
Bounded Synthesis of Reactive Programs

Carsten Gerstacker(B), Felix Klein, and Bernd Finkbeiner

Reactive Systems Group, Saarland University, Saarbrücken, Germany
{gerstacker,fklein,finkbeiner}@cs.uni-saarland.de

Abstract. Most algorithms for the synthesis of reactive systems focus
on the construction of finite-state machines rather than actual programs.
This often leads to badly structured, unreadable code. In this paper,
we present a bounded synthesis approach that automatically constructs,
from a given specification in linear-time temporal logic (LTL), a program
in Madhusudan’s simple imperative language for reactive programs. We
develop and compare two principal approaches for the reduction of the
synthesis problem to a Boolean constraint satisfaction problem. The first
reduction is based on a generalization of bounded synthesis to two-way
alternating automata, the second reduction is based on a direct encoding
of the program syntax in the constraint system. We report on preliminary
experience with a prototype implementation, which indicates that the
direct encoding outperforms the automata approach.

1 Introduction

In reactive synthesis, we automatically construct a reactive system, such as the
controller of a cyberphysical system, that is guaranteed to satisfy a given specifi-
cation. The study of the synthesis problem, known also as Church’s problem [1],
dates back to the 1950s and has, especially in recent years, attracted a lot of
attention from both theory and practice. There is a growing number of both
tools (cf. [2–5]) and success stories, such as the synthesis of an arbiter for the
AMBA AHB bus, an open industrial standard for the on-chip communication
and management of functional blocks in system-on-a-chip (SoC) designs [6].

The practical use of the synthesis tools has, however, so far been limited. A
serious criticism is that, compared to code produced by a human programmer,
the code produced by the currently available synthesis tools is usually badly
structured and, quite simply, unreadable. The reason is that the synthesis tools
do not actually synthesize programs, but rather much simpler computational
models, such as finite state machines. As a result, the synthesized code lacks
control structures, such as while loops, and symbolic operations on program
variables: everything is flattened out into a huge state graph.

A significant step towards better implementations has been the bounded syn-
thesis [7] approach, where the number of states of the synthesized implementa-
tion is bounded by a constant. This can be used to construct finite state machines

Supported by the European Research Council (ERC) Grant OSARES (No. 683300)
and by the Saarbrücken Graduate School of Computer Science.

c© Springer Nature Switzerland AG 2018
S. K. Lahiri and C. Wang (Eds.): ATVA 2018, LNCS 11138, pp. 441–457, 2018.
https://doi.org/10.1007/978-3-030-01090-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01090-4_26&domain=pdf

442 C. Gerstacker et al.

with a minimal number of states. Bounded synthesis has also been extended with
other structural measures, such as the number of cycles [8]. Bounded synthesis
reduces the synthesis problem to a constraint satisfaction problem: the existence
of an implementation of bounded size is expressed as a set of Boolean constraints,
which can subsequently be solved by a SAT or QBF solver [9]. Bounded syn-
thesis has proven highly effective in finding finite state machines with a simple
structure. However, existing methods based on bounded synthesis do not make
use of syntactical program constructs like loops or variables. The situation is dif-
ferent in the synthesis of sequential programs, where programs have long been
studied as the target of synthesis algorithms [10–14]. In particular, in syntax-
guided synthesis [10], the output of the synthesis algorithm is constrained to
programs whose syntax conforms to a given grammar. A first theoretical step
in this direction for reactive systems was proposed by Madhusudan [15]. Mad-
husudan defines a small imperative programming language and shows that the
existence of a program in this language with a fixed set of Boolean variables is
decidable. For this purpose, the specification is translated into an alternating
two-way tree automaton that reads in the syntax tree of a program, simulates
its behavior, and accepts all programs whose behavior satisfies the specification.
Because the set of variables is fixed in advance, the approach can be used to syn-
thesize programs with a minimal number of variables. However, unlike bounded
synthesis, this does not lead to programs that are minimial in other ways, such
as the number of states or cycles.

In this paper, we present the first bounded synthesis approach for reactive
programs. As in standard bounded synthesis [7], we reduce the synthesis problem
to a constraint satisfaction problem. The challenge is to find a constraint system
that encodes the existence of a program that satisfies the specification, and that,
at the same time, can be solved efficiently. We develop and compare two princi-
pal methods. The first method is inspired by Madhusudan’s construction in that
we also build a two-way tree automaton that recognizes the correct programs.
The key difficulty here is that the standard bounded synthesis approach does
not work with two-way automata, let alone the alternating two-way automata
produced in Madhusudan’s construction. We first give a new automata con-
struction that produces universal, instead of alternating, two-way automata. We
then generalize bounded synthesis to work on arbitrary graphs, including the run
graphs of two-way automata. The second method follows the original bounded
synthesis approach more closely. Rather than simulating the execution of the
program in the automaton, we encode the existence of both the program and its
run graph in the constraint system. The correctness of the synthesized program
is ensured, as in the original approach, with a universal (one-way) automaton
derived from the specification. Both methods allow us to compute programs that
satisfy the given specification and that are minimal in measures such as the size
of the program. The two approaches compute the exact same reactive programs,
but differ, conceptually, in how much work is done via an automata-theoretic
construction vs. in the constraint solving. In the first approach, the verification
of the synthesized program is done by the automaton, in the second approach

Bounded Synthesis of Reactive Programs 443

by the constraint solving. Which approach is better? While no method has a
clear theoretical advantage over the other, our experiments with a prototype
implementation indicate a strong advantage for the second approach.

