
A Symbolic Algorithm for Lazy Synthesis
of Eager Strategies

Swen Jacobs and Mouhammad Sakr(B)

CISPA and Saarland University, Saarbrucken, Germany
{jacobs,sakr}@react.uni-saarland.de

Abstract. We present an algorithm for solving two-player safety games
that combines a mixed forward/backward search strategy with a sym-
bolic representation of the state space. By combining forward and back-
ward exploration, our algorithm can synthesize strategies that are eager
in the sense that they try to prevent progress towards the error states
as soon as possible, whereas standard backwards algorithms often pro-
duce permissive solutions that only react when absolutely necessary. We
provide experimental results for two new sets of benchmarks, as well
as the benchmark set of the Reactive Synthesis Competition (SYNT-
COMP) 2017. The results show that our algorithm in many cases pro-
duces more eager strategies than a standard backwards algorithm, and
solves a number of benchmarks that are intractable for existing tools.
Finally, we observe a connection between our algorithm and a recently
proposed algorithm for the synthesis of controllers that are robust against
disturbances, pointing to possible future applications.

1 Introduction

Automatic synthesis of digital circuits from logical specifications is one of the
most ambitious and challenging problems in circuit design. The problem was
first identified by Church [1]: given a requirement φ on the input-output behav-
ior of a Boolean circuit, compute a circuit C that satisfies φ. Since then, sev-
eral approaches have been proposed to solve the problem [2,3], which is usually
viewed as a game between two players: the system player tries to satisfy the
specification and the environment player tries to violate it. If the system player
has a winning strategy for the game, then this strategy represents a circuit that
is guaranteed to satisfy the specification. Recently, there has been much interest
in approaches that leverage efficient data structures and automated reasoning
methods to solve the synthesis problem in practice [4–9].

In this paper, we restrict our attention to safety specifications. In this set-
ting, most of the successful implementations symbolically manipulate sets of
states via their characteristic functions, represented as Binary Decision Dia-
grams (BDDs) [10]. The “standard” algorithm works backwards from the unsafe
states and computes the set of all states from which the environment can force
the system into these states. The negation of this set is the (maximal) winning

c© Springer Nature Switzerland AG 2018
S. K. Lahiri and C. Wang (Eds.): ATVA 2018, LNCS 11138, pp. 211–227, 2018.
https://doi.org/10.1007/978-3-030-01090-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01090-4_13&domain=pdf

212 S. Jacobs and M. Sakr

region of the system, i.e., the set of all states from which the system can win
the game. Depending on the specification, this algorithm may be suboptimal for
two reasons: first, it may spend a lot of time on the exploration of states that
are unreachable or could easily be avoided by the system player, and second,
it may compute winning regions that include such states, possibly making the
resulting strategy of controller more permissive and complicated than necessary.
Additionally, for many applications it is preferable to generate strategies that
avoid progress towards the error whenever possible, e.g., if the system should be
tolerant to hardware faults or perturbations in the environment [11].

To keep the reachable state space small, some kind of forward search from
the initial states is necessary. However, for forward search no efficient symbolic
algorithm is known.

Contributions. In this work, we introduce a lazy synthesis algorithm that com-
bines a forward search for candidate solutions with backward model checking of
these candidates. All operations are such that they can be efficiently imple-
mented with a fully symbolic representation of the state space and the space of
candidate solutions. The combined forward/backward strategy allows us to find
much smaller winning regions than the standard backward algorithm, and there-
fore produces less permissive solutions than the standard approach and solves
certain classes of problems more efficiently.

We evaluate a prototype implementation of our algorithm on two sets of
benchmarks, including the benchmark set of the Reactive Synthesis Competition
(SYNTCOMP) 2017 [12]. We show that on many benchmarks our algorithm
produces winning regions that are remarkably smaller: on the benchmark set
from SYNTCOMP 2017, the biggest measured difference is by a factor of 1068.
Moreover, it solves a number of instances that have not been solved by any
participant in SYNTCOMP 2017.

Finally, we observe a relation between our algorithm and the approach of
Dallal et al. [11] for systems with perturbations, and provide the first imple-
mentation of their algorithm as a variant of our algorithm. On the benchmarks
above, we show that whenever a given benchmark admits controllers that give
stability guarantees under perturbations, then our lazy algorithm will find a
small winning region and can provide stability guarantees similar to those of
Dallal et al. without any additional cost.

2 Preliminaries

Given a specification φ, the reactive synthesis problem consists in finding a
system that satisfies φ in an adversarial environment. The problem can be
viewed as a game between two players, Player 0 (the system) and Player 1 (the
environment), where Player 0 chooses controllable inputs and Player 1 chooses
uncontrollable inputs to a given transition function. In this paper we consider
synthesis problems for safety specifications: given a transition system that may

A Symbolic Algorithm for Lazy Synthesis of Eager Strategies 213

raise a BAD flag when entering certain states, we check the existence of a func-
tion that reads the current state and the values of uncontrollable inputs, and
provides valuations of the controllable inputs such that the BAD flag is not
raised on any possible execution. We consider systems where the state space is
defined by a set L of boolean state variables, also called latches. We write B for
the set {0, 1}. A state of the system is a valuation q ∈ B

L of the latches. We will
represent sets of states by their characteristic functions of type B

L → B, and
similarly for sets of transitions etc.

