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Preface

The Department of Mathematics, School of Advanced Sciences, Vellore Institute of
Technology (Deemed to be University), Vellore, Tamil Nadu, India, organized the
International Conference on Advances in Mathematical Sciences—2017 (ICAMS
2017) in association with the Society for Industrial and Applied Mathematics
VIT Chapter from December 1, 2017, to December 3, 2017. The major objective
of ICAMS 2017 was to promote scientific and educational activities toward the
advancement of common man’s life by improving the theory and practice of
various disciplines of Mathematics. This prestigious conference was partially
financially supported by the Council of Scientific and Industrial Research (CSIR),
India. The Department of Mathematics has 90 qualified faculty members and 30
research scholars, and all were delicately involved in organizing ICAMS 2017
grandly. In addition, 30 leading researchers from around the world served as an
advisory committee for this conference. Overall, more than 450 participants (pro-
fessors/scholars/students) enriched their knowledge in the wings of Mathematics.

There were 9 eminent speakers from overseas and 33 experts from various states
of India who delivered the keynote address and invited talks in this conference.
Many leading scientists and researchers worldwide submitted their quality research
articles to ICAMS. Moreover, 305 original research articles were shortlisted for
ICAMS 2017 oral presentations that were authored by dynamic researchers from
25 states in India and 20 countries around the world. We hope that ICAMS will
further stimulate research in Mathematics, share research interest and information,
and create a forum of collaboration and build a trust relationship. We feel honored
and privileged to serve the best of recent developments in the field of Mathematics
to the reader.

A basic premise of this book is that quality assurance is effectively achieved
through the selection of quality research articles by a scientific committee consisting
of more than 100 reviewers from all over the world. This book comprises the
contribution of several dynamic researchers in 62 chapters. Each chapter identifies
the existing challenges in the areas of Differential Equations, Fluid Dynamics, and
Graph Theory and emphasizes the importance of establishing new methods and
algorithms to address the challenges. Each chapter presents a research problem, the
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vi Preface

technique suitable for solving the problem with sufficient mathematical background,
and discussions on the obtained results with physical interruptions to understand
the domain of applicability. This book also provides a comprehensive literature
survey which reveals the challenges, outcomes, and developments of higher level
mathematics in this decade. The theoretical coverage of this book is relatively at a
higher level to meet the global orientation of mathematics and its applications in
science and engineering.

The target audience of this book is postgraduate students, researchers, and
industrialists. This book promotes a vision of pure and applied mathematics as
integral to modern science and engineering. Each chapter contains important
information emphasizing core Mathematics, intended for the professional who
already possesses a basic understanding. In this book, theoretically oriented readers
will find an overview of Mathematics and its applications. Industrialists will find a
variety of techniques with sufficient discussion in terms of physical point of view
to adapt for solving the particular application based on mathematical models. The
reader can make use of the literature survey of this book to identify the current
trends in Mathematics. It is our hope and expectation that this book will provide an
effective learning experience and referenced resource for all young mathematicians.

As Editors, we would like to express our sincere thanks to all the administrative
authorities of Vellore Institute of Technology, Vellore, for their motivation and
support. We also extend our profound thanks to all faculty members and research
scholars of the Department of Mathematics and all staff members of our institute.
We especially thank all the members of the organizing committee of ICAMS 2017
who worked as a team by investing their time to make the conference a great
success. We thank the national funding agency, Council of Scientific and Industrial
Research (CSIR), Government of India, for the financial support they contributed
toward the successful completion of this international conference. We express our
sincere gratitude to all the referees for spending their valuable time to review the
manuscripts, which led to substantial improvements and selection of the research
papers for publication. The organizing committee is grateful to Mr. Christopher
Tominich, Editor at Birkhduser/Springer, for his continuous encouragement and
support toward the publication of this book.

Vellore, India B. Rushi Kumar
Vellore, India R. Sivaraj
Vellore, India B. S. R. V. Prasad
Vellore, India M. Nalliah

Vellore, India A. Subramanyam Reddy
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Numerical Solution to Singularly )
Perturbed Differential Equation of St
Reaction-Diffusion Type in MAGDM

Problems

P. John Robinson, M. Indhumathi, and M. Manjumari

Abstract In multiple attribute group decision-making (MAGDM) problems,
weights of decision-makers play a vital role. In this paper, we present a new
approach for finding the weights for decision-making process based on singular
perturbation problem in which decision-makers’ weights are completely unknown.
The attribute weights are derived using the exact and numerical solution for
reaction-diffusion type problem. For the decision-making process, we utilize a class
of ordered weighted averaging (OWA) operator, and the newly calculated decision-
maker weights are used in the computations of identifying the best alternative
from the available alternatives. The feasibility of the proposed method is displayed
through a numerical illustration, and comparison is made with existing ranking
methods.

Keywords MAGDM - Intuitionistic fuzzy sets - Singular perturbation problem -
Numerical methods - Ordered weighted averaging (OWA) operator

1 Introduction

MAGDM problems play an important role in our day-to-day life. To handle the
vagueness and uncertainty in real-life problems, Zadeh [27] proposed the idea of
fuzzy set, which handles imprecision through the concept of membership function.
Using the concept of membership function, Atanassov [1, 2] developed the idea of
intuitionistic fuzzy set (IFS). This IFS contains both a membership function and
a non-membership function and also the hesitancy degree. Yager and Filev [23]
introduced the induced OWA (IOWA) operator which is nothing but an extension of
OWA operator. Using OWA operator, one can order the weight either in ascending
or in descending order depending upon the data values, but for IOWA one can
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use the same technique of OWA where the only difference is that the weight can
be ordered through the order-inducing variables. Li and Ye [8], Liu and Li [10],
Yu and Li [25], Li and Wan [9] and Yu et al. [26] proposed novel methods for
solving various decision problems. Robinson and Amirtharaj [19] and Robinson and
Jeeva [20, 21] proposed methods for intuitionistic fuzzy decision problems based
on correlation coefficients and utilized them in MAGDM problems for ranking the
alternatives. Numerical methods are used to solve various differential equations
arising in many real-life problems. Ross et al. [22] proposed a better method for
analysing the singular perturbation problems using numerical methods. Miller et
al. [15] have devoted their work on singular perturbation problems (SPPs) in two
dimensions. Matthews et al. [14] examined a system of two coupled singularly
perturbed ordinary differential equation of reaction-diffusion type problems using
the Dirichlet boundary conditions. Malley [13] and Nayfeh [17] gave general
introduction to SPPs. Paramasivam et al. [18] presented a linear second-order SPP
with piecewise-uniform Shishkin mesh which is used to construct the numerical
methods for the same. The idea of score function which can be used to measure
the similarity degree between vague sets was proposed by Chen [3]. For vague
sets/IFSs, Li et al. [12], Li and Xu [11] and Hung and Yang [6] proposed a degree
of similarity measures and their applications. The cosine similarity measure for
IFS was proposed by Ye [24]. For behaviour analysis problem, Hong and Kim
[5] proposed a measure of similarity between the elements of vague sets. Using
the concept of medians of intervals, Li and Chuntian [7] presented a degree of
similarity measure between IFSs. Mitchell [16] proposed a modification method
of Li and Chuntian [7] method. A novel degree of similarity measure under
intuitionistic fuzzy sets was presented by Chen and Randyanto [4]. In this paper, the
decision-maker weights are derived from boundary value problems through singular
perturbation problems, where the weights are determined, normalized and utilized
in decision-making problems. In the MAGDM problem proposed in this paper, the
operators I-IFOWA and IFWA are used for aggregating the IFS information. The
feasibility of the proposed method is displayed through a numerical illustration, and
comparison is made with different ranking methods found in the literature.

2 Preliminaries

As an introduction, some basic definitions and averaging aggregation operators of
IFS are discussed.

Qeﬁnition 1 (Intuitionistic Fuzzy Set [1,2]) Let X be a set which is fixed. An IFS
A in X is an object having the form

A={(x,pz(x),, yi(x)), x € X}
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where iy * X —> [0,1] and Yim) - X — [0, 1] define the degree of
membership and degree of non-membership, respectively, of the element x € X to
the set A, which is a subset of X, for every elementx € X,0 < mix)+y;x) < 1.

2.1 Different Classes of Aggregation Operators

Definition 2 Let Ek = (Ui, ¥k), 1 < k < n be a compilation of IFS values. The
intuitionistic fuzzy weighted averaging (IFWA) operator, [ FWA : 2" — £2,is
defined as

IFWAB, Ba, .., Bu) = ) Brow = (1 — [T =m0, H(ym'f),
k=1 k=1 k=1

where w = (w1, w3, ..., a)n)T is the weight vector of ﬁk forall 1 < k < n, such

n
that w; > O&Zwk =1.
k=1

Definition 3 Let Ek = (uk, k), 1 < k < n be a compilation of IFS values.
The intuitionistic fuzzy ordered weighted averaging IFOWA) operator, [ FOW A :
2" — 2, 1is defined as

IFOWAB, Ba, ..., Bo) = ) Brwx = (1 — [T =™, H(yﬁk)wk),
k=1 k=1 k=1

where o (1), 0(2),...,0(n) is a permutation of (1,2, ..., n) such that Ba(k—l) >
Bg(k) foralll <k <n.w= (wy,w,...,w," bethe weight vector of ,3~j for all
n
wr>0& Z wg = 1.
k=1

Definition 4 Let ,3~k = (Wk, k), 1 < k < n be a compilation of IFS values. An
induced intuitionistic fuzzy ordered weighted averaging (I-IFOWA) operator, I —
IFOWA : 2" — £2, is defined as

I _IFOWAw ((vlv Bl)s (U21 32)7 ) (vl’ls BH)) = ngwk
k=1

= (1 -[Ta—-amo™ 1 mwk) :
k=1 k=1
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where w = (wy, w2, ...., w,)! is the associated weighting vector such that w; €

n
[0, 11, Zwk =1,1<k <n, g = (uk y) is the B value of the I-IFOWA pair
k=1
(vi, ﬁi) having the k'h largest v;, v; € [OL 1],~1 <i <nandv;in (v;, ﬁi) is referred
to as an the order-inducing variable and 8;, 8; = (u;, y;) are the intuitionistic fuzzy
values.

Properties of I-IFOWA Operator

1. Commutativity. I — IFOWA, [(vl, B1), (2, B2, - - -, (vn, ,gn):l = I -
TFOW Ay (o1, B, 2. B9, ... (. By
where [(vl, Bi), 2, B, ..., (g, ,3,’,)] is any permutation of [(vl, B1). (v2, B2),

(Un,,gn)].

2. Idempotency. If ﬁk = B, where ﬁk = (uk, yx) and B = (u, y) for every k,
1= IFOW Ay [, B0, (2, B, - (o i) |

3. Monotonicity. If g < B, for every k,
1= TFOW Ay [, B0, 2, B, s (o B | < 1= TFOW AL [ (01, B,

(V2 By, (0, B

3 Singular Perturbation Problem

Singular perturbation problem plays a prominent role in the field of differential
equations and in the real-life application. The applications of singular perturbation
problem in various applied areas are as follows: fluid dynamics, plasma dynamics,
aerodynamics, oceanography, diffraction theory and reaction-diffusion process. A
differential equation in which the highest-order derivative and/or the lowest-order
derivatives is multiplied by a small positive parameter ¢ is known as a singular
perturbation problem. If the order of the differential equation when the perturbation
parameter ¢ = 0 is reduced by two, then the system is called as reaction-diffusion
type problems. For instance, in the following equation —su” (x) +a(x)u(x) = g(x)
with u:(0) = uo; us(1) = u1;0 <x < 1, where 0 < ¢ < 1, a(x) and g(x) are
smooth functions and continuous on [0, 1], the solution behaviour for this equation
depends upon the behaviour of the a(x) and g(x).
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3.1 Numerical Methods

For the above boundary value problem, the classical finite difference operator
is constructed with a suitable piecewise-uniform mesh which is also useful in
discretizing the problem. The details are given below:

—882U(xj) +a(xj))U(xj) =g ) forallx;, j=1,...,N

where
20 = P TPy, =Mt
. L ‘ 5
DiU(xj) = Ve = U(xj); D_U(xj) = Ulxj) = Ulxj-1)

hj+1 hj

4 Weight Determination for MAGDM Using Singular
Perturbation Problem

Problem Proposed by the Decision-Maker

The decision-maker represents weighting vector in the form of the following
singularly perturbed differential equation, —eu” (x) + 4u(x) = 0 with u(0) = 0,
u(l)y=1;0<x < 1.

-2 -4
2x
The exact solution of the above problem is u(x) = (‘”/8 73/ ’ ) eve +
1—eve
-2
—2x
(1—6 fi ) e Je .
1—eve
And the numerical solution is calculated by using the above finite difference
scheme by fixing ¢ = 0.001.

By normalizing the exact and numerical solution the weight vectors can be
obtained and the results are given in Tables 1 and 2.

Table 1 Exact solution for —eu” (x) + 4u(x) =0

N Average of exact solution Normalization of exact solution
64 0.07155 0.41274
128 0.05547 0.31997

256 0.04634 0.26731
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Exact and Numerical Solution of —eu” (x)+4u(x) = 0 are displayed in Figs. 1 and 2

Table 2 Numerical solution for —eu” (x) + 4u(x) =0

N
64
128
256
512

Fig. 1 Exact solution for —eu” (x) + 4u(x) =0
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Average of numerical solution

0.07211
0.05565
0.04639
0.04046

Normalization of numerical solution
0.32953
0.25430
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Fig. 2 Numerical solution for —eu” (x) + 4u(x) =0
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5 Algorithm for MAGDM Problem Using I-IFOWA
Operator and Similarity Measures of IFSs

The algorithm for MAGDM problem using I-IFOWA and IFWA operator is given
below:

Step: 1 Use the I-IFOWA operator for the decision matrices R, to reduce k
matrices into a single matrix:

5 = 1= 1FOWA @15, 02,50 s, 550 5] 1= <
m,1 <j<n.

Step: 2 Use the IFWA operator, to find the aggregated IFS values of the alternatives

i-

fi= Gy = TFWA (50.50.59,50) 1 =i < m.

Step: 3 Use similarity measures to calculate the overall values §; and the positive
ideal value §*, where 57 = (1, 0).

Step: 4 Finally rank the alternatives and find the most desirable one.

6 Numerical Illustration

A company is interested to invest money in the best option to purchase laptops. The
five possible types of laptops available in the market are named as A, Ay, A3, A4
and As. The following four attributes are p1, the price of the laptop; p», portability
of the laptop; p3, battery life of laptop; and p4, graphics quality of the laptop. The
five possible alternatives A; are to be evaluated using intuitionistic fuzzy numbers
by the decision-makers whose weighting vector is obtained by normalizing the
solution of singular perturbation problem given by decision-makers which is @ =
(0.41274,0.31997,0.26731)7 and w = (0.32953, 0.25430, 0.21200, 0.18492)7.
The following decision matrices Ry are listed below:

(0.3,0.4) (0.2,0.5) (0.5,0.2) (0.6,0.1)
(0.2,0.6) (0.1, 0.6) (0.1, 0.6) (0.4,0.3)
Ri = | (0.3,0.5) (0.3,0.4) (0.2,0.4) (0.2, 0.5)
(0.1,0.7) (0.2,0.5) (0.3,0.2) (0.5,0.1)
(0.1,0.5) (0.2,0.3) (0.2,0.6) (0.2, 0.4)

(0.4,0.5) (0.2,0.3) (0.6,0.3) (0.7,0.2)
(0.3,0.7) (0.2,0.7) (0.2,0.7) (0.5, 0.4)
R> = | (0.4,0.4) (0.4,0.5) (0.3,0.5) (0.3,0.6)
(0.1,0.8) (0.3,0.6) (0.4,0.3) (0.2,0.6)
(0.2,0.6) (0.3,0.4) (0.1,0.7) (0.3,0.5)




10

Table 3 Comparison of ranking methods in the literature

Similarty measure

Chen’s method

Hong and Kim’s method
Li and Xu’s method

Li et.al.’s method

Li and Chuntian’s method
Mitchell’s method

Hung and Yang’s (SHY;) method

(SHY;) method
(SHY3) method
Ye’s method

Chen and Randyanto’s method

Ranking the alternatives

Al > A3 > Ay > As > Ay
Al > A3 > Ay > As > Ay
Al > A3 > Ay > As > Ay
Al > A3 > Ay > As > Ay
Al > A3 > Ay > As > Ay
Al > A3 > Ay > As > Ay
Al > A3 > Ay > As > Ay
Al > A3 > Ay > As > Ay
Al > A3 > Ay > As > Ay
Al > A3 > Ay > As > Ay
Al > A3 > Ay > As > Ay

(0.5,0.4) (0.4,0.5) (0.7,0.2) (0.8,0.1)
(0.4,0.6) (0.3,0.6) (0.3,0.6) (0.6,0.3)
Rs = | (0.5,0.6) (0.5,0.4) (0.7,0.1) (0.4, 0.5)
(0.2,0.7) (0.4,0.5) (0.5,0.2) (0.7,0.1)
(0.3,0.5) (0.4, 0.3) (0.2, 0.6) (0.6,0.1)

By using step 1 and step 2, we get the overall values as follows:

s1 = (0.47773, 0.30376),
52 = (0.29737, 0.56485),
s3 = (0.37061, 0.42709),
s4 = (0.30405, 0.407773),
55 = (0.24299, 0.44390).

P. J. Robinson et al.

Using step 3 we obtain the different similarity measures, and finally we get the best

alternatives (Table 3).

Hence, from the above table, it can be clearly seen that the most desirable

alternative is Aj.

7 Conclusion

In this work, we have given a new method for finding the weights for group decision-
making process based on singular perturbation problem. The attribute weights for
MAGDM are derived by using the solutions of singular perturbation problem under
intuitionistic fuzzy set. In the process of determining weights, multi-criteria are
explicitly considered. It can be seen from the comparison table that the choice of
the best alternative made from different similarity measures is consistent.
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Application of Integrodifferential )
Equations Using Sumudu Transform e
in Intuitionistic Trapezoidal Fuzzy

MAGDM Problems

P. John Robinson and S. Jeeva

Abstract Decision-making is a most powerful, well-organized, civic, and pecu-
niary effect. Power to produce logical and correct choices is the burden of any
decision process imbued with uncertainty. In offices where the information or the
data is of the form of intuitionistic trapezoidal fuzzy numbers, to construct the
MAGDM problem, intuitionistic trapezoidal fuzzy weighted geometric ITFWG)
and intuitionistic trapezoidal fuzzy hybrid geometric ITFHG) operators are applied.
In this paper, a novel method of deriving the unknown decision-maker weights using
Sumudu transform combined with integrodifferential equation is proposed, and the
derived weights are used in computations for identifying the best alternative. A
goodness of fit for this method is provided to show the effectiveness of the proposed
approach.

1 Introduction

Multiple attribute group decision-making (MAGDM) is a method where decision-
makers who act together penetrate through problems and select different types
of actions and again select the solutions from it. Collective decisions are more
effective than an individual decision since it requires lots of discussion, queries, and
ideas. The major challenge is to give up the inaccuracy and to make it accurate.
To deal with accuracy in qualitative, imprecise, and incomplete information in
decision problems, Zadeh [37] proposed the fuzzy set theory. Intuitionistic fuzzy
sets (IFSs) proposed by Attanassov [1] are a generalization of the concept of fuzzy
sets. Attanassov and Gargov [2] expanded the IFSs by using interval value to express
membership and nonmembership function of IFSs. Szmidt and Kacprzyk [25, 26]
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computed several distance functions and similarity measures for IFSs which were
applied in various decision problems. Li [9] and Wei [28, 29] contributed novel
approaches to the study of fuzzy decision-making. Gerstenkorn and Manko [5] and
Zeng and Li [33] investigated the correlation coefficient of IFS. Yu et al. [36],
Li and Wan [11], Yu and Li [35], Liu and Li [12], and Li and Ye [10] proposed
several methods in decision-making problem under different types of intuitionistic
fuzzy sets. Robinson and Amirtharaj [13-22] defined correlation coefficient for
different higher-order intuitionistic fuzzy sets and utilized in MAGDM problems.
Robinson and Jeeva [23, 24] investigated and discussed the various decision-making
algorithms under intuitionistic fuzzy environment using correlation coefficient as
the ranking tool. Jeeva and Robinson [6] discussed the application of Sumudu
transform method in intuitionistic fuzzy environment. Wu and Cao [30] developed
the geometric aggregation operators in intuitionistic trapezoidal fuzzy numbers.
Wang and Zhang [27], Yager [34], Xu and Yager [33], Xu and Chen [32], and Xu
[31] discussed several aggregation operators like arithmetic and geometric operators
with intuitionistic fuzzy uncertainty. In this work Sumudu transform combined
with integrodifferential equations will be proposed for determining weights of
decision-makers and used for decision-making problems. Hukuhara [7], Eltayeb
and Kilicman [4], Khan and Razzaq [8], and Bulut et al. [3] discussed on solving
fuzzy differential equations by fuzzy Sumudu transform. In this paper, Sumudu
transform is used to obtain the result of the integrodifferential equation, and it is
used to derive the decision-maker weights in MAGDM problems under intuitionistic
trapezoidal fuzzy sets. A goodness for fit for this method is illustrated using
numerical examples.

2 Preliminaries

Some basic concepts of fuzzy sets and arithmetic aggregation operators of intuition-
istic trapezoidal fuzzy sets (ITFSs) are discussed in the following:

Definition 1 ([1] Intuitionistic Fuzzy Set) Let a set X be fixed. An IFS Ain X is
an object having the form

A={(x,pz(x),, yi(x)), x € X}

where iy * X —> [0,1] and Yiw) - X — [0, 1] define the degree of
membership and degree of nonmembership, respectively, of the element x € X to
the set A, which is a subset of X, for every elementx € X,0 < nix)+y;x) < 1.

Definition 2 ([30] Intuitionistic Trapezoidal Fuzzy Number) Let a be an intu-
itionistic trapezoidal fuzzy number. Then its membership function and its nonmem-
bership function are given as follows:
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hgMa a<x<b

i) = Has b<x<c
(i(x) - d—c ’
e c<x=d
0, others.

where 0 < uz <1; 0<y; <1; a,b,c,d € R.

Definition 3 ([30]) Letd; = ([a1, b1, 1, d1]; gy vay) and da = ([az, ba, ¢2, dal;
Ko » ydz) be two intuitionistic trapezoidal fuzzy numbers, and A > 0. Then the
normalized Hamming distance between a; and a5 is defined as follows:

d(d). dy) = (I(1 + papar — (L + pg)az| + (L + pg)ar — (1 + Ma‘l)az|+>
’ [(1+ pag)ar — (1 + pug)az| + (1 + pgdar — (1 + pg)azl

Definition 4 ([30]) Let g; = ([ai, bi,ci,dil; ng, ya~,.) be an intuitionistic trape-
zoidal fuzzy number and a* = ([a*,b", ¢t dT ] u™, yT) = ((1,1,1,1];1,0)
be the intuitionistic trapezoidal fuzzy-positive ideal solution. Then the distance
between d; and at is denoted as d(d;, a™). If d(a>, at) < d(dy,a™’), thend; > d.

3 Aggregation Operators for Decision-Making

Definition 5 ([30]) Let ax = ([ak, bk, ck, di]; 1k, yx), forall 1 < k < nbea
compilation of ITFS values. An intuitionistic trapezoidal fuzzy weighted geometric
(ITFWG) operator, ITFWG : Q" — Q, is defined as follows:

n
ITFWG(ay, . ....dn) = | [ axex
k=1

— <[]‘[Z:1(ak)‘”k, [Tt G, TTi=y ()™, Tz (di) ™ ] ;>
[Tizi (o™, 1= ([Ti=y (4 = v ™) ,

where v = (w1, wy, ...,a)n)T is the weight vector of @, 1 < k < n with w; €
[0, 17and >} wx = 1.

Definition 6 ([30]) Let ax = ([ak, bk, ¢k, di]; 1k, yx), forall 1 < k < n be a
compilation of ITFS values. The intuitionistic trapezoidal fuzzy ordered weighted
geometric ITFOWG) operator, ITFOWG : Q" — (Q, is defined as follows:

n
ITFOWG(ay, ay, ..., a,) = H&g(k)wk
k=1

- <([l'[’;1:1(aa<k>)‘°k, Hizl(bk)‘”k, Hﬁzl(cuk))‘“’% H’;Zzl(dmk))‘”k] §>
[Tzt o)™, 1= (TTi=1 (1 = Yow)™) ’
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where w = (w1, w3, ...,a)n)T is the weight vector of aj for all 1 < k < n, such

n
that wy, € [0, 1] and Zwk =1.

k=1
where o(1),0(2),...,0(n), is a permutation of (1,2,...,n) such that
Elo‘(k_l) > Elo‘(k) forall1 <k <n.

Definition 7 ([30]) Let ar = ([ak, bk, ¢k, dil; 1k, yx), forall 1 < k < n be a
compilation of ITFS values. The Intuitionistic trapezoidal fuzzy hybrid geometric
(ITFHG) operator, ITFHG : Q" — Q, is defined as follows:

n
ITFHG 1. d. ..., an) = | [ dotwe
k=1

- <[1_[Z=1(5la(k))“’ka [Ti=i G0, TRt Co )™ s TTiz (o )™ ] ;) ,
[Tici Bow)®. 1= ([Tizr (1 = You)™)

where dq (1) is the kth largest of weighted intuitionistic trapezoidal fuzzy number d,
o = (w1, w, ..., ;)T be the weight vector of di, | < k < n with wy € [0, 1] and

Xn:a)k =1.
k=1

4 Determining Expert Weights for MAGDM by Sumudu
Transform

Definition 8 ([7])  Let A be the set of functions defined as follows:
A={f@))3M, iand Jor ©» > 0, | f(x)| < Me¥/7i [if x € (=1)7 x [0, 00)},

where constant M must be finite, while 77 and 1> each may be finite and do not
need to exist simultaneously. Using u to factor the variable ¢ in the argument of the
function f, Sumudu transform is defined as follows:

Jo fune™'dt 0 <u <1
IS fune™'dt —1 <u < 1.

Gu) =S[f(x)]= !
Here M is taken equal to 1, 13 is finite, and 77 is simply not needed. Both parts define
the domain of f, and sign of variable # will remain unchanged.

Problem Proposed by Decision-Maker 1 The first decision-maker represents the
weighting vector in the form of first-order integrodifferential equation v’ + 2u(x) +
5 f(f u(t)dt = 1, with u(0) = 0. By using fuzzy Sumudu transform, we have Gl _

u

”(uo) +2G(u) + 5uG(u) = 1. Then we get the following results given in Table 1.
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Table 1 Exact solution of ¢
u' +2u(x)+5 jox u(r)dt =1
0.2

0.4
0.6
0.8

Table 2 Exact solution of ¢
w = fyu@dt =1
0.1

0.2
0.3
0.4
0.5
0.6

u(t) = ;e"sinZz‘

0.318828772660741
0.480858167875714
0.511513895673254
0.449137371613558

u(t) = sint

0.099833416646828
0.198669330795061
0.295520206661340
0.389418342308651
0.479425538604203
0.564642473395035

17

C o ui®)
Wi = suio

0.181117907481532
0.273162376263091
0.290577056954165
0.255142659301212

L ui(t)
W= w0

0.114124136689059
0.172346781593672
0.337822640876924
0.337822640876924
0.548053222434016
0.489830577529404

Problem Proposed by Decision-Maker 2 The second decision-maker represents
the weighting vector in the form of first-order integrodifferential equation u’ —

f(;c u(t)dt = 1, with u(0) = 0. By using Fuzzy Sumudu transform, we have
Gu) _ u(0)
u u

=1 —uG(u). Then we get the following results given in Table 2.

5 Algorithm for MAGDM with Intuitionistic Trapezoidal
Fuzzy Data

Step 1. Use the ITFWG operator for the decision matrix R, to derive the
individual overall preference ITFS values,
A =1mEwe (7000 AP i si=m sk =t

Step 2. Use the ITFHG operator to derive the collective overall preference ITFS
values of the alternatives X;.

Fi= (i) = ITFHG (71U, 72 70, F0) 1 <i < m.

Step 3. Calculate the distance between collective overall values r; = (u;, y;) and
intuitionistic trapezoidal fuzzy positive ideal solution using the distance formula
given in Definition 3.

Step 4. Rank all the alternatives X;, 1 < i < m and select in accordance with
d(¢;, ¢T). The smaller d(¢;, ¢ 1), the better alternatives X;.

6 Numerical Illustration

A car company is prudent to pick the most suitable green supplier for one of the
key components in its manufacturing process. Later pre-evaluation, five suppliers
have remained as options for further evaluation. Four measures are seen as ul,
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product of quality; u2, capability of technology; u3, control of pollution; and u4,
managing the environment. This fellowship owns a group of decision-makers from
five consultancy sectors: d1 is from the production sector; d2 is from the purchasing
sector; d3 is from the quality inspection sector; d4 is from financial sector; and d5
is from the technology section. The five possible alternatives X; are to be assessed
using intuitionistic trapezoidal fuzzy numbers by the two decision-makers whose
weighting vector is obtained by normalizing the solution of integrodifferential
equations. The weight vector proposed by the first decision-maker is given by:

w=(0.181117907481532, 0.273162376263091, 0.290577056954165,
0.255142659301212)7. The weights proposed by the second decision-maker
are given by:

¥ = (0.114124136689059, 0.337822640876924, 0.548053222434016)7, and w =
(0.172346781593672, 0.337822640876924, 0.489830577529404)". The deci-
sion matrices are listed in the following as:

([0.5,0.6,0.7,0.8]: 0.5,0.4) ([0.1,0.2,0.3,0.4]; 0.6, 0.3) ([0.5,0.6,0.8,0.9]: 0.3,0.6) ([0.4,0.5,0.6,0.7];:0.2,0.7)
([0.6,0.7,0.8,0.9];: 0.7, 0.3) ([0.5,0.6,0.7,0.8]; 0.7,0.2) ([0.4,0.5,0.7,0.8]; 0.7,0.2) ([0.5,0.6,0.7,0.9]0.4,0.5)
Ry =1([0.1,0.2,0.4,0.5];0.6,0.4) ([0.2,0.3,0.5,0.6]; 0.5,0.4) ([0.5,0.6,0.7,0.8]; 0.5,0.3) ([0.3,0.5,0.7,0.9];0.2,0.3)
([0.3,0.4,0.5,0.6]; 0.8,0.1) ([0.1,0.3,0.4,0.5];0.6,0.3) ([0.1,0.3,0.5,0.7]; 0.3,0.4) ([0.6,0.7,0.8,0.9]; 0.2, 0.6)
([0.2,0.3,0.4,0.5]; 0.6, 0.2) ([0.3,0.4,0.5,0.6]; 0.4,0.3) ([0.2,0.3,0.4,0.5]; 0.7,0.1) ([0.5,0.6,0.7,0.8]; 0.1, 0.3)
([0.4,0.5,0.6,0.7]: 0.4,0.3) ([0.1,0.2,0.3,0.4];0.5,0.2) ([0.4,0.5,0.7,0.8]; 0.2,0.5) ([0.3,0.4,0.5,0.6]; 0.1, 0.6)
([0.5,0.6,0.7,0.8]; 0.6,0.3) ([0.4,0.5,0.6,0.7]; 0.6, 0.1) ([0.3,0.4,0.6,0.7]; 0.6,0.1) ([0.4,0.5,0.6,0.8];0.3,0.4)
Ry =1([0.1,0.2,0.3,0.4]; 0.5,0.3) ([0.1,0.2,0.4,0.5]; 0.4,0.3) ([0.4,0.5,0.6,0.7]; 0.4,0.2) ([0.2,0.4,0.6,0.8];0.5,0.2)
([0.2,0.3,0.4,0.5]: 0.7,0.1) ([01,0.2,0.3,0.5]; 0.5,0.2) ([0.1,0.2,0.4,0.6];0.2,0.3) ([0.5,0.6,0.7,0.8]; 0.1, 0.5)
([0.1,0.2,0.3,0.4]; 0.5,0.1) ([0.2,0.3,0.4,0.5]; 0.3,0.2) ([0.1,0.2,0.3,0.4]; 0.6,0.2) ([0.4,0.5,0.6,0.7]; 0.4,0.2)
([0.6,0.7,0.8,0.9]: 0.4,0.5) ([0.2,0.3,0.4,0.5];0.5,0.4) ([0.6,0.7,0.9, 1.0]; 0.2,0.7) ([0.5,0.6,0.7,0.8]; 0.1, 0.8)
([0.7,0.8,0.9, 1.0]; 0.6, 0.4) ([0.6,0.7,0.8,0.9]; 0.6,0.3) ([0.5,0.6,0.8,0.9]; 0.6,0.3) ([0.6,0.7,0.8, 1.0]; 0.3, 0.6)
R3 =1([0.2,0.3,0.5,0.6]; 0.5,0.5) ([0.3,0.4,0.6,0.7]; 0.4, 0.5) ([0.6,0.7,0.8,0.9]; 0.4,0.4) ([0.4,0.6,0.8,1.0];0.5,0.4)
([0.4,0.5,0.6,0.7]:0.7,0.2) ([0.2,0.4,0.5,0.6]; 0.5,0.4) ([0.2,0.4,0.6,0.8]; 0.2,0.5) ([0.7,0.8,0.9, 1.0]; 0.1, 0.7)
([0.3,0.4,0.5,0.6]; 0.5,0.3) ([0.4,0.5,0.6,0.7]; 0.3,0.4) ([0.3,0.4,0.5,0.6]; 0.6,0.2) ([0.6,0.7,0.8,0.9]; 0.4, 0.4)

Using the above decision-making algorithm, we get

d(é1, ct) = 0.846730050473296; d (¢, c*) = 0.649502411930568; d(&3, c+) =
0.821819637954159;
d(¢y, ct) = 0.845319573215105; d(és, c*) = 0.785377576460831.

Rank all the alternatives X;, (i =1, 2, 3,4, 5).
Xy < X5 < X3 < X4 < X.

Since the distance function is used to rank the alternative based on positive
ideal solution, the minimum the distance, the better the rank. Hence, X is the best
alternative.

7 Conclusion

Intuitionistic trapezoidal fuzzy set has been an effective and feasible tool for
addressing those uncertain MAGDM problems with the information of all the
alternatives on attributes expressed with intuitionistic trapezoidal fuzzy numbers.
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The attribute weight determining and normalizing methods for integrodifferential
equations using Sumudu transform is introduced and analyzed. Hamming distance
measure is applied to find the lengths of each alternative from positive ideal solution
for the relative similarity of each option. It is clear that the rank of alternatives
obtained by applying weights to MAGDM problem is consistent.
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Existence of Meromorphic Solution m)
of Riccati-Abel Differential Equation ik

P. G. Siddheshwar and A. Tanuja

Abstract We present meromorphic solution of the Riccati-Abel differential equa-
tion by considering the corresponding complex differential equation. Riccati-Abel
differential equation is one of the most widely used equations of mathematical
physics. A result from Nevanlinna theory that helps us in obtaining such a solution
concerns sharing one value of meromorphic function and its first derivative.

1 Introduction

In this article, we use some basic results and symbols of Nevanlinna theory
like characteristic function 7 (r, F'), proximity function m(r, F'), counting function
N(r, F), reduced counting function N (r, F), and the first and second main theorems
(see [1-3]). It is difficult to prove that there is no meromorphic solution or to
find all meromorphic solutions of a nonlinear complex differential equation if such
solution exists. Thus, Nevanlinna theory plays a prominent role in obtaining entire
or meromorphic solutions of complex differential equations.

We obtain meromorphic solution of Riccati-Abel differential equation which is
defined as an equation between the first-order derivative and the cubic polynomial.
The Riccati-Abel differential equation which arises in the modeling of real-
world problems such as oceanic circulation, cosmology, cancer therapy, and fluid
mechanics has the form

dF

dZ :ao—|—a1F~|—a2F2+a3F3, (1)

where ag, aj, az and a3 denote small functions of F that are non-zero.
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2 Useful Results

dF

dz 1S not a constant.

Result 1 Suppose F is a meromorphic function, then
Therefore,

1 1 1
T, F)SN<T, F—1>+N<r’ illF _1>+N(”, F)—No |, L2F + 8@, F),
z dz?

. . 2
, d21 - ) represents counting function of the zeros of ‘25 that are not

d22
zeros of ‘2‘; and these zeros are counted according to their multiplicity. This result
is a consequence of one of the results in [5].

where Ny (r

dF
dz

d2F\° dF 4
(1) a2

for some nonconstant c1 or

Result 2 Suppose F is a meromorphic function, then is not constant. Now we

have either

1 1
Noy(r, F) < N3(r, F) + Ny (r, dF_M)+N r, + 8@, F), 3

d’F
dz dZZ
where p is a constant.
Proof Let
d3F d’F
_ dz3 dZZ
w_Zsz—f)dF . “)
dZZ dz K

Let us take zo to be a pole of F of order 2. We can then arrive at the following
expression:

Y(2) = 0((z — 7200)%),

which implies zo, is a zero of ¥ of multiplicity 3. Thus, if Eq. (2) is not true, i.e.,
Y #£ 0, then

Noy(r, F) < N(r, ;) =T y)+ 0. &)
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2 .
Note that ¢ can have poles of order 2 at zeros of ‘25 or ‘éf — w or multiple poles

of F. Therefore, from Eq. (4) we get the following equation:

1 1
N(r,¥) < Nia(r, F) + Ny (r, JF )—i—N e |- (6)
-
dz dZZ
Again from Equ. (4), we can easily get
m(r,y¥) =S, F).
From Egs. (5) and (6), and above Equation we obtain
1
Noy(r, F) = Na(r, F) + Ny | 1. 4 TN |7 | HSEE).
dz — M dz?

Result 3 Suppose F is a nonconstant meromorphic function. Now either Eq. (3)
holds or

27

F& = e+ 34,2

+ puz + Aa, )

where ¢ # 0, A1, A, 4 are constants.

Proof Let F’ be a constant so that F denotes a polynomial of degree at most 1. Now
we have Nyy(r, F) = S(r, F) such that Eq. (3) is true. Let us further assume F’ is
not a constant. In Result 2, we have Eq. (3), and if it does not hold, then we have
Eq. (2) which can now be written as

2 3
g ) (dF u) ©
= C] — .
‘21; — U dz
On differentiating Eq. (8), we get
a2r \* [/ ar \’
3 de de = d2F (9)
dF dF 2"
dz — M dz — MK dz
From Egs. (8) and (9), we get
@2F \ 2 &2F 0\’ |
dz? dz? _
i 45 =5 (10)

dz M dz K



24 P. G. Siddheshwar and A. Tanuja

On integrating Eq. (10) once and combining the result with Eq. (8), we obtain

dF =27

— = . 11
dz " c1(z +34)3 (b

Now integrating Eq. (11) we can obtain Eq. (7).

We now proceed to obtain the meromorphic solution of the Riccati-Abel differential
equation.

Theorem 1 Suppose F is a nonconstant meromorphic function satisfying the
Riccati-Abel differential equation of the form ‘25 =ay+ alF +aF?+ a3F3,
where the non-zero a;’s (i=0,1,2,3) represents small functions of F. Let ”flf —land

g,lzf — F share the value 0 CM, and then we have F and 111; share the value 1 CM,

and F satisfies the equation

7+ A

F() = ,
@ 1 —cjez

12)

where A1 and c1 # 0 are constants.

Proof From the differential equation (1), we can easily get N3(r, F) +m(r, F) =
S(r, F) which in turn gives T (r, F') = Ny (r, F) + S(r, F). Therefore, Ny (r, F) #
S(r, F), i.e., N=p(r, F) # S(r, F). Following [4] we can get Eq. (12). Substituting
Eq.(12)in Eq. (1), we get

4+ Ay /_a ta 7+ Ay ig z+ Ay 2+a 2+ A\’
1—cre—2| RELERE O crez 1= cle? A cre~?)
(13)
If ap # 0, now using Eq. (13) we get T (r, e~ %) = S(r, e~ %); this is not possible.
Hence, we can conclude that ap = 0. Substituting ap = 0 in Eq. (13) and equating
the coefficients of like powers of cje™%, we can obtain a;(z), a2(z), and a3(z).
Theorem 2 Suppose F is a nonconstant meromorphic function satisfying the
Riccati-Abel differential equation 111; = ayp + a1 F + aaF* + a3F3, where a;’s
are defined as earlier. Let F and ‘25 share the value 1 IM; now we have either

dF 2 az
—l=a3s(F-D|F+ 1+ )F-1], (14)
dZ as
or
dF 2 az
—l=a(F-1D|F +(1+ F+A —z+1], (15)
dZ as

where A1 is a constant.
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Proof Let z3 be a zero of ‘2‘; —landa;(z3) #0,00(j =0,1,2,3) with F and ‘2‘;
sharing the value 1 IM along with z3 being a zero of F' — 1 of order 2. Now using
Eq. (1), we can obtain

(ao + a1 +az +a3)(z3) = 1. (16)

If ap + a1 + a2 + a3 # 1, we obtain

1 1
Nr,dF_1 =N r,F_1
dz

1
N|r, + 8@, f),
( ao+a1+a2+a3—1) . f)

IA

T(r,ap+ay+ax+az)+ S, F),
T(rap)+T(r,a1) + T, a2)

+T(r,a3) + S, F),

=S, F). an

A

From Eq. (1), we now get
N@(r, F) +m(r, F) = S(r, F). (18)

Combining Eqgs. (17) and (18), and using Result 1, we get

1 1

T(r,F) <N (r, P 1)—i—N (r, aF 1>+N(r, F)=No(r, ,.|+S0F),
dz dz?
=N@(r, F) + Noy(r, F) =No | 1, | + S0 F).
dz?
Also we can get the following expression:

No | r, 2r | = S(r, F). (19)

dz?

Using Eqgs. (3) and (7), with © = 1, we get either

1
Noy(r, F) = N3(r, F) + Noy (r, dF_1)+N r, + S(r, F), (20)

d2F
dz dz2
or
27
F(z) = + 274 Az, 2D

2c1[z + 3A1]?
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where A1, A, and c1 # 0 are constants. From Egs. (17), (18), and (20), we get

T(r F)<N|r, + S(r, F). (22)

d*F
dz?