2 Preliminaries

We denote the Boolean values {0, 1} by B. The set of non-negative integers is
denoted by N and for a ∈ N the set {0, 1, . . . , a} is denoted by [a]. An alphabet
Σ is a non-empty finite set of symbols. The elements of an alphabet are called
letters. A infinite word α over an alphabet Σ is a infinite concatenation α =
α0α1 . . . of letters of Σ. The set of infinite words is denoted by Σω. With αn ∈ Σ
we access the n-th letter of the word. For an infinite word α ∈ Σω we define
with Inf(α) the set of states that appear infinitely often in α. A subset of Σω is
a language over infinite words.

2.1 Implementations

Implementations are arbitrary input-deterministic reactive systems. We fix the
finite input and output alphabet I and O, respectively. A Mealy machine is a
tuple M = (I,O,M,m0, τ, o) where I is an input-alphabet, O is an output-
alphabet, M is a finite set of states, m0 ∈ M is an initial state, τ : M ×2I → M
is a transition function and o : M × 2I → 2O is an output function. A system
path over an infinite input sequence αI is the sequence m0m1 . . . ∈ Mω such
that ∀i ∈ N : τ(mi, α

I
i) = mi+1. The thereby produced infinite output sequence

is defined as αO = αO
0 αO

1 . . . ∈ (2O)ω, where every element has to match the
output function, i.e., ∀i ∈ N : αO

i = o(mi, α
I
i). We say a Mealy machine M

produces a word α = (αI
0 ∪ αO

0)(αI
1 ∪ αO

1) . . . ∈ (2I∪O)ω, iff the output αO is
produced for input αI . We refer to the set of all producible words as the language
of M, denoted by L(M) ⊆ (2I∪O)ω.

A more succinct representation of implementations are programs. The pro-
grams we are working with are imperative reactive programs over a fixed set
of Boolean variables B and fixed input/output aritys NI/NO. Our approach
builds upon [15] and we use the same syntax and semantics. Let b ∈ B be a
variable and both �bI and �bO be vectors over multiple variables of size NI and
NO, respectively. The syntax is defined with the following grammar

〈stmt〉 :: = 〈stmt〉 ; 〈stmt〉 | skip | b := 〈expr〉 | input �bI | output �bO
| if(〈expr〉) then {〈stmt〉} else {〈stmt〉} | while(〈expr〉){〈stmt〉}

〈expr〉 :: = b | tt | ff | (〈expr〉 ∨ 〈expr〉) | (¬ 〈expr〉)

The semantics are the natural one. Our programs start with an initial variable
valuation we define to be 0 for all variables. The program then interacts with
the environment by the means of input and output statements, i.e., for a vector
over Boolean variables �b the statement “input �b” takes an input in {0, 1}NI

from the environment and updates the values of �b. The statement “output �b”

444 C. Gerstacker et al.

Fig. 1. Example-Code

while

tt ;

input r1r2 ;

output r1r2if

r1 then

assignr2

ff

skip

Fig. 2. Example-Program-Tree

outputs the values stored in �b, that is an output in {0, 1}NO . Therefor a program
with input/output arity NI/NO requires at least max(NI , NO) many variables,
i.e., |B| ≥ max(NI , NO). Between two input and output statements the pro-
gram can internally do any number of steps and manipulate the variables using
assignments, conditionals and loops. Note that programs are input-deterministic,
i.e., a program maps an infinite input sequence αI ∈ ({0, 1}NI)ω to an infinite
output sequence αO ∈ ({0, 1}NO)ω and we say a program can produce a word
α = (αI

0αO
0)(αI

1αO
1) . . . ∈ ({0, 1}NI+NO)ω, iff it maps αI to αO. We define the

language of T , denoted by L(T), as the set of all producible words. We assume
programs to alternate between input and output statements.

We represent our programs as Σ-labeled binary trees, i.e., a tuple (T, τ) where
T ⊆ {L,R}∗ is a finite and prefix closed set of nodes and τ : T → Σ is a labeling
function. Based on the defined syntax, we fix the set of labels as

ΣP = {¬,∨, ; , if, then,while} ∪ B ∪ {assignb | b ∈ B}

∪{input�b | �b ∈ BNI } ∪ {output�b | �b ∈ BNO}.

We refer to ΣP -labeled binary trees as program trees. If a node has only one
subtree we define it to be a the left subtree. Note that our program trees do
therefore not contain nodes with only a right subtree. For example, Fig. 1 depicts
an arbitrary program and Fig. 2 the corresponding program tree.