Definition 1. A controllable transition system (or short: controllable sys-
tem) TS is a 6-tuple (L,Xu,Xc, R, BAD, q0), where:

– L is a set of state variables for the latches
– Xu is a set of uncontrollable input variables
– Xc is a set of controllable input variables
– R : BL×B

Xu×B
Xc×B

L′ → B is the transition relation, where L′ = {l′ | l ∈ L}
stands for the state variables after the transition

– BAD : BL → B is the set of unsafe states
– q0 is the initial state where all latches are initialized to 0.

We assume that the transition relation R of a controllable system is deter-
ministic and total in its first three arguments, i.e., for every state q ∈ B

L, uncon-
trollable input u ∈ B

Xu and controllable input c ∈ B
Xc there exists exactly one

state q′ ∈ B
L′

such that (q, u, c, q′) ∈ R.
In our setting, characteristic functions are usually applied to a fixed vector

of variables. Therefore, if C : BL → B is a characteristic function, we write C
as a short-hand for C(L). Characteristic functions of sets of states can also be
applied to next-state variables L′, in that case we write C ′ for C(L′).

Let X = {x1, . . . , xn} be a set of boolean variables, and Y ⊆ X \ {xi} for
some xi. For boolean functions F : BX → B and fxi

: BY → B, we denote by
F [xi ← fxi

] the boolean function that substitutes xi by fxi
in F .

Definition 2. Given a controllable system TS = (L,Xu,Xc,R, BAD, q0), the
synthesis problem consists in finding for every x ∈ Xc a solution function fx :
B
L × B

Xu → B such that if we replace R by R[x ← fx]x∈Xc
, we obtain a safe

system, i.e., no state in BAD is reachable.
If such a solution does not exist, we say the system is unrealizable.

To determine the possible behaviors of a controllable system, two forms of
image computation can be used: (i) the image of a set of states C is the set of
states that are reachable from C in one step, and the preimage are those states
from which C is reachable in one step—in both cases ignoring who controls the
input variables; (ii) the uncontrollable preimage of C is the set of states from
which the environment can force the next transition to go into C, regardless of
the choice of controllable variables. Formally, we define:

Definition 3. Given a controllable system TS = (L,Xu,Xc,R, BAD, q0) and
a set of states C, we have:

214 S. Jacobs and M. Sakr

– image(C) = {q′ ∈ B
L′ | ∃(q, u, c) ∈ B

L × B
Xu × B

Xc : C(q) ∧ R(q, u, c, q′)}.
We also write this set as ∃L ∃Xu ∃Xc (C ∧ R).

– preimage(C) = {q ∈ B
L | ∃(u, c, q′) ∈ B

Xu ×B
Xc ×B

L′
: C(q′)∧R(q, u, c, q′)}.

We also write this set as ∃Xu ∃Xc ∃L′ (C ′ ∧ R).
– UPRE(C) = {q ∈ B

L | ∃u ∈ B
Xu ∀c ∈ B

Xc ∃q′ ∈ B
L : C(q′) ∧ R(q, u, c, q′)}.

We also write this set as ∃Xu ∀Xc ∃L′ (C ′ ∧ R).

A direct correspondence of the uncontrollable preimage UPRE for forward
computation does not exist: if the environment can force the next transition out
of a given set of states, in general the states that we reach are not uniquely
determined and depend on the choice of the system player.

Efficient symbolic computation. BDDs are a suitable data structure for
the efficient representation and manipulation of boolean functions, including all
operations needed for computation of image, preimage, and UPRE. Between
these three, preimage can be computed most efficiently, while image and UPRE
are more expensive—for image not all optimizations that are available for
preimage can be used (see Sect. 5), and UPRE contains a quantifier alternation.

3 Existing Approaches

Before we introduce our new approach, we recapitulate three existing approaches
and point out their benefits and drawbacks.

Backward fixpoint algorithm. Given a controllable transition system TS =
(L,Xu,Xc,R, BAD, q0) with BAD 	= 0, the standard backward BDD-based
algorithm (see e.g. [10]) computes the set of states from which the environment
can force the system into unsafe states in a fixed point computation that starts
with the unsafe states themselves. To compute a winning region for Player 1, it
computes the least fixed-point of UPRE on BAD : μC. UPRE(BAD′ ∨ C ′).

Since safety games are determined, the complement of the computed set is
the greatest winning region for Player 0, i.e., all states from which the system
can win the game. Thus, this set also represents the most permissive winning
strategy for the system player. We note two things regarding this approach:
1. To obtain a winning region, it computes the set of all states that cannot avoid

moving into an error state, using the rather expensive UPRE operation.
2. The most permissive winning strategy will not avoid progress towards the

error states unless we reach the border of the winning region.

A forward algorithm. [13,14] A forward algorithm is presented by Cassez et
al. [14] for the dual problem of solving reachability games, based on the work of
Liu and Smolka [13]. The algorithm starts from the initial state and explores all
states that are reachable in a forward manner. Whenever a state is visited, the
algorithm checks whether it is losing; if it is, the algorithm revisits all reachable
states that have a transition to this state and checks if they can avoid moving
to a losing state. Although the algorithm is optimal in that it has linear time
complexity in the state space, two issues should be taken into account:

A Symbolic Algorithm for Lazy Synthesis of Eager Strategies 215

Model check

Refine

error paths

SMT-solver

ca
nd
ida
te

constraints

Solution
correct

Fig. 1. High-level description of the
lazy synthesis algorithm

1. The algorithm explicitly enumerates
states and transitions, which is impracti-
cal even for moderate-size systems.
2. A fully symbolic implementation of
the algorithm does not exist, and it would
have to rely heavily on the expensive for-
ward image computation.

