Convection about vertical plate over porous medium is explained
by Cheng and Minkowycz [4]. They considered heat transfer applications over a
dike. Vajravelu and Hadjinicolaou [5] elucidated how internal heat generation along
with viscous dissipation effects heat transfer rate. Over a few decades, the study
of magnetic field has a great impact over sciences, engineering, and allied sciences
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applications, especially in the metallurgy, cooling of strips or filaments in thinning
of copper wires. Joshi and Gebhart [6] explored the combined effect of conduction
and viscous dissipation on MHD free convection flow along a vertical flat plate.
The temperature or concentration gradients produce energy flux. The energy flux
caused by temperature gradient is named as thermo-diffusion effect or Soret effect.
Further, the energy flux generated by concentration gradient is known as diffusion
thermo or Dufour effect. Adrian [7] considered a numerical study over the heat and
mass transfer in presence of Soret and Dufour effects for the natural convection flow
over a vertical surface embedded in a saturated porous medium along with magnetic
effect. Weaver and Viskanta [8] identified that the coupled interaction is significant
when the gradients of temperature and concentration are large. The combined effect
of Soret and Dufour over a non-Newtonian mixed convection flow was discussed by
Mahdy [9]. The combined effects of thermophoresis and chemical reaction over a
mixed convection flow were explained by Kairi and Murthy [10].

On the other hand, the dissipative layers which may develop along the liquid-
gas or liquid-liquid interfaces are named as Marangoni boundary layers. The
convection induced by the variations of surface tension along the interface is
termed as Marangoni convection. This may be either thermal Marangoni effect
or solute Marangoni effect. Thermal Marangoni effect is due to variation of
surface tension due to temperature gradient, and solute Marangoni effect is because
of variation in the surface tension due to concentration differences explored by
Magyari and Chamkha [11]. Marangoni convection in nanofluids has a considerable
interest of research as it has tremendous industry applications. Considerable work
on Marangoni convection was executed by Christopher and Wang [12], Golia
and Viviani [13] and Zhang and Zheng [14]. Further Mahdy and Ahmed [15]
recently had a reconnaissance of Soret and Dufour effects over heat and mass
transfer in a Marangoni boundary layer magnetohydrodynamic flow.

In the present paper, we have examined the combined Soret and Dufour effects on
heat and mass transfer in Marangoni convection nanofluid flow over a flat surface.
The fluid is influenced by viscous forces and thermal radiation.

2 Flow Analysis

A steady laminar thermosolutal Marangoni boundary layer flow is considered
along flat plate. The fluid is opined to be viscous, Newtonian, and electrically
conducting in presence of transverse magnetic field of uniform strength. A water-
based nanofluid contains three different types of nanoparticles: copper (Cu), silver
(Ag), and alumina (Al2O3). Moreover no electric field exists, and Hall effect is
negligible. Further assume magnetic Reynolds number is small so that Maxwell’s
equations become disconnected from the Navier-Stokes equations. The interface
temperature and concentration are presumed to be quadratic functions of the
distance x along the interface. These suppositions assure the existence of similarity
solution. Assume that the temperature of the plate is T(x) and that of the ambient
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fluid is T∞. A uniform magnetic field B0 is applied in the horizontal direction
normal to the plane. Consider a Cartesian coordinate system (x, y), where x and
y are the coordinates measured along the interface and normal to it. The above
flow assumptions set the boundary layer equations of a viscous and incompressible
fluid expound mass, linear momentum, energy, and concentration in the following
dimensional form,

∂u

∂x
+ ∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
= μnf

ρnf

∂2u

∂y2
− δ

ρnf

B2
0u (2)

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2 −
1

(ρcp)nf

∂qr

∂y
− μnf

(ρcp)nf

(
∂u

∂y

)2

+DT
∂2h

∂y2 (3)

u
∂h

∂x
+ v

∂h

∂y
= D

∂2h

∂y2 +Dh
∂2T

∂y2 − k0(h− h∞) (4)

along with the boundary conditions

v = 0, T = T∞ + ax2, h = h∞ + bx2, μnf
∂u
∂y
= γ ∂T

∂x
+ γ ∗ ∂h

∂x
at y = 0

and u→ 0, T → T∞, h→ h∞ as y →∞ (5)

where u and v indicate velocity components along x and y directions, respectively.
ρ, T , and h denote fluid density, temperature, and concentration, respectively.
Moreover T∞ and h∞ quantify temperature and concentration of the fluid far from
the surface. cp means specific heat at constant pressure. D denotes the species
diffusivity. Dh and DT betoken the coefficients that measure mass fluxes through
temperature and concentration gradients, respectively. k0 and δ stand for chemical
reaction parameter and electric conductivity of the fluid. The coefficients a and b

are dimensional constants. According to Boussinesq approximation, the interface
governing equation with interface surface tension σ0 may be written as

σ = σ0[1− γ (T − T∞)− γ ∗(h− h∞)] where γ = − ∂σ

∂T
, γ ∗ = −∂σ

∂h
(6)

With respect to the species volume fraction, the effective quantities representing
viscosity, density, thermal diffusivity, heat capacitance, and thermal conductivity of
the nanofluid are defined, respectively, as

μnf = μf

(1− φ)2.5
, ρnf = (1− φ)ρf + φρs, αnf = knf

(ρcp)nf
, (7)
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(ρcp)nf = (1− φ)(ρcp)f + φ(ρcp)s, knf = kf

(
ks + 2kf − 2φ(kf − ks)

ks + 2kf + φ(kf − ks)

)

(8)

The subscripts nf ,f , and s stand for nanofluid, base fluid, and solid species,
respectively. In fluid mechanics majority of the existing solutions are similarity
solutions which reduce the number of independent variables. Henceforth one can
transform the governing equations of motion to a system of ordinary differential
equations. For this, we introduce the following similarity transformations:

ψ = Axf (η), η = By, θ(η) = T − T∞
ax2 , χ(η) = h− h∞

bx2 (9)

where

A =
(
aμf

dσ
dT
|h

ρ2
f

) 1
3

, B =
(
aρf

dσ
dT
|h

μ2
f

) 1
3

(10)

Employing Rosseland approximation to the temperature, (3) reduces to

u
∂T

∂x
+ v

∂T

∂y
= αnf (1+Nr)

∂2T

∂y2 −
μnf

(ρcp)nf

(
∂u

∂y

)2

+DT
∂2h

∂y2 (11)

Exerting the similarity transformations given in (9) along with (10), Eqs. (2), (4) and
(11) mutate to

f ′′′ = (1− φ)2.5[(1− φ)+ φ
ρs

ρf

](f ′2 − ff ′′)+M2(1− φ)2.5f ′ (12)

θ ′′(β1 + Nr) = Pr Ec f ′′2

(1− φ)2.5
+ β2

[
Pr(2f ′θ − f θ ′)−Df χ

′′] (13)

χ ′′ = Sc(2χf ′ − f χ ′ +K∗χ)− Srθ
′′ (14)

where β1 = ks+2kf−2φ(kf−ks )

ks+2kf+φ(kf−ks )
and β2 = (1 − φ) + φ

ρ(cp)s
ρ(cp)f

. The similarity
transformation further alters the boundary conditions as follows

f (0) = 0, θ(0) = 1, χ(0) = 1,
1

(1− φ)2.5
f ′′(0) = −2(1+Ma)

f ′(∞) = 0, θ(∞) = 0, χ(∞) = 0 (15)
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The quantities with no dimensions which are appearing in above equations the

Hartmann number M = δ1/2B0μ
1/6

ρ1/3 dσ
dT |1/3

h a1/3
, Prandtl number Pr = νf (ρcp)f

kf
, Schmidt

number Sc = νf
D

, Soret number Sr = Dh(T−T∞)
D(h−h∞)

, scaled chemical reaction parame-

ter K∗ = k0μ
1/3
f ρ

1/3
f

dσ
dT
|2/3
h a2/3

, Dufour number Df = (h−h∞)DT

αnf (T−T∞)
, ratio of solutal and thermal

Marangoni numbers Ma = Δhdσ
dh
|T

ΔT dσ
dT |h

, viscous parameter Ec =
[

1
cpf

]{ a
(

dσ
dt

)
|h

4

ρ2
f μ

2
f

} 1
3

,

and radiation parameter Nr = 16σ ∗T 3∞
3k∗knf where σ ∗ and k∗ are Stefan-Boltzmann

constant and mean absorption coefficient, respectively. The quantities of practical
interest in this study are Nusselt number Nux and Sherwood number Shx which
quantify the rate of heat and mass transfers, respectively. These may be formulated
in non-dimension form by the use of transformation as follows

Nux

knf
kf

Bx
= −θ ′(0), Shx

Bx
= −χ ′(0) (16)

where Bx,
knf
kf

remain non-dimension quantities.

3 Results and Discussions

A numerical solution is found for Eqs. (12)–(14) along with boundary conditions
(15) using MatLab, fourth-order boundary value problem-solver. This is a residual
control-based adaptive mesh solver. Instead of uniform mesh, this provides a
uniform grid of data points x over the interval 1

2x and solve accordingly. The
relative tolerance is taken up to 10−10. The maximum value for similarity variable
is ηmax = 15 which represents the conditions far away from the fluid. The value of
ηmax is found to each iteration loop by the assignment statement ηmax = ηmax+Δη

on taking step size Δη = 0.05. Profiles are drawn for standard values of parameters
M = Nr = Sc = Ec = 1, Sr = Df = φ = Ma = K∗ = 0.2.

Kinetic energy will be converted to internal energy by work done against viscous
stream representing viscous dissipation. The heat developed during this process
enhances the velocity of the fluid particles. So more viscous dissipation triggers
more velocity. This results a descent in temperature profiles which can be observed
from Fig. 1. Temperature profiles are shown in Fig. 2 against Dufour number. It is
noted that enhancing Dufour number causes a decrease in thermal boundary layer.
The effect of Soret number on species concentration is observed in Fig. 3. It is
noticed that concentration gears up by increasing Soret number; in particular, silver
particles possess more mass diffusion than that of the others. Schmidt number, ratio
of mass and thermal diffusivity, provides the relation between hydrodynamic and
mass boundary layers. Increasing this value will suppress concentration boundary
layer. The same is witnessed in Fig. 4.
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Fig. 1 Effect of Eckert
number on temperature
distribution
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Fig. 3 Effect of Soret
number on concentration
distribution
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Fig. 4 Effect of Schmidt
number on concentration
distribution
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Fig. 5 Effect of Marangoni
number on temperature
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It is clear from Figs. 5 and 6 that thermosolutal surface tension ratio plays an
impressive role in the temperature and concentration profiles. A decrease in this
ratio encounters an increase in both fluid temperature and concentration. This
finding is obtained due to the increase in the values of Ma demand and the
increase in the marangoni convection which produces more induced flows within
the boundary layer. As a consequence, the resulting flows will propagate within
the boundary layers causing the maximum velocity obtained at the wall which
reduces the temperature boundary layer. We observe from Fig. 7 the impact of Soret
number on Nusselt numbers. As Soret number is a consequence of the temperature
gradient, it is clearly observed that an increase in Soret number enhances the heat
transfer. Further it is noted that heat transfer is more in alumina as it is more
conductive.

Figures 8 and 9 address the Dufour effect on heat and mass transfer, respectively.
Heat transfer rate increases, and mass transfer rate decreases with the increase
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Fig. 6 Effect of Marangoni
number on concentration
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Fig. 7 Effect of Soret
number on heat transfer
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Fig. 8 Effect of Dufour
number on heat transfer
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Fig. 9 Effect of Dufour
number on mass transfer
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Fig. 10 Effect of chemical
reaction parameter on heat
transfer
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of Dufour number. The alumina and silver species have higher and lower heat
transfer rates, respectively. A complete reversal is observed in case of Sherwood
number.

Figures 10 and 11 unveil the effect of chemical reaction parameter on heat and
mass transfer. Heat transfer rate is monotonically decreasing with an increase in
the chemical reaction. Chemical reaction increases the mass transfer rate in all
the species and is significant at large values of this parameter. This is particularly
high for silver nanoparticles, as silver species diffuse quickly. Figure 12 uncovers
the resistivity of magnetic field on copper nanofluid movement. Magnetic field
instigates a resistance for the movement of the fluid, known as Lorentz force, which
is more predominant within the boundary layer.
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Fig. 11 Effect of chemical
reaction parameter on mass
transfer
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Fig. 12 Effect of magnetic
parameter on velocity
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4 Conclusions

A viscous nanofluid Marangoni convection chemically reacted flow over a flat plate
subjected to the radiation under Soret and Dufour effects is analyzed. The following
conclusions are made:

1. A descent in thermal boundary layer is observed when Dufour number increases
2. Increase of Soret number enhances species concentration
3. The mass diffusion in silver particles is high
4. Increase of marangoni convection parameter retrains both temperature and

species concentration
5. A descent in temperature profiles is observed with respect to increase of viscosity
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An Algorithm for the Inverse Distance-2
Dominating Set of a Graph

K. Ameenal Bibi, A. Lakshmi, and R. Jothilakshmi

Abstract Let G = (V ,E) be a simple, finite, connected, and undirected graph.
Let D ⊆ V (G) be the non-empty subset of V (G) such that D is the minimum
distance-2 dominating set in the graph G = (V ,E). If V − D contains a distance-
2 dominating set D

′
of G, then D

′
is called an inverse distance-2 dominating set

with respect to D. The inverse distance-2 domination number γ≤2
−1 (G) of G is the

minimum cardinality of the minimal inverse distance-2 dominating set of G. In this
paper, we presented an algorithm for finding an inverse distance-2 dominating set
of a graph.

1 Introduction

All graphs considered here are simple, finite, connected, and undirected. In this
paper, the terms and notations used may be found in [7, 8]. A non-empty set D ⊆
V (G) is said to be a dominating set of G if every vertex in V −D is adjacent to at
least one vertex in D [2]. A dominating set D is called a minimal dominating set
if no proper subset of D is a dominating set. The domination number γ (G) is the
minimum cardinality taken over all the minimal dominating sets of G [12, 16].

Kulli V.R. and Sigarkanti S.C. introduced the concept of inverse domination in
graph in 1991 [10].

Let D be a minimum dominating set in a graph G = (V ,E). If V −D contains a
dominating set D

′
of G, then D

′
is called an inverse dominating set with respect to

D [3]. The inverse domination number γ−1(G) of G is the cardinality of a smallest
inverse dominating set of G [13, 14].
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A non-empty set D in a graph G = (V ,E) is a distance-2 dominating set if
every vertex in V −D is within the distance two of at least one vertex in D [6]. The
distance-2 domination number γ≤2 (G) of G equals the minimum cardinality of a
minimal distance-2 dominating set in G [5, 11].

A distance-2 dominating set D is called a minimal distance-2 dominating set if
no proper subset of D is a distance-2 dominating set (Fig. 1).

Definition 1 Let D be the minimum distance-2 dominating set in a graph G =
(V ,E). If V − D contains a distance-2 dominating set D

′
of G, then D

′
is called

an inverse distance-2 dominating set with respect to D. The inverse distance-
2 domination number γ≤2

−1 (G) of G is the cardinality of the smallest inverse
distance-2 dominating set of G [4, 15].

Example 1 Here minimum distance-2 dominating set is {1},γ≤2 (G)=1, and
inverse distance-2 dominating set is {3}, γ≤2

−1 (G) = 1 .
We use the following algorithm which is presented in [1], and it is utilized in this

algorithm.

2 Proposed Algorithm for Minimum Distance-2 Dominating
Set

This algorithm gives the minimum distance-2 dominating set of a graph.
The algorithm works with the following steps.

Step 1: All the vertices in V are initialized with white color.
Step 2: We select a vertex in V which has the maximum degree (in case we have

any vertices that are equal to the maximum degree, arbitrarily select any one),
changes from white color to red color and sends a notification to all its neighbors
within the distance two. On receiving this notification, the white color neighbor
vertices within the distance two turn into green color.

Step 3: Now we select any one white color vertex in V .
Case 1: If the white color vertex has maximum degree (in case we have any vertices

that are equal to the maximum degree, we select any one) and not adjacent to
any green color vertex in the remaining vertices of V .
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Case 2: If the green color vertex which is exactly at the distance two and has
more than one pendent vertex, then change the green color vertex into red color
vertex.

Step 4: Repeat the above process (Steps 2–3) until there is no more white color
vertex in the graph.

Step 5: Now, all the red color vertices in the graph form a minimum distance-2
dominating set.

Example 2 Consider the following graph with 20 vertices in V. Now, by applying
the vertex sorting procedure in [9], i.e., arranging the vertices in the decreasing order
of their degrees, we can deduce V = {7, 10, 9, 11, 4, 6, 8, 12, 14, 16, 17, 18, 5, 13,
15, 1, 2, 3, 19, 20}.
Step 1: All 20 vertices are initialized with white color as shown in Fig. 2.
Step 2: We select a vertex 7 in V (here the maximum degree is 6) which has

maximum degree (in case we have two vertices 7 and 10 that are equal to
maximum degree 6, we select vertex 7); change its color to red and send
a notification to all its neighbors within the distance two. On receiving this
notification, the white color neighbor vertices within the distance two are turn
into green color (vertices 4,5,6,8,9,10,11,12, and 13) as shown in Fig. 3.

Step 3: Now we select any one white color vertex in V .
Case 1: If we select the white color vertex 17 which has maximum degree 4 (here

vertices14, 16, and 18 have the same degree, so we select any one) and not
adjacent to any green color vertex in the remaining vertices of V.

Step 4: Repeat the above process; the vertex 17 changes its color to red and sends
a notification to all its neighbors within the distance two. On receiving this
notification, the white color neighbor vertices within the distance two are turned
into green color (vertices 14,15,16,18,19, and 20) as shown in Fig. 3.

Case 2: If the green color vertex 4 which is exactly at the distance two and has
more than one pendent vertex (pendent vertices 1, 2, 3), then change the green
color vertex into red color vertex as shown in Fig. 3.



456 K. A. Bibi et al.

1

2

4

3

5

6

7

11

8

10

9

12

13

14

15
16

17

18

19 20

G

G

G

G
G

G G G

G

R

G

G

G

G

G

G

R
R

G

G

Fig. 3 Figure (c)

Step 4: Now there are no more white color vertex in the graph.
Step 5: Now, all the red color vertices in the graph form a minimum

distance-2 dominating set, i.e., the minimum distance-2 dominating set is
D = {4, 7, 17}.

3 Proposed Algorithm for Inverse Distance-2 Dominating Set

Step 1: First we find the minimum distance-2 dominating set in a graph using the
above algorithm. And also mark those vertices in red color and the remaining
vertices in green color.

Step 2: Now we consider only green color vertices to finding an inverse distance-2
dominating set in G. Select a green color vertex which has the maximum degree
in G (red color vertices are not included ). Change its color into blue color, and
send a notification to all its neighbors within the distance two. On receiving this
notification, the green color neighbor vertices within the distance two are turned
into yellow color (if any red color vertices are in the distance, don’t change the
color).

Step 3: Now we select any one green color vertex in V .
Case 1: If any green color vertex has the maximum degree (in case we have any

vertices having equal maximum degree, we select any one) and not adjacent to
any yellow color vertex in the remaining green color vertices of V.

Case 2: If any yellow color vertex which is exactly at the distance two to at least a
blue color vertex and has more than one pendent vertex, then change the yellow
color vertex into blue color vertex.
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Case 3: If any yellow color vertex which is one and only vertex adjacent to a red
color vertex exactly at the distance two and the red color vertex has one or more
than one pendent vertices, then change the yellow color vertex into blue color
vertex.

Step 4: Repeat the above process (Steps 2–3) until there is no more green color
vertex in the graph.

Step 5: Now, all the blue color vertices in the graph form an inverse distance-2
dominating set D

′
of the graph.

Example 3 Consider the following graph with 20 vertices in V.

Step 1: First, we find the minimum distance-2 dominating set D in a graph G using
the above algorithm. Also mark those vertices in red color and the remaining
vertices in green color as shown in Fig. 3.

Step 2: Now, we consider only green color vertices to find an inverse distance-2
dominating set in G. We select a vertex 10 in V which has the maximum degree
6, change its color to blue, and send a notification to all its neighbors within the
distance two. (Red color vertices are not included.) Change its color into blue
color, and send a notification to all its neighbors within the distance two. On
receiving this notification, the green color neighbor vertices within the distance
two are turned into yellow color (if any red color vertices are in the distance,
don’t change the color) (vertices 5, 6, 8, 9,11, 12, and 13) as shown in Fig. 4.

Step 3: Now we select any one green color vertex in V .
Case 1: If we select the green color vertex 16 which has the maximum degree 4

(here vertices 16 and 18 have the same degree, so we select any one) and not
adjacent to any yellow color vertex in the remaining green color vertices of V
as shown in Fig. 5.
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Case 3: If we select the yellow color vertex 5 which has one and only adjacent to a
red color vertex 4 exactly at the distance two and the red color vertex has more
than one pendent vertices, then change the yellow color vertex into blue color
vertex as shown in Fig. 6.

Step 4: Repeat the above process (Steps 2–3) until there is no more green color
vertex in the graph.

Step 5: Now, all the blue color vertices in the graph form an inverse distance-2
dominating set D

′ = {5, 10, 16} of the graph.
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γ -Chromatic Partition in Planar Graph
Characterization

M. Yamuna and A. Elakkiya

Abstract A uniquely colorable graph G whose chromatic partition contains at least
one γ -set is termed as a γ -uniquely colorable graph. We characterize the planarity
of these graphs using the domination number of G.

1 Introduction

Dominating sets are used for characterizing graph properties. In [4] Zhou studied the
dominating—χ—color number, dχ(G). Three parameters involving independent
domination are introduced by Arumugam et al. in [2]. In [9], Yamuna et al. have
obtained a characterization of planar graphs when the graph G and Ḡ are γ stable.
In [10, 11], Yamuna et al. introduced γ -uniquely colorable graphs and also provided
the constructive characterization of γ -uniquely colorable trees and characterized
planarity of complement of γ -uniquely colorable graphs. In [12, 13], Yamuna et al.
introduced non-domination subdivision stable graphs (NDSSs) and characterized
planarity of complement of NDSS graphs . In [8], Pinciu proved that for outer planar
graphs where all bounded faces are three cycles, the problem of determining γc(G)

is equivalent to an art gallery problem. In [3], Battle et al. declared that every planar
graph with nine points has a complement which is non planar. In [1], Akiyama et al.
have characterized all graphs when G and Ḡ are outer planar. In [7], Enciso et al.
have classified planar graph based on the complement of G.
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2 Terminology

We consider simple undirected connected graphs G = ( V, E ), |V | = n, |E| =
m. K5 and K3,3 are termed as Kuratowski’s graph. For graph properties we refer
to Harary [5]. A chromatic partition of a graph G is the partition of V (G) into
disjoint-independent sets with smallest cardinality. If the minimum cardinality is
unique, then G is said to be uniquely colorable. A set of vertices D in a graph G = (
V, E ) is a dominating set if every vertex of V-D is adjacent to some vertex of D. If
D has the smallest possible cardinality of any dominating set of G, then D is called
a minimum dominating set—abbreviated MDS. The cardinality of any MDS for G
is called the domination number of G, and it is denoted by γ (G). A γ set denotes a
dominating set for G with minimum cardinality. For domination properties, we refer
to Haynes et al. [6].

3 Result and Discussion

3.1 γ —Uniquely Colorable Graphs

A uniquely colorable graph G whose chromatic partition contains at least one γ -set
is termed as a γ -uniquely colorable graph (Fig. 1).
Since the chromatic partition contains at least one γ -set whenever P =
{V1, V2, . . . , Vk} is a γ -chromatic partition, V1 shall always denote a γ—set.
So |Vi | ≥ |V1| for every i = 2, 3, . . . , k

3.2 Characterization of Planarity of γ -Uniquely Colorable
Graphs

The graph in Fig. 2a is planar and γ -uniquely colorable graph, while the graph
in Fig. 2b is γ -uniquely colorable but not planar. So not all γ -uniquely colorable
graphs are planar.

Fig. 1 γ -uniquely colorable
graphs with γ -chromatic
partition {1, 3}, {2, 4}

1 2

4 3
G1



γ -Chromatic Partition in Planar Graph Characterization 463

1

a b

2

3 4

3
6

5

7

1 2

4

5

8

6

79

Fig. 2 Planar and nonplanar γ -uniquely colorable graph

Planar graphs are often characterized by the following famous theorems that use
Kuratowski’s graphs.

R1. G is planar if and only if G does not contain K5 or K3,3 as a subgraph or any
graph homeomorphic to K5 or K3,3 as a subgraph.

R2. A graph is planar if and only if it does not have a subgraph contractible to K5
or K3,3.

We use these theorems for characterizing the planarity of γ—uniquely colorable
graphs in this section.

Theorem 1 A γ -uniquely colorable graph is planar if

1. γ ( G ) = 2 such that

• |P | = 2
• |P | = 3, |Vi | = 2 ∀ i = 1, 2, 3 and

2. 3 ≤ γ ( G ) ≤ 5 ,|P | = 2, |V1| = |V2|
Proof

1. γ ( G ) = 2, |P | = 2, |V1| = |V2| = 2
Since |V (G)| = 4, G is always planar.
γ ( G ) = 2 , |P | = 2, |V1| = 2, |V2| = 3
Since |V (G)| = 5, K3,3 is not possible.
〈Vi〉 is independent for i = 1, 2, implies 〈V (G)〉 is not K5, implies G is always
planar.
γ ( G ) = 2, |P | = 2, |V1| = 2, |V2| = k, k ≥ 5.
Let V1(G) = {a1, a2} , V2(G) = {b1, b2, . . . , bk}, k ≥ 4. 〈Vi(G)〉 is indepen-
dent, implies G is a bipartite graph with partition V1, V2. 〈Vi〉 is not K5 or K3,3.
The graph G can have maximum 2k edges, since deg ( bi ) = 2 for i = 1 to k . It is
not possible to have five vertices of degree 4 or six vertices of degree 3 directly or
by using edge contraction (since deg ( bi ) = 2, the degree of the merged vertices
does not change). In this case, it is never possible to have up to five vertices of
degree 4 and six vertices of degree 3 with or without edge contraction.
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By this discussion, we can conclude that when γ ( G ) = 2 , |P | = 2, G is always
planar.
Let γ ( G ) = 5 , V1 = {a1, a2, a3, a4, a5}, V2 = {b1, b2, b3, b4, b5}. If K3,3is a
subgraph of G say 〈a1, a2, a3, b1, b2, b3〉 is K3,3. Since G is a connected bipartite
graph with partition V1, V2, a4, a5 are adjacent to at least one bi . Similarly b4 and
b5 are adjacent to at least one ai . Remaining is the adjacency between a4, a5, b4,
and b5 and the remaining vertices. Since G is connected, graph degree of any
vertex is at least one. Let us consider the following possibilities when degree of
at least one ai or bi = 1 , i = 4, 5 which is shown in Fig. 3.
In all the cases, |γ (G)| < 5, a contradiction to our assumption that γ ( G ) = 5.
All remaining possible γ -uniquely colorable graphs have at least one edge in
addition to the edges in the above cases, which implies γ ( G ) < 5 in all possible
cases implies K3,3 is not a subgraph of G.
A. Since K3,3 is not a subgraph of G, K3,3 can be generated only upon edge
contractions. If we choose five vertices in any Vi say in V1 and one vertex in
V2, then for every two vertices in V1, we require a distinct vertex in V2 which is
not possible, since we require additional ten vertices. Similarly if we choose four
vertices from V1 and two vertices from V2, we need additional six vertices which
is not possible. If three vertices from V1 and three vertices from V2 are chosen,
then we need additional three vertices in each Vi , i = 1, 2 which is again not
possible. Hence determining K3,3 by edge contractions from G is not possible.
K5 cannot be a subgraph of G, since G is a bipartite graph. If G is non planar, then
K5 can be generated by edge contractions only. Since 〈Vi〉, i = 1, 2 is independent,
any edge between vertices in Vi can be created by edge contractions only. To
create K5 by edge contractions if we pick five vertices from any Vi say we pick
ai , i = 1 to 5, then to create edge between vertices in V1 every pair of vertices
in V1 should be adjacent to a distinct vertex in V2. Since |V1| = 5, we require at
least ten vertices in V2 which is not possible.
Similarly, to create K5 if we choose four vertices in V1, then we require
at least six vertices in V2 which is not possible. So to create K5, we can
choose a maximum of three vertices in any Vi , i = 1, 2. To create K5, let us
choose a1, a2, a3, b1, b2. To create K5, we need edges between {a1, a2}, {a1, a3},
{a2, a3}, {b1, b2},implies, we need three distinct bi and at least one ai adjacent to
these pairs say a1, a2 adjacent to b3, a1, a3 adjacent to b4, a2, a3 adjacent to b5,
b1, b2 adjacent to a4. a5 is the only remaining vertex. Let 〈a1, a2, a3, b1, b2〉 be
K2,3. The partial structure of graph G is as seen in Fig. 4.
{a2, a5, b2, b4} is a γ set of cardinality 4, a contradiction since γ ( G ) =
4, implies K5 cannot be generated from G by edge contraction. We have
assumed 〈a1, a2, a3, b1, b2〉 is K2,3. Suppose 〈a1, a2, a3, b1, b2〉 is not K2,3, then
the missing edges should be generated by edge contractions only. The only
remaining vertex that can be used for edge contraction is a5. 〈Vi〉 is independent.
Hence a5 cannot be used to create an edge between ai , bj , implies K5 cannot be
generated from G by edge contraction in this case.
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Fig. 3 Partial graph structure a1 a2 a3 a4 a5
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Fig. 4 Partial graph structure a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

From the above discussion, we conclude that K5 cannot be a subgraph of G nor
can be generated by edge contractions. In every other cases, when this is not
true, 〈a1, a2, a3, b1, b2〉, is not K5 ( since the remaining edges cannot be create
by edge contraction ).

2. |P | = 2, such that |V1| = |V2|, γ ( G ) = 4
Let γ (G) = 4, V1 = {a1, a2, a3, a4}, V2 = {b1, b2, b3, b4}. If K3,3is a subgraph of
G say 〈a1, a2, a3, b1, b2, b3〉 is K3,3. Since G is a connected bipartite graph with
partition V1, V2, a4 is adjacent to at least one bi , and b4 is adjacent to at least one
ai , i = 1, 2, 3, 4. Since G is a connected graph, degree of any vertex is at least
one. Let us consider the following possibilities when degree of a4 or b4 is 1.

a. a4 is adjacent to b4 and b4 adjacent to some ai , i = 1, 2, 3.
In this case ai , bj , b4 is a γ—set for G where i, j = 1 or 2 or 3.

b. a4 is adjacent some bi and b4 adjacent to some aj , i , j = 1, 2, 3.
In this case ai , bj is a γ—set for G.
In both cases, γ (G) ≤ 4, a contradiction to our assumption thatγ (G) = 4.

c. a4 is adjacent to b4, and a4 is adjacent to some bi , i = 1, 2, 3. This is analogues
to a.
All remaining possible γ -uniquely colorable graphs have at least one edge in
addition to the edges in a, b, and c which implies K3,3 is not a subgraph of G.
By (A), we know that determining K3,3 by edge contraction from G is not
possible. K5 cannot be a subgraph of G, since G is a bipartite graph. If G is
non planar, then K5 can be generated by edge contraction only. Since 〈Vi〉, i
= 1, 2 is independent any edge between vertices in Vi can be created by edge
contractions only. To create K5 by edge contraction, if we pick four vertices
from any Vi say we pick ai , i = 1 to 4 then to create edges between these
vertices in V1 every pair of vertices in V1 should be adjacent to a distinct in
V2. Since |V1| = 4, we require at least six vertices in V2 which is not possible.
Similarly, if we choose three vertices in V1, then we require at least three
additional vertices (apart from the two used for creating K5) which is not
possible and implies that K5 cannot be generated from G by edge contraction.
From the above discussion, we conclude that K5 cannot be a subgraph of G
nor G can be generated by edge contraction.
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3. |P | = 2, such that |V1| = |V2|, γ ( G ) = 3
Let γ (G) = 3, V1 = {a1, a2, a3}, V2 = {b1, b2, b3}. K3,3 is not a subgraph of
G, since γ (G) = 3. Since |V (G)| = 6 , K3,3 cannot be determined by edge
contraction. K5 cannot be a subgraph of G, since G is a bipartite graph. If G
is nonplanar, then K5 should be generated by edge contractions only. Since 〈Vi〉,
i = 1, 2 is independent edges between vertices in Vi can be generated edge
contractions. To create K5 by edge contractions if we randomly pick any five
vertices say a1, a2, a3, b1, b2, then we require at least four additional vertices
to create edge between the independent pairs which is not possible. Hence K5
cannot be generated by edge contractions.

4. |P | = 3 such that |V1| = |V2| = |V3| = 2 , γ ( G ) = 2
Since |P | = 3, |V1| = 2, and 〈Vi〉, i = 1, 2, 3, when we randomly pick five vertices,
there is no edge between at least two pairs of vertices, implies K5 cannot be a
subgraph of G. Since |V (G)| = 6, when we partition V(G) into two sets say V
( G ) = X1 ∪ X2, then ∃ one Vi , i = 1, 2, 3 such that Xj ∩ Vi �= φ, j = 1,
2, implies there exist at least one vertex say u ∈ X1, v ∈ X2, such that u not
adjacent to K3,3 cannot be a subgraph of G. Since |V (G)| = 6, determining K3,3,
by edge contractions from G is not possible. If G is non planar, then K5 can be
generated by edge contractions. Since 〈Vi〉, i = 1, 2 is independent, any edge
between vertices in Vi can be created by edge contractions only. To create K5 by
edge contractions if we pick two vertices from V1, V2 and one from V3, then to
create edge between vertices in V1 ,V2, we need two distinct vertices which is not
possible since |V (G)| = 6. Hence determining K5 by edge contractions from G
is not possible.
In all the cases, K5 or K3,3 is not a subgraph of G, and K5 or K3,3 cannot
be determined by edge contractions. So we conclude that G is planar when it
satisfies the condition of the theorem. *,

4 Conclusion

γ sets are not in wide use to characterize graph planarity. In this paper, we define a
new kind of partition containing a γ set and hence use it for characterizing a group
of graphs as planar graphs.
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Coding Through a Two Star and Super
Mean Labeling

G. Uma Maheswari, G. Margaret Joan Jebarani, and V. Balaji

Abstract In this paper, a technique of coding a message is presented using the
super mean labeling on a two star graph K1, m ∪ K1, n, m ≤ n. A method of
fixing the super mean labeling on any two star graph is provided after stating a
few observations for a super mean labeling on a two star graph in order to use the
combination of the two for coding.

2010 Mathematics Subject Classification 05C78

1 Introduction

A countless directions are available to the mind which moves in the pursuit of
knowledge. Any concept selected for the search comforts one’s mind when one is
able to find a result of utility however insignificant it may be. A few techniques
for coding a message secretly using super mean labeling on a two star graph
K1, m ∪K1, n, m ≤ n are presented through GMJ code.

GMJ code stands for: (1) Graph message jumble code. A coding technique to
communicate a message through graphs jumbling letters is named as GMJ code.
(2) It also refers to the name of one of the researchers of this paper (Gabriel
Margaret Joan) who has conceived this method of coding. Also, a rule for the super
mean labeling on any two stars is provided which will facilitate the assignment of
numbers.
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1.1 Literature Review

Much work is done by researchers on super mean labeling [2, 3, 6, 7]. Jeyanthi et al.
have discussed super mean labeling on several infinite families of graphs [1]. The
concept of coding labeled trees was introduced by Caminiti et al. [5]. Using graph
theory and cryptography, a paper was presented by Read [4]. Motivated by this
work, we have introduced a few techniques of coding by using super mean labeling
on a two-star graph.

2 Prerequisites

Definition 1 (Super Mean Labeling) Let G be a (p, q) graph and f : V (G) →
{1,2,3, · · · ,p+q} be an injection. For each edge e=uv,, let f ∗(e)=f (u)+f (v)

2 if

f (u)+f (v) is even and f ∗(e)= f (u)+f (v)+1
2 if f (u)+f (v) is odd. Then f is called

super mean labeling if f (V ) ∪ {f ∗(e) : e ∈ E(G)} = {1,2,3, · · · ,p+q} . A graph
that admits super mean labeling is called a super mean graph.

2.1 A Rule for Labeling

1. Some observations on super mean labeling of K1,m ∪ K1,n,m ≤ n are listed.
Here p and q represent the number of vertices and edges, p = 2 + m + n, q =
m + n, p + q = 2 + 2m + 2n. The numbers from 1 to 2 + 2m + 2n must
be assigned to the top vertices and the pendant vertices, and in the process,
the edge values get allotted. Repetition is not permitted. Here f (u), f (v),
f (ui), and f (vj ) are the numbers assigned to the top vertices and the pendant
vertices, and f ∗(uui) and f ∗(vvj ) are the numbers assigned to the edges of
the first and the second star, respectively. The rule for getting the edge values
is f ∗(uui) = f (u)+f (ui)

2 or f ∗(uui) = f (u)+f (ui)+1
2 where the edge connects

u and ui . Note that the edge value can be the actual or adjusted mean. The
average of the largest and the previous number is (2+2m+2n)+(2+2m+2n−1)

2 =
2 + 2m + 2n. As repetition is not allowed, this combination is not considered.
Hence neither the edge value nor the pendant vertices can exceed 2+2m+2n. So
it becomes possible to label a two-star K1,m ∪K1,n through super mean labeling
for all values of m and n without omitting any number between 1 and (p + q)

with m ≤ n.
2. If (f (u) and f (ui)) or (f (v) and f (vi)) are both odd or both even, then the edge

value is the actual mean. If they are not alike, then the edge value assumes the
adjusted mean.

3. When f(u) is odd and if f (ui) = 2s, f (ui+1) = 2s + 1,, they lead to same edge
value and hence to be avoided, that is, 1+6

2 and 1+7
2 have the same edge value
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Fig. 1 K1, 7 ∪K1, 7

4 when f (u) = 1. When f (ui) = 2s + 1 and f (ui+1) = 2s + 2, they give
different edge values and hence can be assigned. That is, 1+7

2 = 4 and 1+8
2 = 5

give different edge values.

Also when f(u) is even, the situation is reversed. These are to be noted while labeling
the numbers to the pendant vertices.

Step 1: Take 1 and p + q as f (u) and f (v), respectively. f (ui) �= 2, for the edge
value becomes 2, but f (vi) = 2 is permitted.

Step 2: If f (u1) = 3, then f (v1) = 4 and if f (u1) = 5, then f (v1) = 2. That
is, assign a value to u1 and assign the next possible least integer to v1 of the
second star, the u2 and v2 are labeled proceeding in the same manner. Once or
twice we may have to continue with assigning to ui

′s successively in order to
avoid any repetition. This procedure makes labeling a two star graph easy using
super mean labeling. A two star graph with super mean labeling is given above
(Fig. 1).

2.2 GMJ Coding Method

By assigning numbers to the 26 alphabets of English in a different manner, choosing
a suitable labeled graph with a given clue mathematical or non-mathematical,
finding the number in the graph for each letter of each word of the given message,
and presenting the letter codes in a unique way in some form such as a horizontal
string and the codes by a picture shuffling the order of the letters in order to increase
the secrecy of the coded message is named as GMJ coding method.

2.3 Procedure for Encoding

Step 1: A suitable two star graph has to be taken. A clue, mathematical or non-
mathematical is stated to find the two star graph which is to be used.

Step 2: By using the super mean labeling on this two star, numbers from 1 to (p+q)

are assigned to the top vertices and the pendant vertices and thereby the edge
values get fixed. The rule given in 2.1 (step 2) goes a long way in fixing the
super mean labeling on the two star.
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Step 3: The 26 alphabets of English are divided in some way (using GMJ coding),
and the numbers attached to the alphabets are noted down.

Step 4: The Greek letters α and βare used to refer to the first and second star,
respectively. T ,Ei and Pi denote the top vertex, the ith pendant vertex, and the
ith edge value in order. For example, α(Pi ) denotes the number assigned to the
ith pendant vertex of the first star.

Step 5: The message to be coded is written (wordwise).
Step 6: By using the notations stated in step 4, the coding is written along a

horizontal string with (1,1) denoting the space between the words.
Step 7: Present the coding in a shape desired, shuffling the order of the letters.
Step 8: For decoding the message, the instructions given for coding and a knowl-

edge of super mean labeling on any two-star graph K1, m ∪ K1, n, m ≤ n are
required.

Illustration 1

1. Message: Valleyside Bamboo Bridge.

2. Clue: A special prime twinkling perfect one. (Special prime -2, it is the
only even number which is prime, twinkling-referring to a Star. So,
a two star is understood. First perfect number is 6. Therefore the
required graph is (K1, 6 ∪K1, 6.)

3. Labeling: The super mean labeling done for K1, 6 ∪ K1, 6 is shown below
K1, 6 ∪K1, 6, p= 14, q = 12, p+ q = 26
f (u)= 1, f (u1)= 5, f (u2)v7, f (u3)= 15, f (u4)= 19, f (u5)= 21, f (u6)= 23,
f (v)= 26, f (v1)= 2, f (v2)= 6, f (v3)= 9, f (v4)= 13, f (v5)= 17, f (v6)= 24.

1 26 2 25 3 24 4 23 5 22 6 21 7 20 8 19 9 18 10 17 11 16 12 15 13 14

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

4. Numbering of alphabets: OFEB The numbers 1–13 and 14–26 are allotted to
the odd- and even-positioned alphabets moving forward and backward from A
to C to E and Z to X to V and so on; this method is named as OFEB (odds
forward, evens backward).

We express the numbering of alphabets in terms of a function for encoding.
For decoding we reverse the process. Coding is done word by word using
OFEB to get the number for any letter and search for it in the two star graph
labeled.
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g(2k + 1) = k + 1 for k = 0, 1, · · · , 12

g(2k) = (27− k) for k = 1, 2, · · · , 13

5. Coding: (wordwise) Valleyside - β(E2)α(T )α(P5)α(P5)α(E1)β(P4)α(E4)

α(P1)β(E6)α(E1)

bamboo - β(T )α(T )α(P2)β(T )α(E3)α(E3)

bridge - β(T )β(E3)α(P1)β(E6)α(E2)α(E1)

6. Horizontal string: β(E2)α(T )α(P5)α(P5)α(E1)β(P4)α(E4)α(P1)β(E6)

α(E1)(1, 1)β(T )α(T )α(P2)

β(T )α(E3)α(E3)(1, 1)β(T )β(E3)α(P1)β(E6)α(E2)α(E1)

(1)

Illustration 2
For the same shape, graph, and sentence, a different coding pattern is used just for
comparison.