We express the current variable valuation as a function s : B → B. We update
variables �b ∈ Bn with new values �v ∈ B

n using the following notation:

s[�b/�v](x) =

{
vi if bi = x, for all i

s(x) otherwise

2.2 Automata

We define alternating automata over infinite words as usual, that is a tuple
A = (Σ,Q, q0, δ, Acc) where Σ is a finite alphabet, Q is a finite set of states,

Bounded Synthesis of Reactive Programs 445

q0 ∈ Q is an initial state, δ : Q × Σ → B
+(Q) is a transition function and

Acc ⊆ Qω is an acceptance condition.
The B üchi acceptance condition BÜCHI(F) on a set of states F ⊆ Q is

defined as BÜCHI(F) =
{
q0q1 . . . ∈ Qω | Inf(α)∩F �= ∅

}
and F is called the set

of accepting states. The co-Büchi acceptance condition COBÜCHI(F) on a set
of states F ⊆ Q is defined as COBÜCHI(F) =

{
q0q1 . . . ∈ Qω | Inf(α) ∩ F = ∅

}
,

where F is called the set of rejecting states. To express combinations of Büchi
and co-Büchi expressions we use the Streett acceptance condition. Formally,
STREETT

(
F

)
on a set of tuples F = {(Ai, Gi)}i∈[k] ⊆ Q × Q is defined as

STREETT(F) =
{
q0q1 . . . ∈ Qω | ∀i ∈ [k] : Inf(α) ∩ Ai �= ∅ =⇒ Inf(α) ∩ Gi �=

∅
}
. A run with a Streett condition is intuitively accepted, iff for all tuples

(Ai, Gi), the set Ai is hit only finitely often or the set Gi is hit infinitely often.
Two-way alternating tree automata are tuple (Σ,P, p0, δL, δR, δLR, δ∅, Acc),

where Σ is an input alphabet, P is a finite set of states, p0 ∈ P is an initial
state, Acc is an acceptance condition, and δ are transition functions of type
δS : P ×Σ×(S∪{D}) → B

+(P ×(S∪{U})), for S ∈ {L,R,LR, ∅}. We introduce
μ : T ×{L,R,U} → T ×{L,R,D} as a function to map states and directions to
move in, to the reached states and the matching incoming directions.

μ(t, L) = (t · L,D) μ(t.L, U) = (t, L)
μ(t, R) = (t · R,D) μ(t.R, U) = (t, R)

We consider specifications given in linear time-temporal logic (LTL). Such
specifications can be translated into non-deterministic Büchi automata or dually
into an universal co-Büchi automata as shown in [16]. For an arbitrary specifi-
cation we denote by Aspec and Aspec the corresponding non-deterministic Büchi
and universal co-Büchi automaton, respectively.

3 Automata Construction

We have already argued that programs, as a more succinct representation of
implementations, are highly desirable. However, in contrast to Mealy machines,
which only dependent on the current state and map an input to a corresponding
output, in programs such a direct mapping is not possible. Instead, programs
need to be simulated, variables to be altered, expressions to be evaluated and an
output statement to be traversed until we produce the corresponding output to
the received input. These steps not only depend on the current position in the
program but additionally also on the valuation of all variables.

We build upon Madhusudans reactive program synthesis approach [15] were
program synthesis is solved by means of two-way alternating Büchi tree automata
walking up and down over program trees while keeping track of the current valu-
ation and the state of a given Büchi specification automaton, which is simulated
by the input/output produced by traversing the program tree. The automaton
accepts a program tree whenever the simulated specification automaton accepts
the provided input/output. The constructed automaton, we will further refer

446 C. Gerstacker et al.

to as A, is intersected with two other constructed automata which enforce syn-
tactically correctness and reactivity of the synthesized program, respectively.
Then a reactive and syntactically correct program is synthesized by means of an
emptiness check of the obtained automaton, involving an exponential blowup to
eliminate two-wayness and alternation.

3.1 Two-Way Universal Co-Büchi Tree Automaton

We construct a two-way non-deterministic Büchi tree automaton B that is equiv-
alent to A by using deterministic evaluation of Boolean expressions. We construct
B without an exponential blowup in the state space. We then complement B into
a two-way universal co-Büchi tree automaton convenient for the bounded syn-
thesis approach.

The two-way alternating Büchi tree automaton A uses universal choices
only in relation to Boolean expression evaluation. For example, for if, while
and assignb-statements a Boolean evaluation is needed. In this cases it non-
deterministically guesses whether the expression evaluates to 0 or 1 and then
universally sends one copy into the Boolean expression, which evaluates to true
iff the expression evaluates to the expected value, and one copy to continue
the corresponding normal execution. The copy evaluating the Boolean expres-
sion walks only downwards and since the subtree corresponding to the Boolean
expression is finite, this copy terminates to either true or false after finitely
many steps. Instead of using both non-deterministic and universal choices, we
evaluate the Boolean subtree deterministically in finitely many steps and then
continue the normal execution based on the result of the evaluation.

Note that we not only remove all universal choices but additionally all unnec-
essary sources of non-determinism. Therefore, besides traversing input- and
output-labels, that introduce unavoidable non-determinism, our program sim-
ulation is deterministic.