Equation (22) together with Eq. (19) yields the following result:

T(r,F)<Ng (r, dFl 1) +5(r, F). (23)
dz —

Equations (23) and (17) yield the condition T'(r, F) = S(r, F), and this is a
contradiction. Therefore, Eq. (20) does not hold. From Eq. (21), we find that

274 2c1[z + 3411z + Ay — 1]

F(z)— 1= 24
@ 2¢i[z + 3A1)? @9
and
dF | — —27 25)
dz T clz+3A1P3°
Now F and flf cannot share 1 IM; this is not possible. Therefore,
ap+ay+ax+az=1. (26)
Substituting Eq. (26) into the differential equation (1), we get
dF
—1:a3(F—1)[(a1+a2+1)+<a2+1)F+F2}. 7)
dz as as as

as

/ /
If1+ Zi + fé =—lorl+ Z;) + (“2) = 0, then we, respectively, arrive at the
conclusion (14) or (15). Otherwise, we infer that

1

N |r,
a a a F F
(a; ai 1) (ai 1) 2

=S8, F).

Suppose (Z; + Zi + 1) + <Z§ + 1) F + F? has a zero of multiplicity [ at z, say,
F

d
. —1 T . .
such that a1; ‘?71 has a zero of multiplicity / at zg. Now let us consider the following
cases:

(1) F(z0) = coor

(i) 750 = F(z0) = F2(z0) = 1 or

(iii) a3(zp) = oo.
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If F(z0) = 00, then a3 has a pole of multiplicity / + 1 at zo, while if /% =
F%(z0) = F(z9) = 3, then Z; + 222 + 3 has a zero of multiplicity 3 at zo, and

/ /
1+ (Z;) + (Zi) has a zero of multiplicity min{/ — 1,/ + 1 — ¢t} at zo; here ¢
represents the possible multiplicity of the pole of a3 at zg. From case (iii), a3z will

have a pole of multiplicity p at zo. Hence we have

1

N|r,
a a a

1
SNUﬂﬁ+N(n )
o T2 +3

1

! ! ’
() +(2)

= S@r, F). (28)

+N|7

Equation (27) may now be written as
/ / /
(B +2+1)+(2+1)F+F] - [1+ (o) + (j‘g)}
=a3(F —1).
(& +2+)+ (2 +1) F+ P

/ /
From Egs. (18) and (29), it follows that if 1 + ( ) + (gg) 40, then

ap
as

(29)

1

(rman)s(zanyrer) 0 Y

m|r,

From Egs. (28) and (30), we can obtain T (r, F) = S(r, F) which is not possible.

Thus, we have
ar’ a\’
1—|—< ) —i—( ) =0. 31D
as as

By integrating Eq. (31) w.r.t. “z”, we have

ai a,
+ P =A -z (32)
as as

From Eqgs. (27) and (32), we arrive at Eq. (15).
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3 Conclusion

Riccati-Abel differential equation is known as one of the unsolvable nonlinear dif-
ferential equations. In this article, we use Nevanlinna theory to obtain meromorphic
solution of Riccati-Abel differential equation with sharing one counting multiplicity
or ignoring multiplicity. Our results show that complex method provides a powerful
mathematical tool for solving nonlinear differential equation.
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Expansion of Function with Uncertain m)
Parameters in Higher Dimension St

Priyanka Roy and Geetanjali Panda

Abstract This article considers uncertain parameters of a function as closed
intervals. Expansion of these types of function in a single dimension is studied.
p-monotonic property of this function in higher dimension is introduced, and
higher-order expansion in R" is developed using p-monotonic property.

1 Introduction and Motivation

Interval analysis has been introduced as an alternative approach to studying uncer-
tainty theory from nonstatistical viewpoint, and its application has been increased in
recent years in control, dynamic economy, climate modeling, optimization theory,
etc. An interval function F can be treated as the image extension of a real-valued
function or a function whose arguments are intervals. Calculus of interval functions
is studied by many researchers in the light of calculus of set-valued functions as
discussed in [1, 4, 8, 9] etc. Most of these works are limited up to the existence
of derivative using gH difference. Using these concepts, few developments in the
area of calculus of interval functions are discussed in [2, 3, 5, 6, 11, 12]. Markov
[10] has introduced a nonstandard subtraction & in the set of intervals based
on which calculus of interval function in a single variable is studied. Rall [11]
developed interval version of mean value theorem and Taylor’s theorem for the
interval functions which map from the set of intervals to the interval space using
interval inclusion property and Gateaux-type derivative. Stefanini [12] proposed
generalization of Hukuhara difference and studied the connection of g H derivatives
with several existing derivatives of interval functions. In the literature of interval
analysis, expansion of interval function has not been studied so far.
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In this article, an attempt is made to proceed one step further to study the
expansion of interval functions. In the present contribution, Markov difference is
accepted due to its computational comfortability. Some notations and preliminaries
on interval analysis are discussed in Sect.2. p-monotonicity of interval function
in R has already developed in the existing theory of interval analysis. In Sect. 3,
pu-monotonicity of interval function in R" is introduced, and using this concept,
differentiability in R” is revisited. Using this new concept, expansion of interval
functions in one dimension and higher dimension is developed.

2 Some Notations and Preliminaries

Throughout this article K (R) denote the set of all compactintervalson R. & € K (R)
is the closed interval of the form [¢, @] where & < «. Spread of & is denoted by
u(a), where u(@) = o — «. For two points 1 and ap, (not necessarily o) < ap), &
can be written as & = [«] Vaz]. Any real number r can be expressed as a degenerate
interval denoted by 7, 7 = [r,r] or r. I where | = [1,1]. 0= [0,0] = 0. I denotes
the null interval.

The usual arithmetic operation has been used in this article except the interval
subtraction. Additive inverse in (K (R), @, ®) may not exist, that is, & © «& is not
necessarily 0 according to this approach. The nonstandard subtraction due to [10],
denoted by &), provides additive inverse, which is

o |e=Ba=8|. ifp@=uwp
ou B = L g ()
a—Ba—Bl, if @ < unp)

The following properties of ©s due to [10] and [7] are used throughout the paper:
(i) @omd=0
(i) Opé = (=Dd )
(iii) ¢ @ (—1)B =a 6y P if and only if u(@)u(B) =0
(v) & O (©nf) =@ ® fifand only if n(@n(F) =0
From the above properties, the following results can be derived easily:
W) &ou (eu(~DE) =i o f.
2a, if u@ =0

[ +a,a +a] otherwise

(vi) x O (Bua) =

In K (R), the norm (||.||) of an interval & [10] is defined as [|&|| = max {|et], || }.



Expansion of Function with Uncertain Parameters in Higher Dimension 31
3 Calculus of Interval Function in Higher Dimension

u-Monotonic property of an interval function plays an important role while
developing calculus of interval function in the higher dimension. In the light of
p-monotonic property of interval function in a single variable from [10], we first
focus on p-monotonic property in the higher dimension.

3.1 w-Monotonic Property of F

Consider F : R* — K(R), F(x) = [F(x), F(X)], Ay = {1,2, -+, n},
(x :ih;) = (x1,x2, ..., % + h,...xy). Denote u(x) = F(x) — F(x).

Definition 1 F is called u-increasing in R” with respect to ith component if and
only if

Mp(x) < pp(x :ih;) whenever x; < x; +h;,Vx, (x :ih;) € R" 2)

By reverting the inequality, n-decreasing property of F with respect to ith compo-
nent can be defined. F is u-monotonic with respect to x; if it is either p-increasing
or u-decreasing with respect to ith component.

3.2 Differentiability of F

Definition 2 For a n variable interval function ¥ : R — K (R) if
limy, 0 hli (F (x:ih) &M F (x)) exists, then the partial derivative of F with

F (x)

respect to x; exists, and the limiting value is denoted by “; .

Remark 1 Existence of partial derivative of Fata point may not guarantee the
existence of partial derivatives of the lower and upper bound functions at that point.

Consider F(x1, x2) = dx1 @ bx3 for &, b € K(R), where ju(d) > 0. 0FQO.0) _ 4

0x1 ’
3F(0,0 é .
where as a(xf ) and dg()?l’o) do not exist.

Definition3 F :R" — K (R) is differentiable at x if F and F are differentiable.

Following these basic ideas, higher-order partial derivatives of an interval function
can be defined.

2F 1 (0F(x: jh F 2F 2F
9 . (a (XJ)eMa(x))=|:8 L0 }

axjox;  hj—0 h; dx; ox; dx;0x;  0xj0x;
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4 Expansion of Interval Functions

4.1 Expansion of Interval Function in R

Proposition 1 If g : R — R is first-order dlﬁ‘erennable and F: 2CR—> KR)
is differentiable, then (gF) is differentiable, and (gF) =g 'F& gF

Proof of this result follows directly from Definition 2 in [10].

Theorem 1 Let F : R — K(R) be such that F',E", ... FS exist and -
monotonic in nbd(n), n € R. Then for any x € nbd(n), x # 1,

v o % (x — 1’])2 v /7
F) o | Fop ow (emtx = mF ) eu (o F@)ou-

2!
) R
OSum (GM G- 1) F (ﬂ))}
— )5 (1l =9 s—1 ..
cUseion TP T p 9 — )
(s — 1!

3)

Proof Consider an interval function d:A>K (R) as

- T)z !/
| F (t)) Sm

. o o, (x
(2) = F(v) o (Om(x = D F' (1)) O (eM R

(x _ 'L')S_l o
- Eu (eM 1 F 1(r)) )

for A = [n,x] or [x n]
Since F, F', .-, FS~! FS exist in nbd(n) ) dlfferentlablhty of @ in nbd(n)
follows from Theorem7 in [10]. Since F F ! F s—1 F $ all are u-monotonic in

nbd(n), each of them will be either ,u-increasmg or [i- decreasmg in nbd (n).
Denote 1; (1) = (x T)l
Case 1

(i) Suppose F,F' F", ... F~! Fsareall u-increasing in 2. Then (m(r))Fj(r)
and (n;(r))F/ (7) are u-increasing for all i, j € A;.
From Proposition 1 and Theorem 7 in [10],

&'(1) = F'(0) o (ou(-DF' () ou (6m(x = D F' (D)) Ou

2!

()C - 1.)2 /1! ()C - T)s_l oS
(GM(—l) ) F (T)> OMm - Oum <9M - 1) F (T)>

'l (x T)z i
(eu(=Dx - DF' @) ou (eM F (r)) oum

&)
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Forj=1,2,---,5s — 1,

(x — )/~
(j—=D!

(@ —n)/!
(j — D!
holds, which follows from property (i) of ©y,.
For j = s, Om <9M ()‘_”Hﬁs(t)) = (X_T)HFS(t) holds from the

1
on (eM Fi (r)) on (eM(—l) Fi (r)) =0

(s—1)! (s—=1)!
property (v) of ©j. Hence the expressions for @'() can be simplified
further as
o (x—1) !
(1) = - 1) F (1) (6)

From Theorem 9 in [10],

(x) Om D(n) C (x — ) Urea /(1)
(1= x —n)*

=Wy Pt oe—m) (7)
That is,

9 v v/ (x — 7’])2 v 1/
Foeu |Foyeu (emtx—mF ) ew (en” " Fl@)eu--

=t

o <9M - " 1(")>}C
—n¥(1 =90 s—1 ..
Useto ’7(1(_1)! " B a—n

Gi) If F,F/,F”,...,FS~1 F% are u-decreasing, using Theorem 7 from [10], it
can be verified that the expression of @’ will be same to (6). So (3) holds in this
case.

Case 2 Suppose F,F' F",...,F ' FS are differently p-monotonic.

For instance, suppose even order successive derivatives are p-increasing and odd
order successive derivatives are p-decreasing .

Then p-monotonicity of 7;()F/(r) or n/(x)F/(r) will depend on pu-
monotonicity of corresponding Fi(t) where i, j € A,.

Using Proposition 1 and Theorem 7 in [10] in (4), the following relation holds:

&'(0) = [F'(0) o {ou~DF @ |18 6n [out -0 F ()| on

(x —1)

2
N FW(I)} oun

{GM(—l)(x — t)I:"”(t)]] ®[om {GM

(x _ .C)S—l
(s — 1!

(x—1)

5 F‘?(r)}]

®)

2
{eM(—l) F”’(r)}] @ - d[eu {eM
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Using property (i) and (v) of &y, (8) reduces to @’ (r) = (x(;_r)ls)?l F *(t), which is
similar to the expression of ol (t) in (6). Therefore (3) can be derived proceeding
in similar way as in Case-1. If the role of y-monotonicity for odd and even FJ are
changed, then @' will remain unchanged as in (6).

Moreover, if p©-monotonicity of FJ is not consistently changed (some consec-
utive FJs’ are u-increasing, and some consecutive Fis are u-decreasing), then
using (5) and (8), it can be verified that the expression of <15’(r) will be same as (6),
hence the theorem.

Corollary 1 Suppose there exists k > 0 and M > 0, such that for s sufficiently
large, || FO(x) ||< kM* ¥ x € nbd(n). Then ((X‘”g;(_ll‘);’f") Ugero.1) FS(n +
P(x —n)) — O0ass — oo.
Proof || (TN USDTH Fe ey i< KO TD kms holds for any £ € nbd(a).

0 0#£0
1 0=0
This implies ((X_”z;(ill_)?)xil)ﬁs(g) — 0 as n — oo for each & € nbd(n) and

s s—1 o v
hence (7 UTPT) Ugero. 1y F*(n+ 9 (x —m) — Oass — oo,

s—1 s—1
limy oo ™ (T = 0and lim, oo (1 — 9)°~! = !

4.2 Expansion of Interval Function in R"

Theorem 2 Let F : R" — K(R) be s — 1 times differentiable. F and all the partial
derivatives of F up to order s are component-wise j1-monotonic in nbd(n) for some
n € R". Then

. y 1 OF
Fv) o {F(n) on (eM > - m) o
i=1 !

n 2“
o 128F(n)

(xi —ni)(xj—nj) | Om -+~

M

| Ny

2! et 0x;0x

1 L 3F(n)
Su | Sum (s— 1) Z axi1 ... xis_ (xi1 —mi1) - .. (Xis—1 — Nis—1)
i1,i2,...,ig=1
n .
1 0% F(¢)
C UgeL_s{n,x}i iZ:i 1 (s — 1) 9xi1 ... Oxis (xi1 — ni1) - . - (xis — Nis),

150250005 ls=

)
where L.S {n, x} denotes the segment of line joining n and x.
Proof Suppose d3(t) = F(n +ur(x —n) = F(v(t)), yvhere v(t)v: n+t(x—mn)
From Theorem 8 in [10], @'(r) = (x — n)/VF(w(1)), ®"(r) = (x —
' V2(F (D) (x —1).
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By induction, @) () = 377 1 iy o S5 G —min) - (eis — i)

} erom thevassumptions of the theorem, @ is (s-1)times differentiable and
&, D, , DO are p-monotonic. From Theorem 9 in [10], for 7, ¥ € [0, 1],

2
(1) Om {é(O) ou (6utd'(0)) ou (eM 0 é”(O)) o
. (10)

10
(s — 1! & @),

- OM <9M 45(‘?_1)(0))} C Upelo.1]

T
(s—=1

In particular for t =1,

o o o 1.
d(1) ou {@(0) ou (6ud'©) ou (eMz,qb”(O)) o
' (1)

. 1 v
.- Oy <9M '@(s—l)(()))} C Uﬂe[o,l] (s — 'Q)(S)(ﬁ).

1
(s—=D Y

(1) = F),d0) = F, 0) = i FP 0 — m), 870
a2
>z 3;0(;',) (xi —mi)(xj —nj), etc..
(9) follows after substituting these values in (11).
Corollary 2 Suppose there exist k > 0 and M > 0, such that for sufficiently large

nll 0O < kM3 VE € L.S {1, x}. Then

Xi1---0Xis

n .
1 0°F (&) .
U Xi1 —Ni1) ... xis —nis) = 0 as s = 00
' Z ((s—l)!)ax,q...axis( il ni1) (xis Nis)
i1,02,...,is=1
as P F as
Proof Forany & € L.S {n.x), ,7 7% | =maxi| N NI |}.

Rest of the part is similar to the proof of Corollary 1.

The following result is derived from (9) and Corollary 2.

1

. y " OF
F) ~ Fn) 6 (eM > - m)) on
i=1

I~ 92F ()
M2! i/z—:l dx;0x; xi —n)xj—n;) | ©m---
)

e > ( ). ( )

Xi1 — N; e Xjg—1 — Njs—

M M(S— 1)'1 i ] 13Xi1...8xis71 il — Mil is—1 — Nis—1
15025 005ls=

12)
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Remark 2 Expansion of interval function F (x) should not be misunderstood as the
expansion of its lower and upper bound function. Suppose F(x) ~ G(x), where
G(x) is obtained by expanding F about a up to order n. If F(x) =~ h1(x), F(x) =
ha(x), where h(x) and hy(x) are the expansion of F(x) and F (x), respectively, of
order n, then é(x) is not necessarily same as [k (x), h2(x)]. Moreover due to u
monotonic property, existence of expansion of F(x) may not imply the existence of
expansion of /1 (x) and h>(x).

5 Conclusion and Future Scope

This article has focused on the expansion of interval function in R”. This expansion
can provide a powerful tool for developing solution of system of equation, solving
least mean square problems with interval parameters, which can be treated as future
applications of the present contribution.
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Analytical Solutions of the Bloch m)
Equation via Fractional Operators e
with Non-singular Kernels

A. S. V. Ravi Kanth and Neetu Garg

Abstract This article deals with the fractional Bloch equation by using Caputo-
Fabrizio fractional derivative and Atangana-Baleanu fractional derivative with
non-singular kernels. Bloch equation is extensively used in chemistry, physics,
magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR). The
nuclear magnetization M = (M, My, M;) is derived analytically, and its behaviour
is discussed via plots for different fractional orders. A comparative study of the
analytical solutions with Caputo-Fabrizio, Atangana-Baleanu and Caputo fractional
derivatives is presented. Equilibrium stage is achieved faster via Atangana-Baleanu
fractional derivative than other fractional derivatives.

1 Introduction

Fractional calculus is the study of derivatives and integrals of non-integer order
which provides us an excellent opportunity to understand memory and hereditary
properties of the complex systems. Thus its applications are growing numerously in
mathematical biology [3, 14] in electric circuits [1], in medicine [6] and in many
other areas.

For fractional generalization of a physical model, an appropriate definition is
essential. In literature, many definitions of fractional derivative are introduced,
namely, the Riemann-Liouville derivative, Caputo derivative, conformal derivative,
etc. (see [7-9, 12]). The Riemann-Liouville derivative involves fractional initial
conditions which do not have any physical significance, while the Caputo derivatives
involves integer order initial conditions. Both Riemann-Liouville and Caputo
derivatives involves singular kernels. Recently Caputo-Fabrizio [5] proposed a
fractional derivative in the form of exponential kernel, and Atangana-Baleanu
[4] introduced a fractional derivative with kernel in the form of generalized
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Mittag-Leffler function. These derivatives can describe the heterogeneities which
cannot be well portrayed by fractional models with singular kernel.
The classical Bloch equation is defined as [10]

AM(r) M (1)

dMy() My

dM.(t) Mo — M.(0) "
dr T ’

with initial values M, (0) = M;(0) = 0 and M, (0) = 100. M, (t), M, (¢) and M, ()
represent the system magnetization components, My equilibrium magnetization, 7}
the spin-lattice relaxation time taken in regrowth of the longitudinal component
M, (1), T> the spin-spin relaxation time which denotes the signal decay in NMR and
wo resonant frequency defined by Larmor relationship wy = y By (Bp denotes static
magnetic field in z-component). Fractional operators describe the dynamics and
complexity of the systems more efficiently than the integer order models. Fractional
Bloch equation have gained attention by many researchers (see [10, 11, 13, 15]).
Magin et al. [10] presented the solution of the fractional Bloch equation analytically
by using Caputo fractional derivative. The fractional Bloch equation is solved
numerically by creating a Matlab function and Simulink model [11].

In the present work, the fractional Bloch equation is solved by using Caputo-
Fabrizio fractional derivative and Atangana-Baleanu fractional derivative with non-
singular kernels. The article is organized as follows. Various definitions of fractional
derivative are discussed in Sect.2. The fractional Bloch equation via Caputo-
Fabrizio and Atangana-Baleanu fractional derivative are discussed in Sect.3. In
the Sect. 3.2, results and discussions are presented. The conclusion of our work is
presented in the Sect. 4.

2 Basic Definitions

In this section, the definitions of Caputo, Caputo-Fabrizio and Atangana-Baleanu
fractional derivatives are discussed.

Definition 1 Caputo fractional derivative (CFD) of g(¢) of order & (> 0) as defined
in [12]

1 g
Cryo
D¥g(t) = dt, n—1 <n. 2
aDr'8(®) F(n—a)/a (t — r)* "+l o sa=n @
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Definition 2 Assume that g € H 1(a, b), b > a , the Caputo-Fabrizio fractional
derivative (CFFD) of g(t) is defined as [5]

M -
crpagny = M@ / e g (0dr, 0za <1, 3)
(1-a)J,

where M (o), normalization constant, depends on « such that M (0) = M (1) = 1.

Definition 3 The Caputo-Fabrizio fractional integral of g(¢) is defined as [9]

Crggy= 20=® oy X / e(0)de )
T oM@ T @M@ fy £

This definition indicates that Caputo-Fabrizio fractional integral of g(¢) of order o
is the average of g(¢) and its first order integral. Thus normalized function takes the
form M («) = 2Ea’ 0 <« < 1. Thus CFFD of g(t) is reformulated as [9]

¢« Dig(n) = )/ e g mdr 0=a <1, )

Definition 4 Assume that g € H 1(a, b), b > a , the Atangana-Baleanu fractional
derivative in Caputo sense (ABFD) of g(¢) is given as [4]

28D g(t) = (a))/ ( il )g/(f)dr, 0<ac<l, (6)

where B(w) has the same properties as that of M («).

3 Fractional Bloch Equation

3.1 Fractional Bloch Equation with Caputo-Fabrizio
Fractional Derivative

We consider the fractional generalization of the Bloch equation (1) by introducing

an auxiliary parameter o into fractional operator to make it physically consistent
[2, 10]:

d 1 4a°

dr l_adtoﬂm—l<a§m,m=1,2,3,... 7
o

where o has dimensions of seconds.
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Thus, the fractional generalization of the Bloch equation (1) is obtained as

N M. (1)
owmm=mmm—;,
2
N My (1)
oD My(1) = —iioMy (1) — %,
My — M, (¢t
DM (1) = ° ﬂZ(X0<asL (8)

with initial values M (0) = M;(0) = 0 and M,(¢) = 100. Here wy = woo 7Y,

1 —a l
Tl = , Tl = havmg units of (sec)™“.
1

To obtaln both M (¢) and M, (t), we assume that
M, (1) :Mx(t)“l‘iMy(t)v (9)

where M, () is the transverse magnetisation. Using A = Tl + iwp and substituting
2
Eq. (9) in the fractional system (8), we get

oD M, (1) = —A M, (1),
0W%@=M}MQ (10)
1

with initial values

M.(0) = M,(0) + iMy(O)s
M.(0) = 0. (11)

Using CFFD in (10), we get

1 L)
/
. _a)/ e 1 M.(r)dt = —AMy(t),
a

1 (1 et Mo — M,(t
o My = M0 T M) (12)
(I—-w)J, ¢ T

By taking Laplace transform on both sides of (12) and using convolution theorem,
we get

M (s) = M (0) _
s+ a(l —s)

SM(s) = M:(0) _ M:(s)
s+a(l —s) fl 'fls.

)\M*(S)

13)



Fractional Bloch Equation 41

By substituting (11) in (13) and applying inverse Laplace transform, we get the
solution

M(0) + iMy(0)] -an
M, (1) 4+ iMy (1) = [ 1(4211 ayk( I, e,

f Cw
M) =My |1— _ 1 e hsa |
(Ti +1—a)

3.2 Fractional Bloch Equation with Atangana-Baleanu
Fractional Derivative

Consider the fractional system (10) with ABFD (Caputo sense):

(= T)a M.(T)dT = —\M,(t
(1_a)/ ( >*(r)r—— ),

/ ( (= T)Ol)Mé(r)dr _ Mo — M) (14)
(1-oa) T

By applying Laplace transform on both sides of (14), we get

F(s) = 51 M, (0)
T w4 ad =) +ar
Mas)=Mo| ' — s . (15)
s M+ 1—a)+«a

The inverse Laplace transform of (15) gives us the solution

M, (0) —aAt?
M. (1) = Eqy ’
14+A—air 14+XA—ar

[ Ty < ar® )}
M.(t) =My |1— _ o .
T +1—-0a) I+1—-«
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4 Results and Discussions

In all the figures, we have assumed that wg = 1, Ty = 1(s)%, T» = 20(ms)* and
My = 100.

Figure 1 portrays the plot of M, (¢) for « = 0.9 and 0.6 with initial value of
M, (0) = 0 by using fractional derivatives CFFD, ABFD and CFD. It is observed
from the figure, as the fractional order « is decreasing, free induction decay curves
take a much shorter relaxation time fz.

Figure 2 depicts the plot of My (¢) for @ = 0.9 and 0.6 with initial value M, (0) =
100 by using fractional derivatives CFFD, ABFD and CFD. It is observed from
the figure that the solution corresponding to ABFD takes a much shorter spin-spin
relaxation time with decreasing fractional order () in comparison with CFFD and
CFD.

Figure 3 compares the behaviour of M,(¢) corresponding to three fractional
operators for « = 0.9 and 0.6. From the figure, it is observed that M,(¢)
corresponding to CFFD achieves its equilibrium stage more quickly than ABFD
and CFD with increasing time. We also observed that M, () and M_(¢) increases,
while My (¢) decays as the time increases.

Figure 4 demonstrates the dynamic relationship between the components M, ()
and M, (t) fora = 1,0.9, 0.8 and 0.7, respectively. A regular spiral is portrayed for
o« = 1 and is noticed that it starts decaying at a faster rate with decreasing fractional
order. The decay in the components by using ABFD is faster than that via CFFD
and CFD. In Fig. 5, we have displayed the complete trajectory of magnetization in
three dimension for « = 0.9 and 1, respectively, with M,(0) = 0, M,(0) = 100
and M, (0) = 0 converging to the equilibrium value M.

100

CFFD (0=0.6)
50

CFD (0=0.6) ABFD (0:=0.6)

t/x
E """"
O L
CFD (w=09) CFFD (0:=0.9)
ABFD (0=0.9)
%0 . . . . . .
0 5 10 15 20 25 30 35 40

t(s)

Fig. 1 M,(¢) via CFFD, ABFD and CFD for fz = 20(ms)%, wo = 1, M;(0) = 0and @ = 0.9
and 0.6
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0.6)

40 CFFD (a=0.6)

~ 20f
v>-
= ok e N

-20

CFFD (0:=0.9)

-40 CFD (a=0.9)

60 ABFD (0:=0.9)

_80 . . . . . . .

5 10 15 20 25 30 35 40
t(s)
Fig. 2 M, (t) via CFFD, ABFD and CFD for 7> = 20(ms)®, wy = 1, M,(0) = 100 and & = 0.9

and 0.6
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70F
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\\\\\\
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Fig. 3 M. (t) via CFFD, ABFD and CFD
and 0.6

for Tj = 1(s)%, My = 100, M (0) = 0 and & = 0.9
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100 — 100
a=1
50 50
L‘:&> 0 ~‘$> 0
= =
-50 -50
-100 -100
~100 0 100 -50 100
100 100
50 50
::'I>- t/>-
= =
0 0
-50 -50
50 100 50 0 50 100
M. (1)
| CFFD '+ ABFD = = = CFD|

Fig. 4 M.(t) fora =1, 0.9, 0.8 and 0.7, respectively, with fz = 20(ms)%, wy = 1 with M, (0) =
0and My (0) = 100

100

50

M® _100 _s0 M (t)

Fig. 5 Plot of the magnetization components for « = 0.9 and 1, respectively, with 7> = 20(ms)?,
Ty = 1(s)¥ and wy = 1
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5 Conclusion

In this paper, the dynamics of fractional Bloch equation via CFFD and ABFD
with non-singular kernels was studied. Fractional Bloch equation via ABFD and
CFFD allows the description of the memory with non-singularity and behaves much
better in comparison with CFD with singular kernel. The analytical solutions of the
model using the CFFD and ABFD are derived for different fractional orders «. It
is observed that the solution of corresponding classical equation is recovered as
a particular case. We conclude that solution continuously varies according to the
fractional order of the equation.
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Solution of the Lorenz Model )
with Help from the Corresponding e
Ginzburg-Landau Model

P. G. Siddheshwar, S. Manjunath, and T. S. Sushma

Abstract Centre manifold theory, a useful tool in the study of dynamical systems,
plays a crucial role in analysing the stability of the system. In the paper the three-
dimensional manifold arising in the study of Rayleigh-Bénard-Brinkman convection
in enclosures is reduced to a unidimensional manifold using a transformation
dictated by the centre manifold theorem. Such a reduction is possible since the
Lorenz model is autonomous. The advantage in this procedure is that the intractable
Lorenz model gets reduced to a tractable Ginzburg-Landau equation and hence
facilitates an analytical study of heat transport.

Keywords Rayleigh-Bénard-Brinkman convection - Center manifold - Enclosure

1 Introduction

The evolution of dynamical systems is studied in recent years. New techniques with
better ideas for analysing these dynamical systems have emerged. The geometric
concept of manifold theory is in use for solving the dynamical systems from
a very long period. One such vigorous geometric tool is the centre manifold
theory. The treatment of the theory for reducing a higher dimensional system
to its corresponding smaller dimensions is in practice nowadays. Known by its
name reduction principle, the centre manifold performs reduction of the higher
dimensional dynamical systems to lower dimensions without disturbing the stability
and behaviour of the original large dimensional system. This is described in detail
in books [1, 3, 10, 15-17].
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The parameters encountered in the governing equations of the problem when
varied may bring a qualitative change in the structure of the solutions or may give
new solutions or even may change the stability of the solution. These changes are
referred to as bifurcations. Centre manifold theory serves as the best device to retain
the qualitative behaviour of the system around the critical points in bifurcation
problems [1, 5].

This important concept of centre manifold was probably introduced by Pliss [12]
and was developed by many others [1, 4, 6-10, 12]. The stability, existence and
smoothness of the stable, centre-stable, centre-unstable and unstable manifolds also
were given by Kelly [7, 8]. The problem of laminar mixed convection flow using
centre manifold theory has been derived in the paper by Guillet et al. [4]. A brief
description of the properties of centre manifold, viz. existence, uniqueness, smooth-
ness, differentiability and analyticity, is discussed in the paper by Sijbrand [14]. The
main applications of centre manifold in differential equations was given by Carr
[1]. Be it a partial differential equation or an ordinary differential equation, integral
equation, singular perturbations or functional differential equation, applications of
the centre manifold theory is now widespread.

The present paper presents the derivation of the Ginzburg-Landau equation
from the third-order Lorenz model for Rayleigh-Bénard convection in a porous
enclosure using centre manifold technique. Extensive literature on Rayleigh-Bénard
convection can be found [2, 11, 13].

2 Nomenclature

Latin symbols

A, B,C Amplitudes of convection

A, Aspect ratio

GRra Linear operator

H Applied magnetic field
K Quadratic operator

M Ratio of specific heats
M Hartmann number

)4 Fluid pressure

Pr Prandtl number

Ra Rayleigh number

X, Z Non-dimensional horizontal and vertical coordinates
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Greek symbols
Thermal diffusivity

@ Dynamic viscosity

©1 Magnetic permeability

v Kinematic viscosity

¢  Porosity

¥ Non-dimensional stream function

o Fluid density

® Dimensionless temperature

o Electrical conductivity of the fluid
Subscripts

¢ Critical

0 Reference

3 Mathematical Formulation

We consider a laminar free convection flow of an electrically conducting
incompressible viscous fluid in an enclosure filled with porous medium of breadth
b and height h. The lateral walls are kept insulated and heated from below. The
isothermal boundaries are assumed to be stress-free. The velocity field is two-
dimensional (Fig. 1).

The dimensionless governing equations are

19 A, (W, V2w 00
(Viw)— " (. Vi) = aAVR¥—aM?A’ViU —a’RaA} . (1)
Pr dt Pr 9(X,Z) X
m2® 4, +A (%, 8) +aMV32e )
— a =,
ot "ax ' X, Z) A
where the constants
h , ATgh?
A= ,a= X , M =,LL1H0L\/U , Pr= H , Ra:pO'B g
b Xbl 15 POX 154
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Fig. 1 Schematic z
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4 Boundary Conditions

We consider the stress-free, isothermal, horizontal boundaries and stress-free,
adiabatic, vertical boundaries as follows:

92w 1 1 1
Y = =0 =0at Z=+_ and — <X < _.
9272 2 2 2
3
v 9O 1 1 1
U= = .

= =0 at X== d — Z
ax2 “ax ¢ o MM Ty TET,

5 Linear Stability Analysis

We perform linear stability analysis to find when convection sets in, and so assume

1 1
V(X,Z)=Asinm <X + 2) sin 7w <Z—|— 2) ,
“4)

1 1
®(X,Z) = Bjcosm <X+ 2) sin 7T (Z—i— 2) ,
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Equation (4) substituted into the dimensionless equations (1) and (2) gives us the
critical Rayleigh number in the form

MS*(AS% + M?A2)
Rac = 245 ’
T=A;

&)

where 82 = 2(1 4 A2).

6 Lorenz Model

The following minimal representation of Fourier series is chosen to satisfy the
boundary conditions (3).

V2M§?
72 A,

1

(X, Z,1)=— 5 )

1
Aq(r)sinm (X + 2) sin (Z +
V2 1\ . 1 1 . 1
OX,Z,1)= Bi(r)cosm | X + sint | Z + — By (t)sin2n | Z + .
Tr 2 2 Tr 2
(6)

Substituting Eq. (6) into Egs. (1) and (2), we obtain the following non-linear set of
amplitude equations:

AL pr(By — Ay
=cPr - ,
dn 1 1
dB
=A| — B — A By, 7
dn 1 1 1B2 @)
dB;
= —-bBy + A By,
dn 2 1B1
where
A8+ M2 A2 Ra 472
c= , r= , b=
82 Ra, 82

System (7) is the analytically intractable Lorenz model of the problem.

ds
= GpraS+ K(S), €]
dt
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with

n==s6, S=|B|, 9

and the operators G g, and K(S) are respectively given by

—cPr cPr 0O ) 0
Gra=| r -1 0|, K(©) = ”ﬂ‘z";“l& . (10)
0 0 —-b -, A1 By
Introducing
€ = Ra — Ra,, (11)
we write
Gra = Gra(Rac) + G(e), (12)
where the term G g, (Ra.) is given by
—cPr cPr 0O
Gra(Ra.) = r —10 (13)
0 0 —b
and
000
Ge)=1]€00]. (14)
000
Thus
ds -
an = GRra(Rac)S +a(S, €). (15)

The eigenvalues of Gr,(Ra.) are A; =0, A = —(1 + cPr)and A3 = —b and the
corresponding eigenvectors as columns of a matrix are

1 —cPro
E=|1 1 0. (16)
0 0 1
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We now do the linear change of coordinates by applying the transformation

Y =E'S, 17)
where
U
y=|v]|. (18)
w

Thus we get a diagonal matrix L(Ra,) from Gg,(Rac) in the form

0 0 0
L(Rac)=|0—(1+cPr) 0 |. (19)
0 0 —b

System (8) on using Egs. (16), (17), (18) and (19) can be written as

av _ L(Rac)Y + (Y, €). (20)
dt

where 7i(Y, €) = E~1a(SY, e).

7 Reduction of the System Using Centre Manifold

dUu _ cPr
dti ~ (1+cPr)

1
d _ U—cPreV —UW +cPrvw
: |:V:|:|: (1+cPr) 01||:V}+ (1+cPr) (e cPre + cPr ) ‘
nw 0 bW U2+ (1 —cPrUV —cPrv?

(€U —cPreV —UW +cPrvw),

21

System (21) is a three-dimensional dynamical system which we aim to reduce
to a single-dimensional system. The study is local, and hence the concentration lies
only on the behaviour around the critical point. Thus the non-linear part on the
right-hand side of system (21) as well as its first derivative will be equal to zero.
In general, if [V W17 = [f1(U) f>(U)]" where f(U) and its first order derivative

become zero, then
14 f1U)
= 22
[W} [fz(U )} ’ 22)
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will be the centre manifold for the system. Now

[V} _ [fl,(U)} U (23)
w HW)
The above Eq.(23) is the condition that the centre manifold has to satisfy.

We approximate the functions V,W in terms of U using series expansion for
fll(U), fll(U). So approximating V and W as follows:

V=aiU’+aUc +asUe’ + 0 || (U, ) I,
(24)
W =biU> +byUe+bsUe>+ 0 || (U, ) |I°.
Equating the coefficient of U? and Ue and ensuring that the condition (23) is
satisfied fetches us the constants

1 1
a1=0,b1= , a by = 0.

b T A+ PHY

Substituting the constants aj, by, a2, by into Eq. (24) and again back-substituting
them in first equation of system (21) gives the flow on the centre manifold

dU P 1
= " ue- v3|. 25)
dty ~ (1+ Pr) b

The above Eq. (25) is the cubic, real Ginzburg-Landau equation that is analytically
tractable.

8 Results

Rayleigh-Bénard convection of Newtonian liquid in an enclosure filled with porous
medium is studied using centre manifold theorem. The analytically intractable three-
dimensional Lorenz model is reduced to analytically tractable one-dimensional
Ginzburg-Landau equation. The analytical solution of the cubic Ginzburg-Landau
equation for U is pretty straightforward. The quantities V and W can then be
determined from Eq. (24). By considering S = EY, we can get the analytical solution
of the Lorenz model using which the classical phase-space and phase-plane plots
can be obtained.



Solution of the Lorenz Model with Help from the Corresponding Ginzburg-. . . 55

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17

Carr, J.: Applications of Center Manifold Theory. Applied Mathematical Sciences. Springer-
Verlag New York(1982)

Gelfgat, A.Y.: Different modes of Rayleigh-Bénard instability in two and three-dimensional
rectangular enclosures. J. Comp. Phy. 156, 300-324(1999)

Guckenheimer, J. Holmes, P. J.: Non-linear oscillations, dynamical systems, and bifurcations
of vector fields. Springer Science and Business Media(2013)

. Guillet, C. Mare, T. Nguyen, C. T.: Application of a non-linear local analysis method for the

problem of mixed convection instability. Int. J. Non Linear Mech. 42, 981-988(2007)

. Haragus, M. Iooss, G.: Local bifurcations, center manifolds, and normal forms in infinite-

dimensional dynamical systems. Springer Science and Business Media(2010)

. Henry, D.: Geometric theory of semi-linear parabolic equations. Springer-Verlag New

York(1981)

. Kelley, A.: Stability of the center-stable manifold. J. Math. Anal. Appl. 18, 336-344(1967)
. Kelley, A.: The stable, center-stable, center, center-unstable, unstable manifolds. J. Differential

Equations 3, 546-570(1967)

. Knobloch, H. W. Aulbach, B.: The role of center manifolds in ordinary differential equations.

Equadiff 5, 179-189(1982)

Perko, L.: Differential Equations and Dynamical systems. Springer Science and business
media(2013)

Platten, J. K. Marcoux, M. Mojtabi, A.: The Rayleigh-Bénard problem in extremely confined
geometries with and without the Soret effect. Comptes Rendus Mecanique 335, 638-654(2007)
Pliss, V. A.: A reduction principle in the theory of stability of motion. Izv. Akad. Nauk S.S.S.R.
Mat. Ser. 6, 1297-1324(1964)

Siddheshwar, P. G. Meenakshi, N.: Amplitude equation and heat transport for Rayleigh-Bénard
convection in Newtonian liquids with nanoparticles. Int. J. Appl. and Comp. Math. 2, 1-
22(2015)

Sijbrand, J.: Properties of center manifolds. Trans. Amer. Math. Soc. 289, 431-469(1985)
Scarpellini, B.: Center manifolds of infinite dimensions: Main results and applications. Z.
Angew. Math. Phys. 42, 1-32(1991)

Vanderbauwhede, A. Iooss, G.: Center manifold theory in infinite dimensions. Springer(1992)

. Wiggins, S.: Introduction to Applied Nonlinear Dynamical systems and chaos. Springer-Verlag

New York(1990)



Estimation of Upper Bounds for Initial )
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for a Subclass of Analytic Bi-univalent
Functions

G. Saravanan and K. Muthunagai

Abstract In this article we have introduced a class Zs (1,4, ¢),n € C—{0} of bi-
univalent functions defined by symmetric g-derivative operator. We have estimated
the upper bounds for the initial coefficients and Fekete- Szego inequality by making
use of Chebyshev polynomials.
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1 Introduction

Let A be the class of all normalized functions of the form

f@ =24 a" (M

n=2

which are analytic in the unit disk U. A holomorphic, injective function on U is said
to be univalent on U. Let S, the subclass of A, be the class of all univalent functions
onU.
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A function f(z) € A is said to be bi-univalent in U, if f(z) € S and its inverse
has an analytic continuation to |w| < 1. The class of all bi-univalent functions is
denoted by X. There is a rich literature on the estimates of the initial coefficients
of bi-univalent functions (see [5, 7, 8, 10, 12, 19-21]). However not much is known
about the estimates of higher coefficients.

For f(z)and g(z) analytic in U, we say that f(z) is subordinate to g(z), written
f(z) < g(2), if there exists a Schwarz function w(z) with w(0) = 0 and |w(z)| < 1
in U such that f(z) = g(w(z)). That is if the range of one holomorphic function
is contained in that of the second and these functions agree at a single point, then a
sharp comparison of these two functions can be made.

The problem of finding sharp bounds for the linear functional |a3 — {a%| of
any compact family of functions is popularly known as Fekete-Szego problem.
This coefficient functional on the normalized analytic functions in the unit disk
represents various geometric quantities. For example, for { = 1, the functional
represents Schwarzian derivative, which plays a significant role in the theory of
univalent functions, conformal mapping, and hypergeometric functions.

Usually to approximation of map projection, method of least squares is used.
Determination of polynomial coefficients requires solutions of complicated system
of equations. It is possible to avoid such problem using orthogonal Chebyshev
polynomials. Though there are four kinds of Chebyshev polynomials, only the first
and second kinds 7}, (x) and U, (x) are dealt by majority of the researchers. See for
example, Doha [6] and Mason [14]. In the case of a real variable ¢ on (—1,1), they
are defined by

T.(g) = cos néb,

Uy (<) = sin(n + 1)9’

sinf
where the subscript n denotes the polynomial degree and x = cos 6.