1 6 7 2 8 9 10 11 3 12 13 14 15 16 17 4 18 19 20 21 22 23 24 25 5 26

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1. Numbering of alphabets: PSNF The alphabets in the position 12, 22, 32, 42 and
52 are given the numbers 1, 2, 3, 4, 5.
Then the letter B gets the number 6, C gets the number 7, and E gets the number
8 and so on. This method is named as PSNF (perfect square numbered first).

The function for encoding is given below

g(n2) = n for n = 1, 2, 3, 4, 5. g(n2 + k) = 5+ k, for n = 1, k = 1, 2

g(n2 + k) = 7+ k, for n = 2, k = 1, 2 . . . , 4. g(n2 + k) = 11+ k, for n = 3, k = 1, 2,. . . ,6

g(n2 + k) = 17+ k, for n = 4, k = 1, 2, . . . , 8. g(n2 + k) = 25+ k, for n = 5, k = 1

Coding is done word by word using PSNF to get the number for any letter and
search for it in the two star graph labeled.

2. Horizontal string: α(P6)α(T )β(E1)β(E1)α(E3)α(P1)β(E4)α(E1)β(P1)

α(E3)(1, 1)β(P2)α(T )α(P3)

β(P2)β(P5)β(P5)(1, 1)β(P2)α(P4)α(E1)β(P1)α(E4)α(E3)

(2)
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Fig. 2 Coded message (OFEB) Coded message (PSNF)

For the same sentence the codings are different with respect to the two methods
OFEB and PSNF are seen from (1) and (2) and so the Illustrations 1 and 2 are
given (Fig. 2).

Illustration 3

1. Message: The documents are in your purple briefcase intact.
2. Clue: Thrice the special prime and thrice its power. (Thrice the

special prime 3× 2 = 6 and thrice its power 23 = 8)
3. Labeling: The super mean labeling done for K1, 6 ∪K1, 8 is shown below

K1, 6 ∪K1, 8, p = 16, q = 14, p + q = 30
f (u)= 1, f (u1)= 3, f (u2)= 9, f (u3)= 12, f (u4)= 21, f (u5)= 26, f (u6)= 29,
f (v)= 30, f (v1)= 4, f (v2)= 6, f (v3)= 8, f (v4)= 10, f (v5)= 13, f (v6)= 16.
f (v7)= 24, f (v8)= 25.

Numbering of alphabets and writing the coding are done as in Illustration 1
using OFEB.

4. Coding: (wordwise) After coding horizontal string is written (Fig. 3).
5. Horizontal string: β(E1)β(E6)α(P1)(1, 1)β(P8)β(P2)α(E1)α(E4)α(E3)

α(P1)β(E4)β(E1)β(P4)(1, 1)
α(T )β(E3)α(P1)(1, 1)α(E2)β(E4)(1, 1)β(P5)β(P2)α(E4)β(E3)(1, 1)β(E2)

α(E4)β(E3)β(E2)α(P4)α(P1)(1, 1)α(P5)β(E3)α(E2)α(P1)β(P7)α(E1)α(T )

β(P4)α(P1)(1, 1)α(E2)β(E4)β(E1)α(T )α(E1)β(E1)

Illustration 4

1. Message: City 5 tallest building floor 34 room number 6.

2. Clue: Completeness and abundance marching together. (The number 7
stands for completeness and the number 8 for abundance)
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Fig. 3 Coded message (OFEB)

3. Labeling: The super mean labeling done for K1, 7 ∪K1, 8 is shown below
K1, 7 ∪K1, 8, p = 17, q = 15, p + q = 32

f (u)= 1, f (u1)= 3, f (u2)= 9, f (u3)= 12, f (u4)= 14, f (u5)= 24, f (u6)= 29,
f (u7)= 31, f (v)= 32, f (v1)= 4, f (v2)= 6, f (v3)= 10, f (v4)= 11, f (v5)= 17,
f (v6)= 20, f (v7)= 23, f (v8)= 27.

14 13 15 12 16 11 17 10 18 9 19 8 20 7 21 6 22 5 23 4 24 3 25 2 26 1

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

4. Numbering of alphabets: EBOF The numbers 1–13 are allotted to the even-
positioned alphabets moving backward from Z to X to V and so on. And the
numbers 14–26 are allotted to the odd-positioned alphabets moving forward
starting from A to C to E and so on. This method is named as EBOF (evens
backward, odds forward).

We express the numbering of alphabets in terms of a function for encoding.
For even-positioned alphabets, the function g is given by,

g(k + 1) =
(

27− k

2

)
f or k = 1, 3, 5, . . . , 25

For odd-positioned alphabets, the function g is given by,

g(k) =
(

27+ k

2

)
f or k = 1, 3, 5, . . . , 25.

For decoding we reverse the process.
By using EBOF and the super mean labeling on K1,7 ∪ K1,8, the message is
encoded.
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Fig. 4 Coded message (EBOF)

5. Coding: (wordwise) After coding Horizontal string is written (Fig. 4).

6. Horizontal string: α(E6)β(E1)β(P1)β(E6)(1, 1)β(P4)β(E1)α(P1)α(E7)(1, 1)
β(P1)α(P4)α(E4)α(E4)α(E7)β(P7)β(P1)(1, 1)α(E5)α(P5)β(E1)α(E4)α(P3)

β(E1)α(E3)β(P5)(1, 1)β(P4)α(E4)β(E3)β(E3)α(E2)(1, 1)β(P1)β(P3)β(E1)

α(E2)β(P1)β(E6)(1, 1)β(P4)β(E3)α(P5)α(E2)(1, 1)α(E2)β(E3)β(E3)β(P6)

(1, 1)α(E3)α(P5)β(P6)α(E5)α(E7)α(E2)(1, 1)β(P7)β(E1)α(E1).

Illustration 5

1. Message: Stop be silent for zero six days.

2. Clue: One more than perfect single two less than perfect double. (Here
perfect single refers to the first perfect number 6, one more than 6 is
7, perfect double is 6 × 2 = 12,2 less than this is 10, so the graph is
K1, 7 ∪K1, 10)

3. Labeling: The super mean labeling done for K1, 7 ∪K1, 10 is shown below
K1, 7 ∪K1, 10, p = 19, q = 17, p + q = 36

f (u)= 1, f (u1)= 3, f (u2)= 9, f (u3)= 12, f (u4)= 14, f (u5)= 30, f (u6)= 33,
f (u7) = 35, f (v)= 36, f (v1)= 4, f (v2)= 6, f (v3)= 10, f (v4)= 11, f (v5)= 13,

f (v6)= 15, f (v7)= 19, f (v8)= 22, f (v9)= 27, f (v10)= 31.
Numbering of alphabets and writing the coding are done as in Illustration 4
using EBOF.

4. Coding: (wordwise) After coding Horizontal string is written.
5. Horizontal string: β(E3)β(P1)β(E2)β(P2)(1, 1)β(P5)α(E5)(1, 1)β(E3)α(E7)

α(E4)α(E5)α(E3)β(P1)(1, 1)β(P4)β(E2)α(E2)(1, 1)α(T )α(E5)α(E2)β(E2)

(1, 1)β(E3)α(E7)α(E1)(1, 1)α(P3)α(P4)β(E6)β(E3).

(3)

Illustration 6
For the same shape, graph, and sentence, different coding pattern is used just for
comparison. By using PSNF and the super mean labeling on K1, 7 ∪ K1, 10, the
message is encoded.
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Fig. 5 Coded message (EBOF) Coded message (PSNF)

1. Horizontal string: β(E1)β(E2)α(E6)β(P1)(1, 1)β(P2)α(E4)(1, 1)β(E1)

α(P1)α(P4)α(E4)α(E5)β(E2)(1, 1)α(P2)α(E6)β(P7)(1, 1)β(E6)α(E4)β(P7)

α(E6)(1, 1)β(E1)α(P1)β(E5)(1, 1)α(E1)α(T )α(E2)β(E1)

(4)

For the same sentence, the codings are different with respect to the two methods
EBOF and PSNF are seen from (3) and (4) and so the Illustrations 5 and 6 are given
(Fig. 5).

3 Conclusion and Future Work

In this paper we have used the super mean labeling on any suitable two-star graph for
communicating some messages through different types of numbering of alphabets
OFEB, EBOF, and PSNF for coding. The coded messages are given in pictures in
order to make the understanding of the messages a bit difficult. Some more different
techniques using super mean labeling on a three star graph for encoding messages
are intended to be done.
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Abstract This article is devoted to present the first status connectivity indices and
its coindices of some composite graphs such as join, Cartesian product, corona
product, and composition of two given connected graphs.
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1 Introduction

A mathematical measure which correlates to the chemical structures of simple finite
graph is called topological index. In view of study in QSAR/QSPR, it plays a
remarkable role. In theoretical chemistry, topological indices are widely used for
modeling physicochemical, pharmacologic, toxicologic, nanoscience, biological,
and other properties of chemical compounds. In fact the first topological index,
namely, Wiener index, is proposed by Wiener [9]. For more details, see [3, 5–7].

Let v be a vertex in G. The sum of its distance from every other vertex in G

is called the status [4] of v in G, and it is denoted by σG(v), that is, σG(v) =∑
u∈V (G)

dG(u, v). Here dG(u, v) denotes the distance between u and v in G. The

status of a vertex is also called as transmission of a vertex [4].
The Wiener index W(G) of a connected graph G is defined as the sum of

the distances between all pairs of vertices of G. This is equivalent to W(G) =
1
2

∑
u,v∈V (G)

dG(u, v) = 1
2

∑
u∈V (G)

σG(v).
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The first and second Zagreb indices of G are denoted by M1(G) and M2(G)

which are defined as M1(G) = ∑
u ∈ V (G)(dG(u))2 = ∑

uv∈E(G)

(dG(u) + dG(v))

and M2(G) = ∑
uv∈E(G)

dG(u)dG(v), respectively. They are widely used in QSPR

and QSAR studies as well; see [2]. Likewise, Ashrafi et al. [1] introduced the
first and second Zagreb coindices of G denoted by M1(G) and M2(G) which are
defined as M1(G) = ∑

uv/∈E(G)

)(dG(u)+dG(v)) and M2(G) = ∑
uv/∈E(G)

dG(u)dG(v),

respectively.
Certainly the role of Zagreb indices is as motivating idea for first status

connectivity index and its coindex which are furnished by Ramane and Yalnaik in
[8]. Consequently of this, the first status connectivity index and its coindex of G

denoted by S1(G) and S1(G) are defined as S1(G) = ∑
uv∈E(G)

(
σG(u) + σG(v)

)

and S1(G) = ∑
uv/∈E(G)

(
σG(u) + σG(v)

)
, respectively. The first status connectivity

index is equivalent to S1(G) = ∑
u∈V (G)

dG(u)σG(u). Here dG(u) is the degree of a

vertex u ∈ V (G).

Ramane and Yalnaik [8] gave the various upper and lower bounds for the
status connectivity indices of a graph G. In addition, they have discussed the
linear regression analysis of the distance-based indices with the boiling points of
benzenoid hydrocarbons, and the linear model based on the status index is better
than the models corresponding to the other distance-based indices. Hence, we obtain
the exact formulae for first status connectivity indices and its coindices of composite
graphs such as join, Cartesian product, corona product, and composition of two
given connected graphs.

2 Composite Graphs

In this section, we obtain the first status connectivity indices and its coindices of
join, Cartesian product, corona product, and composition of two given connected
graphs.

Lemma 1 If G is a graph with n vertices, then S1(G) = 2(n− 1)W(G)− S1(G).

Proof By the formula of S1(G), we have S1(G) = ∑
uv/∈E(G)

(σG(u) + σG(v)) =
∑

{u,v}⊆V (G)

(σG(u)+ σG(v))− ∑
uv∈E(G)

(σG(u)+ σG(v)) = 2(n− 1)W(G)− S1(G).

A path and cycle on n vertices are denoted by Pn and Cn, respectively. It is

known that [8] S1(Pn) = 1
3n(n − 1)(2n − 1) and S1(Cn) = n3

2 when n is even,

and n(n2−1)
2 otherwise. Similarly, one can easily observe that W(Pn) = n(n2−1)

6 and

W(Cn) = n3

8 when n is even, and n(n2−1)
8 otherwise.
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2.1 Cartesian Product

The Cartesian product of G and H is denoted by G�H , and it has the vertex set
V (G�H) = V (G) × V (H) and (r1, s1)(r2, s2) ∈ E(G�H) if r1 = r2 and
s1s2 ∈ E(H) or r1r2 ∈ E(G) and s1 = s2.

Theorem 1 If G and H are connected graphs with n1, n2 vertices and m1,m2
edges, respectively, then S1(G�H) = n2

2S1(G) + n2
1S1(H) + 4n1m1W(H) +

4n2m2W(G).

Proof From the structure of G�H, the distance between (ui , vr ) and (uk, vs )

in G�H is dG(ui, uk) + dH (vr , vs ). Moreover, dG�H((ui, vr )) = dG(ui) +
dH (vr ). By the definition of σ(u) for G�H and (ui , vr ) ∈ V (G�H), we have

σG�H ((ui, vr )) = ∑
uk∈V (G)

∑
vs∈V (H)

(
dG(ui, uk) + dG(vr , vs )

)
= n2σG(ui) +

n1σH (vr ). Hence

S1(G�H) =
∑

(ui ,vr )∈V (G�H)

dG�H((ui, vr ))σG�H ((ui, vr ))

=
∑

ui∈V (G)

∑

vr∈V (H)

(
dG(ui)+ dH (vr )

)(
n2σG(ui)+ n1σH (vr)

)

=
∑

uk∈V (G)

∑

vr∈V (H)

(
n2dG(ui)σG(ui)+ n1dG(ui)σH (vr )

+n2dH (vr )σG(ui)+ n1dH (vr )σH (vr )
)

= n2
2S1(G)+ n2

1S1(H)+ 4n1m1W(H)+ 4n2m2W(G).

Let G1,G2, . . . ,Gn be graphs with vertex set V (Gi) and edge set E(Gi),

1 ≤ i ≤ n. The Cartesian product of G1,G2, . . . ,Gn is denoted by
n�

i=1
Gi.

Obviously,

∣∣∣∣V (
n�

i=1
Gi)

∣∣∣∣ =
n∏

i=1
|V (Gi)| . By induction on n, it is easily verified that

∣∣∣∣E(
n�

i=1
Gi)

∣∣∣∣ =
n∏

i=1
|V (Gi)|

n∑
i=1

|E(Gi)||V (Gi)| . The proof of the following theorem follows

from mathematical induction on number of graphs.

Theorem 2 If G1,G2, . . . ,Gn are connected graphs, then S1(
n�

i=1
Gi) =

n∑
i=1

S1(Gi)
n∏

j=1,j �=i

∣∣V (Gj )
∣∣2+ 4

n∑
i,j=1 i �=j

W(Gi)
∣∣V (Gj )

∣∣ ∣∣E(Gj)
∣∣

n∏
k=1,i �=k �=j

|V (Gk)|2.
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Corollary 1 If G is a graph, then S1(
�

Gn) = S1(
n�

i=1
G) = n |V (G)|2n−3

{ |V (G)| S1(G)+ 4(n− 1) |E(G)|W(G)
}
.

Example 1 Suppose Qn denotes the hypercube of dimension n. Then S1(Qn) =
S1(

�
Kn

2 ) = 22n−1n2.

Using Theorems 1 and 2 and S1(Pn),S1(Cn),W(Pn) and W(Cn), we obtain the
exact value of S1 for various graphs.

Example 2 The graphs Ln = Pn�K2, R = Pn�Cm, S = Cm�Cn, and T =
Pm�Pn are known as ladder, C4 nanotubes, C4 nanotorus, and grid, respectively.
The exact first status connectivity index and coindex of these graphs are given
below.

(i) S1(Ln) = 2n
[
2n2 + n− 2

]
.

(ii) S1(R) =

⎧
⎪⎨

⎪⎩

nm2

6

[
8n2 − 10n+ 6mn− 3m+ 2

]
, m is even

nm
6

[
8n2 − 16n+ 6m2n− 3m2 + 5

]
, m is odd.

(iii) S1(S) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

nm(n+m)(nm− 1), m and n are odd

n2m(m2 + nm− 1), m is odd and n is even

nm2(n2 + nm− 1), m is even and n is odd

n2m2(n+m), m and n are even.

(iv) S1(T ) = nm
3

[
4nm(m+ n)− 2(n2 +m2)− 6mn−m− n+ 4

]
.

Theorem 3 If G and H are graphs with n1, n2 vertices and m1,m2 edges,

respectively, then S1(G�H) = 2n2

[
n2(n1n2 − 1)− 2m2

]
W(G)+ 2n1

[
n1(n1n2 −

1)− 2m1

]
W(H)− n2

2S1(G)− n2
1S1(H).

Proof By Theorem 1, Lemma 1 and this fact that [10], W(G�H) = n2
2W(G) +

n2
1W(H), the proof is straightforward.

Using Theorem 3, we obtain the following.

Example 3 (i) S1(Ln) = 4m
3 [2m3 −m2 − 5m+ 3].

(ii) S1(R)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

nm2

12

[
4n3m+ 3n2m2 − 43mn− 32n2 + 60n+ 18n− 8

]
,

m is even

nm
12

[
4m2n3−43nm2−7n2m+3n2m2−48n2+18m2+4m

+99n−30
]
,m is odd.
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(iii) S1(S)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

nm
4 (nm− 1)(nm2+mn2− 5n− 5m), m and n are odd

nm
4 (n2m3− 6n2m+m2n3− 5nm2+ 5n), m is odd and n is even

nm
4 (n2m3+n3m2− 6nm2− 5mn2+ 5m), m is even and n is odd

n2m2

4 (n+m)(nm− 5), m and n are even.

(iv) S1(T ) = nm
3

[
n2m2(m+n)−6nm(n+m)+2(n2+m2)+2(n+m)+6mn−4

]
.

2.2 Join

The join G + H of G and H is denoted by G + H , and it is defined as the union
G ∪ H together with all the edges joining V (G) and V (H). From the structure of
G+H, the distance between two vertices u and v of G+H is

dG+H(u, v) =
{

1, if uv ∈ E(G) or uv ∈ E(H) or (u ∈ V (G) and v ∈ V (H))

2, otherwise.

Moreover, the degree of a vertex v in V (G + H) is dG(v) + |V (H)| whenever
v ∈ V (G) and dH (v)+ |V (G)| when v ∈ V (H).

Theorem 4 If G and H are graphs with n1, n2 vertices and m1,m2 edges,
respectively, then S1(G+H) = (2m1+n1n2)(2n1+n2−2)+ (2m2+n1n2)(2n2+
n1 − 2)−M1(G)−M1(H)− 2n1n2(m1 +m2).

Proof Let u ∈ V (G). Then from the structure of G+H, we obtain:

σG+H(u) =
∑

v∈V (G) u �=v,uv /∈E(G)

(2)+
∑

v∈V (G), u �=v,uv∈E(G)

(1)+
∑

v∈V (H)

(1)

= 2n1 + n2 − 2− dG(u).

Similarly, if v ∈ V (H), then σG+H (v) = 2n2 + n1 − 2 − dG(v). Hence by the
definition of S1, we have

S1(G+H)=
∑

u∈V (G)

(
dG(u)+n2

)(
2n1+n2−2−dG(u)

)

+
∑

u∈V (H)

(
dH (u)+n1

)(
2n2+n1−2−dH (u)

)

=
∑

u∈V (G)

(
(2n1+n2−2)dG(u)−(dG(u))2+n2(2n1+n2−2)−n2dG(u)

)

+
∑

u∈V (H)

(
(2n2+n1−2)dH (u)−(dH (u))2+n1(2n2+n1−2)−n1dH (u)

)



484 K. Pattabiraman and A. Santhakumar

= (2m1 + n1n2)(2n1 + n2 − 2)−M1(G)− 2n1n2m1

+(2m2 + n1n2)(2n2 + n1 − 2)−M1(H)− 2n1n2m2.

According to [10], we know that W(G + H) = |V (G)| (|V (G)| − 1) +
|V (H)| (|V (H)| − 1) + |V (G)| |V (H)| − |E(G)| − |E(H)| by this formula,
Theorem 4 and Lemma 1, we obtain the following theorem.

Theorem 5 If G and H are graphs with n1, n2 vertices and m1,m2 edges, respec-
tively, then S1(G+H) = n1n2(n1+n2+6)+6(m1+m2−n1m1−m2n2)−4(m1n2+
m2n1)+2n1n2(m1+m2)+2(n1+n2)+2(n3

1+n3
2)−4(n2

1+n2
2)+M1(G)+M1(H).

By using Theorems 4 and 5, we get the following.

Corollary 2 If G is a graph with n vertices and m edges, then (i) S1(G + Kq) =
2m(2n+ nq + q − 2)+ nq(3n+ 3q − 4)+ q(q − 1)(n+ q − nq − 1)−M1(G).

(ii) S1(G+Kq) = 2(n3+ q3)− 4(n2+ q2)+ 2(n+ q)+nq(n+ 2m+ q+ 6)−
2m(3n+ 2q − 3)+ q(q − 1)(2n+ 4q + nq + 2)+M1(G).

Corollary 3 Let Kp,q = Kp +Kq. Then (i) S1(Kp,q) = pq(3p + 3q − 4).
(ii) S1(Kp,q) = 2(p3 + q3)− 4(p2 + q2)+ 2(p + q)+ pq(p + q + 6).

One can observe that M1(Cn) = 4n, n ≥ 3, M1(P1) = 0, M1(Pn) = 4n− 6, n >

1. Using Corollary 2, M1(Cn) and M1(Pn), we compute the formulae for status
connectivity indices and it coindices of fan graph Pn+K1 and wheel graph Cn+K1.

Example 4

(i) S1(Pn +K1) = 9n2 − 11n+ 8 and S1(Pn +K1) = 2n3 − 7n2 + 19n− 6.

(ii) S1(Cn +K1) = 9n2 − 7n and S1(Cn +K1) = 2n3 − 7n2 + 15n.

2.3 Composition

The composition of G and H is denoted by G[H ], and it has the vertex set V (G)×
V (H). Two vertices (ui, vr ) and (uk, vs ) are adjacent in G[H ] if and only if uiuk ∈
E(G) or [ui = uk and vrvs ∈ E(H)].
Theorem 6 Let G and H be two connected graphs with n1, n2 vertices and m1,m2
edges, respectively. Then S1(G[H ]) = n3

2S1(G) + 4n2m1W(G) − n1M1(H) +
4n2

2m1(n2 − 1)+ 4n1m2(n2 − 1)− 4m1m2n2.

Proof For the composition of two graphs, dG[H ]((u, v)) = n2dG(u) + dH (v).

Moreover, the distance between two vertices (ui , vr ) and (uk, vs ) of G[H ] is

dG[H ]((ui, vr ), (uk, vs)) =

⎧
⎪⎪⎨

⎪⎪⎩

dG(ui, uk) ui �= uk

2 ui = uk, vrvs /∈ E(H)

1 ui = uk, vrvs ∈ E(H).

Let (ui, vr ) ∈

V (G[H ]). Then
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σG[H ]((ui, vr )) =
∑

(uk,vs)∈V (G[H ]), ui �=uk

dG(ui, uk)

+
∑

(ui ,vs)∈V (G[H ])
dG[H ]((ui, vr ), (ui, vs))

= n2σG(ui)+ dH (vr )+ 2(n2 − 1− dH (vr ))

= n2σG(ui)+ 2(n2 − 1)− dH(vr ). (1)

By the definition of S1, we have

S1(G[H ]) =
∑

(ui ,vr )∈V (G�H)

dG[H ]((ui, vr ))σG[H ]((ui, vr ))

=
∑

ui∈V (G)

∑

vr∈V (H)

(
n2dG(ui)+dH (vr )

)(
n2σG(ui)+2(n2−1)−dH (vr )

)
, by (1)

=
∑

ui∈V (G)

∑

vr∈V (H)

[
n2

2dG(ui)σG(ui)+ 2(n2 − 1)n2dG(ui)− n2dG(ui)dH (vr )

+n2dH (vr )σG(ui)+ 2(n2 − 1)dH (vr )− (dH (vr ))
2
]

= n3
2S1(G)+ 4n2m1W(G)− n1M1(H)+ 4n2

2m1(n2 − 1)

+4n1m2(n2 − 1)− 4m1m2n2.

Recall from [10] that W(G[H ]) = |V (H)|2 (W(G)+ |V (G)|)− |V (G)| (|V (H)|
+ |E(H)|). According to W(G[H ]) and S1(G[H ]), we get the following.

Theorem 7 If G and H are graphs with n1, n2 vertices and m1,m2 edges, respectively,

then S1(G[H ]) = 2n2

[
n2(n1n2 − 1) − 2m1

]
W(G) − n3

2S1(G) − n1M1(H) +
2n1(n1n2)(n

2
2 − n2 −m2)− 4(n2 − 1)(n2

2m1 + n1m2)− 4m1m2n2.

Using Theorems 6 and 7, we get the following.

Corollary 4 If G be a connected graph with n vertices and m edges, then

(i) S1(G[Kq ]) = q3S1(G)+ 4qmW(G)+ q(q − 1)(2mq + nq − n).

(ii) S1(G[Kq ]) = 2q[q(nq− 1)− 2m]W(G)− q3S1(G)+ q(q− 1)[nq2− 6mq−
3nq + 3n− q].

Using Corollary 4, we obtain the status connectivity indices and its coindices of
open fence graph Pn[K2] and closed fence graph Cn[P2].
Example 5

(i) S1(Pn[K2]) = 4
3 (n− 1)(n3 + 4n2 − 3n+ 9).

(ii) S1(Cn[K2]) =
{
n(n3 + 4n2 + 10), n is even

n(n3 + 4n2 − n+ 6), n is odd.
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(iii) S1(Pn[K2]) = 4
3n(n− 1)(n2 + 3n+ 2)+ 2(11n+ 10).

(iv) S1(Cn[K2]) =
{
n3(n− 5)+ 2(11n− 2), n is even

n(n2 − 1)(n− 5)+ 2(11n− 2), n is odd.

2.4 Corona Product

The corona product of G and H is denoted by G ◦ H and obtained by taking one
copy of G and |V (G)| copies of H and by joining each vertex of the ith copy of H
to the ith vertex of G, where 1 ≤ i ≤ |V (G)| .
Theorem 8 Let G and H be two connected graphs with n1, n2 vertices and m1,m2
edges, respectively. Then S1(G◦H) = (n2+1)S1(G)+4(n2+1)(m2+n2)W(G)−
n1M1(H)+ n1(2m2 + n2)(2n1n2 + n1 − 2)+ n1(n2(2m1 + n1n2)− 2m2).

Proof If Hi is the ith copy of H, i = 1, 2, . . . , n1. Let v ∈ V (Hi) and the ith
vertex of G be ui . Then by the structure of G ◦ H, we obtain, σG◦H (v) = (n2 +
1)σG(ui) + 2n1n2 + n1 − dH (v) − 2 and σG◦H(ui) = (n2 + 1)σG(ui) + n1n2.

According to the definition of first status connectivity index, we get

S1(G ◦H)=
n1∑

i=1

∑

v∈V (Hi)

(
dH (v)+ 1

)(
(n2+ 1)σG(ui)+ 2n1n2+ n1− dH (v)− 2

)

+
∑

ui∈V (G)

(
dG(ui)+n2

)(
(n2+ 1)σG(ui)+ n1n2

)
=A1+A2,where

A1 =
n1∑

i=1

∑

v∈V (Hi)

(
dH (v)+ 1

)(
(n2 + 1)σG(ui)+ (2n1n2 + n1 − 2)− dH (v)

)

=
n1∑

i=1

∑

v∈V (Hi)

(
(n2 + 1)dH(v)σG(ui)+ (2n1n2 + n1 − 2)dH(v)− (dH (v))2

+(n2 + 1)σG(ui)+ (2n1n2 + n1 − 2)− dH (v)
)

= 2(2m2 + n2)(n2 + 1)W(G)− n1M1(H)+ (2m2 + n2)n1(2n1n2 + n1 − 2)

−2n1m2.



Computing Status Connectivity Indices and Its Coindices of Composite Graphs 487

A2 =
∑

ui∈V (G)

(
dG(ui)+ n2

)(
(n2 + 1)σG(ui)+ n1n2

)

=
∑

ui∈V (G)

(
(n2 + 1)dG(ui)σG(ui)+ n1n2dG(ui)+ n2(n2 + 1)σG(ui)+ n1n

2
2

)

= (n2 + 1)S1(G)+ 2n2(n2 + 1)W(G)+ 2n1n2m1 + n2
1n

2
2.

Adding A1 and A2, we obtain the desired result.

Using the formula [10], W(G◦H) = |V (G)| |V (H)| (|V (G)| |V (H)|+|V (G)|−
1)+ (|V (H)| + 1)2W(G)− |V (G)| |E(H)| , S1(G ◦H) and Lemma 1, we get the
following.

Theorem 9 If G and H are graphs with n1, n2 vertices and m1,m2 edges,
respectively, then S1(G ◦ H) = 2(n2 + 1)

[
(n2 + 1)(n1n2 + n1 − 1) − 2(m2 +

n2)
]
W(G) + n1M1(H) − (n2 + 1)S1(G) + n1n2

[
2(n1n2 + n1 − 1) − (2m1 +

n1n2)
]− 2n1m2

[
n1n2 + n1 − 2

]− n1(2m2 + n2)(2n1n2 + n1 − 2).

Conclusion Ultimately, the degree and distance-based topological indices are
widely used in mathematical chemistry which are helpful to study the properties of
molecules. In this article, we have discussed two indices of various graph operations.
Furthermore, as we found in this as tide, one can estimate the value of same indices
for more classes of graphs.
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Laplacian Energy of Operations on
Intuitionistic Fuzzy Graphs

E. Kartheek and S. Sharief Basha

Abstract The concept of Laplacian energy of an intuitionistic fuzzy graph is
extended to Laplacian energy in operations on intuitionistic fuzzy graph. In this
paper, we have obtained the value of Laplacian energy in different operations such
as union and join between two intuitionistic fuzzy graphs. Also we study the relation
between the Laplacian energy in the operations on two intuitionistic fuzzy graphs.

1 Introduction

Fuzzy set has emerged as a potential area of interdisciplinary research, and fuzzy
graph theory is of recent interest. The concept of a fuzzy graph relation was defined
by Zadeh [3], and it has found applications in the analysis of cluster patterns.
Rosenfeld [1] considered the fuzzy relations on fuzzy sets and developed the
structure of fuzzy graphs.

In this paper we are concerned with simple graphs. Let G be a graph with n
vertices and m edges, and we say this G is a (n,m) graph.

Let di be the degree of ith vertex of G,i=1,2,. . . ,n. The spectrum of the graph G,
consisting of the numbers λ1, λ2, . . . , λn, is the spectrum of its adjacency matrix [2].
The Laplacian spectrum of the graph G ,consisting of the numbers μ1, μ2, . . . , μn,
is the spectrum of its Laplacian matrix.

In this paper we introduce the concept of Laplacian energy of operations on
intuitionistic fuzzy graphs. Section 2 consists of different operations such as union
and join of two intuitionistic fuzzy graphs definition, and in this section ,we present
the Laplacian energy of union and join of two intuitionistic fuzzy graphs . We give
the conclusion in the last section.
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2 Laplacian Energy of Some Operations on Intuitionistic
Fuzzy Graphs

2.1 Laplacian Energy of Union of an Intuitionistic Fuzzy
Graph

Definition 1 Union of Intuitionistic Fuzzy Graph Let G1 = (V1, E1)and G2 =
(V2, E2) be two intuitionistic fuzzy graphs with V1

⋂
V2 = φ and G = G1

⋂
G2 =(

V1
⋂

V2, E1
⋂

E2
)
.

Then the union of intuitionistic fuzzy graphs G1and G2 is an intuitionistic fuzzy
graph defined by

(
μ1

⋃
μ′1

)
(v) =

{
μ1 (v) if v ∈ V1 − V2

μ′1 (v) if v ∈ V2 − V1

(
γ1

⋃
γ ′1
)
(v) =

{
γ1 (v) if v ∈ V1 − V2

γ ′1 (v) if v ∈ V2 − V1

(
μ1

⋃
μ′1

) (
vivj

) =
{
μ2ij if eij ∈ E1 − E2

μ′2ij if eij ∈ E2 − E1

(
γ1

⋃
γ ′1
)
(viv) =

{
γ2ij if eij ∈ E1 − E2

γ ′2ij if eij ∈ E2 − E1

Where (μ1, γ1) and
(
μ′1, γ ′1

)
refer to the vertex membership and nonmembership

of G1and G2,respectively;(μ2, γ2)and
(
μ′2, γ ′2

)
refer to the edge membership and

nonmembership of G1 and G2,respectively (Fig. 1).

Adjacency matrices of G1 and G2 are given below

A (G1) =
⎡

⎣
0 (0.1, 0.6) (0.2, 0.8)

(0.1, 0.6) 0 (0.5, 0.2)
(0.2, 0.8) (0.5, 0.2) 0

⎤

⎦A (G2) =
[

0 (0.1, 0.7)
(0.1, 0.7) 0

]

The membership and nonmembership values of G1

A
(
μij (G1)

) =
⎡

⎣
0 0.1 0.2

0.1 0 0.5
0.2 0.5 0

⎤

⎦A
(
γij (G1)

) =
⎡

⎣
0 0.6 0.8

0.6 0 0.5
0.8 0.2 0

⎤

⎦

(0.2,0.8)

u3 u2 v1

(0.1,0.6)

(0.9,0.1) (0.5,0.2) (0.5,0.2)(0.5,0.2) (0.2,0.8)

u1 (0.3,0.6)u1

G1 G2 G1 U G2

(0.3,0.6)

u3 (0.9,0.1) u2 (0.5,0.2) u3 (0.2,0.8)

u4 (0.1,0.6)v2 (0.1,0.6)

(0.1,0.7) (0.1,0.7)(0.1,0.6)
(0.2,0.8)

Fig. 1 G1,G2 and G1UG2
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and A
[
μij (G2)

] =
[

0 0.1
0.1 0

]
, A

[
γij (G2)

] =
[

0 0.7
0.7 0

]

L
[
μij (G1)

] =
⎡

⎣
0.3 −0.1 −0.2
−0.1 0.6 −0.5
−0.2 −0.5 0.7

⎤

⎦ , L
[
γij (G1)

] =
⎡

⎣
1.4 −0.6 −0.8
−0.6 0.8 −0.5
−0.8 −0.2 1.0

⎤

⎦

spec
[
L
(
μij (G1)

)] = {0 , 0.4394 , 1.1606 }

spec
[
L
(
γij (G1)

)] = { 0 , 1.0708 , 2.1292 }

LE
[
μij (G1)

] =
∣∣∣∣0−

2 (1.6)

3

∣∣∣∣ +
∣∣∣∣0.4394− 2 (1.6)

3

∣∣∣∣ +
∣∣∣∣1.1606− 2 (1.6)

3

∣∣∣∣

= 1.0666 + 0.6272 + 0.0939 = 1.7877

LE
[
γij (G1)

] =
∣∣∣∣0−

2 (3.2)

3

∣∣∣∣ +
∣∣∣∣0.4394− 2 (3.2)

3

∣∣∣∣ +
∣∣∣∣2.1292− 2 (3.2)

3

∣∣∣∣

= 2.1333 + 1.0625 + 0.0041 = 3.1999

Similarly the membership and nonmembership values of G2

A
(
μij (G2)

) =
[

0 0.1
0.1 0

]
and A

(
γij (G2)

) =
[

0 0.7
0.7 0

]

L
(
μij (G2)

) =
[

0.1 −0.1
−0.1 0, 1

]
and L

(
γij (G2)

) =
[

0.7 −0.7
−0.7 0, 7

]

Spec
[
L
(
μij (G2)

)] = {0, 0.2}

Spec
[
L
(
γij (G2)

)] = {0, 1.4}

LE
[
μij (G2)

] =
∣∣∣∣0−

2 (0.1)

2

∣∣∣∣ +
∣∣∣∣0.2−

2 (0.1)

2

∣∣∣∣ = 0.1+ 0.1 = 0.2

LE
[
γij (G2)

] =
∣∣∣0− 2(0.7)

2

∣∣∣+
∣∣∣1.4− 2(0.7)

2

∣∣∣ = 0.7+0.7 = 1.4Adjacency matrix

of G1
⋃

G2 is given below

A
[
G1

⋃
G2

]
=

⎡

⎢⎢⎢⎢⎢⎣

0 (0.1, 0.6) (0.2, 0.8) 0 0
(0.1, 0.6) 0 (0.5, 0.2) 0 0
(0.2, 0.8) (0.5, 0.2) 0 0 0

0 0 0 0 (0.1, 0.7)
0 0 0 (0.1, 0.7) 0

⎤

⎥⎥⎥⎥⎥⎦
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The membership matrix of G1
⋃

G2is

μij

[
G1

⋃
G2

]
=

⎡
⎢⎢⎢⎢⎢⎣

0 0.1 0.2 0 0
0.1 0 0.5 0 0
0.2 0.5 0 0 0
0 0 0 0 0.1
0 0 0 0.1 0

⎤
⎥⎥⎥⎥⎥⎦

L
[
μij

[
G1

⋃
G2

]]
=

⎡
⎢⎢⎢⎢⎢⎣

0.3 −0.1 −0.2 0 0
−0.1 0.6 −0.5 0 0
−0.2 −0.5 0.7 0 0

0 0 0 0.1 −0.1
0 0 0 −0.1 0.1

⎤
⎥⎥⎥⎥⎥⎦

Spec
[(
μij (G1 ∪G2)

)] = {0, 0, 0.2, 0.4394, 1.1606}

LE
[
μij (G1 ∪G2)

] =
∣∣∣0− 2(1.8)

5

∣∣∣ +
∣∣∣0− 2(1.8)

5

∣∣∣ +
∣∣∣0.2− 2(1.8)

5

∣∣∣
+

∣∣∣0.4394− 2(1.8)
5

∣∣∣ +
∣∣∣1.1606− 2(1.8)

5

∣∣∣
= 0.72+ 0.72+ 0.52+ 0.2806+ 0.4406 = 2.6812

A [γij
[
G1

⋃
G2

]
] =

⎡

⎢⎢⎢⎢⎢⎣

0 0.6 0.8 0 0
0.6 0 0.2 0 0
0.8 0.2 0 0 0
0 0 0 0 0.7
0 0 0 0.7 0

⎤

⎥⎥⎥⎥⎥⎦
L
[
μij

[
G1

⋃
G2

]]

=

⎡

⎢⎢⎢⎢⎢⎣

1.4 −0.6 −0.8 0 0
−0.6 0.8 −0.2 0 0
−0.8 −0.2 1.0 0 0

0 0 0 0.7 −0.7
0 0 0 −0.7 0.7

⎤

⎥⎥⎥⎥⎥⎦

Spec
[(

μij

(
G1

⋃
G2

))]
= {0, 0, 1.0708 , 1.4, 2.1292}

LE
[
μij (G1 ∪G2)

] =
∣∣∣∣0−

2 (4.6)

5

∣∣∣∣ +
∣∣∣∣0−

2 (4.6)

5

∣∣∣∣ +
∣∣∣∣1.0708 − 2 (4.6)

5

∣∣∣∣

+
∣∣∣∣1.4−

2 (4.6)

5

∣∣∣∣ +
∣∣∣∣2.1292 − 2 (4.6)

5

∣∣∣∣

= 1.86+ 1.84+ 0.7592 + 0.44+ 0.2892 = 5.1784
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We observed here that
LE

[
μij (G1)

] + LE
[
μij (G2)

] ≤ LE
[
μij

(
G1

⋃
G2

)]
and also

LE
[
γij (G1)

] + LE
[
γij (G2)

] ≤ LE
[
γij

(
G1

⋃
G2

)]

3 Laplacian Energy of Join of Two Intuitionistic Fuzzy
Graph

Definition 2 The join of two intuitionistic fuzzy graphs G1 and G2 is an intuition-
istic fuzzy graphG1 +G2 −

(
V1

⋃
V2, E1

⋃
E2

)
defined by

(
μ1 + μ′1

)
(v) =

(
μ1

⋃
μ′1

)
(v) if v ∈ V1

⋃
V2

(
γ1 + γ ′1

)
(v) =

(
γ1

⋃
γ ′1
)
(v) if v ∈ V1

⋃
V2

(
μ2 + μ′2

) (
vivj

) = (
μ2

⋃
μ′2

) (
vivj

)
if vivj ∈ E1

⋃
E2

= min
(
μ1 (vi) , μ

′
1

(
vj
))

if vivj ∈ E′ and

(
γ2 + γ ′2

) (
vivj

) = (
γ2

⋃
γ ′2
) (

vivj
)

if vivj ∈ E1
⋃

E2

= max
(
γ1 (vi) , μ

′
1

(
vj

))
if vivj ∈ E′

In the previous section we already find (Fig. 2)

LE (G1) = (1.77877, 3.1999)

LE (G2) = (0.2, 1.4)

(0.2,0.8)
(0.2,0.8)

(0.1,0.6)

u1(0.3,0.6)

u3 (0.9,0.1) u2(0.5,0.2)(0.5,0.2) v1 (0.2,0.8)

(0.2,0.8)

(0.2,0.8)
(0.2,0.8)

(0.2,0.8)

(0.6,0.4)

(0.5,0.2) (0.2,0.8)

v2 (0.1,0.6) (0.3,0.6)

(0.1,0.7) (0.1,0.7)

u1

u3 u2

V1

V2

G1

G1 + G2

G2

Fig. 2 G1,G2 andG1 +G2
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Now we will verify the Laplacian energy of join of two intuitionistic fuzzy graphs
G = G1 +G2

A (G1 +G2) =

⎡

⎢⎢⎢⎢⎢⎣

0 (0.1, 0.6) (0.2, 0.8) (0.3, 0.6) (0.2, 0.8)
(0.1, 0.6) 0 (0.5, 0.0) (0.2, 0.8) (0.2, 0.8)
(0.2, 0.8) (0.5, 0.0) 0 (0.6, 0.4) (0.2, 0.8)
(0.3, 0.6) (0.2, 0.8) (0.6, 0.4) 0 (0.1, 0.7)
(0.2, 0.8) (0.2, 0.8) (0.2, 0.8) (0.1, 0.7) 0

⎤

⎥⎥⎥⎥⎥⎦

A
[
μij ((G1 +G2))

] =

⎡

⎢⎢⎢⎢⎢⎣

0 0.1 0.2 0.3 0.2
0.1 0 0.5 0.2 0.2
0.2 0.5 0 0.6 0.2
0.3 0.2 0.6 0 0.1
0.2 0.2 0.2 0.1 0

⎤

⎥⎥⎥⎥⎥⎦
L
[
μij ((G1 +G2))

]

=

⎡

⎢⎢⎢⎢⎢⎣
−

0.8 −0.1 −0.2 −0.3 −0.2
−0.1 1.0 −0.5 −0.2 −0.2
−0.2 −0.5 1.5 −0.6 −0.2
−0.3 −0.2 −0.6 1.2 −0.1
−0.2 −0.2 −0.2 −0.1 0.7

⎤

⎥⎥⎥⎥⎥⎦

Spec
[
L
(
μij (G1 +G2)

)] = {0.0204 , 2.0557 , 1.3463 , 0.9135 , 0.8641}

LE
[
μij (G1 +G2)

] =
∣∣∣0.0204− 2(2.6)

5

∣∣∣ +
∣∣∣2.0557− 2(2.6)

5

∣∣∣ + |1.3463

− 2(2.6)
5

∣∣∣ +
∣∣∣0.9135− 2(2.6)

5

∣∣∣ +
∣∣∣0.8641− 2(2.6)

5

∣∣∣
= 1.0196+ 1.0157+ 0.3063+ 0.1265+ 0.1759 = 2.2922

A
[
γij ((G1 +G2))

] =

⎡
⎢⎢⎢⎢⎢⎣

0 0.6 0.8 0.6 0.8
0.6 0 0 0.8 0.8
0.8 0 0 0.4 0.8
0.6 0.8 0.4 0 0.7
0.8 0.8 0.8 0.7 0

⎤
⎥⎥⎥⎥⎥⎦

L
[
γij ((G1 +G2))

]

=

⎡
⎢⎢⎢⎢⎢⎣

2.8 −0.6 −0.8 −0.6 −0.8
−0.6 2.2 0 −0.8 −0.8
−0.8 0 2.0 −0.4 −0.8
−0.6 −0.8 −0.4 2.5 −0.7
−0.8 −0.8 −0.8 −0.7 3.1

⎤
⎥⎥⎥⎥⎥⎦

Spec
[
L
(
γij (G1 +G2)

)] = {3.8883, 3.5029, 3.2064, 2.6023, 0.}
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LE
[
γij (G1 +G2)

] =
∣∣∣3.8883− 2(6.3)

5

∣∣∣ +
∣∣∣3.5029− 2(6.3)

5

∣∣∣
+

∣∣∣3.2064− 2(..36)
5

∣∣∣ +
∣∣∣2.60223− 2(6.3)

5

∣∣∣ +
∣∣∣0− 2(6.3)

5

∣∣∣
= 1.3683+ 0.9829+ 0.6864+ 0.5177+ 2.52 = 6.0753

Here also we observed that
LE

[
μij (G1)

] + LE
[
μij (G2)

] ≤ LE
[
μij (G1 +G2)

]
and also

LE
[
γij (G1)

] + LE
[
γij (G2)

] ≤ LE
[
γij (G1 +G2)

]

4 Conclusion

The Laplacian matrix and energy for an intuitionistic fuzzy graph are defined.
Some results on Laplacian spectra of intuitionistic fuzzy graphs may reveal more
analogous results of these kinds and will be discussed in the forthcoming papers.
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Wiener Index of Hypertree

L. Nirmala Rani, K. Jennifer Rajkumari, and S. Roy

Abstract Binary trees are enormously used in data structure as they can be easily
stored, manipulated, and retrieved. The most straightforward and extensive applica-
tions of binary trees are in the study of computer searching and sorting methods,
binary identification problems, and variable binary codes. Many complex networks
are easily classified and analyzed by the usage of binary tree representations. A
binary tree is defined as a tree in which there is exactly one vertex of degree two
and each of the remaining vertices is of degree one or three. Every binary tree is
a rooted tree with odd number of vertices. A special type of binary tree known as
hypertree is an interconnection topology which combines the easy expansibility of
tree structures with the compactness of the hypercube. In this paper we find the
Wiener index of hypertree.