Lazy Synthesis. [15] Lazy Synthesis interleaves a backwards model checking
algorithm that identifies possible error paths with the synthesis of candidate
solutions. To this end, the error paths are encoded into a set of constraints, and
an SMT solver produces a candidate solution that avoids all known errors. If new
error paths are discovered, more constraints are added that exclude them. The
procedure terminates once a correct candidate is found (see Fig. 1). The approach
works in a more general setting than ours, for systems with multiple components
and partial information. When applied to our setting and challenging benchmark
problems, the following issues arise:

1. Even though the error paths are encoded as constraints, the representation
is such that it explicitly branches over valuations of all input variables, for
each step of the error paths. This is clearly impractical for systems that have
more than a dozen input variables (which is frequently the case in the classes
of problems we target).

2. In each iteration of the main loop a single deterministic candidate is checked.
Therefore, many iterations may be needed to discover all error paths.

4 Symbolic Lazy Synthesis Algorithms

Model check

Refine and Solve

ca
nd

id
at
e

er
ro
r
pa

th
s

controllable
system

Solution
correct

Fig. 2. High-level description of the
symbolic lazy synthesis algorithm

In the following, we present symbolic algo-
rithms that are inspired by the lazy syn-
thesis approach and overcome some of its
weaknesses to make it suitable for challeng-
ing benchmark problems like those from
the SYNTCOMP library. We show that in
our setting, we can avoid the explicit enu-
meration of error paths. Furthermore, we
can use non-deterministic candidate mod-
els that are restricted such that they avoid
the known error paths. In this restriction,
we prioritize the removal of transitions that are close to the initial state, which
can help us avoid error paths that are not known yet.

216 S. Jacobs and M. Sakr

4.1 The Basic Algorithm

To explain the algorithm, we need some additional definitions. Fix a controllable
system TS = (L,Xu,Xc,R, BAD, q0).

An error level Ei is a set of states that are on a path from q0 to BAD, and
all states in Ei are reachable from q0 in i steps. Formally, Ei is a subset of

{qi | ∃(q0, q1, . . . , qi, . . . , qn), qn ∈ BAD, and ∃(qj , u, c, qj+1) ∈ R for 0 ≤ j < n}.

We call (E0, ..., En) a sequence of error levels if (i) each Ei is an error level,
(ii) each state in each Ei has a transition to a state in Ei+1, and (iii) En ⊆ BAD.
Note that the same state can appear in multiple error levels of a sequence, and
E0 contains only q0.

Given a sequence of error levels (E0, ..., En), an escape for a transition
(q, u, c, q′) with q ∈ Ei and q′ ∈ Ei+1 is a transition (q, u, c′, q′′) such that
q′′ 	∈ Em ∀m > i. We say the transition (q, u, c, q′) matches the escape
(q, u, c′, q′′).

Given two error levels Ei and Ei+1, we denote by RTi the following set of
tuples, representing the “removable” transitions, i.e., all transitions from Ei to
Ei+1 that match an escape:

RTi = {(q, u, q′) | q ∈ Ei, q
′ ∈ Ei+1 and ∃(q, u, c, q′) ∈ R that has an escape}.

modelCheck

isCorrect? solution
yes

extract&mergeErrorLevels

no

nextLevelpreviousLevel

delErrTrans

isPrunable?firstLevel?
yes

no

yes

lastLevel?
no

no

unrealizable

yes

Fig. 3. Control flow of the algorithm

Overview. Figure 3 sketches the
control flow of the algorithm.
It starts by model checking the
controllable system, without any
restriction on the transition rela-
tion wrt. the controllable inputs.
If unsafe states are reachable, the
model checker returns a sequence
of error levels. Iterating over all lev-
els, we identify the transitions from
the current level for which there
exists an escape, and temporarily
remove them from the transition
relation. Based on the new restric-
tions on the transition relation, the
algorithm then prunes the current
error level by removing states that
do not have transitions to the next level anymore. Whenever we prune at least
one state, we move to the previous level to propagate back this information. If
this eventually allows us to prune the first level, i.e., remove the initial state,
then this error sequence has been invalidated and the new transition system
(with deleted transitions) is sent to the model checker. Otherwise the system is
unrealizable. In any following iteration, we accumulate information by merging

A Symbolic Algorithm for Lazy Synthesis of Eager Strategies 217

the new error sequence with the ones we found before, and reset the transition
relation before we analyze the error sequence for escapes.

Detailed Description. In more detail, Algorithm 1 describes a symbolic lazy
synthesis algorithm. The method takes as input a controllable system and checks
if its transition relation can be fixed in a way that error states are avoided. Upon
termination, the algorithm returns either unrealizable, i.e., the system can not
be fixed, or a restricted transition relation that is safe and total. From such a
transition relation, a (deterministic) solution for the synthesis problem can be
extracted in the same way as for existing algorithms. Therefore, we restrict the
description of our algorithm to the computation of the safe transition relation.