Geometric function theory provides a platform to have a multiple dimensional
view on the different subclasses of analytic functions with the help of g-calculus
which is an effective tool of investigation. For example, the theory of g-calculus
is used to describe the extension of the theory of univalent functions. For basic
definitions, applications, terminologies, geometric properties, and approximation,
one canrefer [1, 3,4, 9, 11, 13, 15, 17, 18].

Let us suppose 0 < g < 1 throughout this paper.

Definition 1 The symmetric g-derivative SN)q f of a function f given by (1) is

defined as follows:

flqg2) — f(g7'2)

@uh@="""""7,

, ifz#0,

and (D, f)(0) = f'(0) provided f'(0) exists.
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we have

@) =1+ [nlganz""",

n=2

~

where the symbol [r], denotes the number

— qn _ qfn
[n]y = .
17 g g}
Let P be the class of functions with positive real part consisting of all the analytic
functions p : U — C satisfying p(0) = 1 and Re(p(z)) > 0. The class P is
called the class of Caratheodory functions. The following result will be required for

proving our results.

Lemma 1 ([16]) If the function p € P is defined by
p(@) =1+ piz+p2+ps+---.
then

|p}’l|§2 (nEN:{172137“'})

2 Main Results

Definition 2 Let f € ¥. Then f € 3?2(7], q,¢),ne€C—{0}if

1+’17((5qf)(z)—1)<%’(z,§) = 1—2glz+zz’ (; <s< 1,zeU>
and
1+1((5qg)(w)—1)<,%>(w,g):= ! . <1<g<1,weU>
n 1—-2¢cw+w 2
where g = f L.

We note that
lim Zx(1,q.¢)
q—>1-
timg 1 (14 ) (Bg @ 1)) >0, z eV
q—) n q £

=1rex: ) = A5 (1. 9).
limg_ - (1 + 1 (B9 w) - 1)) S0, weU
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The class Zx (1, ¢) is defined as follows:
Definition 3 Let f € X. Then f € Zx(n, ¢),n € C — {0} if
L+ (-1 <26 : (1 1 eU)
2)—1)<Z(z,¢) = , <g¢<l,z
n s 1 —2¢z+22 2= ¢
and

1+1(’( )—1) < Zw. ¢) ! ! LweU
w) — 1) < ,C) = , <c<lLw
ng W s 1 —2cw+ w? 2 = ¢

where g = f~ 1.
If ¢ = cosa,a € (_3”, 73’) Then
0o .
A= _ 2glz+Z2 - +,§ Sln(sr;,;l)azn (ect)
Thus
R(z,¢) =1+ 2cosaz + (3cos’a — sin*a)z> +---  (z € U).
The second kind of Chebyshev polynomials are given by
A ) =1+U1()z+ V() +-- (zeU.ge(=1,1),
where U,_; = ‘Yi”(\'l/”;r_‘:gzsg) (neN).
We also have
Un(s) =25Un-1(s) — Up—2(5),
and
Uie) =2, Uae) =45~ 1. Us(s) =8¢ —4g, - 2

The generating function of the first kind of Chebyshev polynomials 7,,(5), s €
(—1, 1), is of the form

o] 1—§Z
T, ()" = zeU
; W= iy GED)
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2.1 Coefficient Bounds for R (m,q,¢5)

Theorem 1 Let f given by (1) be in the class R n,q,¢). Then

264/2¢ Inl

laz| < . N N
\/4 (3l - 217) s> + 2205 + 21

and

26 4inls?
laz] < Inl§ ~ —~>
Bl, 2

Proof Let f € R (11, ¢, ¢) and g be the analytic extension of f~! to U. Then there
exist functions u and v, analytic in U with #(0) = v(0) =0, |u(z)| < 1, J[v(w)| < 1,
z, w € U such that

1+ (D) —1) = Bu(), <), 3)

1+ (®g9)w) — 1) = Z(w), ¢). 4)

S = S =

Next, define the functions p, g € P by

14+u(z

p@) = ()=1+p1z+p2z2+-~-
1—u(z)
14+ v(w

q(w) = 4wt g £ -
1 —v(w)

From the equations mentioned above, one can derive

_p@—-1 1 1 LAY I
u(z)—p(z)+1—2p1z+2<pz zpl)z + 5

_q(w)—l_l 1 _1 5 2,
v(w)_q(w)+1_2q1w+2<q2 qu)w + (6)

Combining (3), (4), (5) and (6)
1, ~ 1
1+ . (DgNH2)—1)=1+ 2U1(5)p1z

+ 4 2(§)P1+2 1(5) P2=,pi) )z +ee (7)
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1, ~ 1
1+ . (Dg8)(w)—1)=1+ 2U1(§)Q1w
+(Lorai+ v (-t ) ) w? +
— w ...
4 2(8)4q1 ) 1(6) | 92 2611
It follows from (7) and (8) that

[~2]qaz _ Ui

n 2
Bl,as  Ui(c) P\  Ux) ,
n = 5 P2 — ) + 4 V241

—[2lgaz _ Ui()qn
n o 2

and

(3] Ui(s) at\  Ua(s)
nq(2a§—a3)= 12§ (612— 21)—1- 245 ai,

From (9) and (11) we obtain

P1 = —q1.

~

2[2]qa% U12(§) 2 2
2 T4 (P +41)-
If we add (10) and (12)

20243 _ Ui(s) Ua(s) = Ui(s)

, (Pt + . (Pt + 4.

Using (14) in (15)

n n 2

3, 1[U)-U ~ U
2[[]q_ 2[ 2(5) 1(5)}[2]§]a%= 1) o

Ut (s)
From Lemma 1, (2) and (16)

264/2¢ In

laz| < . _ _
\/4 (13, - 217) s> + 2205 + 21

®)

€))

(10)

Y

12)

13)

(14)

5)

(16)
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Next, if we subtract (12) from (10) we get

2(3] —
[31q (a3 U12(§) (2 — a) + Uax(s) — Ui(s) P — D). (17

—a3) = A

Equations (13), (14) and (17) yield

Ui (s) U S)(pT +47)
az="~"(pp—q)+ 2.
4[3], 8[2],
By Lemma 1
26 | 4nlg?
las| < Inl { ~ ~>
Bl, 21

Remark 1 With the condition n = 1, theorem 1 reduces to the results of Altinkaya
and Yalcin [2].

Theorem 2 Let f given by (1) be in the class Zx (n, ¢). Then

sv/2¢ Inl

laz| < .
V1+2¢+ Blnl —4) &2

and

2¢
las| < In] {In|§2+ 5 }

2.2 Fekete-Szego Inequality for R 7,9, ¢)

Theorem 3 Let f given by (1) be in the class R (n,9,¢)and ¢ € R. Then

laz — taj|
21 o 1) < alnBl, - 2117 + 2020 ¢ + 121
(31, - 4n[3], 62 . . X
- 2|1 — ¢ 3 431, — 21512 + 2[2] 2]
821 — ¢ls o 1oy o A0l = 2167 4+ 2005 + 2,

ami3l, - 212162 + 2206 + 21, 4n(3],¢2
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Proof From (16) and (17)

n*U3 ($)(pa+ q2) nUi(s)
403,03 -Wa-vien ] | 4B

_ n o
=Ui(s) |:(S(§) + 4[?;](,) P2+ (S(Z) 4[3~]q) Q2:|

i) = ¢)
4[nf31,U3(6) - W) — U102 |

az—¢a; = (1-¢) (P2 —q)

where

5(¢) =

So, we conclude that

26n n
~ 0< < -
3, [s(0)] 4631,
laz — ¢a3] <
n
8sls(O)l, s = 4[3~]q

Remark 2 For n = 1 results are same as the results of Altinkaya and Yalcin [2].

Theorem 4 Let f given by (1) be in the class Zx (n, ¢) and € R. Then

kw’ OSH—IISGU_®¥+Q§+1
3ng?
a3 — ¢a3] <
2|1 —¢|g? |1_§|>(3f7—4)§2+2§+1
Bn—4c2+2¢+1’ - 3nc?
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An Adaptive Mesh Selection Strategy )
for Solving Singularly Perturbed St
Parabolic Partial Differential
Equations with a Small Delay

Kamalesh Kumar, Trun Gupta, P. Pramod Chakravarthy,
and R. Nageshwar Rao

Abstract In this paper, an adaptive mesh has been generated using the concept
of entropy function for solving convection-diffusion singularly perturbed parabolic
partial differential equations with a small delay. Similar problems are associated
with a furnace used to process a metal sheet in control theory. The beauty of the
method is, unlike the popular adaptive meshes (Bakhvalov and Shishkin), prior
information of the width and position of the layers are not required. The method
is independent of perturbation parameter ¢ and gives us an oscillation-free solution,
without any user-introduced parameters. The applicability of the proposed method
is illustrated by means of two examples.

1 Introduction

In the last few decades, there has been a growing interest in the study of delay
differential equations due to their occurrence in a wide variety of application
fields such as biosciences, control theory, economics, material science, medicine,
robotics, etc. [1]. Singularly perturbed delay partial differential equations provide
more realistic models in many areas of science and engineering that display time
lag or aftereffect.

Numerical solution of singularly perturbed partial differential equations has been
an active field of research from the last three decades, and an extensive literature
has been developed [2, 3], but theory and numerical solution of singularly perturbed
partial differential equations with delay are still at the initial stage. Lange and Miura
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[4] studied the asymptotic analysis of singularly perturbed boundary value problems
for differential-difference equations. The study of the problem considered in this
paper was started by Ansari et al. [5], where they discussed finite difference scheme
for singularly perturbed partial differential equations on a layer-adapted mesh.
Natesan et al. [6, 7] had given finite difference schemes on Shishkin meshes for large
delay in time. Sharma and Bansal [8, 9] developed parameter-uniform numerical
schemes with general shift arguments. Chakravarthy and Rao [10] had given fitted
Numerov method for singularly perturbed delay partial differential equations on
uniform mesh.

It is noticeable that the standard central difference scheme on a uniform mesh,
when applied on a singularly perturbed partial differential equation, would lead to
oscillatory solution, which means that more points are required in the boundary
layer region. As such the layer-adaptive meshes developed by Bakhvalov [11],
Gartland [12], and others and special piecewise-uniform meshes developed by
Shishkin [13] are serving the purpose. Though the Shishkin meshes are widely used
due to their simplicity, the major drawback is the requirement of prior information
of the location of the layer regions. To overcome this drawback, we proposed
an adaptive mesh using the concept of entropy function for solving singularly
perturbed delay parabolic partial differential equations. The method is independent
of perturbation parameter ¢ and gives us an oscillation-free solution, without any
user-introduced parameters.

The paper is organized as follows: In Sect. 2, we state the problem. In Sect. 3,
the numerical scheme is presented. Section 4 deals with adaptive mesh algorithm,
and we use central difference scheme for solving singularly perturbed delay
parabolic partial differential equation. In Sect. 5, two examples have been solved
to demonstrate the applicability and efficiency of the proposed method. Section 6
ends with brief conclusions.

2 Statement of the Problem

Let2=(0,1),D=2x0,T],and " =17 U I, U I,,where I ={(0,7):0<
t <T}and I = {(1,1) : 0 <t < T} are the left and the right sides of the domain
Dand I, = [0, 1] x [-4, 0].

In this paper, we consider a class of singularly perturbed delay parabolic partial
differential equation of the form

9%u

9
e a4+ b + e Dulx, 1 — )
ax2 ax

Lou(x. 1) ou
sulx,t) = —
at (D

= f(x,1), (x,1) € D,

with the initial data
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u(x, 1) =@p(x, 1), (x,1) €I}, 2
and the boundary conditions
u(0,1) = ¢1(t), on I, and u(l, 1) = ¢ (1), on I, 3)

where 0 < ¢ < 1 is the singular perturbation parameter, § > 0 represents the delay
parameter, and a(x, t), b(x, t), c(x,t), f(x,t) on D and ¢p(x, 1), ¢ (1), ¢-(t) on I
are assumed to be smooth and bounded function that satisfy the conditions a(x, t) +
c(x,t) >0,b(x,t) < B < 0on D. Under the above conditions, IBVP (1) exhibits
boundary layer along x = 0. The existence and uniqueness of a solution of (1)
can be established under the assumption that the data are Holder continuous and
also satisfy appropriate compatibility conditions at the corner points (0, 0), (1, 0),
(0, —§), and (1, —48) and then the required compatibility conditions are

¢5(0,0) = ¢1(0), @p(1,0) = ¢,(0), 4)
2
d‘Z(O) 9 ¢"((2) Dt 40.0)65(0.0) + b0, 0) 22D
t 0x Jx
c(0, 0)¢, (0, —8) = (0, 0) and

do, (0 32¢p(1,0 (1,0
aﬁdt() ¢§(2) (1. 0)gp(1.0) + b(1.0) ¢b( )

0(1,0)¢b(1, =8 =/f1.0). 5)

Under the above assumptions and conditions, problem (1) with the conditions (2)—(3)
has a unique solution [14].

3 Numerical Scheme

When the delay parameter § is smaller than perturbation parameter ¢, the use of
Taylor’s series for the delay term is valid [15]. Using Taylor’s series expansion to
approximate the delayed argument, we get

ulx,t —98) ~u(x,t) —Sus(x,t)+ 0(82). (6)

Substituting (6) in Eq. (1), we get
2

e 2+(a(x D +c(x, ulx, t)+b(x, z) = f(x,0). ()

u
(1—=38c(x, 1)) o
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Let the time interval [0, T'] be partitioned into N equal parts with constant step size
At. We choose the step size At in such a way that the delay parameter § = s At,
where s is some positive integer.

Let 0 = 1,11, ...,ty = T be the mesh points such that z; = j]{, = jAt, j =
0,1,..., N. Applying backward Euler formula for time derivative in Eq. (7), we
obtain a system of ordinary differential equations at each time step as

UJ(x) — Uj’l(x) aZUf( )

(1 = 8c(x)) + (a(x) + c(x) U’ (x)

At ax2
AU (x)
+b(x) 9 = = f(x),
where U/ = U (x, tj) ~u(x,tj),alx) =a(x,t;),b(x) = b(x,tj),c(x) = c(x, tj),
and f(x) = f(x,t;), j =1,2,..., N. The above equation can be rewritten as
d*U/ du’ j
£ dx2 +b(x, 1)) dx + P(x, 1)U’ = 0(x,1)), 8)

where P(x,1;) = (a(x,tj) +e(et)) + 1"32(:’”)) and Q(x. 1) = (f(x,tj) +

1=8c(x,t)) j—1
U

The boundary conditions (2—3) can be written as

U(x,0) = ¢p(x,0), xel0,1],
U©,1;) = ¢i(t)), UN, 1) =), j=1,2,....,N

€))

We solve (8) along with the conditions (9) using central difference scheme with a
minimum number of mesh points on uniform mesh in space direction. The presence
of the singular perturbation parameter ¢ leads to occurrences of wild oscillation in
the numerical solution. In order to avoid such oscillations, a large number of mesh
points are required in layer region, when ¢ is very small. To overcome this, we
generated a variable mesh using entropy function. The strategy for generating an
adaptive mesh is given in the following section.

4 Adaptive Mesh Algorithm

We now rewrite Eq. (8) as
d2 dUu .
- d , Tb(x ) dx + P(x)U = Q(x) where U = U’ = U(x, t;) > u(x,t;).
Now, we define the entropy production equation by multiplying with an appro-
priate test function. From the theory of scalar conservation law, we know that
U? is always an appropriate entropy variable, and therefore 2U (x) is a suitable

multiplying test function [16]. On multiplying with the test function, we obtain
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2
<_£d UiV 4 P(x)U) x 2U (x) = Q(x) x 2U (x). (10)
dx dx

After simplifying, Eq. (10) can be written as
—eZ" +bZ +2PZ +2¢(U')? =2UQ, where Z =U?.
The above equation can be rewritten as
—eZ"+bZ —2UQ = —2PZ — 2c(U')*. (11)

The right-hand side of Eq. (11) is considered as our entropy function and is always
negative for all values x € [0, 1]. As we know that, if we solve Eq. (8) by using
central difference method, we get oscillations inside and near the boundary layer
region. If we calculate the discrete analogue of the left-hand side part in (11)
using the same central difference operator by taking Z; = Ul.z, where U; is the
central difference computed solution of Eq. (8), we observe that the left-hand side
is negative whenever the solution is smooth enough and positive where we have
boundary layers. If we write the right-hand side part of (11) at the mesh point
(xj, t j), as

— 2P, ;(Ui; . Ui1)) —2e< T 1”) ( il ”f>, (12)

Xi — Xi—1 Xi+1 — Xi

we get the positive value whenever the oscillations occur.

To generate the adaptive mesh, first we calculate entropy function with a
minimum number of initial uniform mesh points in space direction. Since the value
of entropy function is always negative, but due to oscillation behavior of the solution
at some mesh points, it will be positive. We find out the location of the mesh point,
where the entropy is maximum and positive. We add mesh points, one to the left and
other to the right side of the mesh point where entropy is maximum and positive.
Now, we compute the solution with newly generated mesh points (nonuniform
mesh) using central difference method and check whether the entropy is positive or
negative throughout the interval. If the entropy is positive, we repeat the process of
adding mesh points. We repeat this process till we get entropy negative throughout
the interval.

We discretize the Eqgs. (8)—(9) using central difference scheme on nonuniform
mesh as follows:

LNU,',j = —852U,',j + b,',jDoUi,j + P Ui j= 0, (13)
with the boundary conditions

Uio=®p,i0. Uoj=d¢j, ULj=drj, (14)
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Ui — Ui Ui i —Ui_y ;
sJ L] — L] i ]
where D+U,~,j = _ 7 D U;; = _ _ ,
Xi+1 — Xi Xi — Xi—1
U'+1 i —Ui_1.i 2(D+U' D U; )
DOUi,j — i ] i sJ , 521/!()61') — L] L] .
Xi4+1l — Xi—1 Xi+1 — Xi—1

We solved the system of Eq.(13) with the boundary conditions (14) by Gauss
elimination method with partial pivoting.

5 Numerical Results

To demonstrate the applicability of the method presented above, we consider two
test problems. Since the exact solution is not known, we use the following double
mesh principle to compute the maximum point-wise errors:

EM.N

M,N 2M,2N
s = max | U™ " (x;,1;) —U (x2i, 12) |
’ 0<i<N

where UMV (x;, t 7) is the solution obtained on a mesh containing M + 1 points in
spatial direction and N + 1 points in temporal direction.
The numerical rate of convergence is calculated using [17] the formula

M.N 2M 2N
mn 0 E s —Els |

&8 log?2

%u 9
o _88):; _ az — 2¢ U, t—8), (x,1) € (0,1)x(0,2], with
the initial data u(x,t) = e’(’“/*/e), (x,1) € [0,1] x [, 0], and the boundary
conditions u(0, 1) = e~ and u(1, 1) = e~ +1/Vo 1 € (0, 2].
9 Pu 9 1+ x?
Example2 " —¢" " — 8” T B =8, @ eO.1) x
X X

(0, 2], with the initial data u(x,t) = 0, (x,t) € [0, 1] x [—§, 0] and the boundary
conditions #(0,¢) = 0and u(1,¢) =0,¢ € (0, 2].

Example 1

The numerical solution for these examples are plotted in Figs. 1, 2, 3,4, 5, and 6.
The maximum point-wise errors and rate of convergence for these examples for
different values of perturbation parameter ¢ are presented in Tables 1 and 2.
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Fig. 1 Numerical solution of
Example 1 with the central
finite difference scheme on
uniform mesh for ¢ = 2719,

§ = 0.02¢, M=44, and N=40

Numerical Solution u(x.t)

Fig. 2 Surface plot of the
solution of Example 1, using
adaptive mesh for & = 2710,
8 = 0.02¢, M = 10(initially),
M* = 44, and N=40

Numerical Solution u(x.t)

Fig. 3 Numerical solution of ' 4
Example 1 using adaptive 0.04
mesh for different time levels &r|
fore =210 5 = 0.02¢,

2
M = 10(initially), M* = 44, S 0.03 6f |
and N=40 g 'ﬁ
Ei 4\
< 0.02 R\
v 2 .\I-,_, W
= .
.8
5 0.01 0
£ | 0.005 0.01 0.015
Z k
0 0.2 0.4 0.6 0.8 1
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Fig. 4 Numerical solution of
Example 2 with the central
finite difference scheme on
uniform mesh for ¢ = 2720,

8 = 0.05¢, M=42, and N=40

Fig. 5 Surface plot of the
solution of Example 2, using
adaptive mesh for & = 272,
6 = 0.05e, M = 10(initially),
M* = 42, and N=40

Fig. 6 Numerical solution of
Example 2 using adaptive
mesh for different time levels
for e = 2729, § = 0.05¢,

M = 10(initially), M* = 42,
and N=40

K. Kumar et al.

Numerical Solution u(x.t)
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Table 1 Maximum absolute error for Example 1 for different values of ¢ with § = 0.02¢, M=10,
and N=40

e Generated mesh (M*) Max. error Rate of convergence (RM N )
27 80 0.0637 2.1557
2-8 70 0.0652 2.1838
279 42 0.0656 2.1628
2710 44 0.0669 2.1705
271 46 0.0680 2.1815
2712 48 0.0685 2.1870
2B 80 0.0688 2.1898
27 g2 0.0689 2.1912
2715 84 0.0690 2.1919
2716 g6 0.0690 2.1923

Table 2 Maximum absolute error for Example 2 for different values of ¢ with§ = 0.05¢, M=10,
and N=40

£ Generated mesh (M*) Max. error Rate of convergence (R LYy
277 16 0.1620 2.1520
28 18 0.1655 2.1665
279 20 0.1673 2.1739
2710 2 0.1682 2.1776
2-1 24 0.1687 2.1795
2712 26 0.1689 2.1804
2-13 28 0.1691 2.1809
2714 30 0.1691 2.1812
2715 3 0.1691 2.1813
2716 34 0.1692 2.1813

6 Conclusions

In this paper, an adaptive mesh has been generated using the concept of entropy
function for solving convection-diffusion singularly perturbed parabolic partial dif-
ferential equations with small delay. The method is based on central finite difference
scheme on nonuniform mesh. It has been found that our algorithm gives oscillation-
liberated solution with a minimum number of mesh points. The efficiency of the
method is tested with two numerical examples. From the results, it can be observed
that the method converges uniformly with respect to the perturbation parameter ¢
and convergence quadratically. From the numerical results, it is concluded that our
adaptive mesh offers a significant advantage over Bakhvalov and Shishkin meshes.
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Steady Finite-Amplitude )
Rayleigh-Bénard-Taylor Convection s
of Newtonian Nanoliquid

in a High-Porosity Medium

P. G. Siddheshwar and T. N. Sakshath

Abstract Two-dimensional, steady, finite-amplitude Rayleigh-Bénard-Taylor
convection of a Newtonian nanoliquid-saturated porous medium is studied using
rigid-rigid isothermal boundary condition. The nanoliquid is assumed to conform to
a single-phase description and occupies a loosely packed porous medium. Critical
Rayleigh number and Nusselt number as functions of various parameters are
analyzed, and this is depicted graphically. A non-zero Taylor number demands
a higher temperature difference between the horizontal boundaries compared to that
of a zero Taylor number case in order to initiate instability in the system and thus
inhibits advection of heat. The isothermal boundaries of the rigid-rigid type do not
allow as much heat to pass through as that by the free-free type, and hence we see a
reduced heat transfer situation in the former case.

Keywords Nanoliquid - Rayleigh-Bénard convection - Rotation - Porous
medium - Linear - Non-linear - Stability - Single-phase

Nomenclature

Greek and Latin symbols

o Thermal diffusivity of the A,B,C,D.E Amplitudes of convection
nanoliquid-saturated medium

B Thermal expansion coefficient C), Specific heat at constant
of the nanoliquid- saturated pressure of nanoliquid-
medium saturated medium

X Nanoparticle volume fraction  g=(0,0,-g) Acceleration due to gravity
AT Temperature difference K Permeability of the medium
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A Brinkman number

©  Dynamic viscosity of
the nanoliquid

©  Dynamic viscosity of
the nanoliquid-
saturated medium

v Wave number
€ Angular velocity
¢  Porosity

Y Dimensional stream
function

p  Density of the
nanoliquid-saturated
medium

o~ Porous parameter

® Non-dimensional
temperature

Subscripts and Superscripts

0  Reference value

1 Liquid property in
porous medium

b  Basic state
Critical

1 Base liquid

nl  Nanoliquid

1 Introduction

P. G. Siddheshwar and T. N. Sakshath

x,X

z,7.

np

FF
RR

Thermal conductivity of
the nanoliquid-
saturated medium

Ratio of specific heats

Nusselt number of the
nanoliquid-saturated
medium

Pressure
velocity vector

Rayleigh number of the
nanoliquid-saturated
medium

Taylor number

Dimensional and
dimensionless
horizontal coordinates

Dimensional and
dimensionless vertical
coordinates

Distance between the
plates

Nanoparticle
Solid

Perturbed quantity
Free-free boundaries
Rigid-rigid boundaries

The practical importance of Rayleigh-Bénard convection in a clear fluid and in a
porous medium is now well known [5, 10]. The effect of rotation is known to have
a significant impact on the flow in a porous medium. The effect of rotation on
the onset of convection and heat transfer using a local thermal equilibrium (LTE)
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model is investigated in many works including those of Riahi [11] and Vadasz
[15]. Subsequently a number of researchers have also studied various aspects of the
problem both experimentally and theoretically [2, 8] in a clear fluid. The thermal
instabilities of a fluid contained in a rotating system were studied by Busse [4].
Desaive et al. [7] studied the onset of stationary convection in a rotating porous layer.

Several works considering stability analysis in nanoliquid-saturated rotating
porous layer have been reported [1, 3, 13, 14]. The thermal instability in a
nanoliquid-saturated rotating porous layer was studied by Bhadauria and Agarwal
[3] by considering the effect of thermophoresis and Brownian motion. Similar study
considering an anisotropic porous layer was carried out by Agarwal et al. [1]. Linear
and nonlinear realm of Rayleigh-Bénard-Taylor convection in a Newtonian nanolig-
uid and nanoliquid-saturated high-porosity medium was conducted by Siddheshwar
and Sakshath [13, 14].

The following unconsidered aspects are investigated in the problem:

1. The onset of Rayleigh-Bénard-Taylor convection and quantification of heat trans-
port in nanoliquid-saturated medium using rigid-rigid isothermal boundaries.

2. The results on Rayleigh-Bénard-Taylor convection of Newtonian base liquids

3. Regulation of the residence time of heat in the system using nanoparticles and
porous matrix

2 Mathematical Formulation

The schematics of the physical system and the coordinate system are illustrated in
Fig. 1. The system is rotated with constant angular velocity €2.
The dimensionless forms of governing equations for the problem are:

00 aV
a1V4lIJ — a%Ra ax alaz(Vz\Il) + alx/Ta 97 =0, (1)

v +aMV?0O +
— a
ax !

IV, 0)
X, 2)

0, 2

Cold, To

Nanoliquid-

saturated

porous medium :::

Hot, To+AT

Fig. 1 Schematic representation of Rayleigh-Bénard-Taylor convection of Newtonian nanoliquid



82 P. G. Siddheshwar and T. N. Sakshath

N7 119w
AVZV—GZV—\/Taa o, vy _

=0, 3
3Z ' Préa 3(X,Z)

where V is the y-component of velocity which varies along x and z directions:

o
a; =  (thermal diffusivity ratio), A = H (ratio of viscosities),
u

oy
, W (pBIWAT o . :
o = © (porous parameter), Ra = (effective Rayleigh number),
na
2pQh%\°
Ta = ( '(;) ) (modified Taylor number), Pr = H (Prandtl number).
2 jofed

In the next section, we make a linear stability analysis and study the onset of
convection.

2.1 Linear Stability Analysis for Marginal Stationary
Convection for Isothermal Rigid-Rigid Boundaries

The isothermal rigid-rigid boundaries satisfy:

o 1
v = =0=V=0atZ=+_. 4)
07 2

The normal mode solution for solving eigen boundary value problem is:

U = Asin(vX) (Cy)e(Z),

) 1
® = B cos(vX)sin |:7r <Z+ 2):|, ’ (5)

V =D sin(vX) sin |:27'[ (Z + ;):| )

where A, B, and D are the amplitudes, v is the wave number, (Cr).(Z) is the
Chandrasekhar function (even solution) [5, 6, 9], and ©1=4.73004074. Substituting
Eq. (5) in the nondimensional form of the governing Egs. (1)—(3) and following
the standard orthogonalization procedure, the critical value of nanoliquid Rayleigh
number for stationary onset can be arrived at in the form:

M2 (FiA (] +2) + Fp? (2002 + 02) + Fiv2o?)

RaRR —
¢ 2F}?

(©)
M&2F;Ta

N (62 = 02 4 72,
7{2F32vc2 (AvZ +472A +02) (0 ¢ )
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M“1 M“1

1 tan( 2 ) 1 tanh( 2 ) 4
where F; = — + — , )

1+ cos (u1) 7 1 + cosh (u1) K1

M1 M1

e ! +tan<2)_ po () ®)

1+ cos (i1) ©i 1+ cosh (1) wr

47TM% 472 tan ('uzl) 472 tanh (le)
F3=_, 4 Fa= 2_ 2 2, ,2 ©)

Tt — 4= — py 4= + g

The nonlinear analysis will now be used to study the heat transport.

2.2 Weakly Nonlinear Stability Analysis

The truncated representation for making a weakly nonlinear analysis for rigid-rigid,
isothermal boundaries is:

U = Asin(weX) (Cp)e(2),

® = B cos(v.X) sin [n (Z + ;):| — Csin [27‘[ (Z + ;):| )

V =D sin(v.X) sin |:271 <Z + ;>i| + E sin(Qu.X)sin [n (Z + ;)i| .

Substituting Eq. (10) into Egs. (1)—-(3) and using the orthogonality condition with
the eigen functions on the resulting equations, we get a system of four algebraic
equations whose solutions are:

A% =

8M272824%r 1 2v.F
e [1— :|,B— AL an

22 - 2
V2 F: r May6:r

_ F3F5v§ 2 2F3 1 1 D= 2F4\/Ta
 4M272a}8kr Fs T aA (V2 +4r2) + e

R
where r = R ZR is the scaled Rayleigh number, Fi, F;, F3, and F4 are given by
a

¢

Egs. (7)-(9) (12)

167‘[2/1,% (/fl‘ + 397‘[4)

and F5 = .
ud —8274u + 81zt

13)

We next calculate the Nusselt number.
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2.3 Nusselt Number

The amount of heat transport by Taylor-Bénard convection for rigid-rigid isothermal
boundary can be written down in terms of a Nusselt number, Nu, given by:

N 4 Heat transport by advection
u = .
Heat transport by molecular diffusion

The Nusselt number for rigid-rigid, isothermal boundaries is given by:

2nF3\ k 1
NufRR =142 1— |, 14
‘ * ( Fs )kl [ r} (19

where Fzand Fs are given by Egs. (9) and (13) and r is given by (12).
In the succeeding section, the results obtained are discussed and made some
conclusions.

3 Results and Discussion

The thermophysical properties of ethylene glycol [12] as the base liquid, copper
[12] as the nanoparticle, and 30% glass fiber-reinforced polycarbonate porous
material [16] are considered. The thermophysical properties of ethylene glycol-
copper-saturated porous medium is calculated, and the same is tabulated in Tables 1
and 2.

The linear and nonlinear realms of two-dimensional Rayleigh-Bénard-Taylor
convection of a Newtonian nanoliquid in a high-porosity medium are investigated.
Figure 2a demonstrates the fact that increasing the rotation rate decreases the heat
transport. This is because the creation of the y-component V uses up some energy
and thereby leads to delayed onset.

We also infer Ra. increases with increase in A, and this result is depicted in
Fig. 2b. Increase in the value of A signifies decrease in the value of permeability (or
porosity), and this means less space is available for the nanoliquid to flow. Hence

Table 1 Thermophysical properties of 30% glass fiber-reinforced polycarbonate porous material
at 300K [16]

pslkgm™] (Cp)slV/kgKl  ks[W/mK] a[m?*s™! x 107] ¢

1430 1130 0.24 1.4852 0.88

Table 2 Thermophysical properties of ethylene glycol-copper-saturated porous medium at 300 K
for volume fraction, x = 0.06. and ¢ = 0.88

/

P Cp k B H o (PCp) (0B)
[kg/m3] [J/kgK] [W/mK] [K~! x 10°] [kg/ms]  [m2s~! x 107] [/m3 K x107°] [kg/m3 K]
1565.09 1662.34 0.29294 39.17174  0.02522673 1.12545 2.60172 0.613073
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3.0 ‘ 3.0 ¢ N
) Rigid-Rigid )5 RigidRigid__—
2.0 20t T
Z 15 S 15
1.0 —o—Lrn® e Ta = 1000 1.0 ——~"-" | A
o ZZ Ta=2000 0s . A=16
00072000 4000 6000 000 %0 2000 4000 6000 8000
Ra Ra
(@) (b)
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Fig. 2 Variation of Nusselt number, Nu with Rayleigh number, Ra for different values of (a)
Taylor number, Ta, for Brinkman number, A=1.2, porous parameter, o2=5, volume fraction,
x=0.06 and porosity, ¢$=0.88. (b) A, for o2=5, x=0.06, Ta=100 and ¢=0.88. (¢) o2, for A=1.2,
%=0.06, Ta=100 and ¢=0.88. (d) x, for A=1.2, 02=5, Ta=100 and ¢=0.88

this results in delayed onset. The Nusselt number decreases with increase in A which
is also depicted in Fig. 2b. The reason behind this is similar to the one explained in
the context of Ra..

The increase in the value of Ra. with increase in o2 is shown in Fig.2c. The
porous medium is a bad conductor of heat compared to the nanoliquid, and this
implies larger Rac, thereby slowing down of the flow and delayed onset. The Nusselt
number decreasing with increasing value of o2 is also depicted in Fig.2c. The
reason behind this is similar to the one explained in the context of Ra,.

From Fig. 2d, it is clear that Ra, decreases as x increases as is to be expected.
This implies that advanced onset of convection with increase in x leads to an
enhanced heat transport situation.

4 Conclusion

1. The critical values of Ra and Nu of the nanoliquid-saturated porous medium in
free-free [13] and rigid-rigid boundaries vary as shown below:
Ralt < RaRR, Nufl > NuRR,
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. Regulation of the residence time of heat energy can be made by considering

ethylene glycol as the base liquid, copper as the nanoparticle, and glass fiber-
reinforced polycarbonate porous material.

. The effect of increasing A, o2, and Ta on the onset of convection leads to a

“stabilized system,” and x has the opposite effect.
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MHD Three Dimensional )
Darcy-Forchheimer Flow of a Nanofluid ke
with Nonlinear Thermal Radiation

Nainaru Tarakaramu, P. V. Satya Narayana, and B. Venkateswarlu

Abstract The numerical analysis of 3D magnetohydrodynamic Darcy-Forchheimer
nanofluid flow with nonlinear thermal radiation is explored. Utilizing suitable
similarity transformations, the governing PDEs are transformed into nonlinear
ODEs. The resulting equations are then solved numerically by the most robust
shooting technique with RK method of fourth order. The effect of various
parameters like radiation, temperature ratio, Forchheimer and porosity parameters
on A(n) and ¢(n), skin friction coefficient, and rate of heat transfer is discussed
graphically. It is observed that the heat transfer rate reduces and skin friction
coefficient increases for the rise of F, and A.

Keywords MHD - Nanofluid - Nonlinear thermal radiation -
Darcy-Forchheimer porous medium

1 Introduction

The nanofluid technology is one of the effective fields which is used in industrial
as well as engineering applications. Nanofluids are dilute suspensions of fibers
and particles of nanosize submerged in liquids, and these nanoliquids change the
thermal performance. The thermal conductivity is the most important in various
physical implications because the thermal conductivity of the solids is higher than
liquids. Choi [1] studied the enhancement of heat transfer based on the thermal
conductivity of nanofluids. Theoretical and experimental reviews on nanofluids
were presented by Wang and Mujumdar [2, 3], and Ahn and Kim [4]. Cai et
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Nomenclature

a, b constants
u, v, w Velocity components along x, y, respec-
tively
K Permeable of porous medium

. B3
M Magnetic field=""0

pra

T Ambient fluid temperature
h y Heat transfer coefficient

. _(pC) p Do Coo
N; Thermophoresis parameter= (0C) v
Nu, Nusselt number
Np Brownian motion coefficient
_(p0), D1 (Ty—Too)
T (O T

C Nanoparticle volume fraction
C ¢ Skin friction coefficient

F, Inertia coefficient of porous medium F, =
(K)Ii /2

o, Thermal diffusion= ( pg)/
T Fluid temperature (K)

A Porosity parameter= %

ak

L 160*T3
R; Radiation parameter 5 , 7 s

C)famK*

Pr Prandtl number= /
Vwy

Re, and Rey Reynolds number=""* and "

D g Brownian diffusion

y Biot number= Z; (U(’ )1/2

f Dimensionless stream function
f' Dimensionless velocity

C, Specific heat constant kJ / kg K
By Dimensionless magnetic field

Sc Schmidt number=
B

o Ratio parameter (b/a)

C, Variable concentration (K g m=3)
D7 Thermophoresis diffusion (m?.s7hH

K* Mean absorption coefficient
Ty Temperature of hot fluid

Greek symbols
v Kinematic viscosity = p“f
Coo Uniform  ambient  concentration

(Kgm™2)

6 Dimensionless temperature

(pc) , Heat capacity of the nanoparticle mate-
rial (J m3K )

¢ Dimensionless concentration

F Forchheimer

n Similarity variable

v Kinematic viscosity (m2.s~h

o Electrical conductivity (m?s~1)

w Dynamic viscosity of nanofluid (Ns.m~2)
o* Boltzmann constant (wm 2K ~%)
p Fluid density (K g.m=3)

p ¢ Fluid density

w Dynamic viscosity (Pa.s~")

Pny Density of nanofluid (kg.m_3)
Subscripts

w Wall mass transfer velocity (m s7h
oo Condition at free stream

al. [5] developed the nanofluids and nanoparticles based on fractal approaches.
Kakac and Pramuanjaroenkij [6] analyzed the heat transfer enhancement in thermal
conductivity due to nanoparticle decomposition. Das [7] studied the influence of
heat transfer characteristics of a nanofluid in a rotating system. Later, Narayana et
al. [8, 9] examined the heat transfer of a nanofluid flow past a vertical porous plate
with different heat and mass transfer effects.

The Darcy-Forchheimer model [10, 11] has many applications in engineering
and thermal insulation materials like nuclear waste disposal, petroleum resources,
energy storage units, solar receivers, heat exchanger, beds of fossil fuels, and so on.
The influence of heterogeneous-homogeneous reactions on Darcy-Forchheimer flow
is analyzed numerically by Khan et al. [12], Muhammad et al. [13] and Hayat et al.
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[14,15]. Mahammad et al. [16] presented magnetohydrodynamic flow on non-Darcy
porous medium. The authors [17, 18] developed 3D flow on rotational channel in the
presence of porous stretching wall. The effect of MHD on different non Newtonian
fluid flow was studied numerically by Yousif et al. [19], Satya Narayana et al. [20],
and Tarakaramu and Satya Narayana [21].

The objective of present paper is to study the numerical analysis of 3D MHD
Darcy-Forchheimer flow of nanofluid over a stretching surface with nonlinear
thermal radiation. The governing equations are solved numerically by RK method
with the help of shooting scheme. Numerical results are plotted and analyzed for
various values of emerging flow parameters.

2 Mathematical Analysis

Assume the steady 3D magnetohydrodynamic flow over stretching surface filled
with porous space and the space characterized by Darcy-Forchheimer relation with
nonlinear thermal radiation. Choose a Cartesian coordinate system (x, y, z) in
which x— and y—axes are along the stretchable surface in the direction of the
flow and z—axis is normal to it. The physical model and coordinate system are
shown in Fig. 1. The stretching velocities Uy, (x) = ax and V,,(y) = by are along
in the directions of x and y. Apply the effect of a constant magnetic field By in
the direction of z and perpendicular to the surface (i.e., xy-plane). The surface
of the sheet is subjected to the convective boundary conditions. The continuity,
momentum, energy, and spice concentration equations in the presence of thermal
radiation and magnetic field over a stretching surface can be expressed as

7 | Fluid Saturated Non-

VN : :
7| Nanopesticle size Darcy Porous Medium

(microscopic view)

A
AL )
Q/\; )

,\(_."‘ AN BD-
S ST
2 Q../bq‘

w “/

Fig. 1 Flow configuration and coordinate system
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=0 1
ox dy 0z M
ou + ou 4 ou 9%u v i oBg @)
u v w_ = — u—Fu®— u
ox ay 9z v 972 K 0

+ + 9%v v Pyl UB(% 3)
u v w = — v — v — v
“\oz2) "k

ox y 0z Z Y
aT T aT 3T 1 0 (pC) 3T 3C Dy (0T \*
W A dw = - @ P00 (py T()
ox ay 0z 0z2 (pC)y 9z (pC)y 0z 0z Two \ 02
“)
oc  ,9C ¢ _p 3’C L Dr 3’7 5
u v w =
ax ' ay 9z P92 T Ty \ 022
The relevant boundary conditions are
u=ax, v = by, w =0,
aT ac Dr (8T
—kfayzhf(Tf—T), DB(BZ)-FTOZ(HZ):O at z=0
u— 0, v— 0, T — Tw, C — Cxo as z— o0
The radiative heat flux g, according to the Ref. [22] is
4ot oT? ©
= "3k a2
Differentiating Eq. (6) with respect to z, we get
dqr _ _160* 0 (T3 aT
9z~ 3K* 9z 0z
Substituting above equation in Eq. (4), we get
oT n oT n aT 3T n 1 160* 9 T38T
u v w =«
ax dy 9z "9z22 " (pC)y \ 3K* 02 9z
(pC) dT 9C  Dr (T \*
+ 7" pg + 7 (7
(0C)y 0z 0z Teo \ 02

The similarity transformations are

u=axf'(m), v=aygm, w=—yav(f+g
o= =0z
In view of above similarity transformations, the Egs. (2)-(4) and (7) become

A = (f) A+ F) = f(MA+3) =0 )

g///+g/(f+g)/_ (g/)2(1 +F) —g/(M+A) -0 9)
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<1+Rd(9(9w— )+ 1)°

Pr ) 6"+ Np¢'0' + N6 +6'(f +g) =0 (10)

8"+ Sc! (f + ) + 6" (gb) - (11)

Corresponding boundary conditions are

f=01 f/=1, g=0, g/ZOl, 9/2_)/(1_0)1

Npp + N6’ =0, at =0
=0, g—0, 6—->0, ¢—0, as 1n— oo

Moreover the skin friction coefficient and Nusselt number are below:
V(Rex)Cyrx = —f"(0)

V(Rex)Cry = —a*¢"(0)
J(Ileex)N”X =—(1+Ra(@On — 1)+ 1)*)0'(0)

3 Results and Discussion

Equations (8)—(11) are solved numerically by RK method along with eminent
shooting procedure. The influence of various parameters on 6 (1) and ¢ () profiles
is elucidated with the help of graphical illustration from Figs. 2, 3, 4, 5, 6,7, 8, 9,
10, 11, and 12.