Our automaton B with the set of states

Pexec = S × Qspec × B
NI × {inp, out} × B

PB
expr = S × Qspec × B

NI × {inp, out} × {�,⊥}

PB = PB
expr ∪ Pexec

and initial state pB
0 = (s0, q0, i0, inp, 0), is defined with the transitions shown in

Fig. 3, where s ∈ S is a variable valuation, q ∈ Qspec the state of the simulated
specification automaton, i ∈ B

NI the last received input, m ∈ {inp, out} a flag
to ensure alternation between inputs and outputs, r ∈ {�,⊥} the result of a
Boolean evaluation and t ∈ {0, 1} a flag for the Büchi condition, which ensures
that the specification automaton is simulated for infinite steps and is only set
to 1 for a single simulation step after an output statement. We express states
corresponding to Boolean evaluations and program execution as (s, q, i,m, r) ∈
PB

expr and (s, q, i,m, t) ∈ PB
exec, respectively.

Bounded Synthesis of Reactive Programs 447

tt r → � ff r → ⊥ b r → s[b]

∨ ∨ ∨

r = �

r = ⊥

¬ ¬ r → r

while while

r = ⊥

r = �

assignb assignb s[b] → r

if

then

if

then

r = � r = ⊥

if

then

input �b {s[�b] → �val, i → �val, m → out | �val ∈ B
NI}

m = inp

output �b {q → q′, m → inp, t → 1 | q′ ∈ (q, i, s[�b])}

m = out

skip ; ; ;

Fig. 3. Semantics of the constructed two-way automata

448 C. Gerstacker et al.

The notation reads as follows: If the automaton enters a node with one of the
black incoming edges, it can move in the direction of the black outgoing edges,
while updating his state corresponding to the annotated update expression,
depicted by an enclosing rectangle. Additionally, the automaton needs to fulfill
the conditions annotated to the edges it traverses. To express non-determinism
we use sets of update expressions, such that each expression represents one pos-
sible successor. All state values not contained in the update expression stay the
same, except t which is set to 0. When changing from Boolean evaluation to
program execution, we copy s, q, i, m and vice versa.

The set of accepting states is defined as

FB =
{
(s, q, i,m, 1) | q ∈ Fspec

}
A formal construction of B is given in the full version of the paper [17,

18]. Note that B behaves similar to A during normal execution and that only
Boolean evaluation was altered. Therefore, the state spaces of the automata
only differ in the states corresponding to Boolean evaluation and especially the
sets of accepting states FA and FB are equivalent. Therefore, we can prove the
equivalence by showing that both automata visit the same sequences of accepting
states and thus accept the same program trees.

Theorem 1 ([17,18]). L(A) = L(B)

We now complement the constructed two-way non-deterministic Büchi
automaton into a two-way universal co-Büchi automaton. From this point
onwards, we refer with B to the two-way universal co-Büchi automaton.

Since A accepts precisely the programs that fail the specification and inter-
act infinitely often with the environment, the complement now only accepts
programs that do satisfy the specification or interact finitely often with the envi-
ronment. We fix the remaining misbehavior by enforcing syntactical correctness
and reactiveness.

3.2 Guarantee Syntactical Correctness

Due to the fact that B was designed to correctly simulate programs of our defined
syntax and transitions were only defined for syntax-valid statements, B implic-
itly rejects programs that are syntactically invalid. But such programs are only
then rejected when their syntactically incorrect statements are traversed in the
simulation, therefore B does not check for syntactically correct subtrees that
are unreachable. It is now arguable whether the syntax check is necessary in
practice. One could expect programs to be syntactically correct in total and this
expectation is in general well-argued. On the other hand, we do perform bounded
synthesis, i.e., we search for implementations with a bound on the implementa-
tion size and then increment this bound until a valid implementation is found.
It is easy to see that programs with unreachable parts can be represented by
smaller programs with the same behavior simply by removing unreachable state-
ments. Therefore, with an incremental search one first finds the smallest and thus
syntactically correct programs.

Bounded Synthesis of Reactive Programs 449

3.3 Guarantee Reactiveness

It now remains to guarantee reactiveness of the programs accepted by B. For
that purpose, we introduce a two-way universal Büchi automaton Breactive, which
only accepts program trees that are reactive. This automaton is designed with
the exact same states and transitions as B but with another acceptance condi-
tion. The intersection of B and Breactive then yields a two-way universal Streett
automaton B′. We construct Breactive with the set of accepting states:

FB
reactive =

{
(s, q, i,m, 1) | ∀s, q, i,m

}
Breactive accepts a program tree, iff it produces infinitely many outputs on all
possible executions. Due to the alternation between input and output statements
the program reacts infinitely often with its environment, i.e., it is reactive.

Formally, B′ is the tuple (ΣP , PB, δB
L , δB

R, δB
LR, δB

∅ ,STREETT(FB′
)), where

FB′
=

{
(FB, ∅), (PB, FB

reactive)
}
.

Lemma 1. L(B′) = L(B) ∩ L(Breactive).

Proof. Besides the acceptance condition, all three automata are equivalent. The
tuples of the Streett condition (FB, ∅) and (PB, FB

reactive) express the co-Büchi
and Büchi condition of B and Breactive, respectively. �

We capture the complete construction by the following theorem.

Theorem 2. Let B be a finite set of Boolean variables and ϕ a specification
given as LTL-formula. The constructed two-way universal Streett automaton B′

accepts program trees over B that satisfy the specification.

4 Bounded Synthesis

In this section, we generalize the bounded synthesis approach towards arbitrary
universal automata and then apply it to the constructed two-way automaton to
synthesize bounded programs.