1 Interconnection Networks and Graphs

Food webs, protein interactions, airline travel routes, computer chip wiring, and
telephone call graphs are all networks that are models of phenomena surrounding
us. Social activity-based visual networks like Facebook and Orkut, exhibiting
the association of a person with friends and others, mobile communication net-
works without which the human race become paralyzed and desperate, satellite
communication (audio and visual) networks that are essential for the blissful
existence of human race on this earth, and space communication networks to
explore the wonderful creations of celestial bodies and calculate the effect of
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their orbital forces on this earth and human race are a few of the innumerable
number of natural networks in the creation of this universe and also man-made
networks that are invented or constructed for the sustenance of human race in
this universe. Having methods and tools to better understand these networks and
their dynamics is beneficial for knowledge advancement and better design of future
systems.

We categorize and explore these networks as graph-related indicators. Presenta-
tion of any concept through a diagram will facilitate a better understanding of the
concept. Problems related to Mathematics, Science, Engineering, and even real-life
situations can be diagrammatically represented by points on a plane and joining a
few pairs of points with lines. Such a mathematical abstraction is the foundation of
graph theory. Graph serves as a mathematical model to analyze successfully many
concrete real-life problems.

2 Topological Indices

A topological index is a structural invariant real number related to a graph. Several
topological indices have been defined, and many of them have found applications as
means to model chemical, pharmaceutical, and other properties of molecules. Usage
of topological indices in chemistry began in 1947 when chemist Harold Wiener
developed the most widely known topological descriptor, the Wiener index, and
used it to determine physical properties of types of alkanes known as paraffins.
There are many topological indices such as Hyper-Wiener index, Eata index, PI
index, Alpha index, Gamma index, Harary index, Hyper-Harary index, Kirchhoff
index, Pasareti index, Detour index, Hyper-Detour index, Hosoya index, Shimbel
index, etc. [1–5, 10].

3 Shortest Path Problems

In this competitive and time-conscious era, the shortest path concept between two
vertices or nodes in networks or between the sources and destinations is very much
needed. The shortest path problem is to find a shortest path in a graph such that
the sum of the weights of its constituent edges is minimized. The shortest path
problem can be defined for undirected, directed, or mixed. There are different types
of shortest path graph problems. (1) The single-source shortest path problem is
to find shortest paths from a source vertex v to all other vertices in the graph.
(2) The single-destination shortest path problem is to find shortest paths from all
vertices in the directed graph to a single destination vertex v. (3) The all-pairs
shortest path problem is to find shortest paths between every pair of vertices (u, v) in
the graph.
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Shortest path problem has been extensively used in all interconnection networks
and especially in routing between the sending station and receiving station.

4 Wiener Index

It is a topological invariant based on the all-pairs shortest path problem in networks,
named after its inventor Wiener [5]. It is defined as half the sum of shortest paths
between any two vertices of an undirected graph. It is calculated in many ways.

(1) Multiply the number of vertices on each side of an edge and add all such
contributions. Let T be a tree with n vertices and e as one of its edges. Let
n1(e) and n2(e) = n − n1(e) be the numbers of vertices of the two parts of
T − e. Then the wiener index formula is given by: W =∑p−1

e n1(e)n2(e).
(2) The Wiener edge decomposition formula which is valid only for acyclic graphs

has been generalized by Lukovits and Gutman in 1994 to be applicable to cycle
containing systems . The general edge-decomposition formula is given by E =∑

e

∑
i≤j [pij (e)/pij ] where pij is the total number of paths between vertices i

and j that are of length l(i, j). The number of such paths that contain the edge
e is denoted by pij (e).

(3) The Wiener index W of a graph G is equal to half the sum of the off-diagonal
elements of the distance matrix D : W = 1

2

∑p

i=1

∑p

j=1[D]ij where [D]ij
represents the length of a shortest path between vertices i and j in G.

(4) Consequently, Wiener index based on all pairs shortest path problem is defined
as half the sum of all shortest paths between unordered pairs of vertices of a
graph. Wiener index has been calculated for many graphs [6–13].

Before proceeding to find the Wiener index of hypertree, we recall some of the
basic concepts and definitions of tree, complete tree, and hypertree.

5 Complete Binary Tree

A tree is a connected graph without any cycles. The most common type of tree is
the binary tree. A rooted binary tree represents a data structure with a hierarchical
relationship among its various elements. In many ways we can systematically
list all nodes of a tree. There are three important listing or ordering, namely,
preorder, inorder, and postorder as we trace the tree counterclockwise starting from
the root. For preorder, we list a node the first time we pass it. For inorder, we
list a leaf the first time we pass it but list an interior node the second time we
pass it. For postorder, we list a node the last time we pass it [19]. A binary tree
Tr , for any nonnegative integer r , in which each internal node has exactly two
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Fig. 1 3-Rooted complete binary tree T 3
4 with postorder

descendants, described as left and right children of the parent node, and all the
leaves at the same level is known as complete binary tree of height r − 1. Each
level i, 1 ≤ i ≤ r , contains 2i−1 vertices. Tr has exactly 2r − 1 vertices. The
1-rooted complete binary tree T 1

r is obtained from a complete binary tree Tr by
attaching to its root a pendant edge. The new vertex , called as the root of Tr , is
considered to be at level 0. The n-rooted complete binary T n

r is obtained by taking
n vertex disjoint 1-rooted complete binary trees T 1

r on 2r vertices each, with roots
say r1, r2, r3, ..., rn and adding the edges (ri , ri+1), 1 ≤ i ≤ n − 1 . The number
of vertices and the edges of T n

r are n(2r ) and n(2r − 1) [17]. See Fig. 1 for a
3-rooted complete binary tree are used in embedding of hypercubes, grids [14],
cycles and wheels [15], and recursive circulants [16] and in many multiprocessor
networks [18].

6 Hypertree

The basic skeleton of a hypertree is a complete binary tree Tr . A hypertree is a
hypergraph H if there is a tree T such that the hyperedges of H induce subtrees in
T . A hypertree is also called as a subtree hypergraph or arboreal hypergraph [19–
21]. The nodes of the hypertree are labelled as follows: the root node is kept at level 1
with a label 1. The left and right children of this root node are labelled by appending
a 0 and 1. Successively the labels of left and right children of any parent node are
formed by appending a 0 and 1 to their parent node, respectively. See Fig. 2a. The
decimal labels of the hypertree in Fig. 2a are depicted in Fig. 2b. The children of
the parent node y are labelled as 2y and 2y + 1. Additional links in a hypertree
are horizontal, and two nodes in the same level r of the tree are joined if their label
difference is 2r−2. A hypertree with r level is denoted as HT (r). It has 2r−1 vertices
and 2(2r−1−1) edges. A hypertree is an interconnection topology for multicomputer
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Fig. 2 (a) HT (5) with binary labels. (b) HT (5) with decimal labels

systems which combines the best features of the binary tree and the hypercube. This
topology is particularly facinative for implementation of multiprocessor networks
of the future, where a complete computer with a significant amount of memory can
fit on a single VLSI chip. Hypertrees are used in fault tolerance and transmission
delay in interconnection networks [22, 23].
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(a) (b)

Fig. 3 (a) Extended theta mesh EMT (5). (b) Extended rooted theta mesh ITM(5)

6.1 Extended Theta Mesh

Let Tr be a complete binary tree, r ≥ 1. A graph which is obtained from two
copies of complete binary tree Tr , say T 1

r ,T 2
r by joining each vertex of T 1

r with
the corresponding vertex of T 2

r by an edge, is called an extended theta mesh and is
denoted by ETM(r). See Fig. 3a. It has 2r+1 − 2 vertices. A graph obtained from
ETM(r) by identifying a pendant vertex is known as identified extended theta mesh
with 2r − 1 vertices and denoted as ITM(r). See Fig. 3b. It has been proved that
ITM(r) is isomorphic to HT (r) [23].

Definition 1 Let G be a connected undirected graph with vertex set V (G) and
edge set E(G). The Wiener index D(G) of G is defined as half the sum of all
shortest distances d(vi, vj ) between the unordered pairs vi, vj of vertices of G.,
i.e., D(G) = 1

2

∑
vi ,vj∈V (G) d(vi, vj ) [6–12].

In this paper, without using distance matrix, we use a Lemma based on edge-cut
techniques to compute the Wiener index of a hypertree.

6.2 Edge-Cut Partition Lemma

Lemma 1 ([24]) Let G be a graph on n vertices. Let {S1, S2, . . . , Sm} be a partition
of E(G) such that each Si is an edge cut of G and the removal of edges of Si leaves
G into two componentsGi and G′i . Also each Si satisfies the following conditions

(i) For any two vertices u, v ∈ Gi , a shortest path between u and v has no edges
in Si .
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(ii) For any two vertices u, v ∈ G′i , a shortest path between u and v has no edges
in Si .

(iii) For any two vertices u ∈ Gi and v ∈ G′i , a shortest path between u and v has
exactly one edge in Si .

Then the congestion on Si is given by c(Si) = |V (Gi)|(n − |V (Gi)|), and Wiener
index of G is given by W(G) =∑m

i=1 |V (Gi)|(n− |V (Gi)|).

Theorem 1 Let G be a hypertree HT (n), n ≥ 2. Then the Wiener index of G is
given by W(G) = (4n− 12)22n + (6n+ 10)2n + 2.

Proof Let S22−2
2n−1 denote the set of 2n−1 edge cuts each cutting G into two

components with one component having exactly 22−2, i.e., two vertices. Let S23−2
2n−2

denote the set of 2n−2 edge cuts each cutting G into two components with one

component having exactly 23− 2, i.e., six vertices. Let S24−2
2n−3 denote the set of 2n−3

edge cuts each cutting G into two components with one component having exactly

24 − 2, i.e., 14 vertices. In general let S2i+1−2
2n−i ; i = 1, 2, 3, . . . , n− 1 denote the set

of 2n−i edge cuts each cutting G into two components with one component having
exactly 2i+1 − 2 vertices. Now consider the pair (k, j) where k = 1, j = 2n − 1.

H T

S
2 n-1

2 n-1

S
2 3-2

2 n-2S
2 4-2

2 n-3

S
1

S
2 n-4

2 5-2
2 2-2

( )5

Fig. 4 Edge cut of hypertree HT (5)
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For i = 1, 2, 3, . . . , n − 1 let S = S2i+1−2
2n−i

⋃
(k, j). Edge cut of hypertree HT (5)

as shown in Fig. 4. Now S satisfies all the conditions of the Edge-Cut Lemma. Let
c(S) be the congestion on S. Hence by the Edge-Cut Lemma, the Wiener index is
given by

W(G) = C(S) = c(S2i+1−2
2n−i )+ c(k, j)

=
n−1∑

i=1

2n−i (2i+1 − 2)((2n+1 − 1)− (2i+1 − 2))+ 2n+1 − 2

= (4n− 12)22n + (6n+ 10)2n + 2.

7 Conclusion

In this paper we have found the Wiener index of hypertree HT (r). Finding Wiener
index of Ringtree is challenging and the problem remains open.
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Location-2-Domination for Product
of Graphs

G. Rajasekar, A. Venkatesan, and J. Ravi Sankar

Abstract Locating-2-Dominating Set is denoted as RD
2 (G), and in this chapter the

Location-2-domination number for direct and Cartesian product of graphs, namely
Pn�Pm, Pn�Sm, Pn�Wm, Cn�Cm, Pn × Pm, Pn × Sm, Cn × Pm, Cn × Cm, are
being found.

Keywords Cartesian product of graphs · Direct product of graphs · Domination
number · Location-2-domination number

Mathematics Subject Classification 05C76, 05C69

1 Introduction

Throughout this chapter, we follow the terminology and notation of Harary [8].
Cockayne and Hedetniemi [4] introduced and defined the concept of the dominating
set as a subset S of vertices from V , which is called a dominating set for G if every
vertex of G is either a member of S or adjacent to a member of S. A dominating set
of G is called a minimum dominating set if G has no dominating set of smaller
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cardinality. The cardinality of the minimum dominating set of G is called the
dominating number for G and is denoted by γ (G) [3].

Harary and Haynes [2] introduced and defined the concept of double domination
in graphs as a dominating set S of G, which is called a double dominating set if
every vertex in V − S is adjacent to at least two vertices in S. Given a dominating
set S for graph G, for each u in V − S, let S(u) denote the set of vertices in S that
are adjacent to u. The locating-dominating set was introduced by Slater [7], which
is defined as a dominating set S. If for any two vertices u and w in V −S, S(u) is not
equal to S(w) and the minimum cardinality of the location domination number is
denoted by RD(G) [4, 8]. The Cartesian product G � H of graphs G and H is the
graph with the vertex set V (G)×V (H), and the edge set is (u, a)(v, b) ∈ E(G�H)

if and only if a = b and uv ∈ E(G) or u = v and ab ∈ E(H)[1]. The direct product
G × H of graphs G and H is the graph with the vertex set V (G)× V (H) and the
edge set is (u, a)(v, b) ∈ E(G×H) if and only if uv ∈ E(G) and ab ∈ E(H) [9].

2 Preliminaries

2.1 Location-2-Domination

Definition 1 ([5]) A set S ⊆ V is a Location-2-Dominating set of G if S is a 2-
Dominating set of G and if for any two vertices u, v ∈ V − S such that N(u) ∩
S �= N(v) ∩ S. The minimum cardinality of Location-2-Dominating is denoted by
R2

D(G) = |S|

2.2 Location-2-Domination for Simple Graphs

Theorem 1 ([5]) Location-2-Domination number of a Path Pn is
R2

D(Pn) = n−1
2 + 1; n is odd ,

R2
D(Pn) = n

2 + 1; n is even

Theorem 2 ([5]) For any cycle Cn,
R2

D(G) = n
2 ; n is even,

R2
D(G) = n−1

2 + 1; n is odd for n �= 4

Theorem 3 ([6]) In Location-2-Domination for any graph, the vertex {v} is a
pendant vertex, then v ∈ RD

2 (G) only.

3 Location-2-Domination for Cartesian Product of Graphs

Theorem 4 For the graph G(= Pn�Sm), RD
2 (G) = RD

2 (Pn) + m(n−1)
2 , n is odd

and RD
2 (G) = n

2 (m+ 1), n is even.
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Proof Clearly, |V (G)| = n(m + 1). Let S denote the Location-2-Dominating
set. Here the path plays a major role in dominating the graph G. Now, the
vertex set can be partitioned into two ways, one is vertex set of Pn vertices
and another is a vertex set of Sm vertices, i.e., v = {v1, v2, v3, . . . , vn}
and u = {(u11, u12, u13, . . . , u1m), (u21, u22, . . . , u2m), . . . , (un1 , un2 , . . . , unm)}.
Clearly, each vi is adjacent to vi+1 and uij where i = 1, 2, 3, . . . , n, j =
1, 2, . . . ,m. Also, there is no edge from vi to u(i+1)j , then the collection of the
Location-2-Dominating set contains both v and u. This is not the case for a single
vertex set.

Case (i) Suppose n is odd and m can be either even or odd, i.e., the path of length
is odd; thus, by the Theorem 1, collect the vertices {1, 3, 5, . . . , n} from the set v
and {(u12, u14, . . . , u1m−1), (u22, u24, . . . , u2m−1), . . . , (un2 , un4 , . . . , unm−1)} from

the u set only. Therefore, |S| = n+1
2 + m(n−1)

2 .

Case (ii) Suppose n is even, m is either odd or even, then clearly the path of
length is even; thus, by the Theorem 1, collect the vertices from v-set, which are
{1, 3, . . . , n−1} or {2, 4, . . . , n}, but from the u-set they have N(v−(1, 3, . . . , n−
1)) or N(v − (2, 4, . . . , n)) vertices m times. Therefore, |S| = n

2 + m
(
n
2

) =
n
2 (m+ 1).

Theorem 5 For the graph G(= Pn�Wm), m ≥ 5 we have,

RD
2 (G) =

⎧
⎨

⎩

(
n+2

2

)
RD

2 (Wm)+
(
n−2

2

)
, n is even, m is either even or odd(

n+1
2

)
RD

2 (Wm)+
(
n−1

2

)
, n is odd,m is either even or odd

Proof Let the S-set denote the Location-2-Dominating set of G and the vertices of
G are {(w1, v1) , . . . , (wm, v1) , . . . , (w1, vn) , . . . , (wm.vn)}. Clearly, |G| = nm

and vertices
(
wi, vj

)
,
(
wi, vj+1

)
for i = 1, 2, . . . ,m, j = 1, 2, . . . , n,(

wi, vj
)
,
(
wi+1, vj

)
for i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

(
wn, vj

)
,
(
wi.vj

)

for i = 1, 2, . . . ,m − 1, j = 1, 2, . . . , n and
(
wn, vj

)
,
(
wn, vj+1

)
for

j = 1, 2, . . . , n are adjacent, but the adjacency order
(
wi, vj

)
to

(
wi+1, vj

)

for i = 1, 2, . . . ,m,j = 1, 2, . . . , n forms a n different cycle of length
m − 1. From G, now define C1, C2, . . . , Cn are the collection of the vertex
{(w1, v1) , . . . , (wm, v1)} , {(w1, v2) , . . . , (wm, v2)} , . . . , {(w1, vn) (wm, vn)}
respectively, that is, each Ci i = 1, 2, . . . , n gives a wheel graph. Now let us collect
the S-set as follows:

Case (i) Suppose that n,m is even, that is, the path of the length is
even. Now collect the vertex possibly from C1 and Cn are (wi, v1) and
(wi, vn) for i = 1, 3, . . . ,m − 1 respectively. This gives m

2 vertices from
C1 and Cn separately. Also from C3, C5, . . . , Cn−3, Cn−1, collect the vertices
{(wi, v3) , (wi, v5) , . . . , (wi, vn−1)} i = 2, 4, . . . ,m this also gives m

2 vertices
from C3, C5, . . . , Cn−1 respectively; therefore, C1, C3, . . . , Cn−3, Cn−1, Cn are
given m

2 vertices separately, i.e., n+2
2 times m

2 vertices, and collect the vertices from
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C2, C4, . . . , Cn−4, Cn−2 is
(
wn, vj

)
, j = 2, 4, . . . , n−2 i.e.n−2

2 times, which gives

a single vertex, that is, |S| =
(
n+2

2

) (
m
2

)+
(
n−2

2

)
.

Case (ii) Suppose that n is even and m is odd. Now collect the vertex from C1 and
Cn, (wi, v1) and (wi, vn) for i = 1, 3, . . . ,m respectively. This gives m−1

2 vertices
from C1 and Cn separately. Also from C3, C5, . . . , Cn−3, Cn−1 collect the vertices
{(wi, v3) , (wi, v5) , . . . , (wi, vn−1)} i = 2, 4, . . . ,m− 1. This also gives m−1

2 ver-
tices from C3, C5, . . . , Cn−1 respectively; therefore, C1, C3, . . . , Cn−3, Cn−1, Cn

gives m−1
2 vertices separately, that is, n+2

2 timesm−1
2 vertices, and the collection of

vertices from C2, C4, . . . , Cn−4, Cn−2 is
(
wn, vj

)
, j = 2, 4, . . . , n−2, that is, n−2

2
times, which gives a single vertex.

Therefore, |S| =
(
n+2

2

) (
m−1

2

)
+

(
n−2

2

)
.

Case (iii) Suppose that n is odd and m is even. Now collect the vertex possibly
from C1 and Cn, (wi, v1) and (wi, vn) for i = 1, 3, . . . ,m − 1 respectively. This
gives m

2 vertices from C1 and Cn separately. Also from C3, C5, . . . , Cn−2 collect the
vertices

{
wi, vj

}
i = 2, 4, . . . ,m, j = 3, 5, . . . , n− 2 respectively. This also gives

m
2 vertices from C3, C5, . . . , Cn−2 separately; therefore, C1, C3, . . . , Cn−2, Cn are
given m

2 vertices separately, i.e., n+1
2 times m

2 vertices, and collect the vertices from
C2, C4, . . . , Cn−1 is

(
wn, vj

)
, j = 2, 4, . . . , n−1 only, i.e., n−1

2 times, which gives

a single vertex. Therefore, |S| =
(
n+1

2

) (
m
2

)+
(
n−1

2

)
.

Case (iv) Suppose that n is odd and m is odd. Now collect the vertex from C1
and Cn, (wi, v1) and (wi, vn) for i = 1, 3, . . . ,m respectively. This gives m−1

2
vertices from C1 and Cn separately. Also from C3, C5, . . . , Cn−2 collect the vertices
{(wi, v3) , (wi, v5) , . . . , (wi, vn−2)} i = 2, 4, . . . ,m − 1. This also gives m−1

2
vertices from C3, C5, . . . , Cn−2 respectively; therefore,C1, C3, . . . , Cn−2, Cn gives
m−1

2 vertices separately, that is, n+1
2 times m−1

2 vertices, and collect the vertices
from C2, C4, . . . , Cn−3, Cn−1 is

(
wn, vj

)
, j = 2, 4, . . . , n − 1, i.e., n−1

2 times,
which gives a single vertex.

Therefore, |S| =
(
n+1

2

) (
m−1

2

)
+

(
n−1

2

)
.

Theorem 6 For the Graph G(= Pn�Pm). Then

RD
2 (G) =

{
nm
2 , n is even, m is either even or odd

nm−1
2 , n is odd,m is odd

,m �= 2 , n �= 2

Proof Let G be a Pn�Pm, the vertex set of G is namely
{
(viuj )

}
i =

1, 2, . . . , n j = 1, 2, . . . ,m. Clearly, |G| = nm, let S-set denoted the Location-
2-Domination of G, that is, RD

2 (G) = |S|.
Case (i) Suppose that n is even and m is even. Clearly, |G| = nm gives the
even number of vertices. From G form a maximum length of the closed path
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P . Clearly, P containing the vertices namely P = {
v1u1, v1u2, . . . , v1um, v2um,

v2um−1, . . . , v2u2, . . . , v3u2, v3u3, . . . , v3um, . . . , v1u1}. Clearly, |P | = nm and
thus P is a cycle of even length; thus, according to the Theorem 2, RD

2 (G) = |S| =
nm
2 .

Case (ii) Suppose that n is even and m is odd, then clearly, |G| = nm. This gives
an even number of vertices according to Case (i). Again we obtain a cycle of even
length and thus RD

2 (G) = |S| = nm
2 .

Case (iii) Suppose that n is odd and m is odd, |G| = nm gives an odd number of
vertices. Now define |S| = |S1|+|S2|, where |S1| denote the Location-2-Domination
for Pn−1�Pm and |S2| denote the Location-2-Domination for P1�Pm. Given that n
is odd, n− 1 gives an even number of vertices; thus, Pn−1�Pm gives a duplication
of Case (ii), that is, |S1| = (n−1)m

2 . P1�Pm gives a path of an odd length. Also,
every vertex of P1�Pm is adjacent to Pn−1�Pm. For our convenience, remove the
vertices {vnu1} and {vnum} only from P1�Pm, P1�Pm remains with a path of an
odd length, according to Theorem 1; hence, |S2| = (m−2)−1

2 + 1 = m−1
2 .

Therefore, RD
2 (G) = |S| = |S1| + |S2| = (n−1)m

2 + m−1
2 = nm−1

2 .

Theorem 7 For any Graph G(= Cn�Cm), then

RD
2 (G) =

{
nm
2 , n is even, m is either even or odd

nm−1
2 , n is odd,m is odd

Proof Let G be a Cn�Cm graph. Clearly, |G| = nm, let S -set denoted the Location-
2-Domination of G, that is, RD

2 (G) = |S|. The vertex set of G is namely
{
viuj

}
.

1 ≤ i ≤ n , 1 ≤ j ≤ m.

Case (i) Suppose that n is even and m is even with n = m or n �= m. Clearly,
|G| = nm gives the even number of the vertex set. Now collect the vertex
set, namely

{
viuj

}
i = 1, 3, 5, . . . , n − 1 j = 1, 3, 5, . . . ,m − 1. and viuj ,

i = 2, 4, 6, . . . , n, j = 2, 4, 6, . . . ,m., that is, |S| = (
n
2

) (
m
2

) + (
n
2

) (
m
2

) = nm
2 .

herefore RD
2 (G) = |S| = nm

2 .

Case (ii) Suppose that n is odd and m is even with m = n or n �= m, once again,
the Case (i) result can be used.

Case (iii) Suppose that n is odd and m is odd with m = n or n �= m. Clearly, G
has an odd number of vertices. Now the vertices of S are viuj i = 1, 3, 5, . . . , n,
j = 2, 4, 6, . . . ,m − 1 and viuj , j = 1, 3, 5, . . . ,m, i = 2, 4, 6, . . . , n − 1, that
is, m+1

2 vertices are collected n−1
2 times and m+1

2 vertices are collected n+1
2 times.

Therefore, |S| =
(
n−1

2

) (
m+1

2

)
+

(
n+1

2

) (
m−1

2

)
= nm−1

2 and hence, RD
2 (G) =

|S| = nm−1
2 .
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4 Location-2-Domination for Direct Product of Graphs

Theorem 8 For Graphs Pn and Pm, m �= 3,

RD
2 (Pn × Pm) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

nm
2 + 2, n , m is even

nm
2 + 2, either n is odd, m is even (or) n is even m is odd

n(m+1)
2 , n,m is odd but n < m

m(n+1)
2 , n,m is odd but n > m

Proof Let us label the vertices of G = (Pn × Pm) as
{
vij

}
for 1 ≤ i ≤ n and

1 ≤ j ≤ m, clearly |G| = nm. And let S−set denote the Location-2-Dominating
set, from G, dG (v11) = dG (v1m) = dG (vn1) = dG (vnm) = 1. So, by Theorem 3
v11, v1m, vn1, vnm all belong to the S-set only in all of the following cases. Also,
dG

(
v1j

) = dG
(
vnj

) = dG (vi1) = dG (vim) = 2 for i = 2, 3, . . . , n − 1 and
j = 2, 3, . . . ,m− 1, also dG

(
vij

) = 4 for 2 ≤ i ≤ n− 1, 2 ≤ j ≤ m− 1.

Case (i) Suppose that n,m is even, now collect the S−set, namely
{
vij

}
for 1 ≤

i ≤ n and j = 1, 3, . . . ,m − 1 or i = 1, 3, . . . , n − 1 and 1 ≤ j ≤ m. This
collection clearly contains either v11 and v1m or vn1 and vnm only. This gives n

2
times m vertices; also, the only remaining vertices are two pendant vertices, that is,
|S| = nm

2 + 2. Therefore, RD
2 (G) = nm

2 + 2.

Case (ii)(a) Suppose that n is odd and m is even, now collect the S− set namely{
vij

}
for 1 ≤ i ≤ n and j = 1, 3, . . . ,m − 1; also, the two remaining vertices are

pendant vertices v1m and vnm, that is, |S| = nm
2 + 2. Therefore, RD

2 (G) = nm
2 + 2.

(b): Suppose that n is even and m is odd. Now collect the S− set, namely
{
vij

}
for

i = 1, 3, . . . , n − 1 and 1 ≤ j ≤ m. In this case, two pendant vertices vn1 and vnm
are the only remaining vertices; hence, |S| = nm

2 + 2. Therefore, RD
2 (G) = nm

2 + 2.

Case (iii) Suppose that n,m is odd. If n < m, now collect the dominating
set possibly by

{
vij

}
for i = 1, 2, 3, . . . , n and j = 1, 3, . . . ,m. Then, the

collection of vertices gives (m+1)
2 times n vertices, that is, |S| = n(m+1)

2 . Therefore,

RD
2 (G) = n(m+1)

2 . If n > m, now collect the dominating set, possibly by
{
vij

}
for

i = 1, 3, . . . , n and j = 1, 2, 3, . . . ,m; hence, the collection of vertices gives (n+1)
2

times m vertices, that is, |S| = m(n+1)
2 . Therefore RD

2 (G) = m(n+1)
2 .

Theorem 9 For graphs P3 × Pm, we have RD
2 (P3 × Pm) = 2m, and m is either

even or odd.

Proof Let the vertices G = P3 × Pm be
{
vij

}
for i = 1, 2, 3, 1 ≤ j ≤ m. From G,

dG (v11) = dG (v1m) = dG (v31) = dG (v3m) = 1. And dG (v12) = dG (v13) =
, . . . ,= dG

(
v1(m−1)

) = dG (v32) = dG (v33) =, . . . ,= dG
(
v3(m−1)

) = 4. Now
collect the S−set, possibly by

{
vij

}
for i = 1, 3 and 1 ≤ j ≤ m. Clearly, it gives 2m

vertices, |S| = 2m. Therefore, RD
2 (G) = 2m. Suppose that any one vertex omitting
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from
{
vij

}
for i = 1, 3 and 1 ≤ j ≤ m, or adding any one vertex from

{
v2j

}
for

1 ≤ j ≤ m, it clearly contradicts the definition of the Location-2-Dominating set or
increases the cardinality of the S−set.

Theorem 10 For Pn and Cm, m �= 2, 4,

RD
2 (Pn × Cm) =

⎧
⎪⎪⎨

⎪⎪⎩

nm
2 , n,m is even
nm
2 , n is odd,m is even (or) m is even, n is odd

n(m+1)
2 , n,m is odd but n < m

m(n+1)
2 , n,m is odd but n > m

Proof Clearly, | Pn × Cm |= nm, now label the vertices of Pn × Cm as
{
vij

}
for

1 ≤ i ≤ n, 1 ≤ j ≤ m. Also, the 2m vertices have the degree 2 and the remaining
m(n− 2) vertices have the degree 4. Let S− set denote the Location-2-Dominating
set.

Case (i) Suppose that n,m is even. Now collect the S−set possibly by
{
vij

}
for

i = 1, 2, 3, . . . , n; j = 1, 3, 5, . . . ,m−1 or i = 1, 3, . . . , n−1; j = 1, 2, 3, . . . ,m
or i = 1, 2, 3, . . . , n; j = 2, 4, . . . ,m or i = 2, 4, . . . , n; 1, 2, 3, . . . ,m. Then, such
a collection gives n

(
m
2

)
or m

(
n
2

)
vertices, that is, |S| = nm

2 .

Case (ii) Suppose that n is odd and m is even. In this sense, collect the vertices
by

{
vij

}
for i = 1, 2, 3, . . . , n and j = 1, 3, 5, . . . ,m − 1. Clearly, m

2 times n

vertices are contained in S. Therefore, |S| = nm
2 . Suppose that S = {

vij
}
, i =

1, 3, . . . , n− 1 and j = 1, 2, 3, . . . ,m. Clearly, (n+1)
2 times m vertices contained in

S, which contradicts the minimum cardinality.

Case (iii) Suppose that n,m is odd, proof is followed by Theorem 8.

Theorem 11 For G = Pn × C2, n �= 3, RD
2 (G) =

{
n+ 2, n is even,

n+ 1, n is odd

Proof Clearly, by the observation Pn×C2 is isomorphic to Pn×P2. Therefore, the
proof is followed by Theorem 10.

Theorem 12 For G = Pn × C4, n �= 3, RD
2 (G) =

{
3n+ 1, n is odd

3n, n is even

Proof Label the vertices of G as
{
vij

}
, i = 1, 2, . . . , n and j = 1, 2, 3, 4. Clearly,

dG(vij ) = 4, i = 1, 2, . . . , n and j = 1, 4, dG(vij ) = 2, i = 1, 2, . . . , n, j = 2, 3.

Case (i) Suppose that n is odd, Clearly, 2(n+ 1) times dG(vij ) = 4, and 2(n− 1)
times dG(vij ) = 2. Now collect the S−set possibly by n+1

2 times dG(vij ) = 4 and
n−1

2 times dG(vij ) = 2, that is, |S| = 4
(
n+1

2

)
+ 2

(
n−1

2

)
= 3n+ 1.

Case (ii) Suppose that n is even. Clearly, 2n times dG(vij ) = 4 and 2n times
dG(vij ) = 2. Now collect the S−set, possibly by n

2 times dG(vij ) = 4 and n
2 times

dG(vij ) = 2, that is, |S| = 4
(
n
2

)+ 2
(
n
2

) = 3n.
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Theorem 13 For Graphs Pn (n �= 3) and Sm, RD
2 (Pn × Sm) = nm, n,m =

1, 2, 3, . . .

Proof Clearly, |G| = n(m + 1). Label the vertices of the graph with
{
vij

}
, i =

1, 2, . . . , n and j = 1, 2, . . . ,m + 1. Also, dG
(
vij

) = 1 for i = 1, n and j =
2, 3, 4, . . . ,m + 1 and dG (vi1) = m for i = 2, 3, . . . , n − 1 and dG

(
vij

) = 2, for
i = 2, 3, . . . , n − 1 , j = 2, 3, . . . ,m+ 1. Clearly, according to the theorem

{
vij

}

for i = 1, n and j = 2, 3, 4, . . . ,m+ 1, all are members of S. Observing G,
{
vij

}

for i = 2, 3, . . . , n − 1 and j = 2, 3, . . . ,m + 1, all are neighbors of
{
v(i−1)1

}

and
{
v(i+1)j

}
. Clearly, {vi1} � inS for i = 1, 2, 3, . . . , n and

{
vij

} ∈ S only for
i = 2, 3, . . . , n− 1, j = 2, 3, . . . ,m+ 1. Therefore, |S| = 2m+ (n− 2)m = nm.
Suppose that any one vertex from {vi1} ∈ S for i = 1, 2, 3, . . . , n and

{
vij

} � inS
for i = 2, 3, . . . , n− 1, j = 2, 3, . . . ,m+ 1. Clearly, it contradicts the definition of
Location-2-Domination or increases the cardinality.

Theorem 14 For n,m ≥ 5, RD
2 (Cn × Cm) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

nm
2 , n,m is even

(n−1)m
2 , n is odd m is even

n(m−1)
2 , n is even m is odd

(n−1)m
2 , n,m is odd n < m

n(m−1)
2 , n,m is odd n > m

Proof Let us label the vertex set of Cn × Cm as
{
vij

}
, 1 ≤ i ≤ n , 1 ≤ j ≤ m and

in this graph each vertex has degree four.

Case (i) Suppose that if n,m is even, then the collection of S−set can be of the form{
vij

}
for i = 1, 2, 3, . . . , n−1 and j = 1, 3, 5, . . . ,m−1 or i = 1, 3, . . . , n−1 and

j = 1, 2, 3, . . . ,m− 1 or i = 1, 2, 3, . . . , n and j = 2, 4, . . . ,m or i = 2, 4, . . . , n
and j = 1, 2, 3, . . . ,m. Clearly, |S| = nm

2 . Suppose that if the S−set is none of the
above forms, then it contradicts the minimum cardinality.

Case (ii) Suppose that n is odd m is even, by observation of the graph G, S = {
vij

}

i = 1, 3, . . . , n − 2 and j = 1, 2, . . . ,m. This gives
(
n−1

2

)
times m

2 vertices i.e.,

|S| = (n−1)m
2

Case (iii) Suppose that n is even and m is odd, only the pattern of vertex set
selection is different from Case (ii).

Case (iv) Suppose that n,m is odd. If n < m, collect the set S as
{
vij

}
, i =

1, 2, 3, . . . , n and j = 1, 3, . . . ,m. This gives
(
m−1

2

)
times n vertices, i.e., |S| =

n(m−1)
2 . Suppose that S = {

vij
}
, i = 1, 3, . . . , n and j = 1, 2, . . . ,m. Clearly, this

gives |S| = n(m+1)
2 + 1 vertices and is not the minimum cardinality. If n > m, then

take the set S = {
vij

}
, i = 1, 3, . . . , n and j = 1, 2, 3, . . . ,m. This gives

(
n−1

2

)

times m vertices, that is, |S| = m(n−1)
2 .
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Remark 1 RD
2 (C2 × Cm) = n , m �= 2.

Remark 2 RD
2 (C3 × Cm) =

{ 3m
2 , m is even, m �= 2

3(m−1)
2 , m is odd

Remark 3 RD
2 (C4 × Cm) = m

2 , m �= 2, 4.

5 Conclusion

In this chapter, the Locating-2-Dominating set and the Location-2-Domination
number for direct and Cartesian products of graphs, namely Pn�Pm, Pn�Sm,
Pn�Wm, Cn�Cm, Pn × Pm, Pn × Sm, Cn × Pm and Cn × Cm were found.
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Local Distance Pattern Distinguishing
Sets in Graphs

R. Anantha Kumar

Abstract Let G = (V ,E) be a connected graph and W ⊆ V be a nonempty
set. For each u ∈ V , the set fW (u) = {d(u, v) : v ∈ W } is called the distance
pattern of u with respect to the set W. If fW (x) �= fW (y) for all xy ∈ E(G), then
W is called a local distance pattern distinguishing set (or a LDPD-set in short)
of G. The minimum cardinality of a LDPD-set in G, if it exists, is the LDPD-
number of G and is denoted by 0′(G). If G admits a LDPD-set, then G is called a
LDPD-graph. In this paper we discuss the LDPD-number 0′(G) of some family
of graphs and the relation between 0′(G) and other graph theoretic parameters. We
characterized several family of graphs which admits LDPD-sets.

Keywords LDPD-set · LDPD-number · Local metric set

1 Introduction

By a graph G = (V ,E), we mean a finite, undirected, and connected graph
with neither loops nor multiple edges. The order and size of G are denoted by n

and m, respectively. For graph theoretic terminology, we refer to Chartrand and
Lesniak [7].

