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Preface

This volume contains the papers presented at the 16th International Symposium on
Automated Technology for Verification and Analysis (ATVA 2018) held during
October 7–10, 2018, in Los Angeles, California, USA.

ATVA is a series of symposia dedicated to the promotion of research on theoretical
and practical aspects of automated analysis, verification, and synthesis by providing a
forum for interaction between the regional and the international research communities
and industry in the field. Previous events were held in Taipei (2003–2005), Beijing
(2006), Tokyo (2007), Seoul (2008), Macao (2009), Singapore (2010), Taipei (2011),
Thiruvananthapuram (2012), Hanoi (2013), Sydney (2014), Shanghai (2015), Chiba
(2016), and Pune (2017).

ATVA 2018 received 82 high-quality paper submissions, each of which received
three reviews on average. After careful review, the Program Committee accepted 27
regular papers and six tool papers. The evaluation and selection process involved
thorough discussions among members of the Program Committee through the Easy-
Chair conference management system, before reaching a consensus on the final
decisions.

To complement the contributed papers, we included in the program three keynote
talks and tutorials given by Nikolaj Bjørner (Microsoft Research, USA), Corina
Păsăreanu (NASA Ames Research Center, USA), and Sanjit Seshia (University of
California, Berkeley, USA), resulting in an exceptionally strong technical program.

We would like to acknowledge the contributions that made ATVA 2018 a suc-
cessful event. First, we thank the authors of all submitted papers and we hope that they
continute to submit their high-quality work to ATVA in future. Second, we thank the
Program Committee members and external reviewers for their rigorous evaluation
of the submitted papers. Third, we thank the keynote speakers for enriching the pro-
gram by presenting their distinguished research. Finally, we thank Microsoft and
Springer for sponsoring ATVA 2018.

We sincerely hope that the readers find the ATVA 2018 proceedings informative
and rewarding.

October 2018 Shuvendu K. Lahiri
Chao Wang
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Z3Azure and AzureZ3

(Abstract)

Nikolaj Bjørner1, Marijn Heule2, Karthick Jayaraman3,
and Rahul Kumar1

1 Microsoft Research
{nbjorner,rahulku}@microsoft.com

2 UT Austin
marijn@heule.nl
3 Microsoft Azure

karjay@microsoft.com

Azure to the power of Z3: Cloud providers are increasingly embracing network
verification for managing complex datacenter network infrastructure. Microsoft’s
Azure cloud infrastructure integrates the SecGuru tool, which leverages the Z3 SMT
solver, for assuring that the network is configured to preserve desired intent. SecGuru
statically validates correctness of access-control policies and routing tables of hundreds
of thousands of network devices. For a structured network such as for Microsoft Azure
data-centers, the intent for routing tables and access-control policies can be automat-
ically derived from network architecture and metadata about address ranges hosted in
the datacenter. We leverage this aspect to perform local checks on a per router basis.
These local checks together assure reachability invariants for availability and perfor-
mance. To make the service truly scalable, while using modest resources, SecGuru
integrates a set of domain-specific optimizations that exploit properties of the config-
urations it needs to handle. Our experiences exemplify integration of general purpose
verification technologies, in this case bit-vector solving, for a specific domain: the
overal methodology available through SMT formalisms lowers the barrier of entry for
capturing and checking contracts. They also alleviate initial needs for writing custom
solvers. However, each domain reveals specific structure that produces new insights in
the quest for scalable verification: for checking reachability properties in networks,
methods for capturing symmetries in networks and header spaces can speed up veri-
fication by several orders of magnitude; for local checks on data-center routers we
exploit common patterns in configurations to take the time it takes to check a contract
from a few seconds to a few milliseconds.
Z3 to the power of Azure: Applications that rely on constraint solving may be in a
fortunate situation where efficient solving technologies are adequately available. Sev-
eral tools building on Z3 rely on this being the common case scenario. Then useful
feedback can be produced within the attention span of a person performing program
verification, and then the available compute time on a machine or a cluster is sufficient
to complete thousands of small checks. As long as this fortunate situation holds, search
techniques for SMT is a solved problem. Yet, in spite of rumors to the contrary, SAT



and SMT is by no means a solved problem. When current algorithmic techniques, in
particular modern SAT solving search methods based on conflict-driven clause
learning, are insufficient to quickly find solutions, a next remedy is to harness com-
putational resources at problems. In the context of SAT solving, the method of Cube &
Conquer, has been used with significant success to solve hard combinatorial problems
from mathematical conjectures. These are relatively small formulas, but require a
substantial search space for analysis. Formulas from applications, such as scheduling
and timetabling, are significantly larger and have wildly different structural properties.
In spite of these differences, we found that the Cube & Conquer methodology can make
a substantial difference as fixing even a limited number of variables can drastically
reduce the overhead solving subformulas. We describe a distributed version of Z3 that
scales with Azure’s elastic cloud. It integrates recent advances in lookahead and dis-
tributed SAT solving for Z3’s engines for SMT. A multi-threaded version of the Cube
& Conquer solver is also available parallelizing SAT and SMT queries.

X N. Bjørner et al.
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DeepSafe: A Data-Driven Approach for
Assessing Robustness of Neural Networks

Divya Gopinath1, Guy Katz3, Corina S. Păsăreanu1,2(B), and Clark Barrett3

1 Carnegie Mellon University, Silicon Valley, Mountain View, USA
divgml@gmail.com

2 NASA Ames Research Center, Mountain View, USA
corina.s.pasareanu@nasa.gov

3 Stanford University, Stanford, USA
{guyk,barrett}@cs.stanford.edu

Abstract. Deep neural networks have achieved impressive results in
many complex applications, including classification tasks for image and
speech recognition, pattern analysis or perception in self-driving vehi-
cles. However, it has been observed that even highly trained networks are
very vulnerable to adversarial perturbations. Adding minimal changes to
inputs that are correctly classified can lead to wrong predictions, rais-
ing serious security and safety concerns. Existing techniques for check-
ing robustness against such perturbations only consider searching locally
around a few individual inputs, providing limited guarantees. We pro-
pose DeepSafe, a novel approach for automatically assessing the overall
robustness of a neural network. DeepSafe applies clustering over known
labeled data and leverages off-the-shelf constraint solvers to automati-
cally identify and check safe regions in which the network is robust, i.e.
all the inputs in the region are guaranteed to be classified correctly. We
also introduce the concept of targeted robustness, which ensures that the
neural network is guaranteed not to misclassify inputs within a region to
a specific target (adversarial) label. We evaluate DeepSafe on a neural
network implementation of a controller for the next-generation Airborne
Collision Avoidance System for unmanned aircraft (ACAS Xu) and for
the well known MNIST network. For these networks, DeepSafe identified
many regions which were safe, and also found adversarial perturbations
of interest.

1 Introduction

Machine learning techniques such as deep neural networks (NN) are increasingly
used in a variety of applications, achieving impressive results in many domains,
and matching the cognitive ability of humans in complex tasks. In this paper, we
study a common use of NN as classifiers that take in complex, high dimensional
input, pass it through multiple layers of transformations, and finally assign to it
a specific output label or class. These networks can be used to perform pattern
analysis, image classification, or speech and audio recognition, and are now being

c© Springer Nature Switzerland AG 2018
S. K. Lahiri and C. Wang (Eds.): ATVA 2018, LNCS 11138, pp. 3–19, 2018.
https://doi.org/10.1007/978-3-030-01090-4_1
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4 D. Gopinath et al.

integrated into the perception modules of autonomous or semi-autonomous vehi-
cles, at major car companies such as Tesla, BMW, Ford, etc. It is expected that
this trend will continue and intensify, with neural networks being increasingly
used in safety critical applications which require high assurance guarantees.

However, it has been observed that state-of-the-art networks are highly vul-
nerable to adversarial perturbations: given a correctly-classified input x, it is
possible to find a new input x′ that is very similar to x but is assigned a differ-
ent label [17]. The vulnerability of neural networks to adversarial perturbations
is thus a major safety and security concern, and it is essential to explore sys-
tematic methods for evaluating and improving the robustness of neural networks
against such attacks.

To date, researchers have mostly focused on efficiently finding adversarial
perturbations around select individual input points. The problem is typically
cast as an optimization problem: for a given network F and an input x, find
an x′ such that F assigns different labels to x and x′ (denoted F (x′) �= F (x)),
while minimizing the distance ‖x − x′‖, for different distance metrics. In other
words, the goal is to find an input x′ as close as possible to x such that x′

and x are labeled differently. Finding the optimal solution for this problem is
computationally difficult, and so various approximation approaches have been
proposed [3,5,6,17]. There are also techniques that focus on generating targeted
attacks : adversarial perturbations that result in the network assigning the per-
turbed input a specific target label [5,6,17].

The approaches for finding adversarial perturbations have successfully
demonstrated the weakness of many state-of-the-art networks. However, using
these techniques in assessing a network’s robustness against adversarial pertur-
bations is difficult, for two reasons. First, these approaches are heuristic-based,
and provide no formal guarantees that they have not overlooked some adver-
sarial perturbations; and second, these approaches only operate on individual
input points, which may not be indicative of the network’s robustness around
other points. Approaches have also been proposed for training networks that
are robust against adversarial perturbations, but these, too, provide no formal
assurances [13].

Formal methods present a promising way for obtaining formal guarantees
about the robustness of networks. Recent approaches tackle neural network ver-
ification [7,10] by casting it as an SMT solving problem. Reluplex [10] can check
the local robustness at input point x, by checking if there is another point x′

within a close distance δ to x (‖x − x′‖ < δ) for which the network assigns a
different label. The initial value δ is picked arbitrarily and is tightened iteratively
until the check holds. Similarly, DLV [7] searches locally around given inputs x
within a small δ distance, but unlike Reluplex, it adopts discretization of the
input space to reduce the search space.

These techniques are still limited to checking local robustness around a few
individual points, giving no indication about the overall robustness of the net-
work. In principle, one can apply the local check to a set of inputs that are drawn
from some random distribution thought to represent the input space. However,
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this would require coming up with minimally acceptable distance δ values for
all these checks, which can vary greatly between different input points. Further-
more, the check will likely fail (and produce invalid adversarial examples) for the
input points that are close to the legitimate boundaries between different labels.

The concept of global robustness is defined in [10,11], which could be checked
by Reluplex (we give the formal definition in Sect. 6). Whereas local robustness
is measured for a specific input point, global robustness applies to all inputs
simultaneously. The check requires encoding two side-by-side copies of the NN
in question, operating on separate input variables, and checking that the outputs
are similar. Global adversarial robustness is harder to prove than local robustness
for two reasons: (1) encoding two copies of the network results in twice as many
network nodes to analyze and (2) the problem is not restricted to a small domain,
and therefore can not take advantage of Reluplex’s heuristics, which work best
when the check is restricted to small neighborhoods. Furthermore, it requires
more manual tuning, as the user needs to provide minimally acceptable values
for two parameters (δ and ε). As a result this global check could not be applied
in practice to any realistic network [10].

Thus the problem of assessing the overall robustness of a network remains
open.

DeepSafe. We propose DeepSafe, an automatic, data-driven approach for assess-
ing the overall robustness of a neural network. The key idea is to effectively
leverage the inputs with known correct labels to automatically identify regions
in the input space which have a high chance of being labelled consistently or
uniformly, thereby making global robustness checks achievable.

Specifically, DeepSafe applies a clustering algorithm over the labeled inputs
to group them into clusters, which are sets of inputs that are close to each other
(with respect to some given distance metric) and share the same label. The
labeled inputs can be drawn from the training set or can be generated directly
from executing the network on some random inputs; in the latter case the user
needs to validate that the labels are correct. We use k-means clustering [9], which
we modified to be guided by the labels of known inputs, but other clustering
algorithms could be employed as well.

Each cluster defines a region which is a hypersphere in the input space,
where the centroid is automatically computed by the clustering algorithm and
the radius is defined as the average distance of any element in the cluster from
the centroid. Our hypothesis it that the NN should assign the same label to all
the inputs in the region, not just to the elements (inputs with known labels)
that are used to form the cluster. The rationale is that even highly non-linear
networks should display consistent behavior in the neighborhoods of groups of
similar inputs known to share the same true label. We check this hypothesis by
formulating it as a query for an off-the-shelf constraint solver. For our experi-
ments we use the state-of-the-art tool Reluplex, but other solvers can be used.
If the solver finds no solutions, it means that the region is safe (all inputs are
labeled the same). If a solution is found, this indicates a potential adversar-
ial input. We use the adversarial example as feedback to iteratively reduce the
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radius of the region, and repeat the check until the region is proved to be safe.
If a time-out occurs during this process, we can not provide any guarantee for
that region (although the likely answer is that it is safe). The result of the anal-
ysis is a set of well-defined input regions in which the NN is guaranteed to be
robust and s set of examples of adversarial inputs that may be of interest to the
developers of the NN, and can be used in retraining.

Thus, DeepSafe decomposes the global robustness requirements into a set
of local robustness checks, one for each region, which can be solved efficiently
with a tool like Reluplex. These checks do not require two network copies and are
restricted to small input domains, as defined by the regions. The distance used for
the local checks is not picked arbitrarily as in previous approaches, but instead it
is the radius computed for each regions, backed up by the labeled data. Further-
more regions define natural decision boundaries in the input domain, thereby
increasing the chances of producing valid proofs or of finding valid adversarial
examples.

We introduce the concept targeted robustness in line with targeted attacks
[5,6,17]. Targeted robustness ensures that there are no inputs in a region that
are mapped by the NN to a specific incorrect label. Therefore, even if in that
region the NN is not completely robust against adversarial perturbations, we can
give guarantees that it is robust against specific targeted attacks. As a simple
example, consider a NN used for perception in an autonomous car that classifies
the images of a traffic light as red, green or yellow. Even if it is not the case that
the NN never misclassifies a red light, we may be willing to settle for a guarantee
that it never misclassifies a red light as a green light—leaving us with the more
tolerable case in which a red light is misclassified as yellow.

We implemented a prototype of DeepSafe and evaluated it on a neural net-
work implementation of a controller for the next-generation Airborne Collision
Avoidance System for unmanned aircraft (ACAS Xu) and on the well known
MNIST dataset. For these networks, our approach identified regions which were
completely safe, regions which were safe with respect to some target labels, and
also adversarial perturbations that were of interest to the network’s developers.

2 Background

2.1 Neural Networks

Neural networks and deep belief networks have been used in a variety of appli-
cations, including pattern analysis, image classification, speech and audio recog-
nition, and perception modules in self-driving cars. Typically, the objects in
such domains are high dimensional and the number of classes that the objects
need to be classified to is also high—and so the classification functions tend
to be highly non-linear over the input space. Deep learning operates with the
underlying rationale that groups of input parameters can be merged to derive
higher-level abstract features, which enable the discovery of a more linear and
continuous classification function. Neural networks are often used as classifiers,
meaning they assign to each input an output label/class. Such a neural network
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F can thus be regarded as a function that assigns to input x an output label y,
denoted as F (x) = y.

Internally, a neural network is comprised of multiple layers of nodes, called
neurons. Each node refines and extracts information from values computed by
nodes in the previous layer. The structure of a typical 3 layer neural network
would be as follows: the first layer is the input layer, which takes in the input
variables (also called features) x1, x2, . . . , xn. The second layer is a hidden layer:
each of its neurons computes a weighted sum of the input variables according to
a unique weight vector and a bias value, and then applies a non-linear activation
function to the result. The sigmoid function (f(x) = 1/(1 + e−x) is a widely
used activation function. Most recent networks use rectified linear units (ReLUs)
activation functions. A rectified linear unit has output 0 if the input is less than
0, and raw output otherwise; f(x) = max(x, 0). The last layer uses a softmax
function to assign an the output class is the input. The softmax function squashes
the outputs of each node of the previous layer to be between 0 and 1, equivalent
to a categorical probability distribution. The number of nodes in this layer is
equal to the number of output classes and their respective outputs gives the
probability of the input being classified to that class.

2.2 Neural Network Verification

Traditional verification techniques often cannot directly be applied to neu-
ral networks, and this has sparked a line of work focused on transforming
the problem into a format more amenable to existing tools, such as LP and
SMT solvers [4,7,15,16]. DeepSafe, while is not restricted to, currently uses the
recently-proposed Reluplex tool, which has been shown to perform better than
other solvers, such as Z3, CVC4, Yices or MathSat [10]. Reluplex is a sound and
complete simplex-based verification procedure, specifically tailored to achieve
scalability on deep neural networks. It is designed to operate on networks with
piecewise linear activation functions, such as ReLU. Intuitively, the algorithm
operates by eagerly solving the linear constraints posed by the neural network’s
weighted sums, while attempting to satisfy the non-linear constraints posed by
its activation functions in a lazy manner. This often allows Reluplex to safely
disregard many of these non-linear constraints, which is where the bulk of the
problem’s complexity originates.

Reluplex has been used in evaluating techniques for finding and defending
against adversarial perturbations [2], and it has also been successfully applied to
a real-world family of deep neural networks, designed to operate as controllers in
the next-generation Airborne Collision Avoidance System for unmanned aircraft
(ACAS Xu) [10]. However, as discussed, Reluplex could only be used to check
local robustness around a few individual points, giving limited guarantees about
the overall robustness of these networks.
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2.3 Clustering

Clustering is an approach used to divide a population of data-points into sets
called clusters, such that the data-points in each cluster are more similar (with
respect to some metric) to other points in the same cluster than to the rest of
the data-points. Here we focus on a particularly popular clustering algorithm
called kMeans [9] (although our approach could be implemented using different
clustering algorithms as well). Given a set of n data-points {x1, . . . , xn} and k as
the desired number of clusters, the algorithm partitions the points into k clusters,
such that the variance (also referred to as “within cluster sum of squares”)
within each cluster is minimal. The metric used to calculate the distance between
points is customizable, and is typically the Euclidean distance (L2 norm) or
the Manhattan distance (L1 norm). For points x1 = 〈x1

1, . . . , x
1
n〉 and x2 =

〈x2
1, . . . , x

2
n〉 these are defined as:

‖x1 − x2‖L1 =
n∑

i=1

|x1
i − x2

i |, ‖x1 − x2‖L2 =

√√√√
n∑

i=1

(x1
i − x2

i )2 (1)

The kMeans clustering algorithm is an iterative refinement algorithm, which
starts with k random points considered as the means (the centroids) of k clusters.
Each iteration is then comprised of two main steps:(i) assign each data-point to
the cluster whose centroid is closest to it with respect to the chosen distance
metric; and (ii) re-calculate the new means of the clusters, which will serve as
the new centroids. The iterations continue until the assignment of data-points to
clusters does not change. This indicates that the clusters satisfy the constraints
that the variance within each cluster is minimal and that the data-points within
each cluster are closer to the centroid of that cluster than to the centroid of any
other cluster.

3 The DeepSafe Approach

The DeepSafe approach is illustrated in Fig. 1. DeepSafe has two main compo-
nents: clustering and verification. The inputs with known labels are fed into a
clustering module which implements a modified version of the kMeans algorithm
(as described in Sect. 3.1). The module generates clusters of similar inputs (wrt
some distance metric) known to have the same label. Every such cluster defines
a region characterized by a centroid (cen), radius (r) and label (l), which cor-
responds to the label of the inputs used to form the cluster. Thus, a cluster
is a subset of the inputs while a region is the geometrical hypersphere defined
by the cluster; for the rest of the paper we sometimes use regions and clusters
interchangeably, when the meaning is clear from the context.

For every region, the verification module is invoked (as described in Sect. 3.2).
This module uses Reluplex to check if there exists any input within the region for
which the neural network assigns a different label than l (the score in the figure
will be explained below). This check is done separately for each label l’ other than
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Fig. 1. The DeepSafe approach

l. If such an input is found (formula is SAT), then this is a potential adversarial
example that is reported to the user. The radius is then reduced to exclude the
adversarial input and the check is repeated. When no such adversarial example
is found, the network is declared to be robust with respect to target l’, and
correspondingly the region is declared targeted safe for that label l’. If for a
particular l’, the solver keeps finding adversarial examples until r gets reduced
to 0, the region is considered unsafe w.r.t. that label. If no adversarial examples
are found for all the checks, the region is completely safe. If adversarial cases are
found for all labels, it is unsafe.

3.1 Labeled-Guided Clustering

We employ a modified version of the kMeans clustering algorithm to perform
clustering over the inputs with known correct labels. These inputs can be drawn
from the training data or can be generated randomly and labeled according
to the outputs given by a trained network. The kMeans approach is typically
an unsupervised technique, meaning that the clustering is based purely on the
similarity of the data-points themselves. Here, however, we use the labels to guide
the clustering algorithm into generating clusters that have consistent labels (in
addition to containing points that are similar to each other). The number of
clusters, which is an input parameter of the kMeans algorithm, is often chosen
arbitrarily but in our case the algorithm starts by setting the number of clusters,
k, to be equal to the number of unique labels. Once the clusters are obtained, we
check whether each cluster contains only inputs with the same label. kMeans is
then applied again on each cluster that is found to contain multiple labels, with k
set to the number of unique labels within that cluster. This effectively breaks the
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Fig. 2. Original clusters with k = 2 (left), Clusters with modified kMeans (right)

“problematic” cluster into multiple sub-clusters. The process is repeated until
all the clusters contain inputs which share a single label.

To illustrate the clustering, let us consider a small example with training
data labeled as either stars or circles. Each training data point is characterized
by two dimensions/attributes (x,y). The original kMeans algorithm with k = 2,
will partition the training inputs into 2 groups, purely based on proximity w.r.t.
the 2 attributes (Fig. 2a). However, this simple approach would group stars and
circles together. Our modified algorithm creates the same partitions in its first
iteration, but because each cluster contains training inputs with multiple labels,
it then proceeds to iteratively divide each cluster into sub-clusters. This finally
creates 5 clusters as shown in (Fig. 2b): three with label star and two with label
circle. This example is typical for domains such as image classification, where
even a small change in some attribute value for certain inputs could change their
label.

Distance Metrics. We note that the similarity of the inputs within a cluster
is determined by the distance metric used for calculating the proximity of the
inputs. Therefore, it is important to choose a distance metric that generates
acceptable levels of similarity for the domain under consideration. We assume
that inputs are representable as vectors of numeric attributes and hence can
be considered as points in Euclidean space. The Euclidean distance (Eq. 1) is
a commonly used metric for measuring the proximity of points in Euclidean
space. However, recent studies indicate that the usefulness of Euclidean distance
in determining the proximity between points diminishes as the dimensionality
increases [1]. The Manhattan distance (Eq. 1) has been found to capture prox-
imity more accurately in high dimensions. Therefore, in our experiments, we set
the distance metric depending on the dimensionality of the input space (Sect. 4).

The clustering algorithm aims to produce neighborhoods of consistently-
labeled inputs. The underlying assumption of our approach is that each such
cluster will define a safe region, in which all inputs (and not just the inputs
used to form the cluster) should be labeled consistently. We define the regions to
have the centroid cen computed by kMeans and the radius to be the average dis-
tance r of any instance from the centroid. Note that we use the average instead
of maximum distance. The reason is that kMeans typically generates clusters
that are convex, compact and spherically shaped. However, the ideal boundaries
of regions encompassing consistently labeled points need not conform to this.
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Further, while inputs deep within a region are expected to be labeled consis-
tently, the points that are close to the boundaries may have different labels. We
therefore shrink the radius to increase the chances of obtaining a region that is
indeed safe.

3.2 Region Verification

In this step, we check if the regions defined by the clusters formed in the previous
step are safe for a given NN. The main hypothesis behind our approach is as
follows:

Hypothesis 1. For a given region R, with centroid cen and radius r, any input
x within distance r from cen has the same true label l as that of the region:

‖x − cen‖ ≤ r ⇒ label(x) = l

If this hypothesis holds, it follows that any point x′ in the region which is assigned
a different label F (x′) �= l by the network constitutes an adversarial perturba-
tion. To illustrate this on our example; a NN, may represent an input which is
close to other stars in the input layer as a point further away from them in the
inner layers. Therefore, it may incorrectly classify it as a circle.

We use Reluplex [10] to check the satisfiability of a formula representing the
negation of Hypothesis 1 for every cluster for every label. The encoding is as
follows://shown in Eq. 2:

∃x. ‖x − cen‖L1 ≤ r ∧ score(x, l′) ≥ score(x, l) (2)

Here, x represents an input point, and cen, r and l represent the centroid, radius
and label of the region, respectively. l′ represents a specific label, different from l.
Reluplex models the network without the final softmax layer, and so the outputs
of the model correspond to the outputs of the second last layer of the NN [REF].
This layer consists of as many nodes as the number of labels and the output value
for each node corresponds to the level of confidence that the network assigns to
that label for the given input. We use score(x, y) to denote the level of confidence
assigned to label y at point x.

The above formula holds for a given l′ if and only if there exists a point x
within distance at most r from cen, for which l′ is assigned higher confidence than
l. Consequently, if the property does not hold, then for every x within the cluster
l, its score is higher than l′. This ensures targeted robustness of the network for
label l′: the network is guaranteed to never map any input within the region to
the target label l′. The formula in Eq. 2 is checked for every possible l′ ∈ L−{l},
where L denotes the set of all possible labels. If the query is unsatisfiable for all
l′, it ensures complete robustness of the network for the region; i.e., the network is
guaranteed to map all the inputs in the region to the same label as the centroid.
This can be expressed formally as follows:

∀x. ‖x − cen‖L1 ≤ r ⇒ ∀l ∈ L − {l}. score(x, l) ≥ score(x, l′) (3)
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from which it follows that Hypothesis 1 holds, i.e. that:

∀x. ‖x − cen‖L1 ≤ r ⇒ label(x) = l (4)

Note that as is the case with many SMT-based solvers, Reluplex typically
solves satisfiable queries more quickly than unsatisfiable ones. Therefore, in order
to optimize performance, we test the possible target labels l′ in descending order
based on the scores that they are assigned at the centroid, score(cen, l′). Intu-
itively, this is because labels with higher scores are more likely to yield a satis-
fiable query.

Encoding Distance Metrics in Reluplex. Reluplex takes as input a conjunction
of linear equations and certain piecewise-linear constraints. Consequently, it is
straightforward to model the neural network itself and the query in Eq. 2. Our
ability to encode the distance constraint from the equation, ‖x − cen‖ ≤ r,
depends on the distance metric being used. While L1 is piecewise linear and
can be encoded, L2 unfortunately cannot. When dealing with domains where L2

distance is a better measure of proximity, we thus use the following approxima-
tion. We perform the clustering phase using the L2 distance metric as described
before and for each cluster obtain the radius r. When verifying the property in
Eq. 2, however, we use the L1 norm. Because ‖x − cen‖L1 ≤ ‖x − cen‖L2 , it is
guaranteed that any adversarial perturbation discovered would have also been
discovered using the L2 norm. If no such adversarial perturbation is discovered,
however, we can only conclude that the portion of the corresponding region that
was checked is safe. This limitation could be overcome by using a tool that
directly supports L2 (however no such tools currently exist), or by enhancing
Reluplex to support it.

Safe Regions and Scalability. The main source of computational complexity in
neural network verification is the presence of non-linear, non-convex activation
functions. However, when restricted to a small domain of the input space, these
functions may exhibit linear behavior—in which case they can be disregarded and
replaced with a linear constraint, which greatly simplifies the problem. Conse-
quently, performing verification within the small regions discovered by DeepSafe
is beneficial, as many activation functions can often be disregarded.

The search space within a region is further reduced by restricting the range
of values for each input attribute (input variable to the NN model). We calculate
the minimum and maximum values for every attribute based on the instances
with known labels encompassed within a cluster. Reluplex has built-in bound
tightening [10] functionality. We leverage this by setting the lower and upper
bounds for each of the input variables within the cluster based on the respective
minimum and maximum values.

Our approach lends itself to more scalable verification also through paral-
lelization. Because each region involves stand-alone verification queries, their
verification can be performed in parallel. Also, because Eq. 2 can be checked
independently for every l′, these queries can be performed in parallel—expediting
the process even further.
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4 Case Studies

We implemented DeepSpace using MATLAB R2017a for the clustering algorithm
and Reluplex v1.0 for verification. The runs were dispatched on a 8-Core 64GB
server running Ubuntu 16.0.4. We evaluated DeepSpace on two case studies. The
first network is part of a real-world controller for the next-generation Airborne
Collision Avoidance System for unmanned aircraft (ACAS Xu), a highly safety-
critical system. The second network is a digit classifier over the popular MNIST
image dataset.

Table 1. Summary of the analysis for the ACAS Xu network for 210 clusters

Property # clusters Min radius Time (hours) # queries

Safe 125 0.084 4 11.8

Targeted safe 52 0.135 7.6 14.4

Time out 33 NA 12 NA

4.1 ACAS Xu

ACAS X is a family of collision avoidance systems for aircraft which is currently
under development by the Federal Aviation Administration (FAA) [8]. ACAS Xu
is the version for unmanned aircraft control. It is intended to be airborne and
receive sensor information regarding the drone (the ownship) and any nearby
intruder drones, and then issue horizontal turning advisories aimed at prevent-
ing collisions. The input sensor data includes: (i) ρ: distance from ownship to
intruder; (ii) θ: angle of intruder relative to ownship heading direction; (iii) ψ:
heading angle of intruder relative to ownship heading direction; (iv) vown: speed
of ownship; (v) vint: speed of intruder; (vi) τ : time until loss of vertical sepa-
ration; and (vii) aprev: previous advisory. The five possible output actions are
as follows: Clear-of-Conflict (COC), Weak Right, Weak Left, Strong Right, and
Strong Left. Each advisory is assigned a score, with the lowest score correspond-
ing to the best action. The FAA is currently exploring an implementation of
ACAS Xu that uses an array of 45 deep neural networks. These networks were
obtained by discretizing the two parameters, τ and aprev, and so each network
contains five input dimensions and treats τ and aprev as constants. Each network
has 6 hidden layers and a total of 300 hidden ReLU activation nodes.

We applied our approach to several of the ACAS XU networks. We describe
here in detail the results for one network. Each input consists of 5 dimensions and
is assigned one of 5 possible output labels, corresponding to the 5 possible turning
advisories for the drone (0:COC, 1:Weak Right, 2:Weak Left, 3:Strong Right, and
4:Strong Left). We were supplied a set of cut-points, representing valid important
values for each dimension, by the domain experts [8]. We generated 2662704
inputs (cartesian product of the values for all the dimensions). The network was
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Table 2. Details of the analysis for some clusters for ACAS Xu

Cluster# Safe for label Radius # queries Time (min) Slice (Y/N)

5282 1 0.04 1 5.45 N

label:0 2 0.04 1 3.91 N

3 0.04 1 3.57 N

4 0.04 1 4.01 N

1783 1 0.16 4 1.28 Y

label:0 2 0.17 1 279 N

3 0.17 1 236 N

4 0.17 1 223 N

2072 0 0.06 1 11.51 N

label:1 2 0.014 9 0.98 N

3 0.011 7 0.71 N

4 0.012 5 0.58 N

6138 1 0.089 9 103.2 N

label:0 2 0.11 4 2.86 N

executed on these inputs and the output advisories (labels) were verified. These
were considered as the inputs with known labels for our experiments.

The labeled-guided clustering algorithm was applied on the inputs using the
L2 distance metric. Clustering yielded 6145 clusters with more than one input
and 321 single-input clusters. The clustering took 7 h. For each cluster we com-
puted a region, characterized by a centroid (computed by kMeans), radius (aver-
age distance of every cluster instance from the centroid), and the expected label
(the label of all the cluster instances).

We first evaluated the network on all the centroids as they are considered
representative of the entire cluster and should ideally have the expected label.
The network assigned the expected label for the centroids of 5116 clusters (83%
of total number of clusters). For the remaining 1029 clusters, we found that
they contained few labeled instances spread out in large areas. Therefore, we
considered these clusters were not precise and our analysis was inconclusive.
For singleton clusters, we fall back to checking local robustness using previous
techniques [10]. These stand-alone points serve to identify portions of the input
space which require more training data, thus potentially more vulnerable to
adversarial perturbations.

Amongst the remaining 5116 clusters, we picked randomly 210 clusters to
illustrate our technique. These clusters contain 659315 labeled inputs (24% of the
total inputs with known labels). For each region corresponding to the respective
clusters, we applied DeepSafe to check equation 2 for every label. The distance
metric used was L1 since L2 can not be handled by Reluplex (see Sect. 3 that
explains why this is still safe). The results are presented in Tables 1 and 2. The
min radius in Table 1, refers to the average minimum radius around the centroid



DeepSafe: A Data-Driven Approach 15

of each region for which the safety guarantee applies (averaged over the total
number of regions for that safety type). The # queries refers to the number of
times the solver had to be invoked until an UNSAT was obtained, averaged over
all the regions for that property.

DeepSafe was able to identify 125 regions which are completely safe, i.e.
the network yields a label consistent with the neighboring labeled inputs within
the region. 52 regions are targeted safe, the network is safe against misclassifying
inputs to certain labels. For instance, the inputs within region 6138 (Table 2) with
an expected label 0 (COC), were safe against misclassification only to labels 1
(weak right) and 2 (weak left). The solver timed out without returning any result
for the remaining labels. The analysis timed out without returning a concrete
result for any label for 33 clusters. A time out does not allow to provide a proof
for the regions, although the likely answer is safe (generally, solvers take much
longer when there is no solution).

The min radius in Table 1, refers to the average minimum radius around the
centroid of each region for which the safety guarantee applies (averaged over the
total number of regions for that safety type).

The # queries refers to the number of times the solver had to be invoked
until an UNSAT was obtained, averaged over all the regions for that property.

4.2 MNIST Image Dataset

The MNIST database is a large collection of handwritten digits that is commonly
used for training various image processing systems [12]. The dataset has 60,000
training input images, each characterized by 784 attributes and belonging to
one of 10 labels. We used a network that comprised of 3 layers, each with 10
ReLU activation nodes. Clustering was applied using the L1 distance metric. It
yielded 6654 clusters with more than one input and 5681 single-input clusters.
The clustering consumed 10 h. A separate process for verification of each cluster
was spawned with a time-out of 12 h.

Table 3. Summary of the analysis for MNIST network for 80 clusters

Property # clusters Min radius Time (hours) # queries

Safe 7 2.46 11.27 2.85

Targeted safe 63 5.19 11.02 4.87

Time out 10 NA 12 NA

For the singleton clusters, as is the case with ACAS Xu, we performed local
robustness checking as in previous approaches.

Table 3 shows the summary of the results for the runs for 80 clusters that we
selected for evaluation. In past studies, the MNIST network has been shown to
be extremely vulnerable to misclassification on adversarial perturbations even
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with state-of-the art networks [3]. Therefore, as expected, it is easy to determine
SAT solutions and they were discovered very fast (within a minute). However,
it is very time consuming to prove safety; the verification time is much higher
than that of the ACAS Xu application as it is mainly impacted by the large
number of input variables (784 attributes). We would like to highlight that our
work is the first to successfully identify safety regions for MNIST even on a fairly
vulnerable network.

For 7 clusters, the solver returned UNSAT for all labels within 12 h. For 30
clusters, the solver returned UNSAT only for few labels but timed out before
returning any solution for the other labels. These have been included in the
targeted safe property in the table. Additionally, based on the nature of this
domain, we can consider it safe to assume that if for any label the solver does
not return a SAT solution within 10 h, then it is safe w.r.t. that label even
if it does not prove unsatisfiability within this time. This happened to be the
case for 33 clusters, where the solver could not find a solution for a specific
target label despite executing for more than 10 h. These have been included in
the targeted safe type as well. For 10 of the remaining clusters, the solver kept
finding adversarial examples despite iterative reductions of the radius and the
time-out occurred before the radius reduced to 0. These have been included as
time out in the table, since we cannot determine for sure if the region should be
marked unsafe for the specific labels.

5 Discussion

We compared DeepSafe with a method of randomly choosing inputs with known
labels and checking for local adversarial robustness using previous work [10].
This technique searches for inputs around the given fixed input, by varying each
input variable (dimension) in the range of [fixedvalue − ε, fixedvalue + ε] (L∞
distance metric). It checks if there exists any input in this range, for which the
network assigns a higher score to any other label than that of the fixed input.
The algorithm starts with a standard epsilon value of 0.1 and iteratively reduces
the value until UNSAT is obtained or the value reduces to 0.01. We chose 210
random points for ACAS Xu and 80 random points for MNIST respectively, in
line with the number of regions that we checked with DeepSafe.

We found that for MNIST, local robustness checking found no safe regions
around any of the 80 points, whereas DeepSafe found 7 safe regions and 63
targeted safe regions. For ACAS Xu, this technique yielded only 62 safe regions
which are completely safe compared to 125 safe regions that were found using
DeepSafe. This experiment shows that the choice of input points and the delta
around these points play an important role in effective adversarial robustness
checking. We also looked at the validity of the adversarial examples generated
by DeepSafe. If an adversarial example is invalid or spurious, it indicates that
the expected label is incorrect for that input and that the label generated by the
network is in fact correct. During our analysis for ACAS Xu we found adversarial
examples, which were validated by domain experts. The adversarial cases were
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Fig. 3. Inputs highlighted in light blue are mis-classified as Strong Right instead of
COC (left). Inputs highlighted in light blue are mis-classified as Strong Right instead
of Strong Left(right).

Fig. 4. Images of 1 misclassified as 8, 4, and 3

found to be valid, albeit not of high criticality. The adversarial examples for
MNIST were converted to images and manually verified to be valid (see Fig. 4).

There could be scenarios where both the region and the network agree on
the labels for all inputs, and still this could not be the desired behavior. This
would impact the validity of the safety guarantees provided by DeepCheck. We
addressed this issue by validating the safety regions for ACAS Xu with the
domain experts. The mismatch of labels for the centroid of a region does poten-
tially indicate an imprecise oracle. However, we found that the number of such
regions is not high (1029 out of 6145 clusters for ACAS Xu).

6 Related Work

The vulnerability of neural networks to adversarial perturbations was first dis-
covered by Szegedy et al. in 2013 [17]. They model the problem of finding the
adversarial example as a constrained minimization problem. Goodfellow et al. [6]
introduced the Fast Gradient Sign Method for crafting adversarial perturbations
using the derivative of the model’s loss function with respect to the input feature
vector. Jacobian-based Saliency Map Attack (JSMA) [14] proposed a method for
targeted misclassification by exploiting the forward derivative of an NN to find
an adversarial perturbation that will force the model to misclassify into a specific
target class.

Carlini and Wagner [3] recently proposed an approach that could not be
resisted by state-of-the-art networks such as those using defensive distillation.
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Their optimization algorithm uses better loss functions and parameters (empiri-
cally determined) and uses three different distance metrics. Deep Learning Veri-
fication (DLV) [7] is an approach that defines a region of safety around a known
input and applies SMT solving for checking robustness. They search for possibly-
adversarial inputs by manipulating the given valid input in a discretized input
space. They can only guarantee freedom of adversarial perturbations within
the discrete points that are explored. Our clustering approach can potentially
improve the technique by constraining the discrete search within regions.

Recent work [11] using Reluplex discusses in depth refined versions of global
and local robustness, which take into account the confidence (C) that the net-
work is placing on its predictions. For instance, the local robustness at input
x0 is defined as ∀x. ‖x − x0‖ < δ =⇒ ∀l.‖C(F, x, l) − C(F, x0, l)‖ < ε.
Similarly, the global robustness, informally introduced in [10], is defined as
∀x, x′. ‖x − x′‖ < δ =⇒ ∀l.‖C(F, x, l) − C(F, x, l)‖ < ε. However, this check
is expensive and also requires user input for acceptable values for both δ and
ε. The motivation for taking into account the confidence is to better handle the
inputs that lay on boundaries between labels, in the sense that there should be
no spikes greater than ε in the levels of confidence that the network assigns to
each labels for these points. However, the value of δ and epsilon need not be
the same for all inputs and all labels respectively. For instance, points embedded
deep inside consistently labeled regions, the δ should be large while for points on
the boundaries between labels only a small δ could be tolerable. Nevertheless,
we believe that DeepSafe can be used beneficially with the above approach, by
automatically finding regions that can then be checked using the more refined
local check.

7 Conclusion

This paper presents a data-guided technique for assessing the adversarial robust-
ness of neural networks. The technique can find adversarial perturbations or
prove they cannot occur within well-defined geometric regions in the input space
that correspond to clusters of similar inputs known to share the same label. In
doing so, the approach identifies and provides proofs for regions of safety in the
input space within which the network is robust with respect to target labels.
Experiments with the ACAS Xu and MNIST networks highlight the potential
of the approach in providing formal guarantees about the robustness of neural
networks in a scalable manner. Checking robustness for deep neural networks is
an active area of research. As part of future work, we plan to integrate our app-
roach with other solvers that will broaden the application of DeepSpace to other
kinds of neural networks and also investigate testing, guided by the computed
regions, as an alternative to verification for increased scalability.
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Abstract. The increasing use of deep neural networks in a variety of
applications, including some safety-critical ones, has brought renewed
interest in the topic of verification of neural networks. However, verifica-
tion is most meaningful when performed with high-quality formal speci-
fications. In this paper, we survey the landscape of formal specification
for deep neural networks, and discuss the opportunities and challenges
for formal methods for this domain.

1 Introduction

Deep neural networks (DNNs) are increasingly being deployed in domains where
trustworthiness is a major concern, including automotive systems [41], health
care [3], computer vision [35], and cyber security [13,53]. This increasing use of
DNNs has brought with it a renewed interest in the topic of verification of neural
networks, and more generally, in the topics of verified artificial intelligence (AI)
and AI safety [4,47,52].
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Fig. 1. Typical formal verification procedure: S is the system under verification, E is
a model (or specification) of its environment, and Φ is the specification that system S
must satisfy when composed with E.

Verification is most meaningful when performed with high-quality formal
specifications, i.e., with a high-quality, mathematically rigorous specification of
c© Springer Nature Switzerland AG 2018
S. K. Lahiri and C. Wang (Eds.): ATVA 2018, LNCS 11138, pp. 20–34, 2018.
https://doi.org/10.1007/978-3-030-01090-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01090-4_2&domain=pdf


Formal Specification for Deep Neural Networks 21

desired behavior that lends itself to algorithmic checking. As shown in Fig. 1, a
typical formal verification procedure takes in not only a representation of the
system under verification, but also the specification to be verified as well as a
model (or specification) of the environment. Even as there is growing interest in
the verification of DNNs (e.g., [20,32]), there is surprisingly little that has been
written about formal specification for deep neural networks, in particular about
properties that are particularly relevant for neural networks as opposed to other
types of systems.

In this paper, we seek to address this gap by exploring the landscape of
formal specification for deep neural networks (DNNs). We begin by exploring
the use cases of neural networks in learning-based systems today, presenting a
brief taxonomy of DNN-based systems under verification. We then consider the
literature on the design, (adversarial) analysis, and verification of DNNs. These
works have implicitly or explicitly specified a variety of properties. We present
these properties, organizing them along two dimensions. First, we present a
semantic classification of properties, based on their meaning and relevance for
the verification of systems based on deep neural networks. Second, we present
a trace-theoretic classification, where we take the standard view of properties
defined using sets of traces, and discuss how the various properties fit into those
categories.

Our overall goal is to lay an initial foundation for formalizing and reasoning
about properties of DNNs, and for using these properties in a rigorous design
and verification methodology. We conclude with a brief discussion of challenges
and opportunities for applying formal methods to the design and analysis of
DNNs.1

2 Deep Neural Networks: Background and Use Cases

We are assuming that the reader is familiar with the basics of deep neural net-
works (DNNs). For those not familiar with DNNs, we suggest one of the books
on the topic (e.g., [25]). The goal of this section is to define basic notation and
describe common patterns of DNN-based systems.

2.1 Notation

We will use fairly standard notation about machine learning in the supervised
setting.

Consider a sample space Z of the form X × Y , and an ordered training set
S = ((xi, yi))m

i=1, where xi ∈ X is the data and yi ∈ Y is the corresponding
label. Let H be a hypothesis space (e.g., a particular neural network architecture
parameterized by a weight vector w). If the network computes a function from
X to Y , we will denote it by fw; i.e., fw(x) = y. There is a loss (or risk) function
� : H × Z �→ R so that given a hypothesis w ∈ H and a sample (x, y) ∈ Z, we

1 An early version of this paper appeared in [51].
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obtain a loss �(w, (x, y)). We consider the case where we want to minimize the
average loss over the training set S,

LS(w) =
1
m

m∑

i=1

�(w, (xi, yi)) + λR(w).

In the equation given above, λ > 0 and the term R(w) is called the regularizer;
the latter seeks to enforce a notion of “simplicity” in w. Since S is fixed, we
sometimes denote �i(w) = �(w, (xi, yi)) as a function only of w. The training
problem is to find a w that minimizes Ls(w); i.e., we wish to solve the following
optimization problem:

min
w∈H

LS(w)

This optimization problem is also sometimes termed empirical risk minimization.

Fig. 2. Four use cases for DNNs in systems: (a) only for perception in a larger closed-
loop system; (b) for end-to-end decision making, from perception to control, in a closed-
loop system; (c) for open-loop decision making, and (d) for general-purpose program-
ming.

2.2 DNN-Based Systems

DNNs have been used in a variety of systems. Figure 2 shows a selection of the
types of DNN-based systems developed in research and development. Arguably
their biggest impact to date has been in perceptual tasks, such as vision, natural
language processing, speech recognition, etc. Thus, a major use case for DNNs
is to perform perceptual tasks within the context of a larger closed-loop system,
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such as an autonomous vehicle, depicted in Fig. 2(a). An example of such a
system is the automatic emergency braking system (AEBS) described by Dreossi
et al. [15], where images taken by a camera mounted in front of an autonomous
vehicle are fed to a DNN performing object detection and classification, whose
output is sent to a controller that controls the steering angle and throttle of the
autonomous vehicle. This vehicle then interacts with the rest of its environment
(other vehicles, pedestrians, etc.) and the resulting interaction generates new
sensor (image) data, closing the loop. In this case, the DNN is one component of
a larger engineered system, which usually has its own specification that provides
context for the design of the DNN.

The use of DNNs has also been demonstrated for so-called “end-to-end con-
trol”, where neural networks go from sensor data to generating decisions and
controlling actuation, as shown in Fig. 2(b). This example differs from Fig. 2(a)
in that the DNN is used not just for perception, but also control. An example is
an experimental self-driving system developed by a team at Nvidia [7].

Open-loop decision-making systems based on DNNs have also been proposed,
such as a system that decides which loan applications to approve. This kind of
system is depicted in Fig. 2(c). In this case, the DNN is the overall system under
design and analysis.

Finally, the versatility of DNNs has also been demonstrated in general-
purpose programming, such as learning programs for tasks such as sorting or
string processing, shown in Fig. 2(d). This use case for DNNs has specifications
similar to those arising in traditional program verification problems.

There are other use cases for DNNs not shown in Fig. 2, such as the use of
stateful neural networks (e.g., recurrent neural networks) or the use of DNNs
for reinforcement learning, where the DNN is used for sequential prediction and
decision-making tasks.

Each of these use cases throws up different requirements. We will discuss the
corresponding kinds of formal specifications in the following section.

3 Semantic Classification

We classify properties of deep neural networks based on the type of semantic
behavior they capture. Each semantic category appears in a separate sub-section
below; however, we note that these are not strict partitions, and there are some
properties that fall into multiple categories.

3.1 System-Level Specification

Several systems use DNNs as one component in a larger system targeting a
particular application. For example, consider the use of a DNN for object detec-
tion in an autonomous vehicle. In such settings, the end goal can typically be
captured naturally in terms of a system-level specification—a property over the
entire system that addresses the target application. As argued in recent papers
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(e.g. [18,52]), if the DNN is used for a perceptual task that mimics human per-
ception, then it is very hard, if not impossible, to write a formal specification
for that task. The overall system’s specification, in contrast, can be described
precisely, at least for engineered systems. Traditional specification formalisms,
such as temporal logics, may be employed for the system-level specification.

An example of this approach is to specify the behavior of the automatic
emergency braking system whose closed-loop diagram is shown in Fig. 2(a). The
function of this system is to automatically actuate the brakes on the vehicle
when it detects an environment object (obstacle) to be close. The objective is
to maintain, at all times, a minimum safe distance between the autonomous
vehicle (AV) and environment objects while the AV is in motion. We can write
this specification in a standard specification language such as signal temporal
logic (STL), as follows:

G [AV moving ⇒ dist(xAV ,xenv) > Δ]

However, to scale to large systems, compositional (modular) reasoning is
necessary. This poses a challenge to perform compositional verification in the
absence of traditional, assume-guarantee style compositional specifications [50].
In prior work [15,16,50], we have shown how to derive constraints on the input
space of the DNN from a system-level specification. However, these constraints
are a guidance on where to search for counterexamples rather than a specification
for the DNN itself.

3.2 Input-Output Robustness

In recent years, a significant amount of work has addressed the robustness (or
lack thereof) of neural networks to so-called “adversarial perturbations” of their
inputs (for example, [5,9,27,38,42,43,54,58]). Techniques used to demonstrate
a lack of robustness are often referred to as “adversarial analysis.”
Optimization Formulation of Local Robustness: A common approach to adver-
sarial analysis involves solving an optimization problem of the following form,
given a fixed input x:

min
δ

μ(δ)

s.t. δ ∈ Δ
fw(x + δ) ∈ T (x)

(1)

Here μ is a cost function defined on the perturbations, typically a distance metric
based on a norm (L1, L2, or L∞), Δ is a constrained domain set for δ, the
constraint fw(x + δ) ∈ T (x) ensures that the output of the NN to the perturbed
input lies in the adversary’s target output set T (x) (which can be a function of
x, e.g., Y \ {y} where y is the correct label). Typically Δ is set to be the same
as the domain of x, e.g., Rn. This property is referred to as “local” robustness
since it concerns robustness around a given input x.

For a recent survey (from a formal methods perspective) of techniques for
analyzing robustness, see [18].
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Decision Formulation of Local Robustness: The decision version of this optimiza-
tion problem states that, given a bound β and input x, the adversarial analysis
problem is to find a perturbation δ such that the following formula is satisfied:

ϕ(δ) .= μ(δ) < β ∧ δ ∈ Δ ∧ fw(x + δ) ∈ T (x)

In other words, the robustness property is the negation of the above formula,
¬ϕ(δ):

[μ(δ) < β ∧ δ ∈ Δ] ⇒ [fw(x + δ) �∈ T (x)]

Global Robustness: One can generalize the previous notion of robustness by
universally quantifying over all inputs x, to get the following formula, for a
fixed β:

∀x. ∀δ. ¬ϕ(δ)

This is referred to as “global” robustness as we are not limited to analyzing
robustness around a fixed point.

An alternative formulation of global robustness involves specifying that the
DNN outputs a similar answer on all pairs of inputs (x1, x2) that are “close”, as
follows:

∀x1, x2. [μ(x1 − x2) < β ∧ (x1 − x2) ∈ Δ] ⇒ [fw(x1) ≈ fw(x2)]

where “≈” is a suitably-defined notion of similarity between outputs of the DNN.
Loss-based Robustness: Another formulation (e.g., [38]) involves finding a δ that
maximizes the loss:

E(xy)∼D[max
δ∈Δ

�(w, (x + δ, y))] (2)

where D is the distribution of the input space. In [38], the authors use the L∞
norm to describe Δ as a bounded neighborhood around x.

This is a probabilistic formulation that involves knowledge of the distribution.
In the absence of such knowledge, one may consider the worst case over the (x, y)
space.
Additional Robustness Properties: Other authors have proposed alternative def-
initions of robustness in the literature. For instance, Bastani et al. [5] define
notions of adversarial frequency (how often the DNN fails to be locally robust)
and adversarial severity (the average robustness value exceeding a given thresh-
old, averaged over inputs x chosen from some given input distribution). Cheng
et al. [11] provide a definition of maximum resilience that is a global notion of
robustness applying to multi-classification DNNs.

While these notions of robustness have been useful in demonstrating the
limitations of DNNs for classification and other prediction tasks, as has been
recently argued [18], they are not enough by themselves. We need to tie them to
the overall application semantics. We discuss this point further in Sect. 3.
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3.3 Input-Output Relations

Feedforward neural networks are programs that compute functions of their input.
For such programs, one can write formal specifications in the standard man-
ner: assuming a pre-condition on the inputs, P (x), guarantee a post-condition
Q(x, y), i.e., ∀x, y. P (x) ⇒ Q(x, y), where x and y are the inputs and outputs
of the DNN respectively.

Researchers have identified special cases of pre/post-condition pairs for deep
neural networks. For example, Dutta et al. [19] analyze properties of the form
P (x) =⇒ Q(y) where P and Q are restricted to certain kinds of geomet-
ric regions. Similarly, Dvijotham et al. [20] give examples of a similar class of
restricted pre/post-condition pairs. These are typically partial specifications of
sequential program correctness.

Deep neural networks are being used for other kinds of functional computa-
tions, such as neural Turing machines [30] and other neural programming archi-
tectures [8]. This case is depicted in Fig. 2(d). For these programs and formalisms,
traditional classes of functional program specifications, those that provide com-
plete specifications of program behavior, will also apply.

3.4 Semantic Invariance

For some applications, the input space X can be partitioned into equivalence
classes X1,X2,X3, . . ., such that for each equivalence class Xi ⊆ X, and pair of
inputs xi1, xi2 ∈ Xi, we require that fw(xi1) = fw(xi2).

For instance, consider a DNN that must detect whether or not there is a car
in an image. One may want to specify that the binary output of the network
(car,¬car) be invariant to translation or scaling of objects in the image. Exam-
ples of such properties are typically domain-specific. We refer to such properties
as semantic invariance, an example of which is geometric invariance (see, for
example, [14,21,26,34,37]).

3.5 Monotonicity

In certain applications, the input space X admits a natural partial order �, and
one expects the output of the classifier to be monotonic with respect to this
ordering. A common example is a DNN used for approving loan applications: if
Applicant A’s income is strictly greater than Applicant B’s, all else being equal,
then one might expect that A’s application would be granted if B’s was.

One can formalize this property as follows:

∀x1, x2 ∈ X.x1 �X x2 =⇒ fw(x1) �Y fw(x2)

where �X indicates a preference order on X while �Y denotes such an ordering
on the output space Y .

For examples of papers discussing monotonicity properties, see [20,59].
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3.6 Fairness

Over the last decade, there is a growing literature on the need to ensure that
machine learning (ML) systems produce outputs that are “fair” in some way.
The notion of fairness typically has to do with certain attributes of the input
vector x being sensitive, and that the decisions should not be influenced (perhaps
in a statistical way) by those sensitive attributes. For DNNs, fairness is typically
discussed in the context of decision-making systems similar to the one shown in
Fig. 2(c).

This is still an evolving area, and there are many different formulations of
fairness; see, e.g., [1,2,6,23,24,31,36]. One aspect shared by many is that they
are probabilistic properties.

One class of fairness properties are similarity-based fairness properties, such
as individual fairness (IF), which states that the neural network (ML model)
maps similar inputs to similar outputs. This shares similarities with semantic
invariance and robustness, except that the notion of similarity is different.

Another class of fairness properties are defined at the population level. An
example is demographic parity which states that the probability of getting a
particular output value is independent of the values of the sensitive attributes. In
this respect, this property shares similarities with the notion of non-interference
that has been researched in the formal methods and programming languages
literature.

Yet another notion of fairness is counterfactual, relying on causal models
(e.g. [36]). In this version of fairness, a decision output by a DNN is fair towards
a particular input (individual) if that decision is the same in both the actual
world and a counterfactual world where the input has a different value for one
or more “protected” attributes (features).

3.7 Input/Distributional Assumptions

Many theoretical guarantees about machine learning algorithms are predicated
on the assumption that the learned model is tested only on input drawn from the
distribution it was trained on. Such distributional assumptions therefore form
an important class of specifications. A specification language that captures such
assumptions must inherently be probabilistic. We believe probabilistic program-
ming languages (e.g., [10,28,29,39,45]), offer a natural and expressive way to
specify distributions over the input space, and are thus a natural fit for such
specifications. As an example, a recent probabilistic programming language for
specifying input scenarios that can be used to generate input data for neural
networks is described in [22].

3.8 Coverage Criteria

Formal specification can be useful even for testing or semi-formal verification of
a system. This has been amply demonstrated in the design of digital circuits,
where simulation-based verification of temporal logic assertions is standard. In
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this setting, formal specifications are often used to formalize design coverage
objectives, e.g., to ensure that certain conditions are activated by a test suite.

We believe formal specifications could play a similar role for the analysis of
DNNs. It is still unclear what sort of coverage properties are required. Some
initial progress on coverage-driven testing of DNNs has been reported by Pei
et al. [44].

3.9 Temporal Specifications

Stateful neural networks, such as recurrent neural networks (RNNs), essentially
implement state machines. For such neural networks, the formalisms used to
specify properties of state machines, and more broadly, of reactive systems, would
apply. Temporal logics provide a suitable formalism to specify properties of such
systems. An example of previous work in such a direction is that of Rodrigues
et al. [46], while Taylor and Farrah [55] describe extracting rules from neural
networks for verification, testing, and other purposes.

Another use of DNNs for stateful systems exhibiting temporally-varying
behavior is in deep reinforcement learning (e.g., see [40]). In reinforcement learn-
ing (RL), an intelligent agent interacts with its environment through actions,
observations and rewards [33]. Traditionally, specifications for RL have been
given as quantitative objective (cost and reward) functions; however, there is
also a large body of work on using temporal logics for specifying RL objectives
(see, e.g., [48,57]).

3.10 Specifications on Learning Algorithms

Finally, one might want to specify properties on the learning algorithms them-
selves (and their implementations), rather than on specific learned models.
Stochastic gradient descent (SGD) is a commonly used algorithm for training
DNNs. As an example, we point out the recent work by Selsam et al. [49] on
using interactive theorem proving to detect errors in systems that implement
machine learning algorithms based on stochastic computation graphs.

3.11 Bridging System-Level Specifications with Component-Level
Specifications

It has been recently observed [18] that although adversarial analysis of DNNs
is useful, it is not sufficient. The relevance of adversarial attacks can be ques-
tioned when the impact on the overall system within which the DNN is used is
unclear. Not all misclassifications are equally important. Thus, it is necessary
to increase the use of application-level or system-level semantics in adversarial
analysis and design of DNNs. There is a need to bridge system-level specifications
with component-level specifications.

To this end, we believe it is important to devise a good notion of semantic
robustness of DNNs to adversarial perturbations of the input. In order to do this,
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one needs to define the semantic feature space of the DNN—i.e., the feature space
that captures application-level semantics and not just raw inputs (e.g., the pixel
space for images). The raw input is obtained from the semantic feature vector
through a process of “rendering”, where we borrow the term from the rendering
of images from high-level semantic configurations. As an example, consider the
application of a DNN to perform object detection and classification in images
captured for autonomous driving. In this case, the semantic feature space is one
that captures high-level semantics of the scene around the vehicle – i.e., other
agents that are present (cars, pedestrians, bicyclists, etc.) and their properties,
parameters of the road and traffic scene, and other relevant characteristics. In
this respect, this problem is similar to that of capturing input assumptions (see
Sect. 3.7), although the emphasis here is more on the semantic features of the
environment and less on the underlying distributions.

Let S represent the semantic feature space. Given s ∈ S, we obtain an input
x ∈ X by a process we will call rendering or concretization. (X is sometimes
referred to as the “concrete feature space” to distinguish it from S.) Let R
denote the rendering procedure; i.e., R(s) = x. Then, we introduce a notion of
(global) semantic robustness as follows:

∀s, s′, x, x′. [s ≈S s′ ∧ R(s) = x ∧ R(s′) = x′] ⇒ [fw(x) ≈ fw(x′)]

Similar to the notion of robustness described in Sect. 3.2, the above definition is
based on a notion of similarity in the semantic feature space (≈S) and one on
the output space of the DNN (≈). Such a notion of similarity may well be based
on a suitably-chosen norm and bound such as β or δ used in Sect. 3.2. However,
we prefer the more abstract version given above given that much more work
remains to be done in characterizing semantic feature spaces and their relation
to the operation of the DNN. Further, the rendering procedure R may take in
additional parameters (similar to those of the DNN w), which we hide here for
simplicity.

Initial work on defining semantic feature spaces and bridging system-level
specifications with component-level ones is just emerging. To our knowledge, the
first work in this direction was [15,16], which uses a simple “modification” space
to represent semantic transformations to images. Fremont et al. [22] present
a more expressive language to capture semantic properties of a scene. How-
ever, these are very preliminary results, and much more remains to be done, as
described in [18].

4 Trace-Theoretic Classification

We conclude with a brief categorization of the above types of properties with
respect to their trace-theoretic nature.

Most properties in the formal methods literature tend to be trace properties;
i.e., the property is equivalent to specifying a set of correct or desired behaviors
of the system. For such properties, one can examine a single trace (input-output
behavior) of the system and determine whether or not it violates the property.
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However, certain properties are not trace properties, but are instead char-
acterized as sets of trace sets (or a set of correct systems)—these are called
hyperproperties [12]. Notable examples of such properties include determinism
and security properties such as confidentiality and integrity. For such proper-
ties, one must examine an ensemble of two or more traces in order to determine
whether the property has been violated. Hyperproperties cover all non-trace
properties.

4.1 Trace Properties

Several system-level properties, such as those specified in linear temporal logic
or metric temporal logics, are trace properties. Similarly input-output relations,
temporal specifications for stateful NNs, and specifications on machine learning
algorithms tend to be trace properties. Input-output robustness for a fixed input
is a trace property. Certain coverage properties can be evaluated over single
traces (e.g., whether specific neurons were activated on an input).

4.2 Hyperproperties

Some system-level properties, such as those specifying security policies, can be
hyperproperties. Input-output robustness in the general case (for all inputs) is a
hyperproperty; one must examine all pairs of inputs to determine if the system
is robust. Similarly, semantic invariance and monotonicity involve reasoning over
pairs of (related) traces. We note that all of the hyperproperties in this context
are so-called two-safety properties, and so in theory are not much harder to
verify or test than ordinary safety properties [56].

Fairness and average-case robustness are also hyperproperties, but of a prob-
abilistic nature. Distributional assumptions on the input space are also prop-
erties of an ensemble of traces. Finally, some coverage properties are aggregate
measures over sets of traces and thus are naturally hyperproperties.

5 Conclusion

In order to understand the design and verification problem for deep neural net-
works, it is essential to have a good understanding of the landscape of formal
specification for DNNs. In this paper, we have presented a classification of the
kinds of specifications that have been found useful for reasoning about neural
networks and the systems that employ them. This serves as a starting point for
creating a more systematic design methodology for DNNs.

Formal specifications can be used not only for verification and testing, but
also for retraining, e.g., using counterexamples [17], or by using specification-
guided cost functions or features (say by augmenting the regularizer R(w)) in
the training process. Specifications are also crucial to capture, in a rigorous
manner, the assumptions made during the design process of DNNs, so that these
can be taken into account during the design and operation of the overall system
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containing the DNN. We believe the field of formal methods for the design and
analysis of deep neural networks, and of machine learning systems in general,
will be a rich domain for research for the foreseeable future, and that formal
specification will play a foundational role in this research.
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Abstract. Counterexamples produced by model checkers can be hard
to grasp. Often it is not even evident why a trace violates a specifica-
tion. We show how to provide easy-to-check evidence for the violation
of a linear temporal logic (LTL) formula on a lasso word, based on a
novel sound and complete proof system for LTL on lasso words. Valid
proof trees in our proof system follow the syntactic structure of the for-
mula and provide insight on why each Boolean or temporal operator
is violated or satisfied. We introduce the notion of optimal proofs with
respect to a user-specified preference order and identify sufficient condi-
tions for efficiently computing optimal proofs. We design and evaluate
an algorithm that performs this computation, demonstrating that it can
produce optimal proofs for complex formulas in under a second.