We fix Q to be a finite set of states. A run graph is a tuple G = (V, v0, E, f),
where V is a finite set of vertices, v0 is an initial vertex, E ⊆ V × V is a set
of directed edges and f : V → Q is a labeling function. A path π = π0π1 . . . ∈
V ω is contained in G, denoted by π ∈ G, iff ∀i ∈ N : (πi, πi+1) ∈ E and
π0 = v0, i.e., a path in the graph starting in the initial vertex. We denote with
f(π) = f(π0)f(π1) . . . ∈ Qω the application of f on every node in the path, i.e.,
a projection to an infinite sequence of states. We call a vertex v unreachable,
iff there exists no path π ∈ G containing v. Let Acc ⊆ Qω be an acceptance
condition. We say G satisfies Acc, iff every path of G satisfies the acceptance
condition, i.e., ∀π ∈ G : f(π) ∈ Acc.

Run graphs are used to express all possible runs of a universal automaton
on some implementation. This is usually done for universal word automata on

450 C. Gerstacker et al.

Mealy machines, but we need a generalized version to later utilize it for two-
way universal tree automata on program trees. Let Σ = 2I∪O. We define a run
graph GA

M = (V, v0, E, f) of a universal word automaton A = (Σ,Q, q0, δ, Acc)
on a Mealy machine M = (I,O,M,m0, τ, o) as an instantiation of the given
definition, where

– V = Q × M ,
– v0 = (q0,m0),
– E =

{(
(q,m), (q′,m′)

)
| ∃in ∈ 2I , out ∈ 2O :

τ(m, in) = m′ ∧ o(m, in) = out ∧ q′ ∈ δ(q, in ∪ out)
}

and
– f(q,m) = q.

Since the run graph contains all infinite runs of A on words producible by
M, A accepts M, iff all runs in GA

M are accepting, i.e., GA
M satisfies Acc.

For some bound c ∈ N we denote {0, 1, . . . , c} by Dc. For a run graph G =
(V, v0, E, f) and a bound c ∈ N a c-bounded annotation function on G is a
function λ : V → Dc. An annotation comparison relation of arity n is a family
of relations
 = (
0,
1, . . . ,
n−1) ∈ (2Q×Dc×Dc)n. We refer to
i ⊆ Q×Dc ×Dc

as basic comparison relations for i ∈ [n]. We denote the arity with |
 | = n.
We write λ(v)
i λ(v′) for (f(v), λ(v), λ(v′)) ∈
i and for comparison relations of
arity |
 | = 1 we omit the index.

We say a path π ∈ G satisfies a comparison relation
 with arity |
 | = n,
denoted by π |=
, iff for every basic comparison relation there exists an anno-
tation function that annotates every node with a value such that the annotated
number for all consecutive nodes in the path satisfy the basic comparison rela-
tion, i.e., ∀i ∈ [n] : ∃λ : ∀j ∈ N : λ(πj)
i λ(πj+1). For an acceptance con-
dition Acc ⊆ Qω we say a comparison relation
 expresses Acc, iff all paths
in G satisfy the relation if and only if the path satisfies the acceptance con-
dition, i.e., ∀π ∈ G : π |=
 ↔ f(π) ∈ Acc. A c-bounded annotation func-
tion λ on G = (V, v0, E, f) is valid for a basic annotation comparison relation

 ⊆ Q × Dc × Dc, iff for all reachable v, v′ ∈ V : (v, v′) ∈ E → λ(v)
 λ(v′).

We use the following annotation comparison relations to express Büchi, co-
Büchi and Streett acceptance conditions.

– Let F ⊆ Q and Acc = BÜCHI(F). Then
F
B is defined as

λ(v)
F
B λ(v′) =

{
true if f(v) ∈ F

λ(v) > λ(v′) if f(v) �∈ F

– Let F ⊆ Q and Acc = CO-BÜCHI(F). Then
F
C is defined as

λ(v)
F
C λ(v′) =

{
λ(v) > λ(v′) if f(v) ∈ F

λ(v) ≥ λ(v′) if f(v) �∈ F

Bounded Synthesis of Reactive Programs 451

– Let F = {(Ai, Gi)}i∈[k] ⊆ 2Q×Q and Acc = STREETT(F). Then
F
S =

(
F,0
S ,
F,1

S , . . . ,
F,k−1
S) is defined as

λ(v)
F,i
S λ(v′) =

⎧⎪⎨
⎪⎩

true if f(v) ∈ Gi

λ(v) > λ(v′) if f(v) ∈ Ai ∧ f(v) �∈ Gi

λ(v) ≥ λ(v′) if f(v) �∈ Ai ∪ Gi

Note that |
F
B | = |
F

C | = 1 and |
F
S | = k.

Theorem 3 ([7,19]). Let F be a set, the acceptance condition of A be expressed
by
F

X with X ∈ {B,C, S}, c ∈ N a bound and GA
M the run graph of A on M.

If and only if, there exists a valid c-bounded annotation function λi on GA
M

for each basic comparison relation
i, then GA
M satisfies Acc.