The distance d(u, v) between two vertices u and v in G is the length of a shortest
u-v path in G. The open neighborhood N(v) of the vertex v consists of the set of all
vertices adjacent to v, that is, N(v) = {w ∈ V : vw ∈ E}. The eccentricity of u is
e(u) = max{d(u, v) : v ∈ V }. For a vertex v ∈ V (G), the ith neighborhood of v

is Ni(v) = {u ∈ V (G) : d(u, v) = i}. By an ordered set of vertices, we mean a set
W = {w1, w2, · · · , wk} on which the ordering (w1, w2, · · · , wk) has been imposed.
For an ordered subset W = {w1, w2, · · · , wk} of V (G), we refer to the k-vector
(ordered k-tuple) r(v|W) = (d(v,w1), d(v,w2), · · · , d(v,wk)) as the (metric)
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representation of v with respect to W. The set W is called a resolving set for G if
r(u|W) = r(v|W) implies u = v for all u, v ∈ V (G). Hence if W is a resolving set
of cardinality k for a graph G of order n, then the set {r(v|W) : v ∈ V (G)} consists
of n distinct k-vectors. A resolving set of minimum cardinality is called a basis for
G, and the metric dimension of G is defined to be the cardinality of a basis of G

and is denoted by dim(G). The idea of resolving set has appeared in the literature
previously. In [5] and later in [6], Slater introduced the concept of a resolving set
for a connected graph G under the term locating set. He referred to a minimum
resolving set as a reference set for G. He called the cardinality of a minimum
resolving set (reference set) as the location number of G. Independently, Harary and
Melter [2] discovered these concepts as well but used the term metric dimension.

In [1] Ananthakumar and Germina studied the concept of DPD-sets instead of
considering the k-vector of distances, which simply takes the set of all distances
from vertex v to the vertices in W.

Definition 1 Let G = (V ,E) be a connected graph. Let M be a nonempty subset
of V , and let u ∈ V (G). The distance pattern of u with respect to the set M is
fM(u) = {d(u, v) : v ∈ M}. If fM is an injective function on V, then the set
M is called a distance pattern distinguishing set (or DPD-set in short) of G. The
minimum cardinality of a DPD-set in G, if it exists, is the DPD-number of G, and
it is denoted by 0(G).

Later, Okamato et al. [3] introduced the concept of local metric dimension of a
graph.

Definition 2 Let G = (V ,E) be a connected graph. For an ordered set W =
{w1, w2, . . . , wk} ⊆ V of k distinct vertices in a nontrivial connected graphs
G, the metric code of a vector v of G with respect to W is the k-vector,
code(v) = (d(v,w1), d(v,w2), . . . , d(v,wk)). The set W is a local metric set of G
if code(u) �= code(v) for every pair u, v of adjacent vertices of G. The minimum
positive integer k for which G has a local metric set of cardinality k is the local
metric dimension lmd(G) of G.

In this paper, instead of considering the k-vector of distances, we simply take the
set of all distances from vertex v to the vertices in W and investigate under what
condition this assignment of the set of distances to the vertices has the property that
adjacent vertices receive distinct sets.

We need the following definitions and theorems:

Definition 3 ([4]) Let G = (V ,E) be a connected graph of order n ≥ 2. Two
vertices u and v of G are distance similar if d(u, x) = d(v, x) for all x ∈ V−{u, v}.
Definition 4 ([9]) Given an arbitrary graph G, the trestled graph of index k,
denoted by Tk(G), is the graph obtained from G by adding k-copies of K2 for each
edge uv of G and joining u and v to the respective end vertices of each K2.

Definition 5 ([8]) The core of the graph G is obtained by successively deleting end
vertices until none remain.
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Theorem 1 ([1]) If G is a graph having three pairwise distance similar vertices
x, y, and z, then G is not a DPD-graph. Further if G is a DPD-graph having
exactly two distance similar vertices x, y, then exactly one of x, y lies in every
DPD-set M of G.

Theorem 2 ([1]) The cycle Cn is a DPD-graph if and only if n ≥ 7. Further
0(Cn) = 3 for all n ≥ 7.

2 Main Results

In this section we are finding the LDPD-number of several family of graphs and
discuss the relation between 0′(G), 0(G), and lmd(G).

Definition 6 Let G = (V ,E) be a connected graph and let W ⊆ V be a nonempty
set. For each u ∈ V (G), the set fW (u) = {d(u, v) : v ∈ W } is called the distance
pattern of u with respect to the set W. If fW(x) �= fW (y) for all xy ∈ E(G),
then the set W is called a local distance pattern distinguishing set (or a LDPD-
set in short) of G. If G admits a LDPD-set, then G is called a LDPD-graph. The
minimum cardinality of a LDPD-set in G, if it exists, is the LDPD-number of G
and is denoted by 0′(G).

Observation 3

(1) It is obvious that if G admits a DPD-set M, then M is a LDPD-set of G;
hence 0′(G) ≤ 0(G). But there are graphs having LDPD-set but not a DPD-
set. For example, the star K1,n, n ≥ 3 does not have a DPD-set by Theorem 1,
but any vertex of K1,n is a LDPD-set.

(2) If G is a LDPD-graph, then every LDPD-set is a local metric set, and hence
lmd(G) ≤ 0′(G).

(3) Let G be any nontrivial graph. Then V (G) is a LDPD-set of G if and only if
there exist no edge uv ∈ E(G) such that e(u) = e(v). For example, consider
G1 = P2n+1 and G2 = P2n+1 ◦ K1(Corona of P2n+1 and K1). Then the sets
V (G1) and V (G2) are LDPD-sets of G1 and G2, respectively.

(4) Let u, v be any two adjacent distance similar vertices in a graph G. Then
exactly one vertex of u, v belongs to every LDPD-set and local metric set
of G if it exists.

Example 1 For the graph G given in Fig. 1, W = {v1, v2, v3} is a LDPD-set of
G. Here {v1, v4}, {v2, v5}, and {v3, v6} are the set of all adjacent distance similar
vertices of G, and by (4) of Observation 3, 0′(G) = 3.

Theorem 4 Let G be any nontrivial connected graph. Then 0′(G) = 1 if and only
if G is a bipartite graph.
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Fig. 1 LDPD-graph with
LDPD-number is 3

v1 v2 v3

v4
v5 v6

G :

Proof Let G be any bipartite graph and let v ∈ V (G). Then Ni(v) is an independent
set for each i, i = 1, 2, . . . , e(v) (eccentricity of v), and hence {v} is a LDPD-set
of G and 0′(G) = 1.

Conversely assume that W = {v} ⊆ V (G) be a LDPD-set of G. Then Ni(v) is

an independent set for each i, i = 1, 2, . . . , e(v). Let V1 = {v} ∪
⎛

⎜⎝

⌊
e(v)

2

⌋

⋃
i=1

N2i (v)

⎞

⎟⎠

and V2 =
⎛

⎜⎝

⌊
e(v)

2

⌋

⋃
i=0

N2i+1(v)

⎞

⎟⎠ . Now V1 and V2 are independent sets. Thus V1 ∪ V2

is a bipartition of V (G) which implies G is a bipartite graph.

Corollary 1 For the n-dimensional hypercube Qn, n ≥ 3, 0′(Qn) = 1.

Theorem 5 Let G be any complete k-partite graph with k ≥ 3. Then G is a
LDPD-graph if and only if k = 3 and G is not isomorphic to K3. Further if G

is a LDPD-graph, then 0′(G) = min{|Vi | : |Vi | ≥ 2} + 1.

Proof Let V1∪V2∪· · ·∪Vk be the k-partition of V (G), and let W
′

be any LDPD-
set of G. Let u ∈ Vi ∩W

′
and v ∈ Vj ∩W

′
, i �= j. Since the vertices in same partite

sets are distance similar, |Vi ∩W | ≤ 1 for all i = 1, 2, . . . k. Also if |Vi ∩ W
′ | =

|Vj ∩ W
′ | = 0, then f

W
′ (u) = f

W
′ (v) = {1} where u ∈ Vi and v ∈ Vj , which

is a contradiction. Hence we have k = 3, |V1 ∩ W
′ | ≥ 2, |V2 ∩ W

′ | = 1 and
|V3 ∩W

′ | = 0. Also if G isomorphic to K3, then it is easy to check that G has no
LDPD-set. Conversely assume G is a complete tripartite graph and G �= K3. Let
V (G) = V1 ∪V2 ∪V3 be the tripartition of V (G) with |V1| ≥ 2. Let W = V1 ∪ {y},
where y ∈ V2.

Then fW (x) =

⎧
⎪⎪⎨

⎪⎪⎩

{0, 1, 2} if x ∈ V1

{1, 2} if x ∈ V2 − {y}
{1} if x ∈ V3

{0, 1} if x = y.

Hence W is a LDPD-set of G.

Further, 0′(G) = min{|Vi| : |Vi | ≥ 2} + 1.
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Theorem 6 Let G be any unicyclic graph. Then G is a LDPD-graph if and only
if G is not isomorphic to C3 or C5. Further if G is a LDPD-graph, then

0′(G) =
⎧
⎨

⎩

1 if Gisbipartite

3 if G ∼= C2k+1

2 otherwise.

Proof Let G be a unicyclic graph and G is not isomorphic to C3 or C5. Let C be
the unique cycle in G whose length is denoted by l(C). If l(C) is even, then G is a
bipartite graph. Hence by Theorem 4 0′(G) = 1.

Suppose G is the cycle C2k+1, k ≥ 3. Then by Theorem 2, (1) of Observation 3,
and Theorem 4, we have G is a LDPD-graph and 2 ≤ 0′(G) ≤ 3. Now we prove
that there is no LDPD-set of cardinality two in G. Let W1 = {vi, vj } be any
subset of V (G). Let P1 and P2 be the distinct paths joining vi and vj . Then exactly
one of l(P1) or l(P2) is odd, say l(P1) is odd and centre(P1) = {x, y} for some
xy ∈ E(G). Then fW1(x) = fW1(y) = {rad(P1), rad(P1)+ 1}. Hence W1 is not a
LDPD-set. Therefore 0′(G) = 3.

Now we assume that G properly contains C2k+1 for some k ≥ 1. Label the
vertices of C2k+1 by v1, v2, . . . , v2k+1 such that there exist x ∈ V (G)− V (C2k+1)

which is adjacent to v2. Then W2 = {v1, x} is a LDPD-set, for fW2(vi) = {i − 1}
if 2 ≤ i ≤ k + 1, fW2(vi) = {2(k + 1) − i, 2(k + 2)− i} if k + 3 ≤ i ≤ 2k + 1,
fW2(vk+2) = {k, k + 1} and if uv ∈ E(G)−E(C2k+1), then fW2(u) = fW2(v)+ 1
or fW2(v) = fW2(u) + 1. Hence adjacent vertices receives distinct sets. Therefore
0′(G) = 2.

Conversely if G is isomorphic to C3 or C5, then it is easy to check that G has no
LDPD-set.

Proposition 1 Let G be the sequential join graph K2 + K2 + · · · + K2 k-times.
Then G is a LDPD graph if and only if k is odd. Further if G is a LDPD-graph,
then 0′(G) = k.

Proof Let V (G) =
k⋃

i=1
Vi(K2), where Vi(K2) = {ui, vi} for i = 1, 2, . . . , k.

Let W be any LDPD-set of G if it exists. Then |Vi(K2) ∩ W | = 1 for all
i = 1, 2, . . . , k by (4) of Observation 3. We assume that W = {u1, u2, . . . , uk}.
Then fW (ui) = {0, 1, 2, . . . , e(ui)} and fW(vi) = {1, 2, . . . , e(ui)} for all i =
1, 2, . . . , k. So it is enough to check the injectivity of f for the adjacent vertices
x, y ∈ W and x, y ∈ V −W with e(x) = e(y). Without loss of generality, assume
x, y ∈ V − W and e(x) = e(y). Then fW (x) = fW(y) and x, y ∈ centre(G)

hence diam(G) is odd, which implies k is even. Conversely suppose k is odd.
Then fW(ui) = fW (uk+1−i ) = {0, 1, 2, . . . , k − i} for all i = 1, 2, . . . ,

⌊
k
2

⌋
,

fW (u⌊ k
2

⌋
+1

) = {0, 1, 2, . . . ,
⌊
k
2

⌋}, fW (vi) = fW (vk+1−i ) = {1, 2, . . . , k − i}
for all i = 1, 2, . . . ,

⌊
k
2

⌋
and fW (v⌊ k

2

⌋
+1

) = {1, 2, . . . ,
⌊
k
2

⌋}. Therefore W is a

LDPD-set of G and 0′(G) = k.
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The following theorem shows that identifying any number of trees at any set of
vertices to a LDPD-graph results a LDPD-graph.

Theorem 7 Let H be any LDPD-graph with 0′(H) = k. Let G be a graph with
core(G) = H. Then 0′(G) ≤ k.

Proof Given that core(G) = H , G can be decomposed into the subgraphs
H,T1, T2, . . . , Tt where T s

i are the trees with exactly one vertex of Ti that is
identified to say ui ∈ V (H) for all i = 1, 2, . . . , t. Let W be any LDPD-set
of H of cardinality k. We prove that W is a LDPD-set of G. Since W is a LDPD-
set of H and dG(x, y) = dH (x, y) for all x, y ∈ V (H), we have fW (u) �= fW (v)

for all uv ∈ E(H). Let uv ∈ E(G) − E(H). Without loss of generality, assume
that uv ∈ E(Ti) for some i, 1 ≤ i ≤ t and d(v, ui) = d(u, ui) + 1. Then
fW (u) = fW (v)+ 1 hence W is a LDPD-set of G and 0′(G) ≤ k.

Remark 1 The bound 0′(G) ≤ k in Theorem 7 can be sharp and strict also. For
example,

(1) Let H1 be the sequential join graph K2+K2+K2. Let G1 be the graph obtained
from H1 by identifying the center of K1,2 at exactly one vertex of H1. Then
0′(H1) = 3 by Proposition 1, and it can be verified that 0′(G1) = 3.

(2) Let H2 = C2k+1, k ≥ 3. Let G2 be any unicyclic graph that contains H2 as a
proper subgraph. Then 0′(H2) = 3 and 0′(G2) = 2 by Theorem 6.

Theorem 8 Let G be any LDPD-graph. Then the trestled graph Tk(G) of G is
also a LDPD-graph. Further 0′(Tk(G)) ≤ 0′(G).

Proof Let V (G) = {v1, v2, . . . , vn}, and let e1
i = v1

i v
1
t , e

2
i = v2

i v
2
t , . . . , e

k
i = vki v

k
t

be the edges of Tk(G) corresponding to the edge ei = vivt ∈ E(G) for all i =
1, 2, . . . ,m. Let W be any LDPD-set of G. Since d(v

j

i , x) = d(vi, x) + 1 and

d(v
j
t , x) = d(vt , x) + 1 for all j = 1, 2, . . . ,m, x ∈ W and vi, vt ∈ V (G), we

have fW (v
j
i ) = fW (vi) + 1. and fW (v

j
t ) = fW (vt ) + 1. Also fW (vi) �= fW (vj )

for all vivj ∈ E(G) as W is a LDPD-set of G, it follows that fW (v
j
i ) �= fw(v

j
t )

for all j ∈ {1, 2, . . . , k} and ei = vivt ∈ E(G) hence W is a LDPD-set of Tk(G).

Therefore 0′(Tk(G)) ≤ 0′(G).

Remark 2 The converse of the above theorem need not be true. That is if Tk(G) is a
LDPD-graph, then G need not be a LDPD-graph. For example, consider G = C5
and T1(G). Then G is not a LDPD-graph by Theorem 6, but one can check that
T1(C5) has a LDPD-set.

Although not all the graphs have LDPD-set, here we present a technique to embed
any graph as LDPD-graph.

Theorem 9 Let G be any graph of order at least four. Then G can be embedded
into a LDPD-graph.

Proof Let V (G) = {v1, v2, . . . , vn}. Let G′ be the graph obtained from G by
identifying exactly one leaf of path Pin+1 at vi for all i = 1, 2, . . . , n, respectively.
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Let W = {v′1, v′2, . . . , v′n} ⊆ V (G′), where v′i is a pendent vertex of G′ and
v′i ∈ V (Pin+1) for all i = 1, 2, . . . , n. Now we prove that W is a LDPD-set of
G′. Since in ∈ fW (vi), for all i = 1, 2, . . . , n and in /∈ fW (vj ) for i �= j, we have
fW (vi) �= fW (vj ) for all vivj ∈ E(G). Let uv ∈ E(G′) − E(G). Without loss of
generality, assume that uv is an edge of the path Pin+1 for some i, 1 ≤ i ≤ n and
d(v, vi) = d(u, vi) + 1. Then fW (v) = {{fW (u) − {d(u, vi)}} + 1} ∪ {d(v, vi)}
hence fW (u) �= fW (v). Therefore W is a LDPD-set of G′.

3 Some Realization Results

Already we observed that 0′(G) ≥ lmd(G) and 0(G) ≥ 0′(G), in this section we
show that the strict in equality can be made as large as possible.

Theorem 10 Given any positive integer k, there exists a graph G such that
0′(G) = lmd(G) = k.

Proof When k = 1, let G = K2. Then 0′(G) = lmd(G) = 1.
When k ≥ 2, let G = K1 + kK2, where V (K1) = {x} and Vi(K2) = {ui, vi} for

i = 1, 2, . . . , k. Since ui and vi are adjacent distance similar vertices in G, exactly
one of ui or vi say ui belongs to every LDPD-set and local metric set of G for
all i = 1, 2, . . . , k. Let W = {u1, u2, . . . , uk}. Then fW(ui) = {0, 2}, fW (vi) =
{1, 2} for all i = 1, 2, . . . , k, fW(x) = {1} and {u1, u2, . . . , uk}, {v1, v2, . . . , vk}
are independent sets; hence W is a LDPD-set. Therefore 0′(G) = k by (4) of
Observation 3.

The codes of x, ui, vi are the k-tuples, code(x) = (1, 1, . . . , 1),
code(ui) = (2, 2, . . . , 0, 2, 2, . . . , 2) (0 occurs only in the ith coordinate)

and code(vi) = (2, 2, . . . , 1, 2, 2, . . . , 2) (1 occurs only in the ith coordinate),
respectively. Hence lmd(G) = k by (4) of Observation 3.

Theorem 11 Given any positive integer k, there exists a graph G such that
0′(G)− lmd(G) = k.

Proof Let Hi be the graph obtained from 3K3 : (ai, bi, ci )∪(vi, ui , wi)∪(di, ei, fi )

and P3 : (xi, yi , zi) by identifying the vertex ai and xi at vi and identifying
the vertex di at wi. Now let G be the graph obtained from the path P2k−1 :
(w′1, w′2, . . . , w′2k−1) and {Hi : i = 1, 3, 5, . . . , 2k − 1} by identifying a vertex
wi of Hi to a vertex w′i of P2k−1 for all i = 1, 3, 5, . . . , 2k − 1, respectively.

Now in G, {bi, ci} and {ei, fi} are set of adjacent distance similar vertices; hence
exactly one of bi or ci and one of ei or fi belong to every LDPD-set and local
metric set of G for each i = 1, 3, 5, . . . , 2k − 1. Without loss of generality, we
assume that every LDPD-set and local metric set of G contain bi and ei for all
i = 1, 3, 5, . . . , 2k−1. Let W1 be any LDPD-set G. If |V (Hi)∩W1| = 2 for some
i, i ∈ {1, 3, 5, . . . , 2k − 1}, then W1 ∩ V (Hi) = {bi, ei} and fW1(vi) = fW1(ui), a
contradiction. Hence |V (Hi) ∩W1| ≥ 3 for all i = 1, 3, 5, . . . , (2k − 1).
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Let W = {bi, ei , zi : i = 1, 3, 5, . . . , 2k − 1}. Let xy ∈ E(G). If xy ∈
{vici , viyi, viwi, uifi , uiwi}, then max fW (x) �= maxfW (y). If x = vi and
y = ui , then 3 = d(ui, zi) ∈ fW1(y) but 3 /∈ fW1(x) hence fW(x) �= fW (y). Let
xy = w′iw′i+1. Without loss of generality, assume that i is odd. Then 2 ∈ fW (w′i )
but 2 /∈ fW (w′i+1). Also W is an independent set; hence W is a LDPD-set of G.

Therefore 0′(G) = 3k.
Let W2 = {bi, ei : i = 1, 3, 5, . . . , (2k − 1)} be an ordered subset of V (G).

Now we prove that W2 is a local metric set of G. In G, d(ci, ei ) = d(vi, ei ) + 1,
d(fi, bi) = d(ui, bi)+ 1, d(yi, bi) = d(vi, bi) + 1 and d(zi, bi) = d(yi, bi)+ 1,
we have code(vi) �= code(ci) and code(ui) �= code(fi), code(yi) �= code(vi) and
code(zi) �= code(yi). Now d(w′i , bi ) = d(ui, bi) = d(vi, bi)+ 1 and d(w′i , ei ) =
d(ui, ei)+ 1; hence code(w′i), code(ui), and code(vi) are mutually distinct. When
w′iw′i+1 ∈ E(G) and i is odd, d(w′i+1, bi) = d(w′i , bi) + 1; hence code(w′i) �=
code(w′i+1). Also W2 is an independent set; therefore, W2 is a local metric set and
lmd(G) = 2k by (4) of Observation 3. Thus 0′(G)− lmd(G) = 3k − 2k = k.

Theorem 12 Given any positive integer k ≥ 3, there exists a graph G such that
0′(G) = 0(G) = k.

Proof When k = 3 consider G = C7. Then by Theorems 2 and 6, 0′(G) = 0(G) =
3.

Assume k ≥ 4. Let G be the graph obtained from the path P(k2)+1 :
(v1, v2, . . . , v(k2)+1) and Hi = C3 : (xi, ui, wi), i = 1, 2, 4 . . . ,

(
i
2

)+1, . . . ,
(
k
2

)+1

by identifying a vertex xi of Hi at vi for all i = 1, 2, 4, . . . ,
(
i
2

) + 1, . . . ,
(
k
2

) + 1,
respectively. Since ui and wi are adjacent distance similar vertices by (4) of
Observation 3, exactly one of ui or wi say ui, i = 1, 2, 4, . . . ,

(
i
2

)+ 1, . . . ,
(
k
2

)+ 1
belongs to every DPD and LDPD sets of G. Let W = {u1, u2, u4, . . . , u(k2)+1}.
Now we prove that W is a DPD-set of G.

Let x = vi, y = vj or x = wi, y = wj or x = ui , y = uj or
x = vi, y = wj with i < j. If d(x, cen(G)) �= d(y, cen(G)), then maxfW (x) �=
max fW(y). If d(x, cen(G)) = d(y, cen(G)), then {d(y, u1), d(y, u2)} ⊆ fW (y)

but {d(y, u1), d(y, u2)} �⊂ fW (x), hence fW (x) �= fW (y). Now consider the case
x = vi , y = wi, and then max fW (x) < maxfW (y). Therefore W is a DPD-set
and hence 0(G) = k. Let
W1 = {u1, u2, u4, . . . , u(k2)+1}. Since W1 is a DPD-set, W1 is a LDPD-set also

and hence 0′(G) = k.

4 Conclusion

In this paper the study of local distance pattern distinguishing sets and local distance
pattern distinguishing number of a graph are initiated, and it is studied for some
family of graphs. Also relation between LDPD-number and other graph theoretic
parameters are studied.
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Construction of Minimum Power
3-Connected Subgraph with k Backbone
Nodes in Wireless Sensor Networks

D. Pushparaj Shetty and M. Prasanna Lakshmi

Abstract Minimizing the total power in a wireless sensor network (WSN) has
great significance, since the nodes are powered by a small battery of limited
capacity. By using an appropriate topology, the energy utilization of the network
can be minimized which results in an increased lifetime of a WSN. In reality,
WSN is modeled as an undirected graph in which each vertex represents a sensor
node and an edge represents the link between the two sensor nodes. We define
a distance function that maps a pair of vertices to a positive real number, i.e.,
Euclidean distance between the two vertices. On this initial topology, we construct a
reduced topology satisfying special connectivity constraints like bi-connectivity, k-
connectivity, bounded diameter, degree restricted, etc. We assign power to each node
as the maximum distance of all its adjacent edges, and total power of the network
is the sum of the powers of all the vertices. Fault tolerance addresses the issue of
a node or link failure in a WSN. Fault-tolerant network aims at k-connectivity in
the network so that there exist at least k vertex disjoint paths between any two
sensor nodes of the network. Minimum power 2-connected subgraph (MP2CS)
problem is to contrive a 2-connected network with minimum total power. It is proved
that MP2CS problem is NP-hard. Minimum power k backbone node 2-connected
subgraph (MPkB2CS) problem is a special case of MP2CS problem, which seeks a
power assignment satisfying 2-connectivity with k backbone nodes. In this paper,
the problem of finding a 3-connected network for a given set of nodes, which
minimizes the total power with k backbone nodes, is addressed which is termed as
MPkB3CS problem. We propose an algorithm for MPkB3CS problem and establish
that the proposed algorithm has an approximation ratio of 4k + 1, for k ≥ 3.

Keywords Wireless sensor networks · Graph algorithms · Topology control
problem · Range assignment · Approximation algorithm
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1 Introduction

A wireless sensor network (WSN) is a set of specialized sensor nodes with
a communication infrastructure, in which each sensor node processes the data
and gathers the sensory information and communication between sensor nodes
is facilitated in the network. A WSN has applications in several domains [1]
like environment monitoring, remote medical systems, surveillance, biological
detection, etc. To facilitate the communication between the sensor nodes of a WSN,
we assign transmission power to every node of the network. So, any sensor node can
communicate with all the nodes in its transmission range directly. Since the nodes
require power to communicate with other nodes, it is a requisite task to connect
the nodes in such a way that the total power utilized by the resultant network is
minimized.

A replica of WSN is an undirected graph G = (V , d), in which each vertex
v ∈ V represents a sensor node and the edge joining two vertices represents the
communication link between the nodes. In this context, we deploy the sensor nodes
in a Euclidean plane and define distance function d : V × V → R

+, which maps
a pair of vertices to a positive real number, i.e., the Euclidean distance between the
two vertices. Every node is represented by its coordinates. Let x = (x1, x2) and y =
(y1, y2) be the two vertices, and the Euclidean distance between these two vertices is

computed by using distance formula given by d(x, y) =
√
(x1 − x2)

2 + (y1 − y2)
2.

On this initial topology, power assignment leads to a reduced topology, which
satisfies certain connectivity constraints.

For a given set of deployed vertices in a two-dimensional plane, power of a vertex
v in graph G is defined as follows:

P(v) = max{d(vu) | uv ∈ E(G)} (1)

and the total power of the graph is
∑n

i=1 P(vi ).
In minimum power assignment problem for given deployed set of nodes of a

WSN, our objective is an assignment of transmission range to each sensor node of
the network, so that the resultant-induced graph satisfies the required constraints
[5] and also minimizes the total power consumption of the network. A topology
control problem is to coordinate all the sensor nodes by assigning particular
transmission range to each sensor node, in order to build the network that satisfies
certain properties [13]. Properties include connectivity, bi-connectivity, broadcast,
etc. In [12], Ramanathan and Regina Hain studied the topology control problem by
adjusting the transmission power in a multi-hop WSN.
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2 Related Work

Node (or link) failure in a network affects the communication in the entire network.
To avoid this, it is necessary to construct a fault-tolerant network. This ensures that
there exist two or more alternate paths between nodes, so that node failure in the
network does not affect the entire network communication. Fault-tolerant network
can be achieved by obtaining a network with two or high connectivity in which
every two nodes are connected by two or more distinct paths [15].

2.1 Minimum Power Topology with Connectivity Constraints

Strong minimum energy topology (SMET) problem aims at transmission range
assignment to each sensor node, which results in a strongly connected network.
Cheng et al. [4] have studied SMET problem and proved that this problem is
NP-hard. Authors also proposed two heuristics, i.e., power assignment based on
MST (minimum spanning tree) and incremental power heuristic. MP2CS problem
seeks a power assignment in which the reduced topology satisfies the following
constraints: (1) reduced topology is 2-connected and (2) the total power consump-
tion of the network is minimized. Nutov [9] gave an approximation algorithm
for MPkCS problem for any fixed k. The approximation ratios are as follows:
3 for k = 2, 4 for k = 3, k + 3 for k ∈ {4, 5}, and 3(k − 1) for any
constant k. Panda and Shetty [11] proved that MP2CS problem is NP-complete and
proposed an MST-augmentation-based heuristic, i.e., MST-aug-leaf for the same
problem. Authors also studied minimum power k backbone 2-connected subgraph
(MPkB2CS) problem, and approximation ratios are as follows: 2 for k = 3: and
3(k+1)

2 for k ≥ 3.

2.2 Fault Tolerance

Vempala and Vetta [14] proposed an algorithm of approximation ratio 4/3, for
finding a minimum 2-edge-connected and 2-vertex-connected subgraph for a given
undirected graph. Xiuying and Zhao [7] proposed approximation algorithms for
computing minimum 2-connected r-hop dominating set. Azharuddin et al. [2]
proposed algorithms for distributed clustering and routing which run in polynomial
time and are energy efficient and fault tolerant. Zheng et al. [16] proposed an
approximation algorithm for computing r-hop 2-connected dominating set of WSNs
and presented simulation results. Lyold et al. [8] studied a problem which seeks a
minimum total power 2-node-connected network and developed an approximation
algorithm of performance guarantee 2(2 − 2/n)(2 + 1/n) that approaches eight
asymptotically. Calinescu and Wan [3] proved that the problem of minimum power
bi-connectivity is NP-hard. The authors presented an MST-augmentation-based
algorithm of approximation four for the minimum power bi-connectivity problem.



530 D. Pushparaj Shetty and M. Prasanna Lakshmi

In this paper, we undertake MPkB3CS problem and present an algorithm to
compute minimum power k backbone node 3-connected subgraph. We also prove
that it is of 4k + 1-approximation ratio. The rest of the paper is arranged in the
following way: Section 3 explains the problem statement. Section 4 presents the
proposed algorithm for MPkB3CS problem, and Sect. 5 concludes the paper.

3 Problem Formulation

Hierarchical topology plays a very significant role in the establishment of WSNs
because it would be effective to arrange the sensors systematically to form clusters
that result in a hierarchical structure. Hierarchical topology improves the scalability
and efficiency of a WSN [10]. So, we consider MPkB3CS problem for a given
complete graph and establish the 3-connectivity, which consists of k backbone
nodes, minimizing the total power consumption. In this configuration, we have k

backbone nodes and n − k client nodes. The communication between any two
client nodes is achieved through the backbone nodes. The k backbone nodes are
connected to form a 3-connected subgraph, and then each client node is joined
to three backbone nodes to attain 3-connectivity in the network. Minimum power
k backbone node 3-connected subgraph (MPkB3CS) problem is formulated as
follows:
Problem: Minimum Power k Backbone node 3 Connected Subgraph (MPkB3CS).
Input: A complete graph Kn, a positive integer k.
Output: 3-connected minimum power spanning subgraph with k backbone nodes.

4 MPkB3CS Problem for k=3

For any three backbone nodes (or vertices) x, y, and z, we connect these vertices by a
cycle graph xyz. Now, we join remaining n−3 client nodes to all the three backbone
node x, y, and z to obtain a 3-connected network. It is obvious that 3-connectivity of
the network is achieved. For the given n nodes, we have

(
n
3

)
combinations of three

vertices, and to connect each of the n − 3 client node with three backbone nodes
takes a total of O(n) running time. Hence, we arrive at the following theorem:

Theorem 1 MPkB3CS problem for k=3 can be optimally solved in O(n4) time.

4.1 MPkB3CS Problem for Any Positive Integer k

In this section, we propose an algorithm for MPkB3CS problem with k backbone
nodes to build a 3-connected network for the given set of deployed nodes that
minimizes the total power of the induced network. Nutov [9] proved that MPkCS
problem admits a 4-approximation algorithm for k = 3. This algorithm is based on
an algorithm of approximation ratio k+1 for Min-Power k-Inconnected subgraph [9]
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problem. The main idea of this algorithm [9] for MPkCS problem is to pick cheapest
k − 1 edges for each vertex and augmenting minimum cost edge set so that the
resultant graph become k-connected. Authors proved that MPkCS algorithm is of
polynomial time and has an approximation ratio 4 for k = 3. In the proposed
algorithm, initially, we construct 3-connected minimum power subgraph that is
formed by k backbone nodes using an approximation algorithm explained in [6].
Next, we establish 3-connectivity by joining each client node with first, second, and
third nearest vertices from the set of backbone nodes, i.e., {v1, v2, v3, . . . , vk}. This
procedure is demonstrated in Algorithm 1.

Theorem 2 ([9]) The MP3CS problem has a 4-approximation ratio of running
time O(n4).

Algorithm 1: MPkB3CS
Input: A complete graph Kn, positive integer k.
Output: A 3-connected subgraph H with k backbone nodes, minimizing the total power.

1 begin
2 Min = ∞.
3 for each Vk ⊆ V such that (|Vk | = k) do
4 determine the 3-connected minimum power subgraph of backbone nodes

v1, v2, v3, . . . , vk, say H ′ using the 4-approximation algorithm by Nutov.
5 for each client node u ∈ V do
6 Let u1, u2 and u3 be the first, second and third nearest backbone vertices

respectively to u.
7 H ′ = H ′ ∪ {uu1, uu2, uu3}
8 end
9 if P (H ′) ≤ Min then

10 Min = P (H ′)
11 H = H ′
12 end
13 end
14 Return H

15 end

Figure 1 consists of an undirected weighted graph with 14 vertices which is
presented to illustrate the resultant subgraph obtained by the MPkB3CS Algorithm
for k = 3. Following theorem validates the 3-connectivity of the resultant structure
obtained by the MPkB3CS algorithm.

Theorem 3 ([15]) If G is k-connected and G′ is obtained by adding a new vertex
which has at least k neighbors in G, then G′ is k-connected.

Theorem 4 The resultant subgraph obtained by the MPkB3CS algorithm is 3-
connected.

Proof In the algorithm, initially, we consider 3-connected subgraph, i.e., H induced
by the k backbone nodes v1, v2, v3, . . . , vk . Further, we join each client node vi for
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Fig. 1 Resultant network by
MPkB3CS algorithm

i = k + 1, k + 2, . . . , n, with its first, second, and third nearest nodes from the
set of backbone nodes to establish 3-connectivity of the resultant network. From
Theorem 3, since H is 3-connected and each client node has three backbone nodes
as its neighbors in H , the graph obtained after adding any client node always
becomes 3-connected (See Fig. 1).

Theorem 5 MPkB3CS has an approximation ratio of 4k + 1.

Proof Let H be the resultant 3-connected subgraph obtained by MPkB3CS algo-
rithm and H ′ be the optimal solution of MPkB3CS problem. Let v1, v2, v3 . . . , vk
be the backbone nodes and vk+1, vk+2, vk+3 . . . , vn, be the client nodes from the
given set of n nodes. Without any loss of generality, we suppose that the sets H

and H ′ consist same set of backbone nodes. Let H ′
1 be the optimally connected

minimum power subgraph of k backbone nodes. Since we join each client node
with its three nearest backbone nodes, we have:

PH (vi) ≤ PH ′ (vi), for i = k + 1, k + 2, . . . , n. (2)

Now considering the backbone nodes, let m′ = max{d(xy) | xy ∈ H ′} and m =
max{d(xy) | xy ∈ H }. Now, we have the following two cases possible:

Case i If m′ < m

Since the maximum value of all the edges in the resultant subgraph H is m, the
two endpoints of the edge with d(xy) = m will be assigned power m. We are sure
that at least one of those two endpoints x, y will be a backbone node (∵ there is no
edge between any two client nodes). Therefore, PH (vi) ≤ m, for i = 1, 2, . . . , k,
and using Theorem 2 we have:

km ≤
k∑

i=1

PH(vi) ≤ 4P(H ′
1) . (3)
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Now, we consider

PH(vi) ≤ m, for i = 1, 2, 3, . . . , k

⇒∑k
i=1 PH (vi) ≤ km

⇒∑k
i=1 PH (vi)+∑n

i=k+1 PH(vi) ≤ km+∑n
i=k+1 PH (vi)

⇒ P(H) ≤ km+∑n
i=k+1 PH (vi)

⇒ P(H) ≤ km+∑n
i=k+1 PH ′(vi) (∵ Eq. (2))

⇒ P(H) ≤ k4P(H ′
1)+P(H ′) (∵ Theorem 2)

⇒ P(H) ≤ k4P(H ′)+ P(H ′)

⇒ P(H) ≤ (4k + 1)P (H ′).

Case ii If m′ ≥ m

Since m′ is the maximum, the two endpoints of the edge with d(xy) = m′ will
be assigned power m′. Therefore, P(H ′) ≥ 2m′ and we have:

m′ ≤ P(H ′)/2. (4)

Similar to Case (i), in this case also, we have:

PH(vi) ≤ m, for i = 1, 2, 3, . . . , k

⇒∑k
i=1 PH (vi) ≤ km

⇒∑k
i=1 PH (vi) ≤ km′

⇒∑k
i=1 PH (vi)+∑n

i=k+1 PH(vi) ≤ km′ +∑n
i=k+1 PH (vi)

⇒ P(H) ≤ k P(H ′)
2 +∑n

i=k+1 PH (vi) (∵ Eq. (4))

⇒ P(H) ≤ k
P(H ′)

2 + P(H ′)

⇒ P(H) ≤ k+2
2 P(H ′)

Theorem 6 MPkB3CS admits a running time of O(nk+4).

Proof In this algorithm, step 4 takes O(n4) running time which computes a
3-connected minimum power subgraph using the algorithm given by Nutov [9]. The
loop in step 5 takes O(n2) time since it finds the first, second, and third nearest
vertices to each client node. And the comparison in step 9 takes constant running
time. This procedure is repeated for each subset of k backbone nodes, which takes
O(nk) time. Hence the MPkB3CS algorithm is O(nk+4) running time.
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5 Conclusion

In this research, we have considered minimum power k backbone node 3-connected
subgraph (MPkB3CS) problem for k = 3 and extended the study to any positive
integer k. We proposed an algorithm which is of approximation ratio 4k + 1.
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Fuzzy Inference System Through
Triangular and Hendecagonal Fuzzy
Number

A. Felix, A. D. Dhivya, and T. Antony Alphonnse Ligori

Abstract A fuzzy inference system works on the basis of fuzzy if-then rules to
mimic human intelligence for quantifying the vagueness/uncertainty, which arises
in many real-world problems. In this paper, fuzzy inference system is designed using
triangular and hendecagonal fuzzy number that represent the value for the linguistic
environment. The factors of T2DM mellitus play a critical role in affecting each and
every individual health without their knowledge. In this paper, the factor of “Blood
Glucose”, medical term known as hyperglycemia, is analyzed through this fuzzy
inference system (FIS).

Keywords Triangular Fuzzy Number · Hendecagonal Fuzzy number · Linguistic
Variables · Inference system

Mathematics Subject Classification 03B52, 15B15, 94D05

1 Introduction

In the beginning, the inference systems were based on crisp logic, but it is not
well opted to manage the progressiveness phenomena under uncertain environment.
Therefore, the concept of fuzzy inference system (FIS) on the basis of fuzzy
set theory was introduced by Zadeh [16]. Since FIS becomes quite popular and
interesting as well, it has been successfully applied in many applications like
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automatic control, classification of the data, decision analysis, expert systems, times
series predictions, pattern recognition, and computer vision [16]. The success of
the FIS is just the human of way of thinking and reasoning as well, and it has
multidisciplinary nature [11]. FIS has a variety of other names, such as fuzzy rule-
based system, fuzzy expert system [7], fuzzy model [4, 13, 14], fuzzy associative
memory [8], fuzzy logic controller [10], and fuzzy inference system [1, 3, 9, 12, 15].

FIS can be designed either from the expert knowledge or data based [6].
The basic structure of a FIS consists of three conceptual components: a rule
base (a selection of fuzzy rules), a database (defines the membership functions),
and a reasoning mechanism (performs the inference procedure upon the rules
and given facts to derive a reasonable output). Moreover, fuzzy logic to a real
application requires three steps, fuzzification, inference process, and defuzzifica-
tion. This system shows the quality of factors and nonlinear mapping between
symptoms, factors, and complications. FIS can be helpful to achieve classification
tasks, medical diagnosis, decision support tools, and process control. FIS has
twofold identity to handle linguistic concepts and nonlinear mapping from its
input set into output set. This mapping is accomplished by a fuzzy number
of IF-THEN rules, each of which describes the essence of the mapping. IF-
THEN rules built from expert knowledge which is called fuzzy expert systems or
fuzzy controllers. Recently, soft computing researchers showed their interested on
diagnosing many diseases in the medical field to assist the medical practitioner.
Therefore, this paper harvests a new model called improved fuzzy inference system
using triangular and hendecagonal fuzzy number dealing with fuzzy positive and
negative ideal solution to predict the mellitus earlier stage and avoid the end-stage
complication.

2 Theoretical Background

In this section, some basic definitions are reviewed.

Definition 1 A fuzzy set [16] Ã in X is characterized by a membership function
μÃ(x) which associates each point in X, to a real number in the interval [0, 1]. The
value of μÃ(x) represents “grade of membership” of x ∈ μÃ(x).

Definition 2 The α-cut of the fuzzy set Ã of X is defined as Ãα = {x ∈
X/μÃ(x) ≥ α}, where α ∈ [0, 1].
Definition 3 A fuzzy set Ã defined on the set of real numbers R is said to be
a fuzzy number if its membership function Ã : R → [0, 1] has the following
characteristics.

(i) Ã is convex
(ii) Ã is normal

(iii) Ã is piecewise continuous.

Definition 4 A triangular fuzzy number Ã denoted by (a1, a2, a3), and the mem-
bership function is defined as
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μÃ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x−a1
a2−a1

, for a1 ≤ x ≤ a2

a3−x
a3−a2

, for a2 ≤ x ≤ a3

0, elsewhere.

Theorem 1 Let Ã = (a1, a2, a3) and B̃ = (b1, b2, b3) be two triangle fuzzy
numbers. The addition, subtraction, and multiplication operations of Ã and B̃,
denoted by Ã⊕ B̃, Ã� B̃ , and Ã⊗ B̃, respectively, yield another triangular fuzzy
number.