LazySynthesis: In Line 2, we initialize TR to the unrestricted transition
relation R of the input system and E to the empty sequence, before we enter the
main loop. Line 4 uses a model checker to check if the current TR is correct, and
returns a sequence of error levels mcLvls if it is not. In more detail, function
ModelCheck(TR) starts from the set of error states and uses the preimage
function (see Definition 3) to iteratively compute a sequence of error levels.1

It terminates if a level contains the initial state or if it reaches a fixed point.
If the initial state was reached, the model checker uses the image function to
remove from the error levels any state that is not reachable from the initial
state.2 Otherwise, in Line 6 we return the safe transition relation. If TR is not
safe yet, Line 7 merges the new error levels with the error levels obtained in
previous iterations by letting E[i] ← E[i] ∨ mcLvls[i] for every i. In Line 8 we
call PruneLevels(sys.R, E), which searches for a transition relation that avoids
all error paths represented in E, as explained below. If pruning is not successful,
in Lines 9–10 we return “Unrealizable”.

PruneLevels: In the first loop, we call ResolveLevel(E, i, TR) for increas-
ing values of i (Line 4). Resolving a level is explained in detail below; roughly
it means that we remove transitions that match an escape, and then remove
states from this level that are not on an error path anymore. If ResolveLevel
has removed states from the current level, indicated by the return value of
isPrunable, we check whether we are at the topmost level—if this is the case, we
have removed the initial state from the level, which means that we have shown
that every path from the initial state along the error sequence can be avoided.
If we are not at the topmost level, we decrement i before returning to the start
of the loop, in order to propagate the information about removed states to the
previous level(s). If isPrunable is false, we instead increment i and continue on
the next level of the error sequence.

The first loop terminates either in Line 7, or if we reach the last level. In
the latter case, we were not able to remove the initial state from E[0] with the

1 This part is the light-weight backward search: unlike UPRE in the standard back-
ward algorithm, preimage does not contain any quantifier alternation.

2 This is the only place where our algorithm uses image, and it is only included to
keep the definitions and correctness argument simple - the algorithm also works if
the model checker omits this last image computation step, see Sect. 5.

218 S. Jacobs and M. Sakr

Algorithm 1 Lazy Synthesis
1: procedure LazySynthesis(ControllableSystem sys)
2: TR ← sys.R, E ← ()
3: while true do
4: isCorrect,mcLvls ← ModelCheck(TR)
5: if isCorrect then
6: return TR
7: E ← mergeLevels(E,mcLvls)
8: isUnrealizable, TR ← PruneLevels(sys.R, E)
9: if isUnrealizable then

10: return Unrealizable

1: procedure PruneLevels(TransitionRelation TR, ErrorSequence E)
2: i ← 0
3: while i < length(E) − 1 do
4: isPrunable, TR,E ← ResolveLevel(E, i, TR)
5: if isPrunable then
6: if i == 0 then // we have removed the initial state from E[0]
7: return false, TR

8: i ← i − 1
9: else

10: i ← i + 1

11: while i ≥ 1 do // i == length(E) − 1 when we enter the loop
12: i ← i − 1
13: isPrunable, TR,E ← ResolveLevel(E, i, TR)

14: if isPrunable then // we have removed the initial state from E[0]
15: return false, TR
16: else // we could not remove the initial state from E[0]
17: return true, ∅
1: procedure ResolveLevel(ErrorSequence E, Int i, TransitionRelation TR)
2: RT ← (∃L′ ((∃Xc TR) ∧ ¬E[i + 1 : n]′)) ∧ E[i] ∧ E[i + 1]′

3: TR ← TR ∧ ¬RT
4: AV Set ← ∀Xu (E[i] ∧ ∃L′(∃Xc TR ∧ ¬E[i + 1]′))
5: E[i] ← E[i] ∧ ¬AV Set
6: return AV Set
= ∅, TR,E

local propagation of information during the main loop (that stops if we reach a
level that cannot be pruned). To make sure that all information is completely
propagated, afterwards we start another loop were we resolve all levels bottom-
up, propagating the information about removed states all the way to the top.
When we arrive at E[0], we can either remove the initial state now, or we conclude
that the system is unrealizable.

ResolveLevel: Line 2 computes the set of transitions that have an escape:
∃L′ ((∃Xc TR) ∧ ¬E[i + 1 : n]′) is the set of all (q, u) for which there exists
an escape (q, u, c, q′), and by conjoining E[i] ∧ E[i + 1]′ we compute all tuples
(q, u, q′) that represent transitions from E[i] to E[i + 1] matching an escape.
Line 3 removes the corresponding transitions from the transition relation TR.

A Symbolic Algorithm for Lazy Synthesis of Eager Strategies 219

Line 4 computes AvSet which represents the set of all states such that all their
transitions within the error levels match an escape. After removing AV Set from
the current level, we return.

Comparison. Compared to Lazy Synthesis (see Fig. 1), the main loop of our
algorithm merges the Refine and Solve steps, and instead of computing one
deterministic model per iteration, we collect restrictions on the non-deterministic
transition relation TR. Keeping TR non-deterministic allows us to find and
exclude more error paths per iteration.

Compared to the standard backward fixpoint approach (see Sect. 3), an
important difference is that we explore the error paths in a forward analysis
starting from the initial state, and avoid progress towards the error states as
soon as possible. As a consequence, our algorithm can find solutions that visit
only a small subset of the state space. If such solutions exist, our algorithm will
find a solution faster and will detect a winning region that is much smaller than
the maximal winning region detected by the standard algorithm.