4.1 General Bounded Synthesis

In Theorem 3 we saw that the acceptance of a Mealy machine M by a universal
automata A can be expressed by the existence of an annotation comparison
relation. To do the same for two-way automata on program trees, we generalize
this theorem towards arbitrary run graphs.

Let A = (ΣP , P, p0, δL, δR, δLR, δ∅, Acc) be a two-way universal tree automa-
ton and T = (T, τ) a program tree. We define the run graph of A on T as
GA

T = (V, v0, E, f), where
– V = P × T × {L,R,D},
– v0 = (p0, ε,D),
– E =

{(
(p, t, d), (p′, t′, d′)

)
| ∃d′′ ∈ {L,R,U} : μ(t, d′′) = (t′, d′) ∧ (p′, d′′) ∈

δt(p, τ(t), d)
}

and
– f(p, t, d) = p.

For the generalized encoding, we use the same construction for the annotation
comparison relation as presented in [19] for Street acceptance conditions, which
conveniently suffices for the general run graphs. Büchi and co-Büchi then follow
as special cases.

Lemma 2 ([17,18]). For a Streett acceptance condition Acc = Streett(F) with
set of tuples of states F ⊆ 2Q×Q and a run graph G = (V, v0, E, f):

If G satisfies Acc, then there exists a valid |V |-bounded annotation function λ
for each basic comparison relation in
F

S .

Theorem 4. Let G = (V, v0, E, f) be a run graph, Acc ⊆ Qω a Büchi, co-Büchi
or Streett acceptance condition expressed by the relation
X for X ∈ {B,C, S}.

There exists a valid |V |-bounded annotation function λi on G for each basic
comparison relation
i, if and only if G satisfies Acc.

Proof. “ ⇒ ” : Let G, Acc,
 with arity |
 | = n and c be given and λi be a
valid c-bounded annotation comparison relation on G for
i for all i ∈ [n]. Let
π = π0π1 . . . ∈ G be an arbitrary path in G and i ∈ [n]. Since λi is a valid
annotation function, λi(π0)
i λi(π1)
i . . . holds and therefore π |=
. Since

expresses Acc it follows that f(π) ∈ Acc, i.e., G satisfies Acc.

“ ⇐ ” : Lemma 2. �

452 C. Gerstacker et al.

4.2 General Encoding

We showed that the run graph satisfies an acceptance condition Acc, iff the
implementation is accepted by the automaton. We also proved that the satisfac-
tion of Acc by a run graph can be expressed by the existence of valid annotation
functions.

We encode these constraints in SAT. The valid implementation can then be
extracted from the satisfied encoding. Note that in our definition of program
trees the structure was implicitly expressed by the nodes and for the encod-
ing we need to express them explicitly. Therefore, the structure of the tree is
encoded with successor functions L and R, expressing the left and right child of
a node, respectively. We encode the program tree and the annotation function
as uninterpreted functions as explained in the following. We introduce the fol-
lowing variables for arbitrary two-way automata A, program trees T , bounds c
and annotation comparison relations
:

– τt encodes label l of t with log(|Σ|) many variables, notated as τt ≡ l
– Lt iff t has left child (implicitly the next program state t + 1)
– Rt encodes right the child of t ∈ T with log(|T |) many variables
– λB

p,t,d iff state (p, t, d) is reachable in the run graph
– λ#

i,p,t,d encodes the i-th annotation of state (p, t, d) with log(c) many variables.
We omit the index i in the encoding

The SAT formula ΦA,�
T consists of the following constraints:

– The initial state is reachable and all annotations fulfill the given bound:

λB

p0,t0,D ∧
∧

p∈P,
t∈T,

d∈{L,R,D}

λ#
p,t,d ≤ c

– Bounded synthesis encoding∧
p∈P,
t∈T,
d∈D

λB

p,t,d →
∧

σ∈Σ

(τt ≡ σ) →
∧

(p′,d′′)∈δ(p,σ,d),
t′∈T,

(ϕ,d′)∈μ′(t,d′′,t′)

ϕ → λB

p′,t′,d′ ∧ λ#
p,t,d
 λ#

p′,t′,d′

μ′ : T × D′ × T → [B(Lt, Rt) × D] returns a list of pairs (ϕ, d′), where the
formula ϕ enforces the tree structure needed to reach p′, t′, d′.

The encoding checks whether universal properties in the run graph hold.
Note that we need to additionally forbid walking up from the root node, which
is omitted here.

Theorem 5. Given a two-way universal tree automaton A with a Büchi, co-
Büchi or Streett acceptance condition Acc expressed by
 and a bound c ∈ N.
The constraint system ΦA,�

T is satisfiable, iff there is a program tree T with size
|T | ≤ �c/|A|� that is accepted by A.

Bounded Synthesis of Reactive Programs 453

Proof. “ ⇒ ” : Let T be accepted by A, then with Theorem 4 there exists a valid
annotation function λi on G for each i ∈ [|
 |]. Let λi be represented by λ#

i and
λB

i be true for all reachable states in the run graph G. Then ΦA,�
T is satisfied.