1 Introduction

Model checking is a successful formal verification technique. Designing an error-
free system using a model checker follows the cycle: (1) model the system and
formulate the specification it should adhere to, (2) run the model checker, (3)
if the tool finds an error, determine whether the error is in the model or the
specification, and (4) go back to Step 1 and change the model or the specifica-
tion accordingly. Our focus in this paper is on Step 3, which can be extremely
challenging and time-consuming. To succeed there, the user must understand
the interaction between the model, the specification, and the counterexample.
Many prior approaches focus on explaining the interaction between the model
and the counterexample [3,12–14], while neglecting the specification.

In many cases, the interaction between the specification and the counterex-
ample is non-trivial to understand. Hence the question “Why does this coun-
terexample violate this specification?” may be a hard one. Our work focuses
on this question in the context of model checking properties expressed in linear
temporal logic with past and future (LTL), where counterexamples are finite
words or infinite but ultimately periodic words (also called lasso words). In this
paper, we restrict our attention to lasso word counterexamples, although it is
possible to transfer most of our results to finite words.
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Given our restriction, we refine the question that we investigate to “Why
does the counterexample uvω violate the LTL formula ϕ?” This question is inde-
pendent of the specific model checking technique used to find the counterex-
ample. Ignoring the “Why” in the question, we obtain the LTL path-checking
problem [21], a core decision problem in for runtime verification. A decision pro-
cedure for this problem, namely a path-checking algorithm, computes a Boolean
result which provides no insight into why the formula is violated. However, the
algorithm itself knows why the formula is violated.

To expose the internal knowledge of an LTL path-checking algorithm, we
must fix a suitable representation of this information. Our approach is to devise
a proof system for LTL on lasso words, where proof search amounts to solving
LTL path checking. Then, proof trees (or just proofs) in this setting capture
the knowledge of the proof search algorithm and are the data structure that
we output to explain violations. To be understandable, the proof system’s rules
must be as simple and as close to the standard semantics of LTL as possible.
In particular, they should not be tainted with algorithmic details such as LTL’s
unrolling equations used in many path-checking algorithms.

Typically there are multiple (often infinitely many) different proof trees for
a given formula and lasso word. Each proof tree represents a different way to
explain the violation. Deciding which proof among the set of all valid proofs
helps the user best understand the violation depends on the application scenario
and the user. If the user’s objective is to identify the most severe violation given
an ordering of severity on atomic events, then he or she may be interested in
proofs that focus on the particular events. For example, consider the formula
�(PipeSealed ∧ LightsOn), stating that the pipe is always sealed and the light
is always turned on. When there are different violations, we might prefer learn-
ing about the more severe cases of pipe leakage than about the lights being
switched off. In addition, it is useful to learn about the earliest point in time
when the pipe started to leak. The proofs in our proof system can represent this
information. Moreover, it might be preferable to give the user a concise proof. To
flexibly handle different scenarios, we allow the user to specify a preference order
on proofs. For preference orders that satisfy some monotonicity conditions, we
devise a proof search algorithm that computes an optimal proof with respect to
the order.

In summary, we make the following contributions. We describe a sound and
complete proof system for LTL on lasso words, where proof search amounts to
path-checking (Sect. 3). We define a notion of optimal proofs in our proof sys-
tem with respect to a user-specified preference order. Since computing optimal
proofs can be intractable for arbitrary orders, we identify sufficient conditions
on the preference order for which an optimal proof can be efficiently computed
(Sect. 4) and we use these conditions to devise an algorithm that computes an
optimal proof (Sect. 5). Taken together, these contributions provide a new app-
roach to explaining counterexamples generated by LTL model checkers. Finally,
we evaluate and demonstrate the effectiveness of a prototype implementation
of our algorithm on realistic examples (Sect. 6). We postpone the discussion of
related work until after the presentation of our technical contributions (Sect. 7).
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2 Linear Temporal Logic

We briefly recapitulate the syntax and semantics of linear temporal logic (LTL).
The set of LTL formulas over a set of atomic propositions P is defined induc-
tively:

ϕ = p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ S ϕ | ϕ U ϕ,

where p ∈ P . Along with the standard Boolean operators, LTL includes the
temporal operator S (since) and U (until), which may be nested freely. For
simplicity, we omit next and previous; however, all results in this paper can be
easily extended to accommodate them. LTL formulas are evaluated on words over
the alphabet Σ = 2P . A word is an infinite sequence ρ = ρ(0), ρ(1), ρ(2), . . .,
where each ρ(i) ∈ 2P . Whether an LTL formula is satisfied at time-point i for a
fixed word ρ is defined inductively as follows.

i |= p iff p ∈ ρ(i) i |= ¬ϕ iff i �|= ϕ
i |= ϕ1 ∨ ϕ2 iff i |= ϕ1 or i |= ϕ2 i |= ϕ1 ∧ ϕ2 iff i |= ϕ1 and i |= ϕ2

i |= ϕ1 S ϕ2 iff j |= ϕ2 for some j ≤ i and k |= ϕ1 for all j < k ≤ i
i |= ϕ1 U ϕ2 iff j |= ϕ2 for some j ≥ i and k |= ϕ1 for all i ≤ k < j

Note that here, and in subsequent definitions, the dependence on ρ is left implicit.
A lasso (word) has the form ρ = uvω, where u and v are finite words over

the alphabet 2P and |v| �= 0. We refer to u as the prefix and v as the loop of the
lasso word ρ.

Let SF(ϕ) denote the set of ϕ’s strict subformulas (i.e., excluding ϕ) defined
as usual. We pick some well-founded total order � over SF(ϕ) that respects the
subformula ordering: if ϕ1 ∈ SF(ϕ2), then ϕ1 � ϕ2. For a formula ϕ, the past
height hp(ϕ) and the future height hf (ϕ) are defined as the number of nested
past operators and future operators in ϕ, respectively. The temporal height h(ϕ)
is defined as hp(ϕ) + hf (ϕ).

3 Proof System for LTL on Lasso Words

We introduce a proof system for LTL path checking. Proofs in this system witness
the satisfaction or violation of an LTL formula with respect to a given lasso
ρ = uvω. Although we are primarily interested in violations, in the presence of
negation it is convenient to reason about satisfaction as well. Our proof system
therefore consists of two mutually dependent judgments: �+ (satisfaction) and
�− (violation), and is defined as the least relation satisfying the deduction rules
shown in Fig. 1. The names of the satisfaction and violation judgment rules are
suffixed by + and −, respectively.

The satisfaction rules ap+, ¬+, ∨+
L , ∨+

R, ∧+, U+, and S+ directly follow the
semantics of the corresponding LTL operators. For example, in the case of S+,
the premise for i �+ ϕ1 S ϕ2 includes a witness time-point j such that j �+ ϕ2

and a finite sequence of satisfaction proofs of ϕ1 for all k ∈ (j, i]. The violation
rules for the non-temporal operators ap−, ¬−, ∨−, ∧−

L , and ∧−
R are dual. The
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Fig. 1. Proof system for a fixed lasso word ρ = uvω

violation rules for the temporal operators are more interesting. To arrive at S−

and S−
∞, we negate and rewrite the semantics of S:

i �|= ϕ1 S ϕ2 iff ∀j ≤ i. j �|= ϕ2 ∨ (∃k ∈ (j, i]. k �|= ϕ1)

iff (∃j ≤ i. j �|= ϕ1 ∧ (∀k ∈ [j, i]. k �|= ϕ2)) ∨ (∀k ≤ i. k �|= ϕ2) (Eq. ≡S )

The rules S− and S−
∞ correspond to the two disjuncts in the last right-hand side.

Using this particular format for the rules (as opposed, for example, to the first
right hand side, which requires deciding between two choices for all previous
time-points) is a deliberate design decision. The violation proof j �− ϕ1 in S−

allows us to disregard all the previous time-points at which ϕ2 held, since these
previous time-points cannot witness the satisfaction of ϕ1 S ϕ2 exactly because
of j �− ϕ1. The second rule S−

∞ covers the case when there is no such j with
j �− ϕ1. Then, to violate ϕ1 S ϕ2 at i, the formula ϕ2 must have previously
always been violated.

For the future operator U, we consider the dual semantic equation:

i �|= ϕ1 U ϕ2 iff (∃j ≥ i. j �|= ϕ1 ∧ (∀k∈ [i, j]. k �|= ϕ2)) ∨ (∀k ≥ i. k �|= ϕ2) (Eq. ≡U)

The rules U− and U−
∞ model the two disjuncts. Yet the assumption in U−

∞
appears to be much weaker than what the right disjunct demands: instead of
providing infinitely many violation proofs for ϕ2 for every time-point ≥ i, the
rule requires only a finite number (that depends on the past height of ϕ2, |u| and
|v|) of violation proofs for ϕ2. This rule’s soundness follows by taking the cyclic
nature of the fixed lasso word into account. To see this, we recall a theorem from
Markey and Schnoebelen [21] that states that the satisfiability of ϕ is periodic
on lasso words after a certain threshold time-point.

Lemma 1. Fix a lasso ρ = uvω. For all ϕ and k > |u| + hp(ϕ) · |v|, we have
k |= ϕ iff k + |v| |= ϕ.
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Proof. By structural induction on ϕ with an arbitrary k. 	

Another induction extends this result to cover all time-points modulo |v|, starting
from the threshold.

Corollary 1. Fix a lasso ρ = uvω. For all ϕ, n ∈ N, and k > |u| + hp(ϕ) · |v|,
we have k |= ϕ iff k + n · |v| |= ϕ.

Proof. Induction over n with an arbitrary k using Lemma 1 in the induction
step. 	


Corollary 1 yields that if k �|= ϕ for k ∈ [thr, thr + |v|) (where thr ≥ |u| +
hp(ϕ) × |v|), then ∀k ≥ thr. k �|= ϕ. Intuitively, if we can prove often enough
that a formula does not hold, then it will never hold. From this, the soundness
of U−

∞ follows easily. So does the soundness and completeness of the entire proof
system.

Theorem 1. Fix a lasso ρ = uvω. For all ϕ and i ∈ N, we have i �+ ϕ iff i |= ϕ
and i �− ϕ iff i �|= ϕ.

Proof. (=⇒, Soundness): Mutual induction over the structure of the derivations
�+ and �− using the Equations ≡U and ≡S for the temporal operators and
Corollary 1.
(⇐=, Completeness): Induction over the structure of ϕ for an arbitrary i. 	

We conclude this section with an example.

Example 1. Let ρ = {a, c}({a, b}{c})ω and ϕ = a U (b ∧ c). Here is a proof of
0 �|= ϕ:

b /∈ {a, c}
0 �− b

ap−

0 �− b ∧ c
∧−

L

c /∈ {a, b}
1 �− c

ap−

1 �− b ∧ c
∧−

R

b /∈ {c}
2 �− b

ap−

2 �− b ∧ c
∧−

L

0 �− a U (b ∧ c)
U−

∞

Such proofs explain why a formula is satisfied or violated on a lasso word. In this
example, we immediately see that the U operator is violated because its second
argument b ∧ c is always violated. The proof provides witnesses for the violation
of b ∧ c at the first three time-points.

4 Proof Trees

To manipulate and compare proofs in the above system, we make them explicit.
Namely, we define an inductive syntax for satisfying (sp) and violating (vp)
proofs built using the rules in our proof system.

sp = ap+(N, Σ) | ¬+(vp) | ∧+(sp, sp) | ∨+
L(sp) | ∨+

R(sp) | S+(sp, sp) | U+(sp, sp)
vp = ap−(N, Σ) | ¬−(sp) | ∧−

L (vp) | ∧−
R(vp) | ∨−(vp, vp) | S−(vp, vp) | U−(vp, vp)

| S−
∞(vp) | U−

∞(vp)
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Here, sp and vp abbreviate finite sequences [sp, . . . , sp] and [vp, . . . , vp] of sub-
proofs. The proof from Example 1 can be written as P1 = U−

∞([∧−
L (ap−(0, b)),

∧−
R(ap−(1, c)),∧−

L (ap−(2, b))]) using this syntax. In the following, we treat satis-
faction and violation proofs uniformly, operating on the disjoint union p = sp�vp.
For a proof p ∈ p, we define V(p) to be � if p ∈ sp and ⊥ otherwise.

Observe that the time-points are only stored in the proofs of the atomic
propositions. This is sufficient to associate each proof tree p with a time-point
i(p). For example, i(S+ (p, [q1, . . . , qn])) is i(qn) if n > 0 and i(p) otherwise.
If the proof additionally passes a few syntactic checks with respect to a given
formula ϕ (such as the constructors in the proof match the constructors in the
formula) and a lasso word ρ (for atomic propositions), we call it valid for ϕ at
i(p) in ρ, written p � ϕ (again leaving the dependence on ρ implicit). We omit
the straightforward formal definitions of i(p) and p � ϕ. It is easy to see that
when p � ϕ, we have that V(p) implies i(p) �+ ϕ and ¬V(p) implies i(p) �− ϕ.

For a time-point i and a formula ϕ, multiple (in fact, potentially
infinitely many) valid proofs may exist. For example, two additional valid
proofs for the formula and the lasso word from Example 1 at time-point
0 are P2 = U− (ap−(2, a), [∧−

L (ap−(0, b)),∧−
R(ap−(1, c)),∧−

L (ap−(2, b))]) and
P3 = U− (ap−(4, a), [∧−

L (ap−(0, b)),∧−
R(ap−(1, c)),∧−

L (ap−(2, b)),∧−
R(ap−(3, c)),

∧−
L (ap−(4, b))]). Let us compare the three proofs. The proof using U−

∞ is smaller
in size. In contrast, the proofs using U− might be preferable as the U− rule is
very close to U’s semantics and thus easy to understand (whereas understanding
U−

∞ requires understanding Lemma 1). Of the two U− proofs, the shorter one is
easier to digest. Still, different proofs might be preferable in different situations.

With no reasonable way to decide which proof to present to a user, we offer
users a way to specify their preference using a well-quasi-order (wqo)
� ⊆ p × p. A wqo is a well-founded preorder: a transitive and reflexive relation
� for which the induced strict relation ≺ (defined as p ≺ q ⇐⇒ p � q ∧ q �� p)
is well-founded.

Example 2. Let w :: Σ → N be a weight function on the set Σ of atomic predi-
cates. We define, the weighted size |−|w :: p → N of a proof tree recursively as
follows:

|ap+(i, a)|w = w(a) |ap−(i, a)|w = w(a)
|¬+(p)|w = 1 + |p|w |¬−(p)|w = 1 + |p|w
|∨+

L(p)|w = 1 + |p|w |∧−
L (p)|w = 1 + |p|w

|∨+
R(p)|w = 1 + |p|w |∧−

R(p)|w = 1 + |p|w
|∧+(p1, p2)|w = 1 + |p1|w + |p2|w |∨−(p1, p2)|w = 1 + |p1|w + |p2|w
|S+(p, q)|w = 1 + |p|w +

∑n
i=1 |qi|w |S−(p, q)|w = 1 + |p|w +

∑n
i=1 |qi|w

|U+(p, q)|w = 1 + |p|w +
∑n

i=1 |qi|w |U−(p, q)|w = 1 + |p|w +
∑n

i=1 |qi|w
|S−

∞(q)|w = 1 +
∑n

i=1 |qi|w |U−
∞(q)|w = 1 +

∑n
i=1 |qi|w

Here, q abbreviates [q1, . . . , qn]. The weighted size induces a total wqo on proofs
by p �w

size q ⇐⇒ |p|w ≤ |q|w. If the weight function is the constant function
w(a) = 1 for all a ∈ Σ, then |p|w is the number of constructors occurring in p,
written |p|. We write �size for the corresponding wqo. For the above proofs for
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the formula and lasso word from Example 1, we have |P1| = 7, |P2| = 8, and
|P3| = 12. Hence, P1 �size P2 �size P3.

Our goal is to compute optimal proofs with respect to a user-supplied relation
�. We call p optimal for ϕ at i(p) if for all valid proofs q for ϕ at i(p), we have
q ⊀ p. Note that at least one valid satisfaction or violation proof always exists
by the completeness of our proof system and (non-unique) minimal elements of
non-empty sets of proofs exist by the well-foundedness of ≺.

The existence of optimal proofs does not provide us with an algorithm to
compute them. In general, it is impossible to compute the minimal elements of
an infinite set of proofs with respect to a wqo �. As a first step towards an
algorithm, we restrict our attention to relations on which the proof constructors
behave in a monotone fashion.

Definition 1. A relation � is constructor-monotone if it satisfies:

1. If i ≤ j then ap+(i, a) � ap+(j, a) and ap−(i, a) � ap−(j, a) for any atom a.
2. If p � p′ then ¬+(p) � ¬+(p′), ∨+

R(p) � ∨+
R(p′), ∨+

L(p) � ∨+
L(p′), ∧−

R(p) �
∧−

R(p′), and ∧−
L (p) � ∧−

L (p′).
3. If p1 � p′

1 and p2 � p′
2 then ∧+(p1, p2) � ∧+(p′

1, p
′
2) and ∨−(p1, p2) �

∨−(p′
1, p

′
2).

4. If m ≤ n, p � p′, and qi � q′
i for each i ∈ {1, . . . , m} then S+(p, [q1, . . . , qm])

� S+ (p′, [q′
1, . . . , q

′
n]), S− (p, [q1, . . . , qm]) � S− (p′, [q′

1, . . . , q
′
n]), and S−

∞
([q1, . . . , qm]) � S−

∞([q′
1, . . . , q

′
n]).

5. If m ≤ n, p � p′, and qi � q′
i for each i ∈ {m, . . . , n} then U+(p, [qm, . . . , qn])

� U+ (p′, [q′
1, . . . , q

′
n]), U− (p, [qm, . . . , qn]) � U− (p′, [q′

1, . . . , q
′
n]), and U−

∞
([qm, . . . , qn]) � U−

∞([q′
1, . . . , q

′
n]).

Lemma 1 only guarantees the equisatisfiability of a formula at time-points k and
k+|v|, for k suitably large. Constructor-monotonicity can be used to significantly
generalize this result to a proof comparison with respect to � at those time-points
as follows.

Theorem 2. Given a lasso ρ = uvω, an LTL formula ϕ, and a constructor-
monotone relation �, if k > |u| + hp(ϕ) · |v| then for all valid proofs q of ϕ with
i(q) = k + |v| there exists a valid proof p of ϕ with i(p) = k and p � q.

Proof. Proof by induction on structure of ϕ with an arbitrary k.

– Case ϕ = a directly follows from the constructor-monotonicity condition 1.
– Cases ϕ = ¬ψ, ϕ = ϕ1 ∧ ϕ2, and ϕ = ϕ1 ∨ ϕ2 directly follow from the

constructor-monotonicity conditions 2 and 3 and the induction hypotheses.
– Case ϕ = ϕ1 S ϕ2. Let thr(ϕ) = |u| + hp(ϕ) · |v|. Suppose k + |v| |= ϕ.

Let P = S+ (p, [qj+1, . . . , qk+|v|]) be some valid proof of ϕ at k + |v|, i.e.,
there exists a j ≤ k + |v| such that p as a valid proof of ϕ2 at j and the
qi are valid proofs for ϕ1 at i for i ∈ j + 1, . . . , k + |v|. If j ≤ k then P ′ =
S+ (p, [qj+1, . . . , qk]) is a valid proof for ϕ at k. Moreover, P ′ � P by the
constructor-monotonicity condition 4. (Here, we need the condition to apply
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to finite sequences of different length.) Otherwise if k < j, then we have
j > k > thr(ϕ) >= thr(ϕ2) + |v| and thus j − |v| > thr(ϕ2). Thus we can
use the induction hypothesis on ϕ2 (and p at j − |v|) and on ϕ1 (and each
of the qi for i ∈ {j + 1, . . . , k + |v|} at i − |v|) to obtain valid proofs p′ of
ϕ2 at j − |v| and q′

i for ϕ1 at i − |v| such that p′ � p and q′
i � qi for each

i ∈ {j + 1, . . . , k + |v|}. Then P ′ = S+(p′, [q′
j+1, . . . , q

′
k]) is a valid proof of

ϕ at k and moreover by the constructor-monotonicity condition 4 we have
P ′ � P .
Similarly for the case k + |v| �|= ϕ, any proof P for ϕ at k + |v| must either
have the form S−(p, [qj , . . . , qk+|v|]) or S−

∞([q0, . . . , qk+|v|]). In the former case,
the reasoning to obtain a proof P ′ � P of ϕ at k is very similar to the case
where k + |v| |= ϕ. In the latter case, it suffices to take P ′ = S−

∞([q0, . . . , qk])
to obtain P ′ � P by the constructor-monotonicity condition 4.

– Case ϕ = ϕ1 U ϕ2 is similar to the ϕ1 S ϕ2 case. For a valid proof P of ϕ at
k + |v|, all immediate subproofs of P are proofs at future time-points, i.e., at
least k + |v|. Thus the induction hypothesis is immediately applicable (unlike
in the S case, where a case distinction was required). Thus, we obtain a valid
proof P ′ of ϕ at k that has exactly the same structure as P , in particular
regarding the lengths of the finite sequences of immediate subproofs in P and
P ′. Using the constructor-monotonicity condition 5, we can conclude P ′ � P .

	

Theorem 2 allows us to stop the search for an optimal proof after a finite

number of time-points. Thus, we could in principle compute a finite set of can-
didate proofs that is guaranteed to contain an optimal one and select a minimal
element from this set. Such an algorithm would not be very efficient, as the set
of candidate proofs might become extremely large. Instead, we give an algorithm
that selects minimal elements eagerly and lifts optimal proofs of temporal con-
nectives from time-points i − 1 (for S) and i + 1 (for U) to a proof at i. We
first define the operator ++ that performs this lifting by combining subproofs of
temporal formulas. We thereby abbreviate [q1, . . . , qn] by q.

S+(p, q) ++ r = S+(p, [q1, . . . , qn, r]) U+(p, q) ++ r = U+(p, [r, q1, . . . , qn])
S−(p, q) ++ r = S−(p, [q1, . . . , qn, r]) U−(p, q) ++ r = U−(p, [r, q1, . . . , qn])

S−
∞(q) ++ r = S−

∞([q1, . . . , qn, r]) U−
∞(q) ++ r = U−

∞([r, q1, . . . , qn])

For a valid satisfaction proof p of ϕ1 S ϕ2 at i − 1 (or ϕ1 U ϕ2 at i + 1) and a
valid satisfaction proof r of ϕ1 at i, p++ r is a valid satisfaction proof of ϕ1 S ϕ2

(or ϕ1 U ϕ2) at i. Similarly, for a valid violation proof p of ϕ1 S ϕ2 at i − 1 (or
ϕ1 U ϕ2 at i+1) and a valid violation proof r of ϕ2 at i, p++ r is a valid violation
proof of ϕ1 S ϕ2 (or ϕ1 U ϕ2) at i.

Constructor-monotonicity does not ensure that composing optimal proofs
p and r will yield an optimal proof p ++ r. We therefore further extend our
requirements on �.
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Definition 2. A constructor-monotone � is monotone if it additionally satis-
fies:

6. If p � p′ and r � r′ then p ++ r � p′ ++ r′.

We conclude this section by providing some (counter)examples of mono-
tone wqos. The relation induced by the (weighted) size �size (Example 2) is
a monotone (total) wqo. Moreover, the relation �reach defined as p �reach q =
reach(p) ≤ reach(q) where reach(p) is the largest time-point occurring in the
proof p is a monotone (total) wqo. The dual relation that maximizes the smallest
occurring time-point is neither monotone nor well-founded. Given two monotone
wqos �1 and �2, the Cartesian product p �× q ⇐⇒ (p �1 q ∧ p �2 q) is a
monotone wqo too. A more exotic example of a monotone wqo is the multi-
set extension of a total order on atomic propositions. Finally, the relation that
compares the sets of occurring atomic propositions by inclusion is not monotone.

5 Computing Optimal Proofs

We now describe a proof search algorithm O that takes as input the prefix u
and the loop v of a lasso word ρ = uvω, an LTL formula ϕ, a time-point i, and
a monotone wqo � and computes an optimal (with respect to �) valid proof
for the violation or satisfaction of ϕ at i. The algorithm determines whether the
formula is satisfied or violated during proof search; it thereby solves the LTL
path-checking problem along the way. Because our proof system is complete, O
always returns a proof of either satisfaction or violation. This is in contrast to
a previously proposed proof search algorithm for LTL [8] that computes (non-
optimal) proofs in an incomplete proof system.

Our algorithm exploits the monotonicity of the � relation to both bound the
number of proofs that must be considered and eagerly combine optimal proofs
for subformulas to obtain an optimal proof for the entire formula. In other words,
we compute proofs in a bottom-up manner (in terms of formula structure), such
that proofs of ϕ are constructed using only the optimal proofs of ϕ’s immediate
subformulas. For a fixed monotone wqo � and ρ = uvω, our algorithm consists
of two mutually recursive functions O(i, ϕ) and C(i, ϕ), shown in Fig. 2. The
optimal proof function O(i, ϕ) merely selects an optimal proof from a small
set of candidate proofs (computed by C) at time-point i. The function C(i, ϕ)
composes optimal proofs (computed by O) for ϕ’s subformulas at the current
time-point i and optimal proofs for ϕ at the previous (i − 1) and next (i + 1)
time-points, exploiting the standard unrolling equations for S and U.

The function C(i, ϕ) is defined by pattern matching on the formula ϕ’s struc-
ture. The cases for atomic propositions and Boolean connectives are simple; for
conjunction and disjunction we use the auxiliary functions doDisj and doConj
(Fig. 3) to compose optimal proofs of the subformulas. The precise outcome
depends on whether the subformulas are satisfied or violated. For example, for
ϕ1 ∧ ϕ2, we obtain a ∧+ proof only if both subformulas are satisfied, i.e., V(p1)
and V(p2) are �.
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Fig. 2. Optimal proof algorithm: functions C,O, doUntilω and doUntiln

Temporal operators are more challenging to deal with. Setting the special
case of i = 0 aside, C computes for the formula ϕ1 S ϕ2 optimal proofs of
ϕ1 and ϕ2 at i and an optimal proof of ϕ at i − 1. These proofs are given
to the auxiliary doSince function (Fig. 4) that performs a case distinction on
their truth values V(−) and accordingly constructs a set of proofs unrolling S:
i |= ϕ1 S ϕ2 iff i |= ϕ2 ∨ i |= ϕ1 ∧ i−1 |= ϕ1 S ϕ2. Note that the set C(i, ϕ1 S ϕ2)
contains at least one and at most two elements. For example, if i |= ϕ2, i |= ϕ2,
and i − 1 |= ϕ1 S ϕ2 all hold (and we have computed the optimal proofs for
them), then there are two candidate proofs for ϕ1 S ϕ2 corresponding to the two
disjuncts in the unrolling equation.

Performing a dual unrolling for U would immediately lead to non-
termination. However, since ρ is a lasso word, we can bound the proof search
using Theorem 2. The case C(i, ϕ1 U ϕ2) splits the proof search in two parts:
doUntilω which corresponds to applying the rule U−

∞ and doUntiln which cor-
responds to either extending any U proof at time-point i + 1 or applying U+

or U− with a fixed bound on the time-point j occurring in the assumptions of
those rules. The function doUntilω checks whether the premises of U−

∞ holds
(i.e., i > |u|+hp(ϕ2) · |v| and ∀k ∈ [i, i+ |v|). k �|= ϕ2) and either returns a single
U−

∞ proof or an empty set (if some premise is violated). The function doUntiln

checks if the time-point i is larger than |u|+hp(ϕ1 U ϕ2) · |v|, which is the thresh-
old after which the measure of valid proofs of ϕ1 U ϕ2 cannot decrease anymore
by Theorem 2. For time-points before the threshold, the unrolling characteriza-
tion of U is used to construct the proofs using doUntil (similar to doSince). For
time-points after the threshold, it is sufficient to only search for proofs that use
as subproofs only those proofs of ϕ1 and ϕ2 at time-points less than i+ |v|, which
ensures termination of the entire algorithm. Because of the soundness and com-
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Fig. 3. Functions doDisj and doConj

Fig. 4. Functions doSince and doUntil

pleteness of the proof system, exactly one of the sets is necessarily non-empty
in the union returned in the else branch of doUntiln.

We prove that our algorithm always terminates.

Lemma 2. C(i, ϕ) (and thus also O(i, ϕ)) terminates for any i, ϕ, ρ, and �.

Proof. We define the function dist(i, ϕ) as |u| + hp(ϕ) · |v| − i if ϕ = ϕ1 U ϕ2

and as i otherwise. Consider the well-founded relation � defined as the lex-
icographic product of the subformula relation � and a dist-comparison, i.e.,
(i, ϕ) � (j, ψ) ⇐⇒ ϕ � ψ ∨ (ϕ = ψ ∧ dist(i, ϕ) < dist(j, ψ)). The relation � is
decreasing along the call graph of C (after unfolding the definition of O). 	


We now prove our algorithm’s correctness. We fix a lasso word ρ = uvω

and a monotone wqo �. We first establish properties of the auxiliary functions
doConj, doDisj, and doSince. The case of U is a bit subtle as the proof search is
split between the functions doUntilω and doUntil; hence we reason about them
together in the following lemma.

Lemma 3. For a time-point i, let p1 and p2 be optimal proofs of ϕ1 at i and ϕ2

at i, respectively.

– Let ϕ = ϕ1 S ϕ2 and p′ be an optimal proof of ϕ at i − 1. If i �= 0, then all
proofs in doSince(p1, p2, p′) are valid proofs of ϕ at i and an optimal proof is
contained among them.

– The same holds for doDisj(p1, p2) for ϕ = ϕ1 ∨ ϕ2 and doConj(p1, p2) for
ϕ = ϕ1 ∧ ϕ2.

– Let ϕ = ϕ1 U ϕ2 and p′ be an optimal proof of ϕ at i + 1. Then all proofs in
doUntilω(i, ϕ2) ∪ doUntil(p1, p2, p′) are valid proofs of ϕ at i and an optimal
proof is contained among them.
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Proof (sketch for S). We make a case distinction on the truth values V(p1),
V(p2), and V(p′). Here, we only consider the case where V(p1) = V(p2) =
V(p′) = �. Then doSince(p1, p2, p′) = {S+ (p2, [ ]), p′ ++ p1}. Any valid proof
of ϕ at i is either of the form S+ (q2, [ ]) or q′ ++ q1. Using the constructor-
monotonicity condition 4, the monotonicity condition 6, and the optimality of
p1, p2, p′, we conclude that either S+(p2, [ ]) or p′++ p1 is optimal. The other cases
follow by similar arguments using the appropriate (constructor-)monotonicity
conditions. 	


We next prove the soundness and optimality of C, from which the same
properties of O follow (also by induction hypotheses for the recursive calls to O
in this proof itself).

Theorem 3. Let C = C(i, ϕ) for a fixed lasso ρ = uvω and a monotone wqo �.
We have:

Soundness All proofs in C are valid proofs of ϕ at i.
Optimality An optimal proof of ϕ at i is contained in C.

Proof. (sketch). Proof by well-founded induction on �, the relation used to
establish the termination of C in the proof of Lemma 2. As before, we write thr(ϕ)
to abbreviate the threshold |u| + hp(ϕ) · |v|. We perform a case distinction on ϕ.
The cases for atomic propositions, Boolean operators, and S are either simple
or follow directly from Lemma 3. We focus on optimality in the ϕ = ϕ1 U ϕ2

case.
Suppose i < thr(ϕ). Then C(i, ϕ) = doUntilω(i, ϕ2)∪doUntil(p1, p2, p′

ϕ) with
p1 = O(i, ϕ1), p2 = O(i, ϕ2), and p′ = O(i + 1, ϕ). (Note that doUntilω(i, ϕ2) =
{} for i < thr(ϕ2).) Using the induction hypothesis, we have the optimality of
p1, p2, and p′. The case follows using Lemma 3.

Suppose i ≥ thr(ϕ). Then the set of candidate proofs computed by doUntiln

consists of only valid U+ and U− proofs of ϕ whose immediate subproofs are
proofs at time-points up to i + |v|. As before, doUntilω(i, ϕ) accounts for a
potential proof of ϕ obtained using the U−

∞ rule at i. We know that the proofs
in ps1 and ps2 are optimal by the induction hypothesis. Suppose there exists
an optimal proof at i that goes beyond i + |v|. Assume it is a satisfaction proof
P of the form U+ (p, [qi, . . . , qk]) for some k > i + |v| (the case for violation
proofs follows analogously). Then there exist k1 > 0 and k2 < |v| such that k =
i+k1 ·|v|+k2. By the constructor-monotonicity condition 5, for the proof P ′ =U+

(p, [qi+k1·|v|, . . . , qk]) of ϕ at i+k1 ·|v| we have P ′ � P . Using Theorem 2 k1 times,
we obtain another proof P ′′ =U+(p′, [q′

i, . . . , q
′
k2

]) of ϕ at i with P ′′ � P ′. Because
of the transitivity of � and the optimality of P , P ′′ is another optimal proof of
ϕ at i. But P ′′ belongs to the set of proofs computed by doUntiln. 	

Corollary 2. For a fixed lasso word ρ and a monotone wqo �, the function
O(i, ϕ) outputs an optimal (with respect to �) valid proof p of ϕ at i.

Finally, we discuss the time complexity of O.
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Theorem 4. For a fixed lasso ρ = uvω and a monotone wqo �, an upper bound
for the time complexity of O(0, ϕ) is O((|u|+h(ϕ) · |v|) · |SF(ϕ)| ·f(�) ·w(�) · |v|),
where f(�) is the complexity of comparing proofs with respect to � and w(�) is
the width of �, i.e., the maximum size of an antichain in �.

Proof (sketch). To compute O(0, ϕ), the largest k at which O(k, ϕ) can be recur-
sively called is thr(ϕ) = |u| + hp(ϕ) · |v|. Furthermore, to compute O(i, ψ) at
i ≥ thr(ϕ) for some subformula ψ of ϕ, the largest time-point at which O is
recursively called on immediate subformulas is i + |v| if ϕ = ϕ1 U ϕ2 and it is
zero otherwise. Therefore, the largest time-point at which O is recursively called
is thr(ϕ)+hf (ϕ) · |v| = |u|+h(ϕ) · |v|. In the worst case, for each time-point i, O
can be called for every subformula. Hence, the parametrized time complexity is
O((|u| + h(ϕ) · |v|) · |SF(ϕ)| · f(�) ·w(�) · M), where M is the largest cardinality
of a set returned by C. Note that the O(f(�) · w(�) · M) is an upper bound on
the complexity of computing a minimal element with respect to � in a set of
size M [9]. If ϕ = ϕ1 U ϕ2 and i ≥ thr(ϕ), then M is bounded by |v| and other-
wise it is at most 2. Hence, the calls O(i, ϕ) that trigger an expensive minimum
computation are very rare compared to the overall number of calls. Also note
that in case � is total, we have w(�) = 1.

We ignored above that O may be called several times with the same argu-
ments. Memoizing O provides a countermeasure against this potential ineffi-
ciency. 	


6 Implementation and Evaluation

We implemented the presented algorithm in a publicly available prototype [1].
The implementation is concise: altogether about 1500 lines of OCaml code. Our
tool supports a much richer LTL syntax than the one shown in this paper: users
can write formulas involving true, false, (bi)implications → and ↔, next �,
previous �, eventually ♦, always �, once �, and historically �. All of these
operators are treated as first class citizens: optimal proofs are computed in an
extended proof system containing inference rules for each of the new operators.
In principle, we could have defined operators like ♦ in terms of U. However, we
want to provide proofs precisely for a formula the user wrote, rather than an
equivalent version of it, as these will be easier for the user to understand.

We observed earlier that repeated calls to C (and O) with the same arguments
may occur. We therefore memoize the function C to avoid expensive recomputa-
tions. The memoization is performed using a hash-table that stores the already
computed results of C for its arguments. To hash formulas efficiently, we use hash-
consing [10]. Hash-consing of proofs would also improve the space efficiency of
our algorithm by sharing subproofs, but we have not implemented this optimiza-
tion yet. In our experiments, space consumption was not a bottleneck.

Our tool parses the output of the NuSMV model checker [2]. In case of viola-
tions, this output contains the LTL formula and the lasso word counterexample—
the inputs for our algorithm. The user can choose between a few predefined
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monotone wqos (or Cartesian products thereof) for optimization. The textual
representation of the optimal proof computed is pretty printed separating the
different levels in the proof by indentation.

We evaluate our algorithm on counterexamples generated by the NuSMV
model checker on realistic models and specifications [18,25]. The LTL formu-
las we consider include freely nested past and future operators, with temporal
heights ranging from 3 to 8. We used NuSMV release 2.1.2 to regenerate the coun-
terexamples, as some of the models were not compatible with the latest release of
NuSMV (2.6.1). We ran our experiments on an Intel Core i7 2.5 GHz processor
with 16 GB RAM. Figure 5 shows the |−| and reach of optimal proofs found
by our tool with respect to three monotone wqos: �size and �reach induced by
|−| and reach (as described in Sect. 4) and their Cartesian product �× (defined
as p �× q = p �size q ∧ p �reach q). Columns |u| and |v| show the lengths of
the prefix and the loop of the lasso word, whereas hp and hf show the past and
future height of the specification. In all but one example, optimal proofs with
respect to the partial order Cartesian product �× result in minimal |−| and
reach values.

The generated proofs helped explain the violations. Figure 6 (left) shows
two proofs P (optimal with respect to �reach) and Q (optimal with respect to
�size) output by our tool for the formula ϕ0 on the counterexample lasso word
uvω generated by NuSMV for the model srg5 (a 5-bit counter). The textual
representation includes the aforementioned additional constructors for →, �, and
♦. For example, P demonstrates the satisfaction of the implication by providing
evidence for the conclusion’s satisfaction (→+

R (. . .)). In contrast, Q shows that
the implication can also be vacuously satisfied by providing evidence for the
assumption’s violation (→+

L (. . .)). The implication’s vacuous satisfaction is not
desirable and indicates a problem with the specification (which is amended in
ϕ1). Yet the vacuity is far from obvious when just given the trace.

Figure 6 (right) shows the atomic propositions occurring in each of the proofs.
In the visualization, which our tool can also output, each column corresponds
to a single alphabet letter. A gray box in a row labeled by an atomic predicate
denotes that the predicate is true (and white denotes that the predicate is false)
at that letter. The marked boxes are solely responsible for ϕ0’s violation in
P or Q respectively: flipping non-responsible atomic propositions in the trace
will not affect P ’s or Q’s validity. The visualization is helpful even though it
discards most of the information present in the proof. Support for interactively
selecting subformulas and visualizing the responsible atomic propositions in the
corresponding subproofs would further improve the usability.

As another example, our tool computed an optimal proof of ϕ2’s violation
with respect to �reach for the lasso word counterexample generated from the
model dme4. This proof uses the time-point (82) as the earliest possible witness
of a violation of � in the counterexample of length 280. At that time-point, p
is true in the lasso word and ¬p S (p S q) is violated (witnessed by a recur-
sive subproof, which does not look beyond the time-point 82). For the 1394-3-
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Fig. 5. Evaluation results and LTL properties

2 counterexample, the computed proofs made it evident that the implication
p → ¬(¬q S r) was vacuously satisfied, resulting in ϕ4’s violation.

Our tool has good performance with memoization being a key optimization.
Prior to its use, computation on some of the examples took several minutes.
With memoization in place, optimal proofs were generated within one second
for each of the examples.

7 Related work

Markey and Schnoebelen [21] provide a comprehensive overview of the path-
checking problem for various fragments of LTL. They reduce LTL path checking
on lasso words to LTL path checking on finite words. We build upon the core
argument behind this result, reproduced in our Lemma 1. We further generalize
their result to reasoning about optimal proofs in our Theorem 2. The best known
upper bound for LTL path checking is provided by Kuhtz and Finkbeiner [15],
showing that it can be efficiently parallelized.

Several proof systems [5,19] for LTL have been previously proposed to check
a formula’s validity. However, these proof systems are significantly different from
ours, which checks the satisfaction (or violation) of a formula on a particular lasso
word. An LTL proof system for checking satisfaction (or violation) closely related
to ours was proposed by Cini and Francalanza [8]. They focus on runtime veri-
fication and provide an online proof search algorithm that processes letter-wise
a word’s finite prefix. Their proof system is sound but not complete: it cannot
prove the violation of liveness properties (or the satisfaction of safety proper-
ties), which is natural in a runtime verification application. They are mainly
concerned with solving the path-checking problem by proof search and do not
focus on leveraging the found proofs as explanations.

Chechik and Gurfinkel [6] give a sound and complete proof system for CTL
to explain violations of model-checkers and to debug specifications, in line with
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Fig. 6. Two example proofs

our goals. They also develop an interactive user interface for exploring different
counterexamples for a model and the corresponding proofs. Their proof system
is arguably more complex and thus harder to understand than ours: partly as
it handles a branching-time logic and partly because they rely on the unrolling
equations of the temporal operators and state summaries to finitely represent
the infinite proof trees that arise when considering negations of temporal oper-
ators, instead of employing a simple meta-argument (Lemma 1) as we do. They
do not consider past operators nor the optimality of the proof trees. Similar
unrolling-based proof systems were developed for model-checking games [17].
Winning strategies in such games are certain notions of proof. In general, we
argue that unrolling may be a good approach to solving the path-checking prob-
lem. However, it is not ideal for explaining a violation to a user who wrote the
specification having LTL’s standard semantics in mind rather than the recursive
equations that underly the unrolling technique.

Sulzmann and Zechner’s [26] proof system for LTL on finite words is also
motivated by using proofs as explanations. However, they neither support past
operators nor lasso words. Moreover, they only consider formulas in negation
normal form, but neglect dual future operators, which significantly limits their
language’s expressiveness. Even if the dual operators were supported, imposing
a normal form is problematic when a proof should serve as an explanation.
Users typically do not think in term of normal forms but prefer to freely use
the syntax of LTL; hence the explanation given should be as close as possible to
the users’ mindset. Sulzmann and Zechner compute optimal proofs with respect
to a particular monotone order (lexicographic combination of the proof size and
the relation that prefers ∨+

L over ∨+
R), which is an instance in our generalized

technique.
There has been significant work in the model checking community to address

the problem of understanding counterexamples [3,12–14]. Most of these works
focus on the interaction of the system model being verified and the counterexam-
ple. Our approach explores the interaction of the LTL property and the coun-
terexample, without knowing the system model. An ideal explanation should
combine all three components. We believe that our work is an important step
towards achieving this goal.

The notion of causality [4,27] has been used to explain model checking coun-
terexamples. Causality can be encoded as a relation in our framework, but it is
not monotone. This is not surprising since the problem of computing the mini-
mal causal set is NP hard and the existing solutions therefore settle for approx-
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imations. Our algorithm is more tractable, but can only optimize for simpler
relations.

The size of the counterexample input to our algorithm affects the result-
ing proof tree’s size: smaller counterexamples typically result in smaller proof
trees. Our work can thereby directly benefit from past work on computing short
counterexamples [11,25]. Other lines of work aim at identifying the vacuous sat-
isfaction of properties [16,20] or justifying why the system satisfies a property
when no counterexample is found [22–24]. We provide such a justification for a
single trace, but not for an entire system model.

Finally, we refer to a survey on provenance in databases [7], which aims at
identifying the root cause of violations, yet without taking the temporal dimen-
sion into account.

8 Conclusion

We have proposed a sound and complete proof system for LTL on lasso words.
A proof tree in this system carries all the information necessary to witness and
explain a formula’s satisfaction or violation. We have devised and implemented
an algorithm for computing a proof tree that is minimal with respect to a given
monotone well-quasi-order �. The parametrization by � allows the algorithm’s
users to optimize for different statistics (such as |−| or reach) of the proof tree
or even their combinations.

Our work lays the foundation for explaining the counterexamples generated
by model checking tools. There are several natural continuations. In real world
examples, even optimal proof trees can be too large to examine in practice.
Devising user-friendly ways to explore them is therefore a practically relevant
information visualization challenge. On the theoretical side, an open problem is
to develop analogous techniques for other specification languages used by model
checkers. Finally it would be interesting to adapt our proof search algorithm
to work in an online fashion. This would enable its use to explain online, the
verdicts produced by runtime verification algorithms.
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D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 24–38. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-73370-6 4

12. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance
metrics. STTT 8(3), 229–247 (2006)

13. Groce, A., Kroening, D.: Making the most of BMC counterexamples. Electr. Notes
Theor. Comput. Sci. 119(2), 67–81 (2005)

14. Groce, A., Visser, W.: What went wrong: explaining counterexamples. In: Ball,
T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 121–136. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-44829-2 8

15. Kuhtz, L., Finkbeiner, B.: LTL path checking is efficiently parallelizable. In: Albers,
S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009. LNCS, vol. 5556, pp. 235–246. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02930-1 20

16. Kupferman, O.: Sanity checks in formal verification. In: Baier, C., Hermanns, H.
(eds.) CONCUR 2006. LNCS, vol. 4137, pp. 37–51. Springer, Heidelberg (2006).
https://doi.org/10.1007/11817949 3

17. Lange, M., Stirling, C.: Model checking games for branching time logics. J. Log.
Comput. 12(4), 623–639 (2002)

18. Latvala, T., Biere, A., Heljanko, K., Junttila, T.: Simple is better: efficient bounded
model checking for past LTL. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol.
3385, pp. 380–395. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-30579-8 25

19. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems -
Specification. Springer, New York (1992)

20. Maretic, G.P., Dasthi, M.T., Basin, D.A.: Semantic vacuity. In: Grandi, F., Lange,
M., Lomuscio, A. (eds.) TIME 2015, pp. 111–120. IEEE Computer Society (2015)

21. Markey, N., Schnoebelen, P.: Model checking a path. In: Amadio, R., Lugiez, D.
(eds.) CONCUR 2003. LNCS, vol. 2761, pp. 251–265. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45187-7 17

22. Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 2–13. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44585-4 2

23. Peled, D., Pnueli, A., Zuck, L.: From falsification to verification. In: Hariharan,
R., Vinay, V., Mukund, M. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 292–304.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45294-X 25

https://doi.org/10.1007/978-3-662-46681-0_54
https://doi.org/10.1007/978-3-540-73370-6_4
https://doi.org/10.1007/3-540-44829-2_8
https://doi.org/10.1007/978-3-642-02930-1_20
https://doi.org/10.1007/978-3-642-02930-1_20
https://doi.org/10.1007/11817949_3
https://doi.org/10.1007/978-3-540-30579-8_25
https://doi.org/10.1007/978-3-540-30579-8_25
https://doi.org/10.1007/978-3-540-45187-7_17
https://doi.org/10.1007/3-540-44585-4_2
https://doi.org/10.1007/3-540-44585-4_2
https://doi.org/10.1007/3-540-45294-X_25


Optimal Proofs for Linear Temporal Logic on Lasso Words 55

24. Peled, D., Zuck, L.: From model checking to a temporal proof. In: Dwyer, M. (ed.)
SPIN 2001. LNCS, vol. 2057, pp. 1–14. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-45139-0 1

25. Schuppan, V., Biere, A.: Shortest counterexamples for symbolic model checking of
LTL with past. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol.
3440, pp. 493–509. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-31980-1 32

26. Sulzmann, M., Zechner, A.: Constructive finite trace analysis with linear temporal
logic. In: Brucker, A.D., Julliand, J. (eds.) TAP 2012. LNCS, vol. 7305, pp. 132–
148. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30473-6 11
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Abstract. The possible interactions between a controller and its envi-
ronment can naturally be modelled as the arena of a two-player game,
and adding an appropriate winning condition permits to specify desir-
able behavior. The classical model here is the positional game, where
both players can (fully or partially) observe the current position in the
game graph, which in turn is indicative of their mutual current states. In
practice, neither sensing or actuating the environment through physical
devices nor data forwarding to and signal processing in the controller are
instantaneous. The resultant delays force the controller to draw decisions
before being aware of the recent history of a play. It is known that exis-
tence of a winning strategy for the controller in games with such delays
is decidable over finite game graphs and with respect to ω-regular objec-
tives. The underlying reduction, however, is impractical for non-trivial
delays as it incurs a blow-up of the game graph which is exponential in
the magnitude of the delay. For safety objectives, we propose a more prac-
tical incremental algorithm synthesizing a series of controllers handling
increasing delays and reducing game-graph size in between. It is demon-
strated using benchmark examples that even a simplistic explicit-state
implementation of this algorithm outperforms state-of-the-art symbolic
synthesis algorithms as soon as non-trivial delays have to be handled.
We furthermore shed some light on the practically relevant case of non-
order-preserving delays, as arising in actual networked control, thereby
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considerably extending the scope of regular game theory under delay
pioneered by Klein and Zimmermann.

Keywords: Safety games · Control under delay
Efficient algorithmic synthesis

1 Introduction

Algorithmic game theory is an established approach to the synthesis of
correct-by-construction reactive controllers [13,16]. A finite game graph is used
to formalize the possible actions of the players; it is complemented by a win-
ning condition specifying desirable properties of infinite paths by means of an
acceptance condition or a specification in temporal logic. Frequently, the game is
played on a finite graph alternating moves by two players; the first player is the
controller (sometimes called “ego” player) and the second player is its environ-
ment (“alter”), which may be uncooperative, erratic, or even malicious. Correct
controllers thus have to be able to counteract any environmental actions, i.e.,
they need a sure winning strategy in the game. Controller synthesis can thus
be understood as search for a winning strategy for ego. In this paper, we are
interested in the synthesis problem when the interaction of a controller and its
environment is described by a safety game [13], i.e., an infinite two-player game
on finite graphs comprising “unsafe” states that the controller should avoid vis-
iting.

These safety games have traditionally been investigated in a setting where
the current position in the game is either fully known (“perfect information”)
or known up to certain observability constraints (“imperfect/incomplete infor-
mation”). In this article, we address the problem of control under delays in
perception and action. This can be understood as a form of imperfect informa-
tion, as decisions by the controller have to be drawn based on delayed state
observation—i.e., with the recent game history being opaque to the controller—
and in advance—i.e., well before the actual situation where the action takes effect
is fully determined. Such games have numerous practical applications, especially
in networked control settings like cooperative driving, where observation of and
influence on other cars’ states are delayed by communication protocols severely
restricting frequency of certain message types in order to keep overall channel
usage sustainable under the pertinent severe bandwidth constraints.

It is intuitively obvious that such delay renders control harder: the controller
has to decide in advance and based on dated information, which may no longer
be fully indicative of the current situation. The existence of a winning strategy
for the controller under such delays is decidable over finite game graphs and with
respect to ω-regular objectives [10,11]. The underlying reduction to delay-free
games, however, is impractical for non-trivial delays as it incurs a blow-up of the
game graph which is strictly exponential in the magnitude of the delay, as also
observed by Tripakis [20].
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In this article, we follow Tripakis’ quest for more efficient algorithms. For
safety objectives, we propose a more practical incremental algorithm synthesiz-
ing a series of controllers handling increasing delays and reducing game-graph
size in between. We demonstrate on benchmark examples that even a simplis-
tic explicit-state implementation of this algorithm outperforms state-of-the-art
symbolic synthesis algorithms as soon as non-trivial delays have to be handled.
We furthermore shed some light on the practically relevant case of non-order-
preserving delays, as arising in actual networked control, thereby considerably
extending the scope of regular game theory under delay/lookahead pioneered
by Klein and Zimmermann in [10,11,22] and explained below. Detailed proofs,
extra examples and other materials are listed in the appendixes of [8].

Related work. In the literature on games, constraints on observation and interac-
tion are reflected by corresponding restrictions on the information frames avail-
able to the players. The majority of the results about two-player games played
on graphs adopt the hypothesis of perfect information, where fixed-point algo-
rithms for the computation of winning strategies exist [5,6,16]. In this case,
the controller is aware of the exact current (and past) state of its environment
when selecting its next control action. Reif [17] has studied games of incomplete
information and Kupferman and Vardi in [12] have extended the work of Pnueli
and Rosner [15] about the synthesis of reactive modules to consider incomplete
information . Similarly [21] and [16] study two-player games on graphs with ω-
regular objectives subject to partial observability of the current (and past) game
state. Recent state information is available, however; no restriction concerning
the minimum age of observable state information is imposed. As the latter is
an increasingly relevant problem in, e.g., networked control with its non-trivial
end-to-end communication latencies, we here address the problem of two-player
safety games subject to delayed observation and delayed action of the controlled
process, obtaining a specific (and practically extremely relevant) case of imper-
fect information amenable to optimized synthesis algorithms.

The notion of control under delayed information exchange between the con-
troller and the environment, where both the ego and the alter player suffer from
having to operate under dated information about their mutual adversary’s state,
is complementary to the notion of delayed ω-regular games investigated by Zim-
mermann et al. [10,11]. In their setting, a delayed output player lags behind
the input player in that the output player has to produce the i-th letter of the
output string only when i +

∑i
j=0 f(j) letters of the input string are available,

with ∀j : f(j) ≥ 0. Thus, delay essentially comes as an advantage, as the input
player grants the output player a lookahead—the burden for the output player is
“just” that she may have to memorize (a finite abstraction of) infinite lookahead
if delay is unbounded in that

∑i
j=0 f(j) diverges. In Zimmermann’s terminology,

our setting can be understood as asking for a strategy of the input player—whose
strategic strength suffers from having to grant a lookahead—rather than for the
output player and under the condition that delay is constant, i.e., f(0) > 0 and
∀i > 0 : f(i) = 0. We exploit a similar reduction to games of perfect infor-
mation as the oblivious-delay construction of Zimmermann [22], which in the
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case of constant delay exploits a product construction on the game graph essen-
tially representing a synchronous concurrent composition of the graph with a
shift register implementing the delays. In contrast to Zimmermann et al., we
do not grant introspection into the shift register, i.e., lookahead into an adver-
sary’s future actions. We do instead adopt the perspective of their input player,
who has to submit her actions without knowledge of the recent history, as is
frequently the case in practice. For this setting, the above reduction by means
of a shift register also provides a consistent semantics of playing under delay.

It is worth noting that the notion of delay employed in this paper and by
Klein and Zimmermann in [11] is different from that in timed games and their
synthesis algorithms, like Uppaal-Tiga [2], as well as from that used in the
discrete-event system community, e.g. [1,14]. In timed games, delay refers to
the possibility to deliberately delay the next control action, i.e., a single event.
Up-to-date positional information, however, is always fully transparent to both
players in timed games. In our setting, delay refers to a time lag imposed when
obtaining positional information, modelling the end-to-end latency of informa-
tion distribution in a communication network. Up-to-date positional information
thus is opaque to the players as long as it resides in a queue modelling the net-
work, where state information as well as control events of multiple different ages
coexist and pipeline towards delivery. Such pipelining of control actions is lack-
ing in the model of delay from [14], where only one controllable event can be
latent at any time and just the time of its actual execution is determined by the
environment. Meanwhile, the model of delay in [1] is different from ours as it
leads to non-regular languages.

2 Safety Games under Delayed Information

Notation. Given a set A, we denote its powerset by 2A, the set of finite sequences
over A by A∗, and the set of infinite sequences over A by Aω. The relative
complement of a set B in A is denoted A \ B = {x ∈ A | x �∈ B}. An empty
sequence is denoted by ε.

2.1 Games with Perfect Information

The plays we consider are played on finite bipartite game graphs as known from
ω-regular games, see e.g. [19]:

Definition 1 (Two-player game graph). A finite game graph is of the form
G = 〈S, s0, S0, S1,Σ,→〉, where S is a finite (non-empty) set of states, S0, S1

define a partition of S (Si containing the states where it is the turn of player
i to perform an action), s0 ∈ S0 is the initial state, Σ is a finite alphabet of
actions for player 0 (while any action for player 1 is abstracted as u �∈ Σ), and
→⊆ S × (Σ∪{u})×S is a set of labeled transitions satisfying the following four
conditions:



60 M. Chen et al.

Bipartition: if s ∈ Si and s
σ−→ s′ for some σ ∈ Σ ∪ {u} then s′ ∈ S1−i;

Absence of deadlock: for each s ∈ S there exist σ ∈ Σ ∪ {u} and s′ ∈ S s.t.
s

σ−→ s′;
Alphabet restriction on actions: if s

σ−→ s′ for some σ ∈ Σ∪{u} then σ ∈ Σ
iff s ∈ S0 (and consequently, σ = u iff s ∈ S1);

Determinacy of Σ moves: if s ∈ S0 and s
σ−→ s1 and s

σ−→ s2 then s1 = s2.

The state space is required to be deadlock-free and bipartite with respect to the
transitions, which thus alternate between S0 and S1 states. Furthermore, the
actions of player 0 are from Σ and deterministic, while all actions of player 1
are lumped together into a non-deterministic u action, since we are interested in
synthesizing a winning strategy merely for player 0 who models the controller.

The game is played by a controller (player 0, ego) against an environment
(player 1, alter) in turns. Starting from s = s0 and in each second turn, the
controller chooses an action σ ∈ Σ that is enabled in the current state s. By
s

σ−→ s′, this leads the game to a unique successor state s′ ∈ S1. From s′, it
now is the environment’s turn to select an action, which it does by selecting a
successor state s′′ ∈ S0 with s′ u−→ s′′. As s′′ again is a position controlled by
player 0, the game alternates between moves of player 0 (the controller) and
player 1 (the environment) forever, leading to the following definition.

Definition 2 (Infinite play). A play on game graph G = 〈S, s0, S0, S1,Σ,→〉
is an infinite sequence π = π0σ0π1 . . . σn−1πnσn . . . s.t. π0 = s0, and ∀i ∈ N :
πi

σi−→ πi+1.

The game graph is accompanied by a winning condition. In a safety game,
this is a set of unsafe positions U ⊆ S and the controller loses (and thus the
environment wins) as soon as the play reaches an unsafe state si ∈ U . Conversely,
the controller wins (and the environment loses) iff the game goes on forever
without ever visiting U .

Definition 3 (Two-player safety game). A two-player safety game is of the
form G = 〈S, s0, S0, S1,Σ,U ,→〉, where G′ = 〈S, s0, S0, S1,Σ,→〉 is a finite
game graph and U ⊆ S is a set of unsafe positions.
Π(G) denotes the set of plays over the underlying game graph G′. Play
π0σ0π1 . . . ∈ Π(G) is won by player 0 iff ∀i ∈ N : πi �∈ U and won by player 1
otherwise.

The objective of the controller in a safety game thus is to always select actions
avoiding unsafe states, while the hostile or just erratic environment would try to
drive the game to a visit of an unsafe state by picking adequate successor states
on u actions.

For a given play π ∈ Π(G), its prefix up to position πn is denoted π(n).
This prefix thus is the finite sequence π(n) = π0σ0π1 . . . σn−1πn, whose length is
|π(n)| = n + 1 and whose last element is Tail(π(n)) = πn. The set of prefixes
of all plays in Π(G) is denoted by Pref(G), in which we denote those ending
in a controller state by Prefc(G) = {ρ ∈ Pref(G) | Tail(ρ) ∈ S0}. Likewise,
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Prefe(G) = {ρ ∈ Pref(G) | Tail(ρ) ∈ S1} marks prefixes of plays ending in
environmental positions.

For a game G = 〈S, s0, S0, S1,Σ,U ,→〉, a strategy for the controller is a
mapping ξ : Prefc(G) �→ 2Σ s.t. all σ ∈ ξ(ρ) are enabled in Tail(ρ) and ξ(ρ) �=
∅ for any ρ ∈ Prefc(G). The outcome of the strategy ξ in G is defined as
O(G, ξ) = {π = π0σ0π1 . . . ∈ Π(G) | ∀i ∈ N : σ2i ∈ ξ(π(2i))} and denotes all
plays possible when player 0 respects strategy ξ while player 1 plays arbitrarily.

Definition 4 (Winning strategy for the controller). A strategy ξ for the
controller in a safety game G = 〈S, s0, S0, S1,Σ,U ,→〉 is winning for the con-
troller (or just winning for short) iff ∀π = π0σ0π1 . . . ∈ O(G, ξ).∀k ∈ N :
πk �∈ U .

A winning strategy for the environment can be defined similarly as being a
mapping ξ̃ : Prefe(G) �→ 2S0 with equivalent well-defined conditions as above.
It is a classical result of game theory that such safety games under perfect
observation are determined: one of the two players has a sure winning strategy
enforcing a win irrespective of the opponent’s choice of actions.

Theorem 1 (Determinacy [9]). Safety games are determined, i.e., in each
safety game G = 〈S, s0, S0, S1, Σ, U , →〉 exactly one of the two players has a
winning strategy.

We call a (controller) strategy ξ : Prefc(G) �→ 2Σ positional (or memoryless)
if for any ρ and ρ′ ∈ Prefc(G), Tail(ρ) = Tail(ρ′) implies ξ(ρ) = ξ(ρ′). Being
positional implies that at any position in a play, the next decision of a controller
which follows the strategy only depends on the current position in the game
graph and not on the history of the play. As a consequence, such a positional
strategy can also be described by a function ξ′ : S0 �→ 2Σ that maps every state
of the controller in the game to a set of actions to be performed whenever the
state is visited. The reduction to positional strategies is motivated by the fact
that in delay-free safety games, whenever there exists a winning strategy for the
controller, then there also exists a positional strategy for it.

Theorem 2 (Computing positional strategies [7,19]). Given a two-player
safety game G, the set of states from which player 0 (player 1, resp.) can enforce
a win is computable, and memoryless strategies are sufficient for the winning
party.

The construction of a positional strategy builds on backward fixed-point iteration
computing the set of states from which a visit in U can be enforced by player 1
[19].

2.2 Games under Delayed Control

As immediately obvious from the fact that memoryless strategies suffice in the
above setting, being able to fully observe the current state and to react on it
immediately is an essential feature of the above games. In practice, this is often
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impossible due to delays between sensing the environmental state, computing
the control action, submitting it, and it taking effect. The strategy, if existent,
thus cannot resort to the full state history, but only to a proper prefix thereof
due to the remainder becoming visible too late.

If the delay is constant and equates to δ ∈ N steps, then the controller would
have to decide about the action to be taken after some finite play π0σ0π1 . . . π2n

already after just seeing its proper prefix π0σ0π1 . . . π2n−δ. Furthermore, a con-
stant strategy not dependent on any historic observations would have to be
played by the controller initially for the first δ steps. That motivates the follow-
ing definition:

Definition 5 (Playing under delay). Given a delay δ ∈ N, a strategy for the
controller under delay δ is a map ξ : Prefx(G) �→ 2Σ, where x = c if δ is even and
x = e else, together with a non-empty set α ⊆ Σ� δ

2 � of initial action sequences.
The outcome of playing strategy (α, ξ) in G under delay δ is O(G,α, ξ, δ) =

⎧
⎨

⎩
π = π0σ0π1 . . . ∈ Π(G)

∣
∣
∣
∣
∣
∣

∃a = a0 . . . a� δ
2 �−1 ∈ α.∀i ∈ N :

(
2i < δ ⇒ σ2i = ai

∧ 2i ≥ δ ⇒ σ2i ∈ ξ(π(2i − δ))

)

⎫
⎬

⎭
.

We call the strategy (α, ξ) playable by the controller iff it always assigns permitted
moves, i.e., iff for each prefix π0σ0π1 . . . σ2n−1π2n−1 of a play in O(G,α, ξ, δ),
we have that the set of next actions

Σn =

{
{an | 〈σ0, σ2, σ4, . . . , σ2n−2, an〉 is a prefix of a word in α} iff 2n < δ,

ξ(π(2n − δ)) iff 2n ≥ δ

suggested by the strategy is non-empty and contains only actions enabled in
π2n−1. Strategy (α, ξ) is winning (for the controller) under delay δ iff it is
playable and for each π = π0σ0π1 . . . ∈ O(G,α, ξ, δ), the condition ∀k ∈ N :
πk �∈ U holds, i.e., no unsafe state is ever visited when playing the strategy.