0.2 T T T
A=0.5, v=0.5, «=0, Fr=0'5’ M=0.01

N, =0.5, N, =0.2, Pr=2, Sc=2, T,, =0.2

0.15

01
Ry4=0.4,0.8,1.2,1.6

—>0(n)

0.05 |

0 0.5 1 1.5 2

Fig. 2 Influence of R; on 6(n)
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Fig. 3 Influence of R; on ¢ (n)
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Fig. 5 Influence of 6,, ¢ (1)
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Fig. 6 Influence of F, 6(n)
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Fig. 7 Influence of F, on ¢ ()

The effect of Ry on 6(n) and ¢ (n) is illustrated in Figs. 2 and 3. It is noted that
the increasing values of R, correspond to results in an enhancement of the fluid
temperature and lead to decrease in concentration. Physically, thermal radiation is
inversely proportional to the thermal diffusivity.

Figures 4 and 5 depict the 6(n) and ¢(n) profiles for various values of
temperature ratio parameter 6,,. It is pointed out that the temperature increases for
distinct values of 6,,, while opposite effect occurs in concentration.



94 N. Tarakaramu et al.

0.2 T T T
~v=0.5, «=0.1, Fr=0.1, M=0.01, N h=0.5
N;=0.2, Pr=2, R4=2, Sc=2, §,,=0.2

0.15

0.1

—>0(n)

0.05

1.5 2

Fig. 8 Influence of A on 6(n)

0

-2 A=0.1,0.2,0.3, 0.4

—>0(n)

v=4, a=0.1, F,=0.5, M=2, N, =0.5
N;=0.2, Pr=1.5, R4=1.2, Sc=1.5, 6,,=0.2

4 T I I
0 0.5 1 15 2

—>>1

Fig. 9 Influence of A on ¢ (1)

The variations of temperature and concentration fields with distinct values of
inertia coefficient F, are shown in Figs.6 and 7. Increasing values of inertia
coefficient F, leads to diminish both the temperature and concentration fields. This
is due to the fact that F, is inversely proportional to permeability porous medium in
fluid motion.

Figures 8 and 9 are plotted to examine how the fluid temperature and concentra-
tion profiles are affected with the variation in porosity parameter A. It is clear that
the fluid temperature diminishes with rising values of A; however the reverse trend
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Fig. 11 Influence of F;, via A on Re;/szy

is observed in the case of concentration. Physically, the strong drag force applied on
high speed of porous flow of nanoparticles yields to the weak temperature and high
concentration.

Figures 10, 11, and 12 depict the influence of F, on skin friction coefficients and
Re;l/ *Nu x- It is observed that skin friction coefficient along the x-axis and rate
of heat transfer decreased with the rise of F, values; on the other hand F, shows

opposite trend in case of skin friction coefficient along the y-axis.
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4 Conclusion

Three-dimensional MHD Darcy-Forchheimer nanofluid flow over stretching surface
with nonlinear thermal radiation and convective condition is investigated in the
present work. The present work finds the application in the field of engineering
and geophysical such as groundwater, porous pipes, blood flow via arteries or
lungs, insulation of granule and fiber, grain storage, casting solidification, vessels of
gas-cooled reactors, machines of high-power density, petroleum reservoirs, porous
bearings, and gas-cleaning filtration.

The most important conclusions of this study are as follows:

1. The temperature profile increases with increasing values of R; and 6,,, while it
decreases with raising values of F, and A.

2. Anincreasing value of Ry , 6y, and F; leads to dwindle in concentration whereas
increase with rising values of X.

3. Both the directions of skin friction coefficient dwindle for distinct ascending
large values of A.
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Effect of Electromagnetohydrodynamic )
on Chemically Reacting Nanofluid Flow ke
over a Cone and Plate

H. Thameem Basha, I. L. Animasaun, O. D. Makinde, and R. Sivaraj

Abstract The intention of this communication is to explore the significance
of electromagnetohydrodynamic (EMHD) on the fluid transport properties of a
chemically reacting nanofluid with two types of geometries. Simulations have been
done to investigate the controlling equations by utilizing Crank-Nicolson scheme.
Influence of embedded parameters such as Hartman number, heat source/sink,
Brownian diffusion, chemical reaction, and thermophoretic diffusivity is graphically
presented. Tables demonstrate the significant impact of sundry parameters on skin
friction factor and heat and mass transfer rates. It is observed that the electrical field
parameter has high influences on the fluid flow and heat transfer characteristics.

Keywords Non-uniform heat source/sink - Thermophoretic diffusivity -
EMHD - Thermal radiation - Chemical reaction

1 Introduction

Nowadays, the use and analysis of the magnetohydrodynamics (MHD) in power
industries, medical equipment, biomedical treatment, and thermal systems have
gained considerable attention such as magnetic resonance imaging (MRI) equip-
ment, cooling of nuclear reactors, transportation of biological materials, blood
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pump devices, magnetic compass in airplanes, drug delivery, hyperthermia, and
high-temperature plasma. Makinde et al. [1] utilized the Buongiorno model for
analyzing the heat and mass transport mechanism of nanofluid under the influence
of Lorentz force. Kandasamy et al. [2] analyzed hydromagnetic flow over a vertical
surface with solar radiation. The influence of Lorentz force in nanofluid flow subject
to Navier slip condition was examined by Khan et al. [3]. Khan and Makinde [4]
scrutinized the influence of convective heating in hydromagnetic nanofluid flow
over a flat plate. Hayat et al. [5] investigated the MHD peristaltic transport past
a symmetric channel. Nadeem et al. [6] simulated 2D Maxwell fluid flow in an
extending surface under the influence of a magnetic field. Mabood et al. [7] used RK
Fehlberg method to study water-based nanofluid flow in an extending surface with
applied magnetic field. Farooq et al. [8] examined the role of different parameters
on Brownian motion and thermophoretic diffusivity of MHD viscoelastic nanofluid.
Sheikholeslami et al. [9] examined the flow of hydromagnetic nanofluid with
radiative heat flux over two types of plates. Rashad et al. [10] investigated the flow of
Cu water-based nanofluid in a lid-driven cavity. Srinivas et al. [11] employed the 2D
Buongiorno model to examine the heat and mass transfer behavior of hydromagnetic
nanofluid in a porous duct. Bondareva et al. [12] reported the influence of Lorentz
force on nanofluid flow in a trapezoidal cavity. Sheremet et al. [13] employed the
Cu nanoparticle to upsurge the heat transfer in a wavy porous cavity in the presence
of Lorentz force. The prime idea of this investigation is to explore the influence
of EMHD on chemically reacting nanofluid flow in two different geometries. The
Crank-Nicolson scheme has been applied to examine the controlling equations.
Such consideration is significant in drug targeting and cancer therapy research. The
impacts of diverse pertinent parameters are studied, and the outcomes are indicated
graphs and tables.

2 Mathematical Formulation

We examine the two-dimensional (x, y) nanofluid flow over two different geome-
tries (cone and plate) as demonstrated in Fig. 1. In a coordinated system, x and y
are the surface of the geometries and normal to the geometries, respectively. The

Fig. 1 Geometry of the
problem
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transverse magnetic field of strength By and electrical field E( are implemented
in the y-direction. It is assumed that the neighboring (wall) fluid temperature
(Ty) and concentration (C,,) are stationary, which are higher than the ambient
fluid temperature (7, > T,) and concentration (C,, > Cq), respectively. The
governing equations for the present flow problem are [14—17]

a(r®u) n arv)

0 1
ax ay 1
ou 4 u n u 8%u + 0By (E Bou)
: u v = o — u
P\ o T ax Ty ) TH )2 0450 = B0
+2[(1 = Coo) 7 B (T = Toc) = (pp — ) (C — Coo)] cosi (2)
(C)) 8T+ 8T+ aT ka2T 3
u v =
PEP)p \ gpr 0x dy dy?
dCdT  Dr (0T \* . 0qr
c,).|D _
+e ”)f[ " ay aﬁm(@”” dy
aC N aC N aC b 82C N Dr 3°T Ko (€ — Coo) @
u v = — _
arr T ax o ay  Pay2 T Ty 0

qr 1s the radiative heat flux, Ey is the electrical field, Dp and Dr are the Brownian
and thermophoretic diffusivity of a nanoparticle, and K, is the dimensional chemical
reaction parameter.

The transport properties during primary assumptions (¢* < 0) are

u=>0, v=0, T =Ty, C=Cs foral x,y 5)
The transport properties at the limits of the geometry at any time (+* > 0) are

u=0, v=0, T =Ty, c=C, at y=0
u=0, T=Tx, C=Cx at x=0 (6)
u—>0, T—->Tyw, C—->Csx as y—>x

when w = 1 corresponds to flow over a vertical cone and @ = A = 0 corresponds

to flow over a vertical flat plate.
In the energy equation, ¢”” is considered as

w_ (GNP < niL

12 \gryp T - Tdutn@= Too>) )

Here, y; > 0 and y» > 0 indicate the internal heat generation, while y; < 0 and
y2 < 0 indicate the internal heat absorption.
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Radiative heat flux in terms of o* and k* are considered as

4o* 0Tt 1607 50T

- = (3
3 k% 9y 3k ay

qr =

where o* is the Stefan-Boltzmann constant and &* is the mean absorption
coefficient.
The dimensionless variables are considered as

L
x=", v= z(Gr)l/“, R=", r=xsint), U=""(@Gr"2
V

L’ L
vL vt* T —-T, C-C

V= Gr)y V4 1= Gr)'?2, o= . p= <
, (@0 12 (G ot *=c e O

The governing Eqs. (1)—(4) are dimensionalized by means of Eq. (9) and stated
below

IRU)  D(RV) _
X Iy
U | oU | U 93U

U Vv =
8t+ 8X+ Yy  ay?

0,00, 00 1L dp 326 Ly, 9 90
a1 ax ' oy P, 37\ g2 Bay oy

0 (10)

+ M(E, —U)+[0 — Ngdlcosh  (11)

0\ 1
+Nr + (U + y0) (12)
ay P,

A 9 RY 1[82¢ Nr 9%6

U Vv
* * aY2  Npay?

- K 13
ar ' aX | aY  S. } &$ (13)

The dimensionless form of the conditions stated in Egs. (5) and (6) are

t<0:U =0, V=0, 0=0, ¢=0 forall X,Y
t>0:U=0, V =0, 0=1, ¢=1 at Y=0
U =0, 0 =0, =0 at X =0 (14)
U— 0, 6 — 0, ¢ —0 as Y —> o0

Gr is the Grashof number, M is the Hartmann number, Ny is the buoyancy ratio
parameter, Ry is the thermal radiation parameter, Np is the Brownian diffusivity,
Nt is the thermophoretic diffusivity, Kg is the dimensionless chemical reaction
parameter, Sc is the Schmidt number, E is the electrical field parameter, and 7 is
the ratio between the base fluid and nanoparticle heat capacity that are, respectively,
as follows:
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Tw — Too) (1 — Coo) L3 B2L? k
Gr:gﬂ(w 00)2( 00) M = ‘7G01/2 o= . ,P,:v
v v(Gr)'2py (°Cy) , a
K, (Cypy — Coo) L2 v EoL
K = v oSe=_ L Er= 12
v (Gr)'/ Dp Bov(Gr)Y/
407 T3, (IOCP)f
Rq = ek T (o0
(p p)p
Ny = D (Cy — Coo)’ No _ 707 (Tw = Too)’
v v

(Pp _Pf) (Cy — Cx0)

— 15
R B (T — Too) (1 = Coo) (15)

The local skin friction factor (Sfy), Nusselt number (Nuy), and Sherwood
number (Sh,) are

14 36
Sfe = Gri/4 ( ) , Nuy=—XGr'/* < ) ,

)
Shy = —XGr1/4< ¢) (16)
Y ) y=o

The mean skin friction (Sf'), rate of heat transfer coefficient (Nu) , and rate of
mass transfer coefficient (S$4) can be written as

20

1 1
U a0y
Sf = Gr3/4/ < > dx, Nu — _Gr1/4/ (dY)Y_() dxX.
0o \9Y Jy_o 0 Oy—o

Sh=—Gr'/* Y=014x 17)
0 Py=0

3 Results and Discussion

The required section is aimed at addressing outcomes of pertinent parameters on
velocity (U), temperature (6) and concentration (¢), skin friction, and heat and
mass transfer rates for various sundry parameters. Calculations are made for diverse
values of M =0.40, 0.70, 1.0, and 1.2; E1 = 0.20, 0.40, 0.60, and 0.80; Ng = 0.10,
0.30, 0.50, and 0.70; and N7 =0.10, 0.30, 0.50, and 0.70. The discretized governing
equations are solved by Crank-Nicolson scheme, and the outputs are portrayed in
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Table 1 Effect of M, Np, N7, and E; on Sf, Nu and Sh

H. Thameem Basha et al.

Physical Sf(Gr=3/%) Nu (Gr=1/%) Sh(Gr='/%)
Parameters ~ Values  Plate Cone Plate Cone Plate Cone
M 0.10 0.73192  0.45203 0.41495 0.33173  0.54968  0.52260
0.40 0.75092  0.48620  0.42218 0.34778  0.55413  0.52903
0.70 0.76743  0.51571  0.42648 0.35836  0.55641  0.53303
1.0 0.77771  0.53371  0.42847 0.36374  0.55732  0.53498
Np 0.10 0.73192  0.45203  0.41495 0.33173  0.54968  0.52260
0.30 0.74738  0.45981  0.37102  0.29265 0.64775  0.58648
0.50 0.75902  0.46580  0.32807  0.25521  0.67013  0.60096
0.70 0.76981  0.47138  0.28811  0.22068 0.68149  0.60824
Nr 0.10 0.73192  0.45203 0.41495 0.33173  0.54968  0.52260
0.30 0.72952  0.45165 0.37842  0.30087  0.38630  0.44010
0.50 0.72866  0.45207  0.34525 0.27279 0.30992  0.43264
0.70 0.72915  0.45320 0.31514 0.24724 030456  0.48704
Eq 0.20 0.66547  0.37809  0.37862  0.27508  0.52749  0.49970
0.40 0.73192  0.45203 0.41495 0.33173  0.54968  0.52260
0.60 0.79807  0.52619  0.44479  0.37458 0.56740  0.54199
0.80 0.86379  0.59937  0.47057  0.40958  0.58289  0.55914
Table 2 Comparison table
Parameters Nu (Gr*l/“) Sh (Gr*1/4)
Hayth Sreedevi Present Hayth Sreedevi Present
Np Nr etal.[18] etal.[19] Study etal.[18] etal.[19] Study
0.30 0.20 0.3842 0.3842 0.3843 0.2336 0.2335 0.2336
0.40 0.25 0.3697 0.3698 0.3696 0.1983 0.1983 0.1982
0.50 0.30 0.3556 0.3556 0.3550 0.1643 0.1644 0.1633

graphs and tables. Table 1 characterizes the average skin friction factor, average
Nusselt number, and average Sherwood number for various pertinent parameters.
Table 2 demonstrates the perfection of the obtained results of this present analysis by
means of a comprehensive comparative study on Np and N7 with the reported data
of Hayat et al. [18] and Sreedevi et al. [19]. Variation of U and 6 profiles for diverse
values of M is plotted in Fig. 2a, b. The large values of M reduce the fluid U since
a resistive force occurs which decelerates motion of the fluid and hence enhances
the heat transfer in the thermal boundary layer. Influence of active parameter £ on
U and 6 is portrayed in Fig.2c, d. From the physical point of view, E; promotes
the resistive force, which usually declines the frictional resistance. According to
this fact, U enhances; however, the reverse situation is observed for 6. Figure 3a, b
reveals the effect of Np on 6 and ¢. The larger values of Np yield higher random
motion of nanoparticle. It means that the 6 boundary layer thickness increases and
ensures the decay in ¢ boundary layer thickness. Figure 3c, d is demonstrated to
investigate the influence of N7 on heat and mass transfer mechanisms. Physically,
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Fig. 2 U and 0 for diverse values of M and E

as Nt increases, the motion of nanoparticles from hot wall to the cold ambient space
will be promoted and hence enhance the heat transfer of nanoparticles. Likewise
the motion of nanoparticles from high concentration to low concentration will be
promoted and hence enhance the mass transfer of nanoparticles.

4 The Conclusions

A numerical study is performed for analyzing the chemically reacting nanofluid flow
with electrohydromagnetic and nonuniform heat sources/sinks over two types of
geometries. The key findings are enhancement in 6 is observed for larger magnetic
number. U boosts for larger E1, whereas reverse behavior is found in 6. The effect
of Np and Nt on 6 is similar and is opposite behavior in ¢.
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Effect of Non-linear Radiation on 3D )
Unsteady MHD Nanoliquid Flow over a ke
Stretching Surface with Double

Stratification

K. Jagan, S. Sivasankaran, M. Bhuvaneswari, and S. Rajan

Abstract The key goal of the article is to examine the non-linear thermal radiation
and double stratification effects on 3D MHD convective stream of nanoliquid over a
non-linear stretchable surface in a porous medium. Using suitable transformations,
the governing systems are converted into ODEs and are solved by using homotopy
analysis method (HAM). While increasing thermal and solutal stratification param-
eter, the temperature decreases. The temperature enhances by raising the values of
non-linear thermal radiation. The skin friction coefficient along x- and y-axis, local
Nusselt number and Sherwood number are plotted for important parameter involved
in the study, and the results are discussed in detail.

Keywords Nanofluid - Stratification - Non-linear thermal radiation - Porous
medium - MHD

1 Introduction

The importance of convective stream and thermal transport of nanoliquid is
discussed in [1-4]. Hayat et al. [5] studied the non-linear thermal radiation effect
on three-dimensional magnetohydrodynamic flow of viscoelastic nanoliquid. Das
et al. [6] and Madhu et al. [7] analysed about the influence of thermal radiation on
unsteady stream of nanoliquid and Maxwell nanoliquid over a stretching surface.
Hayat et al. [8] investigated about the unsteady magnetohydrodynamic flow of
nanoliquid with double stratification. The impact of double stratification on mass
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and heat transport in unsteady MHD nanoliquid stream over a horizontal surface
was studied by Mutuku et al. [9]. In this paper, the examination is made on three-
dimensional unsteady MHD convective stream of nanoliquid over a stretchable sheet
in a porous medium in the existence of dual stratification and non-linear thermal
radiation.

2 Mathematical Formulation

The three-dimensional unsteady electrically conducting nanoliquid flow towards a
stretchable sheet in the existence of the applied magnetic field of a constant strength
By is considered. At t = 0, the velocity components is taken as v; = ajx and v, =
b1y where vy and v, are the velocity components along x- and y-axis and a; and
b1 are positive constants. Due to the existence of nanoparticles, the thermophoresis
and Brownian motion are taken into account. The radiative heat flux is taken as ¢, =
_ ‘é‘]z: aaTz 4. The ambient temperature and concentration are assumed as Too = Tp +
dix and C, = Cp + dzx. The fluid temperature and concentration are considered
as Ty, = Ty + drx and C, = Cq + dyx where dy, dy, d3 and d4 are dimensional
constants. The thermal and concentration stratification effects are considered into
account. The governing systems for the analysis can be derived as follows:

davy dvy  dvs
=0, 1
ox + ay + 9z M

avy dvy dvy av| 821)1 GBS Ve
= — - , 2
ot +v1ax+v28y —l—v3aZ vaZ2 P U1 kv1 2
vy vy vy vy 3%vy oB] Ve
= — — , 3
9t + vy x + vy 3y + v3 5z v 522 , v v 3)
oT n oT oT oT T D aT oC
v v v =«
ar " lax T oy T P 2 B\ oz oz
t Dt <8T>2 1 ag, @
T \ 0z pcp 0z
aC N aC N aC N aC b 92C Dy 9°T 5
v v v = )
ar " lax T oy | g Bazz T Ty 022

and the boundary conditions are

v1=0, 1vV=0,vV3=0,T=T, C=Cqx; t <O,
Ul =V =a1X, =024y =b1y, 13=0,T=T,, C=Cy, 2z=0; 1 >0,

v >0, v >0, T > Ty, C—> Cs, as z—> o0; t > 0. (6)
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where v3 is velocity component along z-axis and «, v, 0, ¢, k1, Dp and D are ther-
mal diffusivity, kinematic viscosity, electrical conductivity, porosity, permeability of
the porous medium, Brownian motion and thermophoresis coefficient, respectively.
The similarity transformations are

al —T / /
n=z é,§=1—e , T=ait, vy =a1xf’, vy =aiyg,
V

T — Ty C—Cx
v3=—JavE(f+g.0) = Lo =

)
Ty — Too Cyw—Cx

where prime denotes the derivative with respect to 7.
Substituting (7) in (1), (1) is satisfied identically. Substituting (7) in (2) to (6), we
get

f+E=D) [s an; - f”} [ 2= (o] € [ (1 M) =0, ®
og’

g +(E=-1) [é o

- Zg} ~¢[¢7=" (f+0)] € [¢' (1 +M?)] =0, ©
(1 + :Rd> 0" + ng |63 (36%07 +6%0") + 362 (2007 + 6%")

90
+ 30, (9’2 ¥ 99”)] + PrNb0'¢' + PrNi6” + Pr (£ — 1) [g - ”9’}

9E 2
+Pré[0/(f+8) — f0—Srf]=0. (10)
" 8¢ 77 / / / !
O+ ScE—DE, — 0 +ScE[¢ (f+8) — flo—Spf]
Nt .,
+Nb9 =0, (11)

f(E0=8¢0=01(¢0=1,0E0=1-S,¢E0=1-Sp,
§ (0 =c, f(§00)=0¢g(§00)=0,60(00)=00(% 00 =0 (12

where Pr, M, Sc,c, A, Nb, Nt, Rd, 6,,, ST and Sp are Prandtl number, local Hart-
man number, Schmidt number, stretching ratio, local porosity, Brownian motion,
thermophoresis, thermal radiation, temperature ratio, thermal stratification and
solutal stratification parameters that are defined as
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2

Pr:a,MzzaBO,Sczv,Czbl,)nz v(p,szrDB(Cw_Coo)’

v ap D ay arky v
Nt:TDT(Tw_TOO), Rd=4G*T°3°, szw_TO,

Vi kk* Tso

dp d3

Sr= . Sp= . 13
T= g 5P Ty, (13)

The local skin friction coefficient along x- and y-directions and local Nusselt
number are defined as follows.

§2Rey’Cp = —f"(5.0). (14)
£2Rel/’C, = —g" (£,0). (15)
_ 4
£2Re; P Nu = — <1 + yRd (ew)3> 0’ (&,0). (16)
£2Re; ' *Sh = —¢/ (5,0). (17
where Re, = """ and Re, = """ are local Reynolds numbers.

3 Solution Procedure

The Eqgs. (8) to (12) are solved using HAM by choosing the initial approximation
and auxiliary linear operators as

fo&,m)=1—exp(-n), go¢.n) =cl[l—exp(—n)],
0o (§,m) = (1 = Sr)exp(=n), ¢o&.n) =0—-Sp)exp(—n). (18)

df df d’g dg
L = -, L = I
Lo (0) = & 0, Lg(p) = o ¢ (19)
0 - an ’ ¢ - an '
which satisfies the property
Ly[A) + Az exp (—n) + Az exp (n)] = 0. (20

Lg[Ag + As exp (—=n) + Ag exp ()] = 0. 2L
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Ly[A7 exp (—n) + Ag exp ()] = 0. (22)

Ly[Ag exp (—n) + Ajp exp (7)] = 0. (23)
where A1, Aa, ..., Ajp are the arbitrary constants.

The resulting equations contain the auxiliary parameters h ¢, hg, hg and hy. The
h-curve is plotted forc = A = M = Nb = Nt = St = Sp = 0.2, Pr = 1.5,
Rd = 03, Sc = 05,6, = 0.1 and & = 1. From Fig. 1, it is clear that the
admissible range of hy, hg, hg and hy are —1.0 < hy < —0.1,-1.1 < hg <
0.0,-0.7<hg < —0.1and —1.0 < hy < —0.3.

4 Results and Discussion

The discussions are prepared for several combinations of relevant factors involved in
the study. It is discovered from Fig. 2 that while increasing the value of the porosity
parameter A, Hartmann number M and unsteady parameter &, the velocity profiles
along x- and y-directions decrease. From Fig. 3, it is clear that the temperature
enhances by increasing the non-linear thermal radiation parameter Rd, but it
decreases with increase in unsteady parameter £ and thermal stratification parameter
S7. The nanoparticles’ volume fraction profile drops by raising the values of the
solutal stratification parameter Sp. The skin friction along x- and y-directions
enhances while growing the porosity parameter and Hartmann number; see Fig. 4.
In Fig.5, it is witnessed that the local Nusselt number diminishes when raising
the values of the porosity parameter, Hartmann number and non-linear thermal
radiation parameter Rd. The local Sherwood number diminishes by raising the
solutal stratification parameter Sp values.
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5 Conclusion

The study of unsteady three-dimensional MHD convective nanoliquid stream over
a non-linear stretchable sheet with non-linear thermal radiation and thermal and
solutal stratification in a porous medium is examined. The thermal boundary
layer thickness enhances while raising the non-linear thermal radiation parameter
which results in diminish on energy transfer rate. The thickness of momentum
boundary layer and local Nusselt number diminishes, whereas the thickness of
temperature boundary layer and skin friction enhances while growing porosity and
Hartman number. While raising thermal stratification, the momentum boundary
layer thickness and local Nusselt number diminish. The nanoparticles’ volume
fraction profile and local Sherwood number diminish with increase in solutal
stratification.
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Chemical Reaction and Nonuniform Heat = m)
Source/Sink Effects on Casson Fluid Flow @i
over a Vertical Cone and Flat Plate

Saturated with Porous Medium

P. Vijayalakshmi, S. Rao Gunakala, I. L. Animasaun, and R. Sivaraj

Abstract The intention of this communication is to explore the characteristics
of electromagnetohydrodynamics on the fluid transport properties of a chemically
reacting Casson fluid with two types of geometries. Formulations consist of salient
features of radiative heat transfer, Lorentz force, and chemical reaction. This model
is constituted with governing equations which are solved numerically by an efficient
finite difference scheme of Crank-Nicolson type. Impact of pertinent parameters
like Casson fluid, electrical field, Hartmann number, and chemical reaction is
observed through graphs. The outcomes of surface shear stress, rate of heat, and
mass transfers are presented through tables. Results enable us to state that larger
electrical field decelerates the Casson fluid flow. Influence of the magnetic field on
mean surface shear stress is more significant in the flow on a plate than that of cone.

1 Introduction

MHD flow problems have been analyzed in distinct areas like measurement of
moving blood, generating of power, nuclear production, and generators. These are
technical strategy also adopting electromagnetic methods. The non-Newtonian flu-
ids have incorporated a lot of aspects due to their distinct utilization in manufactory
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and engineering. The non-Newtonian fluids enhance the deportation of coal oil
from petroleum production. In past few decades, the study of hydromagnetics over
a cone and plate has attracted many researchers attention. In food industries and
engineering, the hydromagnetic flow of Casson fluid has been an interesting area
of research. The Casson fluid miniature can be preferred to correct the rheological
details for manifold constituents like jelly, ketchup, and mishmash. Ketchup is a
shear-thinning fluid. Shear thinning means that the fluid viscosity decreases with
increasing shear stress. In other words, fluid motion is initially difficult at slow
rates of deformation but will flow more freely at high rates. It is fascinating to
indicate that the Casson fluid miniature can be selected for blood flow of human
beings investigations as a result of blood has abundant elements like red corpuscles,
fibrinogen, and protein. Sharma et al. [1] described the effects of heat source/sink on
magnetohydrodynamic assorted change of possession stagnation point flow ahead
a perpendicular stretching sheet in the existence of extrinsic Hartmann number.
Kumar and Sivaraj [2] analyzed the Walters” B-liquid flow throughout the extend
of a flat plat and a vertical cone sopped with porosity in the existence of Dufour and
Soret effects. Kong et al. [3] determined the oversees performs together accumulate
the electromagnetic radiation signals that the antenna acquire and analyzed the
passion of the electromagnetic radiation signal. Mathematical investigations of
Casson fluid which accomplished a topmost convective surface of paraboloid of
innovation to nonlinear radiation and viscous dissipation were presented in Reddy
et al. [4]. Hayat et al. [5] committed to the flow change of possession of viscous
fluid by a bowed elongated sheet. Zhang et al. [6] examined the effect of thermal
radiation on magnetohydrodynamics natural convection in two-dimensional and
three-dimensional cavity. Some current absorbing write off connected with the flow,
chemical reaction, and heat and mass transfer typical features of Casson fluids can
be found in Ahmed et al. [7]. Gupta et al. [8] investigated the Brownian motion and
dispersion of thermophoresis in non-Newtonian nanofluid and concluded a bent on
stretching surface accompanying effects of thermal radiation and chemical reaction.
Siddiqa et al. [9] concerned with the problem at fixed intervals MHD natural
deportation boundary layer flow of emitting micropolar fluid beside a perpendicular
surface. The radiative heat transfer flow of a reactive hydromagnetic fluid inside
a chamber permeated with non-Darcy saturated porous medium with convective
wall cooling is investigated by Hassan et al. [10]. Wang and Zhao [11] represented
basic scheme for the eventuality of thermal radiation in anisotropic porous medium.
Malik and Nayak [12] presented the heat transfer characteristics of MHD nanofluid
flow in an enclosure saturated porous medium. In this paper, the predominant idea
is to examine the chemically reacting Casson flow over a cone and plate in the
presence of electromagnetohydrodynamics and nonuniform heat source/sink. The
Crank-Nicolson scheme has been applied to solve the controlling equations. The
impacts of diverse pertinent parameters are studied, and the outcomes are indicated
through graphs and tables.
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2 Mathematical Formulation

Two-dimensional Casson fluid flow of an incompressible and EMHD is deliberated
with two distinct geometries saturated with porous medium as exhibits in Fig. 1.
In the system of Cartesian coordinates, x-axis represents the surface of the vertical
cone and flat plate. The y-axis represents normal to the surface. At fixed temperature
Ty and fixed concentration Cy,, the wall is maintained at y = 0 which is greater
than the medium temperature 75, and medium concentration C, respectively.
Then electrical field Ey and the transverse Hartmann number of strength By are
implemented in the y-direction. The porous is pretended to be uniform. The Casson
fluid flow characterizes the nonuniform heat source/sink, chemical reaction and
thermal radiation effects. The set of governing equations is modeled based on
previously reported studies [13—17].

ad (rhu) n d (rhv)

=0 1
0x dy M

8u+ 8u+ ou 1+1 9%u n B (B Eo)

u v = — u—o u —

Plar T%x Ty g) a2 Tk 0201 Eo

+gpcosh (Br (T — Too) + Bc (C — Cx))  (2)
aT oT AT T . dg,

C =k — 3
p P(at+”ax+vay) ay2 T4 T gy 3

aC aC aC 92C
=D —kg(C—-C 4
8t*+u8x+vay 9y? R( o) 4)

Here g, , Eo , B, K, and kg represent the radiative heat flux, electrical field, Casson
fluid, porosity, and dimensional chemical reaction parameter, respectively.
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The transport properties during primary assumption (¢* < 0) are
u=>0, v=0, T =Ty, C=Cs foral x,y 5)
The transport properties at the limits of the geometries at any time (¢* > 0) are

u=020, v=20, T=T,, C=Cy, at y=0
u=0, T =T, C=Csx at x=0 (6)

u— 0, T — Teo, C—>Cx as y—> o0

when & = 1 corresponds to flow over a vertical cone and 7 = o = 0 corresponds
to flow over a vertical flat plate.
The nonuniform heat generator/absorber ¢”” is defined as

v _(Gn'? ( mL

L2 \u(Gr)'/? (Tw = Too)u + 2 (T — Too)) (7)

By employing the Rosseland resemblance for radiative heat flux

40,9T* 160 7307

- _ = 8
="3 by 3k ay ®)
The dimensionless variables are defined as
L
X=1. v="Gm" R=. r=xsinG). U= ”U (Grr)~2,
vl 14 ur* 12 T —Tx C—Cx
V=" (G A= Grr)'?, 6= . o= NC)
(G 12 (Grr) L b= O

The governing Eqs. (1)—(4) are dimensionalized by means of Eq. (9) and stated
below

a(R"U) a8 (R"V)
ox oy

U U U 1\ 82U 1
+U _+v _=(1+ - K+M U+ ME,

=0 (10)

ot X Y B) ar?
+cosA (8 + No) (11)
36 90 90 1 4 %0 1
U V. = 1 Rd AU + B9 12
ar T7ax TV oy Pr<+3 )8Y2+Pr( +B9) (12)

BY) d¢ Va¢ 1 3%

— _K 13
dt ox T Voy T scoyz KO (13)
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The dimensionless form of the conditions stated in Egs. (5) and (6) are

t<0:U=0, V=0, 6=0, ¢=0 forall X,Y
t>0:U=0, V=0, 66=1, ¢=1 at Y =0
U=0, 6 =0, ¢=0 at X=0 (14)
U— 0, 6 — 0, ¢ — 0 at Y — oo
Grashof number(Gr), Hartmann number(M), Casson fluid parameter(f), ther-
mal radiation parameter (g,), electrical field (E), porosity (K), dimensionless

chemical reaction parameter (K ), and skin-friction number (Sc) are, respectively,
as follows:

Grp = 81T —T)L  pc(Cw—C)  oBjL?
v? ’ Br (Tw — Too) v(GrH)2p’
C
Pr = ’ P,
k
EoL 160, T3, v kr(Cw — Coo)L?
E= . gr= , Se= ,Kgp= 15
Bou(Gr)l/2 ar koko =p iR v(Gr)1/2 (15)

The local skin-friction factor (Sfy), Nusselt number (Nu,), and Sherwood
numbers (Sh,) can be represented as

1 10 20
Se=- [1 * l3:| <8Y>Y:O’ Nt = _X<8Y>Y:0’

Shy = —X <a¢> (16)
Y )y

The mean skin-friction (Sf), rate of heat transfer coefficient (Nu), and rate of
mass transfer coefficient (Sh) can be represented as

17 [ (ou (57)v=o
S = — 1 d 5 - — - d )
==l Gr), e ( R R
(3%,

dy=0

Sh=— D.¢ (17)
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3 Results and Discussion

The set of nonlinear equations (10) to (13) are solved by using the Crank-Nicolson
scheme with boundary conditions (14). Crank-Nicolson scheme has been utilized
dramatically by many investigators [13—17]. Such a system of equations is derived
and explained by Hans Petter Langtangen et al.[18]. This section addresses the
characteristics of temperature, velocity, and concentration distributions as well
as Nusselt number, Sherwood number, and skin-friction variations of pertinent
parameters. The table constitutes the average skin friction, average Nusselt number,
and average Sherwood number for distinct parameters. Computations are formed for
distinct values of £ = 0.1,0.3,0.5,0.7; M =0, 1,2,3; 8 = 1.0, 1.5, 2.0, 2.5; and
Kgr =0, 1, 2, 3. Variation of velocity (U) and temperature () drawing of outline
across the electrical field is displayed in Figs. 2 and 3. In the presence of an electrical
field, a Lorentz force occurs, which causes the velocity increases and temperature
decreases. Figures 4 and 5 represent the magnetic field; it creates the resistive force
that is called Lorentz force it exhibits velocity decrease and temperature increase.
Domination of rapid parameters 8 on velocity and skin friction (Sf;) is illustrated
in Figs. 6 and 7. Figure 7 annotates that greater values of § have the disposition to
slow down the fluid flow. It is prepared for that 8 increases furnished to diminishing
the yield stress which raise the value of plastic dynamic viscosity. An increase
in radiation enhances the boundary layer. A raise in chemical reaction parameter
decreases the concentration whereas increases the Sherwood number profiles as
portrayed in Figs.8 and 9. Table 1 illustrates the influence of B, E, M, and Kgr
on average skin friction, average Nusselt number and average Sherwood number.

Fig. 2 U for various values
of E
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Fig. 3 0 for various values
of E

Fig. 4 U for various values
of M

Fig. 5 0 for various values
of M
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Fig. 6 U for various values 0.9
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Fig. 9 Sh, for various
values of Kg

SH
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Table 1 Effect of 8, E, M, and Kg on Sfy, Nuy, and Shy

Physical
parameters ~ Values
B 1.0
1.5
2.0
2.5
E 0.1
0.3
0.5
0.7
M 0.0
1.0
2.0
3.0
Kr 0.0
1.0
2.0
3.0

Sfx
Plate
1.11987
1.11571
1.12118
1.12625
1.06322
1.11517
1.16566
1.21578
1.14404
1.11571
1.08960
1.06543
1.15206
1.11571
1.09034
1.07046

4 The Conclusions

Cone

0.58609
0.59146
0.59973
0.60583
0.54484
0.59146
0.63818
0.68687
0.60535
0.59146
0.57884
0.56729
0.60713
0.59146
0.58101
0.57263

Nu,

Plate

—0.24907
—0.50400
—0.64902
—0.74050
—0.53559
—0.50400
—0.44307
—0.38402
—0.45009
—0.50400
—0.55902
—0.61510
—0.40332
—0.50400
—0.57905
—0.63583

Cone

—0.69043
—1.30899
—1.66993
—1.89651
—1.54897
—1.30899
—1.07145
—0.88146
—1.17690
—1.30899
—1.44462
—1.58331
—1.07713
—1.30899
—1.44323
—1.53071

Shy
Plate
0.57463
0.55609
0.55004
0.54707
0.55027
0.55609
0.56087
0.56545
0.55947
0.55609
0.55306
0.55031
0.34715
0.55609
0.71507
0.84669

Cone

0.53420
0.52389
0.52096
0.51956
0.51919
0.52389
0.52808
0.53243
0.52575
0.52389
0.52224
0.52078
0.28109
0.52389
0.69308
0.82948

A numerical study is executed for hydromagnetic Casson fluid flow with chemical
reaction and nonuniform heat source/sink over two types of geometries. The
following findings can be drawn. Intensification in temperature is observed for
larger magnetic number. Skin-friction factor boosts for larger g, whereas the trend
is reversed in velocity distribution. The magnitude of decrease in temperature and
velocity is more significant when the fluid flow over plate compare with the fluid
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flow over cone. Casson fluid velocity increases with viscosity variation, moving
plate velocity, and heat source. Temperature is decreasing with thermal radiation
and heat sink.
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An Analytic Solution of the Unsteady )
Flow Between Two Coaxial Rotating ik
Disks

Abhijit Das and Bikash Sahoo

Abstract In this study, analytical solutions are obtained for the unsteady flow
of a viscous, incompressible fluid between two coaxial rotating disks of infinite
dimensions, using the homotopy analysis method (HAM). Using similar variables,
we first simplify the exact Navier—Stokes equation to highly coupled nonlinear
partial differential equations. Upon application of the HAM these equations are
replaced by a system of linear and uncoupled ordinary differential equations and
solutions effective throughout the entire temporal and spatial domains are obtained.
The nature of the flow fields is discussed under the influence of the same or opposite
direction of rotation, Reynolds number, etc. Physically interesting quantities, such
as radial and tangential shear stresses, are also obtained, and are valid throughout the
temporal domain. To the best of our knowledge, no such series solution is available
in the literature for the problem under consideration.

Keywords Rotating disk - unsteady flow - Reynolds number - HAM

1 Introduction

The study of flows related to rotating disks is of significant importance in the field
of fluid dynamics because of its industrial and technical applications in rotating
machinery, such as centrifugal pumps, turbines, or computer storage devices or
rheometers, or oceanography. More specifically, internal air-cooling systems are
usually modeled via disks rotating at different speeds, such as in gas or marine
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turbines, counter rotating disks and rotor—stator systems. Moreover, it is possible
to find similarity solutions to the Navier—Stokes equations in some idealized
infinite configurations. In 1951, Batchelor [1] first considered the two-disk problem,
generalizing the solutions given by Karman [6] and Bodewadt [2] for a single
disk, and surmised the general characteristics of the flow between two disks, but
did not provide any explicit solution. Later, in 1953, Stewartson [10] revisited the
same problem experimentally (for small or large Reynolds numbers) and his results
were in agreement with those of Batchelor on co-rotating disks. However, when
the direction of rotation was reversed, he found that there is no core rotation as
was mentioned in [1]. This Batchelor—Stewartson controversy was settled in the
study [13], showing that both Batchelor’s and Stewartson’s solutions can be obtained
from the similarity solutions. Among recent studies, Das [3] produced analytical
solutions for Batchelor’s problem using the homotopy analysis method (HAM).
Turkyilmazoglu [11] extended this problem to the case in which the disk’s surfaces
are allowed to stretch radially at a constant rate and produced numerical solutions,
discussing the effects of surface stretching on the velocity and temperature fields.

An unsteady counterpart of Batchelor’s problem has been studied by many
researchers such as Pearson [9], who solved the problem numerically, considering
the disk’s angular velocity to be time-dependent and assuming a similar radius
dependence to that used in [1, 6] for the steady flow; the problem was extended to
study the heat transfer process by Ibrahim [4] following similar assumptions made
by Hazma and Macdonald [5] regarding the disk’s angular velocities and the gap
between them.

The present investigation deals with the unsteady version of Batchelor’s problem.
Similarity solutions effective throughout the entire temporal and spatial domains
are obtained using the efficient HAM introduced by Liao [7, 8] and to the best of
author’s knowledge no such analytical solutions exist in the literature. The HAM is
different from all other analytic techniques owing to the presence of the convergence
control parameter, 7, which helps to adjust and control the convergence of the
solution series whenever necessary. Moreover, the similarity transformations used
in this study enable us to treat the similarity variable for time () as a parameter,
which greatly simplifies solving for the higher order terms of the solution series.