“ ⇐ ” : Let ΦA,�
T be satisfied. Then there exists a valid annotation function

λi encoded by λ#
i for each i ∈ [|
 |] (set λi(v) = 0 for all unreachable states

v, i.e., where λ#
i (v) is false) that satisfies the encoding. With Theorem 4 the

acceptance of T by A follows. �

Utilizing this theorem, we now can by means of the encoding ΦB′
S synthesize

program trees accepted by B′, i.e., precisely those program trees, which corre-
spond to reactive programs that satisfy the given specification the automaton
was constructed with.

Corollary 1. The SAT encoding ΦB′
S is satisfiable, if and only if there exists a

program tree T with size |T | ≤ �c/|B′|� accepted by B′.

Size of construction The automaton can be constructed of size O(2|B|+|ϕ|),
i.e., for a fixed set of Boolean variables the automaton is linear in the size
of the specification automaton or exponential in the size of the specification
formula. The constructed constraint system ΦB′

S is of size O(|T | · |δ| · |ΣP |) with
x many variables, where x ∈ O(|T | · (|T | + |ΣP | + |Q| · log(|Q| · |T |))). Note
that |ΣP | ∈ O(|B|NI+NO) grows polynomial in the number of variables for fixed
input/output arities.

5 Two-Wayless Encoding

Next, we sketch the second encoding that avoids the detour via universal two-way
automata. To this end, we alter the construction in that input- and output-labels
collapse to a single InOut-label with semantics as follows

InOut {�i → �val, q → q′ | �val ∈ B
NI , q′ ∈ δ(q,�i, s[�o])}

where we use output variables �o and input variables �i that correspond to inputs
and outputs of the system, respectively. In a nutshell, our new encoding consists
of four parts:

1. The first part guesses the program and ensures syntactical correctness.
2. The second part simulates the program for every possible input from every

reachable InOut-labeled state until it again reaches the next InOut-labeled
state. Note that every such simulation trace is deterministic once the input,
read at the initial InOut-labeled state, has been fixed.

454 C. Gerstacker et al.

Table 1. Comparison of the general and the two-wayless encoding.

Specification States Additional

variables

|B′| Two-way

encoding

Two-wayless

encoding

in ↔ out 6 0 16 00m16 s 00m 02 s

in ↔ out 9 1 64 11m 29 s 08m 34 s

Latch 10 0 64 >120m 08m 07 s

2-bit arbiter 10 0 128 66m 48 s 14m18 s

3. The third part extracts a simplified transition structure from the resulting
execution graph, that consists of direct input labeled transitions from one
InOut-labeled state to the next one and output labeled states.

4. In the last part, this structure is then verified by a run graph construction
that must satisfy the specification, given as universal co-Büchi automaton.
To this end, we couple inputs on the edges with the outputs of the successor
state to preserve the Mealy semantics of the program.

The first part utilizes a similar structure as used for the previous encoding
and thus is skipped for convenience here. To simulate the program in the second
part, we introduce the notion of a valuation v ∈ V, where

V = P × B
B�I × {L,R,U} × B

captures the current program state, the current values of all non-input variables,
the current direction, and the result of the evaluation of the last Boolean expres-
sion, respectively. The simulation of the program is then expressed by a finite
execution graph, in which, after fixing a inputs�i ∈ 2I , every valuation points to a
successor valuation. This successor valuation is unique, except for InOut-labeled
states, whose successor depends on the next input to be read. The deterministic
evaluation follows from the rules of Fig. 3 and selects a unique successor for every
configuration, accordingly.

In part three, this expression graph then is compressed into a simplified tran-
sition structure. To this end, we need for every input and InOut-labeled starting
valuation, the target InOut-labeled valuation that is reached as a result of the
deterministic evaluation. In other words, we require to find a shortcut from every
such valuation to the next one. We use an inductive chain of constraints to deter-
mine this shortcut efficiently. Remember that we only know the unique successor
of every valuation which only allows to make one step forward at a time. Hence,
we can store for every valuation and input a second shortcut successor, using an
additional set of variables, constrained as follows: if the evaluated successor is
InOut-labeled, then the shortcut successor must be the same as the evaluated
one. Otherwise, it is the same as the shortcut successor of the successor valua-
tion, leading to the desired inductive definition. Furthermore, to ensure a proper
induction base, we use an additional ranking on the valuations that bounds
the number of steps between two InOut labeled valuations. This annotation is
realized in a similar fashion as in the previously presented encoding.

Bounded Synthesis of Reactive Programs 455

Table 2. Synthesized implementations for the two-wayless encoding.

With these shortcuts at hand, we then can extract the simplified transition
structure, which is verified using a standard run graph encoding as used for clas-
sical bounded synthesis. Furthermore, we use an over-approximation to bound
the size of the structure and use a reachability annotation that allows the solver
to reduce the constraints to those parts as required by the selected solution. The
size can, however, also be bound using an explicit bound that is set manually.

Using this separation into four independent steps allows to keep the encoding
compact in size, and results in the previously promised performance improve-
ments presented in the next section.

6 Experimental Results

Table 1 compares the general encoding of Sect. 4.1 and the two-wayless encoding
of Sect. 5 on a selection of standard benchmarks. The table contains the of num-
ber of states of the program’s syntax tree, the number of additional variables,
i.e., variables that are not designated to handle inputs and outputs, the size
of the two-way universal Streett automaton, created for the general encoding,
and the solving times for both encodings. Table 2 shows the results in terms of
the synthesized program trees for the two-wayless encoding. The experiments
indicate a strong advantage of the second approach.