Playing under a delay of δ thus means that for a play π = π0σ0π1 . . ., the
choice of actions suggested by the winning strategy at state π2i has to be pre-
decided at state π2i−δ for any i ≥ � δ

2� and decided without recourse to positional
information for the first δ −1 steps. Playing under delay 0 is identical to playing
under complete information.

From Definition 5 it is obvious that existence of a (delay-free) winning strat-
egy in the complete information game G is a necessary, yet not sufficient condi-
tion for existence of a strategy that is winning under a delay of δ > 0. Likewise,
existence of a strategy winning under some relatively small delay δ is a necessary,
yet not sufficient condition for existence of a strategy that is winning under a
delay of δ′ > δ: the strategy for δ′ can be played for δ by simply waiting δ′ − δ
steps before implementing the control action.

Remark 1. The reader may wonder why Definition 5 assumes strictly sequential
delay, i.e., in-order delivery of the delayed information, which cannot be guar-
anteed in many practical applications of networked control. The reason is that
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random out-of-order delivery with a maximum delay of δ has in-order deliv-
ery with an exact delay of δ as its worst-case instance: whenever a data item is
delivered out-of-order then it is delivered before δ, implying earlier availability of
more recent state information and thus enhanced controllability. In a qualitative
setting, as addressed in this article, solving the control problem for out-of-order
delivery with a maximum delay of δ is consequently—up to delaying data items
arriving early—identical to solving the control problem under in-order delivery
with an exact delay of δ, as the latter is the former’s worst case.

Issues are, however, different in a stochastic setting, where out-of-order deliv-
ery with a maximum delay of δ induces a reduced expected message delay strictly
smaller than δ, i.e., it even truly enhances controllability. Dealing with this basic
quantitative case and furthermore exploiting constructive means of control on
message delay, like setting a network’s QoS parameters, for control will be sub-
ject of future research.

2.3 Insufficiency of Memoryless Strategies

c1

e1
a

e2

b

c2
u

c3

u

e3

b

a

u

e4
a

u

e5
b

u

u

u

Fig. 1. A safety game winnable with memory-
less strategies for delay δ ≤ 1, yet not beyond.

Recall that in safety games with
complete information, the exis-
tence of a winning strategy for
the controller implies existence of
a memoryless strategy for player 0.
For games with delayed informa-
tion, however, memoryless strate-
gies are not powerful enough:

Example 1. Consider the safety
game G = 〈S, s0, S0, S1,Σ,U ,→
〉, shown in Fig. 1, where S =
S0 ∪ S1, S0 = {c1, c2, c3}, S1 =
{e1, e2, e3, e4, e5}, s0 = c1, Σ =
{a, b}, and U = {e3}. Player 0 can
obviously win this safety game if no
delay is involved.
Now consider a memoryless strat-
egy ξ′ : S0 �→ 2Σ for the controller
under delay 2. We obviously need ξ′(c2) = {b}, indicating that the controller exe-
cutes b two steps later at either c1 or c3, as a at c3 would yield the unsafe state
e3. Analogously, we have ξ′(c3) = {a} . It is a different matter when arriving
at c1, where the controller has to draw a pre-decision for both c2 and c3. If the
controller picks a (or b) at c1, then two steps later at c3 (c2, resp.) it executes the
unsafe action a (b, resp.). For a win, extra memory keeping track of the historic
sequence of actions is necessary such that the controller can determine whether
it will visit c2 or c3 from c1.

The above example shows that memoryless strategies are generally insuffi-
cient for winning a safety game under delays. A straightforward generalization
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of the situation shown in Fig. 1, namely deeply nesting triangles of the shape
spanned by c1, c2, and c3, demonstrates that the amount of memory needed
will in worst case be exponential in the delay. Any reduction to safety games
under complete information will have to introduce a corresponding blow-up of
the game graph.

2.4 Reduction to Delay-Free Games

As playing a game under delay δ amounts to pre-deciding actions δ steps in
advance, the problem of finding a winning strategy for the controller in G =
〈S, s0, S0, S1,Σ,U ,→〉 that wins under delay δ can be reduced to the problem
of finding an undelayed winning strategy for the controller in a related safety
game:

Lemma 1. Let G = 〈S, s0, S0, S1,Σ,U ,→〉 be a safety game and δ ∈ N a delay.
Then the controller has strategy that wins G under a delay δ iff the controller
has a winning strategy in the game Ĝ = 〈S′, s′

0, S
′
0, S

′
1,Σ∪Σ� δ

2 �,U ′,→′〉 given by

1. S′ =
(
S × Σ� δ

2 �
)

� {s′
0} �

(
{s′

0} × Σ� δ
2 �

)
, where � denotes disjoint union,

S′
0 =

(
S0 × Σ� δ

2 �
)

∪ {s′
0}, and S′

1 =
(
S1 × Σ� δ

2 �
)

∪
(
{s′

0} × Σ� δ
2 �

)
,

2. s
σ

→′ s′ iff

s = s′
0 ∧ σ = a1 . . . an ∈ Σn ∧ s′ = (s′

0, a1 . . . an)
∨ s = (s′

0, α) ∧ σ = u ∧ s′ = (s0, α)
∨ s = (ŝ, a1 . . . an) ∧ ŝ ∈ S0 ∧ σ ∈ Σ ∧ ŝ

a1−→ ŝ′ ∧ s′ = (ŝ′, a2 . . . anσ)
∨ s = (ŝ, α) ∧ ŝ ∈ S1 ∧ σ = u ∧ ŝ

u−→ ŝ′ ∧ s′ = (ŝ′, α),

where n = δ
2 if δ is even and n = δ+1

2 if δ is odd.
3. U ′ = U × Σ� δ

2 �.

The essential idea of the above reduction is to extend the game graph by a
synchronous product with a shift register appropriately delaying the implemen-
tation of the control action decided by the controller. The blow-up in graph size
incurred is by a factor |Σ|� δ

2 � and thus exponential in the delay. It is obvious
that due to this, a winning strategy for the controller in the delayed game can,
if existent, be synthesized with |Σ|� δ

2 � memory.
Note that the above reduction to delay-free safety games does not imply that

games under delay are determined, as the claim in Lemma 1 is not symmetric
for the environment. A simple guessing game, where player 1 guesses in each
step either a 0 or a 1 and player 0 has to repeat the exact guess, losing as
soon as she fails to properly repeat, reveals that player 0 has a sure winning
strategy under delay 0, but none of the two players has one under any positive
delay.1 Determinacy is only obtained if one of the players is granted a lookahead
1 While player 1 could enforce a win with probability 1 in a probabilistic setting by

just playing a random sequence, she cannot enforce a win in the qualitative setting
where player 0 may just be lucky to draw the right guesses throughout.
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equivalent to the other’s delay, as in Klein and Zimmermann’s setting [11]. Such
lookahead does not, however, correspond to any physical reality in distributed
control, where both players are subject to the same end-to-end latency (i.e.,
delay) in their mutual feedback loop.

3 Synthesizing Controllers

As stated above, controller synthesis for games under delay can be obtained using
a reduction to a delay-free safety game involving the introduction of a shift
register. The exponential blow-up incurred by this reduction, however, seems
impractical for any non-trivial delay. We therefore present a novel incremental
synthesis algorithm, which starts from synthesizing a winning strategy for the
underlying delay-free safety game and then incrementally hardens the strategy
against larger and larger delays, thus avoiding explicit reductions. We further
optimize the algorithm by pruning the otherwise exponentially sized game graph
after each such hardening step: as controllability (i.e., the controller wins) under
delay k is a necessary condition for controllability under delay k′ > k, each
state uncontrollable under delay k can be removed before proceeding to the next
larger delay. The algorithm thus alternates between steps extending memory, as
necessary for winning under delay, and steps compressing the game graph.

The key idea of the synthesis procedure (Algorithm 1) is to compute a series
of finite-memory winning strategies ξ̂k while increasing delays from k = 0 to the
final delay of interest k = δ. The algorithm takes as input a delayed safety game
Gδ and returns either WINNING paired with a winning strategy (α, ξ̂δ) for the
controller if Gδ is controllable, or LOSING otherwise with an integer m indicat-
ing that the winning strategy vanishes when lifting delay to m. Line 2 invokes
the classical fixed-point iteration (cf. Appx. C in [8]) to generate the maximally
permissive strategy for the controller in G under no delay. The procedure FPIt-
eration first conducts a backward fixed-point iteration computing the set L of
states from which a visit to U can be enforced by the alter player 1 [19]. The
maximally permissive strategy for the controller is then obtained by admitting
in each state from S0 \ L exactly those actions leading to a succesor in S1 \ L.
Then the delays are lifted from k = 0 to δ by a while loop in line 3, and within
each step of the loop the strategy ξ̂k+1 is computed based on ξ̂k as follows:

1. If k + 1 is an odd delay, the controller needs to make pre-decisions at safe
states of the environment, namely at each s ∈ S1 \ U . The controller needs
to pre-decide at s a set of actions that are safe to perform at any successor
s′ ∈ Succ(s), for which the winning actions have already been encoded in
the strategy ξ̂k(s′, ·). This is achieved, in line 7, by taking an intersection
of ξ̂k(s′, ρ) for all s′ ∈ Succ(s) with the same history sequence of actions ρ.
The derived strategy can be spurious however, inasmuch as the intersection
involves only immediate successors of s, yet without observing the entire
strategy space. At line 9 we therefore remove all uncontrollable predecessors
of freshly unwinnable states by a Shrink procedure depicted in Algorithm 2,
which will be explained below.
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Algorithm 1: Synthesizing winning finite-memory strategy
input : G = 〈S, s0, S0, S1, Σ, U , →〉, a safety game played under delay δ.
/* initialization */

1 k ← 0 ; α ← {ε} ;
/* computing maximally permissive strategy under no delay */

2 ξ̂0 ← FPIteration(G);
/* lifting delays from 0 to δ */

3 while k < δ do
/* with an odd delay k + 1 */

4 if k ≡ 0 (mod 2) then
5 for s ∈ S, σ1 . . . σ k

2
∈ α do

6 if s ∈ S1 \ U then

7 ξ̂k+1(s, σ1 . . . σ k
2
) ← ⋂

s′:s
u−→s′ ξ̂k(s′, σ1 . . . σ k

2
);

/* shrinking the possibly-spurious strategy */

8 if ξ̂k+1(s, σ1 . . . σ k
2
) = ∅ and

∧
s′:s

u−→s′ ξ̂k(s′, σ1 . . . σ k
2
) 
= ∅

then

9 Shrink(ξ̂k+1, ξ̂k, G, (s, σ1 . . . σ k
2
));

10 else

11 ξ̂k+1(s, σ1 . . . σ k
2
) ← ∅;

12 α ← {σ0σ1 · · · σ k
2

| s0
σ0−→ s′, σ1 · · · σ k

2
∈ α, ξ̂k+1(s

′, σ1 · · · σ k
2
) 
= ∅};

13 if α = ∅ then
14 return (LOSING, k + 1);

/* with an even delay k + 1 */

15 else
16 for s ∈ S, σ1 . . . σ k−1

2
∈ α do

17 if s ∈ S0 \ U then

18 for σ0, s
′ : s

σ0−→ s′ do
19 ξ̂k+1(s, σ0σ1 . . . σ k−1

2
) ← ξ̂k(s′, σ1 . . . σ k−1

2
);

20 else

21 ξ̂k+1(s, σ0σ1 . . . σ k−1
2

) ← ∅;

22 k ← k + 1;

23 return (WINNING, (α, ξ̂k));

2. In case of an even delay k + 1, the controller needs to make pre-decisions at
safe states of its own, i.e. at each s ∈ S0 \ U . In contrast to an intersection in
the odd case, the controller can inherit the winning strategy ξ̂k(s′, ρ) directly
from each successor s′ of s. However, we have to prepend, if s

σ0−→ s′, the
action σ0 to the history sequence ρ to record the choice in the shift register
(line 19).
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The synthesis algorithm may abort at line 14 if the controller does not have
available actions to pick anymore at the initial state s0, declaring LOSING at
k + 1 where the winning strategy vanishes. Otherwise, the algorithm continues
and eventually produces a winning strategy ξ̂δ for the controller in G.

Only when a fresh unwinnable state s for the controller is detected (line 8),
the Shrink function (Algorithm 2) will be launched to carry out two tasks in
a recursive manner: (1) it traverses the graph backward and removes from the
current strategy all the actions that may lead the play to this unwinnable state,
and consequently (2) it gives a state-space pruning that removes all states no
longer controllable under the given delay before proceeding to the next larger
delay. The latter accelerates synthesis, while the former is a key ingredient to
the correctness of Algorithm 1, as can be seen from the proof of Theorem 3: it
avoids “blind alleys” where locally controllable actions run towards subsequently
deadlocked states.

Algorithm 2: Shrink: Shrinking the possibly-spurious strategy

input : ξ̂2n+1, the strategy under an odd delay 2n + 1;
ξ̂2n, the strategy under an even delay 2n;
G = 〈S, s0, S0, S1, Σ, U , →〉, a safety game played under delay δ;
(s, σ1 . . . σn), a fresh unwinnable state with the sequence of actions.

1 for s′ : s′ σ−→ s do

2 if σn ∈ ξ̂2n(s′, σσ1 . . . σn−1) then

3 ξ̂2n(s′, σσ1 . . . σn−1) ← ξ̂2n(s′, σσ1 . . . σn−1) \ {σn};

/* s̃ < s indicates the existence of ξ̂2n+1(s̃, ·), i.e., we visit

merely states that have already been attached with

(possibly deadlocking) actions by Algorithm 1 */

4 for s̃ : s̃
u−→ s′ and s̃ 
∈ U and s̃ < s do

5 if σn ∈ ξ̂2n+1(s̃, σσ1 . . . σn−1) then

6 ξ̂2n+1(s̃, σσ1 . . . σn−1) ← ξ̂2n+1(s̃, σσ1 . . . σn−1) \ {σn};

7 if ξ̂2n+1(s̃, σσ1 . . . σn−1) = ∅ then

8 Shrink(ξ̂2n+1, ξ̂2n, G, (s̃, σσ1 . . . σn−1));

The worst-case complexity of Algorithm 1 follows straightforwardly as O(δ ·
|S0| · |S1| · |Σ|� δ

2 �), as is the case for the reduction to a delay-free safety games.
In practice, the advantage however is that we avoid explicit construction of the
graph of the corresponding delay-free game, which yields an exponential blow-
up, and interleave the expansion by yet another shift-register stage with state-set
shrinking removing uncontrollable states.

Theorem 3 (Correctness and Completeness). Algorithm 1 always termi-
nates. If its output is (WINNING, (α, ξ̂)) then (α, ξ̂) is a winning strategy of Gδ;
otherwise, with output (LOSING, k+1) of the algorithm, Gδ has no winning strat-
egy.
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Proof. Elaborated in Appx. A of [8].

Example 2. Consider the safety game G under delayed information in Fig. 1.
The series of finite-memory winning strategies produced by Algorithm 1 is:

ξ̂0(c1, ε) = {a, b}, ξ̂0(c2, ε) = {a}, ξ̂0(c3, ε) = {b}.

ξ̂1(e1, ε) = {a}, ξ̂1(e2, ε) = {b}, ξ̂1(e3, ε) = ∅, ξ̂1(e4, ε) = {b}, ξ̂1(e5, ε) = {a}.

ξ̂2(c1, a) = {a}, ξ̂2(c2, a) = {b}, ξ̂2(c3, a) = ∅,

ξ̂2(c1, b) = {b}, ξ̂2(c2, b) = ∅, ξ̂2(c3, b) = {a}.

Winning strategies for the controller vanish when the delay reaches 3.

4 Case Study and Experimental Evaluation

Avoiding collisions is a central issue in transportation systems as well as in many
other applications. The task of a collision avoidance (CA) system is to track
objects of potential collision risk and determine any action to avoid or mitigate
a collision. One of the challenges in designing a CA system is determining the
correct action in presence of the end-to-end latency of the overall control system.

In the context of avoiding collisions, we present an escape game as an artifi-
cial scenario to illustrate our approach. The game is a two-player game between
a robot (i.e., the controller) and a kid (i.e., the dynamical part of its environ-
ment), which are moving in a closed room with some fixed obstacles as shown in
Fig. 2. In this scenario, the robot has to make decisions (actions) under δ-delayed
information.

Definition 6 (Two-player escape game in a p × q room under
delay). A two-player escape game under delay δ is of the form Ĝ =
〈S, s0, S0, S1,O,Σ,U ,→〉, where

– S = X × Y × X × Y × B is a non-empty set of states providing x ∈ X =
{0, . . . , p − 1} and y ∈ Y = {0, . . . , q − 1} coordinates for the robot as well as
for the kid, together with a flag denoting whose move is next. Concretely, a
state (x0, y0, x1, y1, b) encodes that the robot currently is at position (x0, y0),
while the kid is at (x1, y1), and that the next move is the robot’s iff b holds.
Here p, q ∈ N≥1 denote the width and length of the room.

– O ⊆ X × Y is a finite set of positions occupied by fixed obstacles.
– Σ is a finite alphabet of actions for player 0 (i.e., the robot), which consists

of kinematically constrained moves explained below.
– U ⊆ S is the finite set of undesirable states, which are characterized by fea-

turing collisions with the obstacles or the kid.
– →⊆ S × (Σ ∪ {u}) × S is a set of labelled transitions, and
– δ is the delay in information retrieval s.t. the robot has to react on δ old

information.
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Fig. 2. The robot escape game Fig. 3. A snippet of the game graph

In our scenario, we first consider a room of extent 4 × 4, as shown in
Fig. 2. The fixed obstacles are located at o1 = (1, 2) and o2 = (3, 0) and
the initial state s0 where the robot and the kid are located in the room is
s0 = (0, 0, 3, 3, true) ∈ S0. The kid can move in the room and her possible moves
(i.e., the uncontrollable actions) are unilaterally denoted u for unpredictable, yet
amount to moves either one step to the right R, left L, up U, or down D. The
robot has a finite set of moves (i.e., controllable actions), which are kinemati-
cally constrained as being a combination of two moves, e.g., up then right UR,
denoted as Σ = {RU, UR, LU, UL, RD, DR, LD, DL, ε}, and ε means doing nothing. We
assume that the two players respect the geometry of the room and consequently
never take any action leaving the inside area of the room or running through an
obstacle, which can be achieved by specifying two groups of constraints C and E
(exemplified in Appx. D of [8]) respectively for the robot and the kid, defining
their legal actions. Representing a state (x0, y0, x1, y1, b) as x0y0x1y1 inside a
blue circular node if b (robot’s turn) and inside a red square node if ¬b (kid’s
turn), the game graph spanned by the legal actions looks as shown in Fig. 3.

The safety objective for the robot is to move inside the working room while
avoiding to ever be collocated with the kid or the fixed obstacles. We conse-
quently define the set of unsafe states as U = {(x0, y0, x1, y1, b) | (x0, y0) ∈
O ∨ (x0, y0) = (x1, y1)}.

There obviously exists a winning strategy for the robot in a delay-free set-
ting, namely to cycle around the obstacle at o1 to avoid being caught by the kid.
To investigate the controllability resilient to delays, we first construct the graph
structure from the symbolic description by a C++ program. It consists of 224
states, 16 unsafe states, and 738 legal transitions satisfying the respective condi-
tions C and E . The obtained game graph is then used as input to a prototypical
implementation in Mathematica2 of Algorithm 1, which declares WINNING paired
with a finite-memory winning strategy (i.e., a safe controller) ξ̂δ under delays

2 Both the prototype implementation and the evaluation examples used in this section
can be found at http://lcs.ios.ac.cn/∼chenms/tools/DGame.tar.bz2. We opted for an
implementation in Mathematica due to its built-in primitives for visualization.

http://lcs.ios.ac.cn/~chenms/tools/DGame.tar.bz2
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0 ≤ δ ≤ 2 (see Appx. E in [8]), while LOSING when the delay is 3. The latter
indicates that the problem is uncontrollable under any delay δ′ ≥ 3.

To further investigate the scalability and efficiency of our method, we have
evaluated the implementation on two additional examples (Appx. B in [8]) as
well as evasion games instantiated to rooms of different sizes (marked with prefix
Escp.). A slightly adapted scenario (denoted by prefix Stub.) was also investi-
gated, where the kid plays in a rather stubborn way, namely she always moves
either one step to the left or down, yet never goes right nor up, which yields
potentially larger affordable delays for the robot. In particular, a comparison
of the performance of our incremental algorithm was done with respect to two
points of reference: to the same Mathematica-based algorithm using δ = 0 (the
underlying explicit-state delay-free safety synthesis) employed after reducing the
games to delay-free ones by shift registers (cf. Lemma 1), and to the state-of-the-
art synthesizer SafetySynth3 for solving safety games applied to an appropriate
symbolic form of that shift-register reduction. All experiments were pursued on
a 2.5 GHz Intel Core-i7 processor with 8GB RAM running 64-bit Ubuntu 17.04.

From the upper part of Table 1, it can be seen that our incremental algo-
rithm significantly outperforms the use of the shift-register reduction . On all
cases involving delay, Algorithm 1 is faster than the same underlying explicit-
state implementation of safety synthesis employed to the reduction of Lemma 1.
The benefits from not resorting to an explicit reduction, instead taking advan-
tage of incrementally generated strategies and on-the-fly pruning of already-
uncontrollable branches, are thus obvious. In contrast, the reduction-based app-
roach suffers inevitably from the state-explosion problem: for e.g. Escp.4×5
under δ = 3, the reduction yields a game graph comprising 29242 states and
107568 transitions.

Within the lower part of Table 1, the performance of the current explicit-state
implementation of Algorithm 1 is compared with that of SafetySynth, the winner
in the sequential safety synthesis track of the 3rd and 4th Reactive Synthesis
Competition4 (SYNTCOMP 2016 and 2017). In order to be able to examine
the efficiency of our incremental algorithm under larger delays, we used a slight
modification of the escape game forbidding the kid to take moves to the right or
up, thus increasing the controllability for the robot. Note that Algorithm 1 com-
pletes synthesis faster in these “stubborn” scenarios due to the reduced action
set. SafetySynth implements a symbolic backward fixed-point algorithm for solv-
ing delay-free safety games using the CUDD package. Its input is an extension
of the AIGER5 format known from hardware model-checking and synthesis. We
therefore provided symbolic models of the escape games in Verilog6 and com-
piled them to AIGER format using Yosys7. Verilog supports compact symbolic
modelling of the coordinates other than an explicit representation of the game

3 Available at https://www.react.uni-saarland.de/tools/safetysynth/.
4 http://www.syntcomp.org/.
5 http://fmv.jku.at/aiger/.
6 http://www.verilog.com/.
7 http://www.clifford.at/yosys/.

https://www.react.uni-saarland.de/tools/safetysynth/
http://www.syntcomp.org/
http://fmv.jku.at/aiger/
http://www.verilog.com/
http://www.clifford.at/yosys/
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graph as in Fig. 3, and further admits direct use of shift registers for memorizing
actions of the robot under delays. Therefore, as visible in Table 1, SafetySynth
outperforms our explicit-state safety synthesis for some large room sizes under
small delays. For larger delays it is, however, evident that our incremental algo-
rithm always wins, despite its use of non-symbolic encodings.

Remark 2 It would be desirable to pursue a comparison on standard benchmarks
like the synthesis track of SYNTCOMP. As these are conveyed in AIGER format
only and not designed for modifiability, like the introduction of shift registers
, this unfortunately is not yet possible. Likewise, other state-of-the-art synthe-
sizers from the SYNTCOMP community, like AbsSynthe [4], could not be used
for comparison as they do not support the state initializations appearing in the
AIGER translations of the escape game.

5 Conclusions

Designing controllers that work safely and reliably when exposed to delays is a
crucial challenge in many application domains, like transportation systems or
industrial robots. In this paper, we have used a straightforward, yet exponential
reduction to show that the existence of a finite-memory winning strategy for the
controller in games with delays is decidable with respect to safety objectives. As
such a reduction being exponential in the magnitude of the delay would rapidly
become unwieldy, we proposed an algorithm that incrementally synthesizes a
series of controllers withstanding increasingly larger delays, thereby interleaving
the unavoidable introduction of memory with state-space pruning removing all
states no longer controllable under the given delay before proceeding to the next
larger delay. To the best of our knowledge, we also provided the first implemen-
tation of such a state-space pruning within an algorithm for solving games with
delays, and we demonstrated the beneficial effects of this incremental approach
on a number of benchmarks.

The benchmarks used were robot escape games indicative of collision avoid-
ance scenarios in, e.g., traffic maneuvers. Control under delay here involves select-
ing appropriate safe actions or movements without yet knowing the most recent
positions of the other traffic participants. Experimental results on such escape
games demonstrate that our incremental algorithm outperforms reduction-based
safety synthesis, irrespective of whether this safety synthesis employs näıve
explicit-state or state-of-the-art symbolic synthesis methods, as available in
Saarbrücken’s SafetySynth tool.

An extension to hybrid control, dealing with infinite-state game graphs
described by hybrid safety games, is currently under development and will be
exposed in future work. We are also moving forward to a more efficient implemen-
tation of Algorithm 1 based on symbolic encodings, like BDDs [18] or SAT [3]. A
further subject of future investigation is stochastic models of out-of-order deliv-
ery of messages. As these result in a high likelihood of state information being
available before the maximum transportation delay, such models can quanti-
tatively guarantee better controllability than the worst-case scenario of always
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delivering messages with maximum delay addressed in this paper. We will there-
fore attack synthesis towards quantitative safety targets in such stochastic set-
tings and may also exploit constructive means of manipulating probability dis-
tributions of message delays, like QoS control, within the synthesis.

Acknowledgements. The authors would like to thank Bernd Finkbeiner and Ralf
Wimmer for insightful discussions on the AIGER format for synthesis and Leander
Tentrup for extending his tool SafetySynth by state initialization, thus facilitating a
comparison.
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Abstract. Autonomous vehicles are safety-critical cyber-physical sys-
tems. To ensure their correctness, we use a proof assistant to prove
safety properties deductively. This paper presents a formally verified
motion planner based on manoeuvre automata in Isabelle/HOL. Two
general properties which we ensure are numerical soundness (the absence
of floating-point errors) and logical correctness (satisfying a plan spec-
ified in linear temporal logic). From these two properties, we obtain a
motion planner whose correctness only depends on the validity of the
models of the ego vehicle and its environment.
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1 Introduction

Autonomous vehicles’ planning and control are hard. Not only are they required
to consider complex vehicle dynamics, but they must also deal with possibly
unknown and dynamically changing environments. To tackle these complexities,
most symbolic motion planners abstract continuous systems by discrete repre-
sentations in either an environment-driven [6,12] or a controller-driven man-
ner [14,16]. The former partitions the environment into cells, such as triangles
or squares, while the latter partitions the controller into several primitives, such
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as turn-left or turn-right. Which discretisation is preferred for autonomous
vehicles?

Environment-driven discretisation is preferred when (1) we have static, a
priori known, and geometrically complex environments; or (2) one has to han-
dle expressive specifications, such as those expressed in Linear Temporal Logic
(LTL). However, environment-driven discretisation usually works only for sys-
tems with simple dynamics [5]. On the contrary, controller-driven discretisation
is preferred when we have dynamic, possibly unknown, and geometrically simple
environments. Controllers designed with this discretisation can handle complex
dynamics and navigate the environment by chaining a series of well-tested motion
primitives [14]. However, specification languages for this discretisation in the lit-
erature, such as in [10], are very close to the implementation level; often, we
want to specify what to achieve rather than how to achieve it.

Most vehicle models for autonomous vehicles are complex, making controller-
driven discretisation a natural choice. In this work, we shall use manoeuvre
automata-based motion planners [35], where each motion primitive is encoded
as a state in our manoeuvre automaton. However, autonomous vehicles oper-
ate in dynamic and possibly unknown environments, where they could benefit
from specification languages such as LTL—usually associated with environment-
driven discretisation. This work aims to combine the advantages of both discreti-
sation strategies by interpreting LTL over manoeuvre automata. To the best of
our knowledge, this paper is the first work to tackle this challenge.

To prove correctness of our motion planner, we use the generic theorem prover
Isabelle [28], as opposed to the specialised theorem prover KeYmaera X [15],
which is tailored for proving the correctness of hybrid systems. This choice is
motivated by eliminating numerical errors in computations with real numbers,
which is largely ignored in motion planning [30]. Isabelle’s libraries of approx-
imation and affine arithmetic allow us to eliminate these errors [19,20]. Our
contributions are as follows1:

– We provide a formally verified construction of manoeuvre automata (Sect. 3).
More precisely, we interface Isabelle with MATLAB for solving optimisation
problems and use the formalised algorithm for continuous reachability analy-
sis [22]; both optimisation and reachability analysis are needed for construct-
ing manoeuvre automata formally.

– We show how to eliminate numerical errors for functions involving real num-
bers (Sect. 4). To this end, we provide a verified translation between the
representation of floating-points used by Isabelle and that of IEEE-754 used
by MATLAB. Additionally, we extend the work in [22] to handle the trigono-
metric functions sine and cosine required in this work.

– We show how to plan autonomous vehicles’ motions with temporal logic
and manoeuvre automata (Sect. 5). More precisely, we interpret LTL
over manoeuvre automata and formally perform satisfiability checking—as
opposed to model checking—in order to find a sequence of manoeuvres which
is guaranteed to satisfy a plan formalised in LTL.

1 The formalisation is in https://gitlab.lrz.de/ga96tej/manoeuvre-automata.

https://gitlab.lrz.de/ga96tej/manoeuvre-automata
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2 Preliminaries

Notations used in this paper closely resemble Isabelle/HOL’s syntax. Function
application is always written in an uncurried form: instead of writing f x y as
in the λ-calculus, we always write f(x, y). We write t :: τ to indicate that term
t has type τ . Types used in this paper could either be a base type such as R

for real numbers, or constructed via type constructors such as α list and α set
for list of type α and set of type α, respectively. Another type constructor is
the function type; a function from type α to β is written as (has the type of)
α ⇒ β. We use ‘=⇒’ and ‘−→’ to denote deduction (inference) and implication,
respectively. The set of all objects of type α is UNIV ::α. Isabelle2 also supports
the case construct as in functional programming:

case t of pat1 ⇒ t1 | . . . | patn ⇒ tn.

One of the most frequently used data structures in this work are affine forms. An
affine form A is defined by a sequence (Ai)i∈N with only finitely many nonzero
elements. We write Ai to refer to the i-th element of the affine form A. An affine
form is interpreted for a valuation ε : N → [−1, 1] as:

�A�ε := A0 +
∑

i

εi · Ai.

We could also think of ε as a vector taken from an interval vector [−1,1], where
1 is a vector of ones. One calls the terms εi noise symbols, A0 the centre, and
the remaining Ai generators. The idea is that noise symbols are shared between
affine forms and that they are treated symbolically: the sum of two affine forms
is given by the pointwise sum of their generators, and multiplication with a
constant factor is also done componentwise:

�(A + B)�ε := (A0 + B0) +
∑

i

εi · (Ai + Bi).

�(k · A)�ε := k · A0 +
∑

i

εi · (k · Ai).

For A0, Ai ::Rn, the affine form A is a data structure to represent a specific type
of set Z ::Rn set (see the notation of type constructor for sets) called zonotope—
a special class of polytopes. By defining a function range which represents all
possible valuations of an affine form, the relationship between an affine form A
and a zonotope Z is formalised as range(A) = Z. Figure 1 provides the graphical
illustration of the set of all points belonging to a zonotope.

If we represent an affine form concretely by a pair of its centre c and a list
of its generators gs, then the Minkowski sum of two affine forms A = (c, gs) and
A′ = (c′, gs′) is defined as:

msum (A,A′) = (c + c′, msum-gens (A,A′)) ,

msum-gens (A,A′) = gs @ gs′,

2 From now on, ‘Isabelle’ refers to ‘Isabelle/HOL’ for simplicity.
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Fig. 1. Three zonotopes with A0 = (0, 0), A1 = (1, 1), A2 = (1,−1), and A3 = (1, 0).
Black circles represent the extreme points of each zonotope.

where function @ denotes list concatenation. Figure 1 provides graphical illus-
trations of the Minkowski sum: Z2 = msum (Z1, Z

′
2), Z3 = msum (Z2, Z

′
3) where

Z ′
2 = 0 + A2 and Z ′

3 = 0 + A3.

3 Constructing Manoeuvre Automata

A manoeuvre automaton (MA) [14] is an automaton whose states represent
manoeuvres (motion primitives) which an autonomous system could execute.
For helicopters, these could be standard manoeuvres such as hover and land,
or more aggressive movements such as hammerhead and loop. For autonomous
vehicles, these could be basic manoeuvres such as turn-left and turn-right, or
more ambitious manoeuvres such as hard-left and hard-right. A transition
between two states in an MA means that the system can execute those two
manoeuvres successively.

Definition 1. We define a manoeuvre automaton as a tuple MA =
(M, jump, ode) where

– M is a predefined type for manoeuvre labels;
– jump :: (M × M) set is the transition relation between manoeuvre labels; and
– ode (m) ::R × R

n ⇒ R
n is the corresponding ordinary differential equation

(ODE) for manoeuvre m.

If we assume that the ode (m) has the general form of

ẋ = f(x, um), (1)

then the ode (m) represents a fixed system model f—such as a point-mass or as
a kinematic single-track model for autonomous vehicles [3]—with a fixed input
trajectory um for manoeuvre m. For an initial state xinit and a final state xfinal,
a controller must choose a trajectory um ∈ Um which steers xinit to xfinal. We
refrain from discussing the design of such controllers, as this work focusses more
on the verification aspect; interested readers can consult the work in [35].
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Fig. 2. Ensuring the safety of a path from an MA.

For safety verification purposes, it is paramount to compute the reachable
set of a manoeuvre m—denoted by reach (m). This set represents the set of
all states x which could be reached by the system f in (1) from an initial set
denoted by init (m) with trajectory um. A manoeuvre m is safe with respect to
a given unsafe set D if and only if reach (m) does not intersect with the unsafe
set: reach (m)∩D = ∅ (see Fig. 2). A formally verified computation of reachable
sets of continuous systems with the theorem prover Isabelle has been previously
researched by one of the authors in [22] and we shall use it here.

How can we incorporate the reachable set of each manoeuvre to ensure
the safety of a path? A safe path from an MA is a series of manoeuvres
m = m0,m1, . . . ,mn which: (a) respects the transition relation jump in Defi-
nition 1, i.e., (mi,mi+1) ∈ jump for 0 ≤ i < n; (b) ensures that the reachable
set of each manoeuvre does not intersect with an unsafe set; and (c) for every
chain (mi,mi+1) in the series, the final set of mi—denoted by final (mi)—must
be contained by the initial set of mi+1, i.e., final (mi) ⊆ init (mi+1) (see [35]).
Figure 2 illustrates these requirements of ensuring the safety of a path from an
MA.

The first technical challenge for formally constructing manoeuvre automata,
as proposed in this work, is how to interface the controller design in [35] imple-
mented in MATLAB and the reachability analysis in [22] formalised in Isabelle.
Figure 3 illustrates how we interface Isabelle and MATLAB by using the C pro-
gramming language as a lingua franca. Functions programmed in MATLAB are
callable from C by using the MATLAB API. Isabelle, on the other hand, can
call functions in Standard ML (SML) directly but not those in C. Fortunately,
there is a Foreign Function Interface (FFI) between SML and C which enables
us to call functions in C and, hence, MATLAB indirectly. Therefore, we need
to provide the corresponding wrapper for each MATLAB function required by
Isabelle at the SML and C levels.

The second technical challenge is to bridge the different types of floating-point
representation between Isabelle and MATLAB. Isabelle uses arbitrary precision
floating-point numbers (m · 2e for potentially unbounded m, e ∈ Z) and MAT-
LAB uses IEEE-754 floating point-numbers (with fixed precision). How to obtain
a formally correct conversion between arbitrary precision floating-point numbers
(as used in Isabelle/HOL) and IEEE floating-point numbers (as used in MAT-
LAB) is discussed in the next section.
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Isabelle
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finite precision

Fig. 3. Block diagram for interfacing Isabelle and MATLAB.

4 Affine Arithmetic and Floating-Point Numbers

This section considers rounding errors when using finite precision floating-point
numbers to ensure soundness of our proofs. To achieve this, we use rigorous
numerics, which encloses real numbers by sets. This means, for example, the func-
tion × :: real ⇒ real ⇒ real is “lifted” to a new function ⊗ :: real set ⇒ real set ⇒
real set with the correctness theorem ∀x, y. x ∈ X ∧ y ∈ Y −→ x × y ∈ X ⊗ Y .
The first problem entailed by this decision is how to choose the proper data
structure to represent the abstract type real set. Following the decision made in
our previous work [20], we use affine arithmetic [13] for this purpose. There are
other approaches such as intervals [27] and Taylor models [7] whose discussion
is out of the scope of this paper. The second problem is how to approximate
functions operating on reals with functions operating on sets correctly. Previous
work in [20] has covered affine approximation of arithmetic functions such as
addition, multiplication, subtraction, and division, but not trigonometric func-
tions. For this particular work, we need affine approximations of trigonometric
functions such as sine and cosine occuring in model f in (1) (the specific model
can be found in (5), Sect. 5).

4.1 Affine Approximation of Trigonometric Functions

To simplify formal proofs, modularity and abstraction are important. As a basis
for all operations that follow, we use a generic linear operation that involves
round-off operations and also adds a noise symbol for further uncertainties (this
is also discussed by Stolfi and de Figueredo [13]). The idea is to define a generic
linear operation affine-unop(α, β, δ,X) that encloses the linear function x �→
α · x + β with an uncertainty of δ for every valuation ε ∈ N → [−1, 1]:

|α · �X�ε + β − �affine-unop(α, β, δ,X)�ε| ≤ δ.

The motivation behind affine-unop(α, β, δ,X) is that α · x + β approximates
some (possibly nonlinear) function f up to an error δ, i.e.,

|f(x) − (α · x + β)| ≤ δ , (2)
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Fig. 4. Min-range approximation of
cos [1, 2].

Fig. 5. Min-range approximations
(nine subdivisions) of cos [0, π]

up to a certain interval x ∈ [l, u]. There are various degrees of freedom for
linearising a non-linear function f such that (2) holds. In this work, we use
the min-range approximation [13,34] for the sake of ease of implementation and
verification; other techniques such as interval approximation [13,34] and first-
order Tchebychev approximation [13,34] exist.

The idea behind the min-range approximation is to maximize the slope of
the enclosure while fixing the range of the approximation. Consider Fig. 4, which
illustrates a min-range approximation of cosine on the interval [1, 2]; it does not
exceed the interval [cos(2), cos(1)]. Any smaller slope would be just as safe, but
the slope could not be chosen to be larger. The following theorem guides us to
find suitable values of α, β, and δ.

Proposition 1 (Min-range approximation).

∀x ∈ [l, u]. |f(x) − (α · x + β)| ≤ δ

if the following conditions are satisfied:

1. ∀y ∈ [l, u]. α ≤ f ′(y);
2. δ ≥ f(u)−f(l)−α·(u−l)

2 + |(f(l) + f(u) − α · (l + u))/2 − β|.
Parameter α needs to be a lower bound on the derivative while parameters

β and δ need to be chosen such that they account for the error of the linear
function centred between f(u) and f(l) as well as for the error that β makes
with respect to the centre (the second summand on the right of the inequality
bounding δ). This is a slight generalisation of what is demanded in the literature
[13,34], where one assumes a convex function f . This ensures that the derivative
f ′ attains its maximum at one of the endpoints of the interval. Something that
is not mentioned in the statement of the lemma should be noted: the approxi-
mation using α, β is close to the optimal approximation only if the function f
is increasing on [l, u] (otherwise the theorem still holds, but δ is unnecessarily
large). However, a similar approximation lemma can be easily obtained for the
case when f is decreasing.
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Trigonometric Functions. The trigonometric functions sine and cosine pose
the problem that they are not monotonic. This can be alleviated in two steps
(similar to the treatment of periodic functions in [2]). The first step, range reduc-
tion, exploits periodicity to reduce the argument to the range [0, 2π]. Range
reduction (shifting the argument x by −2π · � x

2π �) is computed using interval
arithmetic. The second step is a case distinction if the argument is contained in
the decreasing part [0, π] or the monotone part [π, 2π] (for cosine). It is possible
that this distinction cannot be decided (if e.g., the argument interval straddles
π), but then the only valid min-range approximation is the interval approxima-
tion (with 1 as upper bound). A series of such computed min-range approxima-
tions is shown in Fig. 5.

4.2 From Isabelle’s to IEEE-754’s Floating-Point Representation

Affine arithmetic in Isabelle is implemented with arbitrary-precision floating-
point numbers, hereafter denoted by float∞. Software floating point numbers
(the formalisation in Isabelle originates from Obua’s work [29]) are the subset
of real numbers that can be represented by two arbitrary-precision integers:
mantissa (or significand) m and exponent e. Mantissa and exponent together
represent the real number m · 2e:

float∞: = {m · 2e | m, e ∈ Z}.

Arbitrary-precision floating-point numbers are convenient for formal reasoning
because arithmetic operations can be carried out without round-off errors. For
efficiency, however, we do use explicit round-off operations overapproximately
to reduce the size of the mantissa. The explicit separation of operation and
rounding helps keeping the formalisation modular.

The representation used by MATLAB is IEEE-754 floating-point numbers.
A specification of floating-point numbers (with a fixed precision of 52 bits for the
mantissa and 11 bits for the exponent of double-precision floating point numbers)
according to the IEEE-754 standard was formalized in Isabelle by Yu [37].3 We
denote IEEE-754 floating-point numbers with floatieee. They are represented by
triples (s, e, f) ∈ N × N × N to represent sign s, exponent e, and fraction f .
There are special representations for special values like infinity or NaN (Not-a-
Number); everything else represents finite numbers. A predicate is-finite encodes
whether a triple represents a finite number. Finite IEEE floating point numbers
can be normal (e �= 0) or denormal (e = 0) and are interpreted as a real number
differently using to-real:

to-real(s, e, f) =

{
(−1)s · 2−1022 · (f · 2−52) if e = 0,

(−1)s · 2e−1023 · (1 + f · 2−52) if e �= 0.

3 Yu’s formalisation was inspired by Harrison’s [18] extensive formalisation in HOL
Light. More work on floating-point numbers in theorem provers has been done in the
comprehensive formalisation of floating-point numbers by Boldo and Melquiond [9]
in Coq as well as early efforts in ACL2 [26].
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We provide functions of-ieee and to-ieee which convert between a subset of
arbitrary-precision floating-point numbers and IEEE floating-point numbers.
The bijection is guarded by is-valid (to ensure that the arbitrary precision
floating-point number is actually of suitable finite precision) and is-finite (to
exclude special values).

is-finite(s, e, f) =⇒ of-ieee(s, e, f) = to-real(s, e, f),

is-valid(m · 2e) =⇒ to-real(to-ieee(m, e)) = m · 2e.

We implemented this (based on work by Fabian Hellauer, which we gratefully
acknowledge here) using the IEEE-754 formalisation in the archive of formal
proofs [37]. Note that since Isabelle’s floating-point representation can have
arbitrary precision, we have to ensure that the floating-point numbers used in
Isabelle’s theories are guaranteed to have at most 53-bit precision (i.e., is-valid
holds) to be able to pass them down to SML, C, and MATLAB.

5 Motion Planning with Manoeuvre Automata

5.1 Interpreting LTL over Manoeuvre Automata

Definition 2 (Linear Temporal Logic for MA). If AP is the type for all
atomic propositions, then we can create a new compound data type

datatype atom = AP+ | AP−,

where we label an atomic proposition with either a positive or negative sign. The
syntax of LTL for manoeuvre automata is defined by the following grammar:

φ ::= true | π | φ1 ∧ φ2 | ¬φ | Xφ | φ1 Uφ2, (3)

where π :: atom. Constant false, logical operators disjunction and implication, and
temporal operators F and G are defined as usual [11].

Atomic propositions in path planning with LTL are used to represent objects
of interest. For example, atomic propositions in our work could be defined as
follows:

datatype AP = left-boundary | right-boundary | obstacle | goal

Definition 3 (Semantics of LTL for MA over finite-length traces).
Suppose that the state space for the model ode (m) in Definition 1 is of type
R

n, and there is an interpretation function � � ::AP ⇒ R
n set. Additionally,

for a finite sequence of sets σ = A0,A1, . . . ,An, we denote the j-th suffix of
σ by σ[j..]: = Aj , . . . ,An for 0 ≤ j ≤ n. We can define a semantics of LTL



84 A. Rizaldi et al.

for MA over a finite sequence of sets σ = A0,A1, . . . ,An, where Ai ::Rn set for
0 ≤ i ≤ n, as follows:

σ |= true

σ |= π+ ⇐⇒ A0 ⊆ �π�

σ |= π− ⇐⇒ A0 ∩ �π� = ∅
σ |= ¬φ ⇐⇒ σ �|= φ

σ |= φ1 ∧ φ2 ⇐⇒ σ |= φ1 and σ |= φ2

σ |= Xφ ⇐⇒ if σ[1..] is defined then σ[1..] |= φ

σ |= φ1 Uφ2 ⇐⇒ ∃j. σ[j..] |= φ2 ∧ ∀i.0 ≤ i < j −→ σ[i..] |= φ1.

Comparison with standard LTL. The differences with standard LTL’s syntax
and semantics primarily lie in the additional sign for each atomic proposition
and their denotations. To illustrate these differences more concretely, consider
the formalisation of reach-avoid plans in standard LTL. Fainekos et al. [11]
formalised these plans with ¬obstacle U goal; this is fine if we interpret LTL
over a single trajectory. For an interpretation over a set of trajectories, we
can lift the denotation for atomic propositions used by Fainekos et al. [11] into
σ |= π ::AP ⇐⇒ A0 ⊆ �π� (see [33]). This denotation implies σ |= ¬obstacle if
and only if A0 �⊆ �obstacle� and, if we assume further that A0 ∩ �obstacle� �= ∅,
then there could be a trajectory which visits the obstacle before it reaches the
goal. This means the safety of σ cannot be guaranteed anymore.

The syntax and semantics in Definitions 2 and 3 provide a solution to this
problem. Each atomic proposition can be labelled either with a positive or neg-
ative sign, and the root cause of the unsafety in the previous argument is due to
the additional assumption A0∩�obstacle� �= ∅. The semantics solves this problem
by enforcing that all negatively labelled atomic propositions have the denotation
that all trajectories in A0 cannot be located at �π�, i.e., A0 ∩ �π� = ∅. Positively
labelled atomic propositions, meanwhile, have the obvious denotation that all
trajectories in the initial set A0 must also be located inside �π�, i.e., A0 ⊆ �π�.
In case A0 �⊆ �π� and A0 ∩ �π� �= ∅, there might be a trajectory which always
stays in �π� or lies outside of �π� completely, but this should not justify σ |= π+

or σ |= π− because we choose soundness over completeness.

Checking zonotope inclusion and intersection freedom. The semantics in Defini-
tion 3 does not stipulate any concrete type of sets. To demonstrate our approach,
we use zonotopes in this work to check σ |= π+ (using an inclusion check) and
σ |= π− (checking for intersection freedom) in R

2 since higher dimensions are
not required in this work. We define the function zono-contain2D (prec, Z, Z ′) to
check whether zonotope range (Z) is a subset of zonotope range (Z ′). This is per-
formed4 by first enumerating all extreme points of zonotope range (Z)—via the
function extreme-pts (Z)—initially (see Fig. 1) and then checking whether each
of these extreme points belongs to the zonotope range (Z2) as partially done
in [21].
4 For high-dimensional zonotopes, please consult the technique described in CORA [1].
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Theorem 1 By defining zono-contain2D (prec, Z, Z ′) as:

zono-contain2D (prec, Z, Z ′) : = case extreme-pts (Z) of

[] ⇒ Z0 ∈zono Z ′

| ps ⇒ ∀p. p ∈ set (ps) −→ p ∈zono Z ′,

we have the correctness condition:

zono-contain2D (prec, Z, Z ′) =⇒ range (Z) ⊆ range (Z ′),

for any precision prec and any two zonotopes Z,Z ′ of type R
2.

We also define the function collision-freedom2D (prec, Z, Z ′) to check whether
zonotope range (Z) does not intersect with range(Z ′) based on [17] which we
proved formally in Isabelle too.

Theorem 2 Suppose that affine forms Z and Z ′ have the centres of Z0 and Z ′
0,

respectively, and Z ′
0 − Z ′

1 denotes the vector difference of Z ′
0 and Z ′

1, then

Z ′
0 − Z ′

1 �∈ range (msum-gens (Z,Z ′))︸ ︷︷ ︸
:= collision-freedom2D (prec,Z,Z′)

=⇒ range (Z) ∩ range (Z ′) = ∅.

Note that the two theorems above take the precision prec ::N into account to
ensure numerical soundness.

5.2 Satisfiability Checking of LTL over Manoeuvre Automata

The problem of finding a path in MA which satisfies a plan formalised in LTL
can now be stated formally as satisfiability checking.

Definition 4 (Satisfiability checking). An LTL formula φ is satisfiable with
respect to a manoeuvre automaton MA = (M, jump, ode) if there is a path τ =
m0,m1, . . . mn−1 such that mi ::M for all 0 ≤ i < n and

reach (m0), reach (m1), . . . , reach (mn−1) |= φ.

Satisfiability checking is a search problem and since (1) time efficiency is
paramount, and (2) a path satisfying a plan usually has a finite duration, we use
a depth-limited search strategy for satisfiability checking. Since each manoeuvre
lasts for 1 s and a sensible duration for a plan is supposed to be less than 10 s, the
maximum depth is set to be 10. Note that the search strategy can be improved
further by using an informed search strategy. However, since our main focus is
correctness, we choose a simpler yet sufficient depth-limited search strategy for
satisfiability checking.

As an example, we construct an intentionally simple, formally verified
manoeuvre automaton with three motion primitives which last for 1 s each:

datatype M = go-straight | turn-left | turn-right, (4)
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Fig. 6. Example of reach-avoid scenario. The vehicle is represented as the solid black
rectangle. Red-coloured rectangles are the objects the vehicle has to avoid. The blue-
coloured rectangle is the area which the vehicle has to reach eventually (Color figure
online).

where any two manoeuvres can be composed, i.e., jump := UNIV ::M × M .
Note that the duration for each motion primitive need not to be the same; some
primitives could last for, e.g., 0.1 s and others could last for 5 s. We use the
following kinematic model of autonomous vehicles:

v̇ = a; Ψ̇ = b; ẋ = v · cos(Ψ); ẏ = v · sin(Ψ). (5)

State variables v and Ψ are speed and orientation, respectively, while x and y are
the positions in Cartesian coordinates. Inputs to the system are a and b, which
denote acceleration and normalised steering angle, respectively. The initial set
init (m) is set to be the same for all manoeuvres:

[19.8, 20.2]m s−1 × [−0.02, 0.02] rad × [−0.2, 0.2]m × [−0.2, 0.2]m.

Meanwhile, the final states are (20, 0, 20, 0) for go-straight, (20.2, 0.2, 19.87, 0.2)
for turn-left, and (20.2, −0.2, 19.87, −0.2) for turn-right. We use the controller
design in [35] to obtain a set of trajectories for each manoeuvre and use the
verified implementation in [22] to compute the reachable sets for each time.

According to the third requirement to ensure the safety of a path from an
MA in Sect. 3, we must ensure the enclosure property final (m1) ⊆ init (m2) holds
for any two manoeuvres (m1,m2) ∈ jump. However, the concrete numbers above
show that final (go-straight) �⊆ init (go-straight). This does not mean we cannot
compose two go-straight primitives. To achieve this, the initial set can be shifted
in position and orientation—due to position and orientation invariance in (5).

We consider the reach-avoid scenario for autonomous vehicles (Fig. 6) for
motion planning. The road is divided into two four-meter-wide lanes and
bounded by left and right boundaries. There is also a 16 m×4m-rectangle located
at (50, 0) which serves as an obstacle in our scenario. The autonomous vehicle
has the length and width of 5m and 1.75 m, respectively. It is located initially
at (0, 0) and must reach the goal represented by a 16 m × 4m rectangle which is
located at (80, 0).

The reach-avoid plan is formalised with the following LTL formula:

φ : = (left-boundary− ∧ right-boundary− ∧ obstacle−) U goal+.
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After performing satisfiability checking, the search returned the following plan
as shown in Fig. 6:

τ : = turn-left , turn-right , go-straight , turn-right , go-straight.

Regarding the search strategy for satisfiability checking, there are two prop-
erties we proved: termination and soundness. The former is proved with the aid
of the function package in Isabelle [23] by specifying a measure function which
decreases after each recursive call. Meanwhile, the latter is ensured due to the
following two facts: (1) we use the formalised LTL monitoring function from
our previous work [32] to check whether current nodes satisfy the LTL formula,
and (2) we interpret each atomic proposition over-approximatively either due to
inherent uncertainty or numerical round-offs.

Two remarks worth mentioning here. Firstly, note that the main scientific
dimension considered in this work is the correctness of a motion planner achieved
with the aid of a theorem prover. Hence, we prioritise correctness over other
dimensions such as coverage, efficiency, and scalability. The example provided in
this section should be perceived as an evidence that the formalisation in Isabelle
is implementable (code generation); this section by no means is an evaluation of
the coverage of our framework which we plan to do in future with other scenarios
in [3]. Secondly, readers might question the fidelity of the model in (5). However,
Schürmann et al. [36] have provided a framework such that a relatively simple
model like ours with added uncertainties from a higher fidelty model or a real
vehicle could adequately ensure the safety of a plan in a real vehicle.

6 Related Work and Conclusions

Fainekos et al. [12] and Plaku et al. [30] use satisfiability checking (or falsifica-
tion) of temporal logic for finding a path which satisfies a plan formalised in (a
fragment of) LTL. Fainekos et al. [12] expanded and contracted objects which
must be avoided and reached, respectively, in order to have a robust interpre-
tation of LTL. Plaku et al. [30] ignore the issue of numerical soundness when
checking whether a path satisfies an LTL formula. Our approach, meanwhile,
uses sets (zonotopes) as the main data structure which means we can handle
robustness and numerical soundness simultaneously.

Interpreting LTL formulae over a set of trajectories has also been studied
by Roehm et al. [33]. The difference between our semantics is in the way we
treat the negation operator. In their work, the negation operator is allowed for
formulae without any temporal operators only. Our approach, however, does
not have this restriction—hence ours is more expressive—but it comes with an
additional requirement of labelling each atomic proposition with a positive or
negative sign.

Mitsch et al. [25] use the theorem prover KeYmaera X [15] to prove safety
properties of autonomous vehicles. The main difference to our work is the app-
roach to formal reasoning. Theirs is proof-theoretic: (a) they specify the physical
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model of autonomous vehicles with hybrid programs and the property with dif-
ferential dynamic logic [31]; then (b) they use the proof system’s inference rules
to deduce that the hybrid program indeed satisfies the specified property. As
pointed out by Anand and Knepper [4], KeYmaera X does not consider the
possibility of round-off errors in floating-point numbers. This issue has been
addressed by Bohrer et al. [8] where they introduce a framework called VeriPhy.

Our approach is model-theoretic: (1) we model autonomous vehicles with
manoeuvre automata in which each state (manoeuvre) is assigned with reach-
able sets of the physical behaviour; (2) we specify the property in a modified LTL
which takes the reachable sets into account; and (3) we enumerate all possible
paths in the manoeuvre automaton and find a path which satisfies the prop-
erty according to the predefined semantics of the modified LTL. The role of the
Isabelle theorem prover in our work is to prove that each step is implemented
correctly. Compared to VeriPhy, we use affine arithmetic and VeriPhy uses inter-
val arithmetic—a special case of affine arithmetic. However, our approach needs
to trust the code generation setup provided by Isabelle, whereas VeriPhy uses a
sound compilation technique to generate code in CakeML [24].

Anand and Knepper [4] use the Coq theorem prover to implement a frame-
work to specify the physical model and controller of robots for the Robot Operat-
ing System (ROS). Compared to our formalisation, theirs is closer to the imple-
mentation level; ours assumes that the optimal controller can be implemented
correctly in the hardware. However, their implementation assumes that the high-
level plan is given, whereas we derive a high-level plan and a low-level controller.
Both works guarantee numerical soundness, but with a different technique; theirs
uses constructive reals, whereas we use floating-point numbers.

Belta et al. [5] have outlined that the challenge for symbolic motion plan-
ning and control is to tie the top-down approaches, which use temporal logic on
rather abstract models, and bottom-up approaches, whose aim is to construct
manoeuvre automata effectively for formal analysis. We solve this challenge by
adapting the syntax and semantics of LTL for manoeuvre automata. The main
finding for this work is that reachability analysis is the key ingredient to solve
this problem. It allows us to compute the reachable sets of each motion prim-
itive and subsequently to define the satisfaction relation of motion primitives
with formulae in LTL. We also address the challenge of formal verification of
cyber-physical systems, where numerical soundness is largely ignored. By using
a generic theorem prover such as Isabelle, we can guarantee both mathematical
correctness and numerical soundness.
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Abstract. Program verifiers are not exempt from the bugs that affect-
nearly every piece of software. In addition, they often exhibit brittle
behavior: their performance changes considerably with details of how
the input program is expressed—details that should be irrelevant, such
as the order of independent declarations. Such a lack of robustness frus-
trates users who have to spend considerable time figuring out a tool’s
idiosyncrasies before they can use it effectively. This paper introduces
a technique to detect lack of robustness of program verifiers; the tech-
nique is lightweight and fully automated, as it is based on testing meth-
ods (such as mutation testing and metamorphic testing). The key idea
is to generate many simple variants of a program that initially passes
verification. All variants are, by construction, equivalent to the original
program; thus, any variant that fails verification indicates lack of robust-
ness in the verifier. We implemented our technique in a tool called µgie,
which operates on programs written in the popular Boogie language for
verification—used as intermediate representation in numerous program
verifiers. Experiments targeting 135 Boogie programs indicate that brit-
tle behavior occurs fairly frequently (16 programs) and is not hard to
trigger. Based on these results, the paper discusses the main sources of
brittle behavior and suggests means of improving robustness.

1 Introduction

Automated program verifiers have become complex pieces of software; inevitably,
they contain bugs that make them misbehave in certain conditions. Verification
tools need verification too.

In order to apply verification techniques to program verifiers, we have to set-
tle on the kind of (correctness) properties to be verified. If we simply want to
look for basic programming errors—such as memory allocation errors, or parsing
failures—the usual verification1 techniques designed for generic software—from
random testing to static analysis—will work as well on program verifiers. Alter-
natively, we may treat a program verifier as a translator that encodes the seman-
tics of a program and specification language into purely logic constraints—which
1 In this paper, the term “verification” also designates validation techniques such as

testing.
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can be fed to a generic theorem prover. In this case, we may pursue a correct-by-
construction approach that checks that the translation preserves the intended
semantics—as it has been done in few milestone research achievements [20].

There is a third kind of analysis, however, which is peculiar to automated pro-
gram verifiers that aim at being sound. Such tools input a program complete with
specification and other auxiliary annotations, and output either or

. Success means that the verifier proved that the input program is
correct; but failure may mean that the program is incorrect or, more commonly,
that the verifier needs more information to verify the program—such as more
detailed annotations. This asymmetry between “verified” and “don’t know” is a
form of incompleteness, which is inevitable for sound verifiers that target expres-
sive, undecidable program logics. Indeed, using such tools often requires users
to become acquainted with the tools’ idiosyncrasies, developing an intuition for
what kind of information, and in what form, is required for verification to suc-
ceed. To put it in another way, program verifiers may exhibit brittle, or unstable,
behavior : tiny changes of the input program that ought to be inconsequential
have a major impact on the effectiveness achieved by the program verifier. For
instance, Sect. 2 details the example of a small program that passes or fails veri-
fication just according to the relative order of two unrelated declarations. Brittle
behavior of this kind compromises the usability of verification tools.

In this work, we target this kind of robustness (stability) analysis of program
verifiers. We call an automated verifier robust if its behavior is not significantly
affected by small changes in the input that should be immaterial. A verifier that
is not robust is brittle (unstable): it depends on idiosyncratic features of the
input. Using brittle verifiers can be extremely frustrating: the feedback we get
as we try to develop a verified program incrementally is inconsistent, and we
end up running in circles—trying to fix nonexistent errors or adding unneces-
sary annotations. Besides being a novel research direction for the verification of
verifiers, identifying brittle behavior has the potential of helping develop more
robust tools that are ultimately more usable.

More precisely, we apply lightweight verification techniques based on testing.
Testing is a widely used technique that cannot establish correctness but is quite
effective at findings bugs. The goal of our work is to automatically generate tests
that reveal brittleness. Using the approach described in detail in Sect. 3, we start
from a seed : a program that is correct and can be verified by an automated ver-
ifier. We mutate the seed by applying random sequences of predefined mutation
operators. Each mutation operator captures a simple variation of the way a pro-
gram is written that does not change its semantics; for example, it changes the
order of independent declarations. Thus, every mutant is a metamorphic trans-
formation [4] of the seed—and equivalent to it. If the verifier fails to verify a
mutant we found a bug that exposes brittle behavior: seed and mutant differ
only by small syntactic details that should be immaterial, but such tiny details
impact the verifier’s effectiveness in checking a correct program.

While our approach to robustness testing is applicable in principle to any
automated program verifier, the mutation operators depend to some extent on
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the semantics of the verifier’s input language, as they have to be semantic pre-
serving. To demonstrate robustness testing in practice, we focus on the Boogie
language [17]. Boogie is a so-called intermediate verification language, combin-
ing an expressive program logic and a simple procedural programming language,
which is commonly used as an intermediate layer in many verification tools.
Boogie’s popularity2 makes our technique (and our implementation) immedi-
ately useful to a variety of researchers and practitioners.

As we describe in Sect. 3, we implemented robustness testing for Boogie in a
tool called µgie. In experiments described in Sect. 4, we ran µgie on 135 seed
Boogie programs, generating and verifying over 87000 mutants. The mutants
triggered brittle behavior in 16 of the seed programs; large, feature-rich pro-
grams turned out to be particularly brittle, to the point where several different
mutations were capable of making Boogie misbehave. As we reflect in Sect. 6,
our technique for robustness testing can be a useful complement to traditional
testing techniques, and it can help buttress the construction of more robust, and
thus ultimately more effective and usable, program verifiers.

Tool availability. The tool µgie, as well as all the artifacts related to its
experimental evaluation, are publicly available [23]. A few additional details
about the experiments are available in a longer version of this paper [6].

2 Motivating Example

Let’s see a concrete example of how verifiers can behave brittlely. Figure 1 shows
a simple Boogie program consisting of five declarations, each listed on a separate
numbered line.

Fig. 1. A correct Boogie program that exposes the brittleness of verifiers: changing the
order of declarations may make the program fail verification.

The program introduces an integer function h (ln. 1), whose semantics is
partially axiomatized (ln. 2); a constant integer map a (ln. 3), whose elements
at nonnegative indexes are sorted (ln. 4); and a procedure p (ln. 5, spanning
two physical lines in the figure)—complete with signature, specification, and
implementation—which returns the result of applying h to an element of a.
Never mind about the specific nature of the program; we can see that procedure
p is correct with respect to its specification: a[i+ 1] > a[i] from the axiom
2 http://boogie-docs.readthedocs.io/en/latest/#front-ends-that-emit-boogie-ivl.

http://boogie-docs.readthedocs.io/en/latest/#front-ends-that-emit-boogie-ivl
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about a and p’s precondition, and thus h(a[i+ 1])> a[i] = o from the axiom
about h. Indeed, Boogie successfully checks that p is correct.