The remainder of the chapter is organized as follows. Fundamental equations
are derived in Sect. 2. The HAM is applied to the governing system of coupled and
nonlinear partial differential equations (PDEs) and the results obtained are discussed
in Sect. 3. Finally, in Sect. 4, the conclusions are drawn.

2 Fundamental Equations

Let us consider the time-dependent flow of a viscous, incompressible fluid between
two coaxial rotating disks, lying in the planes z = 0 and z = d. Let the lower and
upper disks be started impulsively (at ¢+ = 0) into rotation with angular velocities
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£21 and £2; respectively. Let the velocity components along (7, 8, z) be (u, v, w)
respectively. Next, following [12], we consider the similarity variables:

0H(, )

u=r$ ,
an

v=r21G(,8), w=-2dJEH®, ),
n:ng, =1—¢e"7 1=28 (1

and the equations governing the flow become:

0*H Re(l — ©) 02H nd*H 13*H
— Re(l — _ _
an* ¢ §8§8n2 293 2 9n?
3G 3H
+2Re¢ |G +H =0 (2
an an’
9%G Re(l — ©) G ndG R GaH HaG 0 @
— Re(1 — — —2Re - =
an? D¢ ar 2 0n ¢ an an
with the following boundary conditions:
dH (0,
H@©0,5)=0, G0, =1, a( 9o @)
n
JdH(1,
H(,5)=0, G(,¢) =4, a( éu)=0 %)
n
where, Re = * 2 is the Reynolds number, £2 = gz is the rotation rate.
The shear stresses of the lower disk (7, and ty) can be calculated as:
du ur2; 3°H
=N = (6)
02l dVE B [
ov urs21 0G
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02l dVE Il

When ¢ = O (initial unsteady flow), corresponding to T = 0, we have from (2)
and (3):
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and the relevant boundary conditions are:

oH
H(©0,0)=0, G(0,0) =1, =0 (10)
M 10,0
oH
H(1,0)=0, G{,0) =%, =0 (11)
I l1,0)
Solutions for Egs. (8)—(11) are:
(£2-1) Vv Rx
H(®»n,0=0, G0 0=1+ J Erfl ] (12)
Erf[¥5] 2
where Erf[x] is the error function defined by:
2 o
Erflx] = f e ds (13)
NE

The steady-state equations corresponding to { = 1 (z — o0) have been dealt with
and discussed in detail by many researchers [3].

3 Solution of the HAM and Analysis of Results

It is to be noted that H(n, ¢), G(n, ¢) will contain power terms of 7 and ¢ as these
variables appear explicitly in Egs. (2) and (3). Therefore, considering the boundary
conditions (4)—(5), we chose the set of base functions {n’¢/|i > 0, j > 0} and the
initial guesses as:

Ho(n,¢) =0 (14)
Go(n,5)=1+(2—1Dn (15)
Also, we select
3t f
= 1

L) =y (16)
Ze(f) = s A7)

as the linear operators so that
L (e + e +e3n’ +ean’) =0 (18)
Z(es+cen) =0 (19)

where ¢;, i = 1 — 6 are arbitrary constants.
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Now, the zero-order deformation equations are constructed as follows

(1 — D LulH# (.3 2) — Ho(n, O] = 2uNy A4 (1, & 2), 9, ¢; D)]
. . . (20)
(=D L619(n, ¢; 2)— Go(n, 0)] = 2ANGLA (1,8 2), 9. £; 2)] (1)

and the relevant boundary conditions are

R0, ¢: D) =0, 90,8:2) =1, 8%(’;’5;2) —0 22)
n 0

A0, =0, 90,09 =, W(’;’“Q) ~ 0 (23)
VR

where, /i is the auxiliary parameter and 2 € [0, 1] is the embedding parameter. For
2 = 0and 2 = 1, the above zero-order deformation equations (20), (21) have the
solutions:

A, ¢:0) = Ho®,0),  9(n,¢:;0) = Go, ¢) (24)
A, ) =Hm, 0, 90,61 =G60,¢) (25)
Thus, as 2 varies from 0 to 1, j‘?(n, ’;9), g(n, ¢; 2) deform continuously from

the initial approximations to the solutions of the Eqgs.(2) and (3). The nonlinear
differential operators Ny and N¢ are given by:

. . BN P2 P 12
. 5 s
+2Reg (séag + 20 ﬁ) (26)
on an3
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. . 329 3G  1nog
Nl (n,¢c; 2),%(n,¢; D)] = — Re(1 — —
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respectively. Next, following Liao [8], the rth-order deformation equations are
derived from (20), (21) as
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LulHr (0, ) — xr Hr—1(n, 0)] = h2! (28)
L61Gr (0, ¢) — xrGr_1(n, 0)1 = h#S (29)

with the boundary conditions:
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Gn r—1—n _Hn r—1 n) (33)
an an
and

1 r>1
Xr = (34)

0 r<o0

It is to be noted that the Egs.(28) and (29) are linear and uncoupled ordinary
differential equations (ODEs) that can be solved respectively, in the order r =
1,2,3,...., by using symbolic software such as Mathematica. Also note that the
variable for time, ¢, is considered only as a parameter, and as a consequence it
becomes easier solving for H,(n, ¢) and G,(n, ¢). The presence of the auxiliary
parameter, also known as the convergence control parameter /4, provides us with a
simple way of guaranteeing the convergence of the solution series. Liao [8] showed
that a suitable value of 7 can be selected by plotting the %-curves. One such curve is
shown in Fig. 1 and it is clear that for —1.5 < # < —0.1 we can obtain convergent
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Fig. 1 A-curves at 10th-order
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Fig. 2 The flow fields for Re = 10, £2 = 0 obtained using 10th-order homotopy analysis method
(HAM) approximations (a) radial, (b) axial, (c) tangential

solutions at { = 0 and { = 1. In a similar way, we have selected suitable values of
h to guarantee a convergent solution series for any other values of ¢ € (0, 1), Re
and £2. The radial (H'), axial (H), and transverse (G) velocity profiles are shown
in Figs.2 and 3 for different values of 2 keeping Re = 10, fixed for ¢ € [0, 1],
obtained using 10th-order HAM approximations. The rotor—stator case, i.e., when
the upper disk is static and the lower disk is rotating (§£2 = 0), is shown in Fig. 2.
The flow is radially outward over the rotating disk and inward toward the disk at rest
for all ¢. The axial flow is from the stationary to the rotating one and the transverse
component of velocity varies almost linearly, increasing from its initial unsteady
value to the steady state as ¢ increases from O to 1.
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Fig. 3 The flow fields for Re = 10, 2 = —1 obtained using 10th-order HAM approximations (a)
radial, (b) axial, and (c) tangential

The case of counter rotation §2 = —1 is presented in Fig. 3. It can be seen that
for ¢ = 0.2,0.4, 0.6, radial velocity is negative near to the disk placed at z = 0
and positive near to the other disk, but as ¢ approaches 1 (¢ = 0.8, 1), the flow
region parts into three sections and there is a central core in which %I; is negative.
The value of H is negative for initial values of ¢, but changes its sign from positive
(nearby the disk at z = 0) to negative (nearby the disk at z = d) for ¢ = 0.8, 1.
Again, the tangential component of velocity is seen to increase as { increases.

In Tables 1 and 2, we report the values of H”(0) and —G’(0) for ¢ € [0, 1] and
different §2, keeping Re = 1 fixed. From Table 1 it is clear that, H”(0) increases
with increasing ¢, whereas Table 2 shows that G’(0) decreases with increasing ¢, for
all the values of the rotation rate shown. Moreover, good agreement of our results
with those reported by [11] can be seen at ¢ = 1 from both the tables.

4 Conclusions

In this paper, an unsteady flow of a viscous incompressible fluid between two
coaxial rotating disks of infinite dimension is considered and analytical solutions
are produced by means of the HAM. Similarity variables reduce the governing
differential equations to a set of fully uncoupled and nonlinear system of PDE:s,
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Table 1 10th-order HAM approximations for H” (0) when Re = 1 for different ¢ and £2

2=-03 2=0 2=05
& HAM results  Ref. [11] HAM results  Ref. [11] HAM results  Ref. [11]
00 O 0 0
0.1 0.0102057 0.00996622 0.00674617
0.2 0.0204537 0.0199422 0.0134781
0.3 0.0307441 0.0299271 0.0201944
0.4 0.0410767 0.0399198 0.0268936
0.5 0.0514515 0.0499192 0.0335741
0.6 0.0618682 0.0599242 0.0402344
0.7 0.0723267 0.0699335 0.0468726
0.8 0.0828268 0.0799456 0.0534867
0.9 0.0933683 0.0899591 0.0600747

1.0 0.103951 0.10395088  0.0999722 0.09997221  0.0666342 0.6663419

Table 2 10th-order HAM approximations for —G’(0) when Re = 1 for different ¢ and 2

2=-03 2=0 22=05
& HAM results  Ref. [11] HAM results  Ref. [11] HAM results Ref. [11]
0.0 1.40912 1.08394 0.541969
0.1 1.39921 1.07633 0.538168
0.2 1.3892 1.06865 0.534346
0.3 1.37908 1.06091 0.530499
0.4 1.36885 1.05309 0.526626
0.5 1.35848 1.0452 0.522723
0.6 1.34799 1.03722 0.518787
0.7 1.33734 1.02915 0.514813
0.8 1.32655 1.02098 0.510797
0.9 1.31558 1.01269 0.506732
1.0 1.30442 1.30442355  1.00428 1.00427756  0.502614 0.50261351

which upon application of HAM are replaced by a sequence of linear ODEs.
As a result, this complicated unsteady nonlinear problem could be solved with
great ease. The velocity fields valid for all time are shown graphically under the
influence of the parameters of interest, such as rotation rate and Reynolds number.
Moreover, the quantities of physical interest, such as radial and tangential shear
stresses (H”(0), G’(0)) are computed and tabulated. Unlike all other previous
analytic solutions, solutions obtained in this study are valid for all time ¢ € [0, 1]
corresponding to T € [0, 00), in the entire spatial domain.
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Cross Diffusion Effects on MHD )
Convection of Casson-Williamson Fluid Shethie
over a Stretching Surface with Radiation

and Chemical Reaction

M. Bhuvaneswari, S. Sivasankaran, H. Niranjan, and S. Eswaramoorthi

Abstract The thermal diffusion and diffusion-thermo effects on radiative mixed
convective flow and heat transfer of Casson-Williamson fluid over a stretching
surface are examined in the presence of uniform external magnetic field. The
thermal radiation and chemical reaction effects are included in the study. This
physical model is mathematically modelled by a set of nonlinear partial differential
equations with boundary conditions. The governing system of equations is reformed
into ordinary differential equations with the help of similarity variables, and
then they are solved using homotopy analysis method. The concentration profile
increases on increasing the dufour parameter, and the temperature profile increases
on increasing the radiation parameter.

1 Introduction

The study of boundary layer flow of non-Newtonian fluids has anticipated signifi-
cance in recent years because of its extensive applications in engineering discipline.
Less number of studies on flow of non-Newtonian fluids is available due to more
complex nature of such kind of flows which arise in the chemical processing
industry, plastics processing industry, mining industry, lubrication, and biomedical
flows [1-3]. Eswaramoorthi et al. [1] investigated the convective flow of viscoelastic
fluid over a surface in the presence of radiation and chemical reaction. Rushi Kumar
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and Sivaraj [2] studied the magneto-convection of viscoelastic fluid over a flat plate
and vertical cone with variable viscosity. In another study, they [3] examined the
effect of variable electric conductivity.

The cross diffusion effects are investigated by several researchers [4—6]. Ruhaila
et al. [4] explored the cross diffusion effects on the convective heat and mass transfer
of a nanofluid past a moving wedge with suction. Niranjan et al. [5] numerically
examined the soret and dufour effects on magneto-convection stagnation point flow
with slip condition and radiation. The chemical reaction effect on convection heat
transfer of nanofluid over a wedge in the presence of heat generation and suction was
explored by Ruhaila et al. [7]. Sivasankaran et al. [8] studied the chemical reaction
and slip effects on combined convection stagnation-point flow in a porous medium
with thermal radiation.

In this paper, we extend the study of MHD convective flow of Casson fluid with
chemical reaction and suction done by Shehzad et al. [9]. We include the thermal
radiation and soret and dufour effects on convective flow of Casson-Williamson
fluid over a stretching surface.

2 Mathematical Modelling

We consider the steady two-dimensional boundary layer flow of a Casson-
Williamson fluid over a stretching surface. Assume that the surface is moving
with velocity u = U, = cx where ¢ > 0. The x-axis is taken parallel to
the surface, and y-axis is perpendicular to the surface. A constant magnetic
field is applied in y-direction and neglected the induced magnetic field because
of the small effect of magnetic Reynolds number. Let 7, and C, are the
surface temperature and concentration which are greater than the free stream
temperature T, and concentration Coo, respectively. Assume that the fluid has heat
absorbing/generating, and the thermal radiation, first-order chemical reaction, and
soret and dufour effects are considered. Under these assumptions, the governing
boundary layer equations with Boussinesq’s approximation are as follows:

ou n dv _0 0
ax dy
ou ou 1\ 9%u 2 B2
_ du 9°u __ 9Py
”ax+vay_v(1+ﬁ) 8y2+\/2 Phay o= o @

aT aT 166*T3\ 9°T Dkt 3°C
= o (1 o) 0T DATVCLCr iy, )
3kk* ay cscp Oy pCp
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aC aC 92C  D.kr 9°T
Wap T Vg, =Degat g ayz—kl(C—Coo), )

where u and v are the velocity components in x and y directions, v is the kinematic
viscosity, f the non-Newtonian Casson parameter, I" is a time constant, o is the
electrical conductivity of the fluid, p is the density, oy, is the thermal diffusivity,
o* is the Stefan-Boltzmann constant, & is the thermal conductivity, k* is the mean
absorption coefficient, D, is the mass diffusivity, k7 is the thermal diffusion ratio,
cs is the free stream concentration, ¢, is the specific heat, Q is the internal heat
generation (>0) or absorption (<0) of the fluid, 7, is the mean fluid temperature,
and k; is the coefficient of chemical reaction.
The boundary conditions of the above model are given by

u=Uy=ax,v=-V,, T=Ty,, C=Cypaty=0

0
u— 0, au—>0,T—>Too,C—>Cooasy—>oo 5)
z

Define the following similarity variables

a / T - TOO C - Coo
= = = — 9 = =

n /vy,u axf' (), v=—vavf ), T ®= o — o
(6)
Substituting Eq. (6) into the Egs. (2—4), we get the following non-dimensional form

1
<1 ! ﬂ) F7 A ff = AT M =0 (M)
4 "

(1 + 3Rd>9 + Prf6' + PrDf¢” + PrHgh =0 (8)
¢" 4+ Scf¢p’ — ScCro + ScSr6” =0 )

the boundary conditions become,

fO) = fu, ffO)=1,f(00)=0, f"(00) =0, 6(0)=1,

0(00)=0,9"(0)=1, ¢(c0) =0 (10)

_ 22 g _ oBj _ _ 40*TS, _ Dekr (Cyy—Coo)
where A = I‘x\/ oM = pc‘), Pr = o:n’ Rd = 7>, Df = ‘)CSC; T Ty
Hg = c;g,,’ Sc = p.Sr = D‘fT];T ((g:;gzz)), Cr = kC‘, and fw = \‘//L"v are the

Williamson parameter, Magnetic field parameter, Prandtl number, thermal radiation
parameter, dufour number, heat generation/absorption parameter, Schmidt number,
Soret number, chemical reaction parameter, and suction/injection parameter.
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The skin-friction coefficient, local Nusselt number, and the local Sherwood
number are important physical parameters, and the reduced skin-friction coefficient,
local Nusselt number, and local Sherwood number are given by

1 _ 1 ” Ao

chJRe_ <1 + ﬂ)f O+, "0 (11)
4

Nu/vRe = — (1 + 3Rd) 0’ (0) (12)

Sh/v/Re = —¢' (0) (13)

3 HAM Solutions

The initial approximations of homotopy analysis solutions are chosen as f; =
fw+1—e"" 6y =e " ¢o = e " the auxiliary linear operators L s, Lg, and
Ly are definedas Ly = " — f's Lg = 6" —6; Ly = ¢" — ¢ with satisfying
Ly [C] + Cre + C3ef77] =0;Lg [C4e” + C5ef77] =0; Ly |:Cﬁe77 + C7ef77] =
0, where C;, (i =1 —7) denotes the arbitrary constants. The general solution
of the Equations (7)—(9) is fin (1) = f*,, (1) + C1 + Cae™ + Cze™ ", 0, (n) =
0% m (1) + Cae™ + Cse™" and ¢y, () = ¢*,, (n) + Cee" + C7e~" where f*, (n),
0% (n) and ¢,, (n) are the special solutions.The symbolic calculations are obtained
by Mathematica.

These general solutions contain the auxiliary parameters 4 ¢, hg, and hy. These
parameters are adjusting and controlling the convergence of the final solutions. The
hy¢, he, and hy curves are plotted in Fig. 1. From this figure, we found the range
values of h g, hg and hy are —0.8 < hy < —0.2and —1.3 < hg,hy < —0.2. It
is observed from our computation results that the HAM solution convergence in the
whole region of n when hy = hy = hy = —0.5. The order of approximation for
the converged solutions are given in Table 1.

Fig. 1 h-curve of -0.2
" ! /
f", 6, and ¢ s 0.4} — £(0)
s -0.6 - 0'(0)
ﬁ tl
s 0.8} — ¢'(0)
S 12}/ l \
aif/7 | \
-1.5 -1.0 -0.5 0.0
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Table.l O.rder of Order —f"(0) —0/'(0) —¢/'(0)

approximations
1 073333 0.96333  1.13333
5 072562 0.98939  1.33811
10 072553  0.99719  1.34698
15 072553  0.99533  1.34771
20 072553  0.99533  1.34768
25 072553  0.99533  1.34768
30 072553  0.99533  1.34768
35 072553  0.99533  1.34768
40 072553  0.99533  1.34768
1.0]
0.8 ¥

= 06/ \\\ r=0,03050607
= 04 d
0.2
0.0L . e
0.0 05 1.0 1.5 2.0 25 3.0 35
n
(b)

()
f(n)

Fig. 2 Velocity profiles for different values of (a) 8, (b) I", (¢c) M, (d) fw

4 Results and Discussion

The results are presented in different combinations of pertinent parameters involved
in the study, (h = —0.5, 8 =05, A =05, fw =05 Hg=-0.2, Rd =
02, M=0.1, Cr=1, Pr=12, Sc=1, Df =0.1, Sr = 0.3). Figure 2
shows the velocity profiles for different values of 8, I", M, fw. It is found that the
velocity of the fluid diminishes by these parameters. The temperature profiles for
different values of fw, Rd, Df, and Hg are plotted in Fig. 3. The thermal boundary
layer thickness reduces with increasing the suction values. The thermal radiation,
dufour, and heat generation effects boosted up the temperature inside the boundary
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0(n)

Rd Hg
() (d)

Fig. 3 Temperature profiles for different values of (a) fw, (b) Rd, (¢) Df, (d) Hg
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Fig. 4 Concentration profiles for different values of (a) Sr, (b) Cr, (c) fw
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Table 2 Shows that the ﬂ M fw Present Study Ref. [6]
complete agreement between

the comparison results exists. 05 025 05 220256 2.20256
This gives confidence in the 09 025 05 194558 1.94558
numerical results to be 1.4 025 0.5 1.75799 1.75799
reported subsequently 20 025 05 164194 1.64195
0.8 0 0.5 1.77069 1.77069
0.8 036 05 2.01706 2.01706
0.8 144 05 2.60637 2.60638
0.8 225 05 2.96569 2.96570
0.8 025 0 1.67705 1.67705
0.8 025 0.7 2.06318 2.06318
0.8 025 14 251728 2.51728
0.8 025 2 2.95256 2.95256

layer. Figure 4 depicted the effect on concentration profiles for different values
of St, Cr, and fw. The soret effect enhances the thickness of the solutal boundary
layer. However, concentration decreases when increasing the chemical reaction and
suction parameters.

5 Conclusion

The soret and dufour effects on radiative mixed convective flow and heat transfer of
Casson-Williamson fluid over a stretching surface are examined in the presence of
uniform external magnetic field and first-order chemical reaction. The governing
equations are solved by homotopy analysis method. It is concluded from the
study that temperature (concentration) enhances with dufour (soret) parameter.
Temperature enhances with increasing radiation parameter, and the thickness of the
solutal boundary layer reduces with chemical reaction.
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Study of Steady, Two-Dimensional, )
Unicellular Convection in a s
Water-Copper Nanoliquid-Saturated

Porous Enclosure Using Single-Phase

Model

P. G. Siddheshwar and B. N. Veena

Abstract In the present paper, we study Brinkman-Bénard convection in
nanoliquid-saturated porous enclosure with vertical walls being adiabatic and
horizontal walls being isothermal for two velocity boundary combinations, namely,
free-free (FF) and rigid-rigid (RR). Brinkman model has been modified in the
present study to account for added nanoparticles. Thermophysical properties
of nanoliquid in a saturated porous medium as a function of corresponding
properties of base liquid, nanoparticle and porous medium are modelled using
phenomenological laws and mixture theory. An analytical study has been made of
Brinkman-Bénard convection in a porous enclosure using single-phase model. The
effect of nanoparticles is to advance onset of convection and enhance heat transfer,
whereas porous medium facilitates delayed onset and retainment of heat energy in
the system. The present study shows good agreement with those of previous works.

Keywords Porous enclosure - Free-free - Rigid-rigid and single-phase model

1 Introduction

Nanoliquid is a base liquid containing nano-sized particles (termed nanoparticles)
with size ranging from 1 to 100 nm. These liquids are engineered colloidal suspen-
sions of nanoparticles in a base liquid. Masuda et al. [4], Eastman et al. [6] and
Das et al. [7] have reported remarkable enhancements in the thermal conductivity of
nanoliquid with a very low volume fraction of nanoparticles. The word nanoliquid
was first coined by Choi and Eastman [5]. Nanoliquids have many applications in
heat transfer which includes microelectronics, fuel cells, pharmaceutical processes,
hybrid powered engines, engine-cooling/vehicle thermal management, domestic
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refrigerator, chiller, heat exchanger, grinding and machining [13]. The study of heat
transfer in nanoliquids is normally done with one of the three types of models,
namely, single-phase model of Khanafer-Vafai-Lightstone [8, 12, 16], two-phase
model of Buongiorno [10] and modified Buongiorno two-phase model [14]. Heat
transfer in enclosures filled with nanoliquids has been studied by many authors
[8, 15, 16], and review of literature shows that most of the enclosure problems have
been solved numerically, and an analytical study would thus be a welcome effort.
The objectives of the present paper are to study:

* Boundary effects on onset of convection and heat transfer in an enclosure using
single-phase model by considering water-copper as nanoliquid and 30% glass
fibre reinforced polycarbonate as porous material.

e Unicellular convection and the range of aspect ratio, A, in which unicellular
convection is valid.

e The effect of volume fraction, x, Brinkman number, A, and porous parameter,

o2 on the onset of instability and on heat transfer.

2 Formulation of the Problem

A nanoliquid-saturated porous enclosure of breadth b and height # is considered.
The water-copper nanoliquid is assumed to be a Newtonian viscous liquid (water)
with suspended copper nanoparticles. The porous medium is assumed to be
homogeneous and isotropic, and nanoparticles are assumed to be spherical, of same
size, and manufactured at the same temperature and other operating conditions.
The upper and lower boundaries are maintained at constant temperatures 7y and
To + AT (AT > 0), respectively, and the vertical walls are insulated. We assume
that the Oberbeck-Boussinesq approximation is valid. The flow configuration is as
shown in Fig. 1.

fe(--Y
e2=(3.—3)
2 (21
=g /3
’ 1%E.%
|ecco00]
§ 000000 .
N E2

Fig. 1 Schematic representation of the flow configuration. (a) Square enclosure. (b) Tall enclo-
sure. (¢) Shallow enclosure
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The non-dimensional form of equations for studying Brinkman-Bénard convec-
tion are given by:

400 _

aAViV — ac?A’ViW — a’Ray, A ax =0 (1)
—Aaq/+aMV2®+Aa(q/’®)=0 )
X 4 WX, 2)

The non-dimensional parameters appearing in Eqs. (1) and (2) are:

b? h ATD?
g Ope A= Mne ’ o2 = A= Ray,, = (pﬂz);zeg .
@ UneQne

9 b (3)
Upl Mnl K b

The thermophysical properties of nanoliquid as a function of corresponding prop-
erties of base liquid and nanoparticles are modelled using either phenomenological
laws [1, 3] or mixture theory, and the properties of nanoliquid-saturated porous
medium are obtained from mixture theory [9] (see [16]). To solve Egs. (1) and (2),
we consider two sets of boundary conditions:

¢ Case (i): Free-free isothermal horizontal boundaries and free-free adiabatic
vertical boundaries

RRA 11 -1 1
v = =0 =0at Z=—_, and <X <
922 2’2 2 2 @
v 90 11 -1 1
v = = =0at X=—_,  and <Z <
X2~ ax 2’2 2 2

e Case (ii): Rigid-rigid isothermal horizontal boundaries and rigid-rigid
adiabatic vertical boundaries

v 11 —1 1
v = =0=0at Z=—_, and <X <
0Z 2°2 2 2 )
ov 10 11 -1 1
v = = =0at X=—_, and < Z<
0X 00X 2°2 2 2

3 Nonlinear Stability Analysis

Case (i) We consider minimal number of modes in the double Fourier series
solution to describe the steady finite amplitude convection and the same is given
by

V2M§3a

vz =""" Usin(nX—}—Tz[)sin(nZ—i—Tz[), (6)



150 P. G. Siddheshwar and B. N. Veena

0(X, 2) :; -Z+ ! [—~/2Vcos (nX—i— Z)sin(nZ—i— Z)

rmw

—Wsin Qe Z + 7)], @)
FF
where r = R 'IfF and Ra}:‘y.p represents critical Rayleigh number for free-free
aner 4
boundary combination given by:
Ms4 | A8
FF A A 2

Ram,c = T2A3 |: A2 + 0o ] ®)

Substituting Egs. (6) and (7) in Egs. (1) and (2), we get nonlinear algebraic equations
connecting the amplitudes in the form:

V-U=0 rU-UW-=-V =0, UV-HW =0, C))

where U, V and W are the amplitudes of convection, by = 4;2 and 8/24 =72 (A2+ 1).
A
Estimation of Enhanced Heat Transport

The Nusselt number, Nu,., in a nanoliquid-saturated porous enclosure for the
1

stationary mode of convection evaluated at the lower boundary Z = —, is given
by
1 doO I 00
—kpe [2, P dX + | —kee [2 0 dX
) dZ Z=—1 ) 0Z Z=—1
Nupe = | g 2, (10)
ke 2 1P ax
el -1 az Z7—_1
2
— T Ty, — Tt
where ® = O, ®p = b O.

On simplifying Eq. (10), we get Nusselt number expression for free-free bound-
aries as follows:

kne 1
Nupe =1+2 1-— . (11)
kpe r

Case (ii) The minimal number of modes in the double Fourier series solution to
describe the steady finite amplitude convection in a nanoliquid is given by

Mia e, (X)Co(Z) (12)
2/2aps T

U(X,Z) =
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0X, 2) =; —Z+ P2 [—x/ZVcos (nX—i— Z)sin(nz+ n>

rPs 2 (13)
—Wsin(2nZ + 7)],
Ra RR
where Cr.(X) and Cy.(Z) are Chandrashekar even function [2], r = R ';:R ,
: a

nec
and Ra,felf represents critical Rayleigh number expression for rigid-rigid boundary
combination given by:

M8% [AP;(1+ A%

RR _ A 2 2
anet_4A3P22|: A2 +AP4_(1+A)PIG:|- (14)
The various quantities appearing in Eq. (14) are:

P ! PsP;Pg, P 16713“?
1= 61718, 2 = 5
16 (4 — ut)?

j1 = 4.73004074,
_

m1
16 [

2 M% 2 40 M1 4
P3 PsPy, Py= g PsPg, Ps = sec [2]sech 2],

Py = 2sin[u1] coshz["zl] + 2sinh{ ;] cosz[“;] — 111(2 + cos[ 1] + coshl 1),

Py = 2sin[p] coshz[“zl] — 2sinh[p] cosz[uzl] — pi(cos[p1] — cosh[p1]).

Substituting Egs. (12) and (13) in Egs. (1) and (2), we get the algebraic equations
connecting the amplitudes in the form:

V-U=0 rU-UW-=-V =0, UV-b01W=0. (15)

Note that Eq. (15) is essentially Eq. (9) but with a different scaling of quantities.

Estimation of Enhanced Heat Transport

Following the procedure of free-free boundaries we get the expression for Nusselt
number for nanoliquid-saturated porous medium, Nu,,, for rigid-rigid boundaries
as follows:

Nitge = 1428 P2y 1 (16)
Upe = — ,
" kpe Ps
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where

pe 321031t (397 + )
(r* — w2 @1t — )

and the other quantities are as defined earlier.

4 Results and Discussions

Brinkman-Bénard convection in a nanoliquid-saturated porous medium is investi-
gated by considering water as base liquid, copper as nanoparticle and 30% glass
fibre reinforced polycarbonate as porous material. Thermophysical properties of
base liquid [12], nanoparticles [12] and porous medium [17] (see Table 1) are
collected from literature. Thermophysical properties of nanoliquid-saturated porous
medium are calculated by considering nanoparticles’ volume fraction, x=0.06, and
porous medium with porosity, ¢=0.88, at 300 K using phenomenological laws and
mixture theory.

From the study of linear theory, we can rewrite Rayleigh number, Ra,., for free-
free and rigid-rigid boundaries as follows:

_ (PB)ne Mbe Obe

Ra,. = F Rap., F = .
" ‘ (0B)be Mne Cne

a7

Hence Ray. < Rap.. This shows us that the presence of nanoparticles in base liquid
advances onset of convection.

From Fig. 2a it is observed that onset of convection is advanced with the increase
in aspect ratio, A, and a sudden rise in the scaled Rayleigh number, r, is observed
when value of A decreases below 0.85 which shows the invalidity of the result for
unicellular assumption. The condition A << 1 refers to classical Rayleigh-Bénard
convection problem. Hence we conclude that unicellular convection is possible in
the range 0.85 < A < 1.2. Further, from Fig.2b, c, it is observed that onset of
convection is delayed with increase in Brinkman number, A, and porous parameter,

Table 1 Thermophysical properties of porous material (30% glass fibre reinforced polycarbonate)
at 300K [17]

Thermal

expansion Specific Thermal

coefficient heat conductivity
Quantity Density [kgm_3] [K~! x 10%] [J/kg-K] [W/m-K] Porosity
30% glass ps=1430 Bs=3.5 (Cp)s=1130  k;=0.24 $=0.88 [9]
fibre
reinforced

polycarbonate
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Fig. 2 Variation of Nusselt number for nanoliquid-saturated porous medium, Nu,,, or scaled
Rayleigh number, r, for different values of aspect ratio, A, Brinkman number, A and porous
parameter, 0. (a) 02 = 10and A =1.2.(b)A = lando? = 10. (¢) A = land A = 1.2

o2, for free-free and rigid-rigid boundaries. Hence x and A have destabilizing
effect, whereas A and o2 have stabilizing effect on the onset of convection. Further,
from Fig. 2a, it is observed that enhanced heat transfer is seen in enclosures with
high-aspect ratio, compared to enclosures with low-aspect ratio in the case of both
free-free and rigid-rigid boundaries. From Fig. 2b, c, it is observed that heat transfer
decreases with increase in A and o%. From Fig.2 it is further clear that free-
free boundaries facilitates greater amount of heat transport compared to rigid-rigid
boundaries.

Our results in a limiting case were compared with existing results. In the case
of rigid-rigid boundary condition with x = 0.08 and RaflR =5000 for water-copper
nanoliquid occupying rectangular enclosures, our results tally with those of Elhajjar
et al. [11] for aspect ratios 0.8687 and 0.8689, respectively.
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Nomenclature B thermal expansion coeffi-
cient
Latin Symbols X volume fraction
a ratio of thermal diffusivity AT temperature difference
A aspect ratio A Brinkman number
Cp specific heat 0 dynamic viscosity
g acceleration due to gravity ¢ porosity
0,0,-g)
k thermal conductivity \ non-dimensional stream
function
K permeability P actual density
M ratio of specific heat ® non-dimensional
temperature
Nu Nusselt number
r scaled Rayleigh number Subscripts
Ra Rayleigh number b basic state
T temperature be base liquid-saturated porous
medium
Ty temperature at the lower ¢ critical
boundary
X non-dimensional horizontal ne nanoliquid-saturated porous
coordinate medium
Z non-dimensional  vertical nl nanoliquid
coordinate
Greek Symbols s solid
o thermal diffusivity
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The Effects of Homo-/Heterogeneous m)
Chemical Reactions on Williamson MHD @i
Stagnation Point Slip Flow: A Numerical

Study

T. Poornima, P. Sreenivasulu, N. Bhaskar Reddy, and S. Rao Gunakala

Abstract The objective of the present paper is to examine numerically the chemical
reaction and mass transfer effects on magnetohydrodynamic Williamson fluid past
an exponentially stretching sheet. The basic flow field equations are transformed to
coupled, nonlinear ordinary differential equations using suitable similarity variables
and then solved using the Runge—Kutta—Fehlberg method. The effects of various
material parameters on the flow field momentum and species in addition to wall
shear stress are computed effectively and portrayed graphically. The diffusion rate is
low for both homogeneous and heterogeneous reactions. Acceleration in the values
of Williamson fluid parameters accelerates the friction.

1 Introduction

There is an increased need to model the behavior of rheological fluids because
of their huge application in the technological and engineering process such as
coating items with emulsions, polymer solutions, paints, etc., One of these is pseu-
doplastic fluids, which are non-Newtonian fluid exhibiting shear-thinning behaviors.
The model was developed in 1929 by Williamson to examine pseudoplastic
flows. Nadeem et al. [1] investigated the Williamson fluid flow past a stretching
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sheet. Mabood et al. [2] analyzed the magnetohydrodynamic (MHD) effects on
Williamson nanofluid considering radiation. Bing et al. [3] analyzed the influence of
heat transfer on Williamson nanofluids along a stretching sheet taking into account
thermal radiation.In the world of chemical engineering and in some other industrial
processes, the reaction between the species with the help of a catalyst or occurring
in different media is a reliable concept. If the reaction occurs in a uniform phase it
is termed ‘Homo,” whereas if the reaction occurs in different phases in the presence
of a catalyst, ‘Hetero’ is coined. The rate of reaction is proportioned directly to the
species concentration (first-order chemical reaction). Shehzad et al. [4] discussed
and portrayed the impact of the chemical reaction on Casson fluid. The effects
of a chemical reaction on a circular cylinder were studied by Poornima et al.
[5]. With heat generation/absorption, Jena et al. [6] investigated the behavior of
Jeffry fluid in porous media, taking into account the chemical reaction. In most
of the problems, no slip is considered. In natural and engineering processes such
as suspensions, emulsions, foams, etc., the slip phenomenon is observed. Recent
application of a boundary slip is the polishing of internal cavities and artificial heart
valves. Sheikh and Abbas [7] discussed the chemical reaction effects on Casson
fluid toward a stretching/shrinking sheet with slip conditions. Ibrahim and Makinde
[8] portrayed their ideas on the stagnation point of Casson nanofluid with a Navier
slip thematically. Poornima et al. [9] analytically discussed the slip flow regime on
Casson rheological fluid.

2 Basic Transport Equations

Consider a steady two-dimensional flow past an exponential stretching sheet on
an MHD Williamson fluid with slip effects. The fluid is confined to y > 0.
The wall is kept stretched exponentially with a stretching velocity U,, = bel
and a stagnant velocity U, = aeil.a,b > 0. A variable magnetic field B =
BoeiL, is normally applied to the sheet. The interactions between the homo-
and heterogeneous reactions are examined for this precise model using the given
mathematical representation, which is as follows:

A+2B — 3B, rate = kccd2
A —> B, rate = kycd? (1)

with the species constant rates kg, k. and c,d are the concentrations of chemical
species A and B. The schematic representation of the model is portrayed in Fig. 1.
The boundary layer equations with the restricted conditions of the flow field is of
the form:

u ou

=0 2
ax+ay ©))
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Fig. 1 Flow model representation

ou u dU 92u u 02u oBz(u— Ux)
= U 2 — 3
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dc dc 9%c
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=0: u= X v , V= ,
Y N ay) 2 \dy v
0 od
Dy ¢ = kgc, Dp = — kgc
dy ay
y—00: u= Ux),V=0,c= cy,d=0 (6)

where u and v denote the velocity components in x and y directions, v is the
kinematic viscosity, D4, Dp are the respective diffusion coefficients. N is the
velocity slip, V,, = —Vpe 3L the suction/blowing parameter, /" the Williamson
parameter.

Introducing the similarity variables:

\/b 3L m d h(n) d 2 1“\/17361A S Yo 5 a
e e 9 — 9 — 9 - 9 - 9 — 9
T=y 2Lv &t co 7 o vL \/bv b
2L
2Lo B? D b ke 2L k
M= 0 sc= "  ¢c= B,N():N\/V o= et =
pb Dy Dy 2L d \/ReDA
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The flow field equation turns dimensionless and takes the following form:

f/// + ff// + 2(82 _ (f/Z)) + .Qf”fm B M(f/ _ 8) —0 (8)
g+ Scfg —kgh®> =0 )
B+ Scfh' +kgh®> =0 (10)

The associated boundary conditions are as follows:

F©) =14 No (f/0) + 27©) . f = 5.8/0) = k52 (0), ¢h'(0) = —ksh(0)

f—8,g—1,h—0asn— o© (11)
Here, 2 is the Williamson parameter, § the velocity ratio (stagnation) parameter,
¢ ratio of diffusion coefficients, Ny the velocity slip parameter, « the measure of
strength of the homogeneous reaction, k; the measure of strength of the heteroge-
neous parameter. It is assumed here that ¢ = 1, i.e., the diffusion coefficients, are

equal. In most practical applications, the diffusion coefficients of chemical species
are required to be of comparable size. Thus, the assumption leads to the relation:

g +h(n =1
Hence, the species equations (9) and (10) reduce and give the final form

o' +Scfd/ — k¢ (1-9%) =0 (12)
The respective boundary conditions are

¢ =xspatn=0

¢ — lasn — o0 (13)

Engineering quantities of our interest are calculated as

Tw ou r (8u>2
Cr= where T, = +
SOGT " “[(ay> va\ay) |

= V2ReCy = f"(0) + ';Zf”z(O)

ShRe? (x) = —¢'(0) (14)
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3 Results and Discussion

To see in detail the effects of various material parameters found in the flow field
on the fluid velocity, concentration in addition to the skin friction coefficient and
Sherwood number is illustrated through graphs and tables. However, for want
of space, here, we have shown the effects of few important parameters using
graphs. The several physical parameters present are the fluid parameter (Williamson
parameter) 2, slip (Np), the suction/injection (S), and the stretching parameter ().

Figure 2 represents the effect of the homogeneous chemical reaction parameter
on solutal concentration. Species concentration decreases near the wall within the
region 0 <= h(n) <= [0, 3], while the trend seems reversed in the region n > 3.
This is due to the fact that reactions occurring near the plate diffuses species more
effectively than in the ambient stream.

Figure 3 represents the effect of heterogeneous chemical reaction parameter on
solutal concentration. If k; = 0, then ¢ = 1, which implies that the absence of the
reaction is almost linear. As k; increases, greater dispersion of species particles
of the Williamson fluid occurs, thereby decreasing the solutal concentration.
Interestingly, a reverse trend is observed after n > 3. Figure 4 portrays the influence
of the Williamson parameter on the fluid concentration. As the fluid parameter
increases, the solutal concentration decreases as the concentration boundary layer
thickness reduces. It is seen that all the profiles coincide at the point = 3.0 and
reach a maximum of ¢ = 1.0.

The velocity profiles versus the stretching parameter is shown in Fig. 5. As both
stretching and stagnant velocity are equal, then the momentum of the fluid is linear.
If a < b, then the profiles are under the case of @ = b, i.e., the motion of the fluid
descends near the plate and linear motionobserved as it approaches free stream.

10f — ]
09} ]
<
08} ]
k=0,0.1,0.2,0.25,0.3

07} ]
0.6 1 1 1 1 1 1 1

0 1 2 3 4 5 6

Fig. 2 Solutal profiles versus homogeneous chemical reaction parameter
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Fig. 7 Velocity profiles for different values of the Williamson parameter

Similarly, if a > b, then the profiles are over the linear profile a = b, i.e., the fluid
momentum ascends and approaches linearly to the free stream. Figure 6 portrays the
influence of partial slip on the motion of the fluid. Owing to the partial slip presence,
near the plate, the fluid slips within the layers, thereby reducing fluid movement.

The influence of the Williamson fluid parameter on the translational velocity
is portrayed in Fig. 7. Near the sheet surface, the profiles are descending and the
profiles coincide at the point of inflection n = 1.5; later they ascend and reach the
free stream.

Table 1 presents the effect of various pertinent parameters on the wall shear
stress and Sherwood number. As Navier’s slip increases, the skin friction coefficient
increases and increases the rate of mass transfer. Homogeneous and heterogeneous
reactions influence the fluid flow, particularly on the mass transfer. The transfer rate
of species is lower if the homogeneous reaction takes place. Suppose if the reaction
between the heterogeneous particles takes place, the diffusion rate decreases. The
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Table 1 Computation of the No S © c Q s C —¢/'(0)
skin friction coefficient and s f

Sherwood number for various 1.0 —0.26252  —1.9310
physical parameters 20 —0.1598  —1.5190
05 -0.1 —0.4413  —0.0380

1.0 —0.4003 1.8499

0.1 —-0.3773  —0.1033

0.5 -0.3773  —0.2075

0.1 —0.3773  —1.8565

0.5 -0.3773 0.1291

0.1 —0.4094  —0.8290

0.5 —-0.3773 0.1291

0.4 0.4873 0.0692
0.6 0.3773 0.1291

ascending fluid parameter increases the friction at the wall and also increases the
species transfer rate. For gases, the diffusion transfer rate is 0.1497 in the presence
of a chemical reaction. In the case of water, the rate of species transfer is 0.055 with
chemically reactive substances.