7 Conclusions

We introduced a generalized approach to bounded synthesis that is applicable
whenever all possible runs of a universal automaton on the possibly produced
input/output words of an input-deterministic implementation can be expressed
by a run graph. The acceptance of an implementation can then be expressed
by the existence of valid annotation functions for an annotation comparison
relation that expresses the acceptance of the automaton for Büchi, co-Büchi and
Streett acceptance conditions. The existence of valid annotation functions for a

456 C. Gerstacker et al.

run graph is encoded as a SAT query that is satisfiable if and only if there exists
an implementation satisfying a given bound that is accepted by the automaton.

For LTL specifications, we constructed a two-way universal Streett automa-
ton which accepts reactive programs that satisfy the specification. We then con-
structed a run graph that represents all possible runs and applied the generalized
bounded synthesis approach. Next, we constructed a SAT query that guesses a
reactive program of bounded size as well as valid annotation functions that wit-
nesses the correctness of the synthesized program.

Finally, we merged the previous transformations into an extended encoding
that simulates the program directly via the constraint solver. We evaluated both
encodings with the clear result that the encoding avoiding the explicit run graph
construction for two-way automata wins in the evaluation.

References

1. Church, A.: Application of recursive arithmetic to the problem of circuit synthesis.
J. Symb. Log. 28(4), 289–290 (1963)

2. Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R.: Anzu: a tool for property
synthesis. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp.
258–262. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73368-
3 29

3. Ehlers, R.: Unbeast: symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 25

4. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL
synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
652–657. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-
7 45

5. Faymonville, P., Finkbeiner, B., Tentrup, L.: BoSy: an experimentation framework
for bounded synthesis. [20] 325–332

6. Bloem, R., Galler, S.J., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.,
et al.: Interactive presentation: automatic hardware synthesis from specifications:
a case study. In: Lauwereins, R., Madsen, J. (eds.) DATE, pp. 1188–1193. Nice,
France, EDA Consortium, San Jose, CA, USA (2007)

7. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5–6), 519–539 (2013)
8. Finkbeiner, B., Klein, F.: Bounded cycle synthesis. In: Chaudhuri, S., Farzan, A.

(eds.) CAV 2016. LNCS, vol. 9779, pp. 118–135. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41528-4 7

9. Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of bounded
synthesis. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp.
354–370. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-
5 20

10. Alur, R., et al.: Syntax-guided synthesis. In: FMCAD, pp. 1–8. Portland, OR, USA,
IEEE (2013)

11. Gulwani, S.: Automating string processing in spreadsheets using input-output
examples. In: Ball, T., Sagiv, M. (eds.) POPL, pp. 317–330. Austin, TX, USA,
ACM (2011)

https://doi.org/10.1007/978-3-540-73368-3_29
https://doi.org/10.1007/978-3-540-73368-3_29
https://doi.org/10.1007/978-3-642-19835-9_25
https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.1007/978-3-319-41528-4_7
https://doi.org/10.1007/978-3-319-41528-4_7
https://doi.org/10.1007/978-3-662-54577-5_20
https://doi.org/10.1007/978-3-662-54577-5_20

Bounded Synthesis of Reactive Programs 457

12. Osera, P., Zdancewic, S.: Type-and-example-directed program synthesis. In: Grove,
D., Blackburn, S. (eds.) PLDI, pp. 619–630. Portland, OR, USA, ACM (2015)

13. Solar-Lezama, A.: Program sketching. STTT 15(5–6), 475–495 (2013)
14. Vechev, M.T., Yahav, E., Yorsh, G.: Abstraction-guided synthesis of synchroniza-

tion. STTT 15(5–6), 413–431 (2013)
15. Madhusudan, P.: Synthesizing reactive programs. In: Bezem, M., (ed.) CSL,

Bergen, Norway. Volume 12 of LIPIcs, pp. 428–442. Schloss Dagstuhl (2011)
16. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput.

115(1), 1–37 (1994)
17. Gerstacker, C.: Bounded Synthesis of Reactive Programs, Bachelor’s Thesis (2017)
18. Gerstacker, C., Klein, F., Finkbeiner, B.: Bounded synthesis of reactive programs.

CoRR 1807.09047 (2018)
19. Khalimov, A., Bloem, R.: Bounded Synthesis for Streett, Rabin, and CTL∗. [20]

333–352
20. Majumdar, R., Kunčak, V. (eds.): CAV 2017. LNCS, vol. 10427. Springer, Cham

(2017). https://doi.org/10.1007/978-3-319-63390-9

https://doi.org/10.1007/978-3-319-63390-9

	Bounded Synthesis of Reactive Programs
	1 Introduction
	2 Preliminaries
	2.1 Implementations
	2.2 Automata

	3 Automata Construction
	3.1 Two-Way Universal Co-Büchi Tree Automaton
	3.2 Guarantee Syntactical Correctness
	3.3 Guarantee Reactiveness

	4 Bounded Synthesis
	4.1 General Bounded Synthesis
	4.2 General Encoding

	5 Two-Wayless Encoding
	6 Experimental Results
	7 Conclusions
	References