There is nothing special about the order of declarations in Fig. 1—after all,
“the order of the declarations in a [Boogie] program is immaterial” [17, Sec. 1].
A different programmer may, for example, put a’s declarations before h’s. In this
case, surprisingly, Boogie fails verification warning the user that p’s postcondi-
tion may not hold.

A few more experiments show that there’s a fair chance of running into
this kind of brittle behavior. Out of the 5! = 120 possible permutations of the
5 declarations in Fig. 1—each an equivalent version of the program—Boogie
verifies exactly half, and fails verification of the other half. We could not find any
simple pattern in the order of declarations (such as “line x before line y”) that
predicts whether a permutation corresponds to a program Boogie can verify.

To better understand whether other tools’ SMT encodings may be less brit-
tle than Boogie’s, we used b2w [1] to translate all 120 permutations of Fig. 1 to
WhyML—the input language of the Why3 intermediate verifier [9]. Why3 suc-
cessfully verified all of them—using Z3 as SMT solver, like Boogie does—which
suggests that some features of Boogie’s encoding (as opposed to Z3’s capabilities)
are responsible for the brittle behavior on the example.

Such kinds of brittleness—a program switching from verified to unverified
based on changes that should be inconsequential—can greatly frustrate users,
and in particular novices who are learning the ropes and may get stuck looking
for an error in a program that is actually correct—and could be proved so if
definitions were arranged in a slightly different way. Since brittleness hinders
scalability to projects of realistic size, it can also be a significant problem for
advanced users; for example, the developers behind the Ironclad Apps [14] and
IronFleet [13] projects reported3 that “solvers’ instability was a major issue” in
their verification efforts.

Fig. 2. How robustness testing of Boogie programs works. We start with a correct
program s that some Boogie tool t can successfully verify; mutation generator µgie
mutates s in several different ways, generating many different mutants mk equivalent
to s; each mutant undergoes verification with tool t; a mutant mk that fails verification
with t exposes brittle behavior of t on the two equivalent correct programs s ≡ mk

3 By an anonymous reviewer of FM 2018.



Robustness Testing of Intermediate Verifiers 95

3 How Robustness Testing Works

Robustness testing is a technique that “perturbs” a correct and verified program
by introducing small changes, and observes whether the changes affect the pro-
gram’s verifiability. The changes should be inconsequential, because they are
designed not to alter the program’s behavior or specification; if they do change
the verifier’s outcome, we found lack of robustness. While robustness testing is
applicable to any automated program verifier, we focus the presentation on the
popular Boogie intermediate verification language. Henceforth, a “program” is
a program (complete with specification and other annotations) written in the
Boogie language. Figure 2 illustrates how robustness testing works at a high
level; the rest of the section provides details.

In general terms, testing requires to build a valid input, feed it to the system
under test, and compare the system’s output with the expected output—given
by a testing oracle. Testing the behavior of a verifier according to this paradigm
brings challenges that go beyond those involved in generating tests for general
programs. First, a verifier’s input is a whole program, complete with specification
and other annotations (such as lemmas and auxiliary functions) for verification.
Second, robustness testing aims at exposing subtle inconsistencies in a verifier’s
output, and not basic programming errors—such as memory access errors, pars-
ing errors, or input/output errors—that every piece of software might be subject
to. Therefore, we need to devise suitable strategies for input generation and ora-
cle generation.

3.1 Mutation Operators

Input generation. In order to expose brittleness of verifiers, we need to build
complex input programs of significant size, complete with rich specifications and
all the annotations that are necessary to perform automated verification. While
we may use grammar-based generation techniques [28] to automatically build
syntactically correct Boogie programs, the generated programs would either have
trivial specifications or not be semantically correct—that is, they would not pass
verification. Instead, robustness testing starts from a collection of verified pro-
grams—the seeds—and automatically generates simple, semantically equivalent
variants of those programs.4 This way, we can seed robustness testing with a vari-
ety of sophisticated verification benchmarks, and assess robustness on realistic
programs of considerable complexity.

Mutation operators. Given a seed s, robustness testing generates many
variants M(s) of s by “perturbing” s. Building on the basic concepts and ter-
minology of mutation testing [16],5 we call mutant each variant m of a seed s
obtained by applying a random sequence of mutation operators.
4 [6] describes some experiments with seeds that fail verification. Unsurprisingly, ran-

dom mutations are unlikely to turn an unverified program into a verified one—
therefore, the main paper focuses on using verified programs as seeds.

5 See Sect. 5 for a discussion of how robustness testing differs from traditional mutation
testing.
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A mutation operator captures a simple syntactic transformation of a Boogie
program; crucially, mutation operators should not change a program’s semantics
but only introduce equivalent or redundant information. Under this fundamental
condition, every mutant m of a seed s is equivalent to s in the sense that s and m
should both pass (or both fail) verification. This is an instance of metamorphic
testing, where we transform between equivalent inputs so that the seed serves as
an oracle to check the expected verifier output on all of the seed’s mutants.

Table 1. Mutation operators of Boogie code in categories structural, local, and gener-
ative. Operators do not change the semantics of the code they are applied to (except
possibly G2, which is used separately)

Based on our experience using Boogie and working around its brittle behav-
ior, we designed the mutation operators in Table 1, which exercise different
language features:

Structural mutation operators change the overall structure of top-level
declarations—by changing their relative order (S1), separating declarations
and implementations (S2), and splitting into multiple files (S3).

Local mutation operators work at the level of procedure bodies—by changing
the relative order of or splitting on multiple lines local variable declarations
(L1 and L2), merging two pre- or postcondition clauses x and y into a con-
junctive clause x ∧ y (L3 and L4), changing the relative order of assertions
of the same program element (L5), and permuting the then and else branches
of a conditional (L6).

Generative mutation operators alter redundant information—by adding trivial
assertions (G1), and removing quantifier instantiation suggestions (“triggers”
in G2).

We stress that our mutation operators do not alter the semantics of a Boogie
program according to the language’s specification [17]: in Boogie, the order of
declarations is immaterial (S1, L1, L2); a procedure’s implementation may be
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input : seed program s
input : weight w(o) for each mutation operator o
input : number of mutants NM

output: set of mutants M of s

M ← {s} // initialize pool of mutants to seed
attempts ← 0 // number of main loop iterations
while |M | < NM do // repeat until NM mutants are generated

if attempts > MAX_ATTEMPTS then
break

end
p ← any program in M
o ← any mutation operator // draw with probability w(o)
m ← o(p) // apply mutation operator o to p
M ← M ∪ {m} // add m to pool M
attempts ← attempts + 1

end
return M

Algorithm 1: Mutant generation algorithm

with its declaration or be separate from it (S2); multiple input files are processed
as if they were one (S3); multiple specification elements are implicitly conjoined,
and their relative order does not matter (L3, L4, L5); a conditional’s branches
are mutually exclusive (L6); and true assertions are irrelevant since Boogie only
checks partial correctness (G1).

Triggers. G2 is the only mutation operator that may alter the semantics of
a Boogie program in practice: while triggers are suggestions on how to instan-
tiate quantifiers, they are crucial to guide SMT solvers and increase stability in
practice [5,19]. Therefore, we do not consider G2 semantics-preserving;
our experiments only apply G2 in a separate experimental run to give an idea
of its impact in isolation.

More mutation operators are possible, but the selection in Table 1 should
strike a good balance between effectiveness in setting off brittle behavior and
feasibility of studying the effect of each individual operator in isolation.

3.2 Mutation Generation

Given a seed s, the generation of mutants repeatedly draws random mutation
operators and applies them to s, or to a previously generated mutant of s, until
the desired number NM of mutants is reached.

Algorithm 1 shows the algorithm to generate mutants. The algorithm main-
tains a pool M of mutants, which initially only includes the seed s. Each iteration
of the main generation loop proceeds as follows: 1. pick a random program p in
the pool M ; 2. select a random mutation operator o; 3. apply o to p, giving
mutant m; 4. add m to pool M (if it is not already there).

Users can bias the random selection of mutation operators by assigning a
weight w(o) to each mutation operator o in Table 1: the algorithm draws an
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operator with probability proportional to its weight, and operators with zero
weight are never drawn.

Besides the mutation operator selection, there are two other passages of the
algorithm where random selection is involved: a program p is drawn uniformly
at random from M ; and applying an operator o selects uniformly at random
program locations where o can be applied. For example, if o is S1 (swap two
top-level declarations), applying o to p involves randomly selecting two top level
declarations in p to be swapped.

Any mutation operator can generate only finitely many mutants; since the
generation is random, it is possible that a newly generated mutant is identical to
one that is already in the pool. In practice, this is not a problem as long as the
seed s is not too small or the enabled operators too restrictive (for example, S2

can only generate 2D mutants, where D is the number of procedure definitions
in s). The generation loop has an alternative stopping conditions that gives up
after MAX_ATTEMPTS iterations that have failed to generate enough distinct
mutants.

Robustness testing. After generating a set M(s) of mutants of a seed s,
robustness testing runs the Boogie tool on each mutant in M(s). If Boogie can
verify s but fails to verify any mutant m ∈ M(s), we have found an instance of
brittle behavior : s and m are equivalent by construction, but the different form in
which m is expressed trips up Boogie and makes verification fail on an otherwise
correct program.

3.3 Implementation

We implemented robustness testing as a commandline tool µgie (pronounced
“moogie”). µgie implements in Haskell the mutation generation Algorithm 1,
and extends parts of Boogaloo’s front-end [25] for parsing and typechecking
Boogie programs.

4 Experimental Evaluation

Robustness testing was initially motivated by our anecdotal experience using
intermediate verifiers. To rigorously assess to what extent they are indeed brittle,
and whether robustness testing can expose their brittleness, we conducted an
experimental evaluation using µgie. This section describes design and results of
these experiments.

4.1 Experimental Design

A run of µgie inputs a seed program s and outputs a number of metamorphic
mutants of s, which are then verified with some tool t (see Fig. 2).

Seed selection. We prepared a curated collection of seeds by selecting Boo-
gie programs from several different sources, with the goal of having a diverse
representation of how Boogie may be used in practice. Each example belongs
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Table 2. Boogie programs (“seeds”) and Boogie tool versions used in the experiments.

to one of six groups according to its origin and characteristics; Table 2a dis-
plays basic statistics about them. Group A contains basic Algorithms (search
in an array, binary search trees, etc.) implemented directly in Boogie in our pre-
vious work [10]; these are relatively simple, but non-trivial, verification bench-
marks. Group T is a different selection of mainly algorithmic problems (bubble
sort, Dutch flag, etc.) included in Boogie’s distribution Tests. Group E con-
sists of small Examples from our previous work [5] that target the impact of
different trigger annotations in Boogie. Group S collects large Boogie programs
that we generated automatically from fixed, repetitive structures (for example,
nested conditionals); in previous work [5] we used these programs to evaluate
Scalability. Groups D and P contain Boogie programs automatically generated
by the Dafny [18] and AutoProof [11] verifiers (which use Boogie as intermediate
representation). The Dafny and Eiffel programs they translate come from the
tools’ galleries of verification benchmarks [2,8]. As we see from the substantial
size of the Boogie programs they generate, Dafny and AutoProof introduce a
significant overhead as they include axiomatic definitions of heap memory and
complex types. In all, we collected 135 seeds of size ranging from just 6 to over
8500 lines of Boogie code for a total of nearly 260000 lines of programs and
specifications.

Tool selection. In principle, µgie can be used to test the robustness of any
verifier that can input Boogie programs: besides Boogie, tools such as Booga-
loo [25], Symbooglix [21], and blt [5]. However, different tools target different
kinds of analyses, and thus typically require different kinds of seeds to be tested
properly and meaningfully compared. To our knowledge, no tools other than
Boogie itself support the full Boogie language, or are as mature and as effec-
tive as Boogie for sound verification (as opposed to other analyses, such as the
symbolic execution performed by Boogaloo and Symbooglix) on the kinds of
examples we selected. We intend to perform a different evaluation of these tools
using µgie in the future, but for consistency and clarity we focus on the Boogie
tool in this paper.
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In order to understand whether Boogie’s robustness has changed over its
development history, our experiments include different versions of Boogie. The
Boogie repository is not very consistent in assigning new version numbers, nor
does it tag specific commits to this effect. As a proxy for that, we searched
through the logs of Boogie’s repository for commit messages that indicate
updates to accommodate new features of the Z3 SMT solver—Boogie’s stan-
dard and main backend. For each of four major versions of Z3 (4.1.1, 4.3.2,
4.4.1, and 4.5.0), we identified the most recent commit that refers explicitly to
that version (see Table 2b); for example, commit 63b360 says “Calibrated test
output to Z3 version 4.5.0”. Then, we call “Boogie v” the version of Boogie at
the commit mentioning Z3 version v, running Z3 version v as backend.

To better assess whether brittle behavior is attributable to Boogie’s encoding
or to Z3’s behavior, we included two other tools in our experiments: CVC4
refers to the SMT solver CVC4 v. 1.5 inputting Boogie’s SMT2 encoding of
verification condition (the same input that is normally fed to Z3); Why3 refers to
the intermediate verifier Why3 v. 0.86.3 using Z3 4.3.2 as backend, and inputting
WhyML translations of Boogie programs automatically generated by b2w [1].

Table 3. Definitions and descriptions of the experimental measures reported in Table 4.

Experimental setup. Each experiment has two phases: first, generate
mutants for every seed; then, run Boogie on the mutants and check which
mutants still verify.

For every seed s ∈ S (where S includes all 135 programs summarized in Table
2a), we generate different batches MO(s) of mutants of s by enabling specific
mutation operators O in µgie. Precisely, we generate 12 different batches for
every seed:

M∗(s) consists of 100 different mutants of s, generated by picking uniformly at
random among all mutation operators in Table 1 except G2 (that is, each
mutation operator gets the same positive weight, and G2 gets weight zero);
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MJ(s), for J one of the 11 operators in Table 1, consists of 50 different mutants
of s generated by only applying mutation operator J (that is, J gets a positive
weight, and all other operators get weight zero).

Batch M∗ demonstrates the effectiveness of robustness testing with general
settings; then, the smaller batches MJ focus on the individual effectiveness of
one mutation operator at a time. Operator G2 is only used in isolation (and
not at all in M∗) since it may change the semantics of programs indirectly by
guiding quantifier instantiation.

Let t be a tool (a Boogie version in Table 2b, or another verifier). For every
seed s ∈ S, we run t on s and on all mutants MO(s) in each batch. For a run
of t on program p (seed or mutant), we write t(p) if t verifies p successfully; and
¬t(p) if t fails to verify p (because it times out, or returns with failure). Based
on this basic data, we measure robustness by counting the number of verified
seeds whose mutants fail verification: see the measures defined in Table 3 and
the results described in detail in Sect. 4.2.

Running times. The experiments ran on a Ubuntu 16.04 LTS GNU/Linux
box with Intel 8-core i7-4790 CPU at 3.6 GHz and 16 GB of RAM. Generating
the mutants took about 15 min for the batch M∗ and 10 min for each batch MJ .
Each verification run was given a timeout of 20 s, after which it was forcefully
terminated by the scheduler of GNU parallel [27].

4.2 Experimental Results

Overall results: batch M∗. Our experiments, whose detailed results are in
Table 4, show that robustness testing is effective in exposing brittle behavior,
which is recurrent in Boogie: for 12% of the seeds that pass verification,6 there
is at least one mutant in batch M∗ that fails verification.

Not all seeds are equally prone to brittleness: while on average only 3% of
one seed’s mutants fail verification, it is considerably easier to trip up seeds that
are susceptible to brittle behavior (that is such that at least one mutant fails
verification): 27% of mutants per such seeds fail verification.

When the verifier times out on a mutant, it may be because: (i) the timeout
is itself unstable and due to random noise in the runtime environment; (ii) the
mutant takes longer to verify than the seed, but may still be verified given longer
time; (iii) verification time diverges.

We ruled out (i) by repeating experiments 10 times, and reporting a timeout
only if all 10 repetitions time out. Thus, we can generally consider the timeouts in
Table 4 indicative of a genuine degrading of performance in verification—which
affected 3% of one seed’s mutants on average.

Boogie versions. There is little difference between Boogie versions, with the
exception of Boogie 4.1.1. This older version does not support some language
features used extensively in many larger examples that also tend to be more brit-
tle (groups D and P). As a result, the percentage of verified seeds with mutants
6 For clarity, we initially focus on Boogie 4.5.0, and later discuss differences with other

versions.
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Table 4. Experimental results of robustness testing with µgie. For each group of seeds,
for each tool: number of seeds passing verification (# pass), number and percentage
of passing seeds for which at least one mutant fails verification (#∃fail and % ∃fail),
average percentage of mutants per passing seed that fail verification (% fail), average
percentage of mutants per passing seed that time out (% timeout), average percentage
of mutants that fail verification per passing seed with at least one failing mutant
(% ∃fail). The middle section of the table records experiments with batch M∗; each
of the 11 rightmost columns records experiments with batch MJ , for J one of the
mutation operators in Table 1.



Robustness Testing of Intermediate Verifiers 103

that fail verification is spuriously lower (4%) but only because the experiments
with Boogie 4.1.1 dodged the harder problems and performed similarly to the
other Boogie versions on the simpler ones.

Intermediate verifier vs. backend. Is the brittleness we observed in our
experiments imputable to Boogie or really to Z3? To shed light on this ques-
tion, we tried to verify every seed and mutant using CVC4 instead of Z3 with
Boogie’s encoding; and using Why3 on a translation [1] of Boogie’s input. Since
the seeds are programs optimized for Boogie verification, CVC4 and Why3 can
correctly process only about half of the seeds that Boogie can. This gives us too
little evidence to answer the question conclusively: while both CVC4 and Why3
behaved robustly, they could verify none of the brittle seeds (that is, verified
seeds with at least one failing mutant), and thus behaved as robustly as Boogie
on the programs that both tools can process.7 In cases such as the simple exam-
ple of Sect. 2 (where Why3 was indeed more robust than Boogie), it is really
the interplay of Boogie and Z3 that determines brittle behavior. While SMT
solvers have their own quirks, Boogie is meant to provide a stable intermediate
layer; in all, it seems fair to say that Boogie is at least partly responsible for the
brittleness.

Program groups. Robustness varies greatly across groups, according to
features and complexity of the seeds that are mutated. Groups D and P are the
most brittle: about 1/3 of passing seeds in D, and about 2/5 of passing seeds in
P, have at least one mutant that fails verification. Seeds in D and P are large
and complex programs generated by Dafny and AutoProof; they include exten-
sive definitions with plenty of generic types, complex axioms, and instantiations.
The brittleness of these programs reflects the hardness of verifying strong speci-
fications and feature-rich programming languages: the Boogie encoding must be
optimized in every aspect if it has to be automatically verifiable; even a modicum
of clutter—introduced by µgie—may jeopardize successful verification.

By the same token, groups A, E, and T’s programs are more robust because
they have a smaller impact surface in terms of features and size. Group S’s
programs are uniformly robust because they have simple, repetitive structure
and weak specifications despite their significant size; Boogie scales effortlessly
on such examples.

Mutation operators and batches MJ . Figure 3 and the rightmost
columns of Table 4 explore the relative effectiveness of each mutation opera-
tor. S2, L1, L2, and L6 could not generate any failing mutant—suggesting that
Boogie’s encoding of procedure declarations, of local variables, and of condi-
tionals is fairly robust. In contrast, all other operators could generate at least
one failing mutant; Fig. 3 indicates that L3 and S3 generated failing mutants for
respectively 2 seeds and 1 seed that were robust in batch M∗ (using all muta-
tion operators with the same frequency)—indicating that mutation operators are
complementary to a certain extent in the kind of brittleness they can expose.

7 Additionally, Why3 times out on 51 mutants of 2 seeds in group S; this seems to
reflect an ineffective translation performed by b2w [1] rather than brittleness of Why3.
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Fig. 3. For each of 16 verified seeds with at least one failing mutant with Boogie 4.5.0,
which batches all exclusively include a failing mutant of those seeds. G2 is excluded and
analyzed separately; S2, L1, L2, L6 could not generate any failing mutant; L4 generated
failing mutants for a strict subset of those in M∗; G1 generated failing mutants for a
strict subset of those in ML5

Failures. Overall, 13 brittle seeds are revealed by 350 failing mutants in
M∗ with Boogie 4.5.0. Failures are of three kinds: (a) timeouts (6 seeds, 252
mutants); (b) type errors (5 seeds, 10 mutants); (c) explicit verification failures
(2 seeds, 88 mutants). Timeouts mainly occur in group D (5 seeds), where size
and complexity of the code are such that any mutation that slows down ver-
ification may hit the timeout limit; verification of some mutants seems to be
non-terminating, whereas others are just slowed down by some tens of seconds.
Type errors all occur in group P and only when mutation S3 splits the seed in
a way that procedure update_heap (part of AutoProof’s heap axiomatization)
ends up being declared after its first usage; in this case, Boogie cannot correctly
instantiate the procedure’s generic type, which triggers a type error even before
Z3 is involved. Verification failures occur in seeds of group A and D. In partic-
ular, a binary search tree implementation in group A fails verification when the
relative order of two postconditions is swapped by L5; while Why3 cannot prove
the whole example, it can prove the brittle procedure alone regardless of the
postcondition order. In all, it is clear that Boogie’s encoding is quite sensitive to
the order of declarations and assertions even when it should not matter.

Triggers. Remember that mutation operator G2 is the only one that modi-
fies triggers, and was only applied in isolation in a separate set of experiments.
As we expected from previous work [19], altering triggers is likely to make verifi-
cation fail (30 seeds and 276 mutants overall; 20 seeds are only brittle if triggers
are modified); most of these failures (26 seeds and 250 mutants) are timeouts,
since removing triggers is likely to at least slow down verification—if not make
it diverge. Operator G2 is very effective at exposing brittleness mainly with
the complex examples in groups D and P, which include numerous axioms and
extensive quantification patterns. Group E’s programs are a bit special because
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they are brittle—they are designed to be so—but are only affected by mutation
operators that remove the trigger annotations on which they strongly depend;
in contrast, they are robust against all other mutation operators.

5 Related Work

Robustness. This paper’s robustness testing aims at detecting so-called butter-
fly effects [19]—macroscopic changes in a verifier’s output in response to minor
modifications of its input. Program provers often incur volatile behavior because
they use automated theorem provers—such as SMT solvers—which in turn rely
on heuristics to handle efficiently, in many practical cases, complex proofs in
undecidable logics.

Random testing. Our approach uses testing to expose brittle behavior of
verifiers. By automatically generating test inputs, random testing has proved to
be extremely effective at detecting subtle errors in programs completely automat-
ically. Random testing can generate instances of complex data types by recur-
sively building them according to their inductive structure—as it has been done
for functional [7] and object-oriented [24] programming languages. Random test-
ing has also been successfully applied to security testing—where it is normally
called “fuzzing” [12]—as well as to compiler testing [28]—where well-formed pro-
grams are randomly generated according to the input language’s grammar.

Mutation testing. This paper’s robustness testing is a form of random test-
ing, in that it applies random mutation operators to transform a program into
an equivalent one. The terminology and the idea of applying mutation operators
to transform between variants of a program come from mutation testing [16].
However, the goals of traditional mutation testing and of this paper’s robustness
testing are specular. Mutation testing is normally used to assess the robustness
of a test suite—by applying error-inducing mutations to correct programs, and
ascertaining whether the tests fail on the mutated programs. In contrast, we use
mutation testing to assess the robustness of a verifier—by applying semantic-
preserving mutations to correct (verified) programs, and ascertaining whether
the mutated programs still verify. Therefore, the mutation operators of standard
mutation testing introduce bugs in a way that is representative of common pro-
gramming mistakes; the mutation operators of robustness testing (see Table 1)
do not alter correctness but merely represent alternative syntax expressing the
same behavior in a way that is representative of different styles of programming.

Metamorphic testing. In testing, generating inputs is only half of the
work; one also has to compare the system’s output with the expected output to
determine whether a test is passing or failing. The definition of correct expected
output is given by an oracle [3]. The more complex the properties we are testing
for, the more complex the oracle: a crash oracle (did the program crash?) is
sufficient to test for simple errors such as out-of-bound memory access; finding
more complex errors requires some form of specification [15] of expected behavior
.

Even when directly building an oracle is as complex as writing a correct pro-
gram, there are still indirect ways of extrapolating whether an output is correct.
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In differential testing [22], there are variants of the program under test; under the
assumption that not all variants have the same bugs, one can feed the same input
to every variant, and stipulate that the output returned by the majority is the
expected one—and any outlier is likely buggy. In metamorphic testing [26], an
input is transformed into an equivalent one according to metamorphic relations;
equivalent inputs that determine different outputs are indicative of error. Our
robustness testing applies mutation operators that determine identity metamor-
phic relations between Boogie programs, since they only change syntactic details
and not the semantics of programs.

6 Discussion and Future Work

Our experiments with µgie confirm the intuition—bred by frequently using it in
our work—that Boogie is prone to brittle behavior. How can we shield users from
this brittle behavior, thus improving the usability of verification technology?

Program verifiers that use Boogie as an intermediate representation achieve
this goal to some extent: the researchers who built the verifiers have developed an
intuitive understanding of Boogie’s idiosyncrasies, and have encoded this infor-
mal knowledge into their tools. End users do not have to worry about Boogie’s
brittleness but can count on the tools to provide an encoding of their input
programs that has a good chance of being effective.

In contrast, developers of program verifiers still have to know how to interact
with Boogie and be aware of its peculiarities.

Robustness testing may play a role not only in exposing brittle behavior—the
focus of this paper—but in precisely tracking down the sources of brittleness,
thus helping to debug them. To this end, we plan to address minimization and
equivalency detection of mutants in future work. The idea is that the number
of failing mutants that we get by running µgie are not directly effective as
debugging aids, because it takes a good deal of manual analysis to pinpoint the
precise sources of failure in large programs with several mutations. Instead, we
will apply techniques such as delta debugging [29] to reduce the size of a failing
mutant as much as possible while still triggering failing behavior in Boogie.
Failing mutants of minimal size will be easier to inspect by hand, and thus will
point to concrete aspects of the Boogie translation that could be made more
robust.

To further investigate to what extent it is Z3 that is brittle, and to what
extent it is Boogie’s encoding of verification condition—an aspect only partially
addressed by this paper’s experiments—we will apply robustness testing directly
to SMT problems, also to understand how Boogie’s encoding can be made more
robust.

Robustness testing could become a useful help to developers of program and
intermediate verifiers, to help them track down sources of brittleness during
development, ultimately making verification technology easier to use and more
broadly applicable.
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Abstract. We investigate means of efficient computation of the simula-
tion relation over symbolic finite automata (SFAs), i.e., finite automata
with transitions labeled by predicates over alphabet symbols. In one
approach, we build on the algorithm by Ilie, Navaro, and Yu proposed
originally for classical finite automata, modifying it using the so-called
mintermisation of the transition predicates. This solution, however, gen-
erates all Boolean combinations of the predicates, which easily causes an
exponential blowup in the number of transitions. Therefore, we propose
two more advanced solutions. The first one still applies mintermisation
but in a local way, mitigating the size of the exponential blowup. The
other one focuses on a novel symbolic way of dealing with transitions,
for which we need to sacrifice the counting technique of the original algo-
rithm (counting is used to decrease the dependency of the running time
on the number of transitions from quadratic to linear). We perform a
thorough experimental evaluation of all the algorithms, together with
several further alternatives, showing that all of them have their merits in
practice, but with the clear indication that in most of the cases, efficient
treatment of symbolic transitions is more beneficial than counting.

1 Introduction

We investigate algorithms for computing simulation relations on states of sym-
bolic finite automata. Symbolic finite automata (SFAs) [1,2] extend the classical
(nondeterministic) finite automata (NFAs) by allowing one to annotate a transi-
tion with a predicate over a possibly infinite alphabet. Such symbolic transitions
then represent a set of all (possibly infinitely many) concrete transitions over all
the individual symbols that satisfy the predicate. SFAs offer a practical solution
for automata-based techniques whenever the alphabet is prohibitively large to be
processed with a standard NFA, for instance, when processing Unicode-encoded
text (e.g., within various security-related analyses) or in automata-based deci-
sion procedures for logics such as MSO or WS1S [3,4]. Applications of SFAs
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over arithmetic alphabets and formulas arise also when dealing with symbolic
transducers in the context of various sanitizer and encoder analyses [4].

A simulation relation on an automaton underapproximates the inclusion
of languages of individual states [20]. This makes it useful for reducing non-
deterministic automata and in testing inclusion and equivalence of their lan-
guages [5,6,20]. Using simulation for these purposes is often the best compro-
mise between two other alternatives: (i) the cheap but strict bisimulation and
(ii) the liberal but expensive language inclusion.

The obvious solution to the problem of computing simulation over an SFA
is to use the technique of mintermisation: the input SFA is transformed into
a form in which predicates on transitions partition the alphabet. Predicates on
transitions can then be treated as ordinary alphabet symbols and most of the
existing algorithms for NFAs can be used out of the box, including a number of
algorithms for computing simulations. We, in particular, consider mintermisation
mainly together with the algorithm by Ilie, Navaro, and Yu from [7] (called INY
in the following), and, in the experiments, also with the algorithm by Ranzato
and Tapparo (called also RT) [19]. A fundamental problem is that mintermisa-
tion can increase the number of transitions exponentially due to generating all
Boolean combinations of the original transition predicates. Moreover, this prob-
lem is not only theoretical, but causes a significant blowup in practice too, as
witnessed in the experiments presented in this paper.

We therefore design algorithms that do not need mintermisation. We take
as our starting point the algorithm INY, which has the best available time
complexity O(

nm
)

in terms of the number of states n and transitions m of
the input NFA. We propose two generalisations of this algorithm. The first one
(called LocalMin) reflects closely the ideas that INY uses to achieve the low
complexity. Instead of applying INY on a globally mintermised SFA, it, how-
ever, requires only a locally mintermised form: for every state, the predicates
on its outgoing transitions partition the alphabet. Local mintermisation is thus
exponential only to the maximal out-degree of a state.

Our second algorithm (called NoCount) is fundamentally different from
LocalMin because it trades off the upfront mintermisation cost against working
with predicates in the algorithm, and therefore has a different worst case com-
putational complexity wrt the number of transitions. We show experimentally
that this trade-off pays off. To facilitate this trade-off, we had to drop a count-
ing technique that INY uses to improve its time complexity from O(

n2m
)

to
O(

nm
)

and that replaces repeated tests for existence of transitions with certain
properties by maintaining their number in a dedicated counter and testing it
for zero. Dropping the counter-based approach (which depends on at least local
mintermisation) in turn allowed an additional optimisation based on aggregat-
ing a batch of certain expensive operations (satisfiability checking) on symbolic
transitions into one. Overall, this improves the efficiency and ultimately reduces
a worst-case 2m cost, which is typically independent of the Boolean algebra, to
the cost of inlining the Boolean algebra operations, which may be polynomial or
even (sub)linear in m.
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In our experiments, although each of the considered algorithms wins in some
cases, our new algorithms performed overall significantly better than INY with
global mintermisation. NoCount performed the best overall, which suggests
that avoiding mintermisation and aggregating satisfiability tests over transi-
tion labels is practically more advantageous than using the counting technique
of INY. We have also compared our algorithms with a variant [8] of the RT
algorithm, one of the fastest algorithms for computing simulation, run on the
globally mintermised automata (we denote the combination as GlobRT). The
main improvement of RT over INY is its use of partition-relation pairs, which
allows one to aggregate operations with blocks of the so-far simulation indistin-
guishable states. Despite this powerful optimisation and the fine-tuned imple-
mentation of RT in the Vata library [9], NoCount has a better performance
than GlobRT on automata with high diversity of transition predicates (where
mintermisation significantly increases the number of transitions).

Related work. Simulation algorithms for NFAs might be divided between simple
and partition-based. Among the simple algorithms, the algorithm by Henzinger,
Henzinger, and Köpke [10] (called HHK) is the first algorithm that achieved the
time complexity O(

nm
)

on Kripke structures. The later algorithm INY [7] is
a small modification of HHK and works on finite automata in a time at worst
O(

nm
)
. The automata are supposed to be complete (every state has an outgoing

transition for every alphabet symbol). INY can be adapted for non-complete
automata by adding an initialisation step which costs O(

�n2
)

time where � is the
size of the alphabet, resulting in O(

nm + �n2
)

overall complexity (cf. Sect. 3.1).
The first partition-based algorithm was RT, proposed in [19]. The main inno-

vation of RT is that the overapproximation of the simulation relation is repre-
sented by a so-called partition-relation pair. In a partition-relation pair, each
class of the partition of the set of states represents states that are simulation-
equivalent in the current approximation of the simulation, and the relation on
the partition denotes the simulation-bigger/smaller classes. Working with states
grouped into blocks is faster than working with individual states, and in the
case of the most recent partition-based algorithms for Kripke structures [11], it
allows to derive the time complexity O(

n′m
)

where n′ is the number of classes of
the simulation equivalence (the partition-based algorithms are also significantly
faster in practice, although their complexity in terms of m and n is still O(

nm
)
).

See e.g. [11] for a more complete overview of algorithms for computing simulation
over NFAs and Kripke structures.

Our choice of INY over HHK among the simple algorithms is justified
by a smaller dependence of the data structures of INY on the alphabet size.
The main reason for basing our algorithms on one of the simple algorithms is
their relative simplicity. Partition-based algorithms are intricate as well as the
proofs of their small asymptotic complexity. Moreover, they compute predeces-
sors of dynamically refined blocks of states via individual alphabet symbols,
which seems to be a problematic step to efficiently generalise for symbolic SFA
transitions. Having said that, it remains true that the technique of represent-
ing preorders through partition-relation pairs is from the high-level perspective
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orthogonal to the techniques we have developed to generalise INY. Combin-
ing both types of optimisations would be a logical continuation of this work.
It is, however, questionable if generalising already very complex partition-based
algorithms, such as [11,19], is the best way to approach computing simulations
over SFAs. Most of the intricacy of the partition-based algorithms aims at com-
bining the counting technique with the partition-relation pairs. Our experimen-
tal results suggest, however, that rather than using the counting technique, it is
more important to optimise the treatment of symbolic transitions and to avoid
mintermisation.

Our work complements other works on generalising classical automata algo-
rithms to SFAs, mainly the deterministic minimisation [12] and computing of
bisimulation [13].

2 Preliminaries

Throughout the paper, we use the following notation: If R ⊆ A1 ×· · ·×An is an
n-ary relation for n ≥ 2, then R(x1, . . . , xn−1)

def= {y ∈ An | R(x1, . . . , xn−1, y)}
for any x1 ∈ A1, . . . , xn−1 ∈ An−1. Let R� def= (A1 × . . . × An) \ R.

Effective Boolean algebra. An effective Boolean algebra is defined as a tuple
A = (D, P, �·�,∨,∧,¬) where P is a set of predicates closed under predicate
transformers ∨,∧ : P×P → P and ¬ : P → P. A first order interpretation (deno-
tation) �·� : P → 2D assigns to every predicate of P a subset of the domain D
such that, for all ϕ,ψ ∈ P, it holds that �ϕ ∨ ψ� = �ϕ�∪�ψ�, �ϕ ∧ ψ� = �ϕ�∩�ψ�,
and �¬ϕ� = D \ �ϕ�. For ϕ ∈ P, we write IsSat(ϕ) when �ϕ� 
= ∅ and say that
ϕ is satisfiable. The predicate IsSat and the predicate transformers ∧, ∨, and ¬
must be effective (computable). We assume that P contains predicates � and ⊥
with ��� = D and �⊥� = ∅. Let Φ be a subset of P. If the denotations of any
two distinct predicates in Φ are disjoint, then Φ is called a partition (of the set⋃

ϕ∈Φ�ϕ�). The set Minterms(Φ) of minterms of a finite set Φ of predicates is
defined as the set of all satisfiable predicates of {∧ϕ∈Φ′ ϕ∧∧

ϕ∈Φ\Φ′ ¬ϕ | Φ′ ⊆ Φ}.
Notice that every predicate of Φ is equivalent to a disjunction of minterms in
Minterms(Φ).

Below, we assume that it is possible to measure the size of the predicates
of the effective Boolean algebra A that we work with. We denote by Csat(x, y)
the worst-case complexity of constructing a predicate obtained by applying x
operations of A on predicates of the size at most y and checking its satisfiability.

Symbolic finite automata. We define a symbolic finite automaton (SFA) as a tuple
M = (Q,A,Δ, I, F ) where Q is a finite set of states, A = (D, P, �·�,∨,∧,¬)
is an effective Boolean algebra, Δ ⊆ Q × P × Q is a finite transition relation,
I ⊆ Q is a set of initial states, and F ⊆ Q is a set of final states. An element
(q, ψ, p) of Δ is called a (symbolic) transition and denoted by q−{ψ}→p. We write
�q−{ψ}→p� to denote the set {q−{a}→p | a ∈ �ψ�} of concrete transitions represented
by q−{ψ}→p, and we let �Δ� def=

⋃
q−{ψ}→p∈Δ�q−{ψ}→p�. For q ∈ Q and a ∈ D let

Δ(q, a) def= {p ∈ Q | q−{a}→p}.
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In the following, it is assumed that predicates of all transitions of an SFA
are satisfiable unless stated otherwise. A sequence ρ = q0a1q1a2 · · · anqn with
qi−1−{ai}→qi ∈ �Δ� for every 1 ≤ i ≤ n is a run of M over the word a1 · · · an. The
run ρ is accepting if q0 ∈ I and qn ∈ F , and a word is accepted by M if it has an
accepting run. The language L(M) of M is the set of all words accepted by M .

An SFA M is complete iff, for all q ∈ Q and a ∈ D, there is p ∈ Q with
p−{a}→q ∈ �Δ�. An SFA can be completed in a straightforward way: from every
state q, we add a transition from q labelled with ¬∨{ϕ | ∃p ∈ Q : q−{ϕ}→p ∈ Δ}
to a new non-accepting sink state, if the disjunction is satisfiable.

An SFA M is globally mintermised if the set PΔ
def= {ϕ ∈ P | ∃p, q : p−{ϕ}→q ∈

Δ} of the predicates appearing on its transitions is a partition. Every SFA can
be made globally mintermised by replacing each p−{ϕ}→q ∈ Δ by the set of tran-
sitions {p−{ω}→q | ω ∈ Minterms(PΔ)∧ IsSat(ω ∧ϕ)} (see e.g. [12] for an efficient
algorithm), where IsSat(ω ∧ ϕ) is an implementation of the test �ω� ⊆ �ϕ�,
because if ω is a minterm of PΔ and ϕ ∈ PΔ then �ω� ∩ �ϕ� 
= ∅ implies that
�ω� ⊆ �ϕ�. Since for a set of predicates Φ, the size of Minterms(Φ) is at worst
2|Φ|, global mintermisation is exponential in the number of transitions.

A classical (nondeterministic) finite automaton (NFA) N = (Q,Σ,Δ, I, F )
over a finite alphabet Σ can be seen as a special case of an SFA where Δ
contains solely transitions of the form q−{a}→r s.t. a ∈ Σ and �a� = {a} for
all a ∈ Σ. Below, we will sometimes interpret an SFA M = (Q,A,Δ, I, F ) as
its syntactic NFA N = (Q, PΔ,Δ, I, F ) in which the predicates are treated as
syntactic objects.

Simulation. Let M = (Q,A,Δ, I, F ) be an SFA. A relation S on Q is a simulation
on M if whenever (p, r) ∈ S, then the following two conditions hold: (C1) if
p ∈ F , then r ∈ F , and (C2) for all a ∈ D and p′ ∈ Q such that p−{a}→p′ ∈
�Δ�, there is r′ ∈ Q such that r−{a}→r′ ∈ �Δ� and (p′, r′) ∈ S. There exists a
unique maximal simulation on M , which is reflexive and transitive. We call it
the simulation (preorder) on M and denote it by �M (or � when M is clear
from the context). Computing � on a given SFA is the subject of this paper.
A simulation that is symmetric is called a bisimulation, and the bisimulation
equivalence is the (unique) largest bisimulation, which is always an equivalence
relation.

3 Computing Simulation over SFAs

In this section, we present our new algorithms for computing the simulation pre-
order over SFAs. We start by recalling an algorithm for computing the simulation
preorder on an NFA of Ilie, Navarro, and Yu from [7] (called INY), which serves
as the basis for our work. Then, we introduce three modifications of INY for
SFAs: (i) GlobINY, (ii) LocalMin, and (iii) NoCount. GlobINY is merely
an application of the mintermisation technique: first globally mintermise the SFA
and then use INY to compute the NFA simulation preorder over the result. The
main contribution of our paper lies in the other two algorithms, which are sub-



114 L. Hoĺık et al.

tler modifications of INY that avoid global mintermisation by reasoning about
the semantics of transition predicates of SFAs.

Before turning to the different algorithms, we start by explaining how �M

can be computed by an abstract fixpoint procedure and provide the intuition
behind how such a procedure can be lifted to the symbolic setting.

Abstract procedure for computing �M . We start by presenting an abstract fixpoint
procedure for computing the simulation �M on an SFA M = (Q,A,Δ, I, F ).
We formulate it using the notion of minimal nonsimulation �M (which is a dual
concept to the maximal simulation �M introduced before), defined as the least
subset 
� ⊆ Q × Q s.t. for all s, t ∈ Q, it holds that

s 
� t ⇔ (s ∈ F ∧ t 
∈ F ) ∨
∃i ∈ Q.∃a ∈ D.(s−{a}→ i ∧ ∀j ∈ Q.(t−{a}→ j ⇒ i 
� j))

︸ ︷︷ ︸
(1*)

. (1)

Informally, s cannot be simulated by t iff (line 1) s is accepting and t is not,
or (line 2) s can continue over some symbol a into i, while t cannot simu-
late this move by any of its successors j. It is easy to see that �M = �

�
M .

The algorithms for computing simulation over NFAs are efficient implementa-
tions of such a fixpoint procedure using counter-based implementations for eval-
uating (1*). Namely, for every symbol a and a pair of states t and i, it keeps
count of those states j that could possibly contradict the universally quantified
property. The count dropping to zero means that the property holds universally.

Symbolic abstract procedure for computing �M . When the domain D is very
large or infinite, then evaluating (1*) directly is infeasible. If Minterms(PΔ) is
exponentially larger than the set PΔ, then evaluating (1*) with a ranging over
Minterms(PΔ) may also be infeasible. Instead, we want to utilize the opera-
tions of the algebra A without explicit reference to elements in D and without
constructing Minterms(PΔ). The key insight is that condition (1*) is equivalent
to

IsSat(ϕsi ∧ ¬Γ (t, ��(i))) (2)

where, for t, s, i ∈ Q and J ⊆ Q, we define ϕsi
def=

∨
(s,ψ,i)∈Δ ψ and Γ (t, J) def=

∨
j∈J ϕtj , i.e., Γ (t, ��(i)) is a disjunction of predicates on all transitions leaving t

and entering a state that simulates i. Using (2) to compute (1*) in the abstract
procedure thus eliminates the explicit quantification over D and avoids compu-
tation of Minterms(PΔ). The equivalence between (1*) and (2) holds because,
for all a ∈ D and R ⊆ Q × Q, we have

a ∈ �¬Γ (t, R�(i))� ⇔ ¬∃j(t−{a}→ j ∧ (i, j) ∈ R�) ⇔ ∀j(t−{a}→ j ⇒ (i, j) ∈ R).

The fixpoint computation based on (2) is used in our algorithm NoCount, which
does not require mintermisation. Its disadvantage is that it is not compatible
with the counting technique. Our algorithm LocalMin is then a compromise
between mintermisation and NoCount that retains the counting technique for
the price of using a cheaper, local variant of mintermisation.
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Algorithm 1: INY

Input: An NFA N = (Q, Σ, Δ, I, F )
Output: The simulation preorder �N

1 for p, q ∈ Q, a ∈ Σ do Na(q, p) := |Δ(q, a)|
2 Sim := Q × Q;
3 NotSim := F × (Q \ F ) ∪ {(q, r) | ∃a ∈ Σ : Δ(q, a) �= ∅ ∧ Δ(r, a) = ∅};
4 while NotSim �= ∅ do
5 remove some (i, j) from NotSim and Sim;
6 for t−{a}→j ∈ Δ do
7 Na(t, i) := Na(t, i) − 1;
8 if Na(t, i) = 0 then // ta�i = ∅
9 for s−{a}→i ∈ Δ s.t. (s, t) ∈ Sim do

10 NotSim := NotSim ∪ {(s, t)};

11 return Sim;

3.1 Computing Simulation over NFAs (INY)

In Algorithm 1, we give a slightly modified version of the algorithm INY from [7]
for computing the simulation preorder over an NFA N = (Q,Σ,Δ, I, F ).

The algorithm refines an overapproximation Sim of the simulation preorder
until it satisfies the definition of a simulation. The set NotSim is used to store
pairs of states (i, j) that were found to contradict the definition of the simulation
preorder. NotSim is initialised to contain (a) pairs that contradict condition C1
and (b) pairs that cannot satisfy condition C2 regardless of the rest of the rela-
tion, as they relate states with incompatible outgoing symbols. All pairs (i, j) in
NotSim are subsequently processed by removing (i, j) from Sim and propagating
the change of Sim according to condition C2: for all transitions t−{a}→j ∈ Δ, it is
checked whether j was the last a-successor of t that could be simulation-greater
than i (hence there are no more such transitions after removing (i, j) from Sim).
If this is the case, then t cannot simulate any a-predecessor s of i, and so all
such pairs (s, t) ∈ Sim are added to NotSim. In order to have the previous test
efficient (a crucial step for the time complexity of the algorithm), the algorithm
uses a three-dimensional array of counters Na(t, i), whose invariant at line 5 is
Na(t, i) = |ta�i| where ta�i is the set Δ(t, a) ∩ Sim(i) of successors of t over a
that simulate i in the current simulation approximation Sim. In order to test
ta�i = ∅—i.e. the second conjunct of (1*)—, it is enough to test if Na(t, i) = 0.

The lemma below shows the time complexity of INY in terms of n = |Q|,
m = |Δ|, and � = |Σ|. The original paper [7] proves the complexity O(nm)
for complete automata, in which case m ≥ �n, so the factor �n2 is subsumed
by nm. Since completion of NFAs can be expensive, the initialization step on
line 3 of our algorithm is modified (similarly as in [14]) to start with considering
states with different sets of symbols appearing on their outgoing transitions as
simulation-different; the cost of this step is subsumed by the factor �n2 (see [21]
for the proof of our formulation of the algorithm).

Lemma 1. INY computes �N in time O(
nm + �n2

)
.
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Algorithm 2: GlobINY

Input: An SFA M = (Q, A, Δ, I, F )
Output: The simulation preorder �M

1 ΔG := globally mintermised Δ;
2 return INY((Q, PΔG , ΔG, I, F ));

3.2 Global Mintermisation-based Algorithm for SFAs (GlobINY)

The algorithm GlobINY (Algorithm 2) is the initial solution for the problem of
computing the simulation preorder over SFAs. It first globally mintermises the
input automaton M = (Q,A,Δ, I, F ), then interprets the result as an NFA over
the alphabet of the minterms, and runs INY on the NFA. The following lemma
(together with Lemma 1) implies the correctness of this approach.

Lemma 2. Let N = (Q, PΔ,Δ, I, F ) be the syntactic NFA of a globally minter-
mised SFA M = (Q,A,Δ, I, F ). Then �M = �N .

The lemma below shows the time complexity of GlobINY in terms of n =
|Q|, m = |Δ|, and the size k of the largest predicate used in Δ.

Lemma 3. GlobINY computes �M in time O(
nm2m + Csat(m, k)2m

)
.

Intuitively, the complexity follows from the fact each transition of Δ can be
replaced by at most 2m transitions in ΔG since there can be at most 2m minterms
in Minterms(PΔ). Nevertheless, 2m minterms will always be generated (some of
them unsatisfiable, though), each of them generated from m predicates of size
at most k. More details are available in [21].

3.3 Local Mintermisation-based Algorithm for SFAs (LocalMin)

Our next algorithm, called LocalMin (Algorithm 3), represents an attempt of
running INY on the original SFA without the global mintermisation used above.
The main challenge in LocalMin is how to symbolically represent the counters
Na(q, r)—representing them explicitly would contradict the idea of symbolic
automata and would be impossible if the domain D were infinite. We will there-
fore use counters Nψ(q, r) indexed with labels ψ of outgoing transitions of q
to represent all counters Na(q, r), with a ∈ �ψ�. A difficulty here is that if the
automaton is not globally mintermised, then for some q−{ϕ}→p and a, b ∈ �ϕ�,
the sizes of qa�r and qb�r may differ and hence cannot be represented by a single
counter. 1 For example, if the only outgoing transition of q other than q−{ϕ}→p
is q−{ψ}→r with (p, r) ∈ Sim, �ϕ� = {a, b}, and �ψ� = {b}, then |qa�r| = 1 while
|qb�r| = 2. To avoid this problem, we introduce the so-called local mintermised
form, in which only labels on outgoing transitions of every state must form
a partition.
1 When describing an algorithm that works over an SFA, we use the notation qa�r to

represent the set �Δ�(q, a) ∩ Sim(r), i.e., it refers to the concrete transitions of �Δ�.
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Algorithm 3: LocalMin

Input: A complete SFA M = (Q, A, Δ, I, F )
Output: The simulation preorder �M

1 ΔL := locally mintermised form of Δ;
2 for p, q ∈ Q, q−{ψ}→t ∈ ΔL do
3 Nψ(q, p) := |ΔL(q, ψ)| ;

4 Sim := Q × Q; NotSim := F × (Q \ F )
5 while NotSim �= ∅ do
6 remove some (i, j) from NotSim and Sim;
7 for t−{ψtj}→j ∈ ΔL do
8 Nψtj (t, i) := Nψtj (t, i) − 1;

9 if Nψtj (t, i) = 0 then // tψtj�i = ∅
10 for s−{ϕsi}→i ∈ Δ s.t. (s, t) ∈ Sim do
11 if IsSat(ψtj ∧ ϕsi) then
12 NotSim := NotSim ∪ {(s, t)};

13 return Sim;

Formally, we say that an SFA M = (Q,A,Δ, I, F ) is locally mintermised if for
every state p ∈ Q, the set PΔ,p

def= {ϕ ∈ P | ∃q : p−{ϕ}→q ∈ Δ} of the predicates
used on the transitions starting from p is a partition. A locally mintermised
form is obtained by replacing every transition p−{ϕ}→q by the set of transitions
{p−{ω}→q | ω ∈ Minterms(PΔ,p) ∧ IsSat(ω ∧ ϕ)}. Local mintermisation can hence
be considerably cheaper than global mintermisation as it is only exponential to
the maximum out-degree of a state (instead of the number of transitions of the
whole SFA). The key property of a locally mintermised SFA ML is the following:
for any transition q−{ϕ}→p of ML and a state r ∈ Q, and for any value of Sim,
it holds that |qa�r| is the same for all a ∈ �ϕ�. This means that the set of counters
{Na(q, r) | a ∈ �ϕ�} for all symbols in the semantics of ϕ can be represented by
a single counter Nϕ(q, r).

The use of only locally mintermised transitions also necessitates a modifi-
cation of the for loop on line 6 of INY. In particular, the test on line 9 of
INY, which determines the states s that cannot simulate t over the symbol a,
only checks syntactic equivalence of the symbols. This could lead to incorrect
results because (syntactically) different local minterms of different source states
t and s can still have overlapping semantics. It can, in particular, happen that if
a counter Nψtj

(t, i), for some predicate ψtj , reaches zero on line 9 of LocalMin,
there is a transition from state s to i over a predicate ϕsi different from ψtj but
with some symbol a ∈ �ϕsi� ∩ �ψtj�. Because of a, the state t cannot simulate s,
but this would not happen if the two predicates were only compared syntacti-
cally. LocalMin solves this issue on lines 10 and 11, where it iterates over all
transitions entering i and leaving a state s simulated by t (wrt Sim), and tests
whether the predicate ϕsi on the transition semantically intersects with ψtj .

LocalMin is correct only if the input SFA is complete. As mentioned
in Sect. 2, this is, however, not an issue, since completion of an SFA is, unlike for
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NFAs, straightforward, and its cost is negligible compared with the complexity
of LocalMin presented below.

The lemma below shows the time complexity of LocalMin in terms of n =
|Q|, m = |Δ|, the size k of the largest predicate used in Δ, the out-degree mq for
each q ∈ Q (i.e. the number of transitions leaving q), and the overall maximum
out-degree W = max{mq | q ∈ Q}.

Lemma 4. LocalMin derives �M in time

O(
n

∑

q∈Q

mq2mq + mCsat(W,k)
∑

q∈Q

2mq
)
.

As shown in more detail in [21], the result can be proved in a similar way as
in the case of INY and GlobINY, taking into account that each transition
is, again, replaced by its mintermised versions. This time, however, the minter-
mised versions are computed independently and locally for each state (and the
complexities are summed). Consequently, the factor 2m gets replaced by 2mq

for the different states q ∈ Q (together with the replacement of Csat(m, k) by
Csat(W,k)), which can significantly decrease the complexity. On the other hand,
as mintermisation is done separately for each state (which can sometimes lead
to re-doing some work done only once in GlobINY) and as one needs the sat-
isfiability test on line 11 of LocalMin instead of the purely syntactic test on
line 9 of INY, on which GlobINY is based, GlobINY can sometimes win in
practice. This fact shows up even in our experiments presented in Sect. 4.

3.4 Counter-Free Algorithm for SFAs (NoCount)

Before we state our last algorithm, named NoCount (Algorithm 4), let us recall
that given an SFA M = (Q,A,Δ, I, F ), a set S ⊆ Q, and a state q ∈ Q, we use
Γ (q, S) to denote the disjunction of all predicates that reach S from q. We will
also write q → S to denote that there is a transition from q to some state in S.

In NoCount, we sacrifice the counting technique in order to avoid the local
mintermisation (which is still a relatively expensive operation). The obvious price
for dropping the counters and local mintermisation is that the emptiness of ta�i
for symbols a ∈ ψti can no more be tested in a constant time by asking whether
Nψti

(t, i) = 0 as on line 9 of LocalMin. It does not even hold any more that ta�i
is uniformly empty or non-empty for all a ∈ ψti. To resolve the issue, we replace
the test from line 9 of LocalMin by computing the formula ψ = Γ (t,Sim(i))
on line 7 of NoCount, which is then used in the test on line 9. Intuitively,
ψ represents all b’s such that tb�i is not empty. By taking the negation of ψ, the
test on line 9 of NoCount then explicitly asks whether there is some a ∈ �ϕsi�
for which s can go to i and t cannot simulate this move.

Further, notice that NoCount uses the set Rm for the following optimi-
sation. Namely, if the use of Rm were replaced by an analogy of line 6 from
LocalMin, it could choose a sequence of several j ∈ Q such that (i, j) ∈ NotSim,
and then the same ψ would be constructed for each j and tested against
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Algorithm 4: NoCount

Input: A complete SFA M = (Q, A, Δ, I, F )
Output: The simulation preorder �M

1 Sim := Q × Q;NotSim := F × (Q \ F );
2 while ∃i ∈ Q : NotSim(i) �= ∅ do
3 Rm := {t | t → NotSim(i)};
4 Sim(i) := Sim(i) \ NotSim(i);
5 NotSim(i) := ∅;
6 for t ∈ Rm do
7 ψ := Γ (t,Sim(i));
8 for s−{ϕsi}→i∈Δ s.t. (s, t) ∈ Sim do
9 if IsSat(¬ψ ∧ ϕsi) then

10 NotSim:=NotSim∪{(s, t)};

11 return Sim;

the same ϕsi. In contrast, due to its use of Rm, NoCount will process all
j ∈ NotSim(i) in a single iteration of the main while loop, in which ψ is com-
puted and tested against ϕsi only once.

Lemma 5 shows the complexity of NoCount in the terms used in Lemma 4.

Lemma 5. NoCount computes �M in time O(
n

∑
q∈Q m2

q + m2Csat(W,k)
)
.

Observe that
∑

q∈Q mq = m and W ≤ n, so the above complexity is bounded
by O(

m2Csat(n, k)
)
. Out-degrees are, however, typically small constants.

The proof of the lemma can be found in [21]. Compared with the time com-
plexity of LocalMin, we can see that, by sacrificing the use of the counters, the
complexity becomes quadratic in the number of transitions (since the decrement
of the counter on line 8 followed by the test of the counter being zero on line
9 in LocalMin is replaced by the computation of Γ on line 7 combined with
the test on line 9 in NoCount). On the other hand, since we completely avoid
mintermisation, the 2mq factors are lowered to at most m (mq in the left-hand
side term).

The overall worst-case complexity of NoCount is thus clearly better than
those of GlobINY and LocalMin. Moreover, as shown in Sect. 4, NoCount is
also winning in most of our experiments. Another advantage of avoiding minter-
misation is that it often requires a lot of memory. Consequently, GlobINY and
LocalMin can run out of memory before even finishing the mintermisation,
which is also witnessed in our experiments. If mq is small for all q ∈ Q and the
predicates do not intersect much, the number of generated minterms can, how-
ever, be rather small compared with the number of transitions, and LocalMin
can in some cases win, as witnessed in our experiments too.

4 Experimental Evaluation

We now present an experimental evaluation of the algorithms from Sect. 3 imple-
mented in the Symbolic Automata Toolkit [2]. All experiments were run on



120 L. Hoĺık et al.

Fig. 1. Comparison of runtimes of algorithms on SFAs from RegEx. Times are in
milliseconds (logarithmic scale).

an Intel Core i5-3230M CPU@2.6 GHz with 8 GiB of RAM. We used the follow-
ing two benchmarks:

RegEx. We evaluated the algorithms on SFAs created from 1,921 regular expres-
sions over the UTF-16 alphabet using the BDD16 algebra, which is the algebra
of binary decision diagrams over 16 Boolean variables representing particular
bits of the UTF-16 encoding. These regular expressions were taken from the
website [15], which contains a library of regular expressions created for different
purposes, such as matching email addresses, URIs, dates, times, street addresses,
phone numbers, etc. The SFAs created from these regular expressions were used
before when evaluating algorithms minimising (deterministic) SFAs [12] and
when evaluating bisimulation algorithms for SFAs [13]. The largest automa-
ton has 3,190 states and 10,702 transitions; the average transition density of
the SFAs is 2.5 transitions per state. Since the UTF-16 alphabet is quite large,
a symbolic representation is needed for efficient manipulation of these automata.
WS1S. For this benchmark, we used 131 SFAs generated when deciding formulae
of the weak-monadic second order logic of one successor (WS1S) [16]. We used
two batches of SFAs: 93 deterministic ones from the tool Mona [17] and 38
nondeterministic from dWiNA [18]. These automata have at most 2,508 states
and 34,374 transitions with the average transition density of 6 transitions per
state. These SFAs use the algebra BDDk where k is the number of variables in
the corresponding formula.

4.1 Comparison of Various Algorithms for Computing Simulation
We first evaluate the effect of our modifications of INY presented in Sect. 3.
The results presented below clearly show the superiority of our new algorithms
over GlobINY, with NoCount being the overall winner. In addition, we also
compare the performance of our new algorithms to a version of the RT algorithm
from [19], which is one of the best simulation algorithms. In particular, we use
its adaptation for NFAs, which we run after global mintermisation (similarly as
INY in GlobINY). We denote the whole combination GlobRT. RT is much
faster than INY due to its use of the so-called partition-relation pairs to repre-
sent the intermediate preorder. Its C++ implementation in the Vata library [9]
is also much more optimised than the C# implementation of our algorithms.
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Fig. 2. Comparison of runtimes of algorithms on SFAs from WS1S. Times are in
miliseconds (logarithmic scale).

Despite that, the comparison on automata with many global minterms is clearly
favourable to our new algorithms.

To proceed to concrete data, Figs. 1 and 2 show scatter plots with the most
interesting comparisons of the runtimes of the considered algorithms on our
benchmarks (we give in parentheses the number of times the corresponding algo-
rithm won over the other one). The timeout was set to 100 s. Fig. 1 shows the
comparison of the algorithms on SFAs from the RegEx benchmark. In this
experiment, we removed the SFAs where all algorithms finished within 10 ms
(to mitigate the effect of imprecise measurement and noise caused by the C#

runtime), which gave us 138 SFAs. Moreover, we also removed one extremely
challenging SFA, which dominated the whole benchmark (we report on that
SFA, denoted as Mc, later), which left us with the final number of 137 SFAs. On
the other hand, Fig. 2 shows the comparison for WS1S. We observe the following
phenomena: (i) LocalMin is in the majority of cases faster than GlobINY, (ii)
NoCount clearly dominates LocalMin, and (iii) the comparison of NoCount
and GlobRT has no clear winner: on the RegEx benchmark, GlobRT is more
often faster, but on the WS1S benchmark, NoCount wins (in many cases, quite
significantly).

Further, we also give aggregated results of the experiment in Table 1. In the
table, we accumulated the runtimes of the algorithms over the whole benchmark
(column “time”) and the number of times each algorithm was the best among
all algorithms (column “wins”). The column “fails” shows how many times the
respective algorithm failed (by being out of time or memory). In the parentheses,
we give the number of times the failure occurred already in the mintermisation.
When a benchmark fails, we assign it the time 100 s (the timeout) for the com-
putation of “time”. The times of the challenging SFA Mc from RegEx were: 21 s
for GlobINY, 16 s for LocalMin, 25 s for NoCount, and 148 s for GlobRT.
Obviously, including those times would bias the whole evaluation.

Observe that in this comparison, the performance of the algorithms on the
two benchmarks differs—although GlobRT wins on the RegEx benchmark and
the other three algorithms have a comparable overall time (but NoCount still
wins in the majority of SFAs among the three), on the more complex bench-
mark (WS1S), NoCount is the clear winner. The distinct results on the two
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Table 1. Aggregated results of the performance experiment.

Algorithm RegEx WS1S

Time Wins Time Wins Fails

GlobINY 12.3 s 2 1,258 s 1 9 (2)

LocalMin 11.9 s 0 316 s 0 1 (1)

NoCount 12.4 s 54 44 s 94 0 (0)

GlobRT 2.8 s 81 594 s 36 3 (2)

benchmark sets can be explained by a different diversity of predicates used on
the transitions of SFA. In the RegEx benchmark, the globally mintermised
automaton has on average 4.5 times more transitions (with the ratio ranging
from 1 to 13), while in the WS1S benchmark, the mintermised automaton has
on average 23.5 times more transitions (with the ratio ranging from 1 to 716).
This clearly shows that our algorithms are effective in avoiding the potential
blow-up of mintermisation. As expected, they are slower than RT on examples
where the mintermisation is cheap since they do not use the partition-relation
data structure.

Fig. 3. Simulation vs. bisimulation-based reduction: the number of transitions of the
reduced automaton.

4.2 Comparison of Simulation and Bisimulation
In the second experiment, we evaluate the benefit of computing simulation over
computing bisimulation (we use the implementation of bisimulation computa-
tion from [13]). In particular, we focus on an application of (bi-)simulation for
(language-preserving) reduction of SFAs from the whole RegEx benchmark.

For every SFA M from the benchmark, we compute its simulation pre-
order �M , take its biggest symmetric fragment (which constitutes an equiva-
lence), and for each of its classes, merge all states of the class into a single state.
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We also eliminate simulation subsumed transitions (the so-called little brothers)
using the technique introduced in [20]. In particular, for a state q s.t. there exist
transitions q−{a}→p and q−{a}→p′ with p � p′, we remove the transition q−{a}→p
(and also the states that have become unreachable). After that, we reverse the
automaton and repeat the whole procedure. These steps continue until the num-
ber of states no longer decreases. Similar steps apply to bisimulation (with the
exception of taking the symmetric fragment and removing transitions as a bisim-
ulation is already an equivalence).