4 Conclusions

A computational analysis is carried out to study the effect of mass transfer with slip
effects on MHD Williamson fluid flow taking the chemical reaction into account.
Numerical computations are performed and the outcomes are: The slip parameter
decreases the motion of the fluid. The Williamson parameter decreases the velocity
near the wall and increases the profiles in the ambient flow. Species diffusion and its
rate is low in cases of both homogeneous and heterogeneous reaction. Acceleration
in the values of the Williamson fluid parameter accelerates the friction.
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The Influence of Wall Properties on the m)
Peristaltic Pumping of a Casson Fluid e

P. Devaki, A. Kavitha, D. Venkateswarlu Naidu, and S. Sreenadh

Abstract Wall properties effect has been investigated on the peristaltic flow of
Casson fluid in a channel by assuming long wavelength and low Reynolds number.
The governing equations are solved analytically to find the expression for velocity
and stream function. The effect of different parameters of wall and fluid properties
on the velocity and stream function is discussed through graphs. The results obtained
create interest among young researchers to concentrate on the wall effects of
different types of Newtonian and non-Newtonian fluids in the presence of peristalsis.

1 Introduction

In general fluid flows from high pressure to low pressure in nature but there are
certain physical situations where it is essential for the transport of fluid from low
pressure to high pressure and this is not possible by normal flow technique. Such
type of fluid transport takes place through the phenomenon of peristalsis. Peristalsis
pumps fluids from one place to another in many physiological ducts of the human
body. This effect of peristalsis has to be considered as an important effect whenever
the study is based on the wall properties of the channel or tube.

Wall properties play a vital role in the study of blood flow in the ducts of living
organisms. As the organs like arteries, capillaries and veins are elastic in nature,
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this elasticity finds its impact on the flow of blood in the tube or channel. The
blood can in general be considered as Newtonian or non-Newtonian fluid. The past
investigations reveal the fact that the blood mostly behaves like a non-Newtonian
fluid. There are many non-Newtonian fluid models among which the blood behaves
like a Casson model at very less shear rates, suggested by Scott Blair [2]. Casson
[3] says that at the yield stress of the blood is zero at low shear rates. The blood
was considered as a two-fluid model by Srivastava and Srivastava [8] and they
also involved the effect of peristalsis and the two fluids considered are Casson and
Newtonian fluids. Vajravelu et al. [6, 7] assumed blood as Herschel-Bulkley fluid
and they obtained many interesting results in the presence of peristaltic pumping of
fluid in a channel and inclined tube, respectively.

The effect of yield stress and peristalsis on the flow of fluid in a tube with
elasticity was studied by Vajravelu et al. [9]. As the Herschel-Bulkley fluid is the
special case of Newtonian, Bingham and Power-law fluids. The same investigation
was also concentrated for these fluids and results were given for all four different
fluids. Micropolar fluid flow with peristaltic pumping under the effect of wall
properties was investigated by Sankad and Radha Krishnamacharya [5] in a channel
with inclination. Nadeem and Ijaz [4] studied on the elastic artery including the
effect of stenosis overlap when the blood flows in a tube. Pseudo plastic features was
involved by Akbar and Nadeem [1] with blood flow and investigated on the stenosis
of the tube. Herschel-Bulkley fluid in a tube with elasticity under the influence of
peristalsis was analysed. Vajravelu et al. [10] investigated on elastic tube by taking
Casson model as the non-Newtonian model of blood along with peristalsis. The
present paper deals with the Casson model under the effect of wall properties and
peristalsis. The mathematical model was solved analytically and obtained velocity
and stream function in terms of various elastic parameters.

2 Mathematical Modeling

A two dimensional channel wall effects of the Casson fluid is investigated including
peristalsis. The peristaltic wave of the channel is given by

. 2w
y=n(x,1) =d(x) + ¢Sin N (X —c1) (D

whered(x) =d +mX,m < 1

¢ is the amplitude, A is the wavelength, d is the mean half width of the channel
and m’ is the dimensional non-uniformity of the channel.

The equations governing the motion for the present problem are

ou Jw

=0 2
aeray ©))
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2
8u+ 8u+ du ap+ 32u N 3 v du\'? 3
Uu w = — T, J—
Plar T'ox ™%y ax T H\ax2 ) Tay \ T Hay

dw N dw N waw ap N 3%w N 32w @
u = —
Plar T"ax Ty gy TH\ a2 T g2

where u, w are the components of velocity along x-axis, y-directions, respectively,

p is the density, u is the coefficient of velocity of the fluid, p is the pressure, d is

the mean half width of the channel, @ is the amplitude, A is the wavelength, c is the

phase speed of the wave and m’ is the dimensional non-uniformity of the channel.
The governing equations of motion of the flexible wall may be expressed as

C*(h)=p — po &)

where C* is an operator, which is used to represent the motion of stretched
membrane with viscosity damping forces such that
9* 9? 9

6
rax2+m18t2+618t (6)

C*=—

Here 7 is the elastic tension in the membrane, m is the mass per unit area, c is the
coefficient of viscous damping forces and py is the pressure on the outside surface
of the wall due to the tension in the muscles.

Continuity of stress at y = n and using x-momentum equation yields

2
aC*(h) ap 3%u N 3 [ e N du\'? du N du N du
=—_ = T — - u w
ax ax M lax2 )Ty |70 Hay Plar Thax T %0y

N
, . 27
u=0 at y:n:d—l—mx—l—aSln)L(X—ct) 8)
For simplicity, we assume that py = 0.
Introducing ¢ such thatu = gi andw = — gi and the following non-dimensional
quantities:
x/:x, y/:y’ é./: ¢ i l/ICI,h/Ih,p/Idzp,k/: k 7 t(,):dfo
A d cd A A cip d? cu

The non-dimensional governing equations after dropping primes, we get

2

92 ac %c  9r > 9 B 9 92c\"?
Ro((06 400 06 000NN P (00 N 0 (g (=0
otdy  dy dxdy  dx dy ax 0x<0dy dy dy

®

92 dc 9%¢  ac 9? 9 33 93
R (05 40000 0 EN O (06 2 O (10)
0tdx 9y 0x2  9x 0xdy dy 9x3 9x0y?
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e

5 =0 at y=n=14+mx+eSin2n(x —1t) (11)
y
2
93 9 22 \'? 2%t ac 92 ¢
Pl R U L Y R
0x<0dy ay ay dtdy  Jdy dxdy  dx dy
83 33 82
( Loy TE292 3axat>"
(12)

Non-dimensional boundary conditions are

tp=0at y=0 ¢y=0at y=0 (13)

where ¢ = 2, § = ‘)f are geometric parameters, R = CZ” is the Reynolds number,
_ d’ _ myed® _ cd? _di ; ;

E| = e’ E, = e E3 = 2 are the non-dimensional elastic parameters,

/. .
m= A:’; is the non-uniform parameter.

3 Solution of the Problem

Using the long wavelength and low Reynolds number approximations, one can find
from Eqs. (9) to (12) that

172\ 2
ap a 172 8%¢
0=— - 14
ax + ay (TO + ( ayz ( )
ad
0=— 8;) (15)

Equation (15) shows that p is not a function of y. On differentiating Eq. (14) with

respect to y, we get
2
92 12 92 12
(34 (5 -

From Eq. (12) we get

2
o (n, 220\ '"?\" g 0 E 93 E 92 an
gy \ "0 3y2 T\ 3 T k02 T PRoxar )
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The closed-form solution for Eq.(16) using the boundary conditions (11), (13)
and (17) can be obtained as

E 4
u= 0 =y = J(Ew) 0=yt rm=—y)  yo=ys=n (8
We find the upper limit of plug flow region using the boundary condition that ¢y, =
Oaty = 0. Itis given by

70
= 19
Y= p (19)

Taking y = y¢ in Eq. (18) and using the relation (19), we get the velocity in the plug
flow region as

2
n 4 1p 17 2
up=E<2—3)’o n3/2+yo77—6y0), 0<y<yo (20)

By using Eqgs. (18) and (20), we get

— y)2 3 _4y° 2
¢ =To((y R —ﬂ(y—yo)—n(y—yo)> —E(y LA —ﬂny+yé<ﬂ+n)>
21
2 1 2 5
¢p=Ey|yo—Byo—nyo— z(yo—n —2pBn) (22)
where
Es .
E = —-8em [(E1 + E>)Cos2m(x —t) — ooy Sin2m(x — t):| (23)

4 Results and Discussions

Casson fluid with peristalsis is investigated under the effect of elastic properties
of the wall. The velocity and stream functions were analysed by plotting graphs
for different parameters of elastic wall by using Matlab software. The graphs are
depicted from Figs. 1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and
20 for the following factors.

1. Non-uniform parameter m determines the non-uniformity of the channel.
2. The yield stress 19.
3. Ei, E» and E3, flexible wall properties of the channel.
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Fig. 4 m on the velocity 25 - - - -
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Fig. 7 Stream function if
E=0.6

Fig. 8 Stream function if
E;=0.8

Fig. 9 Stream function if
E»=0.2

0 0.2 0.4 0.6 0.8



The Influence of Wall Properties on the Peristaltic Pumping of a Casson Fluid 175

Fig. 10 Stream function if
E»=0.4

Fig. 11 Stream function if
E»=0.5

Fig. 12 Stream function if
E3=0.1
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Fig. 13 Stream function if
E3=0.3

Fig. 14 Stream function if
E3=0.5

Fig. 15 Stream function if
m=—0.1
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Fig. 16 Stream function if
m=0

Fig. 17 Stream function if
m=0.1

Fig. 18 Stream function if
79=0.001
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Figures 1, 2 and 3 depict, respectively, the behaviours of the velocity u versus y
with changes in elastic parameters, namely £, E> and E3. The effect of an increase
in E the rigidity parameter E; gives rise to an increase in the velocity u when
the other elastic parameters. The same behaviour is observed for the other elastic
parameters, namely £ and E;. Figure 4 shows the variation of velocity u with y
for different values of non-uniform parameter m [namely convergent channel m <
0, uniform channel m = 0 and divergent channel m > 0]. From the graphical
representation, it is observed that the velocity u in the case of convergent channel
is less than that in the uniform channel and this is less than the divergent channel.
The variation of velocity u with y is calculated for different values of yield stress
79 and is depicted in Fig. 5. The numerical results are obtained for different values
of yield stress 7¢ in the range 0-0.1. We note that, in cardiovascular system, the
Casson fluid behaves like blood only when lies in between 0 and 0.1. For higher
values, the Casson fluid behaves like industrial fluids possessing yield stress. It can
be seen from Fig. 5 that the velocity depends on yield stress and it decreases with
increasing yield stress 1.
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4.1 Trapping Phenomenon

In the present study peristalsis is involved, so trapping of the fluid has to be
concentrated. Figures 6, 7 and 8 show that for higher rigidity E, the size of the
trapped bolus increases. From Figs.9, 10 and 11 we observe that more trapped
bolus appears with increase in stiffness parameter. Further as viscous damping force
increases, the size of the trapped bolus also increases as seen in Figs. 12, 13 and 14.
The size of the bolus increases on the left-hand side for convergent channel and
decreases for divergent channel, and the size of the bolus is symmetric for uniform
channel which is shown in Figs. 15, 16 and 17. Figs. 18, 19 and 20 depict the fact
that as yield stress increases trapped bolus decreases.
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Peristaltic Flow of a Jeffrey Fluid )
in Contact with a Newtonian Fluid Check for
in a Vertical Channel

R. Sivaiah, R. Hemadri Reddy, and R. Saravana

Abstract The flow of a Jeffrey fluid is extended to include a Newtonian fluid
through a vertical symmetric channel with peristalsis under the assumptions of
long wavelength and small Reynolds number. The model is applicable to study
the behavior in physiological systems. The velocity field, stream function, interface
shape, pressure rise (drop), and frictional force at the wall over a cycle of wavelength
are obtained, and the results are shown graphically. It is observed that the variation
of interface shape yields the thinner peripheral region in the dilated region with
increasing Jeffrey parameter A1 and thicker peripheral region in the dilated region
for low viscosity ratio.

Keywords Jeffrey fluid - Newtonian fluid - interface - vertical channel

1 Introduction

Peristalsis is an inherent biological mechanism in human beings. In practical, the
peristaltic pumps are modelled to pump the corrosive fluids to avoid the contact of
walls of the pumping machinery. In order to understand the effect of fluid coating in
the physiological systems such as esophagus and ureter, the study of peristaltic flow
of single fluid is extended to two-fluid flow. The two-fluid flow natural phenomenon
can be observed in many physiological systems such as swallowing of food bolus
through esophagus, passage of urine through ureter, blood pumping in blood vessels,
etc.
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The Jeffrey fluid model is the simple non-Newtonian fluid model proposed for
biofluids. Hayat et al. [1] analyzed the peristaltic flow of a compressible Jeffrey
fluid in a tube. Nadeem and Akbar [2] studied the peristaltic pumping of an
incompressible viscosity varying Jeffrey fluid in an asymmetric channel. Kavitha
et al. [3] presented the peristaltic transport of a Jeffrey fluid in a permeable channel
with suction and injection. Saravana et al. [4] examined the wall properties effect on
MHD peristaltic flow of a Jeffrey fluid through a porous nonuniform channel.

The peristaltic flow of two-fluid analysis has been reported by several authors
[5-9]. All these authors have specified the interface shape. Very recently, Vajravelu
et al. [10] addressed the peristaltic transport of a Jeffrey fluid in a core region and
a Newtonian fluid in a peripheral region through a horizontal channel with heat
transfer. Saravana et al. [11] investigated the peristaltic pumping of a Bingham
fluid in a core region and a Jeffrey fluid in a peripheral region through a symmetric
channel.

Motivated by the above studies, we propose to study the two-fluid peristaltic
flow of a Jeffrey fluid with a Newtonian fluid in a vertical channel under the
consideration of low Reynolds number and long wavelength. The velocity field, the
stream function, shape of interface, the pressure rise (drop), and the frictional force
per cycle of wavelength are obtained and are shown graphically.

2 Mathematical Formulation and Solution

We choose the peristaltic transport of two incompressible fluids of viscosities and
occupy the core region by a Jeffrey fluid and peripheral region by a Newtonian fluid
through a vertical channel. The half width of the channel is a.

The propagation of an infinite peristaltic wave is represented by

2
Y = H (X, t)=a+bsin;(X—ct) (1)

where A indicates the wavelength and b and c represent the amplitude and the wave
speed, respectively.

The subsequent deformation of the interface separating the core and peripheral
layers is represented by and is shown in Fig. 1, which is unknown a priori.

2.1 Equations of the Motion
Following the considerations of two-fluid analysis of Kavitha et al. [9], the
transformation from the laboratory frame to wave frame is as follows:

x=X—-ct,y=Y,ulx,y)=UX —ct,Y)—c,v(x,y) =V(X —ct,Y)
px)y=PX, 1),y =¥-Y (2)



Peristaltic Flow of a Jeffrey Fluid in Contact with a. .. 183

where ¥ and ¢ indicate the stream functions in wave and laboratory frames,
respectively. The non-dimensional quantities are as follows:

= _ Y Yy - h - hy - ct
X=y=" h= h = "1=_"vxy=VX-cY)
)\. a a a )\'
o® y® - q P Fa _4 u® B gy ®
= s 4= L I'= u'’ = = _
ac ac H1Aic c ay
y _vOh _ —oy® I, 0<y<h
- viA oy ) B , 0<y<h
U(l) = = _ ([ = 1,2) U= o _ _ _ (3)
ac ax p(=12), m<y<h

where #® and 7@ (superscript i = 1, 2 represents the flow in core and peripheral
layer) are the velocities along the and directions.

The equations governing the motion of two fluids in wave frame analysis under
the consideration of long wave length and low Reynolds number assumptions are as
follows (dropping the bars):

9 N RAVA) P
, | +n= )
ay | 1+xr1) ady dx
a
0="" 5)
dy
82 82 2)
and i v =0 (6)
9y? 9y?
where 7 is the gravity parameter.
F N
Y H Wall
H, Interface

1

Newtonian fluid

Jeffrey fluid

v
x

Center line A

o
N[>

Fig. 1 Physical model
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The non-dimensional boundary conditions associated with the flow in wave
frame are

v =0 at y=0 7
Y =0 at y=0 (3)
@ = g = constant at y=h ©))
vV =y @ =g = constant at y=h (10)
pP =-1 at y=h (11)

where ¢ and g represent the total and the core fluxes across any cross section in the
wave frame analysis. Further the shear stress and velocity are continuous across the
interface. The peripheral layer flux is followed by g» = ¢ — ¢1. It indicates that the
incompressibility of the fluids that ¢, g1 and g, are independent of x.

The non-dimensional volume flow rate Q of one period T (: i‘) of the peristaltic
wave is defined as

T h
Q:Il,//(u—i-l)dydt:q—i-l (12)
00

2.2 Solution

By solving the Egs. (4)—(6) with suitable boundary conditions (7)-(11), we get the
stream function in the core region and peripheral layer as

3 h)Fy—p(1+ A h) y?
1’”(1):_%{ Y@+ F—p(+2r) g+ )y} for 0<y<h
2F3
(13)
9(q+h)h?y —3(q +h)y*—6(q +h)h?
VO =yt gy | UMY =3@ )y =60+ h) }
6F3
for hi<y=<h (14)
Fj=hi + (u(1 4 1) — Dhl(j =2, 3).
The axial pressure gradient obtained from (4) or (6) is as follows
d -3 +h
p _ —3unlq )+n (15)

dx F3
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2.3 The Equation of the Interface

The interface is also a streamline as seen from the boundary condition (10). For a
given geometry of the wave and the time-averaged flux Q, the unknown interface
h1(x) is solved from (14) using the boundary condition (10). Substituting (10)
in (14), we get the algebraic equation governing the interface 41 (x) as

2[(1 4+ Anp — 11hT = [(q + h) [26 (1 + 1) = 31+ 2(1 — (1 + A)q1] b

- [h3 —|—3qh2]h1 +2qih3 =0 (16)

where ¢ and ¢ are independent of x.
The condition 71 = o at x = 0 in Eq. (16) produces q; as follows:

= 0ud+xr) —3)® + B0 —2)a —2(n(1 + A1) — Da*

17
201 = A+ ed + 1) 4

2.4 The Pumping Characteristics

By integrating Eq. (15) w. r. to x over one wavelength, we get the pressure rise (drop)
over one cycle wave as follows:

Ap=-3u(0 -1 -3uh+nh (18)

1 1 1
_ [dx _ h _
wherell_o F Iz—{dex, I3—Ofdx
The dimensionless frictional force F at the channel wall across one wavelength
is given by

1

F=|-h d 19
/ ax & (19)
0

3 Results and Discussion

The shape of the wave interface for different Jeffrey parameter A; with ¢ = 0.6,
w=0.1,a =08, and Q = 0.1 is shown in Fig.2. We observe that the interface
shape gives rise to thinner peripheral region in the dilated region with increasing A.
The shape of the interface for different u with ¢ = 0.4, A1 = 0.1, « = 0.5, and
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0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
X

Fig. 2 Shape of interface for A with¢ = 0.6, u = 0.1, « = 0.8 and 0=01

Fig. 3 shape of interface for 1.6
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Q = 0.1 is depicted in Fig. 3. The interface shape variation for low viscosity ratio
gives rise to a thicker peripheral region in the dilated region.

The pressure rise with time-averaged flux is obtained from Eq. (18), and the plot
for various values of a Jeffrey parameter A1 with ¢ = 0.6, v = 0.1, « = 0.8 and
n = 1 is shown in Fig. 4. For 0 < Q < 0.37, we found that AP decreases with the
increase of Jeffrey number A and increases in the rest of the region. The AP with
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Fig. 4 AP vs Q for 1| with 1.8
¢=0.6,u=0.1,0a =038 17
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Q for various values of gravity parameter n with ¢ = 0.6, u = 0.1, = 0.8 and
A1 = 1is shown in Fig. 5. From the plot, we find that A P increases with increasing
gravity parameter 1. The nature phenomenon of enhancement in the pressure rise
exists with increasing the gravity parameter.

The frictional force F with Q is evaluated from Eq. (19), and the plot for various
values of A1 with ¢ = 0.6, u = 0.1, = 0.8, and n = 1 is depicted in Fig. 6.
For 0 < Q < 0.25, we clearly see that F increases with the increase of A; and
decreases in the rest of the region. The variation of F' with Q for the chosen values
of n with¢ = 0.6, = 0.1, = 0.8 and A; = 1 is shown in Fig. 7. We observe
that decreases with the increasing of 1.
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Fig. 6 F vs Q for A; with
¢=06,1=01,0a=08
andnp =1

Fig. 7 F vs Q for 5 with
¢=06,u=01,a=038
and A =1

"0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Q
4 Conclusion

In this paper, we study the peristaltic flow of a Jeffrey fluid in the core region and a
Newtonian fluid in the peripheral region through a vertical symmetric channel under
the consideration of long wavelength and low Reynolds number. The pressure rise
variation with time-averaged flux and the interface shape is obtained. Some of the
interesting findings in the analysis are as follows: (1) the interface shape variation
yields the thinner peripheral region with increasing the Jeffrey fluid parameter; (2)
the interface shape for low viscosity ratio yields the thicker peripheral layer in
the dilated region; (3) for time-averaged flux, the pressure rise decreases with the
increase of Jeffrey fluid parameter and enhances in the rest of the region; and (4)
AP increases with the increase of viscosity ratio and decreases in the remaining
region.
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MHD and Cross Diffusion Effects on )
Peristaltic Flow of a Casson Nanofluid in Check for
a Duct

G. Sucharitha, P. Lakshminarayana, and N. Sandeep

Abstract The Soret and Dufour effects on the peristaltic transport of a conducting
Casson nanofluid in a flexible channel are studied. The influence of dissipation
and Joule heating are also discussed. The governing equations are simplified
by using a long wave length and small Reynolds number approximations. The
analytical solutions for stream function and axial velocity are obtained. Moreover,
the Runge—Kutte-based shooting method is utilized to solve the coupled energy
and concentration equations. The impact of important parameters on the flow is
explained using graphs for both Newtonian and Casson fluid cases. It is observed
that the Casson fluid has more velocity than the Newtonian fluid in the middle of
the channel and the situation is reversed at the channel walls. Further, a higher
temperature is noted for Casson fluid than for Newtonian fluid throughout the
channel, whereas concentration shows the opposite behavior.

1 Introduction

Peristaltic transport problems with different fluids and geometries have been
investigated by many authors because of the important and useful applications in
engineering and medical sciences. Various types of peristaltic pumps are designed
to transport sanitary and some industrial fluids. The study of peristalsis helps to
improve the quality of biomedical instruments such as a blood pump machine,
a heart-lung machine, and a dialysis machine. Latham [1], Fung and Yih [2],
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Shapiro et al. [3] initiated the study of peristalsis. Further several authors [4—
7] have presented their works on this topic. Most of the biofluids and industrial
fluids behave like non-Newtonian fluid and the study of these fluids plays a vital
role in fulfilling the present requirements in engineering and medical sciences. In
view of these observations, many authors have considered the non-Newtonian fluid
flow problems in channels and tubes [8—12, 20-23]. The study of conducting non-
Newtonian fluid flows with heat transfer has important applications in industry and
biosciences, such as the reduction of bleeding during surgery, cancer treatment,
the design of biomagnetic devices, hypothermia, and laser therapy. Hayat et al.
[13] analyzed the influence of heat transfer and an inclined magnetic field on
the peristaltic motion of fourth-grade fluid with variable viscosity. Saleem et al.
[14] analyzed the upper-convected Maxwell fluid flow using the Cattaneo—Christov
heat flux model. Recently, the authors [15-18] have studied the influence of wall
properties and heat transfer on the peristaltic flow of MHD non-Newtonian fluids.
In the present chapter, we examined the impact of Joule heating and cross diffusion
on MHD peristaltic flow of a Casson nanofluid in a channel. The expressions for
the velocity and the stream function are obtained. Further, the Runge—Kutte (R-K)-
based shooting method is applied to solve the energy and concentration equations.
The effects of important parameters on the flow quantities are discussed in detail
with the help of graphs.

2 Formulation of the Problem

We consider the peristaltic transport of a conducting Casson nanofluid in a two-
dimensional channel of width. The fluid flow is produced by a peristaltic wave
spreading along the flexible walls of the channel with a constant speed c (Fig. 1).
The Joule heating and the Soret and Dufour effects on the flow are also considered.
The geometry of the channel wall is given by:

Fig. 1 Physical model 2

h (x, 1)
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2
W (x'.t') = a Sin ;’ (x' —et') +d, (1)

According to the study by Akbar [10] and using a negligible Reynolds number
and protracted wavelength assumptions, the nondimensional momentum equation
for this study is obtained as:

3 1) 83 3
P+ VoV 2
0x B) ay3 dy
a
P =o, 3)
dy
where we present the stream function as u = %‘5, V=- %‘f and B (: ng */;i’ C)

is the Casson fluid parameter, M (: \/ Z Bod> is the magnetic parameter, A is the

wavelength, c is the wave speed, o is the electrical conductivity, By is the magnetic
field, u is the viscosity, ¢ is the time, p is the pressure, x, y are the Cartesian
coordinates, u, v are the fluid velocities in the x and y directions respectively, d
is the mean width of the channel, and a is the amplitude.

Hayat et al. [19] studied the effects of slip and Joule heating on a mixed
convective peristaltic flow by considering cross diffusion. In the view of this study,
dimensionless energy and concentration equations for the present problem are
presented as:

320 2y\° L oy’
dy? +Br[(8y2) s <8y)

36\ 2 360 9 92
+Pr | N ) + N, ¢ + Du ¢ =0, 4)
dy dy dy dy?
9%¢ N; 7 9%
SrS =0, 5
3y2+[rc+NJ3y2 ©)

corresponding dimension-less boundary conditions (Sucharitha et al. [17, 18]) are
given by:

92 96 9
v =0, I”:0, =0, ¢=0m y =0, (6)

dy dy
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3
I”=0,9=1,¢=1m y=h, (7)

dy

1\ 3y Loy 9%h a3h a3h )
1 -M> " —(E E E =0,at y=nh, (8
<+ﬂ) 3y} 3y ( Soxar TP g T 000 ary ®)

where i (= ¢ sin2mw (x — t) + 1) is the wall deformation, E; (: ;fgj) is the

mlcd3

wall tension parameter, E> (: o

) is the wall mass description parameter,

3\ . . . . . .
d ) is the damping force parameter, ¢ (: ;) is the amplitude ratio, N; is

E3 (= izu-
the thermophoresis parameter, N, is the Brownian motion parameter, Sr is the Soret
number, 0, ¢ are the nondimensional temperature and concentration respectively,
Br (= Ec Pr) is the Brinkman number, Du is the Dufour number, Ec is the Eckert

number, Pr is the Prandtl number.

3 Exact Solution

On differentiation of Eq. (2) with respect to y we obtain:

oty 0

=0, 9

The exact solution of the Eq. (9) by using the boundary conditions (6)—(8) is given
by:

ap sinh N ay
v = Yo A (10)

" N3coshNh N2
Corresponding axial velocity is:

ajcosh Ny ai (11
u= —
NZcoshNh N2

where N2 = (113/:1)

a; =8emn3 [f; sin 2w (x —t) — (E| + E3) cos 2mw(x — t)]
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4 Numerical Solution

The energy and concentration equations (4) and (5) are coupled and nonlinear.
Thus, these equations are solved numerically by employing the R-K-based shooting
method with the help of the boundary equations (6)—(8). The Nusselt and Sherwood
numbers at the wall are defined by:

de d
Nu:—( ) , Sh:—( ¢> (12)
dy at y=h dy at y=h

5 Results of the Problem

In this section, we have studied the effects of pertinent parameters on the flow
quantities in both Newtonian and Casson fluid cases with the fixed values: ¢ =
03,=2,M=2,x=02,t=025E1 =03, E, =02, E3 =0.1, Nt =0.5,
Nb = 0.5, Br = 0.02, Sc = 0.6, Sr = 0.2, Pr = 7, Du = 0.2. Figures 2,
3, and 4 are drawn to study the impact of MHD on the velocity, temperature, and
concentration fields. We observed that the increase in M decreases the velocity in
the middle of the channel as it enhances at the channel wall. We noted that the
rise in M reduces the temperature whereas it improves the concentration. It shows
the influence of the magnetic field on the flow. Also, it is perceived that velocity
and thermal fields are maximal at the midway point of the channel, whereas the
concentration field is minimal near the center of the channel. From Figs.5, 6, 7,

Fig. 2 Effect of M on
velocity
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Fig. 3 Effect of M on
temperature

Fig. 4 Effect of M on
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and 8, we identified that the high values of the thermophoresis parameter boost the
temperature and diminish the concentration. Moreover, reverse behavior is observed
in the case of the Brownian motion parameter. Figures 9, 10, 11, and 12 show that
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Fig. 5 Effect of Nt on
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the increment in the Soret number decreases both temperature and concentration
fields. The high values of the Dufour number reduces the concentration, whereas it
increases the thermal field. The influence of the Casson fluid parameters g and M
on the formation of a circulating bolus by surrounding streamlines in the fluid flow
is presented in Figs. 13 and 14. The increase in 8 and M reduces the size of the

trapped bolus.
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Fig. 10 Effect of Sr on
concentration

Fig. 11 Effect of Du on
temperature
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Fig. 13 Influence of 8 on trapping
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Fig. 14 Influence of M on trapping
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Axisymmetric Vibration in a Submerged )
Piezoelectric Rod Coated with Thin Film <

Rajendran Selvamani and Farzad Ebrahimi

Abstract This paper is concerned with the axisymmetric elastic waves in a
transversely isotropic submerged piezoelectric rod coated with thin film using a
constitutive form of linear theory of elasticity and piezoelectric equations. The equa-
tions of motion along radial and axial directions are decoupled by using potential
functions. The surface area of the rod is coated by a perfectly conducting material,
and no slip boundary condition is employed along the solid-fluid interactions. The
dispersion equation which contains the longitudinal and flexural modes is derived
and is studied numerically. To observe the variations of mechanical and electric
displacement in the coated piezoelectric rod, the authors compute the numerical
values of the field variables for the ceramic PZT — 4. The effects of fluid and
coating environment on the variation of field variables are analyzed and presented
graphically. This type of study is important in the modeling of underwater sensors
for the navigation applications.

Keywords Axisymmetric waves in piezoelectric rod/glass fiber - Forced
vibration - Bessel function - Actuators/sensors - Thin film

1 Introduction

The piezoelectric materials are the important structural components in devices like
pressure transducers and accelerometers. Initially piezoelectric materials are used as
resonators for ultrasound sources in sonar devices. The piezoelectric materials such
as barium titanate (Bi7Ti O3) are fabricated by the advancement of piezoelectricity
in engineering field. Coated piezoelectric polymers are used in a variety of real-time

R. Selvamani (B<)
Department of Mathematics, Karunya University, Coimbatore, TamilNadu, India
e-mail: selvamani @karunya.edu

F. Ebrahimi
Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International
University, Qazvin, Iran

© Springer Nature Switzerland AG 2019 203
B. Rushi Kumar et al. (eds.), Applied Mathematics and Scientific Computing,
Trends in Mathematics, https://doi.org/10.1007/978-3-030-01123-9_21


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01123-9_21&domain=pdf
mailto:selvamani@karunya.edu
https://doi.org/10.1007/978-3-030-01123-9_21

204 R. Selvamani and F. Ebrahimi

engineering applications and structural components for a large variety of model
from transducers in acoustic, sensor, and actuator applications to microelectrome-
chanical systems and nanoelectromechanical systems, image processing, and some
industrial nondestructive testing instruments. The effect of fluid in the medium will
attenuate the wave and energy transfer. Also, the thin film coating and fluid medium
can highly influence the performance of the wave propagation.

The elastic wave pattern in solid material has been discussed elaborately by
Graff [7] and Achenbach [1]in a more elucidated manner. Wave propagation in
elongated cylinders and plates was analyzed based on linear theory of elastic and
governing equation models by Meeker and Meitzler [9]. Tiersten [12] studied the
modeling and development of piezoelectric plate under cylindrical structures using
theory of linear elasticity. The author developed modeling for small vibrations
of piezoelectric bodies by the linear theory of piezoelectricity through Maxwell’s
equations. In piezoelectricity the quasistatic electric field is coupled to the dynamic
mechanical motion. Electroelastic governing equations of piezoelectric materials
are presented by Parton and Kudryavtsev [13]. Paul and Venkatesan [14] introduced
an elastic wave model in piezoelectric cylinders of noncircular cross section with
infinite extent using Fourier expansion collocation method which is devised by
Nagaya [11]. Ebenezer and Ramesh [6] have rightly analyzed the application of
the Bessel series to study the axially polarized piezoelectric cylinders with arbitrary
boundary conditions on the flat surfaces. Later Botta and Cerri [5] have extended the
same approach further and compared their results with those in which the effect of
variable electric potential was not considered. An investigation was made in radially
polarized piezoelectric cylindrical transducers by Kim and Lee [8]. In that study,
they validated their result with the outcomes from the experiment and quantitative
analysis by the finite element method. Selvamani [15] has developed the modeling
of elastic waves in a submerged piezoelectric circular fiber. It was inferred by him
that the impact of fluids (inner and outer) along with the anisotropy of the material
with thickness on the many considered wave characteristics is more significant and
dominant in the flexural modes of vibration.

Sinha et al.[18] developed a two-part elaborative study on the axisymmetric
waves in a cylindrical shell contact with fluid. In that study, the theoretical derivation
of the wave modes is analyzed in part I, and the vibration modes in the absence of
tension are studied theoretically and numerically in part II. Berliner and Solecki [3]
investigated the wave motion in the transversely isotropic direction of fluid-loaded
cylinder. In their study, part I explains the formulation of the problem which consists
of both solid and outer fluid medium, and part II explains the computed numerical
values.

The influence of rotation in axisymmetric elastic waves of a solid bar submerged
in water was studied by Selvamani and Ponnusamy [16]. In that paper, they
identified the rotational parameter having significance effect with vibrational modes.
Free vibration in a generalized thermo-piezoelectric bar of circular cross section
rotating with a linear angular velocity has been studied by Selvamani and Pon-
nusamy [17] using Bessel function solution. Wang [20] discussed the axisymmetric
wave propagation in a cylinder coated with a piezoelectric layer. Research on its



Axisymmetric Vibration in a Submerged Piezoelectric Rod Coated with Thin Film 205

application for time-delay devices has been investigated by Sun and Cheng [19]. A
theoretical model of the coated structure is investigated by Minagawa [10] to predict
attenuation characteristics for finding suitable modes for a guided-wave inspection.
Barshinger [2] investigated the guided waves in pipes with viscoelastic coatings.
He found that the presence of attenuative, viscoelastic coatings causes significant
problems for developing a guided-wave, nondestructive inspection of coated pipes.

The axisymmetric elastic wave of coated piezoelectric rod submerged in inviscid
fluid (water) is considered using a constitutive form of equations consisting of
the theory of linear elasticity and electrostatic components. Velocity potentials
updated based on equilibrium equations and are used to uncouple the governing
equations. The surface area of the rod is coated by a perfectly conducting gold
layer. The dispersion equation which consists of longitudinal and flexural modes
of piezoelectric rod is calculated for the ceramic material PZT — 4. The variation
mechanical displacement and electric displacement are investigated and are given
as dispersion curves.

2 Modeling of the Problem

A homogeneous transversely isotropic piezoelectric circular rod of infinite length
coated by a thin film in the axisymmetric direction is considered for this problem.
The governing equations of motion in the absence of body forces are given as

] 9 T,, u, 9 9 T,, 0%u,
T, T, = , T, T. L= 1
r”+8z et r '081‘2 ar rZ+Bz @t r paﬂ M

The Gauss electric conduction equation without free charge is

iD: _, o

13(D)~I-
r
ror " ar

The coupled form of stress equations is given as

T,y = crierr +c13e; —e31E;, Ty = ci3er + c33e;; — e33E,,
Ty, = 2cqqer; — e15E;

D, =ejser; +e11Er, D;=e31(err +egg) + e33e;; + e33E; (3)

where T,, and T, are the normal stresses in the radial and thickness directions;
T, is the shear stress element; e, and e, are the normal strains in the radial and
thickness directions; e, is the shear strain element; u, and u, are the displacement
components; c11, €13, €33, and ca4 are the elastic constants; e31, €15, and e33 are the
piezoelectric constants; €11 and €33 are the dielectric constants; and p is the density
of the material under consideration.
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The strain displacement relations and the electric field vector E;, (i = r, z) with
electric potential E are defined as

dE oE
err =Uryp, €z =Uzz, €z =Uzr+Urz, Er=— and £, = — @
or 0z
The comma in the subscripts represents the differentiation with respect to the
variables. Substituting Eqs. (3) and (4) in Egs. (1) and (2) results in

c11Uprr + r_lur,r - r_zur) + Ca44lr 2z
+(caq + c13)utg rz + (€31 + €15)V,rz = plirse
caa(zrr + 1" YUz ) + 17 (cas + €13) (ur2) + (cas + 13z + €331z 2
+e33V ; +eis(V,r + rilv,r) = PUz 1t
ersuzrr +rVuz) + (€31 + €15) rzr + 7 up ) + e33uz 22 — £33V,

—en (Vo +r71V,) =0. (5)

3 Solution Methodology

The time-harmonic elastic waves in piezoelectric material are obtained by assuming
the displacement components in the following form which will also satisfy the equa-
tion of motion and boundary conditions (Paul and Venkatesan [11]): u,(r,z,1) =
(d),r)ei(kZert)’ V(r,z,1) = iVei(kZert), EZ(F, 7, 1) = E’Zei(kz+a)l‘), I/lz(}", 7,1) =
(i)Wei(kZer’), E.(r,z,1) = —E ¢ *+®) where i = /—1, k is the wave number,
o is the angular frequency, ¢ (r) and W (r) are the displacement potentials, and the
parameter a describes the geometric component of the rod and V (r, 6) is the electric
potential. By applying the following nondimensional components x = r/a, ¥ = ka,
@? = pw’a®/cas, C11 = c11/cas, €13 = C13/cas, 33 = C33/Cas, Co6 = Co6/Cdss
511 = 811644/633, 531 = 631/633, and 515 = 615/633, Eq. (5) can be rewritten as

€1V + (@? — 9?) —0(1 4+ c13) - (e31 + e15)
O +e13)VE (V24 (w2 —09%33)) (e1sV2 -2 (¢, W, V) =0
9 (231 + &15)V? (e1sV2—0?)  (9%E33—EnV?)

(6)

a2 - a2 . . . .
where 72 = ai% + ?c’l 3‘1 + x 2 360?. Evaluating the determinant given in Eq. (6),
we obtain a partial differential equation of the form

(PVO + QV*+ RV? + 8§)(¢, W, V) =0 (7
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From Eq. (7), the following solutions are obtained:

3 3
¢ = ZAiJn(riax) cosnb, W = ZaiA,-Jn(riax) cosnf,

i=1 i=1

V =33 biAiJu(tiax) cosnf ®)
Here (t;a)? > O and (i = 1, 2, 3) are the roots of the algebraic equation:
A(za)® — B(ta)* + C(za)>+ D =0 9)

In the above solutions, J, represents Bessel function which will take the real or
complex roots (tia)z, (i =1,2,3), and I, represents the modified Bessel function
which will take imaginary roots. In case (a4a)? < 0, J, is replaced by 1,

The constants a;, b; defined in the Eq. (8) is derived from the following equations:

(1 +&13)0a; + (@31 + &15)9b; = —(C11(ria)* — w? + 97) (10)
(tia)* — @* + 9°G3)ai + (@15(ria)® +9H)b; = —(@13 + D)o (na)* (1)

4 Modeling and Solutions of the Fluid Medium

The radial movement and acoustic pressure equations of the inviscid fluid in polar
form are taken from Berliner [3]:

pl = —bf(u,f} +r ') + wé) and c;2u;’;, =A, (12)

where b/ and p/ are the bulk modulus and density of the fluid, el = /bl /pfis
the acoustic phase velocity in the fluid, and (u/, w/) is the displacement vector, and
assume the solution of (12) in the form

o (r6.2,0) = [p! (N]e'™, (13)

the wave propagation of the fluid medium is given by
¢! = Az3H,(Sax) (14)
where (8a)? = £22%/p/b — 92, in which pf = p/p, b = b Jcss, Hy, is the
Hankel function. If (6a)? < 0, then the Hankel function of the first kind is to be

replaced by the modified Bessel function of the second kind K. From Egs. (13),
(12), and (14), the value of acoustic pressure is calculated as

pf = An3R2°pH,(Sax)e' 1) (15)
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5 Interfacial Boundary Conditions and Frequency Equations

The axisymmetric free vibration of the transversely isotropic piezoelectric rotating
rod coated with a thin film is considered. For the coated surface, the boundary
conditions can be written as

3 +2u

orj = —8p2u'h’ [( N2 ) Ua,ab + Ub’““} +20p'U;, V=0 (16)

where A/, i, p’, and ' are Lame’s constants, density, and thickness of the material
coating, respectively; dj, is the Kronecker delta function with a; b takes the value
of 0 and z; and j takes r, 0 and z. In order to get the axisymmetric waves, a and b
can take only z. Then the transformed boundary conditions are as follows:

orr+pl =20'p'U, o0p.= 20" G*W_.+20'p'W, (u—-ul)=0, V=0
a7)

14+Cy,

. iy . :

By using Eqgs. (8) and (15) in Eq. (17), we can get the following linear equation:

atr = a and where G2 =

[LI{Z} = {0} (18)

where [L] is a 4 x 4 matrix of unknown wave amplitudes and {Z} is a4 x 1 column
matrix with the amplitudes Li, Ly, and L3. To obtain the nontrivial solution of
Eq. (18), the determinant of the coefficient of the amplitudes {Z} will be equal to
zZero.