4.2 Correctness of Algorithm 1

Theorem 1 (Soundness). Every transition relation returned by Algorithm 1
is safe, and total in the first two arguments.

Proof. The model checker guarantees that the returned transition relation TR
is safe, i.e., unsafe states are not reachable. To see that TR is total in the
first two arguments, i.e., ∀q ∀u ∃c ∃q′ : (q, u, c, q′) ∈ TR, observe that this
property holds for the initial TR, and is preserved by ResolveLevels: lines 2
and 3 ensure that a transition (q, u, c, q′) ∈ TR can only be deleted if ∃c′ ∃q′′ 	=
q′ : (q, u, c′, q′′) ∈ TR, i.e., if there exists another transition with the same state
q and uncontrollable input u.

To prove completeness of the algorithm, we define formally what it means
for an error level to be resolved.

Definition 4 (Resolved). Given a sequence of error levels E = (E0, ..., En)
and a transition relation TR, an error level Ei with i < n is resolved with
respect to TR if the following conditions hold:

– RTi = ∅
– ∀qi ∈ Ei \ BAD : ∃u ∃c ∃qi+1 ∈ Ei+1 : (qi, u, c, qi+1) ∈ TR

Ei is unresolved otherwise, and En is always resolved.

Informally, Ei is resolved if all transitions from Ei that match an escape have
been removed from TR, and every state in Ei can still reach Ei+1.

Theorem 2 (Completeness). If the algorithm returns “Unrealizable”, then
the controllable system is unrealizable.

220 S. Jacobs and M. Sakr

E1

Err

q0

00 10

00 10

Fig. 4. Error levels from iteration 1

E1

Err

q0

00
01

10
11

00
01

10
11

Fig. 5. solution for iteration 1

Proof. Observe that if a controllable system is unrealizable, then there exists
an error sequence E = (E0 = {q0}, E1, ..., En) where all levels are resolved and
non-empty. Lines 2 and 3 of ResolveLevel guarantee that all transitions from Ei

to Ei+1 that match an escape will be deleted, so the only remaining transitions
between Ei and Ei+1 are those that have no escapes. Line 4 computes all states
in Ei that have no more transitions to Ei+1 and line 5 removes these states.
Thus, after calling ResolveLevel, the current level will be resolved.

However, since ResolveLevel may remove states from Ei, the levels Ej with
j < i could become unresolved. To see that this is not an issue note that before
we output Unrealizable, we go through the second loop that resolves all levels
from n to 0. After execution of this second loop all levels are resolved, and if
E0 still contains q0, then the controllable system is indeed unrealizable, since
from our sequence of error levels we can extract a subsequence of resolved and
non-empty error levels.3

Theorem 3 (Termination). Algorithm 1 always terminates.

Proof. Termination is guaranteed due to the fact that there is a finite number
of possible transition relations, and each call to PruneLevels either produces a
TR that is different from all transition relations that we have seen before, or
terminates with isUnrealizable.

4.3 Illustration of the Algorithm

Figure 4 shows error levels obtained from the model checker. The transitions are
labeled with vectors of input bits, where the left bit is uncontrollable and the
right bit controllable. The last level is a subset of BAD. After the first iteration
of the algorithm, the transitions that are dashed in Figure 5 will be deleted. Note
that another solution exists where instead we delete the two outgoing transitions
from level E1 to the error level Err. This solution can be obtained by a backward
algorithm. However, our solution makes all states in E1 unreachable and thus
we detect smaller winning region.

In the second iteration, the model checker uses the restricted transition rela-
tion and computes a new sequence of error levels. This sequence is merged with
the previous one and the resulting sequence will be resolved as before.
3 It may be a subsequence due to the merging of error levels from different iterations

of the main loop.

A Symbolic Algorithm for Lazy Synthesis of Eager Strategies 221

4.4 Example Problems

We want to highlight the potential benefit of our algorithm on two families of
examples.

q0

Fig. 6. Example with small solution

q0

Fig. 7. Example that is solved fast

First, consider a controllable system where all paths from the initial state to
the error states have to go through a bottleneck, e.g., a single state, as depicted
in Fig. 6, and assume that Player 0 can force the system not to go beyond
this bottleneck. In this case, our algorithm will have a winning region that only
includes the states between the initial state and the bottleneck, whereas the
standard algorithm may have a much bigger winning region (in the example
including all the states in the fourth row). Moreover, the strategy produced by
our algorithm will be very simple: if we reach the bottleneck, we force the system
to stay there. In contrast, the strategy produced by the standard algorithm will
in general be much more complicated, as it has to define the behavior for a much
larger number of states.

Second, consider a controllable system where the shortest path between error
and initial state is short, but Player 1 can only force the system to move towards
the error on a long path. Moreover, assume that Player 0 can avoid entering
this long path, for example by entering a separated part of the state space like
depicted in Fig. 7. In this case, our algorithm will quickly find a simple solution:
move to that separate part and stay there. In contrast, the standard algorithm
will have to go through many iterations of the backwards fixpoint computation,
until finally finding the point where moving into the losing region can be avoided.

5 Optimization

As presented, Algorithm 1 requires the construction of a data structure that
represents the full transition relation R, which causes a significant memory con-
sumption. In practice, the size of a BDD that represents the full transition
relation can be prohibitive even for moderate-size models.