The results comparing the number of transitions of the output SFAs are given
in Fig. 3a, showing that the simulation-based reduction is usually much more
significant.2 Figure 3b shows the reduction after the first iteration (it corresponds
to the “ordinary” simulation and bisimulation-based reduction).

The comparison of the numbers of states gives a very similar picture as
the comparison of the numbers of transitions (cf. [21]) but simulation wins by
a slightly larger margin when comparing the numbers of transitions. This is
probably due to the use of the removal of simulation-subsumed transitions, which
does not have a meaningful counterpart when working with bisimulations.

Fig. 4. Simulation vs. bisimulation-based reduction: runtime in miliseconds.

As for the runtimes, they differ significantly on the different case studies
with some of the cases won by the simulation-based reduction process, some
by the bisimulation-based reduction, as can be seen in Fig. 4. Figure 4a shows
comparison of runtimes for the whole iterative process, Fig. 4b shows the com-
parison for the first iteration only—essentially the time taken by computing the
simulation preorder or the bisimulation equivalence. One may see that bisimu-
lation is notably cheaper, especially when the automata are growing larger and
2 There are still some cases when bisimulation achieved a larger reduction than simu-

lation, which may seem unintuitive since the largest bisimulation is always contained
in the simulation preorder. This may happen, e.g., when a simulation-based reduc-
tion disables an (even greater) reduction on the subsequent reversed SFA.
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both algorithms are taking more time (note the logarithmic scale). Computing
simulation was, however, faster in surprisingly many cases.

5 Conclusion and Future Work

We have introduced two new algorithms for computing simulation over symbolic
automata that do not depend on global mintermisation: one that needs a local
and cheaper variant of mintermisation, and one that does not need mintermi-
sation at all. They perform well especially on automata where mintermisation
significantly increases the number of transitions. In the future, we would like to
come up with a partition-based algorithm that could run on an SFA without the
need of mintermisation. Such algorithm might, but does not necessarily need to,
be based on an NFA partition-based algorithm such as RT. Further, we wish
to explore the idea of encoding NFAs over finite alphabets compactly as SFAs
over a fast Boolean algebra (such as bit-vector encoding of sets) and compare
the performance of our algorithms with known NFA simulation algorithms.
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project (LQ1602), and the FIT BUT internal project FIT-S-17-4014.
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Abstract. Systematically testing models learned from neural networks
remains a crucial unsolved barrier to successfully justify safety for
autonomous vehicles engineered using data-driven approach. We propose
quantitative k-projection coverage as a metric to mediate combinatorial
explosion while guiding the data sampling process. By assuming that
domain experts propose largely independent environment conditions and
by associating elements in each condition with weights, the product of
these conditions forms scenarios, and one may interpret weights associ-
ated with each equivalence class as relative importance. Achieving full
k-projection coverage requires that the data set, when being projected to
the hyperplane formed by arbitrarily selected k-conditions, covers each
class with number of data points no less than the associated weight.
For the general case where scenario composition is constrained by rules,
precisely computing k-projection coverage remains in NP. In terms of
finding minimum test cases to achieve full coverage, we present theoret-
ical complexity for important sub-cases and an encoding to 0-1 integer
programming. We have implemented a research prototype that generates
test cases for a visual object detection unit in automated driving, demon-
strating the technological feasibility of our proposed coverage criterion.

1 Introduction

There is a recent hype of applying neural networks in automated driving, rang-
ing from perception [3,9] to the creation of driving strategies [14,21] to even
end-to-end driving setup [1]. Despite many public stories that seemly hint the
technical feasibility of using neural networks, one fundamental challenge is to
establish rigorous safety claims by considering all classes of relevant scenarios
whose presence is subject to technical or societal constraints.

The key motivation of this work is that, apart from recent formal verification
efforts [5,7,8,10] where scalability and lack of specification are obvious concerns,
the most plausible approach, from a certification perspective, remains to be
testing. As domain experts or authorities in autonomous driving may suggest n
(incomplete) weighted criteria for describing the operating conditions such as
weather, landscape, or partially occluding pedestrians, with these criteria one
c© Springer Nature Switzerland AG 2018
S. K. Lahiri and C. Wang (Eds.): ATVA 2018, LNCS 11138, pp. 126–142, 2018.
https://doi.org/10.1007/978-3-030-01090-4_8
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Fig. 1. A total of 6 data points and their corresponding equivalence classes (highlighted
as bounding boxes).

can systematically partition the domain and weight each partitioned class based
on its relative importance. This step fits very well to the consideration as in
automotive safety standard ISO 26262, where for deriving test cases, it is highly
recommended to perform analysis of equivalence classes (Chap 6, Table 11, item
1b). Unfortunately, there is an exponential number of classes being partitioned,
making the näıve coverage metric of having at least one data point in each class
unfeasible. In addition, such a basic metric is qualitative in that it does not
address the relative importance among different scenarios.

Towards above issues, in this paper we study the problem of quantitative
k-projection coverage, i.e., for arbitrary k criteria being selected (k � n being a
small constant value), the data set, when being projected onto the k-hyperplane,
needs to have (in each region) data points no less than the associated weight.
When k is a constant, the size of required data points to achieve full quantitative
k-projection coverage remains polynomially bounded. Even more importantly,
for the case where the composition of scenarios is constrained by rules, we present
an NP algorithm to compute exact k-projection coverage. This is in contrast to
the case without projection, where computing exact coverage is �P-hard.

Apart from calculating coverage, another crucial problem is to generate,
based on the goal of increasing coverage, fewer scenarios if possible, as gen-
erating images or videos matching the scenario in autonomous driving is largely
semi-automatic and requires huge human efforts. While we demonstrate that
for unconstrained quantitative 1-projection, finding a minimum set of test sce-
narios to achieve full coverage remains in polynomial time, we prove that for
3-projection, the problem is NP-complete. To this end, we develop an efficient
encoding to 0-1 integer programming which allows incrementally creating sce-
narios to maximally increase coverage.

To validate our approach, we have implemented a prototype to define
and ensure coverage of a vision-based front-car detector. The prototype has
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integrated state-of-the-art traffic simulators and image synthesis frameworks [15,
25], in order to synthesize close-to-reality images specific to automatically pro-
posed scenarios.

(Related Work) The use of AI technologies, in particular the use of neural
networks, has created fundamental challenges in safety certification. Since 2017
there has been a tremendous research advance in formally verifying properties of
neural networks, with focuses on neurons using piecewise linear activation func-
tion (ReLU). For sound-and-complete approaches, Reluplex and Planet devel-
oped specialized rules for managing the 0-1 activation in the proof system [7,10].
Our previous work [4,5] focused on the reduction to mixed integer liner program-
ming (MILP) and applied techniques to compute tighter bounds such that in
MILP, the relaxation bound is closer to the real bound. Exact approaches suffer
from combinatorial explosion and currently the verification speed is not satis-
factory. For imprecise yet sound approaches, recent work has been emphasizing
linear relaxation of ReLU units by approximating them using outer convex poly-
topes [11,20,26], making the verification problem feasible for linear programming
solvers. These approaches are even applied in the synthesis (training) process,
such that one can derive provable guarantees [11,20]. Almost all verification work
(apart from [4,7,10]) targets robustness properties, which is similar to adversar-
ial testing (e.g., FGSM & iterative attacks [24], deepfool [16], Carlini-Wagner
attacks [2]) as in the machine learning community. All these approaches can be
complemented with our approach by having our approach covering important
scenarios, while adversarial training or formal verification measuring robustness
within each scenario.

For classical structural coverage testing criteria such as MC/DC, they fail to
deliver assurance promises, as satisfying full coverage either turns trivial (tanh)
or intractable (ReLU). The recent work by Sun, Huang, and Kroening [22] bor-
rows the concept of MC/DC and considers a structural coverage criterion, where
one needs to find tests to ensure that for every neuron, its activation is supported
by independent activation of neurons in its immediate previous layer. Such an
approach can further be supported by concolic testing, as being recently demon-
strated by same team [23]. Our work and theirs should be viewed as comple-
mentary, as we focus on the data space for training and testing neural networks,
while they focus on the internal structure of a neural network. However, as in the
original MC/DC concept, each condition in a conditional statement (apart from
detecting errors in programming such as array out-of-bound which is not the core
problem of neural networks) is designed to describe scenarios which should be
viewed as natural consequences of input space partitioning (our work). Working
on coverage criteria related to the internal structure of neural networks, provided
that one cannot enforce the meaning of an individual neuron but can only empir-
ically analyze it via reverse engineering (as in standard approaches like saliency
maps [19]), is less likely provide direct benefits. Lastly, one major benefit of these
structural testing approaches, based on the author claims, is to find adversarial
examples via perturbation, but the benefit may be reduced due to new training
methods with provable perturbation bounds [11,20].
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Lastly, our proposed metric tightly connects to the classic work of combina-
torial testing and covering arrays [6,12,13,17,18]. However, as their application
starts within hardware testing (i.e., each input variable being true or false), the
quantitative aspects are not really needed and it does not need to consider con-
strained input cases, which is contrary to our practical motivation in the context
of autonomous driving. For unconstrained cases, there are some results of NP-
completeness in the field of combinatorial testing, which is largely based on the
proof in [18]. It is not applicable to our case, as the proof is based on having free-
dom to define the set of groups to be listed in the projection. In fact, as listed
in a survey paper [12], the authors commented that it remains open whether
“the problem of generating a minimum test set for pairwise testing (k = 2) is
NP-complete” and “existing proof in [13] for the NP-completeness of pairwise
testing is wrong” (due to the same reason where pairwise testing cannot have
freedom to define the set of groups). Our new NP-completeness result in this
paper can be viewed as a relaxed case by considering k = 3 with sampling being
quantitative than qualitative.

2 Discrete Categorization and Coverage

Let DS ⊂ R
m be the data space, D ⊂ DS be a finite set called data set,

and d ∈ DS is called a data point. A categorization C = 〈C1, . . . , Cn〉 is a
list of functions that transform any data point d to a discrete categorization
point C(d) = (C1(d), . . . , Cn(d)), where for all i ∈ {1, . . . , n}, Ci has co-domain
{0, 1, . . . , α}. Two data points d1 and d2 are equivalent by categorization, denoted
by d1 ≡ Cd2, if C(d1) = C(d2). The weight of a categorization W = 〈W1, . . . , Wn〉
further assigns value j ∈ {0, 1, . . . , α} in the co-domain of Ci with an integer
value Wi(j) ∈ {0, . . . , β}.

Next, we define constraints over categorization, allowing domain experts to
express knowledge by specifying relations among categorizations. Importantly,
for all data points in the data space, whenever they are transformed using C, the
transformed discrete categorization points satisfy the constraints.

Definition 1. (Categorization constraint) A categorization constraint CS =
{CS1, . . . , CSp} is a set of constraints with each being a CNF formula having
literals of the form Ci(d) op αi, where op ∈ {=, �=} and αi ∈ {0, . . . , α}.

Let 	i∈{1,...,n}Wi(ci) abbreviate W1(c1) 	 . . . 	 Wn(cn), where 	 ∈
{+,×,max} can be either scalar addition, multiplication, or max operators. In
this paper, unless specially mentioned we always treat 	 as scalar multiplication.
Let C(D) be the multi-set {C(d) | d ∈ D}, and ≤W

� be set removal operation on
C(D) such that every categorization point (c1, . . . , cn) ∈ C(D) has at most cardi-
nality equal to 	i∈{1,...,n}Wi(ci). We define categorization coverage by requiring
that for each discrete categorization point (c1, . . . , cn), in order to achieve full
coverage, have at least 	i∈{1,...,n}Wi(ci) data points.
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Definition 2. (Categorization coverage) Given a data set D, a categorization C
and its associated weights W, define the categorization coverage covC(D) for data

set D over C and W to be |≤W
� (C(D))|

∑
(c1,...,cn)∈sat(CS) �i∈{1,...,n}Wi(ci)

, where sat(CS) is the
set of discrete categorization points satisfying constraints CS.

(Example 1) In Fig. 1, let the data space DS be [0, 3) × [0, 3) × [0, 3) and the
data set be D = {d1, . . . , d6}. By setting C = 〈C1, C2, C3〉 where Ci = �xi� for
i ∈ {1, 2, 3}, then for data points d2, d5 and d6, applying C1, C2 and C3 creates
C(d2) = C(d5) = C(d6) = (2, 0, 2), i.e., d2 ≡C d5 ≡C d6. Similarly, d1 ≡C d4.

– If CS is an empty set and ∀i ∈ {1, 2, 3}, j ∈ {0, 1, 2} : Wi(j) = 1, then
|sat(CS)| = 33 = 27, ≤W

� (C(D)) removes C(d2), C(d4), C(d5) by keeping one
element in each equivalence class, and covC(D) equals 3

27 = 1
9 .

– If CS = {(C1(d) �= 0 ∨ C2(d) = 2)} and ∀i ∈ {1, 2, 3}, j ∈ {0, 1, 2} : Wi(j) =
1, then |sat(CS)| = 21 rather than 27 in the unconstrained case, and covC(D)
equals 3

21 = 1
7 . Notice that all data points, once when being transformed into

discrete categorization points, satisfy the categorization constraint.
– Assume that CS is an empty set, and ∀i ∈ {1, 2, 3}, j ∈ {0, 1, 2}, Wi(j) always

returns 1 apart from W1(2) and W3(2) returning 3. Lastly, let 	 be scalar
multiplication. Then for discrete categorization points having the form of
(2, -, 2), a total of W1(2)×W3(2) = 9 data points are needed. One follows the
definition and computes covC(D) to be 3+1+1

9×3+3×12+1×12 = 1
13 .

Achieving 100% categorization coverage is essentially hard, due to the need of
exponentially many data points.

Proposition 1. Provided that CS = ∅ and ∀i ∈ {1, . . . , n}, j ∈ {0, . . . , α} :
Wi(j) = 1, to achieve full coverage where covC(D) = 1, |D| is exponential to the
number of categorizations.

Proof. Based on the given condition, |sat(CS)| = (α + 1)n, and for each

(ci, . . . , cn) ∈ sat(CS), 	i∈{1,...,n}Wi(ci) = 1. Therefore, covC(D) = |≤W
� (C(D))|
(α+1)n .

As | ≤W
� (C(D))| ≤ |C(D)|, to achieve full coverage |C(D)| (and correspond-

ingly |D|) needs to be exponential to the number of categorizations. �

Proposition 2. Computing exact covC(D) is �P-hard.

Proof. Computing the exact number of the denominator in Definition 2, under
the condition of α = 1, equals to the problem of model counting for a SAT
formula, which is known to be �P-complete. �

3 Quantitative Projection Coverage

The intuition behind quantitative projection-based coverage is that, although
it is unfeasible to cover all discrete categorization points, one may degrade the
confidence by asking if the data set has covered every pair or triple of possible
categorization with sufficient amount of data.
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Definition 3. (k-projection) Let set Δ = {Δ1, . . . , Δk} ⊆ {1, . . . , n} where ele-
ments in Δ do not overlap. Given d ∈ D, define the projection of a discrete cate-
gorization point C(d) over Δ to be ProjΔ(C(d)) = (CΔ1(d), CΔ2(d), . . . , CΔk

(d)).

Given a multi-set S of discrete categorization points, we use ProjΔ(S) to
denote the resulting multi-set by applying the projection function on each ele-
ment in S, and analogously define ≤W

�Δ
(ProjΔ(S)) to be a function which

removes elements in ProjΔ(S) such that every element (cΔ1 , . . . , cΔk
) has car-

dinality at most WΔ1(cΔ1) 	 . . . 	 WΔk
(cΔk

). Finally, we define k-projection
coverage based on applying projection operation on the data set D, for all pos-
sible subsets of C of size k.

Definition 4. (k-projection coverage) Given a data set D and categorization C,
define the k-projection categorization coverage covk

C(D) for data set D over C
and W to be

∑
{Δ : |Δ|=k} | ≤W

�Δ
(ProjΔ(C(D))|

∑
{Δ : |Δ|=k}

∑
(cΔ1 ,...,cΔk

)∈to-set(ProjΔ(sat(CS))) WΔ1(cΔ1) 	 . . . 	 WΔk
(cΔk

)

where function to-set() translates a multi-set to a set without element repetition.

(Example) Consider again Fig. 1 with 	 being scalar multiplication, CS = ∅
and ∀i ∈ {1, 2, 3}, j ∈ {0, 1, 2} : Wi(j) = 2.

– For k = 1, one computes cov1C(D) = 5+5+5

(31)3121
= 15

18 . In the denominator, Δ

has
(
3
1

)
choices, namely Δ = {1}, Δ = {2}, or Δ = {3}. Here we do detailed

analysis over Δ = {1}, i.e., we consider the projection to C1.
• Since CS = ∅ , sat(CS) allows all possible 33 assignments.
• ProjΔ(sat(CS)) creates a set with elements 0, 1, 2 with each being

repeated 9 times, and to-set(ProjΔ(sat(CS))) removes multiplicity and
creates {0, 1, 2}. The sum equals W1(0) + W1(1) + W1(2) = 6.

The “5” in the numerator comes from the contribution of (2, 0, 2) with 2
(albeit it has 3 data points), (1, 1, 1) with 2, and (0, 2, 0) with 1.

– For k = 2, one computes cov2C(D) = 6+6+6

(32)3222
= 1

6 . The denominator captures

three hyper planes (x1x2, x1x3, x2x3) with each having 32 grids and with
each grid allowing 22 data points.

Notice that Definitions 2 and 4 are the same when one takes k with value n.

Proposition 3. covn
C(D) = covC(D).

Proof. When k = n, the projection operator does not change sat(CS). Subse-
quently, to-set operator is not effective as ProjΔ(sat(CS)) = sat(CS) is already
a set, not a multi-set. Finally, we also have WΔ1(cΔ1) 	 . . . 	 WΔk

(cΔk
) =

	i∈{1,...,n}Wi(ci). Thus the denominator part of Definitions 2 and 4 are comput-
ing the same value. The argument also holds for the numerator part. Thus the
definition of covn

C(D) can be rewritten as covC(D). �
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The important difference between categorization coverage and k-projection
coverage (where k is a constant) includes the number of data points needed to
achieve full coverage (exponential vs. polynomial), as well as the required time
to compute exact coverage (�P vs. NP).

Proposition 4. If k is a constant, then to satisfy full k-projection coverage, one
can find a data set D whose size is bounded by a number which is polynomial
to n, α and β.

Proof. In Definition 4, the denominator is bounded by
(
n
k

)
(α + 1)kβk.

– The total number of possible Δ with size k equals
(
n
k

)
, which is a polynomial

of n with highest degree being k.
– For each Δ, (cΔ1 , . . . , cΔk

) ∈ to-set(ProjΔ(sat(CS))) has at most (α + 1)k

possible assignments - this happens when CS = ∅.
– For each assignment of (cΔ1 , . . . , cΔk

), WΔ1(cΔ1) 	 . . . 	 WΔk
(cΔk

) can at
most has largest value βk.

As one can use one data point for each element in the denominator, D which
achieves full coverage is polynomially bounded. �

(Example 2) Consider a setup of defining traffic scenarios where one has α = 3
and n = 20. When CS = ∅ and ∀i ∈ {1, . . . , n}, j ∈ {0, . . . , α} : Wi(j) = 1,
the denominator of categorization coverage as defined in Definition 2 equals
3486784401, while the denominator of 2-projection coverage equals 1710 and the
denominator of 3-projection coverage equals 10260.

Proposition 5. If k is a constant, then computing k-projection coverage can be
done in NP. If CS = ∅, then computing k-projection coverage can be done in P.

Proof. – For the general case where CS �= ∅, to compute k-projection coverage,
the crucial problem is to know the precise value of the denominator. In the
denominator, the part “(cΔ1 , . . . , cΔk

) ∈ to-set(ProjΔ(sat(CS)))” is actually
only checking if for grid (cΔ1 , . . . , cΔk

) in the projected k-hyperplane, whether
it is possible to be occupied due to the constraint of CS. If one knows that
it can be occupied, simply add to the denominator by WΔ1(cΔ1) 	 . . . 	
WΔk

(cΔk
). This “occupation checking” step can be achieved by examining

the satisfiability of CS with CΔi
being replaced by the concrete assignment

(cΔ1 , . . . , cΔk
) of the grid. As there are polynomially many grids (there are

(
n
k

)

hyperplanes, with each having at most (α + 1)k grids), and for each grid,
checking is done in NP (due to SAT problem being NP), the overall process
is in NP.

– For the special case where CS = ∅, the “occupation checking” step mentioned
previously is not required. As there are polynomially many grids (there are

(
n
k

)

hyperplanes, with each having at most (α + 1)k grids), the overall process is
in P. �
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4 Fulfilling k-Projection Coverage

As a given data set may not fulfill full k-projection coverage, one needs to gen-
erate additional data points to increase coverage. By assuming that there exists
a data generator function G which can, from any discrete categorization point
c ∈ {0, . . . , α}n, creates a new data point G(c) in DS such that C(G(c)) = c and
G(c) �∈ D (e.g., for image generation, G can be realized using techniques such as
conditional-GAN [15] to synthesize an image following the specified criterion, or
using manually synthesized videos), generating data points to increase coverage
amounts to the problem of finding additional discrete categorization points.

Definition 5. (Efficiently increasing k-projection coverage) Given a data set D,
categorization C and generator G, the problem of increasing k-projection coverage
refers to the problem of finding a minimum sized set Θ ⊆ {0, . . . , α}n, such that
covk

C(D ∪ {G(c) : c ∈ Θ}) = 1.

(Book-keeping k-projection for a given data set) For Δ = {Δ1, . . . , Δk},
we use CΔ1 . . . CΔk

to represent the data structure for book-keeping the covered
items, and use subscript ”{γ}” to indicate that certain categorization has been
covered γ times by the existing data set.

(Example 3) Consider the following three discrete categorization points
{(0, 0, 1, 1), (1, 0, 0, 0), (1, 0, 0, 1)} under α = 1. Results of applying 1-projection
and 2-projection are book-kept in Eqs. 1 and 2 respectively.

C1 = {0{1}, 1{2}}, C2 = {0{3}, 1{0}}, C3 = {0{2}, 1{1}}, C4 = {0{1}, 1{2}}
(1)

C1C2 = {00{1}, 01{0}, 10{2}, 11{0}} C1C3 = {00{0}, 01{1}, 10{2}, 11{0}}
C1C4 = {00{0}, 01{1}, 10{1}, 11{1}} C2C3 = {00{2}, 01{1}, 10{0}, 11{0}}
C2C4 = {00{1}, 01{2}, 10{0}, 11{0}} C3C4 = {00{1}, 01{1}, 10{0}, 11{1}} (2)

(Full k-projection coverage under CS = ∅) To achieve k-projection coverage
under CS = ∅, in the worst case, one can always generate

(
n
k

)
(α+1)kβk discrete

categorization points for |Θ| in polynomial time. Precisely, to complete coverage
on a particular projection Δ, simply enumerate all possible assignments (a total
of (α + 1)k assignments, as k is a constant, the process is done in polynomial
time) for all (CΔ1 , . . . , CΔk

), and extend them by associating Ci, where i ∈
{1, . . . , n} \ Δ, with arbitrary value within {0, . . . , α}, and do it for βk times.
For example, to increase 2-projection coverage in Eq. 2, provided that Wi(j) = 1,
one first completes C1C2 by adding {01- -, 11- -} where “-” can be either 0 or 1.

One further improves C1C3 using {0-0-, 1-1-}, and subsequently all others.
As using |Θ| to be

(
n
k

)
(α + 1)kβk can still create problems when data points

are manually generated from discrete categorization points, in the following, we
demonstrate important sub-cases with substantially improved bounds over |Θ|.
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Data: CΔ1 , . . . , CΔn of a given data set, and weight function W
Result: The minimum set Θ of additional discrete categorization points to

guarantee full 1-projection
1 while true do
2 let c := (∗, . . . , ∗);
3 for i = 1, . . . , n do
4 for j = 0, . . . , α do

5 if CΔi
[j]

< Wi(j) then

6 replace the i-th element of c by value j;

7 CΔi
[j]

:= CΔi
[j]

+ 1;

8 break /* inner-loop */;

9 end

10 end

11 end
12 if c == (∗, . . . , ∗) then return Θ else replace every ∗ in c by value 0,

Θ := Θ ∪ {c}
13 end

Algorithm 1: Algorithm for achieving 1-projection.

Proposition 6. (1-projection coverage). Finding an additional set of discrete
categorization points Θ to achieve 1-projection coverage, with minimum size and
under the condition of CS = ∅, can be solved in time O(α2βn2), with |Θ| being
bounded by (α + 1)β.

Proof. We present an algorithm (Algorithm 1) that allows generating mini-
mum discrete categorization points for full 1-projection coverage. Recall for 1-
projection, our starting point is CΔ1 , . . . , CΔn

with each CΔi
recording the

number of appearances for element j ∈ {0, . . . , α}. We use CΔi
[j]

to denote the

number of appearances for element j in CΔi
.

In Algorithm 1, for every projection i, the inner loop picks a value j whose
appearance in CΔi

is lower than Wi(j) (line 5-9). If no value is picked for some
projection i, then the algorithm just replaces ∗ by 0, before adding it to the
set Θ used to increase coverage (line 13). If after the iteration, c remains to
be (∗, . . . , ∗), then we have achieved full 1-projection coverage and the program
exits (line 12). The algorithm guarantees to return a set fulling full 1-projection
with minimum size, due to the observation that each categorization is indepen-
dent, so the algorithm stops so long as the categorization which misses most
elements is completed. In the worst case, if projection i started without any
data, after (α + 1)β iterations, it should have reached a state where it no longer
requires additional discrete characterization points. Thus, |Θ| is guaranteed to
be bounded by (α + 1)β.
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Consider the example in Eq. 1. When Wi(j) = 1, the above algorithm reports
that only one additional discrete categorization point (0, 1, 0, 0) is needed to
satisfy full 1-projection. �

On the other hand, efficiently increasing 3-projection coverage, even under
the condition of CS = ∅, is hard.

Proposition 7. (Hardness of maximally increasing 3-projection coverage, when
CS = ∅) Checking whether there exists one discrete categorization point to
increase 3-projection coverage from existing value χ to value χ′, under the con-
dition where 	 is scalar multiplication, is NP-hard.

Proof. (Sketch) The hardness result is via a reduction from 3-SAT satisfiability,
where we assume that each clause has exactly three variables. This problem is
known to be NP-complete. We consider the case where α = 2 and β = 1, i.e., each
categorization function creates values in {0, 1, 2}. Given a 3-SAT formula φ3SAT

with δ clauses, with each literal within the set of variables being {C1, C2, . . . , Cn},
we perform the following construction.

– Set the weight of categorization such that Wi(0) = Wi(1) = 1 and Wi(2) = 0.
– For each clause such as (Cx ∨ ¬Cy ∨ Cz), we create a discrete categorization

point by setting Cx = 0, Cy = 1, Cz = 0 (i.e., the corresponding assignment
makes the clause false) and by setting remaining Ci to be 2. Therefore, the
process creates a total of δ discrete categorization points and can be done in
polynomial time.

– Subsequently, prepare the data structure and record the result of 3-projection
for the above created discrete categorization points. As there are at most

(
n
3

)

boxes of form CxCyCz , with each box having |{0, 1, 2}|3 = 27 items, the
construction can be conducted in polynomial time.

– One can subsequently compute the 3-projection coverage. Notice that due to
the construction of Wi(2) = 0, all projected elements that contain value 2
should not be counted. The computed denominator should be

(
n
3

)
(2)3 rather

than
(
n
3

)
(3)3 also due to Wi(2) = 0.

Then the φ3SAT problem has a satisfying instance iff there exists a discrete
categorization point which increases the 3-projection coverage from a

(n
3)(2)3

to

value
a+(n

3)
(n
3)(2)3

.

– (⇒) If φ3SAT has a satisfying instance, create a discrete categorization point
where Ci = 0 (Ci = 1) if the satisfying assignment of φ3SAT , Ci equals false
(true). The created discrete categorization point, when being projected, will

• not occupy the already occupied space (recall that overlapping with exist-
ing items in each box implies that the corresponding clause can not be
satisfied), and

• not occupy a grid having Ci = 2 (as the assignment only makes Ci to
be 0 or 1), making the point being added truly help in increasing the
numerator of the computed coverage.
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Overall, each projection will increase value by 1, and therefore, the 3-

projection coverage increases from a

(n
3)(2)3

to value
a+(n

3)
(n
3)(2)3

.

– (⇐) Conversely, if there exists one discrete categorization point to increase
coverage by

(
n
3

)
, due to the fact that we only have one point and there are

(
n
3

)

projections, it needs to increase in each box representing 3-projection, without
being overlapped with existing items in that box and without having value 2
being used. One can subsequently use the value of the discrete categorization
point to create a satisfying assignment. �

In the following, we present an algorithm which encodes the problem of find-
ing a discrete categorization point with maximum coverage increase to a 0-1
integer programming problem. Stated in Algorithm 2, line 1 prepares variables
and constraints to be placed in the 0-1 programming framework. For each cat-
egorization Ci, for each possible value we create an 0-1 variable var[Ci=j] (line
3-5), such that var[Ci=j] = 1 iff the newly introduced discrete categorization
point has Ci using value j. As the algorithm proceeds by only generating one
discrete categorization point, only one of them can be true, which is reflected in
the constraint

∑α
j=0 var[Ci=j] = 1 in line 6.

Then starting from line 8, the algorithm checks if a particular projected value
still allows improvement CΔ1 . . . CΔk

[vΔ1 ...vΔk
]
< WΔ1(vΔ1)	 . . .	WΔk

(vΔk
).

If so, then create a variable occ[CΔ1=vΔ1 ,...,CΔk
=vΔk

] (line 10) such that it is set
to 1 iff the newly introduced discrete categorization point will occupy this grid
when being projected. As our goal is to maximally increase k-projection cov-
erage, occ[CΔ1=vΔ1 ,...,CΔk

=vΔk
] is introduced in the objective function (line 11

and 16) where the sum of all variables is the objective to be maximized. Note
that occ[CΔ1=vΔ1 ,...,CΔk

=vΔk
] is set to 1 iff the newly introduced discrete cat-

egorization point guarantees that CΔ1 = vΔ1 ∧ . . . ∧ CΔk
= vΔk

. For this
purpose, line 12 applies a standard encoding tactic in 0-1 integer program-
ming to encode such a condition - If var[CΔ1=vΔ1 ]

= . . . = var[CΔk
=vΔk

] = 1,
then var[CΔ1=vΔ1 ]

+ . . . + var[CΔk
=vΔk

] = k. Thus occ[CΔ1=vΔ1 ,...,CΔk
=vΔk

] will
be set to 1 to enforce satisfaction of the right-hand inequality of the con-
straint. Contrarily, if any of var[CΔj

=vΔj
], where j ∈ {1, . . . , k} has value 0,

then occ[CΔ1=vΔ1 ,...,CΔk
=vΔk

] needs to set to 0, in order to enforce the left-
hand inequality of the constraint. Consider the example in Eq. 2, where one has
C1C2 = {00{1}, 01{0}, 10{2}, 11{0}}. For improving 01{0}, line 12 generates the

following constraint 0 ≤ var[C1=0] + var[C2=1] − 2 occ[C1=0,C2=1] ≤ 1.
Line 14 will be triggered when no improvement can be made by every check of

line 9, meaning that the system has already achieved full k-projection coverage.
Lastly, apply 0-1 integer programming where one translates variable var[Ci=vi]

having value 1 by assigning Ci to vi in the newly generated discrete categoriza-
tion point (line 17, 18).

Here we omit technical details, but Algorithm 2 can easily be extended to
constrained cases by adding CS to the list of constraints.
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Data: The set { CΔ1 . . . CΔk } of the current k-projection records, and weight

function W
Result: One discrete categorization point (c1, . . . , cn) which maximally increase

coverage, or null if current records have achieved full coverage.
1 let var0/1 := ∅, constraints0/1 := ∅, objvar0/1 := ∅,;

2 forall the Ci, i ∈ {1, . . . , n} do
3 forall the j ∈ {0, . . . , α} do
4 var0/1 := var0/1 ∪ {var[Ci=j]};
5 end
6 constraints0/1 := constraints0/1 ∪ {∑α

j=0 var[Ci=j] = 1};

7 end

8 forall the CΔ1 . . . CΔk do

9 if CΔ1 . . . CΔk
[vΔ1 ...vΔk

]
< WΔ1(vΔ1) � . . . � WΔk(vΔk ) then

10 var0/1 := var0/1 ∪ {occ[CΔ1=vΔ1 ,...,CΔk
=vΔk

]};

11 objvar0/1 := objvar0/1 ∪ {occ[CΔ1=vΔ1 ,...,CΔk
=vΔk

]};

12 constraints0/1 := constraints0/1 ∪ {0 ≤
var[CΔ1=vΔ1 ] + . . . + var[CΔk

=vΔk
] − k occ[CΔ1=vΔ1 ,...,CΔk

=vΔk
] ≤ k − 1};

13 end
14 if objvar = ∅ then return null else
15 let obj :=

∑
var∈objvar var;

16 let assignment :=
0/1-programming{var0/1}(maximize obj subject-to constraint0/1);

17 return (v1, . . . , vn) where in assignment var[Ci=vi] is assigned to 1;

18 end

19 end
Algorithm 2: Finding a discrete categorization point which maximally
increases k-projection coverage, via an encoding to 0-1 integer programming.

5 Implementation and Evaluation

We have implemented above mentioned techniques as a workbench to sup-
port training vision-based perception units for autonomous driving. The inter-
nal workflow of our developed tool is summarized in Fig. 2. It takes existing
labelled/categorized data set and the user-specified k value as input, computes
k-projection coverage, and finds a new discrete categorization point which can
increase the coverage most significantly. For the underlying 0-1 programming
solving, we use IBM CPLEX Optimization Studio1.

To convert the generated discrete categorization points to real images, we
have further implemented a C++ plugin over the Carla simulator2, an open-
source simulator for autonomous driving based on Unreal Engine 43. The
1 IBM CPLEX Optimization Studio: https://www.ibm.com/analytics/data-science/

prescriptive-analytics/cplex-optimizer.
2 Carla Simulator: http://carla.org/.
3 Unreal Engine 4: https://www.unrealengine.com/.

https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
http://carla.org/
https://www.unrealengine.com/
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Fig. 2. Workflow in the developed prototype for quantitative projection coverage and
generation of new synthetic data.

Fig. 3. Existing data points (E1 to E5), and the automatically generated data points
(G1 to G6) to achieve full coverage.

plugin reads the scenario from the discrete categorization point and configures
the ground truth, the weather, and the camera angle accordingly. Then the
plugin starts the simulation and takes a snapshot using the camera mounted
on the simulated vehicle. The camera can either return synthetic images (e.g.,
images in Fig. 3) or images with segmentation information, where for the latter
one, one can further generate close-to-real image via applying conditional GAN
framework Pix2Pix from NVIDIA4. Due to space limits, here we detail a small
example by choosing the following operating conditions of autonomous vehicles
as our categories.

– Weather = {Sunny,Cloudy,Rainy}
– Lane orientation = {Straight,Curvy}
4 https://github.com/NVIDIA/pix2pixHD.

https://github.com/NVIDIA/pix2pixHD
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– Total number of lanes (one side) = {1, 2}
– Current driving lane = {1, 2}
– Forward vehicle existing = {true, false}
– Oncoming vehicle existing = {true, false}

Table 1. 2-projection coverage tables of the final data set

1 Lane 2 Lanes
Sunny G2 G1

Cloudy G4 G3

Rainy E3 E4

(a) Weather & #Lanes

1st Lane 2nd Lane
Sunny G2 G1

Cloudy G4 G3

Rainy E5 G5

(b) Weather & Current
Lane

Straight Curvy
Sunny G1 G6

Cloudy G4 G3

Rainy G5 E5

(c) Weather & Lane Curve

No FC FC
Sunny G1 G2

Cloudy G4 G3

Rainy G5 E4

(d) Weather & Forward Car

No OC OC
Sunny G1 G2

Cloudy G4 G3

Rainy G5 E4

(e) Weather & Oncoming
Car

1st Lane 2nd Lane
1 Lane E3 X
2 Lanes E2 G1

(f) #Lanes & Current Lane

Straight Curvy
1 Lane G2 E3

2 Lanes E1 E2

(g) #Lanes & Lane Curve

No FC FC
1 Lane E3 G2

2 Lanes G1 G3

(h) #Lanes & Forward Car

No OC OC
1 Lane G4 E3

2 Lanes E1 E4

(i) #Lanes & Oncoming
Car

Straight Curvy
1st Lane E1 E2

2nd Lane G1 G3

(j) Current Lane & Lane
Curve

No FC FC
1st Lane E3 E1

2nd Lane G1 G3

(k) Current Lane & For-
ward Car

No OC OC
1st Lane E1 E3

2nd Lane G1 G3

(l) Current Lane & Oncom-
ing Car

No FC FC
Straight G1 E1

Curvy E3 E2

(m) Lane Curve & Forward
Car

No OC OC
Straight E1 G2

Curvy E4 E2

(n) Lane Curve & Oncom-
ing Car

No OC OC
No FC G1 E3

FC E2 E4

(o) Forward Car & Oncom-
ing Car

We used our test case generator to generate new data points to achieve full
2-projection coverage (with Wi(j) = 1) starting with a small set of randomly
captured data points (Fig. 3, images E1 to E5). Images G1 to G6 are synthesized
in sequence until full 2-projection coverage is achieved. The coverage condition
of each 2-projection plane is shown in Table 1. Note that there exists one entry in
the sub-table (f) which is not coverable (labelled as “X”), as there is a constraint
stating that if there exists only 1 lane, it is impossible for the vehicle to drive on
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Fig. 4. Change of 2-projection coverage due to newly generated data.

the 2nd lane. Figure 4 demonstrates the growth of 2-projection coverage when
gradually introducing images G1 to G6.

6 Concluding Remarks

In this paper, we presented quantitative k-projection coverage as a method to
systematically evaluate the quality of data for systems engineered using machine
learning approaches. Our prototype implementation is used to compute coverage
and synthesize additional images for engineering a vision-based perception unit
for automated driving. The proposed metric can further be served as basis to
refine other classical metrics such as MTBF or availability which is based on
statistical measurement.

Currently, our metric is to take more data points for important (higher
weight) scenar ios. For larger k values, achieving full projection coverage may
not be feasible, so one extension is to adapt the objective function of Algorithm 2
such that the generation process favors discrete categorization points with higher
weights when being projected. Another direction is to improve the encoding of
Algorithm 2 such that the algorithm can return multiple discrete categoriza-
tion points instead of one. Yet another direction is to further associate temporal
behaviors to categorization and the associated categorization constraints, when
the data space represents a sequence of images.
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Abstract. In various areas of computer science, we deal with a set of
constraints to be satisfied. If the constraints cannot be satisfied simulta-
neously, it is desirable to identify the core problems among them. Such
cores are called minimal unsatisfiable subsets (MUSes). The more MUSes
are identified, the more information about the conflicts among the con-
straints is obtained. However, a full enumeration of all MUSes is in gen-
eral intractable due to the large number (even exponential) of possible
conflicts. Moreover, to identify MUSes, algorithms have to test sets of con-
straints for their simultaneous satisfiability. The type of the test depends
on the application domains. The complexity of the tests can be extremely
high especially for domains like temporal logics, model checking, or SMT.
In this paper, we propose a recursive algorithm that identifies MUSes in
an online manner (i.e., one by one) and can be terminated at any time.
The key feature of our algorithm is that it minimises the number of satisfi-
ability tests and thus speeds up the computation. The algorithm is appli-
cable to an arbitrary constraint domain. We benchmark our algorithm
against the state-of-the-art algorithm Marco on the Boolean and SMT
constraint domains and demonstrate that our algorithm really requires
less satisfiability tests and consequently finds more MUSes in the given
time limits.

1 Introduction

In many different applications we are given a set of constraints (requirements)
with the goal to decide whether the set of constraints is satisfiable, i.e., whether
all the constraints can hold simultaneously. In case the given set is shown to
be unsatisfiable, we might be interested in an analysis of the unsatisfiability.
Identification of minimal unsatisfiable subsets (MUSes) is a kind of such analysis.
A minimal unsatisfiable subset is a set of constraints that are not simultaneously
satisfiable, yet the elimination of any of them makes the set satisfiable. We
illustrate the problem on two different applications.

In the requirements analysis, the constraints represent requirements on a
system that is being developed. Checking for satisfiability (also called consis-
tency) means checking whether all the requirements can be implemented at
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once. If the set of requirements is unsatisfiable, the extraction of MUSes helps
to identify and fix the conflicts among the requirements [5,10].

In some model checking techniques, such as the counterexample-guided
abstraction refinement (CEGAR) [16], we are dealing with the following ques-
tion: is the counterexample that was found in an abstract model feasible also
in the concrete model? To answer this question, a formula cex ∧ conc encoding
both the counterexample cex and the concrete model conc is built and tested
for satisfiability. If the formula is unsatisfiable, then the counterexample is spu-
rious and the negation of the formula cex ∧ conc is used to refine the abstract
model. Since both cex and conc are often formed as a conjunction of smaller
subformulas, the whole formula can be seen as a set of conjuncts (constraints).
Andraus et al. [1,16] found out that instead of using the negation of cex ∧ conc
for the refinement, it is better to identify the MUSes of cex ∧ conc and use the
negations of the MUSes to refine the abstract model.

Yet another applications of MUSes arise for example during formal equiv-
alence checking [17], proof based abstraction refinement [30], Boolean function
bi-decomposition [13], circuit error diagnosis [25], type debugging in Haskell [37],
or proof explanation in symbolic model checking [12,23].

The individual applications differ in the constraint domain. Perhaps the most
widely used are Boolean and SMT constraints; these types of constraints arise
for example in the CEGAR workflow. In the requirements analysis, the most
common constraints are those expressed in a temporal logic such as Linear Tem-
poral Logic [34] or Computational Tree Logic [15]. The list of constraint domains
in which MUS enumeration finds an application is quite long and new applica-
tions still arise. Therefore, we focus on MUS enumeration algorithms applicable
in arbitrary constraint domains.

Main contribution. All algorithms solving the MUS enumeration problem
have to get over two barriers. First, the number of all MUSes can be exponential
w.r.t. the number of constraints. Therefore, the complete enumeration of all
MUSes can be intractable. To overcome this limitation we present an algorithm
for online MUS enumeration, i.e., an algorithm that enumerates MUSes one by
one and can be terminated at any time.

Second, algorithms for MUS enumeration need to test whether a given set of
constraints is satisfiable. This is typically a very hard task and it is thus desirable
to minimise the overall number of satisfiability queries. To reduce the number of
performed satisfiability queries, the majority of the state-of-the-art algorithms
(for their detailed description see Sect. 4) try to exploit specific properties of
particular constraint domains. Most of the algorithms were evaluated only in
the SAT domain (the domain of Boolean constraints). The SAT domain enjoys
properties that can be used to significantly reduce the number of satisfiability
queries and the state-of-the-art algorithms are thus very efficient in this domain.
However, this might not be the case in domains for which no such domain spe-
cific properties exist. Here, we present a novel algorithm that exploits both the
domain specific as well as domains agnostics properties of the MUS enumeration
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Fig. 1. Illustration of the power set of the set C of constraints from the Example 1.
We encode individual subsets of C as bitvectors, e.g. the subset {c1, c3, c4} is written
as 1011. The subsets with dashed border are the unsatisfiable subsets and the others
are satisfiable subsets. The MUSes and MSSes are filled with a background colour.

problem. First, the algorithm employs, as a black-box subroutine, a domain spe-
cific single MUS extraction algorithm which allows it to exploit specific properties
of particular domains. Second, it recursively searches for MUSes in smaller and
smaller subsets of the given set of constraints which allows it to directly reduce
the number of performed satisfiability queries.

2 Preliminaries and Problem Statement

We are given a finite set of constraints C with the property that each subset
of C is either satisfiable or unsatisfiable. The notion of satisfiability may vary in
different constraint domains. The only assumption is that if a set X, X ⊆ C, is
unsatisfiable, then all supersets of X are unsatisfiable as well. The sets of interest
are defined as follows.

Definition 1 (MUS, MSS, MCS). Let C be a finite set of constraints and let
N ⊆ C. N is a minimal unsatisfiable subset (MUS) of C if N is unsatisfiable
and ∀c ∈ N : N \ {c} is satisfiable. N is a maximal satisfiable subset (MSS) of
C if N is satisfiable and ∀c ∈ C \ N : N ∪ {c} is unsatisfiable. N is a minimal
correction set (MCS) of C if C \ N is a MSS of C.

The maximality concept used in the definition of a MSS is the set maximality
and not the maximum cardinality as in the MaxSAT problem. Thus a constraint
set C can have multiple MSSes with different cardinalities.

Example 1. Assume that we are given a set C = {c1, c2, c3, c4} of four Boolean
satisfiability constraints c1 = a, c2 = ¬a, c3 = b, and c4 = ¬a ∨ ¬b. Clearly, the
whole set is unsatisfiable as the first two constraints are negations of each other.
There are two MUSes of C, namely {c1, c2}, {c1, c3, c4}. There are three MSSes
of C, namely {c1, c4}, {c1, c3}, and {c2, c3, c4}. Finally, there are three MCSes
of C, namely {c2, c3}, {c2, c4}, and {c1}. This example is illustrated in Fig. 1.
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Another concept used in our work are the so-called critical constraints that
are defined as follows:

Definition 2 (critical constraint). Let C be a finite set of constraints and let
N ⊆ C be an unsatisfiable subset. A constraint c ∈ N is a critical constraint for
N if N \ {c} is satisfiable.

Note that N is a MUS of C if and only if each c ∈ N is critical for N . Furthermore,
if c is a critical constraint for C then c has to be contained in every unsatisfiable
subset of C. Also, note that if S is a MSS of C and S = C \ S its complement
(i.e. a MCS of C), then each c ∈ S is critical for S ∪ {c}.

Example 2. We illustrate the concept of critical constraints on two sets, N and C,
where C is the same set as in Example 1, and N = C \{c2}. The constraint c1 is
the only critical constraint for C whereas N has three critical constraints: c1, c3,
and c4.

Problem Formulation. Given a set of constraints C, enumerate all minimal
unsatisfiable subsets of C in an online manner while minimising the number
of constraints satisfiability queries. Moreover, we require an approach that is
applicable to an arbitrary constraint domain.

3 Algorithm

We start with some observations about the MUS enumeration problem and
describe the main concepts used in our algorithm.

The algorithm is given an unsatisfiable set of constraints C. To find all MUSes,
the algorithm iteratively determines satisfiability of subsets of C. Initially, only
the satisfiability of C is determined and at the end, satisfiability of all subsets
of C is determined. The algorithm maintains a set Unexplored containing all
subsets of C whose satisfiability is not determined yet. Recall that if a set of
constraints is satisfiable then all its subsets are satisfiable as well. Therefore, if
the algorithm determines some N ⊆ C to be satisfiable, then not only N but
also all of its subsets, denoted by sub(N), become explored (i.e. are removed
from the set Unexplored ). Dually, if N is unsatisfiable then all of its supersets,
denoted by sup(N), are unsatisfiable and become explored.

Since there are exponentially many subsets of C, it is intractable to represent
the set Unexplored explicitly. Instead, we use a symbolic representation that is
common in contemporary MUS enumeration algorithms [11,23,28]. We encode
C = {c1, c2, . . . , cn} by using a set of Boolean variables X = {x1, x2, . . . , xn}.
Each valuation of X then corresponds to a subset of C. This allows us to represent
the set of unexplored subsets Unexplored using a Boolean formula fUnexplored

such that each model of fUnexplored corresponds to an element of Unexplored .
The formula is maintained as follows:
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• Initially fUnexplored = True since all of P(C) are unexplored.
• To remove a satisfiable set N ⊆ C and all its subsets from the set Unexplored

we add to fUnexplored the clause
∨

i:ci �∈N xi.
• Symmetrically, to remove an unsatisfiable set N ⊆ C and all its supersets

from the set Unexplored we add to fUnexplored the clause
∨

i:ci∈N ¬xi.

To get an element of Unexplored , we ask a SAT solver for a model of fUnexplored .

Example 3. Let us illustrate the symbolic representation on C = {c1, c2, c3}. If
all subsets of C are unexplored then fUnexplored = True. If {c1, c3} is determined
to be unsatisfiable and {c1, c2} to be satisfiable, then fUnexplored is updated to
True ∧ (¬x1 ∨ ¬x3) ∧ (x3).

One of the approaches (see e.g. [11,27,35]) how to find a MUS of C is to find
an unexplored unsatisfiable subset, called a seed, and then use any algorithm that
finds a MUS of the seed (this algorithm is often denoted as a shrink procedure).
In our algorithm we use a black-box subroutine for shrinking. This allows us
to always employ the best available, domain specific, single MUS extraction
algorithm.

The key question is how to find an unexplored unsatisfiable subset (a seed).
Due to the monotonicity of the satisfiability of individual subsets (w.r.t. subset
inclusion), satisfiable subsets are typically smaller and, dually, unsatisfiable sub-
sets are more concentrated among the larger subsets. Therefore, we search for
seeds among maximal unexplored subsets. A set Smax is a maximal unexplored
subset of C iff Smax ⊆ C, Smax ∈ Unexplored , and each of the proper supersets
of Smax is explored. The maximal unexplored subsets correspond to the maximal
models of fUnexplored . Thus, in order to get a maximal unexplored subset Smax,
we ask a SAT solver for such a model. If Smax is unsatisfiable, we use it as a
seed for the shrinking procedure and compute a MUS of C.

The idea of searching for seeds among the maximal unexplored subsets is
already used in some contemporary MUS enumeration algorithms [11,23,28,35].
However, none of the algorithms specify which maximal unexplored subset should
be used for finding a seed. They just ask a SAT solver for an arbitrary maximal
model of fUnexplored (maximal unexplored subset). We found that the choice of
maximal unexplored subset to be used is very important. The complexity of
the shrinking procedure, in general, depends on the cardinality (the number of
constraints) of the seed. Thus, an ideal option would be to search for a seed
among the maximal unexplored subsets with the minimum cardinality, i.e. to
find a minimum maximal model of fUnexplored . However, finding such a model is
very expensive, especially compared to finding an arbitrary maximal model of
fUnexplored . In order to find an arbitrary maximal model, we can just instruct the
SAT solver to use True as a default polarity of variables during solving (this can
be done e.g. in the miniSAT [21] solver). On the other hand, finding a minimum
maximal model of fUnexplored is a hard optimisation problem.

We propose a way of finding seeds that are relatively small, yet cheap to
be found. To find the first seed we are repeatedly asking the SAT solver for
an arbitrary maximal unexplored subset of C until we obtain some unsatisfiable
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Fig. 2. Illustration of our seed selection approach. Figure 2a illustrates the division of
subsets of C into explored satisfiable, explored unsatisfiable, and unexplored subsets.
The blue circle nodes represent the maximal unexplored subsets of C. Figure 2b shows
a previously used seed Smax, a MUS Smus that was found based on the seed, a set
P such that Smus ⊆ P ⊆ Smax, and maximal unexplored subsets of P (blue circle
nodes).

maximal unexplored subset Smax. Then, we use Smax as the first seed and shrink
it to the first MUS Smus. In order to find the next seed, we use a more sophisti-
cated approach. Instead of searching for a seed among the maximal unexplored
subsets of C, we restrict the search space so that the next seed is smaller than the
previous one. In particular, we choose a set P such that Smus ⊆ P ⊆ Smax and
search for the new seed among the maximal unexplored subsets of P . Note that
the maximal unexplored subsets of P do not have to be maximal unexplored
subsets of C. Furthermore, P is necessarily unsatisfiable and all seeds found
within it are necessarily smaller than the previous seed Smax since P ⊆ Smax.
By choosing the next seed among the maximal unexplored subsets of P , we de
facto solve the problem in a recursive manner. Instead of finding a new MUS of
C, we find a MUS of P , which is necessarily also a MUS of C. Each next seed is
found based on the previous one, i.e. we keep to recursively reducing the search
space as far as we can. Once we end up in a subset P of C such that the whole
P(P ) is explored, we backtrack from the recursion. The approach is illustrated
in Fig. 2.

In our algorithm we also use critical constraints. For mining critical con-
straints we use the maximal unexplored subsets that are satisfiable. Every sat-
isfiable maximal unexplored subset Smax of C is a maximal satisfiable subset
(MSS) of C as every superset of Smax is explored. If it were satisfiable then due
to monotonicity Smax should also be explored (which it is not). Thus, for every
c ∈ C \Smax it holds that Smax∪{c} is unsatisfiable and c is a critical constraint
for Smax ∪ {c}.
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The critical constraints are used in two different situations. The first situa-
tion arises when we are searching for a seed and the selected maximal unexplored
subset Smax of C is satisfiable. In such a case we can try to pick another maximal
unexplored subset of C and check it for satisfiability. However, for reasons men-
tioned above, we try to search for small seeds. Therefore we recursively search
for a maximal unexplored subset of Smax ∪ {c}, where c is a critical constraint
for Smax ∪ {c}. The set Smax ∪ {c} is definitely unsatisfiable and its cardinality
is not greater than the cardinality of C.

Many modern shrinking algorithms [2,8,32] use critical constraints to speed
up their computation. Every MUS of C has to contain all the critical constraints
for C and this helps the shrinking procedure to narrow the search space. The
critical constraints for C have to be delivered to the shrinking algorithm together
with the seed. Our algorithm can compute and accumulate critical constraints
effectively while recursively traversing the space. If X and Y are two sets of
constraints such that X ⊇ Y , then every critical constraint for X is also a critical
constraint for Y . The algorithm thus can utilise the known critical constraints
even in its recursive part.

3.1 Description of the Algorithm

The pseudocode of our algorithm is shown in Algorithm 1. The computation
of the algorithm starts with an initialisation phase followed by a call of the
procedure FindMUSes, which is the core procedure of our algorithm.

The procedure FindMUSes has two input parameters: S and criticals. S is an
unsatisfiable set of constraints and the procedure outputs MUSes of S. The set
criticals contains (currently known) critical constraints for S and is used for the
shrinking procedure. In each iteration, the procedure FindMUSes picks a maximal
unexplored subset Smax of S and tests it for satisfiability. If Smax is satisfiable,
then it is guaranteed to be a MSS of S. Thus, the complement Smcs = S \Smax

of Smax is an MCS of S and it can be used to obtain critical constraints. If
|Smcs| = 1, then the single constraint that forms Smcs is guaranteed to be
a critical constraint for S and it is thus added into criticals. Otherwise, the
procedure recursively calls itself on (Smax∪{c}, criticals∪{c}) for each c ∈ Smcs

since each such c is guaranteed to be a critical constraint for Smax ∪ {c}.
In the other case, when Smax is unsatisfiable, then Smax is shrunk to a MUS

Smus (note that the set criticals of critical constraints is provided to the shrinking
procedure). The newly computed Smus is used to reduce the dimension of the
space in which another MUSes are searched for. Namely, the procedure picks
some P , Smus ⊂ P ⊂ Smax, and recursively calls itself on P . After the recursive
call terminates, the procedure continues with the next iteration.

The main idea behind the recursion is to search for MUSes of sets smaller
than S and thus lower the complexity of performed operations. Naturally, there
is a trade-off between the complexity of operations and the expected number
of MUSes occurring in the chosen subspace and thus it might be very tricky
to find an optimal P . In our algorithm we choose P so that |P | = 0.9 · |Smax |,
where |P | and |Smax | are cardinalities of the two sets, respectively. We form P
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Algorithm 1: ReMUS
1 Function Init(C):

input : an unsatisfiable set of constraints C
2 Unexplored ← P(C)
3 FindMUSes(C, ∅)
1 Function FindMUSes(S, criticals):
2 while Unexplored ∩ P(S) �= ∅ do
3 Smax ← a maximal unexplored subset of S
4 if Smax is satisfiable then
5 Unexplored ← Unexplored \ Sub(Smax)
6 Smcs ← S \ Smax

7 if |Smcs| = 1 then
8 criticals ← criticals ∪ Smcs

9 else
10 for each c ∈ Smcs do
11 FindMUSes(Smax ∪ {c}, criticals ∪ {c})

12 else
13 Smus ←Shrink(Smax, criticals)
14 output Smus

15 Unexplored ← Unexplored \ (Sup(Smus) ∪ Sub(Smus))
16 if |Smus| < 0.9 · |Smax| then
17 P ← subset such that Smus ⊂ P ⊂ Smax, |P | = 0.9 · |Smax|
18 FindMUSes (P , criticals)

by adding a corresponding number of constraints from Smax to Smus . Note that
it might happen that |Smus | ≥ 0.9 · |Smax |; in such a case the algorithm skips
the recursion call and continues with the next iteration.

The set Unexplored is updated appropriately during the whole computation.
Note that the set Unexplored is shared among the individual recursive calls; in
particular if the algorithm determines some subset S to be unsatisfiable then all
of its supersets (w.r.t. the original search space) are deduced to be unsatisfiable.
On the other hand, the maximal unexplored subsets (and their complements)
are local and are defined with respect to the current search space.

Correctness. The algorithm outputs only the results of shrinking which is
assumed to be a correct MUS extraction procedure. Each MUS is produced only
once since only unexplored subsets are shrunk and each MUS is removed from
the set Unexplored immediately after producing. Only subsets whose status is
known are removed from the set Unexplored thus no MUS is excluded from the
computation. The algorithm terminates and all MUSes are found since the size
of Unexplored is reduced after every iteration.
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4 Related Work

The list of existing approaches to the MUS enumeration problem is short, espe-
cially compared to the amount of work dealing with a single MUS extraction
[6–9,31,33]. Moreover, existing algorithms for the MUS enumeration are tailored
mainly to Boolean constraints [2,3,22,24] and cannot be applied to other con-
straints. The approaches that focus on MUS enumeration in general constraint
systems can be divided into two categories: approaches that compute MUSes
directly and those that rely on the hitting set duality.

Direct MUS enumeration. The early algorithms were based on explicit enu-
meration of every subset of the unsatisfiable constraint system. As far as we
know, the MUS enumeration was pioneered by Hou [26] in the field of diag-
nosis. Hou’s algorithm checks every subset for satisfiability starting with the
whole set of constraints and exploring its power set in a tree-like structure. Also,
some pruning rules that allow skipping irrelevant branches are presented. This
approach was revisited and further improved by Han and Lee [25] and by de
la Banda et al. [18]. Another approach using step-by-step powerset exploration
was recently proposed by Bauch et al. [5]. The authors of this work focus on con-
straints expressed using LTL formulas; however, their algorithm can be used for
any type of constraints. Explicit exploration of the power set is the bottleneck of
all of the above mentioned algorithms as the size of the power set is exponential
to the number of constraints in the system.

Liffiton et al. [27] and Silva et al. [35] developed independently two nearly
identical algorithms: MARCO [27] and eMUS [35]. Both algorithms were later
merged and presented [28] under the name of MARCO. Among the existing MUS
enumeration algorithms, MARCO is perhaps the one most similar to ReMUS.
It uses symbolic representation of the power set and is able to produce MUSes
incrementally during its computation in a relatively steady rate. In order to find
individual MUSes, it iteratively picks maximal unexplored subsets of the original
set of constraints and checks them for satisfiability. The unsatisfiable subsets are
shrunk, using a black-box procedure, into MUSes. Contrary to ReMUS, MARCO
does not tend to reduce the size of the sets to be shrunk and thus to directly
reduce the number of performed satisfiability checks. Instead, it assumes that
the black-box shrinking procedure would do the trick. MARCO is very efficient
in constraint domains for which efficient shrink procedures exist. However, in the
other domains, it is less efficient. This is mainly due to the fact that it shrinks
the maximal unexplored subsets of the original set of constraints, i.e. it shrinks
relatively large sets.

In our previous work [11], we have presented the algorithm TOME that also
produces MUSes in an online manner. It iteratively uses binary search to find the
so-called local MUSes/MSSes. Each local MUS/MSS is optionally, based on its
size (cardinality), shrunk/grown to a global MUS/MSS. TOME tries to predict
the complexity of performing the shrinking/growing procedure and only those
shrinks/grows that seem to be easy to perform are actually performed. TOME is
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very efficient in constraint domains for which no efficient shrinking and growing
procedure exist. On the other hand, in domains like Boolean constraints, the
effort needed to find local MUSes and MSSes outweighs the effort needed to
perform the shrinks and grows.

Hitting set duality based approaches. There is a well known relationship
between MUSes and MCSes based on the concept of hitting sets. Given a collec-
tion Ω of sets, a hitting set H for Ω is a set such that ∀S ∈ Ω : H ∩ S �= ∅. A
hitting set is called minimal if none of its proper subsets is a hitting set. If C is
a set of constraints and N ⊆ C, then the minimal hitting set duality [36] claims
that N is a MUS of C iff N is a minimal hitting set of the set of all the MCSes
of C.

The hitting set duality is used for example in CAMUS [29] and DAA [4].
CAMUS works in two phases. It first computes all MCSes of a given constraint set
and then finds all MUSes by computing all minimal hitting sets of these MCSes.
A significant shortcoming of CAMUS is that the first phase can be intractable
as the number of MCSes can be exponential in the number of constraints and
all MCSes must be found before the first MUS can be produced.

The algorithm DAA [4] is able to produce some MUSes before the enumera-
tion of MCSes is completed. DAA starts each iteration with computing a minimal
hitting set H of currently known MCSes and tests H for satisfiability. If H is
unsatisfiable, it is guaranteed to be a MUS. In the other case, H is grown into
a MSS whose complement is a MCS, i.e. the set of known MCSes is enlarged.
As in the case of MARCO, DAA can use any existing algorithm for a single
MSS/MCS extraction to perform the grow.

MARCO, CAMUS and DAA were experimentally compared in the Boolean
constraints domain [28] and CAMUS has shown to be the fastest in enumerating
all MUSes in the tractable cases. However, in the intractable cases, MARCO
was able to produce at least some MUSes, while CAMUS often got stuck in the
phase of MCSes enumeration. DAA was much slower than CAMUS in the case
of complete MUSes enumeration and also slower than MARCO in the case of
partial MUS enumeration. The main drawbacks of DAA are the complexity of
computing minimal hitting sets and no guarantee on the rate of MUS production.

Bacchus and Katsirelos proposed a MUS enumeration algorithm called MCS-
MUS-BT [3] which is also based on recursion and uses MCSes to extract critical
constraints. However, the algorithm is tailored for the SAT domain and, thus,
cannot be applied in an arbitrary constraint domain. Moreover, the computation
of MCSes is an integral part of MCS-MUS-BT, and the MCSes are computed
in a different way taking up to linearly many satisfiability checks to compute
each MCS. MCS-MUS-BT does not use black-box shrinking procedures and the
recursion is not driven by previously found MUSes.
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5 Implementation

We implemented ReMUS into a publicly available tool1. The tool currently sup-
ports three different constraint domains: SAT (Boolean constraints), SMT, and
LTL. It employs several external tools. In particular, it uses the SAT solver min-
iSAT [21] for maintaining fUnexplored , and miniSAT is also used as a satisfiability
solver in the SAT domain. The tools Z3 [19] and SPOT [20] are used as satis-
fiability solvers in the SMT and LTL domains, respectively. Moreover, our tool
uses the single MUS extractor MUSer2 [8] as a black-box shrink subroutine in
the SAT domain. In the other domains, we use our custom implementation of
the shrinking procedures.