(i) Ã⊕ B̃ = (a1 + b1, a2 + b2, a3 + b3)

(ii) Ã� B̃ = (a1 − b3, a2 − b2, a3 − b3)

(iii) Ã⊗ B̃ = (a1b1, a2b2, a3b3)

Definition 5 A hendecagonal fuzzy number H̃D denoted as (a1, a2, a3, a4, a5, a6,
a7, a8, a9, a10, and a11) and the membership function is defined as

μH̃D
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
5

(x−a1)
(a2−a1)

, a1 ≤ x ≤ a2

1
5 + 1

5
(x−a2)
(a3−a2)

, a2 ≤ x ≤ a3

2
5 + 1

5
(x−a3)
(a4−a3)

, a3 ≤ x ≤ a4

3
5 + 1

5
(x−a4)
(a5−a4)

, a4 ≤ x ≤ a5

4
5 + 1

5
(x−a5)
(a6−a5)

, a5 ≤ x ≤ a6

1− 1
5

(x−a6)
(a7−a6)

, a6 ≤ x ≤ a7

4
5 − 1

5
(x−a7)
(a8−a7)

, a7 ≤ x ≤ a8

3
5 − 1

5
(x−a8)
(a9−a8)

, a8 ≤ x ≤ a9

2
5 − 1

5
(x−a9)
(a10−a9)

, a9 ≤ x ≤ a10

1
5

(a11−x)
(a11−a10)

, a10 ≤ x ≤ a11

0, otherwise.

2.1 Arithmetic Operation on α-Cut

Definition 6 A hendecagonal fuzzy number (Fig. 1) [5] H̃D can also be defined
as H̃D = A1(p), B1(q), C1(r),D1(s), E1(t), A2(p), B2(q), C2(r),D2(s), E2(t),

p ∈ [0, 0.2], q ∈ [0.2, 0.4], r ∈ [0.4, 0.6] s ∈ [0.6, 0.8], and t ∈ [0.8, 1], where
[3mm] A1(p) = 1

5
(x−a1)
(a2−a1)

, B1(q) = 1
5 + 1

5
(x−a2)
(a3−a2)

, C1(r) = 2
5 + 1

5
(x−a3)
(a4−a3)

, D1(s) =
3
5 + 1

5
(x−a4)
(a5−a4)

, E1(t) = 4
5 + 1

5
(x−a5)
(a6−a5)

, E2(t) = 1− 1
5

(x−a6)
(a7−a6)

, D2(s) = 4
5 − 1

5
(x−a7)
(a8−a7)

,

C2(r) = 3
5 − 1

5
(x−a8)
(a9−a8)

, B2(q) = 2
5 − 1

5
(x−a9)
(a10−a9)

, A2(p) = 1
5

(a11−x)
(a11−a10)

Here,



540 A. Felix et al.

1

0.8

0.6

0.4

0.2

0
a1 a2 a3 a4 a5 a6 a7 a8 a9

xa10 a11

µ(x)

A1(p)

B1(q)

C1(r)
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B2(q)

A2(p)

Fig. 1 The hendecagonal fuzzy number

• A1(p), B1(q), C1(r),D1(s), E1(t), is bounded and continuous increasing func-
tion over [0, 0.2),[0.2, 0.4), [0.4, 0.6), [0.6, 0.8), and [0.8, 1], respectively.

• A2(p), B2(q), C2(r),D2(s), E2(t), is bounded and continuous decreasing func-
tion over [0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), and [0.8, 1], respectively.

Definition 7 The α-cut of the fuzzy set of the universe of discourse X is defined as
H̃Dα = {x ∈ X/μÃ(x) ≥ α}, where α ∈ [0, 1].

H̃Dα =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[A1(α),A2(α)], for α ∈ [0, 0.2)

[B1(α), B2(α)], for α ∈ [0.2, 0.4)

[C1(α), C2(α)], for α ∈ [0.4, 0.6)

[D1(α),D2(α)], for α ∈ [0.6, 0.8)

[E1(α),E2(α)], for α ∈ [0.8, 1]

Definition 8 If A1(x) = α and A2(x) = α, then α-cut operations interval H̃Dα is
obtained as

1. [A1(α),A2(α)] = [5α(a2 − a1)+ a1,−5α(a11 − a10)+ a11)]
Similarly, we can obtain α-cut operations interval D̃α for [Q1(α),Q2(α)],

[R1(α), R2(α)], and [S1(α), S2(α)] as follows:

2. [B1(α), B2(α)] = [5α(a3 − a2)+ 2a2 − a3,−5α(a10 − a9)+ 2a10 − a9]
3. [C1(α), C2(α)] = [5α(a4 − a3)+ 3a3 − 2a4,−5α(a9 − a8)+ 3a9 − 2a8]
4. [D1(α),D2(α)] = [5α(a5 − a4)+ 4a4 − 3a5,−5α(a8 − a7)+ 4a8 − 3a7]
5. [D1(α),D2(α)] = [5α(a6 − a5)+ 5a5 − 3a6,−5α(a7 − a6)+ 5a7 − 3a6]
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Hence, α-cut of hendecagonal fuzzy number

H̃Dα =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[5α(a2 − a1)+ a1,−5α(a11 − a10)+ a11)], for α ∈ [0, 0.2)

[5α(a3 − a2)+ 2a2 − a3,−5α(a10 − a9)+ 2a10 − a9], for α ∈ [0.2, 0.4)
[5α(a4 − a3)+ 3a3 − 2a4,−5α(a9 − a8)+ 3a9 − 2a8], for α ∈ [0.4, 0.6)
[5α(a5 − a4)+ 4a4 − 3a5,−5α(a8 − a7)+ 4a8 − 3a7], for α ∈ [0.6, 0.8)
[5α(a6 − a5)+ 5a5 − 3a6,−5α(a7 − a6)+ 5a7 − 3a6], for α ∈ [0.8, 1]

Theorem 2 If Ã=(a1, a2, a3, a4, . . . , a9, a10, a11) and B̃=(b1, b2, b3, b4, . . . , b9,

b10, b11) are the hendecagonal fuzzy numbers, then C̃=Ã⊕B̃ is also a hendecagonal
fuzzy number Ã⊕ B̃=(a1 + b1, a2 + b2, a3 + b3, a4 + b4, . . . , a9 + b9, a10 + b10,
a11 + b11).

Theorem 3 If Ã=(a1, a2, a3, a4, . . . , a9, a10, a11) and B̃=(b1, b2, b3, b4, . . . , b9,
b10, b11) are the hendecagonal fuzzy numbers, then P̃=Ã⊗B̃ is also a hendecagonal
fuzzy number Ã⊗ B̃=(a1b1, a2b2, a3b3, a4b4, . . . , a9b9, a10b10, a11b11).

Theorem 4 If Ã=(a1, a2, a3, a4, . . . , a9, a10, a11) and B̃=(b1, b2, b3, b4, . . . ,
b9, b10, b11) are the hendecagonal Fuzzy Numbers, then D̃=Ã . B̃ is also a
hendecagonal fuzzy number:

Ã. B̃=
(

a1
b11

, a2
b10

,
a3
b9
, a4
b8
, . . . ,

a8
b4
,
a9
b3
,
a10
b2

, a11
b1

)

Definition 9 A linguistic variable/term is a “variable whose values is not crisp
number but word or sentence in a natural language” [15].

2.2 AND Operation in Linguistic Variables

The intersection of two fuzzy sets Ã and B̃ with the linguistic variables are again
fuzzy set C̃ with linguistic variable, which is defined as the minimum between
linguistic variables of Ã and B̃. This is called the minimum criterion of linguistic
variables. The fuzzy if-then rules are framed in Tables 1 and 2.

The linguistic values are represented by triangular and hendecagonal fuzzy
numbers in Tables 3 and 4.

Table 1 Linguistic fuzzy IF-THEN rules

S/C NI VLI LI M HI VHI VVHI

NI Too mild Too mild Too mild Too mild Too mild Too mild Too mild

VLI Too mild Mild Mild Mild Mild Mild Mild

LI Too mild Mild Moderate Moderate Moderate Moderate Moderate

M Too mild Mild Moderate M severe M severe M severe M severe

HI Too mild Mild Moderate M severe Severe Severe Severe

VHI Too mild Mild Moderate M severe Severe Very Severe Very Severe

VVHI Too mild Mild Moderate M severe Severe V severe SC
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Table 2 Transforming
linguistic variables to medical
terms using fuzzy IF-THEN
rule

Linguistic variables Health condition

No influence Too mild

Very low influence Mild

Low influence Moderate

Medium Moderate severe

High influence Severe

Very high influence Very severe

Very very high influence Serious condition

Table 3 Triangular fuzzy
linguistic scale

Linguistic term Representation of LT Triangular FN

Too mild TM (0.1,0.3.0.5)

Mild M (0.3,0.5,0.7)

Moderate MR (0.5,0.7,0.9)

Severe S (0.7,0.9,1)

Very severe VS (0.9,1,1)

Table 4 Hendecagonal fuzzy linguistic scale

Linguistic term Notation Hendecagonal FN

Too mild TM (0,0,0,0,0,0,0.03,0.06,0.09,0.12,0.15)

Mild M (0,0.03,0.06,0.09,0.12,0.15,0.18,0.21,0.24,0.27,0.30)

Moderate MR (0.15,0.18,0.21,0.24,0.27,0.30,0.33,0.36,0.39,0.42,0.45)

Moderate severe MRS (0.30,0.33,0.36,0.39,0.42,0.45,0.48,0.51,0.54,0.57,0.60)

Severe S (0.48,0.51,0.54,0.57,0.60,0.63,0.66,0.69,0.72,0.75,0.78)

Very severe VS (0.63,0.66,0.69,0.72,0.75,0.78,0.81,0.84,0.87,0.90,0.93)

Serious condition SC (0.78,0.81,0.84,0.87,0.90,0.93,0.96,0.99,1,1,1)

2.3 Blood Glucose

Glucose is the major source of energy for all cells. Without enough glucose,
our body cannot perform its normal functions. The three most frequently
prescribed blood sugar tests to determine the glucose level in the blood are
FBS, PPBS, and RBS. The abovementioned tests are to monitor, confirm,
or rule out T2DM. The state of increased blood sugar level (≥140 mg/dl) is
known as hyperglycemia and the decreased blood sugar level is hypoglycemia
(≤70 mg/dl) [2].

2.4 Hyperglycemia

Hyperglycemia is a condition where our blood glucose level is too high if we
do not eat healthy foods or do not exercise. Illness, stress, and hormones can
also be a reason to raise our blood glucose. The symptoms of hyperglycemia are
increased thirst, excessive hunger, frequent urination, dry mouth, fatigue or feeling
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tired, blurry vision, weight loss, and slow-healing sores leading to neuropathy,
retinopathy, nephropathy, and cardiovascular problems.

3 Algorithm for Fuzzy Inference System

This fuzzy system is constructed using triangular and hendecagonal fuzzy number.

Fuzzification

Step-1 Construct two uncertain linguistic relation matrices over symptoms S and
complications C, respectively, from the linguistic set UL= {NI, VLI, LI,
M, HI,VHI, VVHI} with the help of expert opinion, where (T 2DM)S—
symptoms and (T 2DM)C—complications.

Inference Process Database

Step-2 Construct the matrix (T 2DM)1 = (T 2DM)S× (T 2DM)C using fuzzy IF-
THEN rules, which is defined in the form of linguistic fuzzy logic (LFL).

Step-3 A fuzzy linguistic scale is utilized to convert the linguistic variables into
triangular, hendecagonal fuzzy number.

Step-4 Find the fuzzy positive ideal solution (FPIS) and fuzzy negative ideal
solution (FNIS) for the triangular, hendecagonal fuzzy matrix, and it can
be defined as

P+ = (x+1 , x+2 , . . . , x+n ), where x+j = maxi{xij3}, x+j = maxi{xij11}, i =
1, 2, . . . ,m; j = 1, 2, . . . , n.
P− = (x−1 , x−2 , . . . , x−n ), where x+j = mini{xij1} for both fuzzy numbers, i =
1, 2, . . . ,m; j = 1, 2, . . . , n.

Step-5 The distance of each patient from P+ and P− can be given by

d+i =
n∑

i=1

d(xij , x
+
j ), i = 1, 2, . . . ,m

d−i =
n∑

i=1

d(xij , x
−
j ), i = 1, 2, . . . ,m

where

d(Ã, B̃) =
√√√√1

3

[ 3∑

i=1

(ai − bi)2

]

d(Ã, B̃) =
√√√√ 1

11

[ 11∑

i=1

(ai − bi)2

]
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Defuzzification

Step-6 The patient’s Pi, (i = 1, 2, . . . ,m) health condition is determined by the
closeness coefficient

PPi = d+i
d+i + d−i

, PPi ∈ [0, 1]

4 Adaptation of the Problem to the Proposed Fuzzy
Inference System

This section investigates the validity of proposed FIS to analyze the effect of
hyperglycemia in T2DM.

At step-1, the expert’s (Subaju Patient) voice was recorded by the unsupervised
method that what influenced her to come hospital. From her statements, hyper-
glycemia symptoms are taken as factors. The matrix table for Patient-Symptoms
(T 2DM)S , Symptoms-Complications (T 2DM)C were constructed with the help of
medical practitioner. For instance, IF the P1 have high level of increased thirsty
and very low level of cardiovascular problem, THEN health condition of P1 is
determined at step-2 using (Tables 5, 6, 7).

Next, the linguistic fuzzy IF-THEN rule from Table 1 is used to predict the
patient’s actual health condition through linguistic variables from Table 2 as
medical term. Using IF-THEN rules in the previous step, the patient’s actual health
condition is Mild. Here, the linguistic variables are converted into triangular and
hendecagonal fuzzy numbers. Then, (FPIS) and (FNIS) are determined. Next, using
the closeness coefficient formula, the patient health condition is determined. This
closeness coefficient for the triangular and hendecagonal matrices are tabulated in
Tables 8 and 9.

Table 5 Expert data of (T 2DM)S of hyperglycemia using linguistic variables

(T 2DM)S Increased thirst Hunger Frequent urination Dry mouth Feeling tired Blurry vision

P1 H L VH H L H

Table 6 Expert data of (T 2DM)C of hyperglycemia using linguistic variables

(T 2DM)C Cardiovascular Neuropathy Nephropathy Retinopathy

Increased thirst VL L H NI

Hunger L VL H L

Frequent urination NI L VH VL

Dry mouth H L VL VL

Feeling tired L VL NI NI

Blurry vision L VH H VH
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Table 7 Expert data of (T 2DM)1 of hyperglycemia using linguistic variables

(T 2DM)1 Cardiovascular Neuropathy Nephropathy Retinopathy

Increased thirst Mild Moderate Severe Too mild

Hunger Moderate Mild Moderate Moderate

Frequent urination Too mild Moderate Very severe Mild

Dry mouth Severe Moderate Mild Mild

Feeling tired Moderate Mild Too mild Too mild

Blurry vision Moderate Severe Severe Very severe

Table 8 Triangular fuzzy distance measurement and closeness coefficient

PHC dT R+
1 dT R−

1 PP TR
i Rank

Cardiovascular 2.4516 3.3321 0.5761 2

Neuropathy 2.2588 2.3924 0.5143 3

Nephropathy 2.0088 3.7331 0.6501 1

Retinopathy 2.8884 2.8697 0.4983 4

Table 9 Hendecagonal Fuzzy distance measurement and closeness coefficient

PHC dHD+
1 dHD−

1 PPHD
i Rank

Cardiovascular 2.74818 1.82538 0.3991 2

Neuropathy 2.91928 1.93586 0.3987 3

Nephropathy 3.06838 2.59566 0.4582 1

Retinopathy 4.06378 1.58942 0.2811 4

This closeness coefficient for all alternatives indicates that the patient is presently
affected with high grade of nephropathy. From the result, it is observed that the
ranking for both is same but the values of hendecagonal are more optimized than
the values of triangular. Hence, when the expert opinions are taken under uncertain
environment, there is no clear information and no accurate solution for the problem.
Therefore, if we increase the uncertain linguistic term, then the uncertainty of the
problem would give more information about it and give clear idea to solve the
problem.

5 Conclusion

This present study determined that the Subaju Patient was more affected by
nephropathy / cardiovascular / neuropathy / retinopathy. Hence, this FIS pave
a way to the doctor to precede the treatment step by step according to the result
so that it will help the patient to avoid the end stage complication. Therefore, the
improved fuzzy inference system with linguistic fuzzy logic, FPIS and FNIS using
triangular and hendecagonal fuzzy number is more suitable to fetch out the patient’s
actual health condition.



546 A. Felix et al.

References

1. Ajay Kumar Shrivastava., Akash Rajak., Niraj Singhal.: Modeling Pulmonary Tuberculosis
using Adaptive Neuro Fuzzy Inference System, International Journal of Innovative Research
in Computer Science & Technology, 4(1), 24–27 (2016)

2. Ajmalahamed, A., Nandhini, K.M., Krishna Anand.: Designing A Rule Based Fuzzy Expert
Controller For Early Detection And Diagnosis of Diabetes, ARPN Journal of Engineering and
Applied Sciences, 9(5), 819–827 (2014)

3. Ambilwade, R.P., Manza., Ravinder Kaur, R. : Prediction of Diabetes Mellitus and its
Complications using Fuzzy Inference System, International Journal of Emerging Technology
and Advanced Engineering, Certified Journal, 6(7), 80–86 (2016)

4. Faran Baig., Saleem, M., Yasir Noor., Imran Khan, M.: Design Model Of Fuzzy Logic Medical
Diagnosis Control System, International Journal On Computer Science And Engineering
(IJCSE), 3(5), 2093–2108 (2011)

5. Devadoss, AV., Dhivya, A.D., Felix, A.: A Hendecagonal Fuzzy Number and Its Vertex
Method, International Journal of Mathematics And its Applications, 4(1-B), 87–98 (2016)

6. Guillaume, S.: Designing Fuzzy Inference Systems from Data: An Interpretability-Oriented
Review, IEEE Transactions on Fuzzy Systems, 9(3), 426–443 (2001)

7. Kandel, A. Fuzzy Expert Systems. CRC Press, Inc., Boca Raton, FL (1991).
8. Kosko, B.: Neural Networks and Fuzzy Systems: A dynamical systems approach. Prentice

Hall, Upper Saddle River, NJ (1991)
9. Leonardo Yunda., David Pacheco Jorge Millan.: A Web-based Fuzzy Inference System Based

Tool for Cardiovascular Disease Risk Assessment, NOVA, 13(24), 7–16 (2015)
10. Mamdani, E.H., Assilian, S.: An Experiment in Linguistic Synthesis with a Fuzzy Logic

Controller. International Journal of Man-Machine Studies, 7(1), 1-13 (1975)
11. Nauck, M.A., Wollschläger, D., Werner, J.: Effects of subcutaneous glucagon-like peptide 1

(GLP-1 [7-36 amide]) in patients with NIDDM. Diabetologia, 39(12), 1546–1553 (1996)
12. Shristi Tiwari., Deepti Choudhary., Shubi Sharda.: Prediction Of Lung Cancer Using Fuzzy

Inference System, International Journal of Current Innovation Research, 2(6), 392–395 (2016)
13. Sugeno, M., Kang, G.T.: Structure Identification of Fuzzy Model, Fuzzy Sets and Systems, 28,

15–33 (1988)
14. Takagi, T., Sugeno.: Fuzzy Identification of Systems and Its Applications to Modeling and

Control. IEEE Transactions on Systems, Man, and Cybernetics, 15, 116–132 (1985)
15. Zadeh, L.A.: Soft Computing and Fuzzy Logic, IEEE software, 11(6), 48–56 (1994)
16. Zadeh, L.A.: Fuzzy sets, Information and Control, 8, 338–353 (1965)



Computation of Narayana Prime Cordial
Labeling of Book Graphs

B. J. Balamurugan, K. Thirusangu, B. J. Murali, and J. Venkateswara Rao

Abstract In this article, we compute the Narayana prime cordial labeling of book
graphs using prime and Narayana numbers.

Keywords and phrases: Narayana numbers · Prime numbers · NPC graphs

1 Introduction

A labeling of a graph G is a process of allocating numbers or labels to the nodes
of G or lines of G or both through mathematical functions [1]. The basic notion
of graph labeling is found in [7]. The vital application of labeled graphs can be
found in science, engineering and technology and we refer [4] for the same. For
graph labeling literature, we refer to [2]. We refer to the textbook by Harary [3] for
notations, concepts, and terminology in graph theory.

The Narayana numbers [5], a recent development in number theory, occur in
various combinatorial problems. The applications of Narayana numbers play an
important role in various topics of mathematics, especially in cryptography. The
Narayana numbers have been used in multiple input and output communication
systems, in RNA secondary structure configuration, and in partition of graphs
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in terms of trees. Since the Narayana numbers and labeled graphs have many
interesting practical applications, we are concerned in computing the Narayana
prime cordial labeling of graphs. We introduced this labeling pattern in [6] and
proved that the graphs, viz., (i) paths, (ii) cycles, and (iii) helm graphs, are Narayana
prime cordial graphs. In this article, we compute the Narayana prime cordial
labeling of book graphs.

2 Narayana Numbers [5]

For definition and properties of Narayana numbers we refer [5].

Definition 1 ([5]) Let N0 be the set of nonnegative integers and let k, n ∈ N0. The
Narayana numbers can be defined as

N(n, k) = 1

n

(n
k

)( n

k + 1

)
; 0 ≤ k < n where

(n
k

)
= n!

(n− k)!k!
The Narayana numbers discovered by Narayana are highly associated with the

Catalan numbers [8]. That is, Cn = 1

n+ 1

(
2n

n

)
and

n−1∑

k=0

N(n, k) = Cn where Cn

is a Catalan number.

For example, the Narayana numbers N(n, k) where 0 ≤ k < n ≤ 8 are given in
the following triangular array. Here the sum of each row is a Catalan number [8].

n|k 0 1 2 3 4 5 6 7

1 1 1

2 1 1

3 1 3 1

4 1 6 6 1

5 1 10 20 10 1

6 1 15 50 50 15 1

7 1 21 105 175 105 21 1

8 1 28 196 490 490 196 28 1

3 Narayana Prime Cordial Labeling of Book Graphs

This section introduces the Narayana prime cordial labeling [6] of a graph
G = (V ,E) and shows that the book graphs are Narayana prime cordial graphs.

Definition 2 Let G(V,E) be a simple graph. A 1-1 function 1 : V → N0 is called
a Narayana prime cordial labeling of the Graph G if there exists an edge function
1∗ : E → {0, 1} satisfying the two conditions, viz.,
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(i) For every uv ∈ E, u, v ∈ V

1∗(uv) = 1 if p|N(1(u), 1(v)), where 1(u) > 1(v) and 1(u) = pm

for some m ∈ N0; 1 ≤ 1(v) ≤ 1(u)− 2 where p is a prime number

= 1 if p|N(1(v), 1(u)), where 1(v) > 1(u) and 1(v) = pm

for some m ∈ N0; 1 ≤ 1(u) ≤ 1(v)− 2 where p is a prime number.

= 0 if p � | N(1(u), 1(v)), where 1(u) > 1(v) and 1(u) = pm − 1

for some m ∈ N0; 0 ≤ 1(v) ≤ 1(u)− 1 where p is a prime number

= 0 if p � | N(1(v), 1(u)), where 1(v) > 1(u) and 1(v) = pm − 1

for some m ∈ N0; 0 ≤ 1(u) ≤ 1(v)− 1 where p is a prime number.

(ii) |e1∗(0) − e1∗(1)| ≤ 1 where e1∗(0) and e1∗(1) denote the total number of
edges having the number 0 and the total number of edges having the number 1,
respectively.

Definition 3 Let G = (V ,E) be a simple graph. If G assumes a Narayana prime
cordial labeling, then it is known as a Narayana prime cordial graph.

Remark 1 We call the Narayana prime cordial labeling of a graph as NPC labeling
of a graph for simplicity in this paper.

Definition 4 One edge union of cycles of same length is called a book graph. The
common edge is called the base edge of the book graph.

Let m copies of cycles of length n ≥ 3 is denoted as Bm
n .

If n = 3, 4, 5, and 6, then book graphs have triangular, rectangular or
quadrilateral, pentagonal, and hexagonal pages, respectively. The book graph Bm

n

has m(n− 2)+ 2 vertices and m(n− 1)+ 1 edges.

Theorem 1 A book graph with triangular pages admits a NPC labeling.

Proof Let Bm
3 be a book graph with triangular pages.

Let V = {u0, v0} ∪ {vi |1 ≤ i ≤ m} be the vertex and E = E1 ∪ E2 ∪ E3 where
E1 = {u0v0}, E2 = {u0vi |1 ≤ i ≤ m}, and E3 = {v0vi |1 ≤ i ≤ m} be the edge set
of Bm

3 . Then Bm
3 has m+ 2 vertices and 2m+ 1 edges.

Define a 1-1 function 1 : V → N0 such that
1(u0) = 1
1(v0) = 2
1(vi) = 2i+1; 1 ≤ i ≤ m and i ≡ 1 (mod 2)
1(vi) = 2i+1 − 1; 1 ≤ i ≤ m and i ≡ 0 (mod 2)
and an edge function 1∗ : E → {0, 1} defined as in the Definition 2.
In this labeling pattern

Case (i) When m ≡ 0 (mod 2), m+ 1 edges of the set E receive the label 0, and m

edges receive the label 1.
That is e1∗(0) = m+ 1 and e1∗(1) = m and therefore |e1∗(0)− e1∗(1)| ≤ 1.
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Case (ii) When m ≡ 1 (mod 2), 2(m−1)
2 + 1 = m edges of E receive the label

0 and 2(m−1)
2 + 2 = m + 1 edges receive the label 1. That is, e1∗(0) = m and

e1∗(1) = m+ 1 and therefore |e1∗(1)− e1∗(0)| ≤ 1.
Hence in both cases, Bm

3 admits a NPC labeling.

The NPC labeling of B4
3 and B5

3 are given in Figs. 1 and 2, respectively.

Example 1

Fig. 1 NPC labeling of B4
3 1

2

4 7 16 310

0

0

0

0

1

1

1

1

Fig. 2 NPC labeling of B5
3 1

2

4 7 16 31 64
1

1

0

0

1

1

0

0

1

1
0

Theorem 2 A book graph with rectangular pages (or quadrilateral pages) is a
NPC graph.

Proof Let Bm
4 be a book graph with rectangular pages.

Let V = {u0, v0} ∪ {v1,i |1 ≤ i ≤ m} ∪ {v2,i |1 ≤ i ≤ m} be the vertex set of Bm
4 .

Let E = {u0v0} ∪ E1 ∪ E2 ∪ E3 be the edge set of Bm
4 where E1 = {u0v1,i |1 ≤

i ≤ m}, E2 = {v1,iv2,i |1 ≤ i ≤ m}, E3 = {v0v2,i |1 ≤ i ≤ m}.
Now Bm

4 has 2m+ 2 vertices and 3m+ 1 edges.

Case (i) When m ≡ 0 (mod 2), define a 1-1 function 1 : V → N0 such that
1(u0) = 1
1(v0) = 2

1(vi,1) = pi+1
1 , i = 1, 2

1(vi,2) = pi+1
2 − 1, i = 1, 2

1(vi,3) = pi+1
3 , i = 1, 2

1(vi,4) = pi+1
4 − 1, i = 1, 2

. . .

1(vi,m) = pi+1
m − 1 i = 1, 2

where p1, p2, . . . , pm are distinct prime numbers and an edge function 1∗ : E →
{0, 1} as in the Definition 2.

In this type of labeling pattern, E has 3m
2 +1 edges with label 0 and 3m

2 edges with
label 1. That is, e1∗(0) = 3m

2 +1 and e1∗(1) = 3m
2 and therefore |e1∗(0)−e1∗(1)| ≤ 1.
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Case (ii) When m ≡ 1 (mod 2), define a 1-1 function 1 : V → N0 such that
1(u0) = 1
1(v0) = 2

1(vi,1) = pi+1
1 , i = 1, 2

1(vi,2) = pi+1
2 − 1, i = 1, 2

1(vi,3) = pi+1
3 , i = 1, 2

1(vi,4) = pi+1
4 − 1, i = 1, 2

. . .

1(vi,m−1) = pi+1
m−1 − 1, i = 1, 2

1(v1,m) = p2
m − 1

1(v2,m) = p2
m

and an edge function 1∗ : E → {0, 1} as in the Definition 2.
This vertex function and edge function enable the graph such that 3m+1

2 edges
receive the label 0 and 3m+1

2 edges with receive the label 1. That is, e1∗(0) = 3m+1
2 +

1 and e1∗(1) = 3m+1
2 , and therefore |e1∗(0)− e1∗(1)| ≤ 1 is satisfied in both cases.

Therefore Bm
4 is a NPC graph. The NPC labeling of Bm

4 is given in the Fig. 3.

Example 2

Fig. 3 NPC labeling of Bm
4

1
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1

0

1

0

1

0

1

0

1 10 00

32-1
22
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72-1

23

33-1

53

73-1

Theorem 3 The book graph Bm
n is a NPC graph.

Proof Let Bm
n be a book graph with m copies of n cycles, n ≥ 3. Then Bm

n has
m(n− 2)+ 2 vertices and m(n− 1)+ 1 edges.

Let V = {u0, v0} ∪ V1 ∪ V2 ∪ V3 ∪ · · · ∪ Vm be vertex set of Bm
n where
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V1 = {v1,i |1 ≤ i ≤ n− 2},
V2 = {v2,i |1 ≤ i ≤ n− 2},
V3 = {v3,i |1 ≤ i ≤ n− 2},
. . . ,
Vm = {vm,i |1 ≤ i ≤ n− 2}.
Let E = {u0v0} ∪ E1 ∪ E2 ∪ E3 ∪ · · · ∪ Em be edge set of the Bm

n where
E1 = {u0v1,1} ∪ {v1,iv1,i+1|1 ≤ i ≤ n− 3} ∪ {v1,n−2v0},
E2 = {u0v2,1} ∪ {v2,iv2,i+1|1 ≤ i ≤ n− 3} ∪ {v2,n−2v0},
E3 = {u0v3,1} ∪ {v3,iv3,i+1|1 ≤ i ≤ n− 3} ∪ {v3,n−2v0},
. . . ,
Em = {u0vm,1} ∪ {vm,ivm,i+1|1 ≤ i ≤ n− 3} ∪ {vm,n−2v0}.

Case (i) Let m ≡ 0 (mod 2) and n ≡ 0 (mod 2). Define a 1-1 function 1 : V → N0
such that

1(u0) = 1, 1(v0) = 2

1(v1,i ) = pi+1
1 ; 1 ≤ i ≤ n− 2

1(v2,i ) = pi+1
2 − 1; 1 ≤ i ≤ n− 2

1(v3,i ) = pi+1
3 ; 1 ≤ i ≤ n− 2

. . .

1(vm,i ) = pi+1
m − 1; 1 ≤ i ≤ n− 2

where p1, p2, and pm are distinct primes such that p1 ≤ p2 < p3 < · · · < pm and
an edge function 1∗ : E → {0, 1} as in the Definition 2. In this labeling pattern,
m(n−1)

2 + 1 edges have the label 0, and m(n−1)
2 edges have the label 1. That is,

e1∗(0) = m(n−1)
2 + 1, and e1∗(1) = m(n−1)

2 ; therefore, |e1∗(0)− e1∗(1)| ≤ 1.

Case (ii) Let m ≡ 0 (mod 2) and n ≡ 1 (mod 2), and define the vertex function
and edge function as in Case (i). These functions will enable the graph such that
m(n−1)

2 + 1 edges receive the label 0 and m(n−1)
2 edges receive the label 1. That is

e1∗(0) = m(n−1)
2 + 1 and e1∗(1) = m(n−1)

2 and therefore |e1∗(0)− e1∗(1)| ≤ 1.

Case (iii) When m ≡ 1 (mod 2) and n ≡ 0 (mod 2), define a 1-1 function 1 : V →
N0 such that

1(u0) = 1, 1(v0) = 2

1(v1,i ) = pi+1
1 ; 1 ≤ i ≤ n− 2

1(v2,i ) = pi+1
2 − 1; 1 ≤ i ≤ n− 2

1(v3,i ) = pi+1
3 ; 1 ≤ i ≤ n− 2

. . .

1(vm−1,i ) = pi+1
m−1 − 1; 1 ≤ i ≤ n− 2

1(vm,i ) =
{
pi+1
m ; 1 ≤ i ≤ n−2

2 + 1 = n
2

pi+1
m − 1; n

2 < i ≤ n− 2

where p1, p2, p3, . . . , pm are distinct primes, such that p1 < p2 < p3 < · · · < pm

and an edge function 1∗ : E → {0, 1} as in the Definition 2. In this type of labeling
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pattern, E has m(n−1)+1
2 edges with label 0 and m(n−1)+1

2 edges with label 1. That

is, e1∗(0) = m(n−1)+1
2 and e1∗(1) = m(n−1)+1

2 and therefore |e1∗(0)− e1∗(1)| ≤ 1.

Case (iv) When m ≡ 1 (mod 2) and n ≡ 1 (mod 2), define a 1-1 function 1 : V →
N0 such that

1(u0) = 1, 1(v0) = 2

1(v1,i ) = pi+1
1 ; 1 ≤ i ≤ n− 2

1(v2,i ) = pi+1
2 − 1; 1 ≤ i ≤ n− 2

1(v3,i ) = pi+1
3 ; 1 ≤ i ≤ n− 2

. . .

1(vm−1,i ) = pi+1
m−1 − 1; 1 ≤ i ≤ n− 2

1(vm,i ) =
{
pi+1
m ; 1 ≤ i ≤ n−2

2

pi+1
m − 1; n−1

2 < i ≤ n− 2

where p1, p2, p3, . . . , pm are prime numbers, such that p1 < p2 < p3 < · · · < pm

and an edge function 1∗ : E → {0, 1} as in the Definition 2. In this type of labeling
pattern, E has m(n−1)+1

2 +1 edges with label 0 and m(n−1)+1
2 edges with label 1. That

is, e1∗(0) = m(n−1)+1
2 +1 and e1∗(1) = m(n−1)+1

2 and therefore |e1∗(0)−e1∗(1)| ≤ 1.
From Cases (i), (ii), (iii), and (iv), we conclude that Bm

n is a NPC graph.

4 Conclusion

In this manuscript, we proved that the graphs, viz., (i) Bm
3 , (ii) Bm

4 , and (iii) Bm
n

(generalized Book graph), admit a NPC labeling with suitable examples.
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Quotient-3 Cordial Labeling for Path
Related Graphs: Part-II

P. Sumathi and A. Mahalakshmi

Abstract A simple graph G(V,E) has order p and size q . Let f : V (G) →
Z4 − {0} be a function. For each E(G) define f ∗ : E(G) → Z3 by f ∗(uv) =⌈

f (u)
f (v)

⌉
(mod 3) where f (u) ≥ f (v). The function f is said to be quotient-3 cordial

labeling if the difference between the number of vertices (edges) labeled with i(k)

and the number of vertices (edges) labeled with j (l) by atmost 1. 1 ≤ i, j ≤ 3,
i �= j , and 0 ≤ k, l ≤ 2, k �= l. Here it is proved that some path-related graphs
like (Pn;P2), S(Pn;P2), [Pn; Sm] m �= 1, S[Pn; S2], Twig(T gn), and S(T gn) are
quotient-3 cordial.

Keywords Star · path · twig · subdivision graph · quotient-3 cordial.

Mathematics Subject Classification 05C78

1 Introduction

All the graphs considered here are finite, simple, undirected, and nontrivial. Graph
theory has a good development in the graph labeling and has a broad range of
applications. Refer to Gallian [3] for more information. Cahit [1] has introduced the
concept of cordial labeling. Based on this labeling, more papers published in cordial
labeling such as mean cordial labeling, H1- and H2-cordial labeling of some graphs
[2], 3 product cordial labeling, etc. With the reference of these labelings, we have
introduced quotient-3 cordial labeling. A graph G is said to be quotient-3 cordial if
it receives quotient-3 cordial labeling. Number of vertices labeled with i is denoted
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by vf (i), and the number of edges labeled with k is denoted by ef (k), 1 ≤ i ≤ 3,
0 ≤ k ≤ 2.

2 Preliminaries

Definition 1 ([6]) A graph (Pn;P2) is obtained from a path Pn by attaching an end
vertex of P2 with every vertex of Pn through an edge.

Definition 2 ([6]) A graph [Pn; Sm] is obtained by joining the root of a star Sm at
every vertex of a path Pn.

Definition 3 ([4]) A Twig graph Tgn, n ≥ 1 is obtained by attaching two vertices
to every internal vertex of a path through an edge.

Definition 4 ([5]) A new graph is obtained from G by subdividing all the edges of
G with a new vertex called subdivision of G, and it is denoted by S(G).

3 Main Result

Definition 5 ([7]) A simple graph G(V,E) has order p and size q . Let f :
V (G) → Z4 − {0} be a function. For each E(G) define f ∗ : E(G) → Z3

by f ∗(uv) =
⌈

f (u)
f (v)

⌉
(mod 3) where f (u) ≥ f (v). The function f is said to be

quotient-3 cordial labeling if the difference between the number of vertices (edges)
labeled with i(k) and the number of vertices (edges) labeled with j (l) by atmost 1.
1 ≤ i, j ≤ 3, i �= j , and 0 ≤ k, l ≤ 2, k �= l.

Theorem 1 A graph (Pn;P2) is quotient-3 cordial.

Proof Let G = (Pn;P2)

Let V (G) = {ui, vi , wi : 1 ≤ i ≤ n}
E(G) = {[(uiui+1) : 1 ≤ i ≤ n− 1] ∪ [(uivi), (viwi) : 1 ≤ i ≤ n]}
Here |V (G)| = 3n, |E(G)| = 3n− 1.
Define f : V (G)→ Z4 − {0}
f (ui) = 1, 1 ≤ i ≤ n

f (vi) = 3, 1 ≤ i ≤ n

f (wi) = 2, 1 ≤ i ≤ n

For all n, vf (1) = vf (3) = vf (2) = n.
ef (1) = n− 1, ef (0) = ef (2) = n

Clearly the graph (Pn;P2) is quotient-3 cordial.

Theorem 2 The subdivision of (Pn;P2) is quotient-3 cordial. (Table 1)

Proof Let G = S(Pn;P2)

Let V (G) = {[ui : 1 ≤ i ≤ 2n− 1] ∪ [xi, yi, vi , wi : 1 ≤ i ≤ n]}
E(G) = {[(uiui+1) : 1 ≤ i ≤ 2n − 2] ∪ [(u2i+1vi+1) : 0 ≤ i ≤ n − 1] ∪
[(viwi), (wixi), (xiyi) : 1 ≤ i ≤ n]}
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Table 1 (Pn; P2)

Nature of n vf (1) vf (2) vf (3) ef (0) ef (1) ef (2)

n ≡ 0 (mod 2) 2n 2n 2n− 1 2n − 1 2n 2n − 1

n ≡ 1 (mod 2) 2n− 1 2n 2n 2n − 1 2n 2n − 1

Here |V (G)| = 6n− 1, |E(G)| = 6n− 2.
Define f : V (G)→ Z4 − {0}
For all n, f (u1) = 1, f (v1) = 3, f (w1) = 3, f (x1) = 2, f (y1) = 2
Labeling of ui and 2 ≤ i ≤ 2n− 1 is given below.
f (ui) = 3, if i ≡ 0 (mod 2)
f (ui) = 1, if i ≡ 1 (mod 2)
Labeling of vi, wi, xi, yi and 2 ≤ i ≤ n is given below.
For 2 ≤ i ≤ n

f (vi) = 2
f (wi) = 2
f (xi) = f (yi) = 1, if i ≡ 0 (mod 2)
f (xi) = f (yi) = 3, if i ≡ 1 (mod 2)

Theorem 3 [8] The graph [Pn; Sm], m �= 1 is quotient-3 cordial (Table 2).

Proof Let G = [Pn; Sm]
Let V (G) = {[ui, vij : 1 ≤ i ≤ n, 1 ≤ j ≤ m]}
E(G) = {[(uiui+1) : 1 ≤ i ≤ n− 1] ∪ [(uivij ) : 1 ≤ i ≤ n, 1 ≤ j ≤ m]}
Let |V (G)| = n(1+m), |E(G)| = n(1+m)− 1
Define f : V (G)→ Z4 − {0}
For all i, f (ui) = 1
Labeling of vij , 1 ≤ i ≤ n, and 1 ≤ j ≤ m is given below.

Case (i) When n ≡ 0 (mod 3)
Out of mn vertices,

(
mn+n

3

)
vertices are labeled by 3,

(
mn+n

3

)
vertices are labeled

by 2, and the remaining vertices are labeled by 1.

Case (ii) When n ≡ 1 (mod 3)

Subcase (i) When m ≡ 0 (mod 3)

Out of mn vertices,
(
mn+n−1

3

)
vertices are labeled by 3,

(
mn+n−1

3

)
vertices are

labeled by 2, and assign label 1 for the remaining vertices.

Subcase (ii) When m ≡ 1 (mod 3)

Out of mn vertices,
(

mn+n−2
3

)
+ 1 vertices are labeled by 3,

(
mn+n−2

3

)
vertices are

labeled by 2, and the remaining vertices are labeled by 1.

Subcase (iii) When m ≡ 2 (mod 3)
Out of mn vertices,

(
mn+n

3

)
vertices are labeled by 3,

(
mn+n

3

)
vertices are labeled

by 2, and the remaining vertices are labeled by 1.
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3 3 3
3 3 3 3 3 3 3 1 132
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Fig. 1 A quotient-3 cordial of [P6; S5]

Case (iii) When n ≡ 2 (mod 3)

Subcase (i) When m ≡ 0 (mod 3)

Out of mn vertices,
(

mn+n−2
3

)
+ 1 vertices are labeled by 3,

(
mn+n−2

3

)
vertices are

labeled by 2, and assign label 1 for the remaining vertices.

Subcase (ii) When m ≡ 1 (mod 3)

Out of mn vertices,
(
mn+n−1

3

)
vertices are labeled by 3,

(
mn+n−1

3

)
vertices are

labeled by 2, and the remaining vertices are labeled by 1.