6 Numerical Results and Investigations

For the graphical illustration, the axisymmetric free vibration of the transversely
isotropic piezoelectric rotating rod coated with a thin film is considered. Equation
(18) is solved numerically for the mechanical and electrical displacements. The
material chosen for the numerical calculation is PZT — 4 ceramics coated with
gold material which is taken from Berlincourt et al. [4].

c11 =13.9x 101Nm=2, 15 =778 x 10'1°Nm=2, ¢j3=7.43 x 101Nm—2,
33 =11.5x 1010Nm=2, 40 =2.56 x 10'1°Nm =2, g6 = 3.09 x 101°Nm 2,

e3] = —5.2Cm™2, e33 = 15.1Cm™2, e15 = 12.7Cm™2,
e11 = 6.46 x 10 °C*N~1m ™2, £33 =5.62x 107°C*N~1m™2,
p = 7500K gm™2, o/ = 1000K gm 3.

For Gold material, p’ = 19.28gcm ™3, )/ = 1.63 % 101°Nm =2, andu/ = 0.42
1010Nm—2
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In the figures, FSM and FASM, respectively, denote the flexural symmetric
mode and flexural antisymmetric mode. The numbers 1 and 2 represent the first and
second mode, respectively.

The variation of mechanical displacement versus the dimensionless wave number
for flexural modes of coated piezoelectric circular rod with and without fluid
medium is considered in Figs. | and 2. Figure 1 shows the oscillation in the lower
range of wave number and becomes linear propagation with respect to its higher
wave number in different flexural modes of the rod with fluid environment. But in
Fig.2, there is a small energy transfer between the modes in the lower range of
wave number which might happen due to the coating of the rod and the absence
of fluid medium. The coating and fluid environment decrease the magnitude of the
mechanical displacement in Figs. 1 and 2. Figures 3 and 4 exhibit the propagation
of electric displacement with respect to the thickness of the coated layer. Whenever
the thickness of the rod increases, the electric displacement is decreasing and again
increasing and travels in the wave propagation. These trends of the curves admit the
elastic properties of the solid due to the effect of fluid and coating of the material.

Fig. 1 Dispersion of € 25
mechanical displacement GE’ 5
versus nondimensional wave 3 FSMA
number of coated ‘_g_ 15-
piezoelectric rod with fluid o FSM2
S5y
[
Q
S 05
S
o O T T
= 0 0.2 0.4 0.6 0.8 1

Non dimensional wave number

Fig. 2 Dispersion of - 24
. . c
mechanical displacement o)
versus nondimensional wave GE, 15 ——EASM1
number of coated 8
piezoelectric rod without G EFASM2
fluid 5 1
©
L
g 05
<
®
= 0- : : g - =
0 0.2 0.4 0.6 0.8 1

Non dimensional wave number
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Fig. 3 Variation of electric 34
displacement versus thickness
of the coating material for 2-
piezoelectric rod with fluid 1
D, 0
-1 -
—2
—3 T T T T 1
0 0.2 0.4 0.6 0.8 1

h/

Fig. 4 Variation of electric
displacement versus thickness
of the coating material for
piezoelectric rod without
fluid

7 Conclusions

The modeling and analysis of axisymmetric elastic waves of a coated piezoelec-
tric rod submerged in an infinite fluid (water) are considered in the context of
constitutive equations consisting of the theory of linear elasticity and electrostatic
components. Velocity potentials are updated based on equilibrium equations and
are used to uncouple the governing equations. The surface area of the rod is coated
by a perfectly conducting gold layer. The dispersion equation which consists of
longitudinal and flexural modes of piezoelectric rod is calculated for the ceramic
material PZT — 4. The computed mechanical and electric displacements are
presented in the form of dispersion curves. From the graphical pattern, it is observed
that the fluid and the coating of the piezoelectric rod highly influence the variations
of the mechanical parameters in flexural symmetric and flexural antisymmetric
modes.
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Steady-State Flow Under the Effect s
of Thermal Radiation as Well as Heat
Generation/Absorption over

a Nonlinearly Stretching Sheet

R. Jayakar and B. Rushi Kumar

Abstract This paper aims at the study of numerical investigation into the three-
dimensional steady-state flow of a nanofluid under the effect of thermal radiation
as well as heat generation/absorption over a nonlinearly stretching sheet. The set
of partial differential equations is transformed into ordinary differential equations
by employing the suitable similarity transformations. The solution to the governing
equation is obtained by using numerical techniques specifically the bvp4c function
in MATLAB. A nonuniform velocity with power-law index is the boundary
condition specified for solving the governing equation.

Keywords MHD - Stagnation point - Homogeneous-heterogeneous reactions -
Nanofluid flow - Non-uniform heat source/sink

1 Introduction

Numerous investigators have been spurred to examine magnetohydrodynamic
steady-state flow of nanofluid over solid surfaces, keeping in perspective to their
captivating heat energy transfer and thermophysical properties in addition to the
tremendous potential application. References [1-5] gave a numerical way to deal
with MHD transport of nanofluid past a vertical stretching sheet considering
exponential temperature-dependent viscosity and lightness effects; furthermore,
thermal physical properties of water built nanofluid past a stretching sheet were
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investigated by Akbar et al. [6], Sheikholeslami and Bhatti [7], Akbar et al.
[8], and Bhatti et al. [9]. Nanofluids are fluids that have nanoparticles such as
metals along with numerous traditional base fluids such as kerosene, railway
locomotive oil, triethylene dihydric alcohol and ethane, and so on. Through the
most recent decade, numerous specialists have been pulled in light of a legitimate
concern for doing research on nanofluids that are crucial in perspective of their
huge designing applications that incorporate more secure surgery, coolants in
PCs and atomic reactors, a few electronic gadgets for use in military segments,
major fabricating ventures including materials and chemicals, polymer expulsion,
vehicles and transformers, cooling of microelectronics, and nourishment and drink,
empowering to chill or cool structures. In the current decades, heat transfer is one
of the basic key highlights in the vitality advancement at the modern level and
assembling procedure of any hardware. In spite of that reality, heat addition, starting
with one place then to the next place during the assembling procedure, is completely
in view of the heat execution of working fluid. In a few cases, water, motor oil,
lubricants, and other basic working fluids have poor heat conductivity in contrast
with the required conductivity at the modern level. Addition of modest particles
inside the working liquid plays a vital role in enhancing the poor warm conductivity
of base fluid. The above overview uncovers the fact that no one hitherto has explored
yet the three-dimensional MHD flow of nanofluids over a permeable stretching
sheet, observing heat radiation accompanied by heat generation and absorption
with power-law index. In this way in the present examination, we pioneered the
exploration of the effect of magnetic field, heat generation , heat radiation, and other
physical parameters on the three-dimensional flow of a nanofluid over a permeable
stretching sheet. In our view, the nanofluid volume fraction on the boundary will
be more easily controlled, making our investigation totally unique and physically
more practical. The governing equations have been numerically solved using Runge-
Kutta method with shooting technique. Graphical representation for the various
parameters including velocity, temperature, and concentration has been discussed
in detail for the said boundary conditions.

2 Mathematical Analysis

Consider a steady three-dimensional electrically conducting magnetohydrodynamic
nanofluid flow past a nonlinearly permeable stretching sheet. Assume that a
uniform transverse magnetic field of strength By is applied parallel to the z-axis
as shown in Fig. 1. Also the induced magnetic and electric fields are assumed to
be neglected. The sheet is maintained at constant temperature 7,. The mass flux
of the nanoparticles near the surface is assumed to be zero. T, and Co, denote the
ambient values of temperature and nanoparticle volume fraction, respectively. The
governing equations describing flow pattern are as follows:

u Jv  Jdw

=0 1
8x+8y+az )
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Fig. 1 Schematic interpretation of 3D MHD flow over a permeable stretching sheet
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where u, v and w are the velocity components in the x, y and z directions,
respectively, p is the fluid density, p is the pressure, v represents kinematic
viscosity, o is the electrical conductivity, By is the magnetic field, and K, is the
porosity parameter. The radiative heat flux using Rosseland’s approximation is
given by

40* 9T*

7
3k 0z 2

qr =

Assume that the differences in the temperature within the flow are such that 7 can
be expressed as a linear combination of the temperature. Thus, expanding 7% in a
Taylor series about T, and neglecting higher-order terms, we obtain

T* =412 T - 312 (8)
Thus,
9 —160*T3, 3°T
qr _ 0 I ) 9)
9z 3k1 0z
So, Eq. (4) becomes
oT T oT _ 9T | 9COT Dr (0T 2
“ox TVay TWaz T%2 T PB oz 0 T T\ bz
1 160*T2 3T
o+ % 7 1) (10)
(pCp)f 3ki 9z (pcp)f
by introducing the following nondimensional variables:
_ /4 n—1/2 _ n o —b gy
n= vf(x+y) z,u=alx+y)" f (), v=>bx+y)"g 1
n—1/2 n+1 n—1 1 ’
w = —Javs(x +y) , U+o+ (/' +g)),
T=Towo+ (Tw—Toc)0 (1), C=Coo+ Coop(n), (11)

and substituting Eq. (11) in (2), (3), (10), and (5) takes the form

" I’l+1 " / / / /
g +< 5 )(f+g>g —n(f+g)g-M+K)g =0 (12

n—+1

f///_,’_< ) )(f+g)f//_n(f/+g/)f/_(M—i—K)f/:O (13)
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Subject to the transformed boundary conditions are as follows:

fO)=g0)=0, ff(O)=1, gO)=xr, 60)=1,
Nb¢' (0) + Nt6' (0) = 0, (16)
f (00) = 0, g’ (00) = 0, 6 (c0) = 0, ¢ (c0) = 0,

Here M is the magnetic field parameter, K is the porosity parameter, Pr is the
Prandtl number, Nb is the Brownian motion parameter, Nt is the thermophoresis
parameter, X is the ratio of the stretching rate along the y direction to the stretching
rate along the x direction, and Sc is the Schmidt number. These parameters can be
given as

M =oB:/pa, K =1/aky, Pr=v/a, Nb=1DpCe/v,
Nt = tD7 (Tyy — Teo) /s Too,  =bJa, Sc=vs/Dg, (17)

The above equation reduces to the case of two-dimensional flow when A = 0. At
A = 1, the differential system governing the axisymmetric flow of nanofluid due
to nonlinearly stretching sheet is recovered. The dimensionless form of the skin-
friction coefficient and the local Nusselt number is calculated by the following
equation:

NuRe;'? = —6' (0)

where Re, = uy (x +y) /vy and Rey = vy (x + y) /vy are the local Reynolds
numbers along the x and y directions, respectively. The component of velocity at
far field condition can be expressed as

_I_

1
, () +g()]

w(x,y, 00) = —\/avf(x + y)"_ln

3 Results and Discussions

The array of governing equations is solved by using the numerical technique bvp4c
MATLAB. For numerical effects, we have recognized n = 1, Nt = Nb =
05, A =05 Pr =1, Sc = 20, k = 05, R = 0.5, and Q = 0.5. These
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values are kept as regular in whole investigation except the varied values as shown
in the respective figures. The figures have been drawn using different physical
parameters on the velocity, temperature, and concentration profiles for n = 1
and n = 3 cases. Figures 3, 7, and 10 demonstrate the velocity, temperature, and
concentration profile for various values of magnetic parameter M. An expansion
of the magnetic parameter depreciates the velocity while expanding the thermal
and concentration profile. The magnetic parameter reduces the fluid velocity which
in turn causes the momentum boundary layer to stretch. It is recognizing the way
in which the transverse magnetic field, in interaction with conducting nanofluid,
develops a retarding Lorentz force which slows down the fluid motion. We might

Fig. 2 Velocity for
different A

Fig. 3 Velocity for
different M
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want to comment here that unless and until the magnetic field was applied to the
conducting fluid, it would not have been contradicted by Lorentz force so that
the deceleration of fluid motion would not have been accomplished. It is indeed
additionally fascinating to say that expansion in power-law index diminishes the
velocity, temperature, and concentration boundary layers.

Figures 2, 4, and 8 reveal that enhancing the stretching rate ratio parameter
reduces the velocity in x direction and temperature profile. But it helps to enhance
the velocity in the y direction. Generally increasing the stretch in parameter tends
to increase the pressure on the flow, and due to this reason, we have seen a
decrease in temperature of the flow. From Fig.5, we see that an increase in the

Fig. 4 Velocity for 0.7
different A
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Fig. 5 Temperature for 1
different Q
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Fig. 6 Temperature for
different Nt

Fig. 7 Temperature for
different M
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— n=1

n=3

Nt=0.1,0.3,0.5

1.4

nature of the heat source enhances the temperature. This is because the heat source
can add more heat to the stretching sheet which extends its temperature, and in
this way, the temperature of the fluid is enhanced. Additionally the temperature
boundary layer also starts increasing by extending the nature of heat source.
Fig. 11 noticed that the concentration for various values of heat sink. It is also
noticed that the nature of the heat sink is quite opposite to the nature of heat
source; i.e., the temperature diminishes by expanding the nature of the heat sink.
This is in light of the fact that when the nature of the heat sink expands, more
heat is expelled from the stretching sheet and also diminishes the thickness of
temperature boundary layer. Thermophoresis is a phenomenon observed in mixtures
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Fig. 8 Temperature for 1.4
different A
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Fig. 9 Concentration for 0.03
different Nt
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of mobile particles where the different particle types exhibit different responses
to the force of a temperature gradient. Figure 6 noticed the temperature for
various Nt. It is noticed that an expansion in Nt expands the temperature of the
fluid. At the point when Nt expands, the heat diffusivity of the nanoparticles will
accelerate the temperature of the nanofluid. Figure 9 indicates the concentration
for various values of Nt. It is obvious that the increase in the thermophoresis
parameter Nt expands the boundary layer thickness of concentration. Due to
this reason, the various nanoparticles have the various values of thermophoresis
parameter Nt.
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Fig. 10 Concentration for 0.03
different M
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4 Conclusion

The imperative points of conclusion are as follows:

1. Expanded power of the cold fluid at the periphery of the stretching sheet with an
expansion in A diminishes the fluid temperature.

2. Additionally it is indeed fascinating to say that expansion in power-law index
diminishes the velocity, temperature, and concentration boundary layers.
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3. An expansion of the heat source improves the temperature. Due to this reason,
the heat source can add more heat to the stretching sheet which expands its tem-
perature along with the temperature of fluid upgrades. Moreover, the temperature
boundary layer begins to increment by expanding the nature of the heat source.
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Unsteady MHD Fluid over a Chemically ke
Reacting Sheet with Variable

Conductivity and Heat Source or Sink

Narsu Siva Kumar and B. Rushi Kumar

Abstract This study addresses the effects of unsteady MHD radiative slip flow of
Williamson fluid due to the chemically reacting sheet with variable conductivity and
heat source or sink. The boundary layer equations of the Williamson fluid model for
heat and mass transfer are deliberated. The governing partial differential equations
are transformed into a set of coupled ordinary differential equations of motion for
Williamson fluid are modeled under the sheet and then solved numerically by the
shooting technique with BVP4C package. The physical features of the model are
presented and discussed in graphs and tables.

1 Introduction

In non-Newtonian fluids, the most generally encountered fluids are pseudoplastic
fluids with lessening viscosity when considered shear strain. The concept of
pseudoplastic fluids has a wide range of applications in engineering and industry
in the extrusion of polymer sheets. Especially, recent paints are pseudoplastic
materials.

The Navier-Stokes equations are inadequate to illustrate the physical properties
of pseudoplastic fluids. The behavior of pseudoplastic fluids was insinuated to fill
this gap such as Ellis model, Carreau model, and power law, but little attention has
been paid to the Williamson fluid model. In 1929, Williamson [1] first introduced
a model to study the pseudoplastic fluid flow. This model verifies both the minimal
maximal viscosity ((eo and pp) of the fluid wanted for pseudoplastic fluids. Later
on, different channels were investigated due to Williamson fluid [2]. Lyubimov and
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Perminov [4] investigated a thin layer of a Williamson fluid flow over an inclined
surface due to the gravitational field. Khan et al. [3] investigated the Homotopy
analysis of boundary layer flow of Williamson fluid by scaling transformation.

The fluid flow over a stretching surface has evolved the attention of several
researchers in the presence of good applications in engineering processes, for
example, manufacture of foods, polymer extrusion, crystal growing, and drawing
of plastic films. The flow caused by a linear velocity due to the stretched surface
has been broadly studied. To the best of our knowledge, the flow of heat transfer
peculiarity over a nonlinear stretching sheet has been studied [5-8]. Babu et al.
[9] demonstrated MHD non-Newtonian fluid flow over a slender sheet due to
cross-diffusion effects. It is also observed that the Soret and Dufour effects on
the Williamson fluid flow across variable thickness stretching sheet by viewing
slip parameters. MHD boundary layer flow of Williamson fluid due to ohmic
dissipation and thermal radiation was demonstrated by Hayat et al. [10]. In this
paper momentum and thermal boundary layer thickness lessen with an increasing
suction parameter. Hakeem et al. [11] have discussed the effect of partial slip
on MHD boundary layer flow over stretching surface with temperature-dependent
heat generation, thermal radiation, and wall mass transformation through a porous
medium. Later on, three-dimensional MHD Williamson fluid flows over a nonlinear
stretching surface were investigated by Malik et al. [12]. Zehra et al. [13] examined
the flow of Williamson fluid in an inclined channel with pressure-dependent
viscosity. A detailed observation of the literature displays that, to the best of author’s
cognition, nobody has discussed the radiated slip flow of Williamson unsteady
MHD fluid over a chemically reacting sheet with variable conductivity and heat
source/sink.

The governing partial differential equations are first transformed into ordinary
ones, before being solved shooting approximation. We have extended the work of
Vajravelu et al. [14] to study the effect of unsteady convective boundary layer flow
of viscous fluid properties. It is worth mentioning that the velocity and temperature
boundary layer thickness decrease with an increase in the unsteady parameter.

2 Mathematical Formulation

Consider an unsteady laminar two-dimensional boundary layer flow of incompress-
ible electrically conducting Williamson fluid through a semi-infinite porous plate
coinciding with plane y = 0. The effects of different physical parameters namely,
thermophoresis parameter, Brownian motion parameter, magnetic field parameter,
chemical reaction parameter, Williamson slip parameter, slip parameter and heat
source parameter have been taken into account. The Cartesian coordinate system has
chosen its origin located at the leading edge of the sheet with the positive x —axis
extending along the sheet and is positive in the direction of the sheet to the fluid.
We assume that for time ¢ < 0, the fluid and heat flows are steady. The unsteady
fluid and heat flow starts start at # = 0, and the sheet is being stretched with the
velocity Uy, (x, t) along the x —axis keeping the origin fixed. The temperature of the
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sheet Ty, (x, t) and the concentration of the sheet Cy,(x, ) are assumed to be a linear
function of x. Under the aforesaid assumptions, the governing equations boundary
layer equations can be expressed as

ou n ou 0 0
ax Ay
8u+ 8u+ ou ﬁ82u+\/2ﬁF8u82u
u v =
ot 0x dy 9y? dy dy?
oB; 0
+8B1 (T — Teo) £ 8Pc(C — Coo) — b T K (2)

c 3T+ 8T+ oT
pEp at ”ax Uay

9 aT
= K(T) —0(T —Tx) +7
ay ady
aC T Dy [(dT\*|
Dy + T _ qr (3)
dy dy Too \ 0y dy
aC N aC N aC b 92C Ko(C — Co) + Dr 9T @
u v = — _
ar | ax |y By =70 )T T 8y?

Subject to the boundary conditions

d
u=U, +1 u, v=uvy(@), T=Tyaty=0
dy 6)

u—>0,T—> Ty, C—>Cxasy— o0

where u and v are the velocity components in the x and y directions, respectively, g
is the acceleration due to gravity, ¢ is the kinematic viscosity, 8 is the coefficient of
thermal expansion, 7 is the fluid temperature, T, is the ambient temperature, p is
the density, C), is the specific heat at constant pressure, K (T') is the variable thermal
conductivity, vy, () = J 1” Ect is the suction/injection velocity, and g, is the radiative
heat flux. The third term in Eq.(2) is due to the buoyancy force. The “+” and
“—" signs refer to the buoyancy assisting and buoyancy opposing flow conditions,
respectively. Here we assumed that the thermal conductivity varies linearly with

temperature [14] as

K(T) = Koo (1 + AET (T — Too)) .
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Here, AT = (Ty — Tx),Tw, where ¢ is a small parameter called thermal
conductivity parameter, Ty, is the surface or wall temperature, and K, is the thermal
conductivity of the fluid far away from the sheet. The radiative heat flux can be
expressed [15] as

40* 3T*
=" 3px gy -
Here, o* and k* are Stephan-Boltzmann constant and mean absorption coefficient.
We assume that (T —T), i.€., the temperature difference within the flow is such that
the term 7 can be expressed as a linear function of temperature. So now, expanding
T* by a Taylor series about T, and ignoring higher order terms, we get

4 o 173 4
T* ~ 4T3 T — T2,

Following Ishak et al. [16], the stretching velocity is assumed as Uy (x,t) =
ax/l _ ¢t Where a and ¢ are constants (with a > 0 and ¢ > 0 where ¢t < 1). We
have a as the initial stretching rate | “_ and it is increasing with time. We assume
Ty (x,t) and Cy, (x, t) are surface temperature and concentration of the stretching
sheet to vary with distance x and inverse square law for its decrease with time in
the following form: Ty, (x,t) = Teo + (1—bf-z)2’ Cy(x,t) = Coo + ¢(1—biz)2 Here
b is a constant and has dimension temperature or length, with b > 0 (assisting
flow), b < 0 (opposing flow), and b = 0 for the forced convection limit (absence
of buoyancy force). These particular forms of Uy (x,t), Ty (x, 1), and Cy, (x, t)
have been preferred in order to obtain a new similarity transformation, which
transforms the governing equations (PDEs) (1)—(4) into a set of coupled ordinary
differentiable equations (ODEs), thereby facilitating the exploration of the effects
of the controlling parameters.

Following dimensionless functions f, 6, and ¢ with the similarity variable ¢ (see
Vajravelu et al. [14]):

1

( a N\ [ wa bie_ (T—Tw)
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D7 (Ty — Too)l9

Nt - 5
Too
b b
Ar = 8010 o = 8P (©)
a a
where V¥ (x, y,t) a stream function is defined as (u,v) = (%‘/y/, —%‘f) which

identically satisfies the continuity equation (1). Substituting Eq. (6) in Egs. (2)-(4),
we obtain

1
f///+ff//_f/2_A<f/+2;f”>+Af//f/”:i:)\.T0:i:)\,C¢_(M+K)f/=0

(N
1 Nr A
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Corresponding the following boundary conditions are
flO) =1+Lf"0), fO)= fu, 6(0)=1, $(0) =1ar (10)

f(00) = 0, 8(c0) = 0 ¢p(c0) — 0

where primes denote differentiation with respect to ¢. The physical quantities of
interest are the local heat flux and local mass flux, which is defined as

Tw Xqw

Cr= Uy = ,
! T Keo (Ty — Too)

N pUs )y’

where the skin friction 1, and the heat transfer ¢,, from the sheet are given by

u oT
Tw =M s qw = — Koo
ay y=0 ay y=0

3 Results and Discussion

The present investigation is extended out by determining the impact of pertinent
parameters on fluid velocity, temperature, and concentration distribution presented
in Figs. 1, 2, 3, 4, 5, 6, 7, and 8. The numerical values of some important physical
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quantities are presented in Tables 1 and 2. For simplicity, the constants assumed for
several parameters are K = 0.5,Qg= 0.5, Pr =07, N, = I, N, = 1, A =
02,A=02,e =01, M=2,Kr=0.1,Nr =02, ¢ = 05, L =0.3. The
effects of the thermophoresis parameter N; on temperature profiles is presented in
Fig. 1. It is noted that the rising of N; enhances the thickness of thermal boundary
layer. Figure 2 displays the effect of N, (the Brownian motion parameter) on
the temperature for both the cases of the absence and presence of porosity. The
temperature increases for increasing values of Brownian motion parameter. The
dimensionless temperature distribution for various values of the thermal radiation
parameter Nr is shown in Fig.3 for both the absence and presence of porosity. It
reveals that the greater values of Nr enhance the thermal boundary layer thickness.



Radiated Slip Flow of Williamson Unsteady MHD Fluid over a Chemically. . . 231

Fig. 3 Impact of Nr on 6 1 T T T T T
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It is also observed that the presence of porosity is very high compared with the
absence of porosity.

The effects of the chemical reaction parameter Kr on concentration fields are
displayed in Fig.4. The depreciation in the concentration field has been noted
for both presence and absence of porosity. The influence of magnetic parameter
M on velocity profiles is exhibited in Fig.5 for both porosity parameters on
the presence and absence, respectively. We observed the velocity depreciates for
increasing values of the magnetic parameter. Figures 6 and 7 present the effects of
the Williamson parameter A and the slip parameter L on velocity field for both the
presence and absence of porosity parameter. The velocity field is improved with
higher values of A and L. Due to this reason, we have a seen a hike in velocity field.
Figure 8 demonstrates the effect of Qi on temperature distribution of the flow. It is
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Fig. 5 Impact of M on f'(¢)

Fig. 6 Impact of A on f/(c)
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seen that increasing values of the heat source parameter Q 7 suppressed the thermal
boundary layer thickness of the flow.

Tables 1 and 2 depict the effect of nondimensional parameters on friction factor
coefficient, local Nusselt, and Sherwood numbers for both the cases (absence and
presence of porosity). It is apparent from Table 1 (absence of porosity) that rising
values of N, Nr, L intensifiesand N, Kr, M, Qpn, A lessens the friction factor
coefficient. Higher values of N;, Nr, Kr, M, L, A lessen and N;, Qpy improve
the heat transfer rate. The rate of mass transfer has been decreased by increasing the
values of Ny, Nr, M, Qp, whereas it has been increased by increasing the values
of Np, Nr, Kr, L, A.The same strategy has been observed quantitatively in the
presence of porosity, which is portrayed in Table 2.
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The investigated problem explores the influences of various parameters on velocity,
temperature, and concentration. The present analysis also elaborates the radiated
slip flow of Williamson unsteady MHD fluid over a chemically reacting sheet with
variable conductivity and heat source/sink. Some of the interesting conclusions are

as follows:
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Table 1 Values of skin friction, Nusselt and Sherwood number for various values N;, Nj, Nr,

Kr,M,Qpu,L, Awhen K =0

N, N, Nr Kr M QO L A  f"0) —0'(0) —¢/(0)
0.1 0222699 0245502  0.266937
0.5 0454265 0457273  0.249630
0.9 0728861 0474866  0.226946
0.1 0.250135  0.464364  0.402339
0.2 0.233904 0458243  0.599029
0.3 0228544 0455087  0.664762
0.5 0.080354  2.605393  0.087209
1.5 0122236 1.221540  0.286496
25 0.148632  0.893089  0.398128
1.0 —0.173419  55.851104 —1.709512
2.0 —0.182086  54.899934  —1.573263
3.0 —0.189631  54.061307 —1.451098
1.5 —0.223987  56.269999  —1.863575
25 —0.316713 55576415 —1.919693
35 —0.386487  55.059958  —1.965386
0.5 0.072783  2.753548  0.041842
1.5 0.052473  3.192599  —0.090618
25 0.037057  3.572928  —0.203450
0.2 —1.192513 4391221 —0.158618
0.4 —0.867385 4313113  —0.155426
0.6 —0.685916 4265128  —0.153488
02 —1.002530 4346763 —0.156795
04 —1.056346 4324802 —0.156747
0.6 —1.135629 4297181 —0.156295

e It is observed that an increase in Nr produces significant intensities in the
thickness of the temperature boundary layer of the fluid.

* The momentum boundary layer diminishes with higher values of the magnetic
parameter.

* Increasing values of Qy suppressed the thermal boundary layer thickness of the
flow.

» The temperature increases for increasing values of N, and in the reverse
phenomena of concentration respectively.
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Table 2 Values of skin friction, Nusselt and Sherwood number for variou svalues N;, Nj, Nr,

Kr,M, Qyg, L, A when K = 0.5

N, N, Nr Kr M Oy L A f7(0) —0'(0) —¢'(0)

0.1 0.125439 0.440820 0.688181

0.5 0.146232 0.443727 0.437762

0.9 0.165843 0.446018 0.193734

0.1 0.150523 0.450579 0.366330

0.2 0.135659 0.444655 0.560123

0.3 0.130761 0.441613 0.624939

0.5 0.001676 2.541169 0.056138

1.5 0.039081 1.188685 0.253994

2.5 0.062225 0.868082 0.364298

1.0 —0.104892  56.437691 —1.682630

2.0 —0.114365 55.541383  —1.554807

3.0 —0.122703  54.743334  —1.439173

1.5 —0.273841  55.895873  —1.893058

2.5 —0.353918  55.300798  —1.943722

3.5 —0.415237  54.848704  —1.985003

0.5 —0.005635 2.694255 0.008741

1.5 —0.025128 3.144790  —0.128497

2.5 —0.039849 3.532450  —0.244439

0.2 —1.294271 4.344928  —0.162493

0.4 —0.932662 4.263959  —0.158966

0.6 0.733977 4.214626  —0.156833

0.2 —1.082027 4298730  —0.160472

04  —1.146237 4273752 —0.160180

0.6 —1.245774 4241481  —0.159360
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Approximate Analytical Solution of a )
HIV/AIDS Dynamic Model During L
Primary Infection

Ajoy Dutta and Praveen Kumar Gupta

Abstract HIV/AIDS is a very challenging epidemic disease all over the world. In
the present chapter, the homotopy analysis method (HAM) is functional for evalu-
ating the estimated solution of the HIV dynamic model during primary infection.
By using the HAM, we have adjusted and controlled the area of convergence of
the infinite series solution with the help of auxiliary parameters. Numerical results
for different cases obtained graphically show that series solutions are convergent
and the residual errors curve shows that the HAM is very effective at gaining an
accurate approximation.

1 Introduction

The infectious disease AIDS is not yet fully curable and is the cause of HIV. Various
nonlinear models have been developed to explain HIV [6, 8-10]. A model with
different classes was devised.

Here, the HAM is established for the model Srivastava et al. [14], where they
consider three classes: A(n), B(n) and C(n) are uninfected, infected CD4+ T cells
and the virus respectively. According to Rong et al. [12] and Essunger and Perelson
[1], some portion of B(7n) due to natural recovery of CD4+ T cells back to the
uninfected class. The model is [14].

4 =y —aAC — B1A + 2B
1B — 41 AC — 2B — BB (1
e = VBB — BuC

with

A(0) = Ag > 0, B(O) =By >0, C(0) =Cy >0 2)
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Here, n represents the time, r is the inflow rate of A(#), « is the rate of infection
of CD4+ T-cells becoming active, o3 is the rate of infected cells transforming back
to uninfected cells, B is the removal rate of A(n), B2(> B2) is the removal rate of
B(n), B3 is the lytic death rate for Y (n), B4 is the removal rate of C(n) , and V is
the average number of viruses produced by B(7).

In [14], the authors have discussed the stability and existence of the model (1).
The literature shows that the HAM [2-5, 11, 13] is applied to various nonlinear
problems to find approximate solution.

2 The HAM Solution of the HIV Model

First, we define the homotopy map:

Hp(A(n. 7). B(. 7). C(n. 1)) = (1 = 1)LA[A(, T) — Ao()]
—thha(Na[A(, 7). B(n.7).C(n. 1)1 (3)

Hp(A(n. 7). B(n.7).C(n. 1)) = (1 — 1)L[B(n. T) — Bo(n)]
—thhp()Np[A(n. 7)., B(n.7),C(n.1)] (4

He(A(n. 7)., B(n. 7). C(n. 1) = (1 = 1)L Z(n. T) — Zo()]
—thhz(Nc[A(. 7)., B(n. 7). C(n. 1) (5)

where T € [0, 1], 4 are embedding, auxiliary parameters and h 4, hp and hc are
auxiliary functions. The nonlinear operators are defined as:

~ - ~ dA®, 7) ~ A
Na(@a.). B0, Cney = = —r +an A ). v)
+B1A(, T) — 2B (1, T) (6)
~ ~ aB(n.7) o~
Ns(AG1, 0), B, ), Cn, 1) = 1 — a1 A, C, )
+aB(n, 1)+ f2B(), 1) ©)
aC(n, 1)

Nc(A(n, ©), By, 7), C(n, 7)) = — VBB, 1)+ BsC(n,T).  (8)

an
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We take T = 0 and 7 = 1 in the homotopy map (3)—(5) and:

Ha(A(n.7), B(1,7).C(5. 7)) = Hp(A(n.7), B(1,7), C(1, 7))
= Hc(A(n, 7)., B(n.7).C(n. 7)) =0.  (9)
We can find:
(1 = )LATAG. T) — Ao()] = Thha()NalA(n. €). B(n. 7). C(n. )], (10)
(1= 1)Lp[B(n. T) — Bo()] = thhs(n)Ns[A(n. 7). B(n.7).C(n. 1)1, (11)
(1= 1) Lc[Cn. 1) = Zo()] = thheMNC[A(. 1), B(n. 7). Cn. 1)1 (12)
Applying the Taylor series with respect to 7 yields:

A, T) = Ao() + ) An()T™, B(1, 7)

m=1

= Bo(D) + Y Bu)T", Cn, 1) = Zo() + Y Zn()t", (13)

m=1 m=1
where
1 [omA@, 1 TomB(, 1 [omC(,
A, = (n,7) B, — (n, 1) C, = (nf)‘
m! at™m m! at™m m! at™m
(14)
After simplifying (10)-(12) we get:
— — —
LA[Am(n) - XmAmfl(n)] = hhA(n)Rm,A(A m—1, Bmflv Cmfl) (15)
— — —
LB[Bm(n) - XmBmfl(n)] = th(n)Rm,B(Amfls Bmflv Cmfl) (16)
— — —
LC[Cm(n) - chmfl(n)] = th(n)Rm,C(A m—1» Bmflv Cmfl) (17)
with initial condition:
Am(0) =0, B, (0) =0, Cp(0) =0, (18)
where
-1
dAm-1(n) N
Rua(m = """ (1= + a1 Y Ai)Crmi—i ()
dn i=0
m—1 m—1

+B1 YA A1) — a2 Y Bi(n) Bu—1-i (),

i=0 i=0
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dBp () (=
Rnp =" " —en Y A Cror—i() + B2 Y Bi() Bu—1-i(n)

i=0 i=0

m—1

+a2 ) Bi(m)Bu-1-i(n).

i=0

dCp-1 (1) - -
Ruc(m) ="/ "7 = VB3 ) Bil)Bui=i(n) + 1 ) € Conr=i ).

i=0 i=0

Using ha(n) = hp(m) = hc(n) = 1, the solution of the m-order deformation
Egs. (15)—(17) for m > 1 becomes:

n

A1) = A A1 () + /0 R a(s)ds. (19)
n

B (1) = han Bu_1 () + h /O R 5(s)ds. (20)
n

Con (1) = hom Con—1 (1) + /0 R c(s)ds. 21

In-depth study of the convergence of the HAM can be found in [3, 7].

3 Numerical Results

To demonstrate the capacity of the HAM, the values of the variables and parameters
of the model (1) are given in following Table: A(0) = 1000, B(0) = 0 and C(0) =
0.001.

With the help of Mathematica software, we have drawn the following figure.

Table 1 List of parameters

. Parameter Value Data source
and their values 3 -
r 10 mm™" day [14]
o 0.000024 mm~—3 day~!  [14]
o 0.2day! [14]
B 0.01 day~! [14]
B2 0.5 day~! [14]
B3 0.16 day~! [14]
B4 3.4day! [14]

14 1000 [14]



Approximate Analytical Solution of a HIV/AIDS Dynamic Model During. . .

-0.00001

-0.00002

Ao

-0.00003

-0.00004 -

|
|
A/ 0)

-2.0

.
-1.5 -1.0 -0.5 0.0

h curve for 4th-order approximation

(a)

0F

-5.x10° F

-0.00001

-0.000015 |

-0.00002

-1.0 -0.5 0.0

h curve for Sth-order approximation

(b)

Fig. 1 The /i-curves of obtained by the (a) 4th-order and (b) Sth-order approximation of the HAM

for T’ (0)
0.00004 | p
0.00003 [ ]
e ~— @@ S
= 0.00002 | ™ j=
0.00001 | p
ok . . . M
20 15 -1.0 -05 0.0

h curve for 4th-order approximation

(a)

0.00002
0.000015
0.00001

5x10°

-5 -1.0 -0.5 0.0
h curve for Sth-order approximation

(b)

Fig. 2 The /i-curves of obtained by the (a) 4th-order and (b) Sth-order approximation of the HAM

for 1’ (0)

0.000
=0.001
-0.002

-0.003

(&)

—-0.004

-0.005

-0.006

(&)

. .
-15 -1.0 -0.5 0.0
h curve for 4th-order approximation

(a)

0.0000 F
—0.0005 |
-0.0010 |\
-0.0015 |
-0.0020 |
-0.0025 |

—0.0030 |

-2.0

-1.5 -1.0 -0.5 0.0
h curve for Sth-order approximation

(b)
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Figures la, b, 2a, b, and 3a, b are the % curves obtained by the 4th-order and
Sth-order approximation of the HAM respectively.
From Figs. 1, 2, and 3 it was observed that the line segment of 7 curves is nearly
parallel to the horizontal axis, and ensures that the series solutions obtained are

convergent.
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Table 2 The above values of
i derive from Figs. 1, 2, and 3

Table 3 The minimum
values of RA(h]), RB(hY),
RC(hY)

RA(Ry)
RB(h2)
RC(h3)

Table 4 The residual errors for various values n

t ERi(A, B, C; —0.639467)

ERi(A, B, C; —0.643968)

A. Dutta and P. K. Gupta

A(m) —-15<h=<-05
B(n) —-15<h<-05
Ccn) —-15<h<-05

h* Minimum value
—0.639467 8.06216 x 10~13
—0.643968 9.26825 x 10~13
—0.51468  1.0034 x 1076

ER((A, B, C; —0.51468)

0 1.12472 x 107° —1.08312 x 107° 0.000388654
0.1 —3.76069 x 10~7 4.38038 x 1077 —0.000179256
0.2 —8.20159 x 1077 —4.60439 x 1077 —0.000580455
03 —5.70582 x 1077 8.97059 x 10~7 —0.000848859
0.4 49731 x 1078 6.27566 x 1077 —0.00101581
0.5 7.5653 x 1077 —3.61895 x 1078 0.00111014
0.6 1.13028 x 1076 —7.99505 x 10~7 0.00115823
0.7 1.47749 x 1076 —1.4058 x 1076 0.0011841
0.8 1.10376 x 107° —1.30321 x 107 —0.00120947
0.9 3.79016 x 107° —2.590007 x 1077 —0.00125381
1 —1.83226 x 10~° 1.61566 x 10~6 0.00133441
For residual functions for the model (1) are
1
RA(hy) = / (ER1(A, B, C, hl))zdt (22)
0
1
RB(hy) = / (ER>(A, B, C, hy))?dt (23)
0
1
RC(h3) = / (ER3(A, B, C, h3))2dt 24)
0

The residual errors ERy, ERj, and E R3 are shown in Fig. 4 for € (0, 1) and for
different /1. In Fig. 4, we can observe that the results acquired by applying the HAM
provide an analytical solution with a high order of accuracy and with only a few

iterations.
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4 Conclusion

It is observed that the HAM has the intended result after solving a model for HIV
and CD4+ T cells during primary infection. The HAM avoids the difficulties and
huge amount of computational work of other numerical methods.
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Stratification and Cross Diffusion Effects = m)
on Magneto-Convection Stagnation-Point S
Flow in a Porous Medium with Chemical
Reaction, Radiation, and Slip Effects

M. Bhuvaneswari, S. Sivasankaran, S. Karthikeyan, and S. Rajan

Abstract The analysis on the changes due to mass and heat transfer in the presence
of chemical reaction, thermal radiation, internal heat generation, and Dufour-Soret
effects on an unsteady hydromagnetic combined convection stagnation-point flow
toward a vertical plate embedded in a solutally and thermally stratified porous
surrounding subjected to the slip conditions on velocity, thermal, and solutal fields
is presented deliberately in this paper. Relations of similarity are inducted for the
conversion of flow relations as ordinary differential equations and the solution is
obtained upon the application of shooting method combined with Runge-Kutta
algorithm. An analysis is presented upon the graphical depictions on the profiles
of velocity of the liquid, its temperature, and its concentration with respect to some
physical entities, and conclusions thereby are drawn.

Keywords: Stagnation-point; Porous medium; Thermal radiation; Stratification;
Slip conditions; Chemical reaction.

1 Introduction

Transfer of mass and energy in MHD convection with chemical reaction and
radiation occupies a pivotal place in haystack burning, fluidized bed catalysis,
drying processes of porous solids, and temperature reduction of reactors in atomic
power stations. The changes due to chemical reaction and radiation on different
configurations of the problem have been researched by many authors. By employing
Lie group analysis, Bhuvaneswari et al. [1] explored the convective double-
diffusive flow of an incompressible liquid past an inclined semi-infinite surface
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with first-order homogeneous chemical reaction. The effect of flow, mass, and heat
transfer on hydromagnetic chemically reacting flow in a two-dimensional irregular
channel subject to radiation and Dufour effect is investigated by Ruchi Kumar and
Sivaraj [2].

In recent years, quite a large number of studies dealing with Dufour-Soret effects
on mass and heat transfer of viscoelastic fluids have appeared. Dufour-Soret effects
combined with chemical reaction and radiation on viscoelastic flow upon a stretched
surface with convective boundary condition was the case dealt by Eswaramoorthi
et al. [3]. Radiation, internal heat generation, and Dufour-Soret effects on MHD
combined convection stagnation-point flow toward a vertical plate in a porous
neighborhood with mass and heat transfer were examined by Karthikeyan et al.
[4]. Aman et al. [5] have concentrated upon the action of hydromagnetic stagnation-
point flow toward a shrinking/stretching sheet with boundary slip effect. Variations
in temperature and concentration differences or existence of fluids having different
densities are the causes for stratification. The analysis of free/combined convection
in a stratified medium is a problem of fundamental interest because of its important
applications in engineering. MHD combined convection from a vertical plate over
a stratified porous surrounding with thermal dispersion was probed by Chamkha
et al. [6]. Changes due to slip conditions are significant for fluids that show wall
slip such as polymer solutions, foams, emulsions, etc. In many of the technological
applications such as the polishing of internal cavities and artificial heart valves,
fluids exhibiting slip are important. Slip effects in the flow of a nanofluid in a
stretching cylinder with double stratification and radiation were analyzed by Hayat
et al. [7]. Partial slip on steady stagnation-point flow of an incompressible liquid
toward a shrinking sheet was considered by Bhattacharyya et al. [8]. Rohini et al. [9]
have made a study on the action of suction and temperature slip upon the unsteady
combined convection boundary layer flow near the stagnating point on a permeable
vertical surface encompassed in a porous medium. By drawing motivation from the
above works, we attempt this study to analyze the changes due to the stratification
and slip on hydromagnetic stagnation-point flow in a porous medium with cross
diffusion, chemical reaction, and radiation.