6 Experimental Evaluation

Here, we report results of our experimental evaluation. Besides evaluating
ReMUS, we also provide a comparison with the latest tool implementation2 of
the state-of-the-art MUS enumeration algorithm MARCO [28]. The comparison
is done in the SAT and SMT domains since these are the domains supported
by the MARCO tool. Note that MARCO uses the same external procedures as
ReMUS, i.e. a satisfiability solver, a shrinking procedure, and a SAT solver for
maintaining unexplored subsets. All these external procedures are implemented
in the MARCO tool in the same way as in the ReMUS tool, i.e. using min-
iSAT [21], Z3 [19], and MUSer2 [8].

There are three main criteria for the comparison: (1) the number of output
MUSes within a given time limit, (2) the number of satisfiability checks required
to output individual MUSes, and (3) the time required to output individual
MUSes.

6.1 Benchmarks and Experimental Setup

The experiments in the SAT domain were conducted on a collection of 292
Boolean CNF benchmarks that were taken from the MUS track of the SAT
2011 competition3. The benchmarks range in their size from 70 to 16 million
constraints and use from 26 to 4.4 million variables. This collection of bench-
marks has been already used in several papers that focus on the problem of
MUS enumeration, see e.g. [11,27–29]. In the SMT domain, we used a set of 433
benchmarks that were used in the work by Griggio et al. [14]. The benchmarks
were selected from the library SMT-LIB4, and include instances from the QF UF,
QF IDL, QF RDL, QF LIA and QF LRA divisions. The size of the benchmarks
ranges from 5 to 145422 constraints.

1 https://www.fi.muni.cz/∼xbendik/remus/.
2 https://sun.iwu.edu/∼mliffito/marco/.
3 http://www.cril.univ-artois.fr/SAT11/.
4 http://www.smt-lib.org/.

https://www.fi.muni.cz/~xbendik/remus/
https://sun.iwu.edu/~mliffito/marco/
http://www.cril.univ-artois.fr/SAT11/
http://www.smt-lib.org/
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The experiments were run on an Intel(R) Xeon (R) CPU E5-2630 v2,
2.60GHz, 125 GB memory machine running Arch Linux 4.9.40-l-lts. All exper-
iments were run using a time limit of 3600 s. Complete results are available at
https://www.fi.muni.cz/∼xbendik/remus/.

7 Experimental Results

7.1 Number of Output MUSes

In this section, we examine the performance of evaluated algorithms in terms
of number of produced MUSes within the given time limit of 3600 s. Due to
the potentially exponentially many MUSes in each instance, the complete MUS
enumeration is generally intractable. Moreover, even producing a single MUS can
be intractable for larger instances as it naturally includes solving the satisfiability
problem, which is hard to solve in the SAT and SMT domains. Within the given
time limit, both algorithms found more than two MUSes in only 216 SAT and
238 SMT instances. Furthermore, both algorithms finished the computation in
only 24 SAT and 245 SMT instances.

Figure 3 provides scatter plots that compare both evaluated algorithms on
individual benchmarks in the SAT and SMT domains. Each point in the plot
represents the result achieved by the two compared algorithms on one particular
instance; one algorithm determines the position on the vertical axis and the other
one the position on the horizontal axis. MARCO found strictly more MUSes than
ReMUS in 76 SAT and 15 SMT instances. On the other hand, ReMUS found
strictly more MUSes than MARCO in 162 SAT and 118 SMT instances. Note
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Fig. 3. Scatter plots comparing the number of produced MUSes. Blue points represent
the benchmarks where both algorithms finished the computation.

https://www.fi.muni.cz/~xbendik/remus/
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that in the SMT domain, ReMUS was often better than MARCO by two orders
of magnitude.

7.2 Performed Checks per MUS

In this section, we focus on the main optimisation criterion of our algorithm: the
number of checks required to output individual MUSes. This number differs for
different benchmarks since individual benchmarks vary in many aspects such as
the size of the benchmarks and the size of the MUSes contained in the bench-
marks. Therefore, we focus on average values. Plots in Fig. 4 show the average
number of performed satisfiability checks required to output the first 750 MUSes.
A point with coordinates (x, y) states that the algorithm needed to perform y
satisfiability checks on average in order to output the first x MUSes. We used
only a subset of the benchmarks to compute the average values since only for
some benchmarks both algorithms found at least 750 MUSes. In particular, 70
and 51 benchmarks were used to compute the average values in the SAT and
SMT domains, respectively.

ReMUS is clearly superior to MARCO in the number of satisfiability checks
required to output individual MUSes. This happens both due to the fact that
ReMUS gradually, in a recursive way, reduces the dimension of the search space
(and thus shrink smaller seeds), as well as due the fact that ReMUS mines and
accumulates critical constraints to speed up the shrinking procedures.
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Fig. 4. Plots showing the average number of performed satisfiability checks required
to output individual MUSes.

7.3 Elapsed Time per MUS

The fact that ReMUS requires less satisfiability checks than MARCO to output
individual MUSes does not necessarily mean that it is also faster than MARCO
in producing individual MUSes. The time spent by ReMUS to maintain the
recursive calls while trying to save some satisfiability checks might not be worth
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it if the checks are easy to perform. We need to answer a domain specific question:
is the price of performing satisfiability checks high enough?

To answer this question for the SAT and SMT domains, we took the 70 SAT
and 51 SMT benchmarks in which both algorithms produced at least 750 MUSes
and computed the average amount of time required to output individual MUSes.
The results are shown in Fig. 5. A point with coordinates (x, y) states that in
order to output the first x MUSes the algorithm required y seconds on average.
In the SMT domain, ReMUS is significantly faster from the very beginning of
the computation. In the SAT domain, MARCO is faster during the first three
minutes, yet afterwards ReMUS becomes much faster.
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Fig. 5. Plots showing the average amount of time required to output individual MUSes.

7.4 Evaluation

Experimental results demonstrate that ReMUS outperformed MARCO on
almost all the SMT instances and on a majority of the SAT instances. How-
ever, on some SAT instances, ReMUS was quite struggling, especially at the
beginning of the computation. Here, we point out three characteristics of bench-
marks/domains that affect the performance of ReMUS.

First, ReMUS tends to minimise the number of performed satisfiability checks.
Therefore, the higher the complexity of the satisfiability checks, the more is
the tendency to minimise the number of performed checks worth it. Second,
the motivation behind finding small seeds for shrinking procedure is based on
the fact that, in general, the larger the seed is, the more satisfiability checks
are required. However, some constraint domains might enjoy domain specific
properties that allow to shrink the seed very efficiently, regardless of the size
of the seed. In particular, the CNF form of Boolean (SAT) formulas allows
to significantly reduce the number of performed satisfiability checks [6,8,33].
Finally, the reduction of the search space is driven by the previously found
MUSes. In order to perform deep recursion calls, the input instance has to contain
many MUSes. Moreover, there have to be some similar MUSes, i.e. there has to
be a subset that is relatively small and yet contains several MUSes.



Recursive Online Enumeration of All Minimal Unsatisfiable Subsets 157

In the SMT domain, the shrinking procedures are currently not so advanced
as in the SAT domain, and the complexity of the satisfiability checks in the SMT
domain is often larger than in the SAT domain. Thus, even a small reduction
of the size of the seeds leads to a notable improvement in the overall efficiency.
On the other hand, in the SAT domain, either a significant reduction of the size
of the seeds (i.e. deep recursion calls) or a large number of cumulated critical
constraints is required to speed up the shrinking.

8 Conclusion

We have presented the algorithm ReMUS for online enumeration of MUSes that
is applicable to an arbitrary constraint domain. We observed that the time
required to output individual MUSes generally correlates with the number of
satisfiability checks performed to output the MUSes. The novelty of our algo-
rithm lies in exploiting both the domain specific as well as domain agnostic
properties of the MUS enumeration problem to reduce the number of performed
satisfiability checks, and thus also reduce the time required to output individual
MUSes. The main idea of the algorithm is to recursively search for MUSes in
smaller and smaller subsets of a given set of constraints. Moreover, the algorithm
cumulates critical constraints and uses them to speed up single MUS extraction
subroutines. We have experimentally compared ReMUS with the state-of-the-
art MUS enumeration algorithm MARCO in the SAT and SMT domains. The
results show that the tendency to minimise the number of performed satisfiability
checks leads to a significant improvement over the state-of-the-art.
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Abstract. This paper considers parametric Markov decision processes
(pMDPs) whose transitions are equipped with affine functions over a
finite set of parameters. The synthesis problem is to find a parameter
valuation such that the instantiated pMDP satisfies a (temporal logic)
specification under all strategies. We show that this problem can be for-
mulated as a quadratically-constrained quadratic program (QCQP) and
is non-convex in general. To deal with the NP-hardness of such problems,
we exploit a convex-concave procedure (CCP) to iteratively obtain local
optima. An appropriate interplay between CCP solvers and probabilistic
model checkers creates a procedure—realized in the tool PROPheSY—
that solves the synthesis problem for models with thousands of parame-
ters.

1 Introduction

The parameter synthesis problem. Probabilistic model checking concerns the
automatic verification of models such as Markov decision processes (MDPs).
Unremitting improvements in algorithms and efficient tool implementations [15,
23,27] have opened up a wide variety of applications, most notably in depend-
ability, security, and performance analysis as well as systems biology. How-
ever, at early development stages, certain system quantities such as fault or
reaction rates are often not fully known. This lack of information gives rise
to parametric models where transitions are functions over real-valued parame-
ters [13,22,28], forming symbolic descriptions of (uncountable) families of con-
crete MDPs. The parameter synthesis problem is: Given a finite-state parametric
MDP, find a parameter instantiation such that the induced concrete model satis-
fies a given specification. An inherent problem is model repair, where probabilities
are changed (“repaired”) with respect to parameters such that a model satisfies

Supported by the grants ONR N000141613165, NASA NNX17AD04G and AFRL
FA8650-15-C-2546
Supported by the CDZ project CAP (GZ 1023), and the DFG RTG 2236
“UnRAVeL”.

c© Springer Nature Switzerland AG 2018
S. K. Lahiri and C. Wang (Eds.): ATVA 2018, LNCS 11138, pp. 160–176, 2018.
https://doi.org/10.1007/978-3-030-01090-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01090-4_10&domain=pdf


Synthesis in pMDPs: A Tale of 1001 Parameters 161

a specification [5]. Concrete applications include adaptive software systems [9],
sensitivity analysis [34], and optimizing randomized distributed algorithms [1].

State-of-the-art. First approaches to parameter synthesis compute a ratio-
nal function over the parameters to symbolically express reachability probabil-
ities [13,19,22]. Equivalently,[18,24] employ Gaussian elimination for matrices
over the field of rational functions. Solving the (potentially very large, high-
degree) functions is naturally a SAT-modulo theories (SMT) problem over non-
linear arithmetic, or a nonlinear program (NLP) [5,12]. However, solving such
SMT problems is exponential in the degree of functions and the number of vari-
ables [24], and solving NLPs is NP-hard in general [29]. Specific approaches to
model repair rely on NLP [5] or particle-swarm optimization (PSO) [10].

Finally, parameter synthesis is equivalent to computing finite-memory strate-
gies for partially observable MDPs (POMDPs) [26]. Such strategies may
be obtained, for instance, by employing sequential quadratic programming
(SQP) [3]. Exploiting this approach is not practical, though, because SQP for
our setting already requires a (feasible) solution satisfying the given specification.
Overall, efficient implementations in tools like PARAM [22], PRISM [27], and
PROPhESY [14] can handle thousands of states but only a handful of parame-
ters.

Our approach. We overcome the restriction to few parameters by employing
convex optimization [7]. This direction is not new; [12] describes a convexification
of the NLP into a geometric program [6], which can still only handle up to about
ten parameters. We take a different approach. First, we transform the NLP
formulation [5,12] into a quadratically-constrained quadratic program (QCQP).
As such an optimization problem is nonconvex in general, we cannot resort to
polynomial-time algorithms for convex QCQPs [2]. Instead, to solve our NP-
hard problem, we massage the QCQP formulation into a difference-of-convex
(DC) problem. The convex-concave procedure (CCP) [30] yields local optima of
a DC problem by a convexification towards a convex quadratic program, which
is amenable for state-of-the-art solvers such as Gurobi [20].

Yet, blackbox CCP solvers [32,33] suffer from severe numerical issues and
can only solve very small problems. We integrate the procedure with a proba-
bilistic model checker, creating a method that—realized in the open-source tool
PROPheSY [14]—yields (a) an improvement of multiple orders of magnitude
compared to just using CCP as a black box and (b) ensures the correctness of
the solution. In particular, we use probabilistic model checking to:

– rule out feasible solutions that may be spurious due to numerical errors,
– check if intermediate solutions are already feasible for earlier termination,
– compute concrete probabilities from intermediate parameter instantiations to

avoid potential numerical instabilities.

An extensive empirical evaluation on a large range of benchmarks shows that
our approach can solve the parameter synthesis problem for models with large
state spaces and up to thousands of parameters, and is superior to all exist-
ing parameter synthesis tools [14,21,27], geometric programming [12], and an
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efficient re-implementation of PSO [10] that we create to deliver a better com-
parison. Contrary to the geometric programming approach in [12], we compute
solutions that hold for all possible (adversarial) schedulers for parametric MDPs.
Traditionally, model checking delivers results for such adversarial schedulers [4],
which are for instance useful when the nondeterminism is not controllable and
induced by the environment, which is the case in the example below.

An illustrative example. Consider the Carrier Sense Multiple Access/Collision
Detection (CSMA/CD) protocol in Ethernet networks, which was subject to
probabilistic model checking [17]. When two stations simultaneously attempt
sending a packet (giving rise to a collision), a so-called randomized exponential
back-off mechanism is used to avoid the collision. Until the k-th attempt, a
delay out of 2k possibilities is randomly drawn from a uniform distribution.
An interesting question is if a uniform distribution is optimal, where optimality
refers to the minimal expected time until all packets have been sent. A bias for
small delays seems beneficial, but raises the collision probability. Using our novel
techniques, within a minute we synthesize a different distribution, which induces
less expected time compared to the uniform distribution. The used model has
about 105 states and 26 parameters. We are not aware of any other parameter-
synthesis approach being able to generate such a result within reasonable time.

2 Preliminaries

A probability distribution over a finite or countably infinite set X is a function
μ : X → [0, 1] ⊆ R with

∑
x∈X μ(x) = 1. The set of all distributions on X

is denoted by Distr(X). Let V = {x1, . . . , xn} be a finite set of variables over
the real numbers R. The set of multivariate polynomials over V is Q[V ]. An
instantiation for V is a function u : V → R.

A function f : Rn → R is affine if f(x) = aTx + b with a ∈ R
n and b ∈ R,

and f : Rn → R is quadratic if f(x) = xT Px + aTx + b with a, b as before
and P ∈ R

n×n. A symmetric matrix P ∈ R
n×n is positive semidefinite (PSD) if

xT Px ≥ 0 ∀x ∈ R
n, or equivalently, if all eigenvalues of P are nonnegative.

Definition 1 ((Affine) pMDP) A parametric Markov decision process (pMDP)
is a tuple M = (S, sI ,Act , V,P) with a finite set S of states, an initial state sI ∈
S, a finite set Act of actions, a finite set V of real-valued variables (parameters)
and a transition function P : S×Act ×S → Q[V ]. A pMDP is affine if P(s, α, s′)
is affine for every s, s′ ∈ S and α ∈ Act .

For s ∈ S, A(s) = {α ∈ Act | ∃s′ ∈ S.P(s, α, s′) �= 0} is the set of enabled
actions at s. Without loss of generality, we require A(s) �= ∅ for s ∈ S. If
|A(s)| = 1 for all s ∈ S, M is a parametric discrete-time Markov chain (pMC).
We denote the transition function for pMCs by P(s, s′). MDPs can be equipped
with a state–action cost function c : S × Act → R≥0.

A pMDP M is a Markov decision process (MDP) if the transition function
yields well-defined probability distributions, i.e., P : S × Act × S → [0, 1] and∑

s′∈S P(s, α, s′) = 1 for all s ∈ S and α ∈ A(s). Applying an instantiation
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u : V → R to a pMDP M yields M[u] by replacing each f ∈ Q[V ] in M by f [u].
An instantiation u is well-defined for M if the resulting model M[u] is an MDP.

To define measures on MDPs, nondeterministic choices are resolved by a
so-called strategy σ : S → Act with σ(s) ∈ A(s). The set of all strategies over
M is StrM. For the measures in this paper, memoryless deterministic strategies
suffice [4]. Applying a strategy to an MDP yields an induced Markov chain where
all nondeterminism is resolved.

For an MC D, the reachability specification ϕr = P≤λ(♦T ) asserts that a
set T ⊆ S of target states is reached with probability at most λ ∈ [0, 1]. If ϕr

holds for D, we write D |= ϕr. Accordingly, for an expected cost specification
ϕc = E≤κ(♦G) it holds that D |= ϕc if and only if the expected cost of reaching
a set G ⊆ S is bounded by κ ∈ R. We use standard measures and definitions as
in [4, Ch. 10]. An MDP M satisfies a specification ϕ, written M |= ϕ, if and
only if for all strategies σ ∈ StrM it holds that Mσ |= ϕ.

3 Formal Problem Statement

Problem 1 (pMDP synthesis problem) Given a pMDP M =
(S, sI ,Act , V,P), and a reachability specification ϕr = P≤λ(♦T ), compute
a well-defined instantiation u : V → R for M such that M[u] |= ϕr.

Intuitively, we seek for an instantiation of parameters u that satisfies ϕr for all
possible strategies for the instantiated MDP. We show necessary adaptions for
an expected cost specification ϕc = E≤κ(♦T ) later.

For a given instantiation u, Problem 1 boils down to verifying if M[u] |= ϕr.
The standard formulation uses a linear program (LP) to minimize the probability
psI

of reaching the target set T from the initial state sI , while ensuring that
this probability is realizable under any strategy [4, Ch. 10]. The straightforward
extension of this approach to pMDPs in order to compute a suitable instantiation
u yields the following nonlinear program (NLP):

minimize psI
(1)

subject to
∀s ∈ T. ps = 1 (2)

∀s, s′ ∈ S.∀α ∈ Act . P(s, α, s′) ≥ 0 (3)

∀s ∈ S.∀α ∈ Act .
∑

s′∈S

P(s, α, s′) = 1 (4)

λ ≥ psI
(5)

∀s ∈ S \ T.∀α ∈ Act . ps ≥
∑

s′∈S

P(s, α, s′) · ps′ . (6)
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Fig. 1. A pMC with parameter v

For s ∈ S, the probability variable ps ∈ [0, 1] represents an upper bound of the
probability of reaching target set T ⊆ S, and the parameters in set V enter the
NLP as part of the functions from Q[V ] in the transition function P.

Proposition 1. The NLP in (1)–(6) computes the minimal probability of
reaching T under a maximizing strategy.

The probability to reach a state in T from T is one (2). The constraints (3)
and (4) ensure well-defined transition probabilities. Constraint (5) is optional
but necessary later, and ensures that the probability of reaching T is below
the threshold λ. For each non-target state s ∈ S and any action α ∈ Act ,
the probability induced by the maximizing scheduler is a lower bound to the
probability variables ps (6). To assign probability variables the minimal values
with respect to the parameters from V , psI

is minimized in the objective (1).

Remark 1 (Graph-preserving instantiations) In the LP formulation for MDPs,
states with probability 0 to reach T are determined via a preprocessing on the
underlying graph, and their probability variables are set to zero, to avoid an
underdetermined equation system. For the same reason, we preserve the under-
lying graph of the pMDP, as in [14,22]. We thus exclude valuations u with
f [u] = 0 for f ∈ P(s, α, s′) for all s, s′ ∈ S and α ∈ Act . We replace (3) by

∀s, s′ ∈ S.∀α ∈ Act . P(s, α, s′) ≥ εgraph. (7)

where εgraph > 0 is a small constant.

Example 1 Consider the pMC in Fig. 1 with parameter set V = {v}, initial state
s0, and target set T = {s3}. Let λ be an arbitrary constant. The NLP in (8)–(13)
minimizes the probability of reaching s3 from the initial state:

minimize ps0 (8)
subject to

ps3 = 1 (9)
λ ≥ ps0 ≥ v · ps1 (10)
ps1 ≥ (1 − v) · ps2 (11)
ps2 ≥ v · ps3 (12)
1 − εgraph ≥ v ≥ εgraph. (13)
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Expected cost specifications. The NLP in (1)–(7) considers reachability probabili-
ties. If we have instead an expected cost specification ϕc = E≤κ(♦G), we replace
(2), (5), and (6) in the NLP by the following constraints:

∀s ∈ G. ps = 0, (14)

∀s ∈ S \ G.∀α ∈ A(s). ps ≥ c(s, α) +
∑

s′∈S

P(s, α, s′) · ps′ (15)

κ ≥ psI
. (16)

We have ps ∈ R, as these variables represent the expected cost to reach G. At
G, the expected cost is set to zero (14), and the actual expected cost for other
states is a lower bound to ps (15). Finally, psI

is bounded by the threshold κ.

4 QCQP Reformulation of the pMDP Synthesis Problem

For the remainder of this paper, we restrict pMDPs to be affine, see Def. 1. For
an affine pMDP M, the functions in the resulting NLP (1)–(7) for pMDP syn-
thesis from the previous section are affine in V . However, the functions in (6) are
quadratic, as a result of multiplying affine functions occurring in P with the prob-
ability variables ps′ . We rewrite the NLP as a standard form of a quadratically-
constrained quadratic program (QCQP) [7]. Afterwards, we examine this QCQP
in detail and show that it is nonconvex.

In general, a QCQP is an optimization problem with a quadratic objective
function and m quadratic constraints, written as

minimize xT P0x + qT
0 x + r0 (17)

subject to

∀i ∈ {1, . . . , m} xT Pix + qT
i x + ri ≤ 0, (18)

where x is a vector of variables, and the coefficients are Pi ∈ R
n×n, gi ∈ R

n,
ri ∈ R for 0 ≤ i ≤ m. We assume P0, . . . , Pm are symmetric without loss of
generality. Constraints of the form xT Pix + qT

i x + ri = 0 are encoded by

xT Pix + qT
i x + ri ≤ 0 and − xT Pix − qT

i x − ri ≤ 0.

Properties of QCQPs. We discuss properties of all matrices Pi for 0 ≤ i ≤ m.
If all Pi = 0, the function qT

i x + ri is affine, and the QCQP is in fact an LP.
If every Pi is PSD, the function xT Pix + qT

i x + ri is convex, and the QCQP
is a convex optimization problem, that can be solved in polynomial time [2]. If
any Pi is not PSD, the resulting QCQP is nonconvex. The problem of finding a
feasible solution in a nonconvex QCQP is NP-hard [8].
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To ease the presentation, we transform the quadratic constraints in the NLP
in (1)–(7) to the standard QCQP form in (17)–(18):

minimize psI
(19)

subject to
∀s ∈ T. ps = 1 (20)

∀s, s′ ∈ S.∀α ∈ A(s). P(s, α, s′) ≥ εgraph (21)

∀s ∈ S.∀α ∈ A(s).
∑

s′∈S

P(s, α, s′) = 1 (22)

λ ≥ psI
(23)

∀s ∈ S \ T.∀α ∈ A(s). ps ≥ xT Ps,αx + qT
s,αx, (24)

where x is a vector consisting of the probability variables ps for all s ∈ S
and the pMDP parameters from V , i.e., x has |S| + |V | rows. Furthermore,
Ps,α ∈ R

(|S|+|V |)×(|S|+|V |) is a symmetric matrix, and qs,α ∈ R
(|S|+|V |).

Construction of the QCQP. We use the matrix Ps,α to capture the quadratic part
and the vector qs,α to capture the affine part in (24). More precisely, consider
an affine function P(s, α, s′) = a · v + b with a, b ∈ R. The function occurs in the
constraint (6) as part of the function (a · v + b) · ps′ . The quadratic part thus
occurs as a · v · ps′ and the affine part as b · ps′ .

We first consider the product xT Ps,αx, which denotes the sum over all prod-
ucts of entries in x. Thus, in Ps,α, each row or column corresponds either to a
probability variable ps for a state s ∈ S or to a parameter v ∈ V . In fact, the
cells indexed (v, ps′) and (ps′ , v) correspond to the product of these variables.
These two entries are summed in xT Ps,αx. In Ps,α, the sum is reflected by two
entries a/2 in the cells (v, ps′) and (ps′ , v). Then Ps,α is a symmetric matrix, as
required. Similarly, we construct qs,α; the entry corresponding to ps′ is set to b.

We do not modify the affine functions in (20)–(23) for the QCQP form.

Example 2 Recall Example 1. We reformulate the NLP in (8)–(13) as a QCQP
in the form of (19)–(24) using the same variables.

minimize ps0

subject to
ps3 = 1

λ ≥ ps0 ≥
[

v
ps1

]T

Ps0

[
v

ps1

]

=
[

v
ps1

]T [
0 0.5

0.5 0

] [
v

ps1

]

ps1 ≥
[

v
ps2

]T

Ps1

[
v

ps2

]

=
[

v
ps2

]T [
0 −0.5

−0.5 0

] [
v

ps2

]

+ ps2

ps2 ≥
[

v
ps3

]T

Ps2

[
v

ps3

]

=
[

v
ps3

]T [
0 0.5

0.5 0

] [
v

ps3

]

1 − εgraph ≥ v ≥ εgraph.
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Theorem 1 The QCQP in (19)–(23) is nonconvex in general.

Proof The matrices Ps0 , Ps1 , Ps2 in Example 2 have an eigenvalue of −0.5 and
are not PSD. Thus, the constraints and the resulting QCQP are nonconvex. �

5 Efficient pMDP Synthesis via Convexification

The QCQP in (19)–(23) is nonconvex and hard to solve in general. We pro-
vide a solution by employing a heuristic called the convex-concave procedure
(CCP) [30], which relies on the ability to efficiently solve convex optimization
problems.

The CCP computes a local optimum of a non-convex difference-of-convex
(DC) problem. A DC problem has the form

minimize f0(x) − g0(x) (25)
subject to

∀i = 1, . . . ,m. fi(x) − gi(x) ≤ 0, (26)

where for i = 0, 1, . . . ,m, fi(x) : Rn → R and gi(x) : Rn → R are convex. The
functions −gi(x) are concave. Every quadratic function can be rewritten as a DC
function. Consider the indefinite quadratic function xT Ps,αx+ qT

s,αx from (24).
We decompose the matrix Ps,α into the difference of two matrices

Ps,α = P+
s,α − P−

s,α with P+
s,α = Ps,α + tI and P−

s,α = tI,

where I is the identity matrix, and t ∈ R+ is sufficiently large to render P+
s,α PSD,

e.g., larger than the largest eigenvalue of Ps,α. Then, we rewrite xT Ps,αx+qT
s,αx

as
(
xT P+

s,αx + qT
s,αx

) − xT P−
s,αx, which is in the form of (26).

Example 3 Recall the pMC in Fig. 1 and the QCQP from Example 2. All matri-
ces Ps of the QCQP are not PSD. We construct a DC problem with t = 1 for
all Ps:

minimize ps0

subject to
ps3 = 1

λ ≥ ps0 ≥
[

v
ps1

]T [
1 0.5

0.5 1

] [
v

ps1

]

−
[

v
ps1

]T [
1 0
0 1

] [
v

ps1

]

ps1 ≥
[

v
ps2

]T [
1 −0.5

−0.5 1

] [
v

ps2

]

−
[

v
ps2

]T [
1 0
0 1

] [
v

ps2

]

+ ps2

ps2 ≥
[

v
ps3

]T [
1 0.5

0.5 1

] [
v

ps3

]

−
[

v
ps3

]T [
1 0
0 1

] [
v

ps3

]

1 − εgraph ≥ v ≥ εgraph.

We have x = (ps1 , ps2 , ps3 , v) and an initial assignment x̂ = (p̂s1 , p̂s2 , p̂s3 , v̂).
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CCP approach. For the resulting DC problem, we consider the iterative penalty
CCP method [30]. The procedure is initialized with any initial assignment x̂ of
the variables x. In the convexification stage, we compute affine approximations
in form of a linearization of gi(x) around x̂:

ḡi(x) = gi(x̂) + ∇gi(x̂)T (x − x̂),

where ∇gi is the gradient of the functions gi(x) at x̂. Then, we replace the DC
function fi(x)− gi(x) by fi(x)− ḡi(x), which is a convex over-approximation of
the original function. A feasible assignment for the resulting over-approximated
and convex DC problem is also feasible for the original DC problem.

To find such a feasible assignment, a penalty variable ks,α for all s ∈ S\T and
α ∈ Act is added to all convexified constraints. Solving the resulting problem
then seeks to minimize the violation of the original DC constraints by minimizing
the sum of the penalty variables. The resulting convex problem is written as

minimize psI
+ τ

∑

∀s∈S\T

∑

∀α∈Act

ks,α (27)

subject to
∀s ∈ T. ps = 1 (28)

∀s, s′ ∈ S.∀α ∈ A(s). P(s, α, s′) ≥ εgraph (29)

∀s ∈ S.∀α ∈ A(s).
∑

s′∈S

P(s, α, s′) = 1 (30)

λ ≥ psI
(31)

∀s ∈ S \ T.∀α ∈ A(s) ks,α + ps ≥ xT P+
s,αx + qT

s,αx − x̂T P−
s,α(2x − x̂) (32)

∀s ∈ S \ T.∀α ∈ A(s) ks,α ≥ 0, (33)

where τ > 0 is a fixed penalty parameter, and the gradient of xT P−
s,αx is 2·P−

s,αx̂.
This convexified DC problem is in fact a convex QCQP. The changed objective
now makes the constraint (31) important.

Example 4 Recall the pMC in Fig. 1 and the DC problem from Example 3. We
introduce the penalty variables ksi

and assume a fixed τ . We linearize around x̂.
The resulting convex problem is:

minimize ps0 + τ

2∑

i=0

ksi

subject to
ps3 = 1
λ ≥ ps0

ks0 + ps0 ≥
[

v
ps1

]T [
1 0.5

0.5 1

] [
v

ps1

]

−
[

v̂
p̂s1

]T [
1 0
0 1

] [
2 · v − v̂

2 · ps1 − p̂s1

]
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ks1 + ps1 ≥
[

v
ps1

]T [
1 −0.5

−0.5 1

] [
v

ps2

]

−
[

v̂
p̂s2

]T [
1 0
0 1

] [
2 · v − v̂

2 · ps2 − p̂s2

]

+ ps2

ks2 + ps2 ≥
[

v
ps3

]T [
1 0.5

0.5 1

] [
v

ps3

]

−
[

v̂
p̂s3

]T [
1 0
0 1

] [
2 · v − v̂

2 · ps3 − p̂s3

]

1 − εgraph ≥ v ≥ εgraph

ks0 ≥ 0, ks1 ≥ 0, ks2 ≥ 0.

If all penalty variables are assigned to zero, we can terminate the algorithm
immediately, for the proof cf. [11]

Theorem 2 A satisfying assignment of the convex DC problem in (27)–(33)

with τ
∑

∀s∈S\T

∑

∀α∈Act

ks,α = 0

is a feasible solution to Problem 1.

If any of the penalty variables are assigned to a positive value, we update the
penalty parameter τ by μ+τ for a μ > 0, until an upper limit for τmax is reached
to avoid numerical problems. Then, we compute a linearization of the gi functions
around the current (not feasible) solution and solve the resulting problem. This
procedure is repeated until we find a feasible solution. If the procedure converges
to an infeasible solution, it may be restarted with an adapted initial x̂.

Efficiency Improvements in the Convex-Concave Procedure

Better convexification. We can use the previous transformation to perform CCP,
but it involves expensive matrix operations, including computing the numerous
eigenvalues. Observe that the matrices Ps,α and vectors qs,α are sparse. Then,
the eigenvalue method introduces more occurrences of the variables in every
constraint, and thereby increases the approximation error during convexification.

We use an alternative convexification: Consider the bilinear function h =
2c · yz, where y and z are variables, and c ∈ R+. We rewrite h equivalently to
h+c(y2+z2)−c(y2+z2). Then, we rewrite h+c(y2+z2) as c(y+z)2. We obtain
h = c(y + z)2 − c(y2 + z2). The function c(y + z)2 is a quadratic convex function,
and we convexify the function −c(y2 +z2) as −c(ŷ2 + ẑ2)+2c(ŷ2 + ẑ2 −yŷ−zẑ),
where ŷ and ẑ are the assignments as before. We convexify the bilinear function
h = 2c · yz with c ∈ R− analogously. Consequently, we reduce the occurrences
of variables for sparse matrices compared to the eigenvalue method.

Integrating model checking with CCP. In each iteration of the CCP, we obtain
values v̂ which give rise to a parameter instantiation. Model checking at these
instantiations is a good heuristic to allow for early termination. We check
whether the values v̂ already induce a feasible solution to the original NLP,
even though the penalty variables have not converged to zero.
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Additionally, instead of instantiating the initial probability values p̂s in itera-
tion i+1, we may use the model checking result of the MDP instantiated at v̂ from
iteration i. Model checking ensures that the probability variables are consistent
with the parameter variables, i.e., that the constraints describing the transition
relation in the original NLP are all met. Using the model checking results over-
comes problems with local optima. Small violations in (32), i.e., small ks,α values
can lead to big differences in the actual probability valuations. Then, the CCP
may be trapped in poor local optima, where the sum of constraint violations is
small, but the violation for the probability threshold is too large.

Algorithmic improvements. We list three key improvements that we make as
opposed to a naive implementation of the approaches. (1) We efficiently precom-
pute the states s ∈ S that reach target states with probability 0 or 1. Then,
we simplify the NLP in (1)–(6) accordingly. (2) Often, all instantiations with
admissible parameter values yield well-defined MDPs. We verify this property
via an easy preprocessing. Then, we omit the constraints for the well-definedness.
(3) Parts of the encoding are untouched over multiple CCP iterations. Instead
of rebuilding the encoding, we only update constraints which contain iteration-
dependent values. The update is based on a preprocessed representation of the
model. The improvement is two-fold: We spend less time constructing the encod-
ing, and the solver reuses previous results, making solving up to three times
faster.

6 Experiments

6.1 Implementation

We implement the CCP with the discussed efficiency improvements from Sect. 5
in the parameter synthesis framework PROPhESY [14]. We use the probabilistic
model checker Storm [15] to extract an explicit representation of an pMDP. We
keep the pMDP in memory, and update the parameter instantiations using an
efficient data structure to enable efficient repetitive model checking. To solve
convex QCQPs, we use Gurobi 7.5 [20], configured for numerical stability.

Tuning constants. Optimally, we would initialize the CCP procedure, i.e., v̂ (for
the parameters) and p̂s (for the probability variables), with a feasible point, but
that would require to already solve Problem 1. Instead, we instantiate v̂ as the
center of the parameter space, and thereby minimize the worst-case distance to a
feasible solution. For p̂s, we use the threshold λ from the specification P≤λ(♦T )
to initialize the probability variables, and analogously for expected cost. We
initialize the penalty parameter τ = 0.05 for reachability, and τ = 5 for expected
cost, a conservative number in the same order of magnitude as the values p̂s.
As expected cost evaluations have wider ranges than probability evaluations, a
larger τ is sensible. We pick μ = maxs∈S\T p̂s. We update τ by adding μ after
each iteration. Empirically, increasing τ with bigger steps is beneficial for the
run time, but induces more numerical instability. In contrast, in the literature,
the update parameter μ is frequently used as a constant, i.e., it is not updated
between the iterations. In, e.g, [30], τ is multiplied by μ after each iteration.
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6.2 Evaluation

Set-up. We evaluate on a HP BL685C G7 with 48 2 GHz cores, a 32 GB memory
limit, and 1800 seconds time limit; the implementation only using a single thread.
The task is to find feasible parameter valuation for pMCs and pMDPs with
non-trivial upper/lower thresholds on probabilities/costs in the specifications,
as in Problem 1. We ask for a well-defined valuation of the parameters, with
εgraph = 10−5. We run all the approaches with the exact same configuration
of Storm. For pMCs, we enable weak bisimulation, which is beneficial for all
presented examples. We do not use bisimulation for pMDPs.

We compare runtimes with a particle-swarm optimization (PSO) and two
SMT-based approaches. PSO is a heuristic sampling approach which searches
the parameter space, inspired by [10]. For each valuation, PSO performs model
checking without rebuilding the model, rather it adapts the matrix from previous
valuations. As PSO is a randomized procedure, we run it with random seeds
0–19. The PSO implementation requires the well-defined parameter regions to
constitute a hyper-rectangle, as proper sampling from polygons is a non-trivial
task. The first SMT approach directly solves the NLP (2)–(7) using the SMT
solver Z3 [25]. The second SMT approach preprocesses the NLP using state
elimination [13] as implemented in, e.g., PARAM, PRISM and Storm.

We additionally compare against a prototype of the geometric programming
(GP) approach [12] based on CvxPy [16] and the solver SCS [31], and the QCQP
package [32], which implements several heuristics, including a naive CCP app-
roach, for nonconvex QCQPs. Due to numerical instabilities, we could not auto-
matically apply these two approaches to a wide range of benchmarks.

Benchmarks. We include the standard pMC benchmarks from the PARAM web-
site, which contain two parameters.We furthermore have a rich selection of strat-
egy synthesis problems obtained from partially observable MDPs (POMDPs),
cf. [26]: GridX are gridworld problems with trap states (A), finite horizons (B),
or movement costs (C). Maze is a navigation problem. Network and Repudiation
originate from distributed protocols. We obtain the pMDP benchmarks either
from the PARAM website, or as parametric variants to existing PRISM case
studies, and describe randomized distributed protocols.

Results. Table 1 contains an overview of the results. The first two columns refer to
the benchmark instance, the next column to the specification evaluated. We give
the states (States), transitions (Trans.) and parameters (Par.) in the bisimulation
quotient, which is then used for further evaluation. We then give the minimum
(tmin), the maximum (tmax) and average (tavg) runtime (in seconds) for PSO
with different seeds, the best runtime obtained using SMT (t), and the runtime
for CCP (t). For CCP, we additionally give the fraction (in percent) of time spent
in Gurobi (solv), and the number of CCP iterations (iter). Table 2 additionally
contains the number of actions (Act) for pMDPs. The boldfaced measures tavg,
and t for both SMT and CCP are the important measures to compare. Boldface
values are the ones with the best performance for a specific benchmark.
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Table 1. pMC benchmark results

prob Info PSO SMT CCP

Set Inst Spec States Trans. Par. tmin tmax tavg t t solv iter

Brp 16,2 P≤0.1 98 194 2 0 0 0 40 0 30% 3

Brp 512,5 P≤0.1 6146 12290 2 24 36 28 TO 33 24% 3

Crowds 10,5 P≤0.1 42 82 2 4 5 5 8 4 2% 4

Nand 5,10 P≤0.05 10492 20982 2 21 51 28 TO 22 21% 2

Zeroconf 10000 E≤10010 10003 20004 2 2 4 3 TO 57 81% 3

GridA 4 P≥0.84 1026 2098 72 11 11 11 TO 22 81% 11

GridB 8,5 P≥0.84 8653 17369 700 409 440 427 TO 213 84% 8

GridB 10,6 P≥0.84 16941 33958 1290 533 567 553 TO 426 84% 7

GridC 6 E≤4.8 1665 305 168 261 274 267 TO 169 90% 23

Maze 5 E≤14 1303 2658 590 213 230 219 TO 67 89% 8

Maze 5 E≤6 1303 2658 590 – – TO TO 422 85% 97

Maze 7 E≤6 2580 5233 1176 – – TO TO 740 90% 60

Netw 5,2 E≤11.5 21746 63158 2420 312 523 359 TO 207 39% 3

Netw 5,2 E≤10.5 21746 63158 2420 – – TO TO 210 38% 4

Netw 4,3 E≤11.5 38055 97335 4545 – – TO TO MO - -

Repud 8,5 P≥0.1 1487 3002 360 16 22 18 TO 4 36% 2

Repud 8,5 P≤0.05 1487 3002 360 273 324 293 TO 14 72% 4

Repud 16,2 P≤0.01 790 1606 96 – – TO TO 15 78% 9

Repud 16,2 P≥0.062 790 1606 96 – – TO TO TO - -

Table 2. pMDP benchmark results

prob Info PSO SMT CCP

Set Inst Spec States Act Trans. Par. tmin tmax tavg t t solv iter

BRP 4,128 P≤0.1 17131 17396 23094 2 45 47 46 TO 39 33% 4

Coin 32 E≤500 4112 6160 7692 2 117 119 118 TO TO - -

CoinX 32 E≤210 16448 24640 30768 2 1196 1222 1208 TO 32 78% 3

Zeroconf 1 P≥0.99 31402 55678 70643 3 18 19 19 TO 79 82% 2

CSMA 2,4 E≤69.3 7958 7988 10594 26 n.s. n.s. n.s. TO 79 86% 10

Virus - E≤10 809 3371 6741 18 113 113 113 TO 13 76% 4

Wlan 0 E≤580 2954 3972 5202 15 n.s. n.s. n.s. TO 7 72% 2

There is a constant overhead for model building, which is in particular large if
the bisimulation quotient computation is expensive, see the small fraction of time
spent solving CCPs for Crowds. For the more challenging models, this overhead
is negligible. Roughly 80–90% of the time is spent within Gurobi in these models,
the remainder is used to feed the CCPs into Gurobi. A specification threshold
closer to the (global) optimum typically induces a higher number of iterations
(see Maze or Netw with different threshold). For the pMDP Coin, optimal param-
eter values are on the boundary of the parameter space and quickly reached by
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PSO. The small parameter values together with the rather large expected costs
are numerically challenging for CCP. For CoinX, the parameter values are in the
interior of the parameter space and harder to hit via sampling. For CCP, the dif-
ference between small and large coefficients is smaller than in Coin, which yields
better convergence behavior. The benchmarks CSMA and WLAN are currently
not supported by PSO due to the non-rectangular well-defined parameter space.

CCP does not solve all instances: In Netw (4,3), CCP exceeds the memory
limit. In Repud, finding values close the global optimum requires too much time.
While the thresholds used here are close to the global optima, actually finding
the global optimum itself is always challenging.

Effect of integrating model checking for CCP. The benchmark-set Maze profits
most: Discarding the model checking results in our CCP implementation always
yields time-outs, even for the rather simple Maze, with threshold 14, which is
solved with usage of model checking results within 30 seconds. Here, using model
checking results thus yields a speed-up by a factor of at least 60. More typical
examples are Netw, where discarding the model checking results yields a factor 5
performance penalty. The Repud examples do not significantly profit from using
intermediate model checking results.

Evaluation of the QCQP package, GP and SMT. We evaluate the GP on pMCs
with two parameters: For the smaller BRP instance, the procedure takes 90
seconds, for Crowds 14 seconds. Other instances yield timeouts. We also evaluate
the QCQP package on some pMCs. For the smaller BRP instance, the package
finds a feasible solution after 113 seconds. For the Crowds instance, it takes 13
seconds. For a Repud instance with 44 states, and 26 parameters, the package
takes 54 seconds and returns a solution that violates the specification. CCP with
integrated model checking takes less than a second.

The results in Tables 1 and 2 make obvious that SMT is not competitive,
irrespectively whether the NLP is preprocessed via state elimination. Moreover,
state elimination (for pMCs) within the given time limit is only possible for those
(considered) models with 2 parameters, using either PRISM, PARAM, or Storm.

6.3 Discussion

A tuned variant of CCP improves the state-of-the-art. Just applying out-of-the-
box heuristics for QCQPs—like realized in the QCQP package or using our
CCP implementation without integrated model checking—does not yield a scal-
able method. To solve the nonconvex QCQP, we require a CCP with a clever
encoding, cf. Sect. 5, and several algorithmic improvements. State space reduc-
tions shrink the encoding, and model checking after each CCP iteration to ter-
minate earlier typically saves 20% of iterations. Especially when convergence
is slow, model checking saves significantly more iterations. Moreover, feeding
model checking results into the CCP improves runtime by up to an additional
order of magnitude, at negligible costs. These combined improvements to the
CCP method outnumbers any solver-based approach by orders of magnitude,
and is often superior to sampling based approaches, especially in the presence
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of many parameters. Benchmarks with many parameters pose two challenges
for sampling based approaches: Sampling is necessarily sparse due to the high
dimension, and optimal parameter valuations for one parameter often depend
significantly on other parameter values.

CCP performance can be boosted with particular benchmarks in mind. For most
benchmarks, choosing larger values for τ and μ improves the performance. Fur-
thermore, for particular benchmarks, we can find a better initial value for p̂s and
v̂. These adaptions, however, are not suitable for a general framework. Values
used here reflect a more balanced performance over several types of benchmarks.
On the downside, the dependency on the constants means that minor changes in
the encoding may have significant, but hard to predict, effect. For SMT-solvers,
additional and superfluous constraints often help steering the solver, but in the
context of CCP, it diminishes the performance.

Some benchmarks constitute numerically challenging problems. For specification
thresholds close to global optima and for some expected cost specifications in
general, feasible parameter values may be very small. Such extremal parameter
values induce CCPs with large differences between the smallest and largest coeffi-
cient in the encoding, which are numerically challenging. The pMDP benchmarks
are more susceptible to such numerical issues.

7 Conclusion and Future Work

We presented a new approach to parameter synthesis for pMDPs. To solve the
underlying nonconvex optimization problem efficiently, we devised a method to
efficiently employ a heuristic procedure with integrated model checking. The
experiments showed that our method significantly improves the state-of-the-art.

In the future, we will investigate how to automatically handle nonaffine tran-
sition functions. To further improve the performance, we will implement a hybrid
approach between PSO and the CCP-based method.
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Abstract. This paper presents a methodology for temporal logic veri-
fication of discrete-time stochastic systems. Our goal is to find a lower
bound on the probability that a complex temporal property is satisfied
by finite traces of the system. Desired temporal properties of the sys-
tem are expressed using a fragment of linear temporal logic, called safe
LTL over finite traces. We propose to use barrier certificates for computa-
tions of such lower bounds, which is computationally much more efficient
than the existing discretization-based approaches. The new approach is
discretization-free and does not suffer from the curse of dimensionality
caused by discretizing state sets. The proposed approach relies on decom-
posing the negation of the specification into a union of sequential reach-
abilities and then using barrier certificates to compute upper bounds for
these reachability probabilities. We demonstrate the effectiveness of the
proposed approach on case studies with linear and polynomial dynamics.

1 Introduction

Verification of dynamical systems against complex specifications has gained sig-
nificant attention in last few years [3,29]. The verification task is challenging for
continuous-space dynamical systems under uncertainties and is hard to be per-
formed exactly. There have been several results in the literature utilizing approx-
imate finite models (a.k.a. abstractions) for verification of stochastic dynami-
cal systems. Examples include results on verification of discrete-time stochastic
hybrid systems against probabilistic invariance [23,25] and linear temporal logic
specifications [1,30] using Markov chain abstractions. Verification of discrete-
time stochastic switched systems against probabilistic computational tree logic
formulae is discussed in [14] using interval Markov chains as abstract models.
However, these abstraction techniques are based on state set discretization and
face the issue of discrete state explosion. This scalability issue is only partly
mitigated in [15,24] based on compositional abstraction of stochastic systems.
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On the other hand, a discretization-free approach, based on barrier certifi-
cates, has been used for verifying stochastic systems against simple tempo-
ral properties such as safety and reachability. Employing barrier certificates
for safety verification of stochastic systems is initially proposed in [19]. Simi-
lar results are reported in [32] for switched diffusion processes and piecewise-
deterministic Markov processes. The results in [9] propose a probabilistic barrier
certificate to compute bounds on the probability that a stochastic hybrid system
reaches unsafe region. However, in order to provide infinite time horizon guar-
antees, all of these results require an assumption that the barrier certificates
exhibit supermartingale property which in turns presuppose stochastic stability
and vanishing noise at the equilibrium point of the system.

In this work, we consider the problem of verifying discrete-time stochastic
systems against complex specifications over finite time horizons without requir-
ing any assumption on the stability of the system. This is achieved by relaxing
supermartingale condition to c-martingale as also utilized in [27]. Correspond-
ingly, instead of infinite-horizon specifications, we consider finite-horizon tempo-
ral specifications, which are more practical in the real life applications including
motion planning problems [2,16,22]. In spirit, this work extends the idea of
combining automata representation of the specification and barrier certificates,
which is proposed in [33] for non-stochastic dynamics, to verify stochastic sys-
tems against specifications expressed as a fragment of LTL formulae, namely,
safe LTL on finite traces. The authors in [6] also leverage the use of barrier cer-
tificates to provide deductive rules for synthesizing controllers for deterministic
systems against alternating temporal logic whereas in this work we are dealing
with the verification of stochastic systems against safe LTL specifications on
finite traces.

To the best of our knowledge, this paper is the first one to use barrier cer-
tificates for algorithmic verification of stochastic systems against a wide class of
temporal properties. Our main contribution is to provide a systematic approach
for computing lower bounds on the probability that the discrete-time stochastic
system satisfies given safe LTL specification over a finite time horizon. This is
achieved by first decomposing specification into a sequence of simpler verifica-
tion tasks based on the structure of the automaton associated with the negation
of the specification. Next, we use barrier certificates for computing probabil-
ity bounds for simpler verification tasks which are further combined to get a
(potentially conservative) lower bound on the probability of satisfying the orig-
inal specification. The effectiveness of the proposed approach is demonstrated
using several case studies with linear and polynomial dynamics.

2 Preliminaries

2.1 Notations

We denote the set of nonnegative integers by N0 := {0, 1, 2, . . .} and the set of
positive integers by N := {1, 2, 3, . . .}. The symbols R, R+, and R

+
0 denote the

set of real, positive, and nonnegative real numbers, respectively. We use R
n×m
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to denote the space of real matrices with n rows and m columns.
We consider a probability space (Ω,FΩ ,PΩ) where Ω is the sample space,

FΩ is a sigma-algebra on Ω comprising the subset of Ω as events, and PΩ

is a probability measure that assigns probabilities to events. We assume that
random variables introduced in this article are measurable functions of the form
X : (Ω,FΩ) → (SX ,FX) as Prob{A} = PΩ{X−1(A)} for any A ∈ FX . We
often directly discuss the probability measure on (SX ,FX) without explicitly
mentioning the underlying probability space and the function X itself.

2.2 Discrete-Time Stochastic Systems

In this work, we consider discrete-time stochastic systems given by a tuple
S = (X,Vw, w, f), where X and Vw are Borel spaces representing state and
uncertainty spaces of the system. We denote by (X,B(X)) the measurable space
with B(X) being the Borel sigma-algebra on the state space. Notation w denotes
a sequence of independent and identically distributed (i.i.d.) random variables
on the set Vw as w := {w(k) : Ω → Vw, k ∈ N0}. The map f : X × Vw → X
is a measurable function characterizing the state evolution of the system. For a
given initial state x(0) ∈ X, the state evolution can be written as

x(k + 1) = f(x(k), w(k)), k ∈ N0. (1)

We denote the solution process generated over N time steps by xN = x(0),
x(1), . . ., x(N − 1). The sequence w together with the measurable function f
induce a unique probability measure on the sequences xN .

We are interested in computing a lower bound on the probability that system
S = (X,Vw, w, f) satisfies a specification expressed as a temporal logic property.
We provide syntax and semantics of the class of specifications dealt with in this
paper in the next subsection.

2.3 Linear Temporal Logic Over Finite Traces

In this subsection, we introduce linear temporal logic over finite traces, referred
to as LTLF [4]. LTLF uses the same syntax of LTL over infinite traces given
in [3]. The LTLF formulas over a set Π of atomic propositions are obtained as
follows:

ϕ ::= true | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | �ϕ | ♦ϕ | �ϕ | ϕ1Uϕ2,

where p ∈ Π, � is the next operator, ♦ is eventually, � is always, and U is until.
The semantics of LTLF is given in terms of finite traces, i.e., finite words σ,
denoting a finite non-empty sequence of consecutive steps over Π. We use |σ| to
represent the length of σ and σi as a propositional interpretation at ith position
in the trace, where 0 ≤ i < |σ|. Given a finite trace σ and an LTLF formula ϕ, we
inductively define when an LTLF formula ϕ is true at the ith step (0 ≤ i < |σ|),
denoted by σ, i |= ϕ, as follows:
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– σ, i |= true;
– σ, i |= p, for p ∈ Π iff p ∈ σi;
– σ, i |= ¬ϕ iff σ, i �|= ϕ;
– σ, i |= ϕ1 ∧ ϕ2 iff σ, i |= ϕ1 and σ, i |= ϕ2;
– σ, i |= ϕ1 ∨ ϕ2 iff σ, i |= ϕ1 or σ, i |= ϕ2;
– σ, i |= �ϕ iff i < |σ| − 1 and σ, i + 1 |= ϕ;
– σ, i |= ♦ϕ iff for some j such that i ≤ j < |σ|, we have σ, j |= ϕ;
– σ, i |= �ϕ iff for all j such that i ≤ j < |σ|, we have σ, j |= ϕ;
– σ, i |= ϕ1Uϕ2 iff for some j such that i ≤ j < |σ|, we have σ, j |= ϕ2, and for

all k s.t. i ≤ k < j, we have σ, k |= ϕ1.

The formula ϕ is true on σ, denoted by σ |= ϕ, if and only if σ, 0 |= ϕ. We
denote the language of such finite traces associated with LTLF formula ϕ by
L(ϕ). Notice that in this case we also have the usual boolean equivalences such
as ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 =⇒ ϕ2 ≡ ¬ϕ1 ∨ ϕ2, ♦ϕ ≡ true Uϕ, and
�ϕ ≡ ¬♦¬ϕ.

In this paper, we consider only safety properties [12]. Hence, we use a subset
of LTLF called safe LTLF as introduced in [22] and defined as follows.

Definition 1. An LTLF formula is called a safe LTLF formula if it can be
represented in positive normal form, i.e., negations only occur adjacent to atomic
propositions, using the temporal operators next (�) and always (�).

Next, we define deterministic finite automata which later serve as equivalent
representations of LTLF formulae.

Definition 2. A deterministic finite automaton (DFA) is a tuple A = (Q,Q0,Σ,
δ, F ), where Q is a finite set of states, Q0 ⊆ Q is a set of initial states, Σ is a
finite set (a.k.a. alphabet), δ : Q × Σ → Q is a transition function, and F ⊆ Q
is a set of accepting states.

We use notation q
σ−→ q′ to denote transition relation (q, σ, q′) ∈ δ. A finite word

σ = (σ0, σ1, . . . , σn−1) ∈ Σn is accepted by a DFA A if there exists a finite state
run q = (q0, q1, . . . , qn) ∈ Qn+1 such that q0 ∈ Q0, qi

σi−→ qi+1 for all 0 ≤ i < n
and qn ∈ F . The accepted language of A, denoted by L(A), is the set of all
words accepted by A.
According to [5], every LTLF formula ϕ can be translated to a DFA Aϕ that
accepts the same language as ϕ, i.e., L(ϕ) = L(Aϕ). Such Aϕ can be constructed
explicitly or symbolically using existing tools, such as SPOT [7] and MONA [8].

Remark 1. For a given LTLF formula ϕ over atomic propositions Π, the associ-
ated DFA Aϕ is usually constructed over the alphabet Σ = 2Π. Solution process
of a system S is also connected to the set of words by a labeling function L from
the state space to the alphabet Σ. Without loss of generality, we work with the
set of atomic propositions directly as the alphabet rather than its power set.

Property satisfaction by the solution process. For a given discrete-time
stochastic system S = (X,Vw, w, f) with dynamics (1), finite-time solution pro-
cesses xN are connected to LTLF formulae with the help of a measurable labeling
function L : X → Π, where Π is the set of atomic propositions.
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Definition 3. For a stochastic system S = (X,Vw, w, f) and labeling function
L : X → Π, a finite sequence σxN = (σ0, σ1, . . . , σN−1) ∈ ΠN is a finite trace of
the solution process xN = x(0), x(1),. . ., x(N − 1) of S if we have σk = L(x(k))
for all k ∈ {0, 1, . . . , N − 1}.
Next, we define the probability that the discrete-time stochastic system S satis-
fies safe LTLF formula ϕ over traces of length |σ| = N .

Definition 4. Let TraceN (S) be the set of all finite traces of solution pro-
cesses of S with length |σxN | = N and ϕ be a safe LTLF formula over Π.
Then P{TraceN (S) |= ϕ} is the probability that ϕ is satisfied by discrete-time
stochastic system S over a finite time horizon [0, N) ⊂ N0.

Remark 2. The set of atomic propositions Π = {p0, p1, . . . , pM} and the labeling
function L : X → Π provide a measurable partition of the state space X =
∪M

i=1Xi as Xi := L−1(pi). Without loss of generality, we assumed that Xi �= ∅
for any i.

2.4 Problem Formulation

Problem 1. Given a system S = (X,Vw, w, f) with dynamics (1), a safe LTLF

specification ϕ of length N over a set Π = {p0, p1, . . . , pM} of atomic propo-
sitions, and a labeling function L : X → Π, compute a lower bound on the
probability that the traces of solution process of S of length N satisfies ϕ, i.e.,
a quantity ϑ such that P{TraceN (S) |= ϕ} ≥ ϑ.

Note that ϑ = 0 is a trivial lower bound, but we are looking at computation
of lower bounds that are as tight as possible. For finding a solution to Problem
1, we first compute an upper bound on the probability P{TraceN (S) |= ¬ϕ}.
This is done by constructing a DFA A¬ϕ = (Q,Q0,Π, δ, F ) that accepts all finite
words over Π that satisfies ¬ϕ.

Example 1. Consider a two-dimensional stochastic system S = (X,Vw, w, f)
with X = Vw = R

2 and dynamics

x1(k + 1) = x1(k) − 0.01x2
2(k) + 0.1w1(k),

x2(k + 1) = x2(k) − 0.01x1(k)x2(k) + 0.1w2(k), (2)

where w1(·), w2(·) are independent standard normal random variables. Let the
regions of interest be given as

X0 = {(x1, x2) ∈ X | x1 ≥ −10, −10 ≤ x2 ≤ 0, and x1 + x2 ≤ 0},

X1 = {(x1, x2) ∈ X | 0 ≤ x1 ≤ 10, x2 ≤ 10, and x1 + x2 ≥ 0},

X2 = {(x1, x2) ∈ X | −10 ≤ x1 ≤ 0 and 0 ≤ x2 ≤ 10}, and
X3 = X \ (X0 ∪ X1 ∪ X2).

The sets X0, X1, X2, and X3 are shown in Figure 1(a). The set of atomic
propositions is given by Π = {p0, p1, p2, p3}, with labeling function L(x) = pi

for any x ∈ Xi, i ∈ {0, 1, 2, 3}. We are interested in computing a lower bound on
the probability that TraceN (S) of length N satisfies the following specification:



182 P. Jagtap et al.

Fig. 1. (a) State space and regions of interest for Example 1, (b) DFA A¬ϕ that accepts
all traces satisfying ¬ϕ where ϕ is given in (3).

– Solution process should start in either X0 or X2. If it starts in X0, it will
always stay away from X1 or always stay away from X2 within time horizon
[0, N) ⊂ N0. If it starts in X2, it will always stay away from X1 within time
horizon [0, N) ⊂ N0.

This property can be expressed by the safe LTLF formula

ϕ = (p0 ∧ (�¬p1 ∨ �¬p2)) ∨ (p2 ∧ �¬p1). (3)

The DFA corresponding to the negation of the safe LTLF formula ϕ in (3) is
shown in Figure 1(b). �

Next, we provide a systematic approach to solve Problem 1 by combining
automata and barrier certificates introduced in the next section. We introduce
the notion of barrier certificate similar to the one used in [19] and show how to
use it for solving Problem 1 in Sects. 4-5.

3 Barrier Certificate

We recall that a function B : X → R is a supermartingale for system S =
(X,Vw, w, f) if

E[B(x(k + 1)) | x(k)] ≤ B(x(k)), ∀x(k) ∈ X, k ∈ N0,

where the expectation is with respect to w(k). This inequality requires that the
expected value of B(x(·)) does not increase as a function of time. To provide
results for finite time horizon, we instead use a relaxation of supermartingale
condition called c-martingale.

Definition 5. Function B : X → R is a c-martingale for system S =
(X,Vw, w, f) if it satisfies

E[B(x(k + 1)) | x(k)] ≤ B(x(k)) + c, ∀x(k) ∈ X, k ∈ N0,

with c ≥ 0 being a non-negative constant.
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We provide the following lemma and use it in the sequel. This lemma is a direct
consequence of [13, Theorem 1] and is also utilized in [27, Theorem II.1].

Lemma 1. Let B : X → R
+
0 be a non-negative c-martingale for system S. Then

for any constant λ > 0 and any initial condition x0 ∈ X,

P{ sup
0≤k≤Td

B(x(k)) ≥ λ | x(0) = x0} ≤ B(x0) + cTd

λ
. (4)

Next theorem provides inequalities on a barrier certificate that gives an upper
bound on reachability probabilities. This theorem is inspired by the result of [19,
Theorem 15] that uses supermartingales for reachability analysis of continuous-
time systems.

Theorem 1. Consider a discrete-time stochastic system S = (X,Vw, w, f) and
sets X0,X1 ⊆ X. Suppose there exist a non-negative function B : X → R

+
0 and

constants c ≥ 0 and γ ∈ [0, 1] such that

B(x) ≤ γ ∀x ∈ X0, (5)
B(x) ≥ 1 ∀x ∈ X1, (6)
B(x) is c-martingale ∀x ∈ X. (7)

Then the probability that the solution process xTd
of S starts from initial state

x(0) ∈ X0 and reaches X1 within time horizon [0, Td] ⊂ N0 is upper bounded by
γ + cTd.

Proof. Since B(x(k)) is non-negative and c-martingale, we conclude that (4) in
Lemma 1 holds. Now using (5) and the fact that X1 ⊆ {x ∈ X | B(x) ≥ 1}, we
have P{x(k) ∈ X1 for some 0 ≤ k ≤ Td | x(0) = x0} ≤ P{sup0≤k≤Td

B(x(k)) ≥
1 | x(0) = x0} ≤ B(x0) + cTd ≤ γ + cTd. This concludes the proof. �

Theorem 1 enables us to formulate an optimization problem by minimizing
the value of γ and c in order to find an upper bound for finite-horizon reachability
that is as tight as possible.

In the next section, we discuss how to translate LTLF verification problem
into the computation of a collection of barrier certificates each satisfying inequal-
ities of the form (5)-(7). Then we show in Sect. 5 how to use Theorem 1 to provide
a lower bound on the probability of satisfying LTLF specifications over a finite
time horizon.

4 Decomposition into Sequential Reachability

Consider a DFA A¬ϕ = (Q,Q0,Π, δ, F ) that accepts all finite words of length
n ∈ [0, N ] ⊂ N0 over Π that satisfy ¬ϕ. Self-loops in the DFA play a central role
in our decomposition. Let Qs ⊆ Q be a set of states of A¬ϕ having self-loops,
i.e., Qs := {q ∈ Q | ∃p ∈ Π, q

p−→ q}.
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Algorithm 1 Computation of sets P(q), q ∈ R≤N+1

Require: G, Qs, N
1: Compute set R≤N+1 by depth first search on G
2: for all q ∈ R≤N+1 and |q| ≥ 3 do
3: for i = 0 to |q| − 3 do
4: P1(q) ← {(qi, qi+1, qi+2)}
5: if qi+1 ∈ Qs then
6: P(q) ← {(qi, qi+1, qi+2, N + 2 − |q|)}
7: else
8: P(q) ← {(qi, qi+1, qi+2, 1)}

return P(q)

Accepting state run of A¬ϕ. Sequence q = (q0, q1, . . . , qn) ∈ Qn+1 is called
an accepting state run if q0 ∈ Q0, qn ∈ F , and there exist a finite word σ =
(σ0, σ1, . . . , σn−1) ∈ Πn such that qi

σi−→ qi+1 for all i ∈ {0, 1, . . . , n − 1}. We
denote the set of such finite words by σ(q) ⊆ Πn and the set of accepting runs
by R. We also indicate the length of q ∈ Qn+1 by |q|, which is n + 1.