Subcase (iii) When m ≡ 2 (mod 3)
Out of mn vertices,

(
mn+n

3

)
vertices are labeled by 3,

(
mn+n

3

)
vertices are labeled

by 2, and assign label 1 for the remaining vertices.
When m ≡ 2 (mod 3) and for all n
vf (1) = vf (2) = vf (3) = mn+n

3
ef (0) = ef (2) = mn+n

3 , ef (1) = mn+n
3 − 1

Illustration 1 A quotient-3 cordial of [P6; S5] (Fig. 1)
See Fig. 1.

Theorem 4 The graph S[Pn; S2] is quotient-3 cordial.

Proof Let G = S[Pn; S2]
Let V (G) = {[ui : 1 ≤ i ≤ 2n− 1] ∪ [vij , wij : 1 ≤ i ≤ n, 1 ≤ j ≤ 2]}
E(G) = {[(uiui+1) : 1 ≤ i ≤ 2n − 2] ∪ [(u2i−1vij ) : 1 ≤ i ≤ n, 1 ≤ j ≤
2] ∪ [(vijwij ) : 1 ≤ i ≤ n, 1 ≤ j ≤ 2]}
Here |V (G)| = 6n− 1, |E(G)| = 6n− 2.
Define f : V (G)→ Z4 − {0}
f (ui) = 1, 1 ≤ i ≤ 2n− 1
f (vij ) = 3, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ 2
f (vij ) = 3, when i = n, j = 1
f (vij ) = 1, when i = n, j = 2
f (wij ) = 2, 1 ≤ i ≤ n, 1 ≤ j ≤ 2
For all n, vf (1) = vf (2) = 2n, vf (3) = 2n− 1
ef (0) = 2n− 1 = ef (1), ef (2) = 2n

Theorem 5 Twig graph Tgn is quotient-3 cordial.

Proof Let G = Tgn
Let V (G) = {[ui : 1 ≤ i ≤ n+ 2] ∪ [vi, wi : 1 ≤ i ≤ n]}
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E(G) = {[(uiui+1) : 1 ≤ i ≤ n+ 1] ∪ [(ui+1vi), (ui+1wi) : 1 ≤ i ≤ n]}
Here |V (G)| = 3n+ 2, |E(G)| = 3n+ 1.
Define f : V (G)→ Z4 − {0}
f (ui) = 3, 1 ≤ i ≤ n+ 1
f (ui) = 2, i = n+ 2
f (vi) = 1, 1 ≤ i ≤ n

f (wi) = 2, 1 ≤ i ≤ n

For all n, vf (1) = n, vf (2) = vf (3) = n+ 1
ef (0) = n = ef (1), ef (2) = n+ 1

Theorem 6 The graph S(T gn) are quotient-3 cordial.

Proof Let G = S(T gn)

Let V (G) = {[ui : 1 ≤ i ≤ 2n+ 3] ∪ [vi, wi, xi, yi : 1 ≤ i ≤ n]}
E(G) = {[(uiui+1) : 1 ≤ i ≤ 2n+ 2] ∪ [(viwi), (wiu2i+1), (u2i+1xi), (xiyi) : 1 ≤
i ≤ n]}
Here |V (G)| = 6n+ 3, |E(G)| = 6n+ 2.
Define f : V (G)→ Z4 − {0}
f (ui) = 2, 1 ≤ i ≤ 2n+ 1
f (ui) = 1, i = 2n+ 2
f (ui) = 3, i = 2n+ 3
f (vi) = 1, 1 ≤ i ≤ n

f (wi) = 3, 1 ≤ i ≤ n

f (xi) = 3, 1 ≤ i ≤ n

f (yi) = 1, 1 ≤ i ≤ n

For all n, vf (1) = 2n+ 1 = vf (2) = vf (3)
ef (0) = 2n+ 1 = ef (2), ef (1) = 2n

Illustration 2 A quotient-3 cordial of S(T g5) (Fig. 2)
See Fig. 2.
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Fig. 2 A quotient-3 cordial of S(Tg5)
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4 Conclusion

Here some path-related graphs have been discussed for quotient-3 cordial. Some
more special graphs have to be discussed in future work.

Acknowledgement Register our sincere thanks to the referees offered valuable feedback and
suggestions.
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Relation Between k-DRD and
Dominating Set

S. S. Kamath, A. Senthil Thilak, and Rashmi M

Abstract In this paper, a new parameter on domination is defined by imposing a
restriction on the degrees of vertices in the dominating set. For a positive integer k,
a dominating set D of a graph G is said to be a k-part degree restricted dominating
set (k-DRD-set), if for all u ∈ D there exists a set Cu ⊆ N(u) ∩ (V − D) such
that |Cu| ≤ 0 d(u)

k
1 and

⋃
u∈D Cu = V − D. The minimum cardinality of a k-

part degree restricted dominating set of G is called the k-part degree restricted
domination number of G and is denoted by γ d

k
(G). Here, we determine the k-

part degree restricted domination number of some well-known graphs, relation
between dominating and k-DRD set, and an algorithm which verifies whether a
given dominating set is a k-DRD set or not.

Keywords Dominating set; Independent dominating set; k-part degree restricted
dominating set.

2010 Mathematics Subject Classification 05C69

1 Introduction

A graph G is a triple consisting of a vertex set V, an edge set E, and a relation
that associates two vertices with each edge, namely, its end points. Throughout this
paper by a graph, we mean, a finite, undirected graph with no loops or multiple
edges having vertex set V and edge set E, unless otherwise specified. We denote the
order of graph G by n. The notation and terminologies not defined in this paper are
as in [1, 2, 5].
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A subset D ⊆ V is called a dominating set of G, if every vertex not in D is
adjacent to at least one vertex in D. The domination number of G is the minimum
cardinality taken over all dominating sets of G and is denoted by γ (G) [3].

Most of the applications and research in the world today hinges on information
system; therefore, there is an enormous traffic of data through different commu-
nication systems. In a communication network, when a link or a node is carrying
so much data, its quality of service often gets compromised, and also there is a
possibility of the loss of data. In order to handle such a situation, one needs to
remodel the network, so that the neighborhood of the vertex has some prevalent
influence. This has prompted us to introduce the new concept, namely, “k-part
degree restricted domination,” in which each vertex v can dominate at most 0 d(v)

k
1

other vertices in a given graph instead of all the vertices of the neighborhood of v.
In other words, every u ∈ D dominates at most 0 d(u)

k
1 vertices in V − D, and we

define it as follows.

Definition 1 For a positive integer k, a dominating set D of a graph G is said
to be a k-part degree restricted dominating set if for all u ∈ D, there exists a set
Cu ⊆ N(u) ∩ (V −D) such that |Cu| ≤ 0 d(u)k

1 and
⋃

u∈D Cu = V −D.
The k-part degree restricted domination number of G is the minimum cardinal-

ity taken over all the k-part degree restricted dominating set of G and is denoted by
γ d

k
(G). A k-DRD set of cardinality γ d

k
in G is called a γ d

k
-set of G.

The concept of k-part degree restricted domination is studied for k = 2 in [4].

1.1 k-Part Degree Restricted Domination Number of Some
Well-Known Graphs

1. γ d
k
(Pn) = 0n2 1, for all k ≥ 2.

2. γ d
k
(Cn) = 0n2 1, for all k ≥ 2.

3. γ d
k
(Wn) =

⎧
⎪⎨

⎪⎩

0n−(m+1)
2 1 + 1 if n ≡ 1(mod k) and k < n− 1

0n−(m+2)
2 1 + 1 if n �≡ 1(mod k) and k < n− 1

0n−2
2 1 + 1 if k ≥ n− 1

where m = 2n−1
k
3 and k ≥ 3 .

4. γ d
2
(Wn) =

{
1+ 0n−1

6 1 if n is odd.

1+ 0n−2
6 1 if n is even.

5. Let G be a prism graph. Then γ d
2
(G) =

⎧
⎪⎨

⎪⎩

n
3 if n ≡ 0(mod 3)
n+2

3 if n ≡ 1(mod 3)
n+1

3 if n ≡ 2(mod 3)

and γ d
k
(G) = n

2 for all k ≥ 3.
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Fig. 1 Here, {v2, v5} is a dominating set but not a 2-DRD set. Since d(v2) = 3, order of
Cv2 cannot exceed 2. Similarly, since d(v5) = 2, order of Cv5 cannot exceed 1, |Cv5 ∪ Cv2 | ≤
3 < |V − D| = 4. Hence, {v2, v5} cannot be a 2-DRD set of G though it is a dominating
set of G. Also note that D = {v4, v5, v6} is a γ d

3
-set, but V − D = {v1, v2, v3} is not a

dominating set

As an immediate consequence of the definition of k-DRD set, we can observe
the following:

1. Every graph G has a trivial k-DRD set, namely, V (G).
2. Every k-DRD set is a dominating set, but not conversely; see Fig. 1.
3. The case k = 1 is the classical domination number, γ (G) = γ d

1
(G) .

4. γ d
k
(G) ≤ γ d

k+1
(G) for all k ≥ 1.

5. For every k-DRD set D of a graph G, we can partition the set V − D with the
collection of sets {Cu : u ∈ D}.

6. Suppose G is a graph without isolated vertices and D is a γ d
k
-set of G, then

V −D need not be a k-DRD set or a dominating set, see Fig. 1.

2 Relation Between Dominating Set and k-DRD Set

We know that every dominating set is not a k-DRD set; it is, however, true only
for some graphs γ d

k
(G) = γ (G). But looking at the dominating set, it is difficult

to determine whether it is a k-DRD set or not; clearly for any dominating set D, if
|V − D| > ∑

u∈D0 d(u)k
1, then D is not a k-DRD set. If |Tu| > ∑

u∈N(u)∩D0 d(u)k
1

for at least one u ∈ V −D, where Tu = {v ∈ V −D|N(v)∩D ⊆ N(u)∩D} ∪ {u},
then also D is not a k-DRD set. For any connected graph G, 1 ≤ γ (G) ≤ n

2 . We can
characterize the graphs for which γ (G) = γ d

k
(G) = 1 and γ (G) = γ d

k
(G) = n

2 ,
which are as follows:
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Proposition 1 For k > 1, γ (G) = γ d
k
(G) = 1 if and only if G = K1 or G = K2.

Proposition 2 For a graph G with even order n, no isolated vertices and for any
k > 1, γ (G) = γ d

k
(G) = n

2 if and only if the components of G are cycle C4 or the

corona HoK for any connected graph H.

Proposition 3 For any graph G, if γ (G) < 0 n
m+11, where m = 0Δ(G)

k
1, then

γ (G) < γd
k
(G).

Proof Let D be a γ d
k
-set of G. Since order of Cu cannot exceed 0Δ(G)

k
1, for any

u ∈ D, we have

⌈
n

0Δ(G)
k 1+1

⌉
≤ γ d

k
(G). Hence, result holds.

Proposition 4 For k > 1 and an independent γ -set D of a tree T , if d(u) > 1 for
all u ∈ D, then D is not a k-DRD set.

Proof Suppose D is a k-DRD set, then there exists a partition {Cu : u ∈ D} of
V − D such that |Cu| ≤ 0 d(u)

k
1. Since D is independent and d(u) > 1, Cu is a

proper subset of N(u) for every u ∈ D. Let w1 ∈ N(u)−Cu for some u ∈ D. Since⋃
u∈D Cu = V −D, w1 ∈ Cv for some u �= v. Since Cv is a proper subset of N(v),

N(v) − Cv �= φ. Choose a vertex w2 from N(v) − Cv . Furthermore, w2 /∈ Cu. If
w2 ∈ Cu, then u,w1, v,w2 will form a cycle, a contradiction. Continuing the above
process, we get a vertex which is not in any Cu, u ∈ D, contradiction to the fact that
D is a k-DRD set.

2.1 Construction of Cu for Every u in a Dominating Set D

We have some results which tells when a given dominating set is a k-DRD set,
but our aim is to determine whether a given dominating set D is k-DRD set or
not. For this first we have to find Cu for all u ∈ D. In this section we are giving
some procedure to find Cu for every u ∈ D. Let D = {v1, v2, . . . vk} and choose a
vertex v1 from D. If |N(v1) ∩ (V −D)| ≤ 0 d(v1)

k
1, then Cv1 = N(v1) ∩ (V −D).

Otherwise choose 0 d(v1)
k
1 number of vertices from the set N(v1)∩(V−D) and name

that set as Cv1 . For k ≥ i ≥ 2, if |N(vi ) ∩ (V − (D ∪ (
⋃i−1

j=1 Cvj )))| ≤ 0 d(vi)
k
1,

then Cvi = N(vi )∩ (V − (D ∪ (
⋃i−1

j=1 Cvj ))). Otherwise choose 0 d(vi)
k
1 number of

vertices from the set N(vi)∩(V−(D∪(⋃i−1
j=1 Cvj ))) and name it as Cvi . Let A be the

collection of vertices v in D such that |Cv| < 0 d(v)
k
1. If

⋃
vi∈D Cvi = V −D, then

D is a k-DRD set. If (V −D)−⋃
vi∈D Cvi �= φ, then we have the following results.

In this section, we use S = V − (
⋃

vi∈D Cvi ∪D) and A = {v : |Cv| < 0 d(v)
k
1} as

constructed above.
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Theorem 1 A dominating set D of a graph G is a k-DRD set if and only if for
every vertex u ∈ S there exists a path Pu = u, v1, v2, . . . v2l+1 satisfying the
following.

1. For each i, 0 ≤ i ≤ l, v2i+1 ∈ D.
2. For each i, 0 < i ≤ l, v2i ∈ Cv2i−1 .

3. |Cv2l+1 | < 0 d(v2l+1)

k
1.

4. If the paths Pu1Pu2 .., Pum end at the same vertex say v, then 0 d(v)
k
1 − |Cv | ≥ m.

5. For every u,w ∈ S, V (Pu) ∩ V (Pw) ∩ (V −D) = φ.

Proof Let D be a k-DRD set. Then for each u ∈ D, there exists C′u ⊆ N(u) ∩
(V − D) such that |C′u| ≤ 0 d(u)

k
1 and

⋃
u∈D C′u = V − D. Now for each u ∈ S,

we construct a path Pu, which satisfies above conditions. Consider a vertex u from
S. Since D is k-DRD set, u ∈ C′v1

for some v1 ∈ D. By the construction of Cu

for u ∈ D, |Cv1 | = 0 d(v1)
k
1, therefore Cv1 − C′v1

�= φ. Consider a vertex v2 from

Cv1 − C′v1
. Since D is a k-DRD set v2 ∈ C′v3

for some v3 ∈ D. If |Cv3 | < 0 d(v3)
k
1,

then P ′u = u, v1, v2, v3. If |Cv3 | = 0 d(v3)
k
1, then Cv3 − C′v3

∪ {v2} �= φ; choose a

vertex v4 from Cv3 − C′v3
∪ {v2}. Then v4 ∈ C′v5

for some v5. If |Cv5 | < 0 d(v5)
k
1,

then P ′u = u, v1, v2, v3, v4, v5. Suppose |Cv5 | = 0 d(v5)
k
1. Then we can choose

v6 ∈ Cv5 − C′v5
∪ {v2, v4} and continue the process. Since D, Cv , v ∈ D are finite

and vertex of Cv can be chosen at most once in the process, the above process has to
terminate. So after some finite steps, we get a vertex vk such that k is odd, vk−1 ∈ C′k
,and |Cvk | < 0 d(vk)

k
1. Now for a chosen vertex u in S, we have a path u, v1, v2 . . . , vk

such that v2i+1 ∈ D, for 0 ≤ i ≤ k−1
2 , v2i ∈ Cv2i−1 , 0 < i ≤ k−1

2 , and

|Cvk | < 0 d(vk)
k
1.

Let P ′u = u, u1, u2, u3, . . . , ul and P ′v = v1, v2, v3, . . . vk be two paths. Suppose
u2j = v2i . Then by the construction u2j ∈ Cu2j−1 and v2i ∈ Cv2i−1 , hence v2i−1 =
u2i−1. Now v2i−2, u2i−2 ∈ C′v2i−1

and there exists two vertices in C′v2i−1
not in

Cv2i−1 . If v2i−1 is not an end vertex of path, then Cv2i−1 has two more vertices which
is not in C′v2i−1

; hence, we can continue the process as above, and we can find one
new path Pu such that V (Pu) ∩ V (Pv) ∩ (V −D) = φ.

Assume that vk = ul , 0 d(vk)k
1 − |Cvk | = 1 and there is no other such paths for

u, v. Then we have following construction:
Let B1 = N(u, v) ∩ D, B ′1 =

⋃
u∈B1

Cu. For i > 1 Bi = N(B ′i−1) ∩ D and

B ′i =
⋃

u∈Bi

Cu. Since V is finite, there exist m,n ∈ N such that Bj = Bj+1 = Bj+2

for all j ≥ m and B ′l = B ′l+1 = B ′l+2 for all l ≥ n. Now |B ′n| >
∑

u∈N(B ′n)∩D
0 d(u)

k
1,

contradiction to the fact that D is a k-DRD set.
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Conversely, we construct C′u for all u ∈ D which dominates all the vertices of S.
First consider a vertex u of S; then there exists a path u, v1, v2, ..vk satisfying the
above conditions. Define C′v2i+1

= Cvv2i+1
∪{v2i}− {v2i+2}, forall i, k−3

2 ≥ i ≥ 1,

C′v1
= Cv1 ∪ {u} − {v2}, C′vk = Cvk ∪ {vk−1}. Since |Cvk | < 0 d(vk)

k
1, |C′vk | ≤

0 d(vk)
k
1. Also observe that |C′v2i+1

| = |Cv2i+1 | ≤ 0 d(v2i+1)

k
1 for all i, k−3

2 ≥ i ≥ 0
and u ∈ C′v1

is dominated by D. Since such path exists for all the vertices in S,⋃
v∈D C′v = V −D. Hence, D is a k-DRD set.

Corollary 1 For any dominating set D of a tree T , if 〈S〉 is connected and |S| ≥
|A|, then D is not a k-DRD set.

Corollary 2 For any connected dominating set D of a tree T , D is a k-DRD set if
and only if S = φ.

From Theorem 1, we observe that for a given dominating set, if we are able to
find such paths, then D is a k-DRD set. In Sect. 2.2, we develop an algorithm to find
such paths for a given graph with respect to a given dominating set D.

Throughout the Sect. 2.2, we consider the graph labeled by natural numbers.
Initially we find Cu for each u ∈ D as defined above. If

⋃
v∈D Cv = V − D,

then D is a k-DRD set. Suppose (V − D) −⋃
v∈D Cv = S �= φ, then we have to

check whether vertices of S can be included in some Cu, u ∈ D. We define set A
as the collection of all the vertices in D with |Cu| < 0 d(u)

k
1. By depth-first search

we find the existence of path, from vertices in S to vertices in A, which satisfies the
conditions in Theorem 1. If such path exists for all the vertices in S, then D is a
k-DRD set; otherwise, D is not a k-DRD set.

Theorem 2 A γ -set D of a connected graph G is a k-DRD set if and only if, for

every subset A of V −D,
∑

u∈N(A)∩D
⌈

d(u)
k

⌉
≥ |A|.

Proof Let A ⊆ V − D. Then A ⊆ ⋃
u∈N(A)∩D Cu, which implies |A| ≤

|⋃u∈N(A)∩D Cu| ≤ ∑
u∈N(A)∩D

⌈
d(u)
k

⌉
. Conversely assume that, for any subset

A of V − D,
∑

u∈N(A)∩D
⌈

d(u)
k

⌉
≥ |A|. For every u ∈ D, we construct Cu

as defined above. Suppose D is not a k-DRD set. Then we can find a vertex
w ∈ V − D such that w /∈ Cu for any u ∈ D and no Pw path satisfying the
conditions in Theorem 1. Since D is a dominating set, w is adjacent to at least one
vertex in D. Note that |Cv| = 0 d(v)

k
1 for all v ∈ N(w) ∩ D = B1 (otherwise

uv is a path satisfying the conditions in Theorem 1). Let
⋃

v∈B1
Cv = B2. Then

|Cu| = 0 d(u)k
1 for all u ∈ N(B2) ∩D; otherwise w, v, x, u forms a path satisfying

the condition in Theorem 1, where x ∈ Cu. Continuing in this manner, we get the
set of vertices {w1, w2, . . . , wl} such that |Cwi | = 0 d(wi)

k
1 for all i, 1 ≤ i ≤ l

and N(
⋃l

k=1 Cwk ) ∩ D ⊆ {w1, w2, . . . , wl}. Consider A = ⋃l
k=1 Cwk ∪ {w}.
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Then N(A) ∩ D ⊆ {w1, w2, . . . , wl} and
∑

u∈N(A)∩D |Cu| ≤ ∑m
i=1 |Cwi | =∑m

i=1

⌈
d(wi)

k

⌉
= |A| − 1 < |A|, a contradiction. Hence D is a k-DRD set.

Corollary 3 Let G be a connected graph and D be a γ -set of order less than or
equal to 2. Then D is a k-DRD set of G if and only if |Pn(u,D) ∩ (V − D)| ≤⌈

d(u)
k

⌉
for all u ∈ D and |V −D| ≤∑

u∈D
⌈

d(u)
k

⌉
, where Pn(u,D) is the private

neighborhood of u.

Corollary 4 For a given graph G having D as a γ -set, we can find a super graph
of G having same vertex set V and D as γ d

k
-set if and only if

γ (G) ≥
{
0n−γ (G)

m
1 if n ≡ 1(mod k)

0n−γ (G)
m+1 1 if n �≡ 1(mod k)

, where m = 2n−1
k
3.

2.2 An Algorithm to Verify Whether a Given Dominating Set is
k-DRD Set or Not

The main idea of Algorithm 1 is as follows: First for every vertex i in V , we find
degree d(i); for every vertex i in D we find neighborhoodNi in V −D and vertex of
maximum degree Δ. We add a vertex of minimum degree from Ni to Ci ; repeat this
step by adding vertex of next minimum degree to Ci until either order of Ci is 0 d(i)

k
1

or Ni becomes empty; update V − D by removing the elements of Ci along with
i. Repeat this procedure for each vertex in D, which gives a set Ci for each i ∈ D.
If
⋃

i∈D Ci = V −D, then D is a k-DRD set. Otherwise from Theorem 1 for each
vertex in S, we have to check the existence of path. Here we use depth-first search
with stack function P to find such paths. Also note that Top= 0 means P = φ and
P(Top)= i means P∪{i}. We can observe that, either a vertex of degree one or its
neighborhood vertex should be in k-DRD set; therefore, for any i ∈ D while adding
vertices to Ci , we give first preference to a vertex of minimum degree in Ni .

Theorem 3 Algorithm 1 runs in O(n3) time.

Proof For a given graph G and its dominating set D, calculating the degree of each
vertex in V takes O(n2) time. Similarly to determine the neighborhood of each
vertex in V −D takes O(n2) time. Since cardinality of neighborhood of any vertex
is at most n-1, constructing Cv for each vertex v ∈ D takes O(n3) time. We find
path using DFS which takes O(n2) time if it exists. In total to find such paths for
each vertex in S, it takes O(n3) running time. Hence, complexity of the algorithm
is O(n3).
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Algorithm 1: Test for dominating set to be a k-DRD set
Input: A simple graph G = (V ,E), adjacency matrix [aij ]n×n, positive integer k, γ -set

D, maximum degree Δ.
Output: D is a k-DRD set or not.

1 begin
2 D′ = V −D, for i ∈ V do
3 d(i) = 0 for each j ∈ V do
4 d(i) = d(i) + aij
5 end
6 end
7 for i ∈ D do
8 Ni = φ for each j ∈ D′ do
9 if aij = 1 then

10 Ni = Ni ∪ {j}
11 end
12 end

13 Ci = φ while |Ci | < 0 d(i)
k
1 && Ni �= φ do

14 d ′Δ = Δ

15 for each j ∈ Ni do
16 if d(j) ≤ d ′Δ then
17 d ′Δ = d(j), dΔ = j

18 end
19 end
20 Ci = Ci ∪ {dΔ}, Ni = Ni − {dΔ}
21 end
22 D′ = D′ − Ci

23 end
24 if

⋃
i∈D Ci = D′ then

25 stop, D is k-DRD set
26 end
27 else
28 S = D′ −⋃

i∈D Ci , A = {j ∈ D : |Cj | < 0 d(j)k
1} if A = φ then

29 stop, D-is not a k-DRD set
30 end
31 else
32 for all i ∈ S do
33 P = call P ath(i), P = vo, v1, v2, . . . vk , k−3

2 = m for l = 1, 2, .., m
do

34 Cv2l+1 = (Cv2l+1 ∪ {v2l})-{v2l+2}
35 end
36 Cv1 = (Cv1 ∪ {vo})− {v2} Cvk = Cvk ∪ {vk−1}
37 end
38 stop, D-is a k-DRD set
39 end
40 end
41 end
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Algorithm 2: Push(i)

1 begin
2 Top=Top+1
3 P(Top)=i
4 end

Algorithm 3: Pop

1 begin
2 P(Top)=Null
3 Top=Top-1
4 end

Algorithm 4: Path(i)

1 begin
2 for all g ∈ V do
3 Visited[g]=0
4 end
5 T op = 0, Visited[i]=1, Push(i)
6 while P �= φ do
7 j=P(Top)
8 if j ∈ D then
9 Nj= {v ∈ Cj : V isited[v] = 0}

10 end
11 else
12 Nj= {v ∈ D : ajv = 1, V isited[v] = 0}
13 end
14 if Nj �= φ then
15 choose a vertex l from Nj , Push(l),Visited[l] = 1
16 if l ∈ A then
17 return P

18 end
19 end
20 else
21 pop()
22 end
23 end
24 if P = φ then
25 stop,D is not a k-DRD set
26 end
27 end
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3 Conclusion

This paper elaborates the relation between dominating set and k-DRD set. We have
also presented an algorithm to verify whether a given dominating set is k-DRD set
or not. As a future work, we will study the relation between k-DRD set and other
domination invariants.
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The b-Chromatic Number of Some
Standard Graphs

A. Jeeva, R. Selvakumar, and M. Nalliah

Abstract b-Coloring of G is a coloring which is proper such that in each color
class there exists a vertex which is called as representative vertex that has at least
one neighbor in each of the remaining color classes. The highest positive integer k
such that the k-colors can be used to color the vertices of G along with b-coloring
is the b-chromatic number of G, denoted by b(G). For a given graph G with n
vertices, G∗ is constructed (Jeeva et al., Indian J Math 59(2):255–261, 2017). In
the research paper, we find out the b-chromatic number of Mycielskian, splitting,
shadow, middle, and total graph of G∗.

1 Introduction

Throughout the manuscript, we mentioned every graph is simple, finite, connected,
and undirected graph. A pair of a graph G = (V ,E) consists of the vertex
set V and the edge set E; the order and size of G are n and m, respectively.
Consider, a coloring is a proper vertex k-coloring having a nonempty partition say
P = {v1, v2, . . . , vk}.The color classes are obtained from P such that each Vi

should be independent in G. The chromatic number of G, denoted by χ(G) is the
smallest integer k, where k-colors will be used to color the vertices of G. A proper
k-coloring is a b-coloring; it has the property that there exist a vertex in every color
class which is called as representative vertex that has at least one neighbor in each of
the remaining color classes. The representative vertex is also called as b-vertex. The
parameter b-chromatic number b(G), introduced by Irving and Manlove [2], is the
largest integer k for which G having a b-coloring using k-colors, also they derived
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the upper bound of b(G), b(G) ≤ Δ(G)+ 1. Specifically they noted that a graph G

has a b-chromatic coloring using m-colors and G must have at least m vertices of
degree m − 1. The largest integer m such that G may have m vertices of degree at
least m − 1 is the m-degree of a graph G, denoted m(G). It follows that for every
graph G we have to see that b(G) ≤ m(G). A graph having a vertex that has degree
at least m(G) is called as dense vertex [3]. Kouider and El Sahili proved [4] the b-
chromatic number of d-regular graph with girth five and without cycles of length six
is d+1. Also, they stated that every d-regular graph G satisfies m(G) = d+1. The
b-chromatic number of some upper and lower bounds for the Cartesian product of
two graphs given by Kouider and Maheo [5]. Kouider and Zaker investigated [6]
some upper bounds of the b-chromatic number of many classes of graphs with
different graph parameters. Several authors have studied the b-chromatic number
of Mycielskian, splitting, shadow, middle, and total graph in [7–12].

Definition 1 ([7]) The Mycielski graph μ(G) is forming from G by taking the
vertices of G with v1, · · · , vn as an isomorphic subgraph, along with n + 1 new
vertices say u, u1, · · · , un. Here we are taking the vertex ui corresponding to each
vi of G and central vertex u. Then adding an edge between each ui to u and each ui

to the neighbors of vi in G.

Definition 2 ([8]) The splitting graph Splt (G) is constructed from G in such a way
that, for each v ∈ G, takes an additional vertex v0 and add v0 to all the vertices of
G which is adjacent to v.

Definition 3 ([9]) Let G′ and G′′ be the two copies of G. Then the shadow graph
D2(G) is formed from G by adding an edge between each u′ in G′ to the neighbors
of the corresponding u′′ in G′′.

Definition 4 ([11]) The middle graph of G, is constructed from G in the following
way. The vertex set of M(G) is the combination of vertex set and edge set which is
called as union, and a and b are two vertices of M(G) which is adjacent in M(G);
it will be satisfied at least one condition given the below statements.

1. Both are edges in E(G) say a and b, which is adjacent in G.
2. Both are incident in G say a and b, where a is in V (G) and b is in E(G).

Definition 5 ([11]) The total graph of G is formed from G in the following way.
The vertex set of T (G) is the union of vertex set and edge set of G, and a and b are
two vertices of T (G) which is adjacent in T (G); it should be satisfied one condition.
The conditions are given below.

1. Both are vertices in V (G) say a and b, which is adjacent in G.
2. Both are edges in E(G) say a and b, which is adjacent in G.
3. Both are incident in G say a and b, where a is in V (G) and b is in E(G).

The authors defined a new family of graphs say G∗, and they proved the following
lemma in [1].
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Definition 6 [1] Let us consider G is any graph. The graph G have n vertices with
vertex set {v1, v2, · · · , vn}. Then the graph G∗ is obtained by adding a set Ui of new
vertices of size |Ui | = n− 1 − di , here di denoted as degree of vi of G , make all
the vertices of Ui adjacent to vi , and add edges arbitrarily between the vertices in
Ui . Many graphs G∗ can be obtained from one arbitrary graph G with every vertex
vi and have degree n− 1, and all other vertices have degree at most n− 1− di . The
collection of all graphs G∗ is denoted by F (G).

Lemma 1 ([1]) Let G∗ be any graph of F (G). Then the b-chromatic number of
G∗ is n.

2 Main Results

Here, we have to investigate the b-chromatic number of abovementioned standard
graphs with replacing G by G∗.

Theorem 1 Let G∗ ∈ F (G).Then b(μ(G∗)) = n+ 1.

Proof Let V (μ(G∗)) = {w, vi ∪ U
′
i ∪ V (G∗),where Ui = u

j
i , 1 ≤ i ≤ n, 1 ≤

j ≤ n − 1 − di}, where V (G∗) is indicated the vertex set of G∗ . Clearly the
graph μ(G∗) has n + 1 vertices, that n + 1 vertices of degree at least n, and hence
m(μ(G∗)) = n+ 1.Therefore b(μ(G∗)) ≤ (m(μ(G∗)) = n+ 1 . Now, we define a
color map f as follows.

f (x) = c(vi), where x = vi or v
′
i ∈ V (μ(G∗))

f (y) = c(u
j
i ), where y = u

j
i or u

j ′
i ∈ V (μ(G∗))

f (w) = n+ 1

where f is a color map obtained from Lemma 1 [1] in which we have to use in the
same manner. Therefore, we get a proper b-coloring of μ(G∗) with n+1 colors and
b(μ(G∗)) ≥ n+ 1 . Thus b(μ(G∗)) = n+ 1 .

Theorem 2 Let G∗ ∈ F (G). Then b(splt (G∗)) = n

Proof Let V (splt (G∗)) =
{
{vi ∪ U

′
i } ∪ V (G∗)

}
. Clearly we see that the graph

splt (G∗) having n vertices of degree at least n − 1 and hence m(splt (G∗)) = n.
Therefore b(splt (G∗)) ≤ m(splt (G∗)) = n. Now we define a color map g by

g(u) = f (u) f orall u ∈ V (splt (G∗))

where f is the color map obtained from the above Theorem 1. Therefore
we get a proper b-coloring with n-colors and hence b(splt (G∗)) ≥ n. Thus
b(splt (G∗)) = n.

In similar way we have to investigate the shadow graph which also admits the
same color map, and hence we obtain the following theorem.
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Theorem 3 Let G∗ ∈ F (G). Then b(D2(G
∗)) = n.

Now we consider the graph G∗e formed from G by adding an edge e between u
j

i to

u
j+1
i , 1 ≤ i ≤ n, j = 1 in Ui .

Theorem 4 Let G ∼= Cn be a cycle on n vertices. Then b(M(G∗e)) = n+ 2.

Proof Let M(V (G∗e )) = {vi, uj

i ∪ yi, w
j

i , xi , 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1 − di}.
Clearly the graph M(G∗e) has n + 2 vertices of degree at least n + 1 and hence
b(M(G∗e)) ≤ m(M(G∗e )) = n+ 2. Now, we define a color map f as follows.

f (yi) = i, 1 ≤ i ≤ n

f (w1
i ) = n+ 1

f (w2
i ) = n+ 2

f (vi) = i + 2, 1 ≤ i ≤ n− 2

f (vn−2+i ) = i, i = 1, 2

f (w
j
i ) = {i + j (mod n), 1 ≤ i ≤ n, 3 ≤ j ≤ n− 1− di}

f (u
j
i ) =

{
i + 1 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1− di

1 i = n

f (xi) = n− 2+ i(mod n)

Therefore we get a proper b-coloring of M(G∗e) with n + 2 colors and
b(M(G∗e)) ≥ n+ 2. Thus b(M(G∗e)) = n+ 2. This procedure is explained through
the following example (Refer Fig. 1) with n = 6.

Theorem 5 Let G ∼= Cn + n
2K2. Then b(M(G∗e)) = n+ 2.

Proof Let M
(
V (G∗e )

) =
{
{vi, uj

i ∪ w
j
i , xi , 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1− di}∪{

yi, 1 ≤ i ≤ n+ n
2

}}
. Clearly the graph M(G∗e ) has n + 2 vertices of degree at

least n + 1 and hence b(M(G∗e)) ≤ m(M(G∗e)) = n + 2. Now, we define a color
map g as follows.

f (yi) =
{
i 1 ≤ i ≤ n.

n+ 1, n+ 1 ≤ i ≤ n+ n
2

f (w1
i ) = n+ 2

f (vi) = i + 2 1 ≤ i ≤ n− 2

f (vn−2+i ) = i i = 1, 2

f (w
j
i ) = {i + j + 1(mod n) 1 ≤ i ≤ n, 2 ≤ j ≤ n− 1− d}
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Fig. 1 Middle graph of C6
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f (u
j
i ) =

{
i + 1 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1− di

1 i = n

f (xi) = n− 2+ i(mod n)

Therefore we get a proper b-coloring of M(G∗e) with n + 2 colors and
b(M(G∗e)) ≥ n+ 2. Thus b(M(G∗e)) = n+ 2. This procedure is explained through
the following example (Refer Fig. 2) with n = 6.

Theorem 6 Let Cn be a cycle on n vertices. Then b(T (G∗e ) = 2n− 2

Proof Let T
(
V (G∗e)

) =
{{

vi, u
j
i ∪ yi, w

j
i , xi

}
, 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1− di

}
.

Clearly the graph T (G∗e ) has at least 2n − 2 vertices of degree at least 2n − 3
and hence b(T (G∗e )) ≤ m(T (G∗e )) = 2n − 2. Now, we define a color map f :
V (G∗e ) −→ [2n− 2] where [2n− 2] = {1, 2, . . . , 2n− 2} as follows.

f (vi) = i, 1 ≤ i ≤ n

f (yi) = n+ i, 1 ≤ i ≤ n− 2
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Fig. 2 Middle graph of
(C6 + 3K2)
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f (yn) = f (yn−2)

f (yn−1) = f (yn+1)

Consider

N(yi) =

⎧
⎪⎪⎨

⎪⎪⎩

w
j
i ,w

j

i+1, vi , vi+1, yi+1, yn, i = 1

w
j
i ,w

j

i+1, vi , vi+1, yi−1, yi+1, 2 ≤ i ≤ n− 1

w
j
i ,w

j

1 , v1, vn, yi−1, yi+1, i = n

Set
N(yi)− vi, vi+1, yi+1, yn = Si , where Si = {wj

i ,w
j

i+1}, i = 1

N(yi)− vi, vi+1, yi−1, yi+1 = Si , where Si = {wj
i ,w

j
i+1}, 2 ≤ i ≤ n− 1

N(yi)− v1, vn, y1, yi−1 = Si , where Si = {wj
i ,w

j

1 }, i = n

Let Ci be the set of 2n-2 colors.
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f (Si) =

⎧
⎪⎪⎨

⎪⎪⎩

Ci − {f (yi), f (vi), f (vi+1), f (yi+1), f (yn)}, i = 1

Ci − {f (yi), f (vi), f (vi+1), f (yi−1), f (yi+1)} − {colored w
j
i },

2 ≤ i ≤ n− 1

Consider

N(vi) =

⎧
⎪⎪⎨

⎪⎪⎩

w
j
i , yi, yn, vi+1, vn, i = 1

w
j
i , yi, yi−1, vi+1, vi−1, 2 ≤ i ≤ n− 1

w
j
i , yi−1, yi , vi−1, v1, i = n

If each neighbor of vi receives different colors, then

f (u
j
i ) =

{
Ci − {f (N(vi )), f (vi)}, 1 ≤ i ≤ n, 1 ≤ j ≤ n− 4

f (yi), j = n− 3

If exactly two neighbors of vi receive same color, then
f (u

j
i ) = Ci − {f (N(vi)), f (vi)}, 1 ≤ i ≤ n, 1 ≤ j ≤ n− 3

f (xi) = i, 1 ≤ i ≤ n.
Therefore we get a proper b-coloring of T (G∗e ) with 2n − 2 colors and

b(T (G∗e)) ≥ 2n− 2. Thus b(T (G∗e )) = 2n− 2.

3 Conclusion

We feel difficult to find out the b-chromatic number of abovementioned standard
graphs for G∗ with respect to other families of base graph G, which is still open.
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1 Introduction

Reliability and security aspects have become an integral part of information
transmission. Both aspects have received significant interest from researchers in the
recent past. Reliability is largely achieved by the use of coding theory techniques
and security by the cryptographic techniques. Proper combination of techniques
of coding theory and cryptography will make it possible to achieve the goals of
reliable and secure communication even at the higher layers of communication stack
other than physical layer. Also, these two challenges are addressed separately in the
literature rather than addressing both reliability and security issues jointly or as a
single entity.

In a cryptographic protocol, it is the expectation of a recipient that a message
has not been modified during the transmission in anyway whereas in case of
coding theory protocols, the original message can be reconstructed from received
message correcting errors. Reconstruction of original message from the received
ones is achieved by adding redundancy to the message. Added redundancy is also
termed as parity. There are many applications where both information security and
error correction capabilities are required (e.g., in networks, secure packet delivery,
secure document management, secure biometrics storage etc., to name a few). In
such cases, a sequential execution of encoding and encryption operations has to be
performed.

In the late 1980s, McEliece used Goppa codes to construct a public key
cryptosystem which was called McEliece system [1]. Such notion can be broadly
called as cryptocoding [2]. Similarly, Kak [3] proposed a novel cryptocoding
scheme based on arithmetic D-sequences, which are decimal expansions of the
fractions. Further, Rao [4] proposed the private key variant of McEliece public key
cryptosystem.

Thereafter, cryptography and channel coding techniques were combined together
which were separate disciplines originally. The National Science Foundation (NSF)
in 1997 established a special working group which emphasized the importance
of joint encryption and error correction technique but did not give a specific
embodiment [5].

In this paper, we propose a secure communication framework based on linear
error correcting codes and elliptic curves. The reason behind choosing these two
techniques is that they both involve the elements of a finite field and the elliptic
curves can be easily generated for encryption without changing the field. It will
increase efficiency, especially in practical realizations.

The paper is organized as follows. In Sect. 2 the preliminaries required for
proposing the Encode-then-Encrypt framework is discussed. In Sect. 3 the outline
of proposed Encode-then-Encrypt scheme based on linear error correcting codes
and elliptic curves is proposed. In Sect. 4, realization of proposed encode-then-
encipher scheme is demonstrated using Reed-Solomon codes and elliptic curve of
characteristic greater than 3. In particular the generating of Elliptic curve over the
same field as that of Reed-Solomon codes along with the decoder to output the
original message. Section 5 deals with the conclusion.
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2 Preliminaries

Preliminaries required to define the proposed cryptosystem are discussed in this
section.

2.1 Linear Error Correcting Codes

A message m of length k is encoded into a codeword of length n. This encoding
Enco can be defined as a one-to-one map or a function as [6], Enco : Σk → Σn

which can also be written equivalently as M → Σn, where Σ is symbol from a
finite alphabet. M is message space consisting of all messages m that have to be
encoded.

Similarly, decoding function Deco is an onto map defined as follows in the
absence of channel noise. Deco : Σn → Σk . Challenge of a good decoding
function is to successfully recover original message from the received codeword.

2.2 Galois Field

A basic result from number theory is that if p is prime, then the set of integers
modulo p is a field denoted by Zp . However, that is true if and only if p is prime. It
has been proved that for any prime p and any natural number r there exists a unique
finite field of order pr , known as Galois field [7]. These fields can be constructed
with the help of Zp[x], the set of polynomials with coefficients in Zp. Also, it can
be shown that any finite field of size pr is isomorphic to a Galois field.

2.3 Elliptic Curve Cryptography over F2n

A cubic equation P(x) of the form

y2 + xy = x3 + ax2 + b (1)

with coefficients a and b from the Galois field F2n and b �= 0 forms an elliptic
curve [7, 8].