222 S. Jacobs and M. Sakr

As the transition relation is deterministic, it can alternatively be represented
by a vector of functions, each of which updates one of the state variables. Such a
partitioning of the transition relation is an additional computational effort, but
it results in a more efficient representation that is necessary to handle large sys-
tems. In the following we describe optimizations based on such a representation.

Definition 5. A functional controllable system is a 6-tuple TSf = (L,Xu,
Xc,F , BAD, q0), where F = (f1, ..., f|L|) with fi : BL × B

Xu × B
Xc → B for all

i, and all other components are as in Definition 1.

In a functional system with current state q and inputs u and c, the next-state
value of the ith state variable li is computed as fi(q, u, c). Thus, we can compute
image and preimage of a set of states C in the following way:

– imagef (C) = ∃L ∃Xu ∃Xc (
∧|L|

i=1 l′i ≡ fi ∧ C)
– preimagef (C) = ∃L′ ∃Xu ∃Xc (

∧|L|
i=1 l′i ≡ fi ∧ C ′)

However, computing
∧|L|

i=1 l′i ≡ fi ∧ C ′ is still very expensive and might be
as hard as computing the whole transition relation. To optimize the preimage
computation, we instead directly substitute the state variables in the boolean
function that represents C by the function that computes their new value:

preimages(C) = ∃Xu ∃Xc C[li ← fi]li∈L

For the computation of image(C), substitution cannot be used. While alter-
natives exist (such as using the range function instead [16]), image computation
remains much more expensive than preimage computation.

5.1 The Optimized Algorithm

The optimized algorithm takes as input a functional controllable system, and
uses the following modified procedures:

OptimizedLazySynthesis: This procedure replaces LazySynthesis, with
two differences, both in the model checker: the preimage is computed using
preimages, and unreachable states are not removed, in order to avoid image
computation. Thus, the error levels are over-approximated.

OptimizedResolveLevel: This procedure replaces ResolveLevel and
computes RT and AvSet more efficiently. Note that for a given set of states
C, the set pretrans(C) = {(q, u, c) ∈ B

L × B
Xu × B

Xc | F (q, u, c) ∈ C} can
efficiently be computed as C[li ← fi]li∈L. Based on this, we get the following:
RT: To compute the transitions that can be avoided, we compute the conjunc-
tion of the transitions from Ei to Ei+1 as pretrans(E[i + 1]′) ∧ E[i] with those
transitions that have an escape: ∃c pretrans(¬E[i + 1 : n]′) ∧ E[i].
AvSet: The states that can avoid all transitions to the lower levels can now be
computed as ∀u [∃c pretrans(¬E[i + 1 : n]′) ∧ E[i]].

A Symbolic Algorithm for Lazy Synthesis of Eager Strategies 223

Generalized Deletion of Transitions. In addition, we consider a variant of
our algorithm that uses the following heuristic to speed up computation: when-
ever we find an escape (q, u, c, q′) with q ∈ Ei, then we not only remove all
matching transitions that start in Ei, but matching transitions that start any-
where, and lead to a state q′′ ∈ Ej with j > i. Thus, we delete more transitions
per iteration of the algorithm, all of which are known to lead to an error.

6 Experimental Evaluation

We implemented our algorithm in Python, using the BDD package CUDD [17].
We evaluate our prototype on a family of parameterized benchmarks based on
the examples in Sect. 4.4, and on the benchmark set of SYNTCOMP 2017 [12].
We compare two versions of our algorithm (with and without generalized deletion
as explained in Sect. 5.1) against a re-implementation of the standard backward
approach, in order to have a fair comparison between algorithms that use the
same BDD library and programming language. For the SYNTCOMP bench-
marks, we additionally compare against the results of the participants in SYNT-
COMP 2017. Our implementations of all algorithms include the most important
general optimizations for this kind of algorithms, including a functional transi-
tion relation and automatic reordering of BDDs (see Jacobs et al. [10]).

6.1 Parameterized Benchmarks

On the parameterized versions of the examples from Sect. 4.4, we observe the
expected behaviour:

– for the first example, the winning region found by our algorithm is always
about half as big as the winning region for the standard algorithm. Even
more notable is the size of the synthesized controller circuit: for example, our
solution for an instance with 218 states and 10 input variables has a size of
just 9 AND-gates, whereas the solution obtained from the standard algorithm
has 800 AND-gates.

– for the second example, we observe that for systems with 15–25 state vari-
ables, our algorithm solves the problem in constant time of 0.1s, whereas the
solving time increases sharply for the standard algorithm: it uses 1.7s for a
system with 15 latches, 92s for 20 latches, and 4194s for 25 latches.

6.2 SYNTCOMP Benchmarks

We compared our algorithm against the standard algorithm on the benchmark
set that was used in the safety track of SYNTCOMP 2017, with a timeout of
5000 s on an Intel Xeon processor (E3-1271 v3, 3.6 GHz) and 32 GB RAM.