Let R≤N+1 be the set of all finite accepting state runs of lengths less than
or equal to N + 1 excluding self-loops,

R≤N+1 := {q = (q0, q1, . . . , qn) ∈ R |n ≤ N, qi �= qi+1, ∀i < n, qn ∈ F}. (8)

Computation of R≤N+1 can be done efficiently using algorithms in graph theory
by viewing A¬ϕ as a directed graph. Consider G = (V, E) as a directed graph
with vertices V = Q and edges E ⊆ V×V such that (q, q′) ∈ E if and only if q′ �= q

and there exist p ∈ Π such that q
p−→ q′. From the construction of the graph, it

is obvious that the finite path in the graph of length n+1 starting from vertices
q0 ∈ Q0 and ending at qF ∈ F is an accepting state run q of A¬ϕ without any
self-loop thus belongs to R≤N+1. Then one can easily compute R≤N+1 using
variants of depth first search algorithm [21].

Decomposition into sequential reachability is performed as follows. For any
q = (q0, q1, . . . , qn) ∈ R≤N+1, we define P(q) as a set of all state runs of length
3 augmented with a horizon,

P(q) := {(qi, qi+1, qi+2, T (q, qi+1)) | 0 ≤ i ≤ n − 2}, (9)

where the horizon is defined as T (q, qi+1) = N + 2 − |q| for qi+1 ∈ Qs and 1
otherwise.

Remark 3. Note that P(q) = ∅ for |q| = 2. In fact, any accepting state run
of length 2 specifies a subset of the state space such that the system satisfies
¬ϕ whenever it starts from that subset. This gives trivial zero probability for
satisfying the specification, thus neglected in the sequel.

The computation of sets P(q), q ∈ R≤N+1, is illustrated in Algorithm 1 and
demonstrated below for our demo example.
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Example 2. (continuation of Example 1) For safe LTLF formula ϕ given in
(3), Figure 1(b) shows a DFA A¬ϕ that accepts all words that satisfy ¬ϕ. From
Figure 1(b), we get Q0 = {q0} and F = {q3}. We consider traces of maximum
length N = 5. The set of accepting state runs of lengths at most N + 1 without
self-loops is

R≤6 = {(q0, q4, q3), (q0, q1, q2, q3), (q0, q1, q4, q3), (q0, q3)}.

The set of states with self-loops is Qs = {q1, q2, q4}. Then the sets P(q) for
q ∈ R≤6 are as follows:

P(q0, q3) = ∅, P(q0, q4, q3) = {(q0, q4, q3, 4)},

P(q0, q1, q2, q3) = {(q0, q1, q2, 3), (q1, q2, q3, 3)},

P(q0, q1, q4, q3) = {(q0, q1, q4, 3), (q1, q4, q3, 3)}.

For every q ∈ R≤6, the corresponding finite words σ(q) are listed as follows:

σ(q0, q3) = {p1 ∨ p3}, σ(q0, q4, q3) = {(p2, p1)},

σ(q0, q1, q2, q3) = {(p0, p1, p2)}, σ(q0, q1, q4, q3) = {(p0, p2, p1)}.

�

5 Computation of Probabilities Using Barrier Certificates

Having the set of state runs of length 3 augmented with horizon, in this section,
we provide a systematic approach to compute a lower bound on the probability
that the solution process of S satisfies ϕ. Given DFA A¬ϕ, our approach relies on
performing a reachability computation over each element of P(q), q ∈ R≤N+1,
where reachability probability is upper bounded using barrier certificates.

Next theorem provides an upper bound on the probability that the solution
process of the system satisfies the specification ¬ϕ.

Theorem 2. For a given safe LTLF specification ϕ, let A¬ϕ be a DFA corre-
sponding to its negation, R≤N+1 be the set of accepting state runs of length at
most N + 1 as defined in (8), and P be the set of runs of length 3 augmented
with horizon as defined in (9). Then the probability that the system satisfies ¬ϕ
within time horizon [0, N ] ⊆ N0 is upper bounded by

P{TraceN (S) |= ¬ϕ} ≤
∑

q∈R≤N+1

∏
{(γν + cνT ) | ν = (q, q′, q′′, T ) ∈ P(q)} , (10)

where γν + cνT is the upper bound on the probability of the trajectories of S
starting from X0 := L−1(σ(q, q′)) and reaching X1 := L−1(σ(q′, q′′)) within
time horizon [0, T ] ⊆ N0 computed via Theorem 1.
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Proof. Consider an accepting run q ∈ R≤N+1 and set P(q) as defined in (9).
For an element ν = (q, q′, q′′, T ) ∈ P(q), the upper bound on the probability of
trajectories of S stating from L−1(σ(q, q′)) and reaching L−1(σ(q′, q′′)) within
time horizon T is given by γν + cνT . This follows from Theorem 1. Now the
upper bound on the probability of the trace of the solution process reaching
accepting state following trace corresponding to q is given by the product of the
probability bounds corresponding to all elements ν = (q, q′, q′′, T ) ∈ P(q) and
is given by

P{σxN
(q) |= ¬ϕ} ≤

∏
{(γν + cνT ) | ν = (q, q′, q′′, T ) ∈ P(q)} . (11)

Note that, the way we computed time horizon T , we always get the upper bound
for the probabilities for all possible combinations of self-loops for accepting state
runs of length less than or equal to N + 1. The upper bound on the probability
that the solution processes of system S violate ϕ can be computed by summing
the probability bounds for all possible accepting runs as computed in (11) and
is given by

P{TraceN (S) |= ¬ϕ} ≤
∑

q∈R≤N+1

∏
{(γν + cνT ) | ν = (q, q′, q′′, T ) ∈ P(q)} .

�

Theorem 2 enables us to decompose the computation into a collection of
sequential reachability, compute bounds on the reachability probabilities using
Theorem 1, and then combine the bounds in a sum-product expression.

Remark 4. In case we are unable to find barrier certificates for some of the
elements ν ∈ P(q) in (10), we replace the related term (γν + cνT ) by the pes-
simistic bound 1. In order to get a non-trivial bound in (10), at least one barrier
certificate must be found for each q ∈ R≤N+1.

Corollary 1. Given the result of Theorem 2, the probability that the trajectories
of S of length N satisfies safe LTLF specification ϕ is lower-bounded by

P{TraceN (S) |= ϕ} ≥ 1 − P{TraceN (S) |= ¬ϕ}.

5.1 Computation of Barrier Certificate

Proving existence of a barrier certificate, finding one, or showing that a given
function is in fact a barrier certificate are in general hard problems. But if we
restrict the class of systems and labeling functions, we can provide computation-
ally efficient techniques for searching barrier certificates of specific forms. One
technique is to use sum-of-squares (SOS) optimization [17], which relies on the
fact that a polynomial is non-negative if it can be written as sum of squares of
different polynomials. Therefore, we raise the following assumption.
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Assumption 1. System S has state set X ⊆ R
n and its vector field f : X ×

Vw → X is a polynomial function of state x for any w ∈ Vw. Partition sets
Xi = L−1(pi), i ∈ {0, 1, 2, . . . ,M}, are bounded semi-algebraic sets, i.e., they
can be represented by polynomial equalities and inequalities.

Under Assumption 1, we can formulate (5)-(7) as an SOS optimization prob-
lem to search for a polynomial-type barrier certificate B(·) and the tightest upper
bound (γ + cTd). The following lemma provides a set of sufficient conditions for
the existence of such a barrier certificate required in Theorem 1, which can be
solved as an SOS optimization.

Lemma 2. Suppose Assumption 1 holds and sets X0,X1,X can be defined by
vectors of polynomial inequalities X0 = {x ∈ R

n | g0(x) ≥ 0}, X1 = {x ∈ R
n |

g1(x) ≥ 0}, and X = {x ∈ R
n | g(x) ≥ 0}, where the inequalities are defined

element-wise. Suppose there exists a sum-of-squares polynomial B(x), constants
γ ∈ [0, 1] and c ≥ 0, and vectors of sum-of-squares polynomials λ0(x), λ1(x),
and λ(x) of appropriate size such that following expressions are sum-of-squares
polynomials

−B(x) − λT
0 (x)g0(x) + γ (12)

B(x) − λT
1 (x)g1(x) − 1 (13)

−E[B(f(x,w))|x] + B(x) − λT (x)g(x) + c. (14)

Then B(x) satisfies conditions (5)-(7).

Proof. The proof is similar to that of Lemma 7 in [33] and is omitted due to
lack of space. �

Remark 5. Assumption 1 is essential for applying the results of Lemma 2 to any
LTLF specification. For a given specification, we can relax this assumption and
allow some of the partition sets Xi to be unbounded. For this, we require that
the labels corresponding to unbounded partition sets should only appear either
on self-loops or on accepting runs of length less than 3. For instance, Example 1
has an unbounded partition set X3 and its corresponding label p3 satisfies this
requirements (see Figure 1), thus the results are still applicable for verifying the
specification.

5.2 Computational Complexity

Based on Lemma 2, a polynomial barrier certificate B(·) satisfying (5)-(7) and
minimizing constants γ and c can be automatically computed using SOSTOOLS
[20] in conjunction with a semidefinite programming solver such as SeDuMi [28].
We refer the interested reader to [27] and [19] for more discussions. Note that
the value of the upper bound of violating the property depends highly on the
selection of degree of polynomials in Lemma 2.

From the construction of directed graph G = (V, E), explained in Sect. 4, the
number of triplets and hence the number of barrier certificates needed to be
computed are bounded by |V|3 = |Q|3, where |V| is the number of vertices in G.
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Further, it is known [3] that |Q| is at most |¬ϕ|2|¬ϕ|, where |¬ϕ| is the
length of formula ¬ϕ in terms of number of operations, but in practice, it is
much smaller than this bound [11].

Computational complexity of finding polynomials B, λ0, λ1, λ in Lemma 2
depends on both the degree of polynomials appearing in (12)-(14) and the num-
ber of variables. It is shown that for fixed degrees the required computations grow
polynomially with respect to the dimension [33]. Hence we expect that this tech-
nique is more scalable in comparison with the discretization-based approaches
especially for large-scale systems.

6 Case Studies

In this section, we demonstrate the effectiveness of the proposed results on several
case studies. We first showcase the results on the running example, which has
nonlinear dynamics with additive noise. We then apply the technique to a ten-
dimensional linear system with additive noise to show its scalability. The third
case study is a three-dimensional nonlinear system with multiplicative noise.

6.1 Running Example

To compute an upper bound on reachability probabilities corresponding to
each element of P(q) in Theorem 2, we use Lemma 2 to formulate it as
a SOS optimization problem to minimize values of γ and c using bisection
method. The optimization problem is solved using SOSTOOLS and SeDuMi,
to obtain upper bounds in Theorem 2. The computed upper bounds on prob-
abilities corresponding to the elements of P(·), (q0, q4, q3, 4), (q0, q1, q2, 3),
(q1, q2, q3, 3), (q0, q1, q4, 3), and (q1, q4, q3, 3) are respectively 0.00586, 0.00232,
0.00449, 0.00391, and 0.00488. Using Theorem 2, we get

P{TraceN (S) |= ¬ϕ} ≤ 0.00586 + 0.00232 × 0.00449 + 0.00391 × 0.00488 = 0.00589.

Thus, a lower bound on the probability that trajectories of S satisfy safe LTLF

property (3) over time horizon N = 5 is given by 0.99411. The optimization
finds polynomials of degree 5 for B, λ, λ0, and λ1. Hence 4 barrier certificates
are computed each with 245 optimization coefficients, which takes 29 minutes in
total.

6.2 Thermal Model of a Ten-Room Building

Consider temperature evolution in a ten-room building shown schematically in
Figure 2(a). We use this model to demonstrate the effectiveness of the results on
large-dimensional state spaces. This model is adapted from [10] by discretizing
it with sampling time τs = 5 minutes and without including heaters.
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Fig. 2. (a) A schematic of a ten-room building, (b) DFA A¬ϕ that accepts all traces
satisfying ¬ϕ where ϕ is given in (15).

The dynamics of S are given as follows:

x1(k + 1) = (1 − τs(α + αe1))x1(k) + τsαx2(k) + τsαe1Te + 0.5w1(k),
x2(k + 1) = (1 − τs(4α + αe2))x2(k) + τsα(x1(k) + x3(k) + x7(k) + x9(k))

+ τsαe2Te + 0.5w2(k),
x3(k + 1) = (1 − τs(2α + αe1))x3(k) + τsα(x2(k) + x4(k))+τsαe1Te+0.5w3(k),
x4(k + 1) = (1 − τs(2α + αe1))x4(k) + τsα(x3(k) + x5(k))+τsαe1Te+0.5w4(k),
x5(k + 1) = (1 − τs(4α + αe2))x5(k) + τsα(x4(k) + x6(k) + x8(k) + x10(k))

+ τsαe2Te + 0.5w5(k),
x6(k + 1) = (1 − τs(α + αe1))x6(k) + τsαx5(k) + τsαe1Te + 0.5w6(k),
x7(k + 1) = (1 − τs(α + αe1))x7(k) + τsαx2(k) + τsαe1Te + 0.5w7(k),
x8(k + 1) = (1 − τs(α + αe1))x8(k) + τsαx5(k) + τsαe1Te + 0.5w8(k),
x9(k + 1) = (1 − τs(α + αe1))x9(k) + τsαx2(k) + τsαe1Te + 0.5w9(k),

x10(k + 1) = (1 − τs(α + αe1))x10(k) + τsαx5(k) + τsαe1Te + 0.5w10(k),

where xi, i ∈ {1, 2, . . . , 10}, denotes the temperature in each room, Te = 20◦C is
the ambient temperature, and α = 5×10−2, αe1 = 5×10−3, and αe2 = 8×10−3

are heat exchange coefficients.
Noise terms wi(k), i ∈ {1, 2, . . . , 10}, are independent standard normal ran-

dom variables. The state space of the system is X = R
10. We consider regions

of interest X0 = [18, 19.75]10, X1 = [20.25, 22]10, X2 = X \ (X0 ∪ X1). The
set of atomic propositions is given by Π = {p0, p1, p2} with labeling function
L(xi) = pi for all xi ∈ Xi, i ∈ {0, 1, 2}. The objective is to compute a lower
bound on the probability that the solution process of length N = 10 satisfies the
safe LTLF formula

ϕ = (p0 ∧ �¬p1) ∨ (p1 ∧ �¬p0). (15)

The DFA A¬ϕ corresponding to ¬ϕ is shown in Figure 2(b). We use Algorithm 1
to get R≤11 = {(q0, q3), (q0, q1, q3), (q0, q2, q3)}, P(q0, q1, q3) = {q0, q1, q3, 9}, and
P(q0, q2, q3) = {q0, q2, q3, 9}. As described in Sect. 5, we compute two barrier
certificates and SOS polynomials satisfying inequalities of Lemma 2. The lower
bound P{TraceN (S) |= ϕ} ≥ 0.9820 is obtained using SOSTOOLS and SeDuMi
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for initial states starting from X0 ∪ X1. The optimization procedure finds B, λ,
λ0, and λ1 as quadratic polynomials. Hence, two barrier certificates are computed
each with 255 optimization coefficients, which takes 18 minutes in total.

6.3 Lorenz Model of a Thermal Convection Loop

Our third case study is the Lorenz model of a thermal convection loop as used
in [18] with multiplicative noise. The nonlinear dynamics of S is given as

x1(k + 1) = (1 − aT )x1(k) + aTx2(k) + 0.025x1(k)w1(k),
x2(k + 1) = (1 − T )x2(k) − Tx2(k)x3(k) + 0.025x2(k)w2(k),
x3(k + 1) = (1 + bT )x3(k) + Tx1(k)x2(k) + 0.025x3(k)w3(k), (16)

where a = 10, b = 8/3, and T = 0.01. Noise terms w1(k), w2(k), and w3(k) are
independent standard normal random variables. We refer the interested readers
to [31] for a detailed treatment of the model. The state space of the system
is X = R

3. We define regions of interest as X0 = [−10, 10]2 × [2, 10], X1 =
[−10, 10]2 × [−2, 2], X2 = [−10, 10]2 × [−10,−2], and X3 = X \ (X0 ∪ X1 ∪ X2).

Fig. 3. DFA A¬ϕ that accepts all traces satisfying ¬ϕ where ϕ = p0 ∧ �¬p2.

The set of atomic propositions is given by Π = {p0, p1, p2, p3} with labeling
function L(xi) = pi for all xi ∈ Xi, i ∈ {0, 1, 2, 3}. We consider safe LTLF prop-
erty ϕ = p0∧�¬p2 and time horizon N = 10. The DFA A¬ϕ corresponding to the
negation of ϕ is shown in Figure 3. One can readily see that R≤11 = {(q0, q1, q2)}
with P(q0, q1, q2) = (q0, q1, q2, 9). Thus, we need to compute only one barrier cer-
tificate. We use inequalities of Lemma 2 and find a barrier certificate that gives
a lower bound P{TraceN (S) |= ϕ} ≥ 0.9859. The optimization procedure finds
B, λ, λ0, and λ1 as polynomials of degree 4. Hence only one barrier certificate
is computed with 53 optimization coefficients, which takes 3 minutes.

Remark that current implementations of discretization-based approaches
(e.g., [26]) are not directly applicable to the models in Subsect. 6.1 and (16)
due to the multiplicative noise in the latter and unbounded state space of the
former. Application of these techniques to the model in Subsect. 6.2 will also be
computationally much more expensive than our approach due to the existing
exponential complexity as a function of state space dimension which is the case
in discretization-based approaches.
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7 Conclusions

In this paper, we proposed a discretization-free approach for formal verification
of discrete-time stochastic systems. The approach computes lower bounds on the
probability of satisfying a specification encoded as safe LTL over finite traces.
It is based on computation of barrier certificates and uses sum-of-squares opti-
mization to find such bounds. From the implementation perspective, we plan to
generalize our code and make it publicly available so that it can be applied to
systems and specifications defined by users.

References

1. Abate, A., Katoen, J.P., Mereacre, A.: Quantitative automata model checking of
autonomous stochastic hybrid systems. In: Proceedings of the 14th International
Conference on Hybrid systems: Computation and Control, pp. 83–92. ACM (2011)

2. Ayala, A.I.M., Andersson, S.B., Belta, C.: Probabilistic control from time-bounded
temporal logic specifications in dynamic environments. In: 2012 IEEE International
Conference on Robotics and Automation, pp. 4705–4710 (2012)

3. Baier, C., Katoen, J.P., Larsen, K.G.: Principles of Model Checking. MIT press,
Cambridge (2008)

4. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: International Joint Conference on Artificial Intelligence, vol. 13,
pp. 854–860 (2013)

5. De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In:
International Joint Conference on Artificial Intelligence, vol. 15, pp. 1558–1564
(2015)

6. Dimitrova, R., Majumdar, R.: Deductive control synthesis for alternating-time log-
ics. In: 2014 International Conference on Embedded Software (EMSOFT), pp. 1–10
(2014)

7. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
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Abstract. Differential privacy is a widely studied notion of privacy for
various models of computation. Technically, it is based on measuring
differences between probability distributions. We study ε, δ-differential
privacy in the setting of labelled Markov chains. While the exact dif-
ferences relevant to ε, δ-differential privacy are not computable in this
framework, we propose a computable bisimilarity distance that yields a
sound technique for measuring δ, the parameter that quantifies devia-
tion from pure differential privacy. We show this bisimilarity distance
is always rational, the associated threshold problem is in NP, and the
distance can be computed exactly with polynomially many calls to an
NP oracle.

Keywords: Bisimilarity distances · Kantorovich metric
Differential privacy · Labelled Markov chains · Bisimulation
Analysis of probabilistic systems

1 Introduction

Bisimilarity distances were introduced by [16,17], as a metric analogue of clas-
sic probabilistic bisimulation [23], to overcome the problem that bisimilarity is
too sensitive to minor changes in probabilities. Such robustness is highly desir-
able, because probabilistic automata arising in practice may often be based on
approximate probability values, extracted or learnt from real world data.

In this paper, we study the computation of bisimilarity distances related to
differential privacy. Differential privacy [18] is a security property that ensures
that a small perturbation of the input leads to only a small perturbation
in the output, so that observing the output makes it difficult to determine
whether a particular piece of information was present in the input. A variant,
ε-differential privacy, considers the ratio difference (rather than the absolute
difference) between probabilities.

We will be concerned with the more general concept of ε, δ-differential privacy,
also referred to as approximate differential privacy. The δ parameter allows one
to assess to what degree ε-differential privacy (“pure differential privacy”) was
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achieved. We will design a version of bisimilarity distance which will constitute
a sound upper bound on δ, thus providing a reliable measure of security.

From a verification perspective, a natural question is how to analyse systems
with respect to ε, δ-differential privacy. We carry out our investigations in the
setting where the systems are labelled Markov chains (LMC), abstractions of
autonomous systems with probabilistic behaviour and under partial observabil-
ity. States of an LMC M can be thought of as generating probability distri-
butions on sets of traces, and these sets are taken to correspond to observable
events. Let M be a system, and suppose s and s′ are two states (configura-
tions) of M. Then we will say that s and s′ satisfy ε, δ-differential privacy if the
distributions on traces from these states are sufficiently close. We consider the
following problem: given an LMC M, states s and s′, and a value of ε, determine
δ such that s and s′ satisfy ε, δ-differential privacy. Unfortunately, the smallest
of such δ is not computable [22], which motivates our search for upper bounds.

In the spirit of generalised bisimilarity pseudometrics [12], our distance,
denoted bdα, is based on the Kantorovich-style lifting of distance between states
to distance between distributions. However, because the underpinning distances
in our case turn out not to be metrics, the setting does not quite fit into the
standard picture, which presents a technical challenge. We discuss how the pro-
posed distance may be computed, using techniques from linear programming,
linear real arithmetic, and computational logic. Our first result is that the dis-
tance always takes on rational values of polynomial size with respect to the size
of the LMC and the bit size of the probability values associated with transitions
(Theorem 1).

This is then used to show that the associated threshold problem (“is bdα

upper-bounded by a given threshold value for two given states?”) is in NP
(Theorem 2). Note that the distance can be approximated to arbitrary precision
by solving polynomially many instances of the threshold problem. Finally, we
show that the distance can be computed exactly in polynomial time, given an
NP oracle (Theorem 3). This places it in (the search version of) NP, leaving
the possibility of polynomial-time computation open.

Related Work. Chatzikokolakis et al. [12] have advocated the development
of Kantorovich pseudometrics, instantiated with any metric distance function
(rather than absolute value) in the context of differential privacy. They did not
discuss the complexity of calculating such pseudometrics, but asked whether it
was possible to extend their techniques to ε, δ-differential privacy. Our paper
shows the extent to which this can be achieved; the technical obstacle that
we face is that our distances are not metrics. To the best of our knowledge,
no complexity results on differential privacy for Markov chains have previously
appeared in the literature, and we are the first to address this gap.

The computation of the standard bisimilarity distances has been the topic of
a long running line of research [7], starting with approximation [8]. The distance
was eventually determined to be computable in polynomial time using the ellip-
soid method to solve an implicit linear program of exponential size [14]. This
technique turns out slow in practice and further techniques have been devel-
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oped which are faster but do not have such strong complexity guarantees [2,26].
Because of the two-sided nature of our distances, the main system of constraints
that we introduce in our work involves a maximum of two quantities. This nonlin-
earity at the core of the problem prevents us from relying on the ellipsoid method
and explains the gap between our NP upper bound and the polynomial-time
algorithms of [14].

Tschantz et al. [28] first studied differential privacy using a notion similar
to bisimulation, which was extended to a more general class of bisimulation
relations by Xu et al. [31]. Both consider only ε-differential privacy, i.e. ratio
differences, but do not examine how these could be computed.

An alternative line of research by Barthe et al. [5] concerns formal mechanised
proofs of differential privacy. Recently, that direction has been related to coupling
proofs [4] – this still requires substantial effort to choose the coupling, although
recent techniques have improved this [1]. We complement this line of research
by taking an algorithmic verification-centred approach.

The remainder of the paper is arranged as follows. Section 2 introduces the
basic setting of labelled Markov chains. In Sect. 3, we discuss ε, δ-differential
privacy and in Sect. 4 we define our distance. Section 5 develops technical results
on our extended case of Kantorovich lifting. These are subsequently used in
Sect. 6 to underpin techniques for computing the relevant distances.

2 Labelled Markov Chains

Given a finite set S, let Dist(S) be the set of probability distributions on S.

Definition 1. A labelled Markov chain (LMC) M is a tuple 〈S,Σ, μ, �〉, where
S is a finite set of states, Σ is a finite alphabet, μ : S → Dist(S) is the transition
function and � : S → Σ is the labelling function.

Like in [2,7,14,26], our definition features labelled states. Variations, such as
transition labels, can be easily accommodated within the setting. We also assume
that all transition probabilities are rational, represented as a pair of binary inte-
gers. The bit sizes of these integers form part of the bit size of the representation
|M|. We will often write μs for μ(s).

In what follows, we study probabilities associated with infinite sequences of
labels generated by LMC’s. We specify the relevant probability spaces next using
standard measure theory [3,6]. Let us start with the definition of cylinder sets.

Definition 2. A subset C ⊆ Σω is a cylinder set if there exists u ∈ Σ∗ such
that C consists of all infinite sequences from Σω whose prefix is u. We then write
Cu to refer to C.

Cylinder sets play a prominent role in measure theory in that their finite
unions can be used as a generating family (an algebra) for the set F of measurable
subsets of Σω (the cylindric σ-algebra). What will be important for us is that
any measure ν on F is uniquely determined by its values on cylinder sets. Next
we show how to assign a measure νs on F to an arbitrary state of an LMC. We
start with several auxiliary definitions.
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Definition 3. Given M = 〈S,Σ, μ, �〉, let μ+ : S+ → [0, 1] and �+ : S+ → Σ+

be the natural extensions of μ and � to S+, i.e. μ+(s0 · · · sk) =
∏k−1

i=0 μ(si)(si+1)
and �+(s0 · · · sk) = �(s0) · · · �(sk), where k ≥ 0 and si ∈ S (0 ≤ i ≤ k). Note
that, for any s ∈ S, we have μ+(s) = 1. Given s ∈ S, let Pathss(M) be the
subset of S+ consisting of all sequences that start with s.

Definition 4. Let M = 〈S,Σ, μ, �〉 and s ∈ S. We define νs : F → [0, 1] to be
the unique measure on F such that for any cylinder Cu we have

νs(Cu) =
∑

{μ+(p) | p ∈ Pathss(M), �+(p) = u }.

Our aim will be to compare states of labelled Markov chains from the point of
view of differential privacy. Note that two states s, s′ can be viewed as indis-
tinguishable if νs = νs′ . If they are not indistinguishable then the difference
between them can be quantified using the total variation distance, defined by
tv (ν, ν′) = supE∈F |ν(E)−ν′(E)|. Given M = 〈S,Σ, μ, �〉 and s, s′ ∈ S, we shall
write tv (s, s′) to refer to tv (νs, νs′).

Remark 1. tv (s, s′) turns out surprisingly difficult to compute: it is undecidable
whether the distance is strictly greater than a given threshold, and the non-strict
variant of the problem (“greater or equal”) is not known to be decidable [22].

To measure probabilities relevant to differential privacy, we will need to study a
more general variant tvα of the above distance, which we introduce next.

3 Differential Privacy

Differential privacy is a mathematical guarantee of privacy due to Dwork et
al. [18]. It is a property similar to non-interference: the aim is to ensure that
inputs which are related in some sense lead to very similar outputs. The notion
requires that for two related states there only ever be a small change in output
probabilities, and therefore discerning the two is difficult, which maintains the
privacy of the states. Below we cast the definition in the setting of labelled
Markov chains.

Definition 5. Let M = 〈S,Σ, μ, �〉 be a labelled Markov chain and let R ⊆ S×S
be a symmetric relation. Given ε ≥ 0 and δ ∈ [0, 1], we say that M is ε, δ-
differentially private (wrt R) if, for any s, s′ ∈ S such that (s, s′) ∈ R, we have

νs(E) ≤ eε · νs′(E) + δ

for any measurable set E ∈ F .

Remark 2. Note that each state s ∈ S can be viewed as defining a random
variable Xs with outcomes from Σω such that P (Xs ∈ E) = νs(E). Then the
above can be rewritten as P (Xs ∈ E) ≤ eε P (Xs′ ∈ E) + δ, which matches
the definition from [18], where one would consider Xs,Xs′ neighbouring in some
natural sense.
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The above formulation is often called approximate differential privacy. For δ = 0,
one talks about (pure) ε-differential privacy. Note that then the above definition
boils down to measuring the ratio between the probabilities of possible outcomes.
δ is thus an indicator of the extent to which ε-differential privacy holds for
the given states. Intuitively, one could interpret ε, δ-differential privacy as “ε-
differential privacy with probability at least 1 − δ” [29]. Our work is geared
towards obtaining sound upper bounds on the value of δ for a given ε.

Remark 3. What it means for two states to be related (as specified by R) is
to a large extent domain-specific. In general, R makes it possible to spell out
which states should not appear too different and, consequently, should enjoy a
quantitative amount of privacy. In the typical database scenario, one would relate
database states that differ by just one person. In our case, we refer to states of a
machine, for which we would like it to be indiscernible as to which was the start
state (we assume the states are hidden and the traces are observable).

To rephrase the inequality underpinning differential privacy in a more succinct
form, it will be convenient to work with the skewed distance Δα, first introduced
by Barthe et al. [5] in the context of Hoare logics and ε, δ-differential privacy.

Definition 6 (Skewed Distance). For α ≥ 1, let Δα : R≥0 ×R≥0 → R≥0 be
defined by Δα(x, y) = max{x − αy, y − αx, 0}.
Remark 4 It is easy to see that Δα is anti-monotone with respect to α. In par-
ticular, because α ≥ 1, we have Δα(x, y) ≤ Δ1(x, y) = |x − y|. Observe that
Δ2(9, 3) = 9 − 2 × 3 = 3, Δ2(9, 6) = 0 and Δ2(6, 3) = 0. Note that Δ2(x, y) = 0
need not imply x = y, i.e. Δ2 is not a metric. Note also that the triangle inequal-
ity may fail: Δ2(9, 3) > Δ2(9, 6) + Δ2(6, 3), i.e. Δ2 is not a pseudometric1. This
will complicate our technical development, because we will not be able to use
the framework of [12] directly.

The significance of the skewed distance will be seen shortly in Fact 1. We first
introduce the skewed analogue of the total variation distance called tvα, for
which tv is a special case (α = 1).

Definition 7. Let α ≥ 1. Given two measures ν, ν′ on (Σω,F), let

tvα(ν, ν′) = sup
E∈F

Δα(ν(E), ν′(E)).

Following the convention for tv , tvα(s, s′) will stand for tvα(νs, νs′). Fact 1 is an
immediate corollary of Definitions 5, 6, and 7.

Fact 1. M is ε, δ-differentially private wrt R if and only if, for all s, s′ ∈ S
such that (s, s′) ∈ R, we have tvα(s, s′) ≤ δ, where α = eε.

1 A pseudometric must satisfy m(x, x) = 0, m(x, y) = m(y, x) and m(x, z) ≤ m(x, y)+
m(y, z). For metrics, one additionally requires that m(x, y) = 0 should imply x = y.
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Fig. 1. States 1 and 2 are not bisimilar, but tv1.5(s0, s1) = 0.

Some values of tvα are readily known. For instance, the distance between any
bisimilar states turns out to be zero.

Definition 8. A probabilistic bisimulation on an LMC M = 〈S,Σ, μ, �〉 is an
equivalence relation R ⊆ S × S such that if (s, s′) ∈ R then �(s) = �(s′) and for
all X ∈ S/R,

∑
u∈X μ(s)(u) =

∑
u∈X μ(s′)(u), i.e. related states have the same

label and probability of transitioning into any given equivalence class.

It is known that probabilistic bisimulations are closed under union and hence
there exists a largest one, written ∼ and called probabilistic bisimilarity. Two
states are called bisimilar, written s ∼ s′, if (s, s′) ∈∼. Equivalently, this means
that the pair (s, s′) belongs to a probabilistic bisimulation. It follows from [14,
Proposition 9, Lemma 10], that for bisimilar s, s′, we have tv1(s, s′) = 0. As
tvα(s, s′) ≤ tv1(s, s′) we obtain the following.

Lemma 1. If s ∼ s′ then tvα(s, s′) = 0.

In contrast to [12], the converse will not hold.

Example 1. In the LMC shown in Fig. 1, states s0 and s1 are not bisimilar. To
see this, observe first that s2 must be the only state in its equivalence class
with respect ∼, because other states have different labels. Now note that the
probabilities of reaching s2 from s0 and s1 respectively are different (0.4 vs 0.6).

However, for α = 1.5, we have tvα(s0, s1) = 0, because Δα(0.6, 0.4) =
max(0.6 − 1.5 · 0.4, 0.4 − 1.5 · 0.6, 0) = 0.

In an “acyclic” system, tvα can be calculated by exhaustive search: the nat-
ural algorithm is doubly exponential, as one needs to consider all possible events
over all possible traces. However, in general, tvα is not computable (Remark 1).
Thus, in the remainder of the paper, we shall introduce and study another dis-
tance bdα. It will turn out possible to compute it and it will provide a sound
method for bounding δ for ln(α), δ-differential privacy. Our main result will be
Theorem 3: the new distance can be calculated in polynomial time, assuming an
NP oracle. Pragmatically, this means that this new distance can be computed
efficiently, assuming access to an appropriate satisfiability or theory solver.
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4 Skewed Bisimilarity Distance

Our distance will be defined in the spirit of bisimilarity distances [12,14,16,
17] through a fixed point definition based on a variation of the Kantorovich
lifting. To motivate its shape, let us discuss how one would go about calculating
tvα recursively. If �(s) 
= �(s′) then νs(C�(s)) = 1, νs′(C�(s)) = 0, therefore
tvα(s, s′) = 1. So, let us assume �(s) = �(s′). Given E ⊆ Σω and a ∈ Σ, let
Ea = {w ∈ Σω | aw ∈ E}. Then we have:

tvα(νs, νs′) = sup
E∈F

Δα(νs(E), νs′(E))

= sup
E�(s)∈F

Δα

( ∑

u∈S

μs(u) νu(E�(s)),
∑

u∈S

μs′(u) νu(E�(s))
)
.

If we define f : S → [0, 1] by f(u) = νu(E�(s)), this can be rewritten as

sup
E�(s)∈F

Δα

( ∑

u∈S

μs(u) f(u),
∑

u∈S

μs′(u) f(u)
)
.

We have little knowledge of f , otherwise we could compute tvα, but from the
definition of tvα, we do know that Δα(f(v), f(v′)) ≤ tvα(v, v′) for any v, v′ ∈ S.
Consequently, the following inequality holds.

tvα(s, s′) ≤ sup
f :S→[0,1]

∀v,v′∈SΔα(f(v),f(v′))≤tvα(v,v′)

Δα

( ∑

u∈S

μs(u)f(u),
∑

u∈S

μs′(u)f(u)
)

The expression on the right is an instance of the Kantorovich lifting [15,21],
which uses (“lifts”) the distance tvα between states s, s′ to define a distance
between the distributions μs, μs′ associated with the states. We recall the def-
inition of the Kantorovich distance between distributions in the discrete case,
noting that then, for μ ∈ Dist(S), we have

∫
fdμ =

∑
u∈S f(u)μ(u).

Definition 9 (Kantorovich). Given μ, μ′ ∈ Dist(S) and a pseudometric m :
S × S → [0, 1], the Kantorovich distance between μ and μ′ is defined to be

K(m)(μ, μ′) = sup
f :S→[0,1]

∀v,v′∈S|f(v)−f(v′)|≤m(v,v′)

∣
∣
∫

fdμ −
∫

fdμ′∣∣.

Remark 5. The Kantorovich distance is also known under other names (e.g.
Hutchinson, Wasserstein distance), having been rediscovered several times in
history [15]. Chatzikokolakis et al. [12] studied the Kantorovich distance and
related bisimulation distances when the absolute value distance above is replaced
with another metric. For our purposes, instead of |...|, we need to consider Δα,
even though Δα is not a metric and m may not be a pseudometric.
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Definition 10 (Skewed Kantorovich). Given μ, μ′ ∈ Dist(S) and a symmet-
ric distance d : S × S → [0, 1], the skewed Kantorovich distance between μ and
μ′ is defined to be

Kα(d)(μ, μ′) = sup
f :S→[0,1]

∀v,v′∈S Δα(f(v),f(v′))≤d(v,v′)

Δα

(
∫

fdμ,

∫

fdμ′)

Note that setting α = 1 gives the standard Kantorovich distance (Definition 9).
Below we define a function operator, which will be used to define our distance.

Definition 11. Let Γα : [0, 1]S×S → [0, 1]S×S be defined as follows.

Γα(d)(s, s′) =

{
Kα(d)(μs, μs′) �(s) = �(t)
1 �(s) 
= �(t)

Note that [0, 1]S×S equipped with the pointwise order, written �, is a complete
lattice and that Γα is monotone with respect that order (larger d permit more
functions, thus larger supremum). Consequently, Γα has a least fixed point [27].
We take our distance to be exactly that point.

Definition 12 (Skewed Bisimilarity Distance). Let bdα : S × S → [0, 1] be
the least fixed point of Γα.

Remark 6. Recall that the least fixed point is equal to the least pre-fixed point
(min{d |Γα(d) � d}).

Recall our initial remarks about the Kantorovich distance Kα(tvα)(μs, μs′) over-
approximating tvα(s, s′). They can be summarised by tvα � Kα(tvα), i.e. tvα is
a post-fixed point of Kα. Since we want to bound tvα as closely as possible, we
can show that the least fixed point bdα also bounds tvα from above.

Lemma 2. tvα � bdα.

Remark 7. The lemma is an analogue of Theorem 2 [12]. Its proof in [30] relied
on the fact that the counterpart of Δα was a metric, which is not true in our
case (unless α = 1).

Just like Δα is anti-monotone with respect to α, so is bdα. This means that
bdα � bd1. The definition of bd1 coincides with the definition of the classic
bisimilarity pseudometric d1 (see e.g. [14]), which satisfies d1(s, s′) = 0 if and
only if s and s′ are bisimilar. Consequently, we obtain the following corollary.

Corollary 1. For any α ≥ 1, if s ∼ s′ then bdα(s, s′) = 0.

As in the case of tvα, we do not have the converse in our setting. Example 1
shows that s0 
∼ s1 but we observe that bd1.5(s0, s1) = 0. Observe:

bd1.5(s0, s1) ≤
max

f

( ∑

s∈S

f(s)(μs0(s) − 1.5 · μs1(s)),
∑

s∈S

f(s)(μs1(s) − 1.5 · μs0(s))
)

= max
f

(f(s2)(0.6 − 1.5 · 0.4) + f(s3)(0.4 − 1.5 · 0.6),

f(s2)(0.4 − 1.5 · 0.6) + f(s3)(0.6 − 1.5 · 0.4)).
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1 diningCrypto(payingCryptographer):
2 firstFlip = flip (p, 1−p)
3 previousFlip = firstFlip
4 for cryptographer = 0 → n−1:
5 if cryptographer == n−1:
6 thisFlip = firstFlip
7 else :
8 thisFlip = flip (p, 1−p)
9 if (cryptographer == payingCryptographer):

10 announce(previousFlip == thisFlip)
11 else :
12 announce(previousFlip != thisFlip )
13 previousFlip = thisFlip

Fig. 2. Simulation of Dining Cryptographers Protocol.

Notice the coefficients of f(s) are all non-positive. Consequently, regardless of
the restrictions on f , the maximising allocation will be f(s) = 0 and, thus,
bd1.5(s0, s1) = 0.

Example: Dining Cryptographers

In the dining cryptographer model [13], a ring of diners want to determine
whether one of the diners paid or an outside body. If a diner paid, we do not
want to reveal which of them it was. The protocol proceeds with each adjacent
pair privately flipping a coin, each diner then reports the XOR of the two coin
flips they observe, however if the diner paid he would report the negation of this.
We can determine if one of them paid by taking the XOR of the announcements.
With perfectly fair coins, the protocol guarantees privacy of the paying diner,
but it is still differentially private if the coins are biased. If an outside body
paid, there is no privacy to maintain so we only simulate the scenarios in which
one of the diners did pay. The scenario where Cryptographer 0 paid must have
similar output distribution to Cryptographer 1 paying, so that it can be deter-
mined that one of them did pay, but not which. The internal configuration of
the machine is always assumed to be hidden, but the announcements are made
public whilst maintaining the privacy of the participating Cryptographer (and
the internal states).

The LMC in Fig. 3 shows the 2-person dining cryptographers protocol (Fig. 2)
starting from Cryptographers 0 and 1 using weighted coins with p = 49

100 . The
states of the machine encode the 5 variables that need to be tracked. To achieve
ε, δ-differential privacy with α = eε = 1.0002 the minimal (true) value of δ is
0.00030004. Our methods generate a correct upper bound bdα(s0, s1) = 0.0004,
showing ln(1.0002), 0.0004-differential privacy. The protocol could be played with
n players, requiring O(n2) states, for all possible assignments of paying cryptog-
rapher and current cryptographer. In a two-person scenario, the diners would
know which of them had paid but an external observer of the output would only
learn that one of them paid, not which.
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0

(1, 1, 0, 0)

51/100

(0, 0, 0, 0)

49/100

1

(1, 1, 0, 1)

51/100

(0, 0, 0, 1)

49/100

(1, 1, 1, 0, 1)
F

(1, 1, 1, 1)
T

1

end

1

(0, 0, 1, 1)
T

1

(0, 0, 0, 0, 1)
F

1

(1, 0, 1, 0, 0)
F

(0, 1, 1, 0)
T

1

(1, 0, 1, 1)
F

1

(0, 1, 1, 1)
F

1

(0, 1, 0, 0, 0)
F

(1, 0, 1, 0)
T

1

(1, 1, 1, 0, 0)
T

(1, 1, 1, 0)
F

1

51/100

(1, 0, 1, 0, 1)
T

49/100

1

49/100

(0, 1, 0, 0, 1)
T

51/100

1

1

(0, 0, 0, 0, 0)
T

(0, 0, 1, 0)
F

1

1

49/100 51/100

1

51/100 49/100

1

Fig. 3. Markov Chain for 2 dining cryptographers: state 0 (resp. 1) denotes Cryptog-
rapher 0 (resp. 1) paid. The first line of a node is the state name, the second line is
the label of the state.

5 Skewed Kantorovich Distances

Here we discuss how to calculate our variant of the Kantorovich distance. This
will inform the next section, in which we look into computing bdα.

Recall the definition of Kα(d)(μ, μ′) from Definition 10. In the general case
of Δα(a, b), both a − αb and b − αa could be negative, so the maximum with
0 is taken. However, within the Kantorovich function, the constant function
f(i) = 0 is a valid assignment, which achieves 0 in either case (0 − α × 0 = 0).
Consequently, we can simplify the definition of Δα to omit the 0 case inside Kα.

If α = 1 then Δα is the absolute value function and it is known that the
distance corresponds to a single instance of a linear programming problem [9].
However, this is no longer true in our case due to the shape of Δα(x, y) =
max(x−αy, y−αx). Still, one can present the calculation as taking the maximum
of a pair of linear programs. We shall refer to this formulation as the “primal
form” of Kα(d). We give the first program below, the other is its symmetric
variant with μ, μ′ reversed. Below we write fi for f(i) and let i, j range over S,
and assume that d is symmetric.

max
f∈[0,1]S

( ∑

i

fiμ(i) − α
∑

i

fiμ
′(i)

)
subject to ∀i, j fi − αfj ≤ di,j
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The standard Kantorovich distance (α = 1) is often presented in the following
dual form when m is a pseudometric, based on the minimum coupling between
the two distributions μ and μ′, weighted by the distance function.

K(m)(μ, μ′) = min
ω∈[0,1]S×S

∑

i,j

ωi,jmi,j subject to
∀i

∑
j ωi,j = μ(i)

∀j
∑

i ωi,j = μ′(j)

Remark 8. The dual form can be viewed as an optimal transportation problem in
which an arbitrarily divisible cargo must be transferred from one set of locations
(represented by a copy SL of S) to another (represented by a different copy SR

of S). Each state sR ∈ SR must receive μ(s), while each state sL ∈ SL must send
μ′(s). If ωi,j is taken to represent the amount that gets sent from jL to iR then
the above conditions restrict ω in accordance with the sending and receiving
budgets. If di,j represents the cost of sending from jL to iR then the objective
function

∑
i,j ωi,j ·di,j corresponds to the overall cost of transport. Consequently,

the problem is referred to as a mass transportation problem [21].

To achieve a similar “dual form” in our case, we take the dual form of each of
our linear programs. Then we can calculate the distance by taking the maximum
of the two minima. The shape of the dual is given below on the right.

Lemma 3.

max
f∈[0,1]S

( ∑

i

fiμ(i) − α
∑

i

fiμ
′(i)

)
= min

ω∈[0,1]S×S ,τ,γ∈[0,1]S

∑

i,j

ωi,j · di,j

subject to subject to
∀i, j fi − αfj ≤ di,j ∀i :

∑
j ωi,j + τi − γi = μ(i)

∀j :
∑

i ωi,j + τj−γj

α ≤ μ′(j)

The dual form presented above is a simplified (but equivalent) form of the imme-
diate dual obtained via the standard LP recipe. Note that the polytope we are
optimising over is independent of d, which appears only in the objective function.
The dual of the other linear program is obtained by swapping μ, μ′.

Remark 9. In the skewed case, we optimise over the following polytope

Ωμ,μ′ =
{

ω ∈ [0, 1]S×S | ∃γ, τ ∈ [0, 1]S
∀i :

∑
j ωi,j + τi − γi = μ(i)

∀j :
∑

i ωi,j + τj−γj

α ≤ μ′(j)

}

One can also view it as a kind of transportation problem. As before, cargo can
be transferred through the standard routes with ω at a cost d, but there are
additional, cost-free routes between corresponding pairs sL and sR (represented
by τs) and back (represented by γs). These extra routes are quite peculiar. En
route from sL to sR the cargo ‘grows’: when τs

α is sent from sL, a larger amount
of τs is received at sR. Overall, the total amount of cargo sent may be less than
that received, so the sending constraints are now inequalities. From sR to sL the
cargo ‘shrinks’: when γs is sent from sR, only γs

α is received by sL.
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It is immediate that τ routes can be useful. The γ routes may be useful
for optimisation under two conditions. Firstly the shrinkage of the cargo must
be made up elsewhere, i.e., through ‘growing’ τ routes. Additionally the cost
α × d(sL

1 , sR) + d(sL, sR
2 ) is lower than d(sL

1 , sR
2 ), which may well be the case

due to the lack of triangle inequality. Note that it is not possible to satisfy the
receiving constraints if, in total, more is sent through γ routes than received
through τ routes, so

∑
s(τs − γs) ≥ 0. Therefore, the vector ω (the coupling)

may be smaller than its equivalent in the standard Kantorovich case.

We arrive at the following formulation, which we call the “dual form”:

Kα(d)(μ, μ′) = max

⎧
⎨

⎩
min

ω∈Ωμ,μ′

∑

i,j

ωi,j · di,j , min
ω∈Ωμ′,μ

∑

i,j

ωi,j · di,j

⎫
⎬

⎭
.

Note that Kα(d)(μ, μ′) can be computed in polynomial time as a pair of linear
programs in either primal or dual form, and taking the maximum (in either case).
In our calculations related to bdα, the distributions μ, μ′ will always be taken to
be μs, μs′ respectively, for some s, s′ ∈ S. The ability to switch between primal
and dual form will play a useful role in our complexity-theoretic arguments.

6 Computing bdα

We start off by observing that all distances bdα(s, s′) are rational and can be
expressed in polynomial size with respect to M. To that end, we exploit a result
by Sontag [25], which states that, without affecting satisfiability, quantification
in the first-order fragment of linear real arithmetic (LRA) can be restricted
to rationals of polynomial size with respect to formula length (as long as all
coefficients present in the formula are rational). Consequently, if we can express
“there exists a least fixed point d of Γα” in this fragment (with a polynomial
increase in size), we can draw the intended conclusion.

We give the relevant formula in Fig. 4. The formula asserts the existence of
a distance d, which is a pre-fixed point of Γα (∀f.φ(d, f)) such that any other
pre-fixed point d′ of Γα is greater. Note that ∀f.φ(f, d) exploits the fact that
maxf A(f) ≤ d(s, s′) is equivalent to ∀f(A(f) ≤ d(s, s′)). Sontag’s result then
implies the following.

Theorem 1. Values of bdα are rational. There exists a polynomial p such that
for any LMC M and s, s′ ∈ S, the size of bdα (in binary) can be bounded from
above by a polynomial in |M|.
Remark 10. Sontag [25] uses the fact mentioned above to relate the alternation
hierarchy within LRA to the polynomial hierarchy PH: formulae of the form
∃x1∀x2 . . . QxkF (x1 . . . xk) (with quantifier-free F ) correspond to ΣP

k (and for-
mulae starting with ∀ to ΠP

k ). Recall that ΣP
1 =NP.
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Fig. 4. Logical formulation of least pre-fixed point.

Next we focus on the following decision problem for bdα.

BD-threshold: given s, s′ ∈ S and θ ∈ Q, is it the case that bdα(s, s′) ≤ θ?

Recall that the analogous problem for tvα is undecidable (Remark 1). In our case,
the problem turns out to be decidable and the argument does not depend on
whether < or ≤ is used. To establish decidability we can observe that bdα(s, s′) ≤
θ can be expressed in LRA simply by adding d(s, s′) ≤ θ to the formula from
Fig. 4. By Sontag’s results, this not only yields decidability but also membership
in ΣP

2 . Recall that NP⊆ ΣP
2 ⊆ PH ⊆ PSPACE.

We can simplify the formula, though, using bdα = min {d |Γα(d) � d}. Then
bdα(s, s′) ≤ θ can be specified as the existence of a pre-fixed point d such that
d(s, s′) ≤ θ. This can be done as follows, using φ(d, f) from Fig. 4.

∃d ∈ [0, 1]S×S ( ∀f ∈ [0, 1]Sφ(d, f) ∧ d(s, s′) ≤ θ )

Note that the universal quantification over f remains, i.e. we can still only con-
clude that the problem is in ΣP

2 . To overcome this, we shall use the dual form
instead (Lemma 3). This will enable us to eliminate the universal quantification
and replace it with existential quantifiers using the fact that minω A(ω) ≤ B is
equivalent to ∃ω(A(ω) ≤ B). The resultant formula is shown in Fig. 5.

Note the formula is not linear due to ωi,j · di,j . However, because we know
(Theorem 1) that bdα corresponds to an assignment of poly-sized rationals, we
can consider the formula with d fixed at bdα. Then it does become an LRA
formula (of polynomially bounded length with respect to |M|) and we can again
conclude that the assignments of ω, γ, τ must also involve rationals whose size
is polynomially bounded. Consequently, the formula implies membership of our
problem in ΣP

1 =NP: it suffices to guess the satisfying assignment, guaranteed
to be rational and of polynomial size.

Theorem 2. BD-threshold is in NP.

The decidability of BD-threshold makes it possible to approximate
bdα(s, s′) to arbitrary (rational) precision ε by binary search. This will involve
O(|ε|) calls to the oracle for BD-threshold (where |ε| is the number of bits
required to represent ε in binary).

What’s more, assuming the oracle, one can actually find the exact value of
bdα(s, s′) in polynomial time (wrt M). This exploits the fact that the value
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Fig. 5. NP Formula for BD-threshold.

of bdα is rational and its size is polynomially bounded, so one can find it by
approximation to a carefully chosen level of precision and then finding the rele-
vant rational with the continued fraction algorithm [19,20].

Theorem 3. bdα can be calculated in polynomial time with an NP oracle.

As a consequence, the problem of computing bdα reduces to propositional
satisfiability, i.e., can be encoded in SAT. This justifies, for instance, the following
approach: treat every variable as a ratio of two integers from an exponential
range, and give the system of resulting constraints to an Integer Arithmetic or
SAT solver. While this might look like resorting to a general-purpose “hammer”,
Theorem 3 is necessary for this method to work: it is not, in fact, possible to
solve general polynomial constraint systems relying just on SAT.2

We expect, however, this direct approach to be inferior to the following obser-
vation. Theorem 1 reveals that the variables in our constraint system need not
assume irrational values or have large bit representations. Thus, one can give
the system to a more powerful theory solver, or an optimisation tool, but to
expect that the existence of simple and small models (solutions) will help the
SMT heuristics (resp. optimization engines) to find them quickly.

7 Conclusion and Further Work

We have demonstrated that bisimilarity distances can be used to determine
differential privacy parameters, despite their non-metric properties. We have
established that the complexity of finding these values is polynomial, relative to

2 More precisely, the existence of such a procedure would be a breakthrough in the
computational complexity theory, showing that NP = ∃R. This would imply that
a multitude of problems in computational geometry could be solved using SAT
solvers [11,24]. Unlike for bdα, variable assignments in these problems may need
to be irrational, even if all numbers in the input data are integer or rational.
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an NP oracle. Yet, it may still be possible to obtain a polynomial algorithm—
although much like in the case of the classical bisimilarity distances and linear
programming, it may not necessarily outperform theoretically slower procedures.

We conjecture that bdα, which we defined as the least fixed point of the
operator Γα, may in fact be characterized as the unique fixed point of a similar
operator. By the results of Etessami and Yannakakis [19], it would then follow
that bdα can be computed in PPAD, a smaller complexity class, improving upon
our NP upper bound and matching the complexity of a closely related setting
(see below). The reason is the continuity of Γα, which follows from the properties
of the polytope over which f ranges (in the definition of Kα(d)). Whether bdα

can in fact be computed in polynomial time or is PPAD-hard seems to be a
challenging open question.

Our existing work is limited to labelled Markov chains, or fully probabilistic
automata. However, the standard bisimulation distances can also be defined on
deterministic systems, where their computational complexity is PPAD [10]. In
our scenario, the privacy can only be analysed between two start states, but it
is also reasonable to allow an input in the form of a trace or sequence of actions;
the output would also be a trace. Here the choice of labels (at a specific state)
would correspond to decisions taken by the user, and the availability of only one
label would mean that this is the output. This setting would support a broader
range of scenarios that could be modelled and verified as differentially private.
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Abstract. We present an algorithm for solving two-player safety games
that combines a mixed forward/backward search strategy with a sym-
bolic representation of the state space. By combining forward and back-
ward exploration, our algorithm can synthesize strategies that are eager
in the sense that they try to prevent progress towards the error states
as soon as possible, whereas standard backwards algorithms often pro-
duce permissive solutions that only react when absolutely necessary. We
provide experimental results for two new sets of benchmarks, as well
as the benchmark set of the Reactive Synthesis Competition (SYNT-
COMP) 2017. The results show that our algorithm in many cases pro-
duces more eager strategies than a standard backwards algorithm, and
solves a number of benchmarks that are intractable for existing tools.
Finally, we observe a connection between our algorithm and a recently
proposed algorithm for the synthesis of controllers that are robust against
disturbances, pointing to possible future applications.

1 Introduction

Automatic synthesis of digital circuits from logical specifications is one of the
most ambitious and challenging problems in circuit design. The problem was
first identified by Church [1]: given a requirement φ on the input-output behav-
ior of a Boolean circuit, compute a circuit C that satisfies φ. Since then, sev-
eral approaches have been proposed to solve the problem [2,3], which is usually
viewed as a game between two players: the system player tries to satisfy the
specification and the environment player tries to violate it. If the system player
has a winning strategy for the game, then this strategy represents a circuit that
is guaranteed to satisfy the specification. Recently, there has been much interest
in approaches that leverage efficient data structures and automated reasoning
methods to solve the synthesis problem in practice [4–9].

In this paper, we restrict our attention to safety specifications. In this set-
ting, most of the successful implementations symbolically manipulate sets of
states via their characteristic functions, represented as Binary Decision Dia-
grams (BDDs) [10]. The “standard” algorithm works backwards from the unsafe
states and computes the set of all states from which the environment can force
the system into these states. The negation of this set is the (maximal) winning
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region of the system, i.e., the set of all states from which the system can win
the game. Depending on the specification, this algorithm may be suboptimal for
two reasons: first, it may spend a lot of time on the exploration of states that
are unreachable or could easily be avoided by the system player, and second,
it may compute winning regions that include such states, possibly making the
resulting strategy of controller more permissive and complicated than necessary.
Additionally, for many applications it is preferable to generate strategies that
avoid progress towards the error whenever possible, e.g., if the system should be
tolerant to hardware faults or perturbations in the environment [11].

To keep the reachable state space small, some kind of forward search from
the initial states is necessary. However, for forward search no efficient symbolic
algorithm is known.

Contributions. In this work, we introduce a lazy synthesis algorithm that com-
bines a forward search for candidate solutions with backward model checking of
these candidates. All operations are such that they can be efficiently imple-
mented with a fully symbolic representation of the state space and the space of
candidate solutions. The combined forward/backward strategy allows us to find
much smaller winning regions than the standard backward algorithm, and there-
fore produces less permissive solutions than the standard approach and solves
certain classes of problems more efficiently.

We evaluate a prototype implementation of our algorithm on two sets of
benchmarks, including the benchmark set of the Reactive Synthesis Competition
(SYNTCOMP) 2017 [12]. We show that on many benchmarks our algorithm
produces winning regions that are remarkably smaller: on the benchmark set
from SYNTCOMP 2017, the biggest measured difference is by a factor of 1068.
Moreover, it solves a number of instances that have not been solved by any
participant in SYNTCOMP 2017.

Finally, we observe a relation between our algorithm and the approach of
Dallal et al. [11] for systems with perturbations, and provide the first imple-
mentation of their algorithm as a variant of our algorithm. On the benchmarks
above, we show that whenever a given benchmark admits controllers that give
stability guarantees under perturbations, then our lazy algorithm will find a
small winning region and can provide stability guarantees similar to those of
Dallal et al. without any additional cost.

2 Preliminaries

Given a specification φ, the reactive synthesis problem consists in finding a
system that satisfies φ in an adversarial environment. The problem can be
viewed as a game between two players, Player 0 (the system) and Player 1 (the
environment), where Player 0 chooses controllable inputs and Player 1 chooses
uncontrollable inputs to a given transition function. In this paper we consider
synthesis problems for safety specifications: given a transition system that may
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raise a BAD flag when entering certain states, we check the existence of a func-
tion that reads the current state and the values of uncontrollable inputs, and
provides valuations of the controllable inputs such that the BAD flag is not
raised on any possible execution. We consider systems where the state space is
defined by a set L of boolean state variables, also called latches. We write B for
the set {0, 1}. A state of the system is a valuation q ∈ B

L of the latches. We will
represent sets of states by their characteristic functions of type B

L → B, and
similarly for sets of transitions etc.

Definition 1. A controllable transition system (or short: controllable sys-
tem) TS is a 6-tuple (L,Xu,Xc, R, BAD, q0), where:

– L is a set of state variables for the latches
– Xu is a set of uncontrollable input variables
– Xc is a set of controllable input variables
– R : BL×B

Xu×B
Xc×B

L′ → B is the transition relation, where L′ = {l′ | l ∈ L}
stands for the state variables after the transition

– BAD : BL → B is the set of unsafe states
– q0 is the initial state where all latches are initialized to 0.

We assume that the transition relation R of a controllable system is deter-
ministic and total in its first three arguments, i.e., for every state q ∈ B

L, uncon-
trollable input u ∈ B

Xu and controllable input c ∈ B
Xc there exists exactly one

state q′ ∈ B
L′

such that (q, u, c, q′) ∈ R.
In our setting, characteristic functions are usually applied to a fixed vector

of variables. Therefore, if C : BL → B is a characteristic function, we write C
as a short-hand for C(L). Characteristic functions of sets of states can also be
applied to next-state variables L′, in that case we write C ′ for C(L′).

Let X = {x1, . . . , xn} be a set of boolean variables, and Y ⊆ X \ {xi} for
some xi. For boolean functions F : BX → B and fxi

: BY → B, we denote by
F [xi ← fxi

] the boolean function that substitutes xi by fxi
in F .

Definition 2. Given a controllable system TS = (L,Xu,Xc,R, BAD, q0), the
synthesis problem consists in finding for every x ∈ Xc a solution function fx :
B
L × B

Xu → B such that if we replace R by R[x ← fx]x∈Xc
, we obtain a safe

system, i.e., no state in BAD is reachable.
If such a solution does not exist, we say the system is unrealizable.

To determine the possible behaviors of a controllable system, two forms of
image computation can be used: (i) the image of a set of states C is the set of
states that are reachable from C in one step, and the preimage are those states
from which C is reachable in one step—in both cases ignoring who controls the
input variables; (ii) the uncontrollable preimage of C is the set of states from
which the environment can force the next transition to go into C, regardless of
the choice of controllable variables. Formally, we define:

Definition 3. Given a controllable system TS = (L,Xu,Xc,R, BAD, q0) and
a set of states C, we have:
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– image(C) = {q′ ∈ B
L′ | ∃(q, u, c) ∈ B

L × B
Xu × B

Xc : C(q) ∧ R(q, u, c, q′)}.
We also write this set as ∃L ∃Xu ∃Xc (C ∧ R).

– preimage(C) = {q ∈ B
L | ∃(u, c, q′) ∈ B

Xu ×B
Xc ×B

L′
: C(q′)∧R(q, u, c, q′)}.

We also write this set as ∃Xu ∃Xc ∃L′ (C ′ ∧ R).
– UPRE(C) = {q ∈ B

L | ∃u ∈ B
Xu ∀c ∈ B

Xc ∃q′ ∈ B
L : C(q′) ∧ R(q, u, c, q′)}.

We also write this set as ∃Xu ∀Xc ∃L′ (C ′ ∧ R).

A direct correspondence of the uncontrollable preimage UPRE for forward
computation does not exist: if the environment can force the next transition out
of a given set of states, in general the states that we reach are not uniquely
determined and depend on the choice of the system player.

Efficient symbolic computation. BDDs are a suitable data structure for
the efficient representation and manipulation of boolean functions, including all
operations needed for computation of image, preimage, and UPRE. Between
these three, preimage can be computed most efficiently, while image and UPRE
are more expensive—for image not all optimizations that are available for
preimage can be used (see Sect. 5), and UPRE contains a quantifier alternation.

3 Existing Approaches

Before we introduce our new approach, we recapitulate three existing approaches
and point out their benefits and drawbacks.

Backward fixpoint algorithm. Given a controllable transition system TS =
(L,Xu,Xc,R, BAD, q0) with BAD 	= 0, the standard backward BDD-based
algorithm (see e.g. [10]) computes the set of states from which the environment
can force the system into unsafe states in a fixed point computation that starts
with the unsafe states themselves. To compute a winning region for Player 1, it
computes the least fixed-point of UPRE on BAD : μC. UPRE(BAD′ ∨ C ′).

Since safety games are determined, the complement of the computed set is
the greatest winning region for Player 0, i.e., all states from which the system
can win the game. Thus, this set also represents the most permissive winning
strategy for the system player. We note two things regarding this approach:
1. To obtain a winning region, it computes the set of all states that cannot avoid

moving into an error state, using the rather expensive UPRE operation.
2. The most permissive winning strategy will not avoid progress towards the

error states unless we reach the border of the winning region.