A set of points x and y from F2n is said to be on the curve P(x) if it satisfies
the Eq. (1). Also, the “point at infinity” denoted by O is also assumed to be over the
elliptic curve.

The set of points that satisfies the elliptic curve E over F2n given in Eq. (1) are

EF2n (a, b) = {(x, y)|(x, y) ∈ F
2
2n} ∪ {O}
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3 Outline of the System
In this section we define set of five sequential algorithms of the proposed framework
to carry out the‘encode-then-encrypt’ scheme. General outline of the proposed
framework is given in Fig. 1 and Table 1 gives the notations used in this paper.

Fig. 1 Encode-then-encrypt
cryptosystem

Encode with
linear code

Encryption with K1

Decryption with K2

Decoding linear code

Plaintext (M)

Plaintext (M)

← (Public Key, K1)

← (Private Key, K2)

Table 1 Notations Symbols Meanings

S Sender

R Receiver

k Length of message m

C Codeword

EF2n Elliptic curve

PKS Set of public keys of sender S

PKR Set of public keys of receiver R

PRS Private key for the sender S

PRR Private key for the receiver R

SPBS Shared public key from sender S to receiver R

SPBR Shared public key from receiver R to sender S

BP Base point of elliptic curve
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3.1 System Initialization and Key Generation

Before we get into the working of the individual algorithms step-by-step, we will
make the following assumptions and declarations of the parameters that we require
in order to define our cryptosystem:

1. Message m is assumed to be of finite length k and the length of codeword C is n.
2. A base point BP is chosen from the points of the Elliptic Curve EF2n such that

it is a generator point and also it’s order is equal to the order of the underlying
field. This point is kept as public.

3. Both the sender and receiver will randomly choose their respective private keys
PRS and PRR .

System initialization and key generation will be performed in two phases. In
initialization phase, sender S will compute its shared public key SPKS from its
secret key PRS and base point (BP ) of elliptic curve E. Similarly, receiver R will
compute shared public key SPKR from its secret key PRR and base point BP of
elliptic curve E.

In the key generation phase, sender will generate set of public keys PKS =
{pk1, pk2} from its private key PRS and the shared public key SPKR of receiver
R. Similarly, the receiver R will generate public keys PKR = {pk1, pk2} from its
private key PRR and from shared public key SPKS of sender S.

In Table 2 detailed computation of both initialization phase and key generation
phase are provided. Public keys PKS and PKR computed, respectively, at both
sender S and R are the same. This is analogous to Diffie-Hellman key exchange
algorithm [9].

Table 2 Initialization and key generation phase

Sender S Receiver R

Public base point BP : (b1, b2) of elliptic curve EF2n

Initialization phase Initialization phase

PRS : Secret Key PRR : Secret Key

SPKS = PRS × BP SPKR = PRR × BP

= PRS × (b1, b2) = PRR × (b1, b2)

= PRSb1, PRSb2 = PRRb1, PRRb2

SPKS and SPKR will be shared by sender and receiver

Key generation phase Key generation phase

PKS = PRS × SPKR PKR = PRR × SPKS

= PRS × (PRRb1, PRRb2) = PRR × (PRSb1, PRSb2)

= (PRSPRRb1, PRSPRRb2) = PRRPRSb1, PRRPRSb2

=(pk1, pk2) =(pk1, pk2)

Public keys PKS and PKR computed at sender and receiver are same
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3.2 Encode

Encode algorithm Enco() will map the messages m ∈ M of length k to the space
of messages (also called as codeword) of same symbol of length n. The algorithm
Enco(m, k) will take message m of length k as input and produce output codeword
C of length n by adding r ( r = n − k) number of redundant or parity bits. It
should be noted that while mapping (or while encoding) no information is lost. The
pseudocode of Enco() is given in Algorithm 1.

3.3 Encrypt

Algorithm Encr() will take the codeword C and the public key PKS generated
by KeyGen() as input and produce output ciphertext or the encrypted text E. The
pseudocode for Encr() is given in Algorithm 2.

Algorithm 1 Enco()

Input: message m of length k

Output: codeword C of length n

1: Enco(m0, . . . , mk )→ (m0, . . . , mk+r )
2: Return codeword C

Algorithm 2 Encr()

Input: codeword C of length n

Output: encrypted text E of length n

1: Encr(m0, . . . , mk+r )→ (e0, . . . , ek+r )
2: Return ciphertext E

3.4 Decrypt

Algorithm Decr() will take the ciphertext E as input and produces codeword c of
length n as output. The pseudocode for Decr() is given in Algorithm 3.

3.5 Decode

Algorithm Deco() will take the codeword C as input and decodes it to message m

of length k. The pseudocode for Deco() is given in Algorithm 4.

Algorithm 3 Decr()

Input: ciphertext E of length n

Output: codeword C of length n

1: Decr(e0 , . . . , mk)→ (m0, . . . mk+r )
2: Return codeword C

Algorithm 4 Deco()

Input: codeword C of length n

Output: message m of length k

1: Deco(m0, . . . mk+r )→ (m0, . . . , mk )
2: Return message m
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4 An Example of the Proposed Cryptosystem

In this section, we demonstrate the proposed Encode-then-Encrypt scheme with
an example of (7, 5) Reed-Solomon (RS) code and a nonsingular elliptic curve of
characteristic 2 over a finite field EF23 (g

3, 1).
As in any other error-correcting codes, RS codes are represented by parameters

n and k where n is the length of codeword and k is the length of message m. r

is the number of bytes required for error correction (also termed as forward error
correction (FEC) bytes) and d = n − k. The maximum codeword length n is given
by n = 2s−1 where s is the symbol size in bytes. Unlike other error correcting codes,
RS codes encode the message word to codeword as a group and not bit by bit. The
group of message word to be encoded are also called as digits.

Here we are using RS-codeword with following specifications: RS(7, 5), s = 3,
t = 2, i.e., f ive symbols are data and two symbols are used for error correction. As
there are 2-FEC symbols, RS(7, 5) can only identify and correct one error symbol
for each codeword.

4.1 Initialization and Key Generation

In the cubic equation (1), we substitute the coefficients a = g3 and b = 1 from the
field to obtain elliptic curve equation. The resulting elliptic curve equation will be

y2 + xy = x3 + g3x2 + 1 (2)

The points that satisfies the elliptic curve Eq. (2) are as follows:
EF23 (g

3, 1)={(0, 1), (g, g2), (g, g4), (g2, 1), (g2, g6), (g3, g2), (g3, g5),

(g4, g4), (g5, 1), (g5, g4), (g6, g), (g6, g5) ∪ (O)}
The order of the group is O(E23(g3, 1)) = 13 which is a prime order and

according to Lagrange’s theorem all the non-zero elements of the group will be
the generator elements. For a base point BP we can select any non-zero element
say (g2, 1) and compute the public keys as in Table 3.

4.2 Encode

For encoding a message using RS encoder, three polynomials are used; this will
constitute the Enco() (Algorithm 1) defined in the previous section. Polynomials
are used to generate the codewords, namely, Galois field polynomial, generator
polynomial and encoding polynomial.
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Table 3 Initialization and key generation phase

Sender S Receiver R

Public base point BP : (g2, 1) of elliptic curve E23 (g3, 1)

Initialization phase Initialization phase

PRS : 3 < O(E23(g3, 1)) PRR: 4 < O(E23(g3, 1))

SPKS = 3× (g2, 1) SPKR = 4× (g2, 1)

= g3 × (g2, 1) = g2 × (g2, 1)

= (g5, g3) = (g4, g2)

SPKS and SPKR will be shared by sender and receiver

Key generation phase Key generation phase

PKS = g3 × (g4, g2) PKR = g2 × (g5, g3)

= (g7, g5) = (g7, g5)

= (g0, g5) = (g0, g5)

=(1, g5) =(1, g5)

Public keys PKS and PKR computed at sender and receiver are same

Table 4 Elements of
GF(23) from
p(x) = x3 + x + 1

0 a0 a1 a2 a3 a4 a5 a6

0 x0 = x7 x1 x2 x3 x4 x5 x6

000 001 010 100 011 110 111 101

0 1 2 4 3 6 7 5

4.2.1 Galois Field (GF) Polynomial

This polynomial is used to generate the finite field(Galois field). The irreducible
polynomial that cannot be reduced further acts equivalent to a prime number and
hence generates the elements of the field.

In this example, we are taking s = 3, i.e., each message point is represented
by 3-bit symbol. So, the appropriate Galois field will be GF(23). The irreducible
polynomial over GF(23) can be taken as P(x) = x3 + x + 1 or x3 + x2 + 1 to
generate field of eight elements of each 3-bit symbol as given in Table 4. In this
example, we consider x3 + x + 1 to generate the Galois field.

The decimal equivalent for the irreducible polynomial x3+x+1 will be P(x) =
1x3 + 0x2 + 1x + 1 = 10112 = 1110.

4.2.2 Generator Polynomial

The generator polynomial is used to generate the encoding polynomial. It is of the
form G(x) = (x − a1)(x − a2)(x − a3) . . . (x − a2t ) where a1, a2, a3, . . . , a2t are
the values of a in the Galois Field and 2t determines how many FEC symbols are
generated.
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4.2.3 Encoding Polynomial

The role of an encoding polynomial is to generate the RS codewords by using the
factors from the generator polynomial. Here in this example, we have RS(7,5) with
s = 3, t = 2, that means 2 FEC symbols are used to identify and correct codewords
with 1-error symbol. The factors (x−a1) and (x−a2) are taken out of the generator
polynomial irrespective of position of its occurrence in the codeword.

G(x) = (x − a1)(x − a2) (3)

From the properties of a finite field, adding and subtracting of elements are same
in the field GF(2n) field, hence (x − a1) = (x + a1) and (x − a2) = (x + a2).
Hence the encoding polynomial in Eq. (3) can be rewritten as

G(x) = (x + a1)(x + a2) (4)

In GF(23) field we have a1 = 2 and a2 = 4 from the Table 4. By substituting
the values in Eq. (4), we get G(x) = (x+2)(x+4) = x2+6x+3. (As x3+x+1 =
1110(in decimal)). Hence, 8 ≡ 3(mod11).

Thus the obtained encoding polynomial that is used to generate RS(7,5) code-
word is

G(x) = x2 + 6x + 3 (5)

Also, G(x) can be represented as 163. Here we use the RS(7,5) code with s =
3 and t = 2, all together 7-symbols contained with 5-data symbols and 2-FEC
symbols in it. In order to append the 2-FEC symbols with the 5-data symbols, it is
required to multiply the bit string by x2 so that the message is shifted to the left by
two places.

A message 12345 to be encoded is represented by its equivalent message
polynomial as (1x4 + 2x3 + 3x2 + 4x + 5). To shift it by two symbols to append
the error correction symbol, message polynomial has to be multiplied by x2, such
that M(x) = x6 + 2x5 + 3x4 + 4x3 + 5x2 + 0x + 0. By dividing M(x) with
G(x), FEC symbols are obtained, where G(x) represents the encoding polynomial
x2 + 6x + 3. We get remainder as 63. Adding the remainder 63 to M(x), the
codeword C(x) will be obtained. C(x) = 1x6+ 2x5+ 3x4+ 4x3+ 5x2+ 6x+ 3 or
C(x) = 001010011100101110011. This is systematic form of encoding as the error
correction part is embedded in the codeword with message symbols appearing first
followed by FEC symbols.

4.3 Encrypt

Encoded word or codeword will be encrypted using elliptic curve, this will
constitute the Encr() (Algorithm 2) defined in the previous section. Since we are
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working on the field GF(23), the generating polynomial is g3+g+1. The elements
of the field GF(23) will be GF(23) = {0, 1, g1, g2, g3, g4, g5, g6}

Since the codeword is 001010011100101110011 we are mapping each 3-bit
symbol from the codeword to a point on the elliptic curve which will be declared
before encrypting the message.

We can choose any method to map the codeword symbols on the points of the
elliptic curve. Here, we are taking the XOR value of coordinate of points of the
curve, i.e., for a point (g6, g5) on the curve, the XOR value will be g = 010. The
3-bit symbol of the codeword that is equivalent to this XOR-ed value of point on
elliptic curve will be mapped. Also, there may be possibility that more than two
points on the curve can have the same XOR value, in that case we can select any
one of them randomly. For example, the point (g, g2) corresponds to the codeword
symbol 110, also (g5, 1) = g5+ 1 = 110. In such cases we can select either (g, g2)

or (g5, 1). But both sender and receiver should mutually agree upon such selection
of mapping table.

Here is the mapping table for the codeword that is mutually agreed by both
the sender and the receiver: (001) → (0, 1), (010) → (g6, g5), (011) →
(g3, g2), (100)→ (g, g4), (101)→ (g2, 1), (110)→ (g5, 1), (011)→ (g3, g5).

Mapping process from Codewords to corresponding points on the curve and
subsequent encrypted points (C1, C2) are given in Table 5. Points C1 and C2 are
computed as C1 = m2k1+m1 and C2 = m2+m2k1k2+m1k2. Outline of encryption
process is given in Fig. 2 and calculation of points C1 and C2, i.e., encrypted points
is given in Table 5.

Table 5 Encryption mapping table

001 010 011 100 101 110 011

(0,1) (g6, g5) (g3, g2) (g, g4) (g2, 1) (g5, 1) (g3, g5)

C1 = m2k1 +m1 and C2 = m2 +m2k1k2 +m1k2

(1, g4) (g, g) (g5, g5) (g2, g5) (g6, g5) (g4, g6) (g2, g4)

Fig. 2 Encryption process Codewords

Points on

the curve

Encrypted

Points (C1, C2)
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Fig. 3 Encryption process
Encrypted

Points (C1, C2)

Points on

the curve

Codewords

Table 6 Decryption mapping table

(1, g4) (g, g) (g5, g5) (g2, g5) (g6, g5) (g4, g6) (g2, g4)

m1 = C2 + k2C1 and m2 = C1 +m2k1

(0,1) (g6, g5) (g3, g2) (g, g4) (g2, 1) (g5, 1) (g3, g5)

001 010 011 100 101 110 011

4.4 Decryption

Decryption process will decrypt the encrypted points on the curve C1 and C2
to the points on the elliptic curve. Decryption process and corresponding points
calculation from encrypted points are given in Fig. 3 and Table 6 respectively.

4.5 Decode

Once the codeword is obtained, we perform the decoding operation on it to get back
the original message. We introduce a small error in the codeword so that we can
prove the error detection and correction part in our cryptosystem. The decoding
process works as follows, for a detailed account on decoding process readers are
referred to [10]

1. creating a polynomial syndrome to quantify the error for syndrome calculation
2. defining an error detection polynomial using Euclidean algorithm
3. locating the coefficient of the error symbol using Chien Search Algorithm
4. correction of the error symbol using Forney Algorithm

In the earlier section, we considered the received codeword as R(x) = 1x6 +
2x5+3x4+4x3+5x2+6x+3. Now we introduce an error into the received codeword
during the transmission over the channel E(x) = 3x3 i.e. 4x3 changes to 7x3. So the
received codeword with error becomes R(x) = 1x6+2x5+3x4+7x3+5x2+6x+3.
If we divide R(x) by the encoding polynomial, i.e., G(x) = x2 + 6x + 3, the
remainder is 3x+3. This shows the indication of presence of an error in the received
codeword.
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4.5.1 Syndrome Calculation

The syndrome calculation is done by the receiver part. The values of the finite field
a is substituted into the received codeword to find the roots of R(x). The roots of the
codeword are used to create a syndrome polynomial. Since we have 3-bit symbol
message, so we will get three roots for the codeword, a0 = 1, a1 = 2, and a2 = 4,
and hence three syndromes S0, S1, and S2, respectively.

S0 is calculated by substituting a0 in each term of R(x) and XOR-ing every
element. All final values are taken modulo 1110.
x6 = a0 = 001, 2x5 = 2(a0)5 = 2, 3x4 = 3(a0)5 = 3, 7x3 = 7(a0)3 = 7,
5x2 = 5(a0)2 = 5, 6x = 6(a0) = 6, 3. Taking XOR of all the elements, S0 = 7
S1 is calculated by substituting a1 in each term of R(x) and XOR-ing every element.
All final values are taken modulo 1110.
x6 = a1 = 2, 2x5 = 2(a1)5 = 1, 3x4 = 3(a1)5 = 6, 7x3 = 7(a1)3 = 0,
5x2 = 5(a1)2 = 6, 6x = 6(a1) = 5, 3. Taking XOR of all the elements, S1 = 5
S2 is calculated by substituting a2 in each term of R(x) and XOR-ing every element.
All final values are taken modulo 1110.
x6 = a2 = 1, 2x5 = 2(a2)5 = 4, 3x4 = 3(a2)5 = 5, 7x3 = 7(a2)3 = 0,
5x2 = 5(a2)2 = 3, 6x = 6(a2) = 3, 3. Taking XOR of all the elements, S2 = 4.
Thus, the syndrome polynomial for R(x) is defined by the syndromes S0, S2 and S3
as S(x) = 4x2 + 5x + 7.

4.5.2 Error Detection Polynomial Using Euclidean Algorithm

Here we are using Euclidean algorithm to find a common divisor for the syndrome
polynomial S(x) and the finite field polynomial x3. The quotient of the division is
denoted as Δ(x) that locates the exponent of R(x) at which error is located and the
remainder of the division is denoted as Ω(x) that determines the magnitude of the
error.

On using Euclidean algorithm for the polynomials (x3, 4x2 + 5x + 7), we get
Δ(x) = 7x + 4 and Ω(x) = x + 1.

4.5.3 Chien Search Algorithm for Locating the Coefficient

Here we substitute the inverse of anxn i.e. a−nx−n into the error locator polynomial
Δ(x) = 7x + 4 for each value of a. The exponent location that returns a values of 0
is the location of the error. As S(x) contains the error information of the codeword,
R(x) and Δ(x) are derived using S(x). Thus, the coefficient that is responsible for
the error gets canceled out and returns 0, and other coefficient returns a non-zero
value follows:

Δ(x−6)=7(a−6 + 4)=7a1 + 4 = 5+ 4 = 1
Δ(x−5)=7(a−5 + 4)=7a2 + 4 = 1+ 4 = 5
Δ(x−4)=7(a−4 + 4)=7a3 + 4 = 2+ 4 = 6
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Δ(x−3)=7(a−3 + 4)=7a4 + 4 = 4+ 4 = 0
Δ(x−2)=7(a−2 + 4)=7a5 + 4 = 3+ 4 = 7
Δ(x−1)=7(a−1 + 4)=7a6 + 4 = 6+ 4 = 2
Δ(x−0)=7(a−0 + 4)=7a0 + 4 = 7+ 4 = 3

Thus, we get 0 for the coefficient of x3, and it can be concluded that the error in
R(x) is located to the position x3.

4.5.4 Error Correction of the Magnitude Using Forney Algorithm

Till now we have located the error position, i.e., it is located to the coefficient of
x3; here we will define the magnitude of the error by how much it differs the actual
value in R(x) using the Ω(x) defined above.

Forney Algorithm is of the form

ej = xj
Ω(X−1)

Δ(X−1)

where j is the position of the error in the R(x) codeword. Δ(X) = 7X + 4 even
powers of x are deleted and dividing by x gives 7.

ej = a3 (a−3+1)
7 = a3 (a4+1)

7 = 3 6+1
7 = 3.7

7 = 3.
Magnitude of the error is 3. Therefore the corrected error is 7(111) XOR

3(011) = 4(100). So the corrected codeword R(x) = x6 + 2x5 + 3x4 + 4x3 +
5x2 + 6x + 3.

Thus, the proposed framework provides reliability by means of correcting
errors that appears during communication and also provides security so that only
authorized users (with keys) can get access to encrypted data.

5 Conclusion

A single Encode-then-Encrypt framework is proposed in this paper. Initially general
framework is provided that can use any linear error correcting codes and elliptic
curves. Later, the proposed framework is explained in detail by selecting RS codes
and cryptographically strong elliptic curves of order 2. We have demonstrated that
both reliability and security issues arising in the context of communication and
storage are addressed by our proposed framework.
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New Bounds of Induced Acyclic
Graphoidal Decomposition Number
of a Graph

Mayamma Joseph and I. Sahul Hamid

Abstract An induced acyclic graphoidal decomposition (IAGD) of a graph G is
a collection ψ of nontrivial induced paths in G such that every edge of G lies in
exactly one path of ψ and no two paths in ψ have a common internal vertex. The
minimum cardinality of an IAGD of G is called the induced acyclic graphoidal
decomposition number denoted by ηia(G). In this paper we present bounds for
ηia(G) in terms of cut vertices and simplicial vertices of G.

1 Introduction

The graphs considered here are connected, simple, nontrivial, finite, and undirected.
The order and size of a graph G = (V ,E) are denoted by n and m, respectively. For
terms not defined here, we refer to [11].

A decomposition of a graph G is a collection ψ of its subgraphs such that every
edge of G lies in exactly one member of ψ . A path P in a graph G is a sequence
(v1, v2, . . . , vk) of distinct vertices such that the vertices vi and vi+1 are adjacent
for each i = 1, 2, . . . , (k− 1). Here we refer to P as a v1 − vk path. The vertices v1
and vk are called the end vertices, and all the remaining vertices are called internal
vertices of P . A cycle is a sequence (v1, v2, . . . , vk, v1) of distinct vertices such that
the vertices vi and vi+1 are adjacent for each i = 1, 2, . . . , (k−1) and vk is adjacent
to v1. A cycle is also called a closed path.

Decomposition of graphs into paths/cycles is a problem that has caught the
attention of several researchers because of its theoretical and practical significance.
The pioneering works in path decomposition can be seen in [5, 6] and [10].
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Graphoidal decomposition introduced by Acharya and Sampathkumar [1] is a type
of path decomposition defined as follows.

Definition 1.1 ([1]) A graphoidal decomposition (GD) of a graph G is a collection
ψ of nontrivial paths and cycles of G such that:

(i) Every vertex of G is an internal vertex of at most one member of ψ
(ii) Every edge of G is in exactly one member of ψ .

Several parameters related to GD were later found out. Some of them can be seen
in [2, 3, 7] and [8].

An induced path in a graph G is a path P = (v1, v2, . . . , vk) such that there
exists no edge of G that connects two nonadjacent vertices of P . In other words, an
induced path is a chordless path, where by the term chord of a path P , we mean an
edge between two nonadjacent vertices of P . The study of induced paths in a graph
assume an importance because of its relevance in the field of information networks.
Although there are some studies on induced path decompositions of a graph, several
aspects of induced path decompositions are yet to be explored and investigated. In
this paper an attempt is made to extend the study of induced acyclic graphoidal
decomposition introduced by Arumugam [2].

2 Induced Acyclic Graphoidal Decomposition Number

Acharya and Sampathkumar[1] defined the graphoidal decomposition number of a
graph as follows:

Definition 2.1 Given a graph G, the minimum cardinality of a GD is called the
graphoidal decomposition number of G and is denoted by η(G).

As a variation of GD of a graph G, Arumugam [2] defined the concept of induced
acyclic graphoidal decomposition and the related parameter of induced acyclic
graphoidal decomposition number as follows.

Definition 2.2 ([2]) An induced acyclic graphoidal decomposition (IAGD) of a
graph G is a graphoidal decompositionψ in which every member of ψ is an induced
path. The minimum cardinality of an IAGD of G is called the induced acyclic
graphoidal decomposition number of G and is denoted by ηia(G) or ηia .

For the graph G given in Fig. 1, of the three induced acyclic graphoidal
decompositionsψ1, ψ2, and ψ3 of different cardinalities, two are presented in Fig. 2,
each induced path in these collections being depicted by different types of edges.

ψ1 = {(b, a, d), (b, c, d), (e, f, g), (b, e), (d, g)}
ψ2 = {(e, b, a, d, g), (b, c, d), (e, f, g)}
ψ3 = {(b, a, d, g, f ), (d, c, b, e, f )}
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Fig. 1 Graph G

Fig. 2 Induced acyclic graphoidal decompositions of graph G

In fact ψ3 is a minimum IAGD of G because for graphs other than paths, any
IAGD must be of cardinality at least two. Thus ηia(G) = 2.

Singh and Das [7] have determined the value of induced acyclic graphoidal
decomposition number for complete graphs, complete bipartite graphs, wheels,
unicyclic graphs, and bicyclic graphs. Hamid and Joseph [9] have studied this
parameter ηia(G) further and obtained certain bounds of ηia(G), characterized
graphs attaining some of these bounds, and investigated graphs admitting an IAGD
satisfying some specified properties.

Given an IAGD, ψ of G, a vertex v, is said to be interior to ψ if v is an internal
vertex of an element of ψ and is called exterior to ψ otherwise. The following
theorem proved by Arumugam and Suseela [4] which is similar to the corresponding
result on graphoidal decomposition gives an expression for ηia(G) in terms of the
size of G and the interior vertices.

Theorem 2.3 ([9]) For every induced acyclic graphoidal decomposition ψ of a
graph G, let tψ denote the number of vertices interior to ψ , and let tia(G) =
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max tψ , where the maximum is taken over all the induced acyclic graphoidal
decompositions ψ of G. Then ηia(G) = m− tia(G).

Remark 2.4 From Theorem 2.3, it follows that ηia(G) ≥ m− n and the equality is
obtained only if there exists an IAGD ψ such that all the vertices of G are interior
to ψ . Hence the existence of an edge-disjoint collection S of internally disjoint
induced paths of G such that every vertex of G is an internal vertex of an element
in S ensures ηia(G) = m − n. This is because S together with the edges of G not
belonging to members of S yield an IAGD ψ of G with tia(G) = n.

3 Bounds for ηia

From the definition of IAGD, it follows that for any graph G, m−n ≤ ηia(G) ≤ m.
Hamid and Joseph [9] have proved that if d is the diameter and Δ(G) is the highest
degree among all the vertices of G, then Δ(G) − 1 ≤ ηia(G) ≤ m − d + 1. They
have also characterized graphs with ηia(G) = m− d + 1 and ηia(G) = Δ(G)− 1
in the particular case when Δ(G) = 3. As observed earlier, for the determination of
the value of ηia(G), we need to know the maximum number of vertices that can be
made interior to some induced path in G. Hence it is important to examine the nature
of the vertices and classify them accordingly so that improved bounds for ηia could
be obtained. First we will examine the relationship ηia(G) has with the cut vertices
of G. By cut vertex of a connected graph G, we mean a vertex of a graph whose
removal disconnects G. A graph having at least one cut vertex is called a separable
graph. The following theorem gives an upper bound for ηia(G) for separable graphs
in terms of the number of its cut vertices.

Theorem 3.1 If c ≥ 1 denote the number of cut vertices of G, then ηia(G) ≤ m−c.

Proof Consider a graph G with at least one cut vertex. Let x be a cut vertex of G.
Then there exist vertices u and v such that (u, x, v) is an induced path. Therefore
it is possible to obtain an IAGD ψ such that x is interior to ψ. This is true for all
the cut vertices of G. Hence if c is the number of cut vertices of G, then tia ≥ c.

Therefore by Theorem 2.3, ηia(G) = m− tia ≤ m− c.

Remark 3.2 The above bound is sharp. For example, consider the paw G as given
in Fig. 3. We have m = 4 and the cut vertex x is the only vertex that can be made
interior to any IAGD of G. Hence tia(G) = 1 = c so that ηia(G) = 3.

Given a graph G, a vertex v is said to be simplicial if its neighborhood forms a
complete graph. For a complete graph, all its vertices are simplicial.

Next theorem gives a bound for ηia(G) in terms of the number of simplicial
vertices of G.

Theorem 3.3 Let s denote the number of simplicial vertices in a graph G. Then
ηia ≥ m− n+ s.
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Proof Suppose u is a simplicial vertex of a graph G. Then the vertices adjacent to u

are mutually adjacent. Therefore there exists no induced path of the form (vi, u, vj )

for any vi, vj ∈ V (G). That is, there exists no induced path of length more than
one in G that contain the vertex u. Hence u is not an interior vertex of any IAGD
of G. This being true for all simplicial vertices, we have tia ≤ n − s so that ηia =
m− tia ≥ m− n+ s.

The graphs G and H given in Fig. 4 are such that ηia(G) = 2 and ηia(H) = 3. In
the first case, ηia(G) = m− n+ s, and for the other graph, ηia(H) > m− n+ s.

Fig. 3 Graph G with
ηia(G) = 3

Fig. 4 Graphs G and H

Fig. 5 Graph G with
ηia(G) = m− n+ s = m− c
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Fig. 6 Triangulated ladder

Remark 3.4 From the preceding theorems, it follows that if G is a graph such that
every vertex of G is a simplicial vertex or a cut vertex, then ηia(G) = m− n+ s =
m−c where c is the number of cut vertices and s is the number of simplicial vertices
of G. The graph given in Fig. 5 is an example for such a graph.

Now we will present some families of graphs such that ηia(G) = m−n+ s. One
such graph is the triangulated ladder presented in Fig. 6.

Theorem 3.5 If L is the triangulated ladder graph, then ηia(L) = m− n+ s.

It was observed that relation ηia(G) = m − n + s is true in general for
chordal graphs having at least one pair of simplicial vertices say, u and v such that
neighborhood of N[u] �= N[v] which leads to the following conjecture.

Conjecture 3.6 If G is a chordal graph having at least two simplicial vertices u and
v such that N[u] �= N[v], then ηia(G) = m− n+ s.

The following is a general problem that is to be addressed further.

Problem 3.7 Characterize chordal graphs having s simplicial vertices where s ≥ 2
such that ηia(G) = m− n+ s.

An ear of a graph G is a maximal path whose internal vertices have degree two
in G. Therefore every ear of G is an induced path. An ear decomposition of G is
a decomposition P0, P1, P2, . . . , Pk such that P0 is a cycle and Pi for i ≥ 1 is
an ear of P0 ∪ P1 ∪ P2 . . . ∪ Pi . Whitney [12] has obtained a characterization of
two-connected graphs in terms of ear decomposition.

Theorem 3.8 ([12]) A graph is two-connected if and only if it has an ear decom-
position. Furthermore, every cycle in a two-connected graph is an initial cycle of
some ear decomposition.

It has been proved in [9] that Δ(G)− 1 ≤ ηia(G). They have also characterized
graphs with ηia(G) = Δ(G) − 1 in the particular case when Δ(G) = 3. The
general case appears to be very challenging. However, Whitney’s theorem is useful
in finding a necessary and sufficient condition for a graph G that satisfies the
equation ηia(G) = Δ(G)− 1. Partial solutions to this problem have been obtained.
For example, if G is a separable graph with a cut vertex w of degree Δ such that
each of its component is a triangle-free two-connected graph containing the vertex
w, then ηia(G) = Δ − 1. The general question for two-connected graphs is still
unsolved.

Problem 3.9 Characterize the two-connected graphs G such that ηia(G) = Δ− 1.
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Dominating Laplacian Energy
in Products of Intuitionistic Fuzzy
Graphs

R. Vijayaragavan, A. Kalimulla, and S. Sharief Basha

Abstract The Laplacian energy of an intuitionistic fuzzy graph concept is extended
to dominating Laplacian energy in various products of intuitionistic fuzzy graph.
In this paper, we have obtained the value of dominating Laplacian energy in two
products such as Cartesian product and tensor product. Also we study the relation
between the dominating Laplacian energy in the products in two intuitionistic fuzzy
graphs.

1 Introduction

It is fairly well known that graphs are simply models of relations. A graph is a
convenient way of representing information involving relationship between objects.
The objects are represented by vertices and relations by edges. When there is
vagueness in the description of the objects or in its relationships or in both, it is
natural that we need to design a “fuzzy graph model.” Fuzzy graph is a symmetric
binary fuzzy relation on a fuzzy subset. The concept of fuzzy sets and fuzzy relations
was introduced by L.A. Zadeh in 1965 [11] and further studied in [1]. It was
Rosenfeld [7] who considered fuzzy relations on fuzzy sets and developed the theory
of fuzzy graphs in 1975.
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Let di be the degree of ith vertex of G, i = 1, 2, . . . , n. The spectrum of the
graph G, consisting of the numbers, is the spectrum of its adjacency matrix [2].
In 1960, the study of domination in graphs was begun. Domination in graphs
has applications to several fields. A. Somasundaram and S. Somasundaram [8]
introduced domination in fuzzy graphs in terms of effective edges. A. Nagoorgani
and V.T. Chandrasekaran [3] introduced domination using strong arcs. R. Parvathi
and G. Thamizhendhi [4–6] introduced a dominating set, domination number,
independent set, total dominating, and total domination number in intuitionistic
fuzzy graphs. Sharief Basha. S and E. Kartheek [9] introduced the new concept
Laplacian Energy of an Intuitionistic Fuzzy Graph R. Vijayaragavan, A. Kalimulla,
and S. Sharief Basha studied dominating energy in products of intuitionistic fuzzy
graphs in [10].

This paper is organized as follows. In Sect. 2, we defined the dominating energy
of two products of an intuitionistic fuzzy graphs, and in Sect. 3, we give the
conclusion.

2 Dominating Laplacian Energy in Products of Intuitionistic
Fuzzy Graphs

2.1 Dominating Laplacian Energy in Cartesian Product
of an Intuitionistic Fuzzy Graph G1��G2(V,E)

2.1.1 Now We Find the Dominating Laplacian Energy in Cartesian
Product of Intuitionistic Fuzzy Graph G1��G2 (V,E)

According to Fig. 1, Cartesian Product of Intuitionistic Fuzzy Graphs G1 and G2,
we have

μ1(v1u1) = max[μ(v1u1, v1u2), μ(v1u1, v2u1)] = max[0.1, 0.3] = 0.3

v1u1(0.4,0.3)
v1u3(0.3,0.4)

v2u3(0.3,0.4)v2u1(0.5,0.3)

v1u2(0.1,0.7)

(0.1,0.5)

(0.1,0.5)

(0.1,0.6)

(0.1,0.6)

v2u2(0.1,0.7)

(0.3,0.3)

(0
.1

,0
.7

)

(0.3,0.4)

Fig. 1 G1,*G2
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μ1(v1u2) = max[μ(v1u2, v1u3), μ(v1u2, v2u2), μ(v1u2, v1u1)]
= max[0.1, 0.1, 0.1] = 0.1

μ1(v1u3) = max[μ(v1u3, v2u3), μ(v1u3, v1u2)] = max[0.3, 0.1] = 0.3

μ1(v2u1) = max[μ(v2u1, v1u1), μ(v2u1, v2u2)] = max[0.3, 0.1] = 0.3

μ1(v2u2) = max[μ(v2u2, v2u1), μ(v2u2, v1u2), μ(v2u2, v2u3)]
= max[0.1, 0.1, 0.1] = 0.1

μ1(v2u3) = max[μ(v2u3, v2u2), μ(v2u3, v1u3)] = max[0.1, 0.3] = 0.3

γ1(v1u1) = min[γ (v1u1, v1u2), γ (v1u1, v2u1)] = min[0.5, 0.3] = 0.3

γ1(v1u2) = min[γ (v1u2, v1u3), γ (v1u2, v2u2), γ (v1u2, v1u1)]
= min[0.6, 0.7, 0.5] = 0.5

γ1(v1u3) = min[γ (v1u3, v2u3), γ (v1u3, v1u2)] = min[0.4, 0.6] = 0.4

γ1(v2u1) = min[γ (v2u1, v1u1), γ (v2u1, v2u2)] = min[0.3, 0.5] = 0.3

γ1(v2u2) = min[γ (v2u2, v2u1), γ (v2u2, v1u2), γ (v2u2, v2u3)]
= min[0.5, 0.7, 0.6] = 0.5

γ1(v2u3) = min[γ (v2u3, v2u2), γ (v2u3, v1u3)] = min[0.6, 0.4] = 0.4

Here v1u1 dominates v1u2 because

μ(v1u1, v1u2) ≤ μ1(v1u1) ∧ μ1(v1u2)

0.1 ≤ 0.3 ∧ 0.1
γ (v1u1, v1u2) ≤ γ1(v1u1) ∧ γ1(v1u2)

0.5 ≤ 0.3 ∧ 0.5

Here v1u3 dominates v2u3 because

μ(v1u3, v2u3) ≤ μ1(v1u3) ∧ μ1(v2u3)

0.3 ≤ 0.3 ∧ 0.3
γ (v1u3, v2u3) ≤ γ1(v1u3) ∧ γ1(v2u3)

0.4 ≤ 0.4 ∧ 0.4

Here v2u1 dominates v1u1 because

μ(v2u1, v1u1) ≤ μ1(v2u1) ∧ μ1(v1u1)

0.3 ≤ 0.3 ∧ 0.3
γ (v2u1, v1u1) ≤ γ1(v2u1) ∧ γ1(v1u1)

0.3 ≤ 0.3 ∧ 0.3

Here v2u2 dominates v2u1 because

μ(v2u2, v2u1) ≤ μ1(v2u2) ∧ μ1(v2u1)

0.1 ≤ 0.1 ∧ 0.3
γ (v2u2, v2u1) ≤ γ1(v2u2) ∧ γ1(v2u1)

0.5 ≤ 0.5 ∧ 0.3
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Here V={v1u1, v1u2, v1u3, v2u1, v2u2, v2u3} and D={v1u1, v1u3, v2u1, v2u2} V-
D={v1u2, v2u3}
|D|=4=sum of dominating elements

D (G1,*G2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(1, 1) (0.1, 0.5) (0, 0) (0.3, 0.3) (0, 0) (0, 0)
(0.1, 0.5) (0, 0) (0.1, 0.6) (0, 0) (0.1, 0.7) (0, 0)
(0, 0) (0.1, 0.6) (1, 1) (0, 0) (0, 0) (0.3, 0.4)

(0.3, 0.3) (0, 0) (0, 0) (1, 1) (0.1, 0.5) (0, 0)
(0, 0) (0.1, 0.7) (0, 0) (0.1, 0.5) (1, 1) (0.1, 0.6)
(0, 0) (0, 0) (0.3, 0.4) (0, 0) (0.1, 0.6) (0, 0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

μD(G1,*G2) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0.1 0 0.3 0 0
0.1 0 0.1 0 0.1 0
0 0.1 1 0 0 0.3

0.3 0 0 1 0.1 0
0 0.1 0 0.1 1 0.1
0 0 0.3 0 0.1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

γD(G1,*G2) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0.5 0 0.3 0 0
0.5 0 0.6 0 0.7 0
0 0.6 1 0 0 0.4

0.3 0 0 1 0.5 0
0 0.7 0 0.5 1 0.6
0 0 0.4 0 0.6 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

2.1.2 Cartesian Product of Membership Function

d[μD(G1,*G2)] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.4 0 0 0 0 0
0 0.3 0 0 0 0
0 0 0.4 0 0 0
0 0 0 0.4 0 0
0 0 0 0 0.3 0
0 0 0 0 0 0.4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

L = d[μD(G1,*G2)] − A[μD(G1,*G2)]
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L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.6 −0.1 0 −0.3 0 0
−0.1 0.3 −0.1 0 −0.1 0

0 −0.1 −0.6 0 0 −0.3
−0.3 0 0 −0.6 −0.1 0

0 −0.1 0 −0.1 −0.7 −0.1
0 0 −0.3 0 −0.1 0.4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Eigenvalues = [−0.9327,−0.7251,−0.6651,−0.2988, 0.3237, 0.4980]
LE[μDG1,*G2)] =

∣∣∣−0.9327− 2(1.1)
6

∣∣∣+
∣∣∣−0.7251− 2(1.1)

6

∣∣∣+
∣∣∣−0.6651− 2(1.1)

6

∣∣∣+∣∣∣−0.2988− 2(1.1)
6

∣∣∣

+
∣∣∣∣0.3237− 2(1.1)

6

∣∣∣∣+
∣∣∣∣0.4980− 2(1.1)

6

∣∣∣∣

= |−1.2993|+|−1.0917|+|−1.0317|+|−0.6654|+|−0.0429|+|0.1313| = 4.2623.

2.1.3 Cartesian Product of Nonmembership Function

d[γD(G1,*G2)] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.8 0 0 0 0 0
0 1.8 0 0 0 0
0 0 1 0 0 0
0 0 0 0.8 0 0
0 0 0 0 1.8 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

L = d[γD(G1,*G2)] − A[γD(G1,*G2)]

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.2 −0.5 0 −0.3 0 0
−0.5 1.8 −0.6 0 −0.7 0

0 −0.6 0 0 0 −0.4
−0.3 0 0 −0.2 −0.5 0

0 −0.7 0 −0.5 0.8 −0.6
0 0 −0.4 0 −0.6 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Eigenvalues = [−0.7930,−0.2915,−0.0661, 0.5639, 1.3128, 2.4740]
LE[γD(G1,*G2)] =

∣∣∣−0.7930− 2(3.6)
6

∣∣∣+
∣∣∣−0.2915− 2(3.6)

6

∣∣∣+
∣∣∣−0.0661− 2(3.6)

6

∣∣∣+∣∣∣0.5639− 2(3.6)
6

∣∣∣

+
∣∣∣∣1.3128− 2(3.6)

6

∣∣∣∣+
∣∣∣∣2.4740− 2(3.6)

6

∣∣∣∣



608 R. Vijayaragavan et al.

v1u1(0.4,0.3) v1u3(0.3,0.4)
v1u2(0.1,0.7)

v2u3(0.3,0.4)
v2u1(0.5,0.3)

v2u2(0.1,0.7)

(0.1,0.5)

(0.1,0.6)

(0
.1,

0.5
)

(0
.1

,0
.6

)

Fig. 2 G1 ⊗G2

= |−1.993|+ |−1.4915|+ |−1.2661|+ |−0.6361|+ |0.1128|+ |1.274| = 6.7735.