First, we observe that our algorithms often produce much smaller winning
regions: out of the 76 realizable benchmarks that our algorithm without general
deletion solved, we found a strictly smaller winning region than the standard

224 S. Jacobs and M. Sakr

backwards algorithm in 28 cases. In 14 cases, the winning region is smaller by a
factor of 103 or more, in 8 cases by a factor of 1020 or more, and in 4 cases by a
factor of 1030 or more. The biggest difference in winning region size is a factor
of 1068. A selection of results for such benchmarks is given in Table 1. Note that
these results are for the algorithm without the generalized deletion heuristic;
when using the algorithm with generalized deletion, our winning regions are
somewhat bigger, but the tendency is the same. Regarding the size of synthesized
circuits, the results are mixed: our solutions are often much smaller, but in several
cases they are also of bigger or equal size.

Table 1. Comparison of Winning Region Size for Selected Benchmarks

Instance Standard Lazy Difference factor

load 2c comp comp5 REAL 1.08 ∗ 1040 5.67 ∗ 1013 > 1026

load 3c comp comp4 REAL 2.39 ∗ 1052 1.21 ∗ 1018 >1044

load 3c comp comp7 REAL 4.97 ∗ 1086 1.21 ∗ 1018 >1068

ltl2dba C2-6 comp3 REAL 2.46 ∗ 1035 4.55 ∗ 1025 >109

ltl2dba E4 comp3 REAL 2.96 ∗ 1079 3.74 ∗ 1050 >1028

demo-v10 5 REAL 1.93 ∗ 1025 1.31 ∗ 105 >1020

demo-v12 5 REAL 2.81 ∗ 1014 1.64 ∗ 104 >1010

demo-v14 5 REAL 1.23 ∗ 1014 356 >1011

demo-v19 5 REAL 1.27 ∗ 1011 305 >108

demo-v20 5 REAL 2.31 ∗ 1041 3.44 ∗ 1010 >1030

demo-v22 5 REAL 3.4 ∗ 1038 1.71 ∗ 1015 >1023

demo-v23 5 REAL 1.37 ∗ 1012 9.22 ∗ 103 >108

demo-v24 5 REAL 3.27 ∗ 1063 1.17 ∗ 1031 >1032

Regarding solving time, out of the 234 benchmarks our algorithm without
generalized deletion solved 99 before the timeout, and the version with the gener-
alized deletion heuristic solved 116. While the standard algorithm solves a higher
number of instances overall (163), for a number of examples the lazy algorithms
are faster. In particular, both versions each solve 7 benchmarks that are not
solved by the standard algorithm, as shown in Table 2.

Moreover, we compare against the participants of SYNTCOMP 2017: with
a timeout of 3600 s, the best single-threaded solver in SYNTCOMP 2017 solved
155 problems, and the virtual best solver (VBS; i.e., a theoretical solver that on
each benchmark performs as good as the best participating solver) would have
solved 186 instances. If we include our two algorithms with a timeout of 3600
s, the VBS can additionally solve 7 out of the 48 instances that could not be
solved by any of the participants of SYNTCOMP before. As our algorithms also
solve some instances much faster than the existing algorithms, they would be
worthwhile additions to a portfolio solver for SYNTCOMP.

A Symbolic Algorithm for Lazy Synthesis of Eager Strategies 225

Table 2. Benchmarks solved uniquely by the Lazy algorithm

Instance Lazy Generalized

deletion

Standard SYNTCOMP 2017

participants

gb s2 r3 comp1 UNREAL 38 TO TO Solved by 1

genbuf48c6y TO 3839 TO Solved by 4

ltl2dba E6 comp4 REAL 2435 TO TO Not solved

ltl2dba Q4 comp5 REAL 125 304 TO Solved by 1

ltl2dba U1-6 Comp3 REAL TO 4590 TO Not solved

ltl2dpa alpha5 Comp2 REAL TO 1880 TO Not solved

ltl2dpa alpha5 Comp3 REAL TO 2651 TO Not solved

ltl2dpa E4 comp2 REAL 1081 TO TO Not solved

ltl2dpa E4 comp4 REAL 2122 TO TO Not solved

ltl2dpa U14 comp2 REAL 4019 615 TO Not solved

ltl2dpa U14 comp3 REAL 2605 1681 TO Not solved

7 Synthesis of Resilient Controllers

As mentioned in Sect. 1, our algorithm produces strategies that avoid progress
towards the error states as early as possible, which could be useful for generat-
ing controllers that are tolerant to faults or perturbations. Dallal et al. [11] have
modeled systems with perturbations, which are defined essentially as extraordi-
nary transitions where Player 1 chooses values for both the uncontrollable and
(a subset of) the controllable inputs. They introduced an algorithm that pro-
duces strategies with maximal resilience against such perturbations, defined as
the number of perturbations under which the controller can still guarantee not
to enter the winning region of Player 1.

The algorithm of Dallal et al. can be seen as a variant of our algorithm, except
that it first uses the standard fixpoint algorithm to determine the winning region,
and then uses a mixed forward/backward search to find a strategy that makes as
little progress towards the losing region as possible. We have implemented this as
a variant of our algorithm, providing to our knowledge its first implementation.
An evaluation on the SYNTCOMP benchmarks provides interesting insights:
only on 6 out of the 234 benchmarks the algorithm can give a guarantee of
resilience against one or more perturbations. Moreover, when inspecting the
behavior of our lazy algorithms on these benchmarks, we find that for all of them
they provide a strictly smaller winning region than the standard algorithm. 5 of
the 6 benchmarks appear in Table 1, with winning regions that are smaller by
a factor of 109 or more. In fact, for these benchmarks our algorithm can give a
similar guarantee as the Dallal algorithm, without additional cost. The difference
is that we measure the distance to the error states instead of the distance to the
losing region (which is not known to us). This leads us to the conjecture that our
algorithm performs particularly well on synthesis problems that allow resilient
controllers, together with the observation that not many of these appear in the
SYNTCOMP benchmark set that we have tested against.