2 Flow Analysis

Steady-state two-dimensional hydromagnetic flow of an incompressible electrically
conducting viscous liquid in the vicinity of a point of stagnation at the surface y = 0
with the flow region as y > 0 is considered. By setting the origin fixed, two forces
of equal magnitude and opposite direction are employed along x-axis. The liquid
arriving from y-axis make an impact on the wall at y = 0, and as a result, there
are two streams leaving in upper and lower directions. In nearby surrounding of a
stagnating point, flow velocity is taken as Us, = nx, where n is positive. A magnetic
domain By, a constant, is employed in y direction. The electric field as well as
the magnetic field is negligible because of polarization. The concentration and the
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temperature of the liquid are Co, and T and that of the liquid at stretching wall
are Cy, and T, respectively. We assume that the plate gets heated due to convection
by a hot liquid having Ty as temperature. Further, we assume that the electrical
and viscous dissipation are negligibly small. The equations pertaining to this MHD
stagnating-point flow of mass and energy transfer upon a hot vertical plate are

du n av _0 0
ax Ay
du du 3%u "
u, v, =v_ o +(T —Twx)+gB (C—Cox)
ax ay ay
o.B: v du,
—(e°+~)<u—Uoo)+Uoo > )
P K dx

aT N aT 2T  «dg, N D, Kt 3*C L OT - Ty 3
u v = — —
dx dy ay2  k 9y cscp Y2 *®

aC acC 92C D, K7 9*T
u +v =D,

— K C 4
ox dy dy? T, dy? ! @)

with

ou oT oC
u=uy+L ,v=0T=T,+ K; ,C=Cy + K> aty =0,
dy dy dy

Uu—>0,T—> Ty, C—> Cx, asy — 0 (®)]

where uy, = "V, Ty = To+a7, Cy = Co+b7, Too = To+d 7}, and Coo = Co+e7,

where L, K1, and K, are, respectively, the slip factors with respect to velocity,
thermal effect, and concentration; a, b, d, and e are the constants of dimensionality;
and / is the reference length. Here, with usual notations, we take

45* 9T*

- 6
3K’ 9y ©)

qr =

On the assumption that the temperature variations are too minimal, we can
take T4 as

T =413 T - 3712 (7
We incorporate the nondimensional expressions listed below.
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Here Sc, St.d, dc, and dr are, respectively, the parameters corresponding to solutal
stratification, thermal stratification, velocity slip, solutal slip, and thermal slip. We
now introduce the following similarity relations:

n T —-Tx C—-Cx
= . = 5 9 = 5 == 9
n y\/v ¥ = nxf () T * =y Co ©
. . _ — _y
where ¥ (x, y) is the stream function defined by u = 3" and v = —| so as

to satisfy Eq. (1) identically. Equations (2)—(5), on the application of Egs. (7)-(9),
yield the equivalent set of ordinary differential equations as

f”/—i-ff”—f/z—i-@RiT +¢Ric +(K+M)(A - f)=—1 (10)
(1+4Rd/3)6" — Sy Prf’ — Prf'0 + Prfé’ + 86 + Df¢" =0 (11
¢" — S.Scf' — Scf'p + SrSc0” + Scf¢' — ScCrp = 0. (12)

where K, Rd M, Cr, and S are, respectively, the parameters corresponding to
porous surrounding permeability, thermal radiation, magnetic domain, chemical
reaction, and internal heat generation. On the substitution of Egs. (7)—(9), conditions
in (5) are modified as

ff=1+df", f=0,0=1—Sr+dr9',¢ =1—S.+dc¢'atn =0
f'=0,0=0,¢=0asn— 00 (13)
Solutions of Egs. (10)—(12) subject to (13) are attained by the application of shooting

method combined with Runge-Kutta fourth-order algorithm. Localized Nusselt and
Sherwood numbers and then the coefficient of skin-friction are given by

2Ty Xqw Xqm

Cr= , Nu= , Sh= ) (14)
= pu2, k(T — Too) Dy (Cyy — Coo)
where
i du . T 46* 9T* b acC 15
=i , Qu=— =— s qm= — .
oyl " 0yly—o 3K Ay [yo " 9y ly=o
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The relations for localized Nusselt and Sherwood numbers and then the coefficient
of skin-friction are derived as

CfRez = f"(0), Nu/Re? =— (1 n :Rd> 0'(0), Sh/Re? = —¢'(0). (16)

3 Results and Discussion

Throughout the numerical computations, we fix the values for the parameters as
Rir =1, Ric=1,K =1, M =1, Pr =0.7,S¢c =05,a =1,d = 0.5,
S =10,Df =05 Rd =05, 5 =05, Cr =05,dr = 10,dc = 1.0,
St = 0.5, S¢ = 0.5 unless stated otherwise. It is seen in Fig. 1 that rising the
velocity due to ascending values of d. Figure 2a—c indicates the changes due to
radiation parameter on f’, 6, and ¢. From Fig.2a-b, it is observed that a rise in
radiation parameter initially tends to diminish the velocity and temperature, while
the reverse trend occurs when 1 > 1. Figure 2c indicates that, for the accelerating
values of radiation parameter, concentration picks up first and it declines aftern = 1
and again it reverses when n > 3. From Fig. 3a-b, it is observed that the changes of
ascending Dufour number raise the fluid temperature significantly. It is seen that the
concentration lowers down and it rises again slightly as it reaches the free stream
value.

Figure 4a-b represents the concentration profiles for Soret number and chemical
reaction parameter, respectively. Rise in chemical reaction parameter reduces the
concentration. However, the concentration lowers down near boundary and it rises
again slightly as it reaches the free stream value as presented in Fig. 3b.

Figure 5a-b displays the rise in both temperature and velocity because of a rise
in temperature slip parameter dr. The changes due to concentration slip parameter
dc on velocity and concentration are depicted in Fig. 6a—b. Both the velocity and
concentration become low with ascending values of dc. It is noticed in Fig. 7a—b that

Fig. 1 Effect of d on velocity
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arise in thermal stratification parameter diminishes the temperature and velocity and
thus shrinks thermal boundary layer thickness. Descending trends in the velocity and
concentration profiles are observed due to the rise in solutal stratification parameter

in Fig. 8a-b.
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4 Conclusion

The changes due to stratification and velocity, thermal, and solutal slip conditions
on hydromagnetic combined convection stagnating-point flow upon a plate placed
upright in a porous surrounding with mass and heat transfer in the influence
of internal heat generation, radiation, and Dufour-Soret effects are deliberately
analyzed in this paper. Shooting method with Runge-Kutta algorithm is applied for
finding the solution. Conclusions of the study are as follows:

Radiation parameter initially tends to diminish temperature and velocity profiles;
but when n > 1, the reverse trend occurs.

Ascending values of chemical reaction parameter leads to diminish the species
concentration at the boundary layer.

Both temperature and velocity enhance on rising the thermal slip parameter.

A rise in thermal stratification parameter brings down the temperature and
velocity and thus thermal boundary layer thickness slims down.
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Natural Convection of Newtonian Liquids  m®)
and Nanoliquids Confined in e
Low-Porosity Enclosures

P. G. Siddheshwar and K. M. Lakshmi

Abstract Natural convection of nanoliquids confined in a low-porosity enclosure
when the lateral walls are subject to constant heat and mass fluxes is studied analyti-
cally using modified Buongiorno-Darcy model and Oseen-linearised approximation.
For the study we considered water-copper nanoliquid and aluminium foam, glass
balls as porous materials. The effective thermophysical properties are calculated
using phenomenological laws and mixture theory. An analytical solution is obtained
for boundary layer velocity and Nusselt number. The study shows that dilute
concentration of high thermal conductivity nanoparticles significantly facilitates
enhanced heat transport. The porous medium, however, diminishes heat transport
when the thermal conductivity of the porous material, kp, is less compared to that
of nanoparticles, k,,. When kp,;, > k;,, then the presence of nanoparticles does not
affect the heat transport.

1 Introduction

Natural convection heat transfer in a low-porosity medium due to the temperature
difference between the vertical walls is frequently encountered in design of thermal
insulation systems, geothermal reservoirs, grain storage, heat exchangers, electron-
ics cooling, nuclear reactors, etc. In all these applications, the primary limitation
of using Newtonian liquids as a medium for heat exchange is its low thermal
conductivity. We can overcome this limitation by introducing nanoscaled engineered
particles, i.e., nanoparticles of high thermal conductivity into the Newtonian liquids
as this will significantly increase the effective thermal conductivity of the liquid
system.

Natural convection in nanoliquids is generally studied using KVL single-phase
model [6, 10, 15] and Buongiorno two-phase model [5, 8, 11-13, 17, 20, 22]. The
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limitation of using KVL model is that this model does not account for important
effects such as Brownian motion and thermophoresis. In the present paper, we have
modelled the conservation equations for nanoliquid-saturated porous medium using
modified Buongiorno-Darcy model (MBDM) with the effective thermophysical
properties being modelled using phenomenological laws [4, 9] and traditional
mixture theory. These are few works that consider natural convection due to heating
of vertical walls in enclosures [1, 2, 7, 10, 19]. In many practical situations such as
design of insulating systems, the fluid layer will be exposed to radiation heating. Our
problem is the simulation of such situations. Many researchers have studied natural
convection subjected to uniform heat and mass fluxes in Newtonian liquid-saturated
porous medium [3, 14, 16, 18]. We extend the problem to a nanoliquid-saturated
porous medium with actual thermophysical properties of water-copper nanoliquid
and aluminium foam, glass balls porous materials being used.

Nomenclature

A aspect ratio Ry thermal Rayleigh number

a core temperature gradient Ry concentration Rayleigh number
b core concentration gradient T effective temperature

Cp effective specific heat capacity ~ t(x) temperature profile

C concentration of nanoparticles u, v velocity components

c(x)  concentration profile X,y spatial coordinates

Dp Brownian diffusion coefficient o volume fraction (0 <« < 1)
dnp diameter of nanoparticles Bi thermal expansion coefficient
Dy thermophoresis coefficient B solutal analog of

g acceleration due to gravity X effective thermal diffusivity

H height of the enclosure AT temperature difference

i mass flux AC concentration difference

k effective thermal conductivity I dynamic coeffecient of viscosity
K permeability ¢ porosity (0 < ¢ < 1)

K3 Boltzmann constant 00 effective density

L enclosure thickness

Le Lewis number Subscripts

M ratio of specific heats bl base liquid

Ny modified diffusivity ratio c critical

Nr Thermophoresis parameter blerr base liquid porous medium

n buoyancy ratio L,R left and right boundary layer region
Nu Nusselt number nl nanoliquid

dynamic pressure np nanoparticle
q velocity of the nanoliquid pm porous material

q heat flux 0 at reference value



Natural Convection of Newtonian Liquids and Nanoliquids Confined in Low-. . . 257
2 Mathematical Formulation

Two-dimensional rectangular enclosures are filled with nanoliquid-saturated low-
porosity medium whose horizontal walls are insulated and impermeable to nanopar-
ticles and base liquid, while the vertical walls are subjected to uniform heat and

mass fluxes:
oT
q" =—k ( 5 ) , (D
X x=0,L

aC
j"=-Dg ( ) . (2
ox x=0,L

Since equal quantities of influx and outflux are given to the system, it allows the
system to generate a static core region between the cells as shown in Fig. 1.
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Fig. 1 Schematic representation of nanoliquid-saturated porous enclosures. (a) Tall. (b) Square.
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The modified Buongiorno-Darcy governing equations are:

V.q=0, (3
—VP—MI?Q+[,00—Poﬂl(T—T0)+,00ﬂ2(C—CO)]g=0, )
(@ V)T =M x V°T, (5)
2 Dr 2
(@-V)C=DpV>C+ VT, (6)
0
where
~ 0 ~ 0 KgT 0260k
v=i? 419 DB:¢B ’ .= ok p
0x 0z 3 dyp 2k +kp po

and other nanoliquid properties are found from phenomenological laws and mixture
theory [16].

Oseen-Linearisation Transformation and Boundary Layer Regime
The assumptions required in the study are:

. constant boundary layer thickness which is y-independent,

. u=0 and v=0 in the core,

. linearly stratified temperature and concentration in the core

. linearly increasing temperature and concentration along vertical walls.

BN =

According to Weber [21], Oseen-linearisation transformation is an analytical
technique for a porous medium and it takes the form:

T(x,y)=1t(x)+To+ay

. (7
C(x,y) =c(x)+ Co+ by

Here Ty and Cy represent the temperature and concentration found at the centre
of the static core (x=L/2, y=0), and t(x), c(x) satisfy the following core-limiting
condition:

lim (v, ¢, ¢) =0. (8)
11— 00

Applying the transformation (7) in the governing equations (3)—(6), the boundary
layer equations take the form:

(poB1IEK  (poP2)gK
v — t+ c
Mnl Mnl
av=Myxt", (10)

=0, )
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D
bv="Dp '+ Tt (11)
Tp

Eliminating t from the above equations and making use of core-limiting condi-
tion (8) and uniform heat flux condition (1), we get:

9" _,« 2 &K (pop1) My b(pop2) a Dr
Y yi= — 1-— .

t(x) = e ', a(l4+n), n=
ky wn My Dp a(poB1) b ToM x
(12)
Using (12), the concentration and velocity profiles can be obtained in the form:
M //b D M "
ctry= KT BT sy = AV (13)
Dpkya b ToM x ak

Invoking the mass flux condition (2) into the c(x) gives us the following important
result connecting core temperature and concentration gradients:

a My q"

= . 14)
b [kj”+ Dr/To q"]
The unknowns a and b appearing in Eqgs.(12) and (13) can be found from the
condition that the net flow of enthalpy through the porous layer at all points of
y must be balanced by vertical thermal diffusion downward through the static
core, i.e.,

L
aT
k

dx. 15
oy & 15)

00 o
/ poCpvr Trdx ~|—/ ,O()C,,URTRdx_Z/
0 0 0

Similarly equivalent mass transfer condition with impermeable horizontal walls is

00 00 L aC
/ vy Crdx —l—/ VRCRrdx_ = / Dp dx, (16)
0 0 0 dy

In Egs.(15) and (16), the quantities 7;, Cr, vr and Tg, Cg, wvg are the
temperature, concentration and velocity profiles at the left and right of the static
core, respectively. The quantity x_ is the x-coordinate measured from right lateral
wall to the static core.

Solving Egs. (15) and (16) for a and b, we get:

4 q// M b . j// 1 1+ DT q// (17)
k\yL Dg JyL Tok j"°
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The heat and mass transports in the system can be found using the Nusselt and
Sherwood numbers and the analytical expression for the same is given by

ko1 H\ %3
Nu = Rf/5(1+n)2/5( ) M, (18)
Kbtz 2 L
1 2/5 s (H B —-1/5 1
Sh=_R{’(1 / M5 (1 , 19
» K (1+4+n) L ~I—NT (19)
where
poBigK H?q"
R = .
ko x

3 Results and Discussion

Natural convection in a nanoliquid-saturated low-porosity medium is studied analyt-
ically. The thermophysical properties of nanoliquid and nanoliquid-saturated porous
medium are taken from various sources [15-17]. From the tabulated values from
various papers, the following inequalities are found to hold good:

poPt < (poPOble,  Mnl > [bl, k> kple,  Xble < X- (20)
On rewriting the definition of Darcy-Rayleigh number, we have

_ Mbtkpiexpie(poB1)

Ri=FRy,, F=
wnt k x (poB1)ble

<1= Ry <Ry, Q1)

This clearly explains the advanced onset of convection in nanoliquid-saturated
porous medium compared to base liquid-saturated porous medium.

In Table 1 we have tabulated the values of Nusselt number for different values
of volume fraction in both aluminium foam and glass balls’ porous medium. We
observe the heat transport enhancement in the presence of water-copper-saturated
glass balls’ porous medium, whereas in the case of water-saturated glass balls’
porous medium (in the absence of copper nanoparticles), the heat transport is

Table 1 Contribution of nanoparticles on thermal conductivity of nanoliquid-saturated porous
medium

k
Porous materials kpie k kpie
Aluminium foam 102.8065 102.865 1.00057

Glass balls 000.8315 000.8899 1.0702
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diminished. However, in the case of water-copper-saturated aluminium foam porous
medium, the presence of nanoparticles does not affect the heat transport at all. To
find the reason for this situation, we consider the definition of Nusselt number as
in Eq. (18). From this equation, we observe that the contribution of nanoparticles

on heat transfer comes from the term r k . On looking at the tabulated values of
bleff
L in Table 1 of water-copper-saturated aluminium foam porous medium case,
bleff
we ({tf)serve the following.

The addition of dilute concentration of nanoparticles increases the effective
thermal conductivity of the system in both the types of porous medium. But the
contribution of nanoparticles on heat transport is very less in the case of aluminium
foam saturated by water-copper compared to that in the case of glass balls’ porous
medium. Thus we conclude that the participation of nanoparticles in heat transport
is only in case of a porous medium that has low thermal conductivity. When the
thermal conductivity of the porous medium is very high or near to the thermal
conductivity of nanoparticles, then the heat transport rates in both base liquid-
saturated porous medium and nanoliquid-saturated porous medium are the same
(Table 2).

Table 2 Values of Nusselt number for R;=30, M=0.775028(Glass  Balls),
M=0.615132(Aluminium foam) and n=2 for different values of volume fraction, «, in the
case of a square enclosure

Volume fraction Glass balls Aluminium foam
0 3.18513 3.16999
0.02 3.25587 3.16987
0.04 3.32954 3.16965
0.06 3.40632 3.16945

Table 3 Values of Nusselt number for R;=30, «=0.06, M=0.775028(Glass balls),
M=0.615132(Aluminium foam) and n=2 for different types of enclosures

Aspect ratio Glass balls Aluminium foam
0.9 3.70588 3.44818
1 3.40632 3.16945
1.2 2.94402 2.73929

Table 4 Values of Nusselt number at R;=30, «=0.06, M=0.775028(Glass Balls)and
M=0.615132(Aluminium foam) for different values of buoyancy ratio, n, in the case of a
square enclosure

Buoyancy ratio Glass balls Aluminium foam
0 2.19501 2.04237
2 3.40632 3.16945

4 4.17854 3.88797



262 P. G. Siddheshwar and K. M. Lakshmi

Different values of aspect ratios are tabulated in Table 3 to get the results of
shallow, square and tall porous enclosures. We observe that the heat transport is
minimum in case of tall enclosures and maximum in the case of shallow enclosures.

We have tabulated the values of Nusselt number in Table 4 for different values of
buoyancy ratio. We observe that the heat transport is more in heat and mass-driven
convection than in the case of heat-driven convection.
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Study of Viscous Fluid Flow Past an )
Impervious Cylinder in Porous Region ke
with Magnetic Field

D. V. Jayalakshmamma, P. A. Dinesh, N. Nalinakshi, and T. C. Sushma

Abstract The flow of viscous, incompressible and electrically conducting fluid
past and impermeable cylinder present in a cylindrical porous region is considered
for the steady case in presence of magnetic field applied in vertical direction.
The flow is governed by modified Brinkman and Stokes equations in porous and
nonporous regions, respectively. The matching boundary conditions are used at the
interface with no-slip condition at the solid surface and uniform velocity away from
the nonporous region. This boundary layered problem is solved analytically and
obtained solutions in terms of modified Bessel’s functions.

Keywords Incompressible - Brinkman equation - Stokes equation - No-slip

1 Introduction

The flows of the fluids through/past a porous medium are of principal interest
because of its natural occurrence and its importance in industrial, geophysical, and
biomedical applications. The study of hydrodynamic flows in presence of magnetic
field has attracted many authors due to its vast applications in astrophysical,
geophysical, and industrial fields. Many practical problems need a mechanism to
control the motion of the fluid past solid bodies with magnetohydrodynamic (MHD)
effects.
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In the literature, Anjali Devi and Raghavachar [1] studied the horizontal flow of
a vertically stratified, conducting fluid past a nonconducting sphere in the presence
of uniform magnetic field. Kyrlidis et al. [8] presented the study of conducting
fluid past axisymmetric bodies in the presence of magnetic field for small inertial
and magnetic Reynolds numbers. Chandran et al. [3] have analyzed the effect of
magnetic field on the flow of heat transfer past a continuously moving porous plate
in a stationary fluid. The flow of conducting fluid around a circular cylinder in the
presence of magnetic field applied parallel to the main flow was investigated by
Raghava Rao and Sekhar [11]. Jayalakshmamma et al. [5] presented a creeping
flow past a composite sphere in presence of magnetic field. The steady flow of two
immiscible fluid spheres of different viscosities was analyzed in the presence of
unvarying magnetic field by Jayalakshmamma et al. [7].

Pal and Talukdar [10] analyzed the unsteady flow of a laminar two-dimensional
oscillatory flow of conducting fluid between two nonconducting parallel plane
surfaces in the presence of suction/injection. The effect of the magnetic field on
the permeability of a membrane of solid cylindrical particle was considered by
Ashish Tiwari et al. [2]. Pankaj Shukla [9] studied an axisymmetric, stokes flow
past a swarm of porous cylindrical particles enclosing a solid core. The influence
of transverse magnetic field on the flow of conducting fluid was investigated by
Jayalakshmamma et al. [6]. Viscous fluid flow in porous media for spherical region
with magnetic was investigated by Dinesh et al. [4].

The present study projects on certain practical applications such as metallurgy
and metal processing and lubrication and in nuclear reactors, where an additional
force such as magnetic field is applied to control the fluid flow. In the view
of these applications, in this paper we considered the flow behavior of viscous,
incompressible, conducting fluid past a solid cylinder embedded in a cylindrical
porous medium in presence of external magnetic field.

2 Mathematical Formulation

The steady flow of viscous, incompressible, and conducting fluid through a porous
cylindrical region of radius b comprising a solid cylindrical core of radius a is
investigated in the presence of transverse magnetic field. It is assumed that the
induced magnetic field is insignificant, as the magnetic Reynolds number is small.
Also the flow domain has been divided into two regions as nonporous and porous
region. The governing equations which describe the flow of a conducting fluid in
nonporous region under the assumption made are modified Stokes equation with the
equation of continuity, given, respectively, as:

V.q =0 (D

-

Vo1 = uVii + doe (¢ x H) x )
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where ¢1 = (u1, v, wy) is the velocity in the nonporous region; i is the viscosity
of the fluid; ,u% is the magnetic permeability; o, is the electrical conductivity, which
is very small so that the induced magnetic field is negligible; H is the uniform
magnetic field; and p; is the hydrostatic pressure of the nonporous region.

The flow in the porous region a < r < b is governed by the modified Brinkman
equation along with equation of continuity, given respectively by:

V. =0 3)
P /A . = -
szzuvzqz— kq2~|—,uﬁae (qsz) x H “4)

where, g3 = (u2, vz, wy) is the velocity in the porous region, ji is the Brinkman
viscosity, p» the hydrostatic pressure of the porous region and k the permeability of
the porous region.

In this study, the cylindrical polar coordinates are used. Thus, for an axisymmet-
ric, two-dimensional flow in a cylindrical coordinate system (r, 6, z) with the origin
at the center of the cylinder and the axis & = 0 is chosen along the direction of
the uniform velocity uo, far from the nonporous region. Also due to axisymmetry,
we have aaz = 0. The flow characteristics of the problem which are described by
Egs. (1)—(4) can be analyzed in terms of nondimensional parameters pertaining to
the flow processes. In view of this, the following dimensionless similarity variables
are introduced:

H - ap

r o - _'1 > _>2 N N
== =P =T pr = Dy = &)
1 2 1 1 2
a Uoo Uoo Hy HUoo HUoo

where H is the applied constant magnetic field.

After nondimensionalizing the governing equations (1)—(4) using the nondimen-
sional variables as defined in Eq.(5) for cylindrical polar coordinate system in
nonporous region, we get:

dvy _

0
0 6
ar(”ﬂ)-i- 99 (6)
ap1 ) Pup 1wy 13%ur w2 3y
- = M*u, — - - 7
or ! ( arz r ar + r2 962  r2  r2 96 @
1dp 9%vy  1dvy  19%v v 2 0w
- =M - 2 T2 2T 2 ®)
r 060 ar r dar r< 00 r r< 060

Here (u1, v1, 0) represents the velocity of the fluid in the nonporous region.
Similarly, the nondimensionalized governing equation for the porous region takes
the form:
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vy _

B]
ar (rup) + 90 0 9

9 92 19 1 92 29
_ o2 _ S2u2 _ u u u Uz v2 (10)
ar ar? r or r2 302  r2 2 96
1dpy vy  1dvy 1 3% vy 2 dup
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Here (12, v2, 0) are components of velocity in normal and tangential direction in

porous medium, p, is the static pressure in porous region and S = M? + o2

— « HpoeHya®

in which ¢ = gk s the porous parameter, M = is the Hartmann
"

number, and k is the permeability of the fluid.

As the flow is axisymmetric and two dimensional, the stream function v; (r, 8)
(where i = 1, 2 correspondingly for nonporous and porous regions) is introduced,
which satisfies the equation of continuity in cylindrical polar coordinate system for
both nonporous and porous regions, respectively:

Loy oW

N 12
a0 T (12

Here u; is the normal component of velocity and v; is the tangential velocity. By
eliminating the pressure term from Eqs. (6) and (7) of nonporous region and Eqs. (9)
and (10) of porous region by cross differentiation, we get a fourth-order linear partial
differential equation in terms of corresponding stream function as:

Vi — MPV2y1 =0, b<r<oo (13)

Vi, — $?V2Y, =0, a<r<b (14)

where V2 = aarzz + } aar + rlz 68922 is Laplacian operator in cylindrical polar coordinate

system.

In the present problem, boundary conditions used are as follows: no-slip
conditions on the surface of the solid cylindrical core are:

u(a,0) =0, 0<6 <2n (15)

v(a,0)=0, 0<6<2n (16)

The interfacial conditions, continuity of normal and tangential velocity components,

and continuity of normal and tangential stress components at the interface of the
porous and nonporous region are given by:
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uy(b,0) =u1(b,0) 0<6<2m amn
va(b,0)=v1(b,0) 0<6<2m (18)
T02)(b,0) = 191)(b,0) 0<0 <2m (19)
Tr@ (b, 0) = Tr1)(0,0) 0<6 <2m (20

where 7,4(;) and 7,,(;) are the dimensionless tangential and normal components of
stress tensors, written in cylindrical coordinate as:

1 Bu,- 81),' Vi

— 21
r80+8r r b

Tro(i) =

ou;
Trr(i) = —Pi +2 arl (22)

The continuity of the normal stress at the interface of the two regions from the
boundary condition (20) shows the continuity of pressure across the interface, since
the viscosity of the fluid is equal to the Brinkman viscosity ;t = u . Therefore,
Eq. (20) reduces to:

p2(b,0) =p1(b,0) 0=6=<2m (23)

Also, the uniform velocity far away from the fluid cylindrical region is
given by:

Yi(r,0) ~rsinf as r — oo 24)

3 Method of Solution

The boundary condition of uniform velocity far away from the porous cylindrical
region leads to find the solution for the fourth-order partial differential equations
of (13) and (14) by similarity solution method as:

Yi(r,0) = fi(r)sind (25)

Substituting Eq. (25) in Egs.(13) and (14) in respective regions, we obtain the
ordinary differential equation of order four in f;(r) as:

; 2 3 3 3 1 1
fiw_l_rfi///_rzfl_//_l_r3fi/_r4ﬁ_Ji2|:fi//_|_rfi/_r2ﬁ:|=O (26)
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M? i=1
where, Ji2 =
s? i=2

The corresponding boundary conditions are:
No-slip condition at the surface of the solid cylinder is given by:

fola) =0 (27)
fr@)=0 (28)

The continuity of the velocity and stresses at the interface of the porous and
nonporous region is given by:

Jf2(b) = fi(b) (29)
f(b) = f{(b) (30)
£ by = £ (b) 31)
B =a*f; = f"(b) (32)

Further, the uniform velocity far away from the nonporous region is:
fir) ~r as r — o0 (33)

The fourth-order ordinary differential equation (26) is converted into second-order
differential equation with variable coefficient (see Jayalakshmamma et al. [6]) which
can be solved by the method of variation of parameter and the obtained complete
solution as:

A
iy ="'+ Bir+CiK\(Mr)+ DiL(Mr) b<r<oo (34)
r
Ar
fo(r) = + Byr + CoK((Sr) + D[ (Sr) a<r <b 35)
r

where Aj, By, C1, D1, Az, B2, C2, and D, are arbitrary constants. In the fluid
region as r — 00, then 11 (Mr) — oo . Therefore the solution is valid for D; = 0,
and also due to the boundary condition for uniform velocity far away from the
medium, from Eq. (33) we get B; = 1. Thus Eq. (34) reduces to:

A
) =" 4 r+CIKi(Mr) b<r <oo (36)
r

Hence the stream function in both the regions takes the form
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Ay :
Yi(r,0) = +r+ CiKi(Mr)|sinf b<r <oo 37
r

A
Yo (r,0) = ( 2 + Bor + CoK1(Sr) + Dgll(Sr)> sind a<r<b (38)
r

The arbitrary constants present in Eqs.(37) and (38) are evaluated using the
boundary conditions; for the want of space, the expressions of constants are
not mentioned in this paper. Further, the expression for normal and tangential
component of velocities for both porous and nonporous regions can be obtained
in terms of stream function from Eq. (12).

4 Results and Discussion

The considered boundary value problem is solved analytically, and expression for
stream function is obtained as a function of r with nondimensional parameters.

The effect of magnetic field M for a fixed porous parameter ¢ on the flow patterns
is discussed through the streamlines. For o = 5 and for small magnetic field M =
0.1, it is noticed that the fluid is flowing past the porous cylinder rather than passing
through it, shown in Fig. 1(i). This can be attributed to the lower permeability of the
porous medium. For the same o, when the magnetic field strength is increased, the
fluid starts to move inside the porous region. As a result the streamlines are moving
closer to the solid surface of a cylinder and the same is illustrated in Fig. 1(ii)—(iv).

The effect of magnetic field on the tangential velocity along the line 6 = 7
is analyzed for both the regions and is depicted in Fig.2. For 0 = 25, a smooth
flow is observed at the interface of the two regions for magnetic field of strength
M = 1. As the magnetic field strength is increased, the tangential velocity increases
in the porous medium and accelerates near the boundary of the two regions, reaches
its maximum value, and maintains a uniform velocity far away from the porous
cylinder. Also, the viscous sublayer decreases near the surface of porous cylindrical
region with increase in Hartmann number as given in Fig.2 (i). For 0 = 50
and increasing Hartmann number, it is observed that the curve is sharpened at
the interface, i.e., the viscous sublayer is decreased with an increase in Hartmann
number and is shown in Fig. 2 (ii).

5 Conclusions

In this article, the influence of Hartmann number is discussed on the streamline
patterns. From the graph, the meandering of streamlines near the surface of the
solid cylinder is noticed for the increase in magnetic field strength with fixed porous



D. V. Jayalakshmamma et al.

272

=50

o

/\\

N\ //

0.1, (ii) M = 2, (i) M = 5,

—
‘M=5,10,15

-2

o=25

.

e

=

—— —

M=1,2,3

3
"
lr— J

=10

\\

™

.....

\

1
0
1t
2
3
Fig. 1 Streamlines for fixed o = 5 and different value of M. (i) M

(iv) M

(9]
| !

Fig. 2 Variation of tangential velocity for different values of M with fixed o



Study of Viscous Fluid Flow Past an Impervious Cylinder in Porous Region. . . 273

parameter. This shows that the fluid flow is effectively controlled by the magnetic
field; as a result more amount of fluid flows through the porous region/on the surface
of the solid core.

The tangential component of velocity increases with increasing the magnetic
field strength for fixed porous parameter, i.e., the tangential component of velocity
amplifies and reaches its maximum and maintains the uniform velocity as distance
moved away from the surface.
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Numerical Solution of Steady m)
Powell-Eyring Fluid over a Stretching e
Cylinder with Binary Chemical Reaction

and Arrhenius Activation Energy

Seethi Reddy Reddisekhar Reddy and P. Bala Anki Reddy

Abstract The present work addresses the two-dimensional boundary layer flow
of a Powell-Eyring fluid over a stretching cylinder with binary chemical reaction
and Arrhenius Activation energy. Also, considered Cattaneo-Christov heat flux
model in the place of conventional Fourier’s law of heat conduction. Suitable
transforms lead to strongly nonlinear differential equations, which are solved
through R-K method along with shooting scheme. The effects of various parameters
are shown graphically on velocity, temperature and concentration fields. The

numerical values for skin friction(+/Re; XC £/2), local Nusselt(Nu xRe;l/ ' ’1)

and Sherwood numbers(thRe;U 2x ~1 are reported. A relative revision among
the earlier published results and the present results for a special case is found to be
in an excellent agreement. Rising the values of thermal relaxation time, reduces the

temperature at near the cylinder due to domination of mixed convection in the flow.

Keywords Powell-Eyring fluid - Cattaneo-Christov heat flux - MHD - Arrhenius
activation energy

Nomenclature
A Ratio parameter v Velocity component in the r
direction (ms~1)
B Total magnetic field u,  Free stream velocity
By Magnetic field Up Reference velocity
¢ Fluid parameter x,r Coordinates along and normal
C Concentration of the fluid (kmol m=3 ) to the stretching cylinder (m)

Co Reference concentration
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Cy, Stretching cylinder concentration Greek symbols

Cx Concentration of the ambient fluid v Kinematic viscosity

¢p Specific heat at constant pressure ¢ Similarity variable

D  Mass diffusion coefficient B Fluid parameter

E, Activation energy (J kg~' k=) 7 Dynamic viscosity of the fluid
E  Non-dimensional activation energy 0 Density of the fluid (kg m™3)
F  Dimensionless velocity 8, ¢ Fluid parameters

J  Current density @ Dimensionless concentration
k  Thermal conductivity (w m~! k1) y Curvature perameter

k.,  Reaction rate r Chemical reaction parameter
/ Characteristic length O Dimensionless temperature
M  Magnetic parameter o Electrical conductivity of the
n  Unit less exponent fitted rate constant fluid

Nu, Local Nusselt number A2 Relaxation time for heat flux
Pr  Prandtl number r Chemical reaction rate

p  Fluid pressure (kmol m—3 )

Re, Local Renolds number A Non-dimensional thermal

Sc Schmidt number relaxation time

T  Temperature of the fluid (K) Tw Surface shear stress (N m™2)
Tp Reference temperature Subscripts

Ty Cylinder temperature (K) w Conditions at the wall

Ts Temperature of the ambient fluid 00 Ambient condition

u  Velocity component in the x Superscript

/

direction (ms~1) Differentiation with respect to

¢

1 Introduction

The rheology of non-Newtonian fluid models has attained a great importance in
technical and growing industrial applications. A few applications of non-Newtonian
fluid can be used as shoe manufacturing, manufacturing lubricants for vehicles,
metal extrusion and metal spinning, flexible military suits for soldiers, food and
medicine industries. Some empirical models of non-Newtonian fluids are Power-
law fluids, Williamson fluids, Rivlin-Ericksen fluids, Powell-Eyring fluids, Casson
fluids, Viscoelastic fluids, Maxwell fluid, Jeffrey fluid, Walter’s liquid B fluids.
Among these the Powell-Eyring model [1-3] is the simplest subclass of the rate
type. In this model, reduces the Newtonian behavior for both low shear stress
and high shear stress. The mathematical model of Powell-Eyring fluid plays an
important role in various natural, geophysical and industrial applications. Such
applications include the formation and dispersion of fog, enhanced oil recovery,
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designing of many chemical processing equipment, damaging of crops due to
freezing, environmental pollution, distribution of temperature and moisture over
agricultural fields, thermal insulation, groves of fruit trees, packed bed catalytic
reactors and underground energy transport. Akbar and Nadeem [4] investigated
the importance of peristaltic flow of Eyring-Powell fluid flow with heat and mass
transfer analysis in an endoscope. The steady magnetohydrodynamic (MHD)
boundary layer flow of Powell-Eyring nanofluid over a stretching cylinder in the
presence of thermal radiation effects was discussed by Hayat et al. [5]. Hayat and
Nadeem [6] examined the three-dimensional exponential flow of Powell-Eyring
fluid flow over an exponentially stretching surface and also, they explained the
impact of variable thermal conductivity, non-Fourier’s model, using generalized
Fick’s law, to inscribe the investigation of heat and mass transfer. The objective
of the present paper, a numerical analysis is made of the two-dimensional boundary
layer flow of a Powell-Eyring nanofluid over a cylinder with Arrhenius Activation
energy and Cattaneo-Christov heat flux model. Some recent efforts in the effect
of Cattaneo-Christov heat flux model are labelled in ref. no. [7-9]. Some other
applications related to magnetohydrodynamic flow was discussed in [10-17].

2 Mathematical Formulation

We examine the two-dimensional (x, r) hydromagnetic Eyring-Powell fluid flow
over a stretching cylinder (see Fig. 1). The flow analysis is explored with Cattaneo-
Christov heat flux and Arrhenius Activation Energy. In a coordinate system, x
and r are the surface of the geometry and vertical to the cylinder respectively.
The stretching velocity of the cylinder is Uy, = Up (x/I). The temperature and

concentration distribution are T = Ty — Too = To(x/l) and C = Cy =
r
A
1%
~ —
—>
—
ue
ue
U . x
€ Un(x) >

Fig. 1 Physical model of the problem
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Coo+Cp (x/1) respectively. A uniform magnetic field of strength By is implemented
in r direction. Here induced magnetic field is neglected due to small magnetic
Reynolds number. The system of equations based on [5]. regulating the above
considerations are:

a (rv) + d (ru) _

ar 0x 0 M
22 . 22 ,
ou  du l; (g,‘é + } ?,”,‘) + p;;c (?,,‘2’ + } 3‘,‘) _du, 0B}
Var +M8x_ 1 (382u(8u)2+ l(au)3) =Ue 40 T 0 (u —ue)
6pBc3 9 ar r\or
2
3 duy T 3 dvy oT
vaT—i—uaT—i—Az (55 fzvalf) ax T+ (55 f"zvaf) o O*T 19T
or ax +2uv§xaTr +u? g; +2 %5 pcp \ or2  r dr
(3)
0,0 p¥C _p2 c-coF e (4)
v u_ = - — e
or x ax2 7N\ T

The corresponding boundary conditions are:

U,
u=U,= ?x, v=0, T =T, — Too =T (x/1), C=Cy — Coo=Cp (x/1)

atr=0 (®)]
U—>ue =Usxx/l, T—>Te, C—>Csx as r— 00

n —Eq
In Eq. (4), the term (TZQ) e e is the modified Arrhenius function in which the

Boltzmann constant is k* = 8.61 x 1075¢V /K and the range of nis —1 < n < 1.
We introduce the similarity variables as

1
2_p2 ! ‘
e= (%) ("5, &= W RF@), u= L, (©)
T-Two = € Co =19
@ (;‘) = Tw—Too’ @ (C) - Cw_COQ’ v= r f‘)f

Equations (2—4) are transformed by means of Eq. (6) and stated below,

A+2y0) e+ 1) F" + FF" —(F')" + A2+ (14 2¢) F”

(7

—4ey (1+2y0) (F")’ — e8(1 + 2y 0)*F" (F")’ = M*(F' = A) =0 )
" / - F’0" — FF'®'

(14+2y8)©"+2yO@'+Pr (FO' — F'©)—APr <+F,2@ - FF,,@) =0 (8

—-E
(142y¢) @" 42y @'+Sc (FO' — F'®) — ScT ®[1+6 (O —)]"e 1+00u- =0
)
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With the boundary conditions are:

F(0)=1F0)=0,600)=1&(0) =1

(10)
F(oo)=A, ©®(c0) =0, ®(c0)=0
The non-dimensional parameters which are expressed as:
s= Yo 1 (w2 (e v
T w2’ T T ppe Y= UpR2 ’ —\ olUo T Uy (11)
) k21
e

Skin friction(Cy), local Nusselt(Nu,) and Sherwood numbers(Sh,) are
represented as

27y Xquw xJy

1= vz M Tk, — ) T picy - o) (12

_ (9 1 (0 1 (ou)3 _ aT
where 7, = M(E)‘: + Be (81:) T 6Be3 (8‘:) )r:R’ quw = _k( or )r=R (13)
ac
and J, = —D( or )r=R‘
The dimensionless Skin friction, local Nusselt and Sherwood numbers are respec-
tively formed as

CrVRX = (e + 1) F7 (0) — Les(F7 (0))’, Nu,Re; > X1 = —0' (0)

and ShyRe; /?X~! = —@' (0)
(14)

where Re, = ”i“’ and X = /x/1

3 Results and Discussions

In the present study, ¢ =0.4,6 =05, M =02,A=03,0, =15,n=03,E =
1,Sc=1,Pr=0.7, A =05,y =02, I' = 2.0 are considered as default values.
The effect of ratio of velocities is provided in Fig. 2. It is important to notice that
improving the values of A, maximize the velocity profile. Actually, improving the
values of ratio velocities means, speed up the flow, which tends to boost up the
velocity profile. The characteristics of M on velocity profile is described in Fig. 3. It
is recorded that, we increasing the magnetic parameter (M), decreases the Velocity
profile. Physically when the Lorentz force increases for large values of M due to
resistive force, which tends to the velocity of the fluid reduces. Figure 4 lays out the
influence of € on velocity profile. It can be seen that the large values of € the velocity
profile increases. This is due to the less viscous which tends to increasing the fluid
velocity. Figure 5 elucidates the variation of fluid parameter § on the velocity profile.
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It is found that the velocity of the fluid profile reduces when § is large. The effect
of thermal relaxation time on temperature profile is plotted in Fig. 6. By increasing
the thermal relaxation time, reduces the temperature at near the cylinder due to
domination of mixed convection in the flow. Rising the values of thermal relaxation
parameter takes long time to transfer the heat to its neighbouring particles. Figure 7
elucidates the variation of chemical reaction parameter on concentration profile. It is
found that the concentration profile reduces for an increasing the values of chemical
reaction parameter. Physically large values of a chemical reaction which generates
the fluid species more inefficiently. Variation of non-dimensional activ