2.2 Dominating Laplacian Energy in Tensor Product
of an Intuitionistic Fuzzy Graph G1��G2(V,E)

2.2.1 Now We Find the Dominating Laplacian Energy in Tensor Product
of Intuitionistic Fuzzy Graph G1 ◦ G2(V,E)

Similarly, by using Fig. 2 -Tensor Product of Intuitionistic Fuzzy Graph G1 and G2,
then we have

μ1(v1u1) = max[μ(v1u1, v2u2)] = max[0.1] = 0.1

μ1(v1u2) = max[μ(v1u2, v2u1), μ(v1u2, v2u3)] = max[0.1, 0.1] = 0.1

μ1(v1u3) = max[μ(v1u3, v2u2)] = max[0.1] = 0.1

μ1(v2u1) = max[μ(v2u1, v1u2)] = max[0.1] = 0.1

μ1(v2u2) = max[μ(v2u2, v1u1), μ(v2u2, v1u3)] = max[0.1, 0.1] = 0.1

μ1(v2u3) = max[μ(v2u3, v1u2)] = max[0.1] = 0.1

γ1(v1u1) = min[γ (v1u1, v2u2)] = min[0.5] = 0.5
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γ1(v1u2) = min[γ (v1u2, v2u1), γ (v1u2, v2u3)] = min[0.5, 0.6] = 0.5

γ1(v1u3) = min[γ (v1u3, v2u2)] = min[0.6] = 0.6

γ1(v2u1) = min[γ (v2u1, v1u2)] = min[0.5] = 0.5

γ1(v2u2) = min[γ (v2u2, v1u1), γ (v2u2, v1u3)] = min[0.5, 0.6] = 0.5

γ1(v2u3) = min[γ (v2u3, v1u2)] = min[0.6] = 0.6

Here v1u1 is dominates v2u2 because

μ(v1u1, v2u2) ≤ μ1(v1u1) ∧ μ1(v2u2)

0.1 ≤ 0.1 ∧ 0.1
γ (v1u1, v2u2) ≤ γ1(v1u1) ∧ γ1(v2u2)

0.5 ≤ 0.5 ∧ 0.5

Here v1u2 is dominates v2u1 because

μ(v1u2, v2u1) ≤ μ1(v1u2) ∧ μ1(v2u1)

0.1 ≤ 0.1 ∧ 0.1
γ (v1u2, v2u1) ≤ γ1(v1u2) ∧ γ1(v2u1)

0.5 ≤ 0.5 ∧ 0.5

Here v1u3 is dominates v2u2 because

μ(v1u3, v2u2) ≤ μ1(v1u3) ∧ μ1(v2u2)

0.1 ≤ 0.1 ∧ 0.1
γ (v1u3, v2u2) ≤ γ1(v1u3) ∧ γ1(v2u2)

0.6 ≤ 0.6 ∧ 0.5

Here v2u3 is dominates v1u2 because

μ(v2u3, v1u2) ≤ μ1(v2u3) ∧ μ1(v1u2)

0.1 ≤ 0.1 ∧ 0.1
γ (v2u3, v1u2) ≤ γ1(v2u3) ∧ γ1(v1u2)

0.6 ≤ 0.6 ∧ 0.5

Here V={v1u1,v1u2,v1u3,v2u1,v2u2,v2u3} and D={v1u1,v1u2,v1u3,v2u3} V-D=
{v2u1,v2u2}
|D|=4=Sum of dominating elements

D(G1 ⊗G2) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

(1, 1) (0, 0) (0, 0) (0, 0) (0.1, 0.5) (0, 0)
(0, 0) (1, 1) (0, 0) (0.1, 0.5) (0, 0) (0.1, 0.6)
(0, 0) (0, 0) (1, 1) (0, 0) (0.1, 0.6) (0, 0)
(0, 0) (0.1, 0.5) (0, 0) (0, 0) (0, 0) (0, 0)

(0.1, 0.5) (0, 0) (0.1, 0.6) (0, 0) (0, 0) (0, 0)
(0, 0) (0.1, 0.6) (0, 0) (0, 0) (0, 0) (1, 1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦
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μD(G1⊗G2) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0.1 0
0 1 0 0.1 0 0.1
0 0 1 0 0.1 0
0 0.1 0 0 0 0

0.1 0 0.1 0 0 0
0 0.1 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

γD(G1⊗G2) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0.5 0
0 1 0 0.5 0 0.6
0 0 1 0 0.6 0
0 0.5 0 0 0 0

0.5 0 0.6 0 0 0
0 0.6 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

2.2.2 Tensor Product of Membership Function

d[μD(G1 ⊗G2)] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0.1 0 0 0 0 0
0 0.2 0 0 0 0
0 0 0.1 0 0 0
0 0 0 0.1 0 0
0 0 0 0 0.2 0
0 0 0 0 0 0.1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

L = d[μD(G1 ⊗G2)] − A[μD(G1 ⊗G2)]

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.9 0 0 0 −0.1 0
0 −0.8 0 −0.1 0 −0.1
0 0 −0.9 0 −0.1 0
0 −0.1 0 0.1 0 0

−0.1 0 −0.1 0 0.2 0
0 −0.1 0 0 0 −0.9

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Eigenvalues = [−0.9645,−0.9179,−0.9000,−0.7466, 0.1111, 0.2179]
L[μD(G1⊗G2) =

∣∣∣−0.9645− 2(0.4)
6

∣∣∣+
∣∣∣−0.9179− 2(0.4)

6

∣∣∣+
∣∣∣−0.9000− 2(0.4)

6

∣∣∣+∣∣∣−0.7466− 2(0.4)
6

∣∣∣

+
∣∣∣∣0.1111− 2(0.4)

6

∣∣∣∣+
∣∣∣∣0.2179− 2(0.4)

6

∣∣∣∣

= |−1.0978|+|−1.0512|+|−1.0333|+|−0.8799|+|−0.0222|+|0.0845| = 4.1689
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2.2.3 Tensor Product of Nonmembership Function

d[γD(G1 ⊗G2)] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0 0 0 0 0
0 1.1 0 0 0 0
0 0 0.6 0 0 0
0 0 0 0.5 0 0
0 0 0 0 1.1 0
0 0 0 0 0 0.6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

L = d[γD(G1 ⊗G2)] − A[γD(G1 ⊗G2)]

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.5 0 0 0 −0.5 0
0 0.1 0 −0.5 0 −0.6
0 0 −0.4 0 −0.6 0
0 −0.5 0 0.5 0 0

−0.5 0 −0.6 0 1.1 0
0 −0.6 0 0 0 −0.4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Eigenvalues = [−0.8623,−0.7741,−0.4527, 0.1235, 0.9387, 1.4268]
LE =

∣∣∣∣−0.8623 − 2(2.2)

6

∣∣∣∣+
∣∣∣∣−0.7741 − 2(2.2)

6

∣∣∣∣+
∣∣∣∣−0.4527 − 2(2.2)

6

∣∣∣∣+ |0.1235 − 2(2.2)

6

∣∣∣∣

+
∣∣∣∣0.9387 − 2(2.2)

6

∣∣∣∣+
∣∣∣∣1.4268 − 2(2.2)

6

∣∣∣∣

= |1.5956| + |1.5074| + |1.1860| + |0.6098| + |0.2053| + |0.6934| = 5.7975

3 Conclusion

In this paper we have defined the dominating intuitionistic fuzzy graph G =
(V ,E,μ, γ,μ1, γ1). The dominating Laplacian energy in the two products of two
intuitionistic fuzzy graphs is defined, and the results with suitable examples are
examined in detail.
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Power Domination Parameters in
Honeycomb-Like Networks

J. Anitha and Indra Rajasingh

Abstract A set S of vertices in a graph G is called a dominating set of G if every
vertex in V (G)\S is adjacent to some vertex in S. A set S is said to be a power
dominating set of G if every vertex in the system is monitored by the set S following
a set of rules for power system monitoring. The power domination number of G is
the minimum cardinality of a power dominating set of G. In this paper, we obtain the
power domination number for triangular graphs, pyrene networks, circum-pyrene
networks, circum-trizene networks, generalized honeycomb torus and honeycomb
rectangular torus.

1 Introduction

Definition 1 ([1]) For v ∈ V (G), the open neighbourhood of v, denoted as NG(v),
is the set of vertices adjacent with v; and the closed neighbourhood of v, denoted
by NG[v], is NG(v) ∪ {v}. For a set S ⊆ V (G), the open neighbourhood of S

is defined as NG(S) = ⋃
v∈S

NG(v), and the closed neighbourhood of S is defined

as NG[S] = NG(S) ∪ S. For brevity, we denote NG(S) by N(S) and NG[S]
by N[S].
Definition 2 ([1]) For a graph G(V,E), S ⊆ V is a dominating set of G if every
vertex in V \S has at least one neighbour in S. The domination number of G, denoted
by γ (G), is the minimum cardinality of a dominating set of G.
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Definition 3 ([2]) Let G(V,E) be a graph, and let S ⊆ V (G). We define the sets
Mi(S) of vertices monitored by S at level i, i ≥ 0, inductively as follows:

1. M0(S) = N[S].
2. Mi+1(S) = Mi(S) ∪ {w : ∃v ∈ Mi(S), N(v) ∩ (V (G)\Mi(S)) = w}.
If M∞(S) = V (G), then the set S is called a power dominating set of G. The
minimum cardinality of a power dominating set in G is called the power domination
number of G written γp(G).

The power domination has been well studied for trees [1], product graphs [4], block
graphs [3], interval graphs and so on. In fact, the problem has been shown to be
NP-complete even when restricted to bipartite graphs and chordal graphs [1].

2 Main Results

In this section, we solve the power domination problem for triangular graphs, pyrene
network, circum-pyrene network, circum-trizene network, generalized honeycomb
torus and honeycomb rectangular torus. In 2013 Ferrero et al. [5] proved the
following lemma which shows the power domination number for honeycomb mesh
network HM(n).

Lemma 1 If G is the honeycomb mesh network HM(n) of dimension n, then

γp(G) ≥
⌈

2n
3

⌉
.

The following lemma establishes a critical subgraph H of G in the sense that H

contains at least one vertex of any power dominating set.

Lemma 2 Let G be a graph and H as shown in Fig. 1a be a subgraph G with
degHwi = degGwi = 2, ∀i, i = 1, 2, 3, 4, 5, 6, 7, 8. Then H is a critical
subgraph of G.

Proof Neither u nor v, when monitored, can further monitor any of wi, i =
1, 2, 3, 4, 5, 6, 7, 8, as degHu = degHv = 3.

Definition 4 ([8]) Let n be a non-negative integer. A triangle graph of order
n, T Gn, is defined in the following way: TG1 is a hexagon. When n ≥ 2, T Gn is
built according to the following step:

Draw n rows of regular hexagons of the same size within an equilateral triangle
(which is called the framework of TGn) so that the first row consists of one hexagon,
the second row consists of two hexagons and the nth row consists of n hexagons.
Set all the vertices of these hexagons to be the vertices of TGn, and set all the sides
of these hexagons to be the edges of TGn.

Lemma 3 Let G be a triangle graph TGn, n ≥ 2. Then γp(G) ≥ ⌈
n
2

⌉
.

Proof In TGn, there are
⌈
n
2

⌉
critical subgraphs, each isomorphic to H as described

in Lemma 2.2. Therefore, γp(G) ≥ ⌈
n
2

⌉
.
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Fig. 1 (a) Circled vertices indicate a power dominating set of critical subgraph H induced by
G (b) power dominating set of TG4

Power Domination Algorithm in Triangular Graph

Input Triangular graph TGn, n ≥ 2.

Algorithm Name the vertices of TGn, n ≥ 2 as 1 to n2+4n+1 sequentially from
left to right, row wise beginning with the top most row.

(i) Select S2 = {4} in TG2.
(ii) Let S3 = {9, 11} in TG3.

(iii) Inductively select Sn =⋃0 n
2 1

k=1 n2 + 2(k − 1) in TGn.

Output γp(TGn) =
⌈
n
2

⌉
.

Proof of Correctness S4 is a power dominating set of TG4 with |S4| = 2. Now
M0(S4) = N[S4] = {16, 20, 21, 12, 18, 22, 23, 14}. See Fig. 1b. At least one vertex
v ∈ M0(S4) satisfies |N[v]\M0(S4)| = 1. Proceeding inductively, for every vertex
v ∈ Mi(S4), |N[v]\Mi(S4)| = 1, i ≥ 1, at every inductive step i, i ≥ 1. Now

Sn = ⋃0 n
2 1

k=1 n2 + 2(k − 1) is a power dominating set of TGn. This implies that
γp(T Gn) =

⌈
n
2

⌉
, hence the proof.

Theorem 1 Let G be a triangle graph TGn. Then γp(G) = ⌈
n
2

⌉
.
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2.1 Power Domination in Pyrene Network

Pyrene is an alternante polycyclic aromatic hydrocarbon (PAH) and consists of
four fused benzene rings, resulting in a large flat aromatic system. It is a colourless
or pale yellow solid which forms during incomplete combustion of organic materials
and therefore can be isolated from coal tar together with a broad range of related
compounds. In the last four decades, a number of research works have been
reported on both the theoretical and experimental investigation of pyrene concerning
its electronic structure, UV -vis absorption and fluorescence emission spectrum.
Indeed, this polycyclic aromatic hydrocarbon exhibits a set of many interesting
electrochemical and photophysical attributes, which have resulted in its utilization
in a variety of scientific areas. Like most PAHs, pyrene is used to make dyes, plastics
and pesticides. Figure 2b depicts the graph of circum-pyrene (1). Circum-pyrene(2)
is obtained by adding a layer of hexagons to the boundary of circum-pyrene
(1). Inductively, circum-pyrene (n) is obtained from circum-pyrene(n − 1) by
adding a layer of hexagons around the boundary of circum-pyrene (n− 1). Similar
construction follows for circum-trizene (n) [6]. See Fig. 3b.

1
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12 13 14 15
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row 1

row 2

row 12

row 1
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20
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26 29

48
(a)

Fig. 2 (a) Power dominating set of PY(4), (b) power dominating set of circum-pyrene(1)
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Fig. 3 (a) Circled vertices constitute a power dominating set of circum-trizene(1), (b) critical
subgraph H of G

Lemma 4 Let G be a pyrene network PY(n), n ≥ 4. Then γp(G) ≥ ⌈
n
2

⌉
.

Proof In PY(n), there are
⌈
n
2

⌉
critical subgraphs, each isomorphic to H as

described in Lemma 2.2. Therefore, γp(G) ≥ ⌈
n
2

⌉
.

Power Domination Algorithm in Pyrene Network

Input Pyrene network PY(n), n ≥ 4.

Algorithm Name the vertices of PY(n), n ≥ 4 as 1 to 2n2 + 4n sequentially
from left to right, row wise beginning with the topmost row. Let P ∗ denote the
path induced by the edges of the hexagons that are not boundary edges of any other
hexagon. Select

⌈
n
2

⌉
vertices of degree 3 in P ∗, which are at distance 4 apart on P ∗.

See Fig. 2a.

Output γp(PY (n)) = ⌈
n
2

⌉
.

Proof of Correctness S4 is a power dominating set of PY(4) with |S4| = 2. Now
M0(S4) = N[S4] = {4, 6, 7, 2, 16, 20, 21, 12}. See Fig. 2a. At least one vertex
v ∈ M0(S4) satisfies |N[v]\M0(S4)| = 1. Proceeding inductively, for every vertex
v ∈ Mi(S4), |N[v]\Mi(S4)| = 1, i ≥ 3, at every inductive step i, i ≥ 1. Now Sn =⋃0 n

2 1
i=1 (2i)2 is a power dominating set of PY(n). This implies that γp(PY (n)) =⌈
n
2

⌉
, hence the proof.

Theorem 2 Let G be a pyrene network PY(n), n ≥ 4. Then γp(G) = ⌈
n
2

⌉
.
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Lemma 5 Let G be a circum-pyrene(n), n ≥ 1. Then γp(G) ≥ n+ 1.

Proof In circum-pyrene(n), there are 2n+ 2 critical subgraphs, each isomorphic to

H as described in Lemma 2.2. Therefore, γp(G) ≥
⌈

2n+2
2

⌉
= n+ 1.

Power Domination Algorithm in Circum-Pyrene

Input Circum-pyrene(n), n ≥ 1.

Algorithm Name the vertices of circum-pyrene(n), n ≥ 1 as 1 to 6n2 + 20n +
16 sequentially from left to right, row wise beginning with the first row. Consider
2n + 2 hexagons in the outer most layer of the circum-pyrene(n). Let P ∗ denote
the path induced by the edges of the hexagons that are not boundary edges of any
other hexagon. Select n + 1 vertices of degree 3 in P ∗, which are at distance 5
apart on P ∗.

Output γp(circum−pyrene(n))= n+ 1.

Proof of Correctness S(1) is a power dominating set of circum-pyrene(1) with
|S(1)| = 2. Now M0(S(1)) = N[S(1)] = {1, 2, 4, 7, 13, 17, 18, 9}. See Fig. 2b.
At least one vertex v ∈ M0(S(1)) satisfies |N[v]\M0(S(1))| = 1. Proceeding
inductively, for every vertex v ∈ Mi(S(1)), |N[v]\Mi(S(1))| = 1, i ≥ 1, at
every inductive step i, i ≥ 2. Now S(n) = n + 1 is a power dominating set of
circum-pyrene(n). This implies that γp(G) = n+ 1, hence the proof.

Lemma 6 Let G be a circum-trizene(n), n ≥ 1. Then γp(G) ≥ n+ 1.

Proof In circum-trizene(n), there are 2n+ 2 critical subgraphs, each isomorphic to

H as described in Lemma 2.2. Therefore, γp(G) ≥
⌈

2n+2
2

⌉
= n+ 1.

Power Domination Algorithm in Circum-Trizene

Input Circum-trizene(n), n ≥ 1.

Algorithm Name the vertices of circum-trizene(n), n ≥ 1 as 1 to 6n2 + 18n +
13 sequentially from left to right, row wise beginning with the first row. Consider
2n + 2 hexagons in the outer most layer of the circum-trizene(n). Let P ∗ denote
the path induced by the edges of the hexagons that are not boundary edges of any
other hexagon. Select n + 1 vertices of degree 3 in P ∗, which are at distance 5
apart on P ∗.

Output γp(circum−trizene(n)) = n+ 1.

Proof of Correctness S(1) is a power dominating set of circum-trizene(1) with
|S(1)| = 2. Now M0(S(1)) = N[S(1)] = {6, 2, 3, 10, 8, 4, 12, 13}. See Fig. 3a.
At least one vertex v ∈ M0(S(1)) satisfies |N[v]\M0(S(1))| = 1. Proceeding
inductively, for every vertex v ∈ Mi(S(1)), |N[v]\Mi(S(1))| = 1, i ≥ 1, at
every inductive step i, i ≥ 2. Now S(n) = n + 1 is a power dominating set of
circum-trizene(n). This implies that γp(G) = n+ 1, hence the proof.
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Theorem 3 Let G be a circum-pyrene(n) or a circum-trizene(n), n ≥ 1. Then
γp(G) = n+ 1.

3 Ladderlike Honeycomb Networks

Lemma 7 Let H be as shown in Fig. 3b. Then γp(H) = 1.

Proof Let S be a power dominating set of H . We claim that |S| = 1. Suppose not,
let H be the subgraph that does not contain any member of S. If any vertex of H

is monitored, then v is adjacent to two unmonitored vertices of H , a contradiction.
See Fig. 3b.

3.1 Honeycomb Rectangular Torus

Definition 5 ([7]) Assume that m and n are positive even integers. The honeycomb
rectangular torus HReT (m, n) is the graph with the node set {(i, j)\0 ≤ i <

m, 0 ≤ j < n} such that (i, j) and (k, l) are adjacent if they satisfy one of the
following conditions:

1. i = k and j = l ± 1(mod n); and
2. j = l and k = i − 1(mod m) if i + j is even.

Definition 6 ([7]) Assume that m and n are positive integers where n is even. Let
d be any integer such that (m− d) is an even number. The generalized honeycomb
rectangular torus GHT (m, n, d) is the graph with the node set {(i, j)\0 ≤ i <

m, 0 ≤ j < n} such that (i, j) and (k, l) are adjacent if they satisfy one of the
following conditions:

1. i = k and j = l ± 1(modn)

2. j = l and k = i − 1 if i + j is even and
3. i = 0, k = m− 1, and l = j + d(modn) if j is even.

Obviously, any GHT (m, n, d) is a three-regular bipartite graph. We can label those
nodes (i, j) white when i + j is even or black otherwise.

Lemma 8 Let G be a HReT (m, n),m, n are even m ≥ 6, n ≥ 8 and m ≤ n. Then
γp(G) ≥ n

2 .

Proof In HReT (m, n), there are n
2 critical subgraphs, each isomorphic to H as

described in Lemma 3.1. Therefore, γp(G) ≥ n
2 .

Power Domination Algorithm in Honeycomb Rectangular Torus

Input The honeycomb rectangular torus HReT (m, n),m, n is even m ≥ 6, n ≥ 8
and m ≤ n.
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(a)

(1,1)

(b)

(1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) (3,8)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (4,8)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7) (5,8)

(6,2) (6,3) (6,4) (6,5) (6,6) (6,7) (6,8)(6,1)

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) (3,8)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (4,8)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7) (5,8)

(6,2) (6,3) (6,4) (6,5) (6,6) (6,7) (6,8)(6,1)

Fig. 4 Circled vertices constitute a power dominating set. (a) Honeycomb rectangular torus
HReT (6, 8). (b) Honeycomb rectangular torus GHT (6, 8, 2)

Algorithm Name the vertices in the ith row, j th column position as (i, j), 1 ≤ i ≤
m, 1 ≤ j ≤ n, and select the vertices

⋃n−1
j=5(2, j) ∪ {(2, 2), (3, 4), (4, 1)} in S.

Output γp(HReT (m, n)) = n
2 + 1.

Proof of Correctness Let S be a power dominating set of HReT (m, n) with |S| =
n
2 + 1. Then M0(S) = N[v] = {(i, j), (2, k), (2, 2), (1, 2), (3, 2), (2, 3), (3, 4),
(4, 4), (4, 1), (5, 1), (3, 1), (4, n)}, i = 1, 2, 3, j = 5, 7, . . . , n − 1, k =
4, 6, . . . , n − 2. See Fig. 4a. At least one vertex v ∈ M0(S(1)) satisfies
|N[v]\M0(S(1))| = 1. Proceeding inductively, for every vertex v ∈
Mi(S), |N[v]\Mi(S)| = 1, i ≥ 1, at every inductive step i, i ≥ 1.
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Now S = ⋃n−1
j=5(2, j) ∪ {(2, 2), (3, 4), (4, 1)} is a power dominating set of

(HReT (m, n)). This implies that γp(G) = n
2 + 1, hence the proof.

Lemma 9 Let G be a generalized honeycomb rectangular torus GHT (m, n, d),

m ≥ 6, n ≥ 8, m ≤ n. Then γp(G) ≥ n
2 .

Proof In GHT (m, n, d), there are n
2 vertex-disjoint copies of H as described in

lemma 3.1. Therefore, γp(G) ≥ n
2 .

Theorem 4 Let G be a honeycomb rectangular torus HReT (m, n) or a general-
ized honeycomb rectangular torus GHT (m, n, d), m ≥ 6, n ≥ 8,m ≤ n. Then
n
2 ≤ γp(G) ≤ n

2 + 1.

4 Conclusion

In this paper, we have obtained the power domination number for triangular graphs,
pyrene networks, circum-pyrene networks, circum-trizene networks, honeycomb
rectangular torus and generalized honeycomb torus network.
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Improved Bound for Dilation of an
Embedding onto Circulant Networks

R. Sundara Rajan, T. M. Rajalaxmi, Joe Ryan, and Mirka Miller

Abstract Implementation of parallel algorithms and simulation of different inter-
connection networks need an effective tool, that is, graph embedding. This paper
focuses on improving a lower bound obtained in Rajan et al. (Comput J 58:3271–
3278, 2015) for dilation of an embedding onto circulant networks. In addition, this
paper provides algorithms to compute dilation of embedding circulant network into
certain trees, for instance, m-rooted complete binary tree, m-rooted sibling tree, and
r-dimensional hypertree, proving that the improved bound obtained is sharp.
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1 Introduction

Graph embedding is an important technique that traces a guest graph into a host
graph, mostly an interconnection network. There are a lot of applications which
can be modeled as graph embedding [2]. Few cost criteria are used to measure the
quality of an embedding. The criterion dilation is significant one. The dilation of an
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embedding f from guest graph G into the host graph H is defined as the maximum
distance between a pair of vertices of host graph that are images of adjacent vertices
of the guest graph. The dilation of embedding from guest graph G into H is the
minimum dilation taken over all embeddings f of G into H . In short, it is a measure
of the communication time needed when simulating one network on another [3].

Generally the double-loop network is a circulant network [4]. Circulant graph has
been used for decades in the design of computer and telecommunication networks
for more than 10 years due to its optimal fault-tolerance and routing capabilities
[5]. VLSI design and distributed computations also make use of them [6, 7]. Binary
codes are designed by circulant graphs [8].

The rest of the paper is structured as follows: In Sect. 2, we introduce the
definitions and other preliminaries. In Sect. 3, we compute the dilation of embedding
circulant networks, and we also demonstrate how it can be modeled into certain
trees. Finally, we conclude the study with the results of tests performed and with a
discussion of future directions in Sect. 4.

2 Basic Concepts

In this section, we describe the basic concepts and preliminaries associated with
embedding problems.

Definition 1 ([9, 10]) Let G and H be finite graphs. An embedding of G into H is
a pair (f, Pf ) defined as follows:

1. f is a one-to-one map from V (G)→ V (H)

2. Pf is a one-to-one map from E(G) to {Pf (u, v) : Pf (u, v) is a path in H

between f (u) and f (v) for (u, v) ∈ E(G)}.
For brevity, we denote the pair (f, Pf ) as f .

Definition 2 ([10]) If e = (u, v) ∈ E(G), then the length of Pf (u, v) in H is
called the dilation of the edge e. The maximum dilation over all edges of G is called
the dilation of the embedding f . The dilation of embedding G into H , denoted by
dil(G,H), is the minimum dilation taken over all embeddings f of G into H . The
expansion of an embedding f is the ratio of the number of vertices of H to the
number of vertices of G.

If G illustrates the wiring diagram of an electronic circuit, with the vertices
representing components and the edges representing wires connecting them, then
the dilation of G into H is the minimum, over all embeddings f : V (G) → V (H)

(see Fig. 1).

Definition 3 ([7, 11]) The undirected circulant graph G(n; ±S), S ⊆ {1, 2, . . . , j },
1 ≤ j ≤ 2n/23 is a graph with the vertex set V = {0, 1, . . . , n − 1} and the edge
set E = {(i, k) : |k − i| ≡ s(mod n), s ∈ S}.
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Fig. 1 Wiring diagram of a graph G into path H with dilf (G,H) = 4
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The circulant graph shown in Fig. 2 is G(8; ±{1, 3, 4}). It is clear that G(n; ±1)
is the undirected cycle Cn and G(n; ±{1, 2, . . . , 2n/23}) is the complete graph Kn.
The cycle G(n; ±1) " Cn contained in G(n; ±{1, 2, . . . , j }), 1 ≤ j ≤ 2n/23 is
sometimes referred to as the outer cycle C of G.

3 Improved Bound

An embedding stretches edges in the source network (guest) to paths in the target
network (host). Computing dilation of an embedding is NP-complete. Harper in
1966 showed that the dilation of embedding the hypercube can be computed into a
path graph using vertex isoperimetric problem [12]. However, there is no efficient
method to compute exact dilation of graph embeddings in general [11, 13].

Manuel et al. improved this result. In 2012, they obtained a lower bound for
dilation of an embedding using optimal wirelength [14]. Moreover, the possibility of
obtaining a nontrivial lower bound for dilation without computing the wirelength of
an embedding is questioned. Our previous work, the Dilation Lemma [1], provides
a partial answer toward this end when the guest graph is regular and has the same
number of vertices as the host graph.
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Lemma 1 (Dilation Lemma) [1] Let G be an r-regular graph on n vertices and
H be a graph on m,m ≥ n vertices with diam(H) = δ. Let f : G → H be
an embedding. Let D = {u ∈ V (H) | Dδ(u) �= ∅}, where Dα(u) denotes the
set of all vertices in H which are at distance α from u. For u ∈ D, let ku be the
least integer such that |Dδ(u)| + |Dδ−1(u)| + · · · + |Dδ−ku(u)| > n− r − 1. Then
dil(G,H) ≥ δ − k, where k = min

u∈D ku.

In this section, we improve this lower bound for circulant networks and prove
that the improved bound obtained for embedding circulant networks into certain
architectures is sharp. Now, we begin with the following definition.

Definition 4 Let k ≥ 0 be the least positive integer, and for some l, l ≥ 1, let

D = {u1, u2, . . . , ul ∈ V (H) | Dδ(ui) �= ∅ and ur /∈
k⋃

t=0

l⋃
i=1

Dδ−t (ui), 1 ≤ r ≤
l, i �= r}, where Dα(ui) denotes the set of all vertices in H which are at distance α

from ui .

For example, let us consider a path P6 on 6 vertices and V (P6) =
{u1, u2, . . . , u6}. Clearly the vertices u1 and u6 satisfy the first condition of
Definition 4, but if u1 ∈ D, then u6 /∈ D, since u6 ∈ Dδ(u1). Let us consider
another example, that is, a cycle C6 on 6 vertices and V (C6) = {u1, u2, . . . , u6}.
Clearly all vertices satisfy the first condition of Definition 4, but D = {u1, u2, u3}
(let us assume that k = 0).

Lemma 2 Let G be an undirected circulant graph G(n; ±{1, 2, . . . , j }), 1 ≤ j <

2n/23 and H be a graph on n vertices with diameter δ. Let f : G → H be
an embedding. For u1, u2, . . . , ul ∈ D, let k ≥ 0 be the least integer such that∣∣∣∣

k⋃
t=0

l⋃
i=1

Dδ−t (ui)

∣∣∣∣ > n− 2j − l. Then dil(G,H) ≥ δ − k.

Proof Let v1, v2, . . . , vl ∈ V (G) such that Dδ(f (vi)) �= ∅, 1 ≤ i ≤ l and k is
minimum. Since G is 2j regular, there are at most n − 2j − l vertices in G which

has no neighbor in {v1, v2, . . . , vl} in G. Since

∣∣∣∣
k⋃

t=0

l⋃
i=1

Dδ−t (f (vi))

∣∣∣∣ > n−2j− l,

there exists at least one vertex w adjacent to some vertex vp , 1 ≤ p ≤ l in G which

is mapped to a vertex in
k⋃

t=0

l⋃
i=1

Dδ−t (f (vi)). This implies that dil(G,H) ≥ δ−k.

3.1 Circulant Networks into m-Rooted Complete Binary Trees

For any nonnegative integer r , the complete binary tree of height r − 1, denoted by
Tr , is the binary tree where each internal vertex has exactly two children and all the
leaves are at the same level. Clearly, a complete binary tree Tr has r levels. Each
level i, 1 ≤ i ≤ r , contains 2i−1 vertices. Thus, Tr has exactly 2r − 1 vertices. The
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one-rooted complete binary tree T 1
r is obtained from a complete binary tree Tr by

attaching to its root a pendant edge. The new vertex is called the root of T 1
r and is

considered to be at level 0. The m-rooted complete binary tree T m
r is obtained by

taking m vertex-disjoint one-rooted complete binary trees T 1
r on 2r vertices each,

with roots r1, r2, . . . , rm and adding the edges (ri, ri+1), 1 ≤ i ≤ m− 1 [15].

Remark 1 The number of vertices and the number of edges of T m
r are m × 2r and

m× 2r − 1, respectively.

Lemma 3 Let u be a vertex in T m
r with Dδ(u) �= ∅. Then for any m ≥ 3, |Dδ(u)| =

2r−1 and |Dδ−1(u)| = 3× 2r−2, r ≥ 3.

Proof We prove this result by induction on r . If r = 3, there are exactly four vertices
with distance δ from u. Thus the result is true for r = 3. Let us assume that the result
is true for r = n. That is, |Dδ(u)| = 2n−1 in T m

n . Now consider r = n + 1. Since
T m
n+1 is obtained from a complete binary tree, each vertex in the leaf of the mth copy

of T 1
n in T m

n has exactly two children. Thus |Dδ(u)| = 2×2n−1 = 2n in T m
n+1, hence

the result. Similarly, we can prove |Dδ−1(u)| = 3× 2r−2, r ≥ 3.

Theorem 1 Let G be the circulant graph G(m×2r ; ±{1, 2, . . . , (4m−7)2r−3+1})
and H be an m-rooted complete binary trees T m

r . Then dil(G,H) ≥ 2r + m − 2,
where m, r ≥ 3.

Proof Let u1, u2, . . . , ul ∈ V (G) such that Dδ(ui) �= ∅, for all i. By the definition
of circulant graph, there are at most n− 2j − l = m× 2r − 2((4m− 7)2r−3+ 1)−
2r−1 = 5 × 2r−2 − 2 vertices which are not adjacent to the vertices u1, u2, . . . , ul

in G. Since |Dδ(f (ui))|+ |Dδ−1(f (ui))| = 5×2r−2 > 5×2r−2−2, by Lemma 2,
dil(G,H) ≥ 2r +m− 2.

Dilation Algorithm A

Input The circulant graph G(m× 2r; ±{1, 2, . . . , (4m− 7)2r−3 + 1}) and the m-
rooted complete binary tree T m

r , where m, r ≥ 3.

Algorithm Label the consecutive vertices of G(m × 2r; ±{1}) in
G(m×2r; ±{1, 2, . . . , (4m−7)2r−3+1}) as 0, 1, . . . ,m×2r −1 in the clockwise
sense. Label the m copies of T 1

r in T m
r as follows:

• Label the leaf vertices of the copy of T 1
r with root r1 as 0, 1, . . . , 2r−1 − 1.

• Label the leaf vertices of the copy of T 1
r with root rm as (4m − 3)2r−3 + 1,

(4m− 3)2r−3 + 2, . . . , (4m+ 1)2r−3.
• Label the remaining vertices in T m

r arbitrarily (see Fig. 3).

Let f (x) = x for all x ∈ V (G) and for (a, b) ∈ E(G); let Pf (a, b) be the shortest
path between f (a) and f (b) in T m

r .

Output An embedding f of G(m × 2r; ±{1, 2, . . . , (4m − 7)2r−3 + 1}) into T m
r

with dilation 2r +m− 2.
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Fig. 3 Labeling of T 3
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Theorem 2 Let G be the circulant graph G(m×2r ; ±{1, 2, . . . , (4m−7)2r−3+1})
and H be an m-rooted complete binary tree T m

r . Then dil(G,H) = 2r + m − 2,
where m, r ≥ 3.

Proof Label the vertices of G and H using dilation algorithm A. We assume that the
labels represent the vertices to which they are assigned. This labeling implies that
there is no edge e = (u, v) of G with f (u) mapped to a leaf node of T 1

r with root r1
and f (v) mapped to a leaf node of T 1

r with root rm. Thus dil(G,H) ≤ 2r +m− 2.
By Theorem 1, dil(G,H) ≥ 2r +m− 2. Thus dil(G,H) = 2r +m− 2.

Remark 2 If m = 1 and r ≥ 3, then the dilation of embedding circulant graph
G(2r; ±{1, 2, . . . , 3×2r−4+1}) into one-rooted complete binary tree T 1

r is 2r−3.

Remark 3 If m = 2 and r ≥ 3, then the dilation of embedding circulant graph
G(2r+1; ±{1, 2, . . . , 3 × 2r−3 + 1}) into two-rooted complete binary tree T 2

r is
2r − 4.

3.2 Circulant Networks into m-Rooted Sibling Trees

The one-rooted sibling tree ST 1
r is obtained from the one-rooted complete binary

tree T 1
r by adding edges (sibling edges) between left and right children of the same

parent node. The m-rooted sibling tree ST m
r is obtained by taking m vertex-disjoint

one-rooted sibling trees ST 1
r on 2r vertices with roots say r1, r2, . . . , rm and adding

the edges (ri, ri+1), 1 ≤ i ≤ m− 1 [15] (see Fig. 4).

Remark 4 The number of vertices and the edges of ST m
r is m×2r and 3m×2r−1−

m− 1, respectively.

Theorem 3 Let G be the circulant graph G(m×2r ; ±{1, 2, . . . , (4m−7)2r−3+1})
and H be an m-rooted sibling tree ST m

r . Then dil(G,H) ≥ 2r + m − 2, where
m, r ≥ 3.
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Fig. 4 m-rooted sibling tree ST m
r

Proof Let u1, u2, . . . , ul ∈ V (G) such that Dδ(ui) �= ∅, for all i. By the definition
of a circulant graph, there are at most n−2j − l = m×2r −2((4m−7)2r−3+1)−
2r−1 = 5 × 2r−2 − 2 vertices which are not adjacent to the vertices u1, u2, . . . , ul

in G. Since |Dδ(f (ui))|+ |Dδ−1(f (ui))| = 5×2r−2 > 5×2r−2−2, by Lemma 2,
dil(G,H) ≥ 2r +m− 2.

Dilation Algorithm B

Input The circulant graph G(m× 2r; ±{1, 2, . . . , (4m− 7)2r−3 + 1}) and the m-
rooted sibling tree ST m

r , where m, r ≥ 3.

Algorithm Label the consecutive vertices of G(m × 2r; ±{1}) in
G(m×2r; ±{1, 2, . . . , (4m−7)2r−3+1}) as 0, 1, . . . ,m×2r −1 in the clockwise
sense. Delete the sibling edges in ST m

r to obtain T m
r and label the vertices of T m

r

using Dilation Algorithm A. Let f (x) = x for all x ∈ V (G) and for (a, b) ∈ E(G),
let Pf (a, b) be a shortest path between f (a) and f (b) in ST m

r .

Output An embedding f of G(m× 2r; ±{1, 2, . . . , (4m− 7)2r−3+ 1}) into ST m
r

with dilation 2r +m− 2.
The following theorem can be proved in the same way as Theorem 2. So, we

omit its proof.

Theorem 4 Let G be the circulant graph G(m×2r ; ±{1, 2, . . . , (4m−7)2r−3+1})
and H be an m-rooted sibling tree ST m

r . Then dil(G,H) = 2r + m − 2, where
m, r ≥ 3.

Remark 5 If m = 1 and r ≥ 3, then the dilation of embedding circulant graph
G(2r; ±{1, 2, . . . , 3× 2r−4 + 1}) into 1-rooted sibling tree ST 1

r is 2r − 3.

Remark 6 If m = 2 and r ≥ 3, then the dilation of embedding circulant graph
G(2r+1; ±{1, 2, . . . , 3× 2r−3 + 1}) into 2-rooted sibling tree ST 2

r is 2r − 4.
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Fig. 5 (a) HT (4) with binary labels (b) HT (4) with decimal labels

3.3 Circulant Networks into Hypertrees

A hypertree is a hypergraph H if there is a tree T such that the hyperedges of
H induce subtrees in T [16]. In the literature, hypertree is also known as subtree
hypergraph or arboreal hypergraph [16].

The basic skeleton of a hypertree is a complete binary tree Tr . Here the nodes
of the tree are numbered as follows: The root node has label 1. The root is said
to be at level 1. Labels of left and right children are formed by appending a 0 and
1, respectively, to the label of the parent node (see Fig. 5a). The decimal labels of
the hypertree in Fig. 5a are depicted in Fig. 5b. Here the children of the node x are
labeled as 2x and 2x + 1. Additional links in a hypertree are horizontal and two
nodes in the same level i of the tree are joined if their label difference is 2i−2. We
denote an r level hypertree as HT (r). It has 2r − 1 vertices and 3 (2r−1 − 1) edges
[17].

Theorem 5 Let G be the circulant graph G(2r − 1; ±{1, 2, . . . , 2r−4}) and H be
the hypertree HT (r). Then dil(G,H) ≥ 2r − 4, r ≥ 5.

Proof Let u1, u2, . . . , ul ∈ V (G) such that Dδ(ui) �= ∅, for all i. By the definition
of circulant graph, there are at most n − 2j − l = 2r − 1 − 2r−3 − 2r−2 = 5 ×
2r−3 − 1 vertices which are not adjacent to the vertices u1, u2, . . . , ul in G. Since
|Dδ(f (ui))|+|Dδ−1(f (ui))| = 5×2r−3 > 5×2r−3−1, by Lemma 2, dil(G,H) ≥
2r − 4.

Dilation Algorithm C

Input The circulant graph G(2r − 1; ±{1, 2, . . . , 2r−4}) and the hypertree HT (r),
r ≥ 5.

Algorithm Label the consecutive vertices of G(2r − 1; ±{1}) in
G(2r − 1; ±{1, 2, . . . , 2r−4}) as 0, 1, . . . , 2r − 2 in the clockwise sense. Label
the vertices in the rth level of HT (r) from left to right as 0, 1, . . . , 2r−2 − 1, 5 ×
2r−4, 5×2r−4+1, . . . , 9×2r−4−1 and the remaining vertices in HT (r) arbitrarily
(see Fig. 6). Let f (x) = x for all x ∈ V (G) and for (a, b) ∈ E(G); let Pf (a, b) be
a shortest path between f (a) and f (b) in HT (r).



Improved Bound for Dilation of an Embedding onto Circulant Networks 631

0

18

1

26

2 3

19

30

4 5

20

27

6

21 25

16

29

15

24

9

1413

23

28

11

22

10 17

8

7 12

Fig. 6 Labeling of HT (5)

Output An embeddingf of G(2r−1; ±{1, 2, . . . , 2r−4}) into HT (r) with dilation
2r − 4.

Theorem 6 Let G be the circulant graph G(2r − 1; ±{1, 2, . . . , 2r−4}) and H be
the hypertree HT (r). Then dil(G,H) = 2r − 4, where r ≥ 5.

Proof Label the vertices of G and H using dilation algorithm C. We assume that the
labels represent the vertices to which they are assigned. This labeling implies that
there is no edge e = (u, v) of G such that f (u) and f (v) are mapped to the rth level
vertex of HT (r). Thus dil(G,H) ≤ 2r − 4. By Theorem 5, dil(G,H) ≥ 2r − 4.
Thus dil(G,H) = 2r − 4.

4 Concluding Remarks

In this paper, we have developed a method to improve the lower bound for dilation
of an embedding onto circulant networks, and hence it is proved that the improved
bound obtained for embedding circulant networks into certain architectures is sharp.
Using this technique, finding the dilation of embedding circulant networks into other
good candidates of architectures is under investigation.
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