226 S. Jacobs and M. Sakr

8 Conclusions

We have introduced lazy synthesis algorithms with a novel combination of for-
ward and backward exploration. Our experimental results show that our algo-
rithms find much smaller winning regions in many cases. Moreover, they can solve
a number of problems that are intractable for existing synthesis algorithms, both
from our own examples and from the SYNTCOMP benchmark set.

In the future, we want to explore how lazy synthesis can be integrated into
portfolio solvers and hybrid algorithms. Additionally, we want to further explore
the applications of eager strategies in the synthesis of resilient controllers [11,18–
20] and connections to lazy algorithms for controllers of cyber-physical sys-
tems [21].

Acknowledgments. We thank Bernd Finkbeiner and Martin Zimmermann for fruit-
ful discussions. This work was supported by the German Research Foundation (DFG)
under the project ASDPS (JA 2357/2-1).

References

1. Church, A.: Applications of recursive arithmetic to the problem of circuit synthesis.
Summ. Summer Inst. Symb. Logic I, 3–50 (1957)

2. Büchi, J., Landweber, L.: Solving sequential conditions by finite-state strategies.
Trans. Am. Math. Soc. 138, 295–311 (1969)

3. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–
190. ACM Press (1989)

4. Filiot, E., Jin, N., Raskin, J.F.: Antichains and compositional algorithms for LTL
synthesis. Form. Methods Syst. Des. 39(3), 261–296 (2011)

5. Ehlers, R.: Symbolic bounded synthesis. Form. Methods Syst. Des. 40(2), 232–262
(2012)

6. Sohail, S., Somenzi, F.: Safety first: a two-stage algorithm for the synthesis of
reactive systems. STTT 15(5–6), 433–454 (2013)

7. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5–6), 519–539 (2013)
8. Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs.

In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 1–20.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54013-4 1

9. Legg, A., Narodytska, N., Ryzhyk, L.: A SAT-based counterexample guided
method for unbounded synthesis. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016.
LNCS, vol. 9780, pp. 364–382. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41540-6 20

10. Jacobs, S., et al.: The first reactive synthesis competition (SYNTCOMP 2014).
STTT 19(3), 367–390 (2017)

11. Dallal, E., Neider, D., Tabuada, P.: Synthesis of safety controllers robust to unmod-
eled intermittent disturbances. In: CDC, pp. 7425–7430. IEEE (2016)

12. Jacobs, S., et al.: The 4th reactive synthesis competition (SYNTCOMP 2017):
benchmarks, participants & results. In: SYNT@CAV. Volume 260 of EPTCS, pp.
116–143. (2017)

13. Liu, X., Smolka, S.A.: Simple linear-time algorithms for minimal fixed points. In:
Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp.
53–66. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055040

https://doi.org/10.1007/978-3-642-54013-4_1
https://doi.org/10.1007/978-3-319-41540-6_20
https://doi.org/10.1007/978-3-319-41540-6_20
https://doi.org/10.1007/BFb0055040

A Symbolic Algorithm for Lazy Synthesis of Eager Strategies 227

14. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005). https://doi.org/10.
1007/11539452 9

15. Finkbeiner, B., Jacobs, S.: Lazy synthesis. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 219–234. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-27940-9 15

16. Kropf, T.: Introduction to Formal Hardware Verification. Springer Science & Busi-
ness Media, Berlin (2013)

17. Somenzi, F.: CUDD: CU decision diagram package, release 2.4.0. University of
Colorado at Boulder (2009)

18. Neider, D., Weinert, A., Zimmermann, M.: Synthesizing optimally resilient con-
trollers. In: CSL (2018, to appear)

19. Ehlers, R., Topcu, U.: Resilience to intermittent assumption violations in reactive
synthesis. In: HSCC, pp. 203–212. ACM (2014)

20. Huang, C., Peled, D.A., Schewe, S., Wang, F.: A game-theoretic foundation for the
maximum software resilience against dense errors. IEEE Trans. Softw. Eng. 42(7),
605–622 (2016)

21. Raman, V., Donzé, A., Sadigh, D., Murray, R.M., Seshia, S.A.: Reactive synthesis
from signal temporal logic specifications. In: HSCC, pp. 239–248. ACM (2015)

https://doi.org/10.1007/11539452_9
https://doi.org/10.1007/11539452_9
https://doi.org/10.1007/978-3-642-27940-9_15
https://doi.org/10.1007/978-3-642-27940-9_15

	A Symbolic Algorithm for Lazy Synthesis of Eager Strategies
	1 Introduction
	2 Preliminaries
	3 Existing Approaches
	4 Symbolic Lazy Synthesis Algorithms
	4.1 The Basic Algorithm
	4.2 Correctness of Algorithm 1
	4.3 Illustration of the Algorithm
	4.4 Example Problems

	5 Optimization
	5.1 The Optimized Algorithm

	6 Experimental Evaluation
	6.1 Parameterized Benchmarks
	6.2 SYNTCOMP Benchmarks

	7 Synthesis of Resilient Controllers
	8 Conclusions
	References