A forward algorithm. [13,14] A forward algorithm is presented by Cassez et
al. [14] for the dual problem of solving reachability games, based on the work of
Liu and Smolka [13]. The algorithm starts from the initial state and explores all
states that are reachable in a forward manner. Whenever a state is visited, the
algorithm checks whether it is losing; if it is, the algorithm revisits all reachable
states that have a transition to this state and checks if they can avoid moving
to a losing state. Although the algorithm is optimal in that it has linear time
complexity in the state space, two issues should be taken into account:
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Fig. 1. High-level description of the
lazy synthesis algorithm

1. The algorithm explicitly enumerates
states and transitions, which is impracti-
cal even for moderate-size systems.
2. A fully symbolic implementation of
the algorithm does not exist, and it would
have to rely heavily on the expensive for-
ward image computation.

Lazy Synthesis. [15] Lazy Synthesis interleaves a backwards model checking
algorithm that identifies possible error paths with the synthesis of candidate
solutions. To this end, the error paths are encoded into a set of constraints, and
an SMT solver produces a candidate solution that avoids all known errors. If new
error paths are discovered, more constraints are added that exclude them. The
procedure terminates once a correct candidate is found (see Fig. 1). The approach
works in a more general setting than ours, for systems with multiple components
and partial information. When applied to our setting and challenging benchmark
problems, the following issues arise:

1. Even though the error paths are encoded as constraints, the representation
is such that it explicitly branches over valuations of all input variables, for
each step of the error paths. This is clearly impractical for systems that have
more than a dozen input variables (which is frequently the case in the classes
of problems we target).

2. In each iteration of the main loop a single deterministic candidate is checked.
Therefore, many iterations may be needed to discover all error paths.

4 Symbolic Lazy Synthesis Algorithms

Model check

Refine and Solve
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controllable
system

Solution
correct

Fig. 2. High-level description of the
symbolic lazy synthesis algorithm

In the following, we present symbolic algo-
rithms that are inspired by the lazy syn-
thesis approach and overcome some of its
weaknesses to make it suitable for challeng-
ing benchmark problems like those from
the SYNTCOMP library. We show that in
our setting, we can avoid the explicit enu-
meration of error paths. Furthermore, we
can use non-deterministic candidate mod-
els that are restricted such that they avoid
the known error paths. In this restriction,
we prioritize the removal of transitions that are close to the initial state, which
can help us avoid error paths that are not known yet.
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4.1 The Basic Algorithm

To explain the algorithm, we need some additional definitions. Fix a controllable
system TS = (L,Xu,Xc,R, BAD, q0).

An error level Ei is a set of states that are on a path from q0 to BAD, and
all states in Ei are reachable from q0 in i steps. Formally, Ei is a subset of

{qi | ∃(q0, q1, . . . , qi, . . . , qn), qn ∈ BAD, and ∃(qj , u, c, qj+1) ∈ R for 0 ≤ j < n}.

We call (E0, ..., En) a sequence of error levels if (i) each Ei is an error level,
(ii) each state in each Ei has a transition to a state in Ei+1, and (iii) En ⊆ BAD.
Note that the same state can appear in multiple error levels of a sequence, and
E0 contains only q0.

Given a sequence of error levels (E0, ..., En), an escape for a transition
(q, u, c, q′) with q ∈ Ei and q′ ∈ Ei+1 is a transition (q, u, c′, q′′) such that
q′′ 	∈ Em ∀m > i. We say the transition (q, u, c, q′) matches the escape
(q, u, c′, q′′).

Given two error levels Ei and Ei+1, we denote by RTi the following set of
tuples, representing the “removable” transitions, i.e., all transitions from Ei to
Ei+1 that match an escape:

RTi = {(q, u, q′) | q ∈ Ei, q
′ ∈ Ei+1 and ∃(q, u, c, q′) ∈ R that has an escape}.

modelCheck

isCorrect? solution
yes

extract&mergeErrorLevels

no

nextLevelpreviousLevel

delErrTrans

isPrunable?firstLevel?
yes

no

yes

lastLevel?
no

no

unrealizable

yes

Fig. 3. Control flow of the algorithm

Overview. Figure 3 sketches the
control flow of the algorithm.
It starts by model checking the
controllable system, without any
restriction on the transition rela-
tion wrt. the controllable inputs.
If unsafe states are reachable, the
model checker returns a sequence
of error levels. Iterating over all lev-
els, we identify the transitions from
the current level for which there
exists an escape, and temporarily
remove them from the transition
relation. Based on the new restric-
tions on the transition relation, the
algorithm then prunes the current
error level by removing states that
do not have transitions to the next level anymore. Whenever we prune at least
one state, we move to the previous level to propagate back this information. If
this eventually allows us to prune the first level, i.e., remove the initial state,
then this error sequence has been invalidated and the new transition system
(with deleted transitions) is sent to the model checker. Otherwise the system is
unrealizable. In any following iteration, we accumulate information by merging
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the new error sequence with the ones we found before, and reset the transition
relation before we analyze the error sequence for escapes.

Detailed Description. In more detail, Algorithm 1 describes a symbolic lazy
synthesis algorithm. The method takes as input a controllable system and checks
if its transition relation can be fixed in a way that error states are avoided. Upon
termination, the algorithm returns either unrealizable, i.e., the system can not
be fixed, or a restricted transition relation that is safe and total. From such a
transition relation, a (deterministic) solution for the synthesis problem can be
extracted in the same way as for existing algorithms. Therefore, we restrict the
description of our algorithm to the computation of the safe transition relation.

LazySynthesis: In Line 2, we initialize TR to the unrestricted transition
relation R of the input system and E to the empty sequence, before we enter the
main loop. Line 4 uses a model checker to check if the current TR is correct, and
returns a sequence of error levels mcLvls if it is not. In more detail, function
ModelCheck(TR) starts from the set of error states and uses the preimage
function (see Definition 3) to iteratively compute a sequence of error levels.1

It terminates if a level contains the initial state or if it reaches a fixed point.
If the initial state was reached, the model checker uses the image function to
remove from the error levels any state that is not reachable from the initial
state.2 Otherwise, in Line 6 we return the safe transition relation. If TR is not
safe yet, Line 7 merges the new error levels with the error levels obtained in
previous iterations by letting E[i] ← E[i] ∨ mcLvls[i] for every i. In Line 8 we
call PruneLevels(sys.R, E), which searches for a transition relation that avoids
all error paths represented in E, as explained below. If pruning is not successful,
in Lines 9–10 we return “Unrealizable”.

PruneLevels: In the first loop, we call ResolveLevel(E, i, TR) for increas-
ing values of i (Line 4). Resolving a level is explained in detail below; roughly
it means that we remove transitions that match an escape, and then remove
states from this level that are not on an error path anymore. If ResolveLevel
has removed states from the current level, indicated by the return value of
isPrunable, we check whether we are at the topmost level—if this is the case, we
have removed the initial state from the level, which means that we have shown
that every path from the initial state along the error sequence can be avoided.
If we are not at the topmost level, we decrement i before returning to the start
of the loop, in order to propagate the information about removed states to the
previous level(s). If isPrunable is false, we instead increment i and continue on
the next level of the error sequence.

The first loop terminates either in Line 7, or if we reach the last level. In
the latter case, we were not able to remove the initial state from E[0] with the

1 This part is the light-weight backward search: unlike UPRE in the standard back-
ward algorithm, preimage does not contain any quantifier alternation.

2 This is the only place where our algorithm uses image, and it is only included to
keep the definitions and correctness argument simple - the algorithm also works if
the model checker omits this last image computation step, see Sect. 5.
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Algorithm 1 Lazy Synthesis
1: procedure LazySynthesis(ControllableSystem sys)
2: TR ← sys.R, E ← ()
3: while true do
4: isCorrect,mcLvls ← ModelCheck(TR)
5: if isCorrect then
6: return TR
7: E ← mergeLevels(E,mcLvls)
8: isUnrealizable, TR ← PruneLevels(sys.R, E)
9: if isUnrealizable then

10: return Unrealizable

1: procedure PruneLevels(TransitionRelation TR, ErrorSequence E)
2: i ← 0
3: while i < length(E) − 1 do
4: isPrunable, TR,E ← ResolveLevel(E, i, TR)
5: if isPrunable then
6: if i == 0 then // we have removed the initial state from E[0]
7: return false, TR

8: i ← i − 1
9: else

10: i ← i + 1

11: while i ≥ 1 do // i == length(E) − 1 when we enter the loop
12: i ← i − 1
13: isPrunable, TR,E ← ResolveLevel(E, i, TR)

14: if isPrunable then // we have removed the initial state from E[0]
15: return false, TR
16: else // we could not remove the initial state from E[0]
17: return true, ∅
1: procedure ResolveLevel(ErrorSequence E, Int i, TransitionRelation TR)
2: RT ← (∃L′ (( ∃Xc TR ) ∧ ¬E[i + 1 : n]′ )) ∧ E[i] ∧ E[i + 1]′

3: TR ← TR ∧ ¬RT
4: AV Set ← ∀Xu (E[i] ∧ ∃L′( ∃Xc TR ∧ ¬E[i + 1]′ ) )
5: E[i] ← E[i] ∧ ¬AV Set
6: return AV Set 
= ∅, TR,E

local propagation of information during the main loop (that stops if we reach a
level that cannot be pruned). To make sure that all information is completely
propagated, afterwards we start another loop were we resolve all levels bottom-
up, propagating the information about removed states all the way to the top.
When we arrive at E[0], we can either remove the initial state now, or we conclude
that the system is unrealizable.

ResolveLevel: Line 2 computes the set of transitions that have an escape:
∃L′ (( ∃Xc TR ) ∧ ¬E[i + 1 : n]′ ) is the set of all (q, u) for which there exists
an escape (q, u, c, q′), and by conjoining E[i] ∧ E[i + 1]′ we compute all tuples
(q, u, q′) that represent transitions from E[i] to E[i + 1] matching an escape.
Line 3 removes the corresponding transitions from the transition relation TR.
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Line 4 computes AvSet which represents the set of all states such that all their
transitions within the error levels match an escape. After removing AV Set from
the current level, we return.

Comparison. Compared to Lazy Synthesis (see Fig. 1), the main loop of our
algorithm merges the Refine and Solve steps, and instead of computing one
deterministic model per iteration, we collect restrictions on the non-deterministic
transition relation TR. Keeping TR non-deterministic allows us to find and
exclude more error paths per iteration.

Compared to the standard backward fixpoint approach (see Sect. 3), an
important difference is that we explore the error paths in a forward analysis
starting from the initial state, and avoid progress towards the error states as
soon as possible. As a consequence, our algorithm can find solutions that visit
only a small subset of the state space. If such solutions exist, our algorithm will
find a solution faster and will detect a winning region that is much smaller than
the maximal winning region detected by the standard algorithm.

4.2 Correctness of Algorithm 1

Theorem 1 (Soundness). Every transition relation returned by Algorithm 1
is safe, and total in the first two arguments.

Proof. The model checker guarantees that the returned transition relation TR
is safe, i.e., unsafe states are not reachable. To see that TR is total in the
first two arguments, i.e., ∀q ∀u ∃c ∃q′ : (q, u, c, q′) ∈ TR, observe that this
property holds for the initial TR, and is preserved by ResolveLevels: lines 2
and 3 ensure that a transition (q, u, c, q′) ∈ TR can only be deleted if ∃c′ ∃q′′ 	=
q′ : (q, u, c′, q′′) ∈ TR, i.e., if there exists another transition with the same state
q and uncontrollable input u.

To prove completeness of the algorithm, we define formally what it means
for an error level to be resolved.

Definition 4 (Resolved). Given a sequence of error levels E = (E0, ..., En)
and a transition relation TR, an error level Ei with i < n is resolved with
respect to TR if the following conditions hold:

– RTi = ∅
– ∀qi ∈ Ei \ BAD : ∃u ∃c ∃qi+1 ∈ Ei+1 : (qi, u, c, qi+1) ∈ TR

Ei is unresolved otherwise, and En is always resolved.

Informally, Ei is resolved if all transitions from Ei that match an escape have
been removed from TR, and every state in Ei can still reach Ei+1.

Theorem 2 (Completeness). If the algorithm returns “Unrealizable”, then
the controllable system is unrealizable.
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Fig. 4. Error levels from iteration 1

E1

Err

q0

00
01

10
11

00
01

10
11

Fig. 5. solution for iteration 1

Proof. Observe that if a controllable system is unrealizable, then there exists
an error sequence E = (E0 = {q0}, E1, ..., En) where all levels are resolved and
non-empty. Lines 2 and 3 of ResolveLevel guarantee that all transitions from Ei

to Ei+1 that match an escape will be deleted, so the only remaining transitions
between Ei and Ei+1 are those that have no escapes. Line 4 computes all states
in Ei that have no more transitions to Ei+1 and line 5 removes these states.
Thus, after calling ResolveLevel, the current level will be resolved.

However, since ResolveLevel may remove states from Ei, the levels Ej with
j < i could become unresolved. To see that this is not an issue note that before
we output Unrealizable, we go through the second loop that resolves all levels
from n to 0. After execution of this second loop all levels are resolved, and if
E0 still contains q0, then the controllable system is indeed unrealizable, since
from our sequence of error levels we can extract a subsequence of resolved and
non-empty error levels.3

Theorem 3 (Termination). Algorithm 1 always terminates.

Proof. Termination is guaranteed due to the fact that there is a finite number
of possible transition relations, and each call to PruneLevels either produces a
TR that is different from all transition relations that we have seen before, or
terminates with isUnrealizable.

4.3 Illustration of the Algorithm

Figure 4 shows error levels obtained from the model checker. The transitions are
labeled with vectors of input bits, where the left bit is uncontrollable and the
right bit controllable. The last level is a subset of BAD. After the first iteration
of the algorithm, the transitions that are dashed in Figure 5 will be deleted. Note
that another solution exists where instead we delete the two outgoing transitions
from level E1 to the error level Err. This solution can be obtained by a backward
algorithm. However, our solution makes all states in E1 unreachable and thus
we detect smaller winning region.

In the second iteration, the model checker uses the restricted transition rela-
tion and computes a new sequence of error levels. This sequence is merged with
the previous one and the resulting sequence will be resolved as before.
3 It may be a subsequence due to the merging of error levels from different iterations

of the main loop.
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4.4 Example Problems

We want to highlight the potential benefit of our algorithm on two families of
examples.

q0

Fig. 6. Example with small solution

q0

Fig. 7. Example that is solved fast

First, consider a controllable system where all paths from the initial state to
the error states have to go through a bottleneck, e.g., a single state, as depicted
in Fig. 6, and assume that Player 0 can force the system not to go beyond
this bottleneck. In this case, our algorithm will have a winning region that only
includes the states between the initial state and the bottleneck, whereas the
standard algorithm may have a much bigger winning region (in the example
including all the states in the fourth row). Moreover, the strategy produced by
our algorithm will be very simple: if we reach the bottleneck, we force the system
to stay there. In contrast, the strategy produced by the standard algorithm will
in general be much more complicated, as it has to define the behavior for a much
larger number of states.

Second, consider a controllable system where the shortest path between error
and initial state is short, but Player 1 can only force the system to move towards
the error on a long path. Moreover, assume that Player 0 can avoid entering
this long path, for example by entering a separated part of the state space like
depicted in Fig. 7. In this case, our algorithm will quickly find a simple solution:
move to that separate part and stay there. In contrast, the standard algorithm
will have to go through many iterations of the backwards fixpoint computation,
until finally finding the point where moving into the losing region can be avoided.

5 Optimization

As presented, Algorithm 1 requires the construction of a data structure that
represents the full transition relation R, which causes a significant memory con-
sumption. In practice, the size of a BDD that represents the full transition
relation can be prohibitive even for moderate-size models.
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As the transition relation is deterministic, it can alternatively be represented
by a vector of functions, each of which updates one of the state variables. Such a
partitioning of the transition relation is an additional computational effort, but
it results in a more efficient representation that is necessary to handle large sys-
tems. In the following we describe optimizations based on such a representation.

Definition 5. A functional controllable system is a 6-tuple TSf = (L,Xu,
Xc,F , BAD, q0), where F = (f1, ..., f|L|) with fi : BL × B

Xu × B
Xc → B for all

i, and all other components are as in Definition 1.

In a functional system with current state q and inputs u and c, the next-state
value of the ith state variable li is computed as fi(q, u, c). Thus, we can compute
image and preimage of a set of states C in the following way:

– imagef (C) = ∃L ∃Xu ∃Xc (
∧|L|

i=1 l′i ≡ fi ∧ C)
– preimagef (C) = ∃L′ ∃Xu ∃Xc (

∧|L|
i=1 l′i ≡ fi ∧ C ′)

However, computing
∧|L|

i=1 l′i ≡ fi ∧ C ′ is still very expensive and might be
as hard as computing the whole transition relation. To optimize the preimage
computation, we instead directly substitute the state variables in the boolean
function that represents C by the function that computes their new value:

preimages(C) = ∃Xu ∃Xc C[li ← fi]li∈L

For the computation of image(C), substitution cannot be used. While alter-
natives exist (such as using the range function instead [16]), image computation
remains much more expensive than preimage computation.

5.1 The Optimized Algorithm

The optimized algorithm takes as input a functional controllable system, and
uses the following modified procedures:

OptimizedLazySynthesis: This procedure replaces LazySynthesis, with
two differences, both in the model checker: the preimage is computed using
preimages, and unreachable states are not removed, in order to avoid image
computation. Thus, the error levels are over-approximated.

OptimizedResolveLevel: This procedure replaces ResolveLevel and
computes RT and AvSet more efficiently. Note that for a given set of states
C, the set pretrans(C) = {(q, u, c) ∈ B

L × B
Xu × B

Xc | F (q, u, c) ∈ C} can
efficiently be computed as C[li ← fi]li∈L. Based on this, we get the following:
RT: To compute the transitions that can be avoided, we compute the conjunc-
tion of the transitions from Ei to Ei+1 as pretrans(E[i + 1]′) ∧ E[i] with those
transitions that have an escape: ∃c pretrans(¬E[i + 1 : n]′) ∧ E[i].
AvSet: The states that can avoid all transitions to the lower levels can now be
computed as ∀u [ ∃c pretrans(¬E[i + 1 : n]′) ∧ E[i] ].
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Generalized Deletion of Transitions. In addition, we consider a variant of
our algorithm that uses the following heuristic to speed up computation: when-
ever we find an escape (q, u, c, q′) with q ∈ Ei, then we not only remove all
matching transitions that start in Ei, but matching transitions that start any-
where, and lead to a state q′′ ∈ Ej with j > i. Thus, we delete more transitions
per iteration of the algorithm, all of which are known to lead to an error.

6 Experimental Evaluation

We implemented our algorithm in Python, using the BDD package CUDD [17].
We evaluate our prototype on a family of parameterized benchmarks based on
the examples in Sect. 4.4, and on the benchmark set of SYNTCOMP 2017 [12].
We compare two versions of our algorithm (with and without generalized deletion
as explained in Sect. 5.1) against a re-implementation of the standard backward
approach, in order to have a fair comparison between algorithms that use the
same BDD library and programming language. For the SYNTCOMP bench-
marks, we additionally compare against the results of the participants in SYNT-
COMP 2017. Our implementations of all algorithms include the most important
general optimizations for this kind of algorithms, including a functional transi-
tion relation and automatic reordering of BDDs (see Jacobs et al. [10]).

6.1 Parameterized Benchmarks

On the parameterized versions of the examples from Sect. 4.4, we observe the
expected behaviour:

– for the first example, the winning region found by our algorithm is always
about half as big as the winning region for the standard algorithm. Even
more notable is the size of the synthesized controller circuit: for example, our
solution for an instance with 218 states and 10 input variables has a size of
just 9 AND-gates, whereas the solution obtained from the standard algorithm
has 800 AND-gates.

– for the second example, we observe that for systems with 15–25 state vari-
ables, our algorithm solves the problem in constant time of 0.1s, whereas the
solving time increases sharply for the standard algorithm: it uses 1.7s for a
system with 15 latches, 92s for 20 latches, and 4194s for 25 latches.

6.2 SYNTCOMP Benchmarks

We compared our algorithm against the standard algorithm on the benchmark
set that was used in the safety track of SYNTCOMP 2017, with a timeout of
5000 s on an Intel Xeon processor (E3-1271 v3, 3.6 GHz) and 32 GB RAM.

First, we observe that our algorithms often produce much smaller winning
regions: out of the 76 realizable benchmarks that our algorithm without general
deletion solved, we found a strictly smaller winning region than the standard
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backwards algorithm in 28 cases. In 14 cases, the winning region is smaller by a
factor of 103 or more, in 8 cases by a factor of 1020 or more, and in 4 cases by a
factor of 1030 or more. The biggest difference in winning region size is a factor
of 1068. A selection of results for such benchmarks is given in Table 1. Note that
these results are for the algorithm without the generalized deletion heuristic;
when using the algorithm with generalized deletion, our winning regions are
somewhat bigger, but the tendency is the same. Regarding the size of synthesized
circuits, the results are mixed: our solutions are often much smaller, but in several
cases they are also of bigger or equal size.

Table 1. Comparison of Winning Region Size for Selected Benchmarks

Instance Standard Lazy Difference factor

load 2c comp comp5 REAL 1.08 ∗ 1040 5.67 ∗ 1013 > 1026

load 3c comp comp4 REAL 2.39 ∗ 1052 1.21 ∗ 1018 >1044

load 3c comp comp7 REAL 4.97 ∗ 1086 1.21 ∗ 1018 >1068

ltl2dba C2-6 comp3 REAL 2.46 ∗ 1035 4.55 ∗ 1025 >109

ltl2dba E4 comp3 REAL 2.96 ∗ 1079 3.74 ∗ 1050 >1028

demo-v10 5 REAL 1.93 ∗ 1025 1.31 ∗ 105 >1020

demo-v12 5 REAL 2.81 ∗ 1014 1.64 ∗ 104 >1010

demo-v14 5 REAL 1.23 ∗ 1014 356 >1011

demo-v19 5 REAL 1.27 ∗ 1011 305 >108

demo-v20 5 REAL 2.31 ∗ 1041 3.44 ∗ 1010 >1030

demo-v22 5 REAL 3.4 ∗ 1038 1.71 ∗ 1015 >1023

demo-v23 5 REAL 1.37 ∗ 1012 9.22 ∗ 103 >108

demo-v24 5 REAL 3.27 ∗ 1063 1.17 ∗ 1031 >1032

Regarding solving time, out of the 234 benchmarks our algorithm without
generalized deletion solved 99 before the timeout, and the version with the gener-
alized deletion heuristic solved 116. While the standard algorithm solves a higher
number of instances overall (163), for a number of examples the lazy algorithms
are faster. In particular, both versions each solve 7 benchmarks that are not
solved by the standard algorithm, as shown in Table 2.

Moreover, we compare against the participants of SYNTCOMP 2017: with
a timeout of 3600 s, the best single-threaded solver in SYNTCOMP 2017 solved
155 problems, and the virtual best solver (VBS; i.e., a theoretical solver that on
each benchmark performs as good as the best participating solver) would have
solved 186 instances. If we include our two algorithms with a timeout of 3600
s, the VBS can additionally solve 7 out of the 48 instances that could not be
solved by any of the participants of SYNTCOMP before. As our algorithms also
solve some instances much faster than the existing algorithms, they would be
worthwhile additions to a portfolio solver for SYNTCOMP.
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Table 2. Benchmarks solved uniquely by the Lazy algorithm

Instance Lazy Generalized

deletion

Standard SYNTCOMP 2017

participants

gb s2 r3 comp1 UNREAL 38 TO TO Solved by 1

genbuf48c6y TO 3839 TO Solved by 4

ltl2dba E6 comp4 REAL 2435 TO TO Not solved

ltl2dba Q4 comp5 REAL 125 304 TO Solved by 1

ltl2dba U1-6 Comp3 REAL TO 4590 TO Not solved

ltl2dpa alpha5 Comp2 REAL TO 1880 TO Not solved

ltl2dpa alpha5 Comp3 REAL TO 2651 TO Not solved

ltl2dpa E4 comp2 REAL 1081 TO TO Not solved

ltl2dpa E4 comp4 REAL 2122 TO TO Not solved

ltl2dpa U14 comp2 REAL 4019 615 TO Not solved

ltl2dpa U14 comp3 REAL 2605 1681 TO Not solved

7 Synthesis of Resilient Controllers

As mentioned in Sect. 1, our algorithm produces strategies that avoid progress
towards the error states as early as possible, which could be useful for generat-
ing controllers that are tolerant to faults or perturbations. Dallal et al. [11] have
modeled systems with perturbations, which are defined essentially as extraordi-
nary transitions where Player 1 chooses values for both the uncontrollable and
(a subset of) the controllable inputs. They introduced an algorithm that pro-
duces strategies with maximal resilience against such perturbations, defined as
the number of perturbations under which the controller can still guarantee not
to enter the winning region of Player 1.

The algorithm of Dallal et al. can be seen as a variant of our algorithm, except
that it first uses the standard fixpoint algorithm to determine the winning region,
and then uses a mixed forward/backward search to find a strategy that makes as
little progress towards the losing region as possible. We have implemented this as
a variant of our algorithm, providing to our knowledge its first implementation.
An evaluation on the SYNTCOMP benchmarks provides interesting insights:
only on 6 out of the 234 benchmarks the algorithm can give a guarantee of
resilience against one or more perturbations. Moreover, when inspecting the
behavior of our lazy algorithms on these benchmarks, we find that for all of them
they provide a strictly smaller winning region than the standard algorithm. 5 of
the 6 benchmarks appear in Table 1, with winning regions that are smaller by
a factor of 109 or more. In fact, for these benchmarks our algorithm can give a
similar guarantee as the Dallal algorithm, without additional cost. The difference
is that we measure the distance to the error states instead of the distance to the
losing region (which is not known to us). This leads us to the conjecture that our
algorithm performs particularly well on synthesis problems that allow resilient
controllers, together with the observation that not many of these appear in the
SYNTCOMP benchmark set that we have tested against.
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8 Conclusions

We have introduced lazy synthesis algorithms with a novel combination of for-
ward and backward exploration. Our experimental results show that our algo-
rithms find much smaller winning regions in many cases. Moreover, they can solve
a number of problems that are intractable for existing synthesis algorithms, both
from our own examples and from the SYNTCOMP benchmark set.

In the future, we want to explore how lazy synthesis can be integrated into
portfolio solvers and hybrid algorithms. Additionally, we want to further explore
the applications of eager strategies in the synthesis of resilient controllers [11,18–
20] and connections to lazy algorithms for controllers of cyber-physical sys-
tems [21].
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Abstract. This work utilizes the plethora of work on verification of
sequential programs for the purpose of verifying concurrent programs.
We reduce the verification of a concurrent program to a series of ver-
ification tasks of sequential programs. Our approach is modular in the
sense that each sequential verification task roughly corresponds to the
verification of a single thread, with some additional information about
the environment in which it operates. Information regarding the envi-
ronment is gathered during the run of the algorithm, by need. While
our approach is general, it specializes on concurrent programs where the
threads are structured hierarchically. The idea is to exploit the hierar-
chy in order to minimize the amount of information that needs to be
transferred between threads. To that end, we verify one of the threads,
considered “main”, as a sequential program. Its verification process initi-
ates queries to its “environment” (which may contain multiple threads).
Those queries are answered by sequential verification, if the environment
consists of a single thread, or, otherwise, by applying the same hierarchi-
cal algorithm on the environment. Our technique is fully automatic, and
allows us to use any off-the-shelf sequential model checker. We imple-
mented our technique in a tool called CoMuS and evaluated it against
established tools for concurrent verification. Our experiments show that
it works particularly well on hierarchically structured programs.

1 Introduction

Verification of concurrent programs is known to be extremely hard. On top of
the challenges inherent in verifying sequential programs, it adds the need to con-
sider a high (typically unbounded) number of thread interleavings. An appealing
direction is to exploit the modular structure of such programs in verification.
Usually, however, a property of the whole system cannot be partitioned into a
set of properties that are local to the individual threads. Thus, some knowledge
about the interaction of a thread with its environment is required.

In this work we develop a new approach, which utilizes the plethora of work
on verification of sequential programs for the purpose of modularly verifying the
safety of concurrent programs. Our technique automatically reduces the veri-
fication of a concurrent program to a series of verification tasks of sequential
c© Springer Nature Switzerland AG 2018
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programs. This allows us to benefit from any past, as well as future, progress in
sequential verification.

Our approach is modular in the sense that each sequential verification task
roughly corresponds to the verification of a single thread, with some addi-
tional information about the environment in which it operates. This information
is automatically and lazily discovered during the run of the algorithm, when
needed.

While our approach is general, it specializes on concurrent programs where
the threads are structured hierarchically as it takes a hierarchical view of the
program. Namely, for the purpose of verification, one of the threads, tM , is
considered “main”, and all other threads are considered its “environment”. The
idea is to exploit the hierarchy in order to minimize the amount of information
that needs to be transferred between the verification tasks of different threads.

We first analyze tM using sequential verification, where, for soundness, all
interferences from the environment are abstracted (over-approximated) by a
function env move, which is called by tM whenever a context switch should be
considered. Initially, env move havocs all shared variables; it is gradually refined
during the run of the algorithm. When the sequential model checker discovers
a violation of safety in tM , it also returns a path leading to the violation. The
path may include calls to env move, in which case the violation may be spurious
(due to the over-approximation). Therefore, the algorithm initiates queries to
the environment of tM whose goal is to check whether certain interferences, as
observed on the violating path, are feasibles. Whenever an interference turns
out to be infeasible, the env move function is refined to exclude it. Eventually,
env move becomes precise enough to enable full verification of the desired prop-
erty on the augmented tM . Alternatively, it can reveal a real counterexample in
tM .

The queries are checked on the environment (that may consist of multiple
threads) in the same modular manner. Thus we obtain a hierarchical modular
verification. Along the algorithm, each thread learns about the next threads
in the hierarchy, and is provided with assumptions from former threads in the
hierarchy to guide its learning. When the program has a hierarchical structure
that is aligned with the verification process, this makes the assumptions simpler
and speeds up verification.

Our technique is fully automatic and performs unbounded verification, i.e., it
can both find bugs and prove safety in concurrent programs even with unbounded
executions (e.g., due to loops), as long as the number of threads is fixed. It works
on the level of program code and generates standard sequential programs in its
intermediate checks. This allows us to use any off-the-shelf sequential model-
checker. In particular, we can handle concurrent programs with an infinite state-
space, provided that the sequential model checker supports such programs (as is
the case in our implementation).

Our experiments show that the approach works particularly well on pro-
grams in which the threads are arranged as a chain, t1, t2, . . . , tk, where thread
ti depends only on its immediate successor ti+1 in the chain. This induces a
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natural hierarchical structure in which t1 is the main thread with environment
t2, . . . , tk; thread t2 is the main thread in the environment, and so on. This
structure often occurs in concurrent implementations of dynamic programming
algorithms.

To summarize, the main contributions of our work are as follows:

– We present a new modular verification approach that reduces the verification
of a concurrent program to a series of verification tasks of sequential programs.
Any off-the-shelf model checker for sequential programs can thus be used.

– Our approach takes a hierarchical view of the program, where each thread
learns about the next threads in the hierarchy, and is provided with assump-
tions from former threads to guide its learning.

– The needed information on a thread’s environment is gathered in the code,
automatically and lazily, during the run of the algorithm.

– We implemented our approach and showed that as the number of threads
grows, it outperforms existing tools on programs that have a hierarchical
structure, such as concurrent implementations of dynamic programming algo-
rithms.

1.1 Related Work

The idea of code transformation to a sequential program appeared in [24,32,33].
However, these works translate the concurrent program to a single nondeter-
ministic sequential program. In contrast, our technique exploits the modular
structure of the program.

In the rest of this section, we address unbounded modular techniques for
proving safety properties of concurrent programs. Other techniques use bounded
model checking, where the bound can address different parameters, such as the
number of context switches [19,33], write operations [32] or loop iterations [1,
29,35].

The work most closely related to ours is [16,17]. Their technique uses pred-
icate abstraction of both states and environment transitions (similar to our
env move), as part of an automatic modular verification framework. The tech-
nique also iteratively refines this abstraction by checking possible witnesses of
errors. However, they treat all threads symmetrically, whereas our approach
exploits a hierarchical view of the program. In addition, [16,17] explore abstract
single threads using reachability trees, which are inherent to their technique. We,
on the other hand, represent threads (augmented with some environment infor-
mation) as stand-alone C programs. Thus, we can use any off-the-shelf model
checker to address the “sequential part” of the verification problem.

The works in [9,12,20] suggest to apply rely-guarantee reasoning for concur-
rent (or asynchronous) programs, while the different sections of the program can
be verified sequentially. However, their technique requires human effort to specify
the rely-guarantee conditions, whereas our approach is completely automatic.

[10] suggests a modular algorithm with rely-guarantee reasoning and auto-
matic condition inference. [21] formalizes the algorithm in the framework of
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abstract interpretation. However, their algorithm requires finite state systems,
and its inferred conditions only refer to changes in global variables. Hence, they
fail to prove properties where local variables are necessary for the proof. In
our approach, reasoning about local variables is allowed, when we learn that
they are necessary for verification. Such variables are then turned into global
variables, but their behavior is abstracted, preserving modularity. [6] also tack-
les the incompetence of modular proofs by exposing local variables as global,
according to counterexamples. However, their approach uses BDDs and suits
finite state systems. Similar to [16], they treat threads symmetrically. Our app-
roach is applicable to infinite state systems and uses a guided search to derive
cross-thread information.

Our queries resemble queries in learning-based compositional verification [5,
25], which are also answered by a model checker. Our hierarchical recursive
approach resembles the n-way decomposition handled in [25]. However, these
works represent programs, assumptions and specification as LTSs, and although
extended to deal with shared memory in [31] these algorithms are suitable for
finite state systems.

Several works such as [11,14,28,34], tackle the interleaving explosion problem
by performing a thread interleaving reduction. [34] combines partial order reduc-
tion [13] with the impact algorithm [22], whereas [28] identifies reducible blocks
for compositional verification. These approaches are complementary to ours, as
our first step is performing an interleaving reduction (to identify cut-points for
env move calls).

2 Preliminaries

Sequential Programs. A sequential program P is defined by a control flow graph
whose nodes are a set of program locations L (also called labels), and whose edges
E are a subset of L×L. The program has an initial label, denoted linit ∈ L. Each
node l is associated with a command c ∈ cmds, denoted cmd(l), which can be an
assignment or an if command, as well as havoc, assume and assert (explained
below). Intuitively, we think of standard C programs (that may contain loops as
well), which can be trivially compiled to such control flow graphs. The program
may also include non-recursive functions, which will be handled by inlining.

The program is defined over a set of variables V . Conditions in the pro-
gram are quantifier-free first-order-logic formulas over V . A special variable
pc �∈ V , ranging over L, indicates the program location. A state s of P is a
pair (l, σ) where l ∈ L is the value of pc and σ is a valuation of V . Variables
may have unbounded domains, resulting in a potentially infinite state-space. We
also assume the existence of a special error state, denoted ε = (lε,⊥). We denote
by l(s) and σ(s) the first and second components (resp.) of a state s = (l, σ).
Given an initialization formula φinit over V , the set of initial states consists of
all states (linit, σ) where σ |= φinit.

For s = (l, σ), let cmd(s) = cmd(l). We denote next(s) = {s′ | s′ can be
obtained from s using cmd(s)}. This set is defined according to the command.
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In particular, s′ ∈ next(s) implies that (l(s), l(s′)) ∈ E. The definition of next(s)
for assignments and if commands is standard. A v=havoc() command assigns
a non-deterministic value to the variable v. An assume(b) command is used to
disregard any computation in which the condition b does not hold. Formally, if
s = (l, σ) and cmd(s)=assume(b), then σ � b =⇒ next(s) = {(l′, σ)} where
l′ �= lε is the unique label such that (l, l′) ∈ E, and σ � b =⇒ next(s) = ∅. An
assert(b) command is defined similarly, except that it moves to the error state
if b is violated.

A computation ρ of P is a sequence ρ = s0 −→ s1 −→ . . . −→ sn for some
n ≥ 0 s.t. for every two adjacent states si, si+1: si+1 ∈ next(si). ρ is an initial
computation in P if it starts from an initial state. ρ is a reachable computation
in P if there exists an initial computation ρ

′
for which ρ is the suffix. The path

of a computation (l0, σ0) −→ . . . −→ (ln, σn) is the sequence of program locations
l0, . . . , ln.

Preconditions and Postconditions. Given a condition q over V and an edge e =
(l, l′), a precondition of q w.r.t. e, denoted pre(e, q), is any condition p such that
for every state s, if σ(s) � p and l(s) = l then there exists s′ ∈ next(s) s.t.
σ(s′) � q and l(s′) = l′1. A precondition extends to a path π = l0, . . . , ln in the
natural way. The weakest precondition of q w.r.t. e (resp., π) is implied by any
other precondition, and can be computed in the standard way [8]. We denote it
wp(e, q) (resp., wp(π, q)).

A postcondition of p w.r.t e = (l, l′), denoted post(e, p), is any condition q
such that if σ(s) � p, l(s) = l then for every s′ ∈ next(s), if l(s′) = l′ then
σ(s′) � q. Postconditions can also be extended to paths π = l0, . . . , ln. We use
post(π, p) to denote a postcondition of condition p w.r.t. path π.

Concurrent Programs A concurrent program P . consists of multiple threads
t1, . . . , tm, where each thread ti has the same syntax as a sequential program
over a set of variables Vi and a program location variable pci. The threads com-
municate through shared variables, meaning that generally Vi, Vj are not disjoint
for i �= j. A variable is written by ti if it appears on the left hand side of any
assignment in ti. A variable v is shared between two threads ti, tj if v ∈ Vi∩Vj . A
variable v ∈ Vi is a local variable of ti if v �∈ Vj for every j �= i. Let V =

⋃m
i=1 Vi.

A state of P is a pair (l, σ), where σ is a valuation of V and l = (l1, . . . , lm)
where li is the value of pci. We also assume one common error state ε. Given an
initialization formula φinit over V , the set of initial states consists of all states
(l

init
, σ) where σ � φinit and linit

i is the initial label of ti.
The execution of a concurrent program is interleaving, meaning that exactly

one thread performs a command at each step, and the next thread to execute
is chosen non-deterministically. We consider a sequentially consistent semantics
in which the effect of a single command on the memory is immediate. For s =
(l, σ), let cmd(s, ti) denote the command of thread ti at label li. We denote
next(s, ti) = {s′ | s′ can be obtained from s after ti performs cmd(s, ti)}. A

1 Note that our definition of a precondition does not require all the successors to
satisfy q.
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computation ρ of the concurrent program P is a sequence s0
t1−→ s1

t2−→ . . .
tn−→ sn

s.t. for every two adjacent states si, si+1: si+1 ∈ next(si, t
i+1). We say that ρ is

a computation of thread t in P if tj = t for every 1 ≤ j ≤ n. We define initial
and reachable computations as in the sequential case, but w.r.t. computations
of the concurrent program.

We support synchronization operations by modeling them with atomic con-
trol commands. For example, Lock(lock) is modeled by atomic execution
of assume(lock = false); lock = true. Since our technique models context
switches by explicit calls to env move, we are able to prevent context switches
between these commands.

Safety. A computation of a (sequential or concurrent) program is violating if it
ends in the error state . The computation is safe otherwise. A (sequential or
concurrent) program is safe if it has no initial violating computations. In the
case of a sequential program, we refer to the path of a violating computation as
a violating path.

A Sequential Model Checker is a tool which receives a sequential program
as input, and checks whether the program is safe. If it is, it returns “SAFE”.
Otherwise, it returns a counterexample in the form of a violating path.

3 Our Methodology

In this section we describe our methodology for verifying safety properties of
concurrent programs, given via assertions. The main idea is to use a sequential
model checker in order to verify the concurrent program. Our approach handles
any (fixed) number of threads. However, for simplicity, we describe our approach
for a concurrent program with two threads. The extension to any number of
threads can be found in [30].

In the sequel, we fix a concurrent program P with two threads. We refer
to one as the main thread (tM ) and to the other as the environment thread
(tE), with variables VM and VE and program location variables pcM and pcE ,
respectively. VM and VE might intersect. Let V = VM ∪ VE . Given a state
s = (l, σ), we denote by lM (s) and lE(s) the values of pcM and pcE , respectively.
For simplicity, we assume that safety of P is specified by assertions in tM (this
is not a real restriction of our method).

Our algorithm generates and maintains a sequential program for each thread.
Let PM and PE be the two sequential programs, with variables V̂M ⊇ VM and
V̂E ⊇ VE . Each sequential program might include variables of the other thread
as well, together with additional auxiliary variables not in V . Our approach is
asymmetric, meaning that PM and PE have different roles in the algorithm.
PM is based on the code of tM , and uses a designated function, env move, to
abstract computations of tE . PE is based on the code of tE , and is constructed
in order to answer specific queries for information required by PM , specified via
assumptions and assertions. The algorithm iteratively applies model checking to
each of these programs separately. In each iteration, the code of PM is gradually
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modified, as the algorithm learns new information about the environment, and
the code of PE is adapted to answer the query of interest.

In Sect. 4, we first describe the way our algorithm operates on PM . Dur-
ing the analysis of PM , information about the environment is retrieved using
environment queries: Intuitively, an environment query receives two conditions,
α and β, and checks whether there exists a reachable computation of tE in P
from α to β. The idea is to perform specific guided queries in tE , to search for
computations that might “help” tM to reach a violation. If such a computation
exists, the environment query returns a formula ψ, which ensures that all states
satisfying it can reach β using tE only. We also require that α and ψ overlap. In
order to ensure the reachability of β, the formula ψ might need to address local
variables of tE , as well as pcE . These variables will then be added to PM , and
may be used for the input of future environment queries. If no such computation
of the environment exists, the environment query returns ψ = FALSE. Sect. 5
describes how our algorithm answers environment queries. The formal definition
follows.

Definition 1 (Environment Query) An environment query ReachE(α, β)
receives conditions α and β over V ∪ {pcE}, and returns a formula ψ over
V ∪ {pcE} such that:

1. If there exists a computation of tE in P that is (1) reachable in P , (2) starts
from a state s s.t. s � α and (3) ends in a state s′ s.t. s′ � β, then ψ ∧ α �≡
FALSE.

2. If ψ �≡ FALSE then α ∧ ψ �≡ FALSE and for every state s s.t. s � ψ, there
exists a computation (not necessarily reachable) of tE in P from s to some s′

s.t. s′ � β.

Multiple threads. The key ingredients used by our technique are (i) an env move
function that is used in PM to overapproximate finite computations (of any
length) of tE (see Sect. 4), and (ii) a try start function that is used in PE to
overapproximate initial computations of P in order to let PE simulate non-initial
computations of tE that follow them (see Sect. 5). When P has more than two
threads, the environment of tM consists of multiple threads, hence environment
queries are evaluated by a recursive application of the same approach. Since
the computations we consider in the environment are not necessarily initial, the
main thread of the environment should now include both the env move function
and the try start function. For more details see [30].

4 Analyzing the Main Thread

In this section we describe our algorithm for analyzing the main thread of P for
the purpose of proving P safe or unsafe (Algorithm 1). Algorithm 1 maintains
a sequential program, PM , over V̂M ⊇ VM , which represents the composition of
tM with an abstraction of tE . The algorithm changes the code of PM iteratively,
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Algorithm 1 Algorithm MainThreadCheck
1: procedure MainThreadCheck(tM , tE , φinit)
2: PM = add env move calls in tM and initialize env move()
3: while a violating path exists in PM do // using sequential MC
4: Let π = l0, . . . , ln+1 be a path violating assert(b).
5: if there are no env moves in π then return “Real Violation”
6: let lk be the label of the last env move call in π
7: let πstart = l0, . . . , lk and πend = lk+1, . . . , ln
8: β = wp(πend, ¬b) // see (1) in Sect. 4.3
9: α = post(πstart, φinit) // see (2) in Sect. 4.3

10: Let ψ = ReachE(α, β) // environment query for tE (see Sect. 5)
11: if ψ is FALSE then
12: Let (α′, β′) = GenE(α, β) // see (4) in Sect. 4.3.
13: PM = RefineEnvMove(PM , α′, β′) // see (4) in Sect. 4.3
14: else // see (5) in Sect. 4.3
15: Add assert(¬ψ) in PM at new label l′ right before lk

16: return “Program is Safe”.

by adding new assumptions and assertions, as it learns new information about
the environment.

The abstraction of tE is achieved by introducing a new function, env move.
Context switches from tM to tE are modeled explicitly by calls to env move. The
body of env move changes during the run of Algorithm 1. However, it always has
the property that it over-approximates the set of finite (possibly of length zero)
computations of tE in P that are reachable in P . This is formalized as follows:

Definition 2 (Overapproximation) For a state sm of PM (over V̂M ) s.t.
l(sm) is the beginning or the end of env move, we say that sm matches a state s

of P (over V ) if (1) sm and s agree on V̂M ∩ V , i.e. σ(sm)|V = σ(s)|
̂VM

, where

σ|U is the projection of σ to the variables appearing in U , and (2) if pcE ∈ V̂M ,
then σ(sm)(pcE) = lE(s).

We say that env move overapproximates the computations of tE in P if for
every reachable computation ρ = s

tE−→ . . .
tE−→ s′ of tE in P (possibly of length 0),

and for every state sm s.t. l(sm) is the beginning of env move and sm matches s,
there exists a computation ρm = sm → · · · → s′

m of PM s.t. (1) ρm is a complete
execution of env move, i.e., l(s′

m) is the end of env move and for every other
state s′′

m in ρm, l(s′′
m) is a label within env move, and (2) s′

m matches s′.

The code of PM always consists of the original code of tM , the body of the
env move function (which contains assumptions about the environment), calls
to env move that are added at initialization, and new assertions that are added
during the algorithm. V̂M always consists of VM , possibly pcE , some variables of
VE (that are gradually added by need), and some additional auxiliary variables
needed for the algorithm (see (4) in Sect. 4.3).
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4.1 Initialization

Algorithm 1 starts by constructing the initial version of PM , based on the code of
tM . To do so, it adds explicit calls to env move at every location where a context
switch needs to be considered in tM . The latter set of locations is determined by
an interleaving reduction analysis, which identifies a set of locations, called cut-
points, such that the original program is safe if and only if all the computations
in which context-switches occur only at cut-points are safe.

In addition, the algorithm constructs the initial env move function which
havocs every shared variable of tE and tM that is written by tE . This function
will gradually be refined to represent the environment in a more precise way.

Fig. 1. Peterson’s mutual exclusion algorithm for two threads t0 and t1.

Example 3 We use Peterson’s algorithm [26] for mutual exclusion, presented
in Fig. 1, as a running example. The algorithm contains a busy-wait loop in
both threads, where a thread leaves that loop and enters its critical section only
after the turn variable indicates that it is its turn to enter, or the other thread
gave up on its claim to enter the critical section. In order to specify the safety
property (mutual exclusion), we use additional variables cs0, cs1 which indicate
that t0 and t1 (resp.) are in their critical sections. The safety property is that
¬cs0 ∨ ¬cs1 always holds. It is specified by the assert(!cs1) command in t0
between lines 9 and 12, where cs0 is true

Assume that t0 was chosen as the main thread and t1 as the environment
thread. We generate a sequential program P0, based on the code of t0: we add
env moves at every cut point, as determined by our interleaving reduction mech-
anism. The initial env move only havocs all variables of P0 that are written by
t1, i.e., claim1, turn, cs1 (see Fig.4).

4.2 Iteration of the MainThreadCheck Algorithm

Each iteration of Algorithm 1 starts by applying a sequential model checker to
check whether there exists a violating path (that may involve calls to env move)
in PM (line 3). If not, we conclude that the concurrent program is safe (line 16),
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as the env move function over-approximates the computations of the environ-
ment. If an assertion violation is detected in PM , the model checker returns a
counterexample in the form of a violating path. If there are no env move calls in
the path (line 5), it means that the path represents a genuine violation obtained
by a computation of the original main thread, and hence the program is unsafe.

Otherwise, the violation relies on environment moves, and as such it might be
spurious. We therefore analyze this counterexample as described in Sect. 4.3. The
purpose of the analysis is to check whether tE indeed enables the environment
transitions used along the path. If so, we find “promises of error” for the violated
assertion at earlier stages along the path and add them as new assertions in PM .
Intuitively speaking, a “promise of error” is a property ensuring that tE can make
a sequence of steps that will allow tM to violate its assertion. Such a property
may depend on both threads, and hence it is defined over V ∪ {pcE} (pcM is
given implicitly by the location of the assertion in PM ). Formally, we have the
following definition:

Definition 4 Let ψ,ψ′ be formulas over V ∪ {pcE} and let l, l′ be labels of tM .
We say that (l, ψ) is a promise of (l′, ψ′) if for every state s of P s.t. lM (s) = l
and s � ψ there exists a computation in P starting from s to a state s′ s.t.
lM (s′) = l′ and s′ � ψ′.

If (l, ψ) is a promise of (l′,¬b) and l′ has an assert(b) command, then we
say that (l, ψ) is a promise of error.

Note that the definition is transitive. Specifically, if (l, ψ) is a promise of (l′, ψ′)
and (l′, ψ′) is a promise of error, then (l, ψ) is also a promise of error.
Outcome. Each iteration of Algorithm 1 ends with one of these three scenarios:

1. The algorithm terminates having found a genuine counterexample for P (line
5).

2. The obtained counterexample is found to be spurious since an execution of
env move along the path is proved to be infeasible. The counterexample is
eliminated by refining the env move function (line 13, also see item (4) in the
next section).

3. Spuriousness of the counterexample remains undetermined, but a new promise
of error is generated before the last env move call in the violating path. We
augment PM with a new assertion, representing this promise of error (line 15).

4.3 Analyzing a Potentially Spurious Violating Path

Let π = l0, . . . , ln+1 be a violating path of PM , returned by the sequential
model checker in an iteration of Algorithm 1, which is potentially spurious in
P , i.e., contains at least one env move call. Since π is violating, ln+1 = lε and
cmd(ln) =assert(b) for some condition b. Let lk, for some 0 ≤ k ≤ (n − 1), be
the location of the last env move in π. We perform the following steps, illustrated
by Fig.2:
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Fig. 2. (a) If ReachE(α, β) = FALSE, we search for more general α′ and β′ which
restrict the environment transition; (b) If ReachE(α, β) = ψ �= FALSE, then we know
that ψ leads to β and that ψ ∧ α �= FALSE.

Fig. 3. The sequential program P0

after a few iterations of Algorithm 1.
Fig. 4. The env move function of P0:
initially (without highlighted lines);
and after one refinement (with high-
lighted lines).

(1) Computing condition after the environment step: We compute (backwards)
the weakest precondition of ¬b w.r.t. the path πend = lk+1, . . . , ln to obtain
β = wp(πend,¬b) (line 8). Recall that ¬b is necessarily reachable from β along
πend in PM .
(2) Computing condition before the environment step: We compute (forward) a
postcondition α = post(πstart, φinit) starting from φinit for the path πstart =
l0, . . . , lk (line 9). To ensure progress, we make sure that if πstart ends with a
suffix of asserts then α =⇒ c for every assert(c) command that appears in
this suffix (e.g., by conjoining α with c). Recall that α necessarily holds after
executing πstart in PM from φinit.
(3) Environment query: We compute ψ = ReachE(α, β) (line 10).

Example 5 Figure 3 presents a prefix of PM after a few iterations of the algo-
rithm, before the first refinement of env move (i.e., PM still uses the initial
env move function). The previous iterations found new promises of error, and
augmented PM with new assertions. Consider the initial conditions from Fig.
1, i.e., φinit � [claim0 = claim1 = cs1 = cs0 = false]. Assume that our
sequential model checker found the violation given by the next path: 2, 3, 4, 5,
6, 7, 8, 9,.
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To check whether the last env move call in line 7 represents a real com-
putation of t1, we compute the weakest precondition of the condition ¬b �
cs1 ∧ (¬claim1 ∨ turn = 0), taken from the violated assertion in line 9, w.r.t.
the path πend = 8, 9. The result is β = wp(πend,¬b) = (cs1 ∧ ¬claim1).
The computation of α = post(πstart, φ) for the path πstart = 2, 3, 4, 5, 6 yields
α = (¬cs0∧claim0∧(¬cs1∨claim1)). We then generate an environment query
ReachE(α, β).

(4) Refining the env move function: If ψ = FALSE (line 11) it means that there
is no reachable computation of tE in P from a state s s.t. s |= α to a state s′

s.t. s′ |= β. We apply a generalization procedure GenE(α, β) that returns α′, β′

s.t. α =⇒ α′, β =⇒ β′ and still ReachE(α′, β′) = FALSE (line 12). To do so,
GenE iteratively replaces α and/or β with α′, β′ s.t. α =⇒ α′, β =⇒ β′ and
rechecks ReachE(α′, β′). For example, if α contains a subformula of the form
δ1 ∧ δ2 that appears positively, we attempt to replace it by δ1 or δ2 to obtain
α′.2 We then refine env move to eliminate the environment transition from α′ to
β′ (line 13). Fig.2(a) illustrates this step.

The refinement is done by introducing in env move, after the variables are
havocked, the command (if (α′(W old)) assume(¬β′)), where W old are the
values of the variables before they are havocked in env move (these values are
copied by env move to allow evaluating α′ on the values of the variables before
env move is called). The command blocks all computations of env move from
α′ to β′. Since such computations were proven by the environment query to be
infeasible in tE , we are ensured that env move remains an overapproximation of
the computations of tE .

Example 6 The call to ReachE(α, β) in Example 5 results in ψ = FALSE.
Hence, we apply generalization. We obtain two formulas α′ = TRUE, β′ = β
which indeed satisfy α =⇒ α′, β =⇒ β′ and ReachE(α′, β′) = FALSE.
This means that when tE is called with α′ = TRUE, then no computation of
tE reaches a state satisfying β′ = cs1 ∧ ¬claim1. Fig. 4 presents the env move

function before and after the refinement step based on (α′, β′) takes place. The
refinement step adds the highlighted line to the initial env move function. This
line has the constraint if (true) assume(!cs1 || claim1), derived from the
observation above.

(5) Adding assertions: If ψ �= FALSE, then for every state satisfying ψ there is
a computation of tE in P to a state satisfying β. Since β = wp(πend,¬b), it is
guaranteed that this computation can be extended (in tM ) along the path πend,
which does not use any environment moves, to reach a state s′ that violates
the assertion assert(b). This is illustrated in Fig.2(b). We therefore conclude
that if ψ is satisfied before the env move at label lk, a genuine violation can be
reached, making (l̂k, ψ) a promise of error, where l̂k denotes the label in tM that
corresponds to lk (the label reached after executing the env move called at label

2 More information about the generalization appears in the optimizations section in
[30].
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lk). Therefore, we add a new assertion assert(¬ψ) right before lk (line 15).
In addition, if ψ includes a variable v that is not in V̂M (e.g., pcE), then v is
added to V̂M , its declaration (and initialization, if exists) is added to PM , and
env move is extended to havoc v as well (if it is written by tE).

5 Answering Environment Queries

Recall that an environment query ReachE(α, β) checks whether there exists a
reachable computation ρ of tE in P from a state s |= α to a state s′ |= β. This
computation may involve any finite number of steps of tE , executed without
interference of tM .

If α ∧ β �≡ FALSE, we simply return β, which represents a computation of
length zero. Otherwise, we wish to apply a sequential model checker on tE in
order to reveal such computations, or conclude there are none. However, the
computation ρ may not be initial, while our sequential model checker can only
search for violating paths starting from an initial state. Hence we construct a
modified sequential program PE , based on the code of tE , which also represents
(over-approximates) non-initial, but reachable, computations ρ of tE in P . For
that, we add in PE calls to a new function, try start, which models the runs
of tM until the start of ρ. The calls to try start are added in all cut-points
computed by an interleaving reduction (similar to the one applied to tM ).

The try start function. The try start function is responsible for non-
deterministically setting the start point of ρ, where context switches to tM
are no longer allowed. This is done by setting a new start variable to true
(provided that its value is not yet true). We refer to the latter call as the acti-
vation try start. As long as start is false (i.e., prior to the activation call),
try start havocs the variables written by tM . When start is set to true, we add
an assume(α) command after the havoc commands as this is the state chosen to
start the computation. To handle the case where pcE appears in α, try start
receives the original location (in tE) in which it is called as a parameter, and
updates the explicit pcE variable. Whenever start is already true, try start
immediately exits, ensuring that ρ indeed only uses transitions of tE .

In PE , we also add assertions of the form assert(!start || ¬β) after every
call to try start. Hence, a violating path, if found, reaches start ∧ β, i.e., it
captures a computation in which α was satisfied (when start was set to true),
and reached β.
Returning Result. If a violating path is not found, we return ReachE(α, β) =
FALSE. If a violating path m0, . . . ,mn+1 is found, let mk be the label of the
activation try start for some 0 ≤ k ≤ (n − 1). Let πE be the projection of
mk+1, . . . ,mn−1 to tE . We compute the weakest precondition of β w.r.t. the path
πE and obtain ψ = wp(πE , β). The computed ψ satisfies the desired requirement:
For every state s of P s.t. s � wp(πE , β), there exists a computation ρ of tE
starting from s which follows the path πE and reaches a state s′ satisfying β.
Note that ρ might not be reachable, as in the prefix we used an abstraction of
tM . That means that ReachE(α, β) is not “exact” and may return ψ �= FALSE
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when there is no reachable computations as required. However, it satisfies the
requirements of Definition 1, which is sufficient for soundness and progress. The
intuition is that checking the reachability of ψ is done by the main thread.

For an example demonstrating how an environment query is answered
see [30].

6 Soundness and Progress

Our algorithm for verifying the concurrent program P terminates when either
(i)all the assertions in PM are proven safe (i.e., neither the original error nor
all the new promises of error can be reached in PM ), in which case Algorithm
1 returns “Program is Safe”. (ii) a violation of some assertion in PM , which
indicates either the original error or a promise of error, is reached without any
env move calls, in which case Algorithm 1 returns “Real Violation”. The follow-
ing theorem summarizes its soundness3.

Theorem 1 If Algorithm 1 returns “Safe” then the concurrent program P has
no violating computation; If it returns “Real violation” then P has a violating
computation.

The proof of the first claim shows that our algorithm maintains the overapprox-
imation property of env move (see Definition 2), from which the claim follows
immediately. In the proof of the second claim, we show that the properties of an
environment query (see Definition 1) and of promises of errors (Definition 4) are
satisfied.

While termination is not guaranteed for programs over infinite domains, the
algorithm is ensured to make progress in the following sense. Each iteration
either refines env move (step (4) in Sect. 4.3), making it more precise w.r.t. the
real environment, or generates new promises of errors at earlier stages along the
violating path (step (5) in Sect. 4.3). In the former case, the set of pairs of states
(s, s′) represented by the start and end states of computations of env move is
strictly decreasing – this set overapproximates the set of pairs of states (s, s′) for
which tE has a reachable computation from state s to state s′ (see Definition 2).
In the latter case, the set of states known to lead to a real violation of safety is
strictly increasing. In both cases, the other set remains unchanged.

When the domain of all variables is finite, these two sets are bounded, hence
the algorithm is guaranteed to terminate.

7 Experimental Results and Conclusion

Setup. We implemented our algorithm in a prototype tool called CoMuS. The
implementation is written in Python 3.5, uses pycparser [2] for parsing and
transforming C programs, uses SeaHorn [18] for sequential model checking, and

3 Full proofs appear in https://tinyurl.com/comusfull.

https://tinyurl.com/comusfull
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uses Z3 [7] to check logical implications for some optimizations. A description of
the optimizations can be found in [30]. CoMuS currently supports only a subset
of the syntax of C (see Sect. 2). It does not perform alias analysis and hence
has limited pointers support. It also does not support dynamic thread creations,
although we support any fixed number of threads.

We compare CoMuS with Threader [27], VVT [15] and UL-CSeq [23], the
last two being the top scoring model checkers on the concurrency benchmark
among sound unbounded tools in SVCOMP’16 and SVCOMP’17 (resp.). On the
concurrency benchmark, VVT was 4th overall in SVCOMP’16, and UL-CSeq was
8th overall in SVCOMP’17 4. Threader performs modular verification, abstracts
each thread separately and uses an interference abstraction for each pair of
threads. UL-CSeq performs a reduction to a single non-deterministic sequential
program. We used it in its default mode, with CPAChecker [3] as a backend.
VVT combines bounded model checking for bug finding with an IC3 [4] based
method for full verification.

We ran the experiments on a x86-64 Linux machine, running Ubuntu 16.04
(Xenial) using Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz with 8GB of RAM.

Experiments. We evaluated the tools using three experiments. One compares the
four tools on concurrent programs with a clear hierarchy. The second compares
syntactically similar programs with and without hierarchal structure to evaluate
the effect of the structure on the verification time. The last one looked at general
concurrent programs.

Hierarchically structured programs. For the first experiment, we used three
concurrent dynamic-programming algorithms: Sum-Matrix, Pascal-Triangle and
Longest-Increasing-Subsequence. The Sum-Matrix programs receive a matrix A
as input. For every pair of indexes (i, j), it computes the sum of all elements
A[k, l], where k ≥ i and l ≥ j. In their concurrent version, each thread is respon-
sible for the computation of a single row. The Pascal-Triangle programs compute
all the binomial coefficients up to a given bound. Each thread computes one row
of the triangle, where each element in the row depends on two results of the
previous row. The Longest-Increasing-Subsequence programs receive an array,
and compute for each index i, the length of the longest increasing subsequence
that ends at index i. Each thread is responsible for computing the result for a
given index of the array, depending on the result of all prefixes. Both these and
the matrix programs are infinite state, as the elements of the array (resp. the
matrix) are unbounded inputs.

These algorithms have a natural definition for any finite number of threads.
Typically, the verification becomes harder as the number of threads increases.
For evaluation, we used programs with an increasing number of threads, and
check the influence of the number on the different tools. For each instance, we

4 The same benchmark was used for unbounded sound tools and tools which per-
form unsound bounded reductions. Bounded tools are typically ranked higher. Our
method is unbounded and is able to provide proofs, hence we find the selected tools
more suitable for comparison.
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use both a safe and an unsafe version. Both versions differ from each other either
only by a change of specification, or by a slight modification that introduces a
bug.

The chosen programs have two meaningful characteristics: (i) They exhibit
non-trivial concurrency. This means that each thread performs a series of com-
putations, and it can advance when the data for each computation is ready,
without waiting for the threads it depends on to complete. Consider the Sum-
Matrix problem as an example. Assume thread ti needs to compute the result
at some location (i, j), and that each row is computed backwards (from the last
cell to the first). The computation exploits the results of thread ti+1. Thread
ti needs to wait for thread ti+1 to compute the result for location (i + 1, j).
However, ti does not wait for ti+1 to terminate, as it can compute the cell (i, j),
while ti+1 continues to compute (i + 1, j − 1). (ii) Their data flow graph has a
clear chain structure. That is, the threads can be ordered in a chain hierarchy,
and each thread only requires information computed by its immediate successor.

Fig. 5. Run times [secs] for all four tools for verifying concurrent dynamic programs
algorithms.

Figure 5 summarizes the results for these programs. The timeout was set to
3600 s. The code of the programs is available at tinyurl.com/comusatva18. We
include in the table also our running example, the Peterson algorithm.

The results demonstrate a clear advantage for CoMuS for verification (i.e., for
safe programs) as the number of threads increases. This can be attributed to the
chain structure that lets CoMuS minimize the amount of information transferred
between threads. For falsification, CoMuS is outperformed by VVT’s bounded
method. However, it still performs significantly better than the two other tools
when the number of threads grows.
Hierarchical vs. non-hierarchical programs. The programs used for this evaluation
are variants of the “fib bench” examples of the SV-COMP concurrency bench-
mark. We compare programs in which the data flow graph has a ring topology,
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vs. programs in which it has a chain topology. For the ring case, consider a pro-
gram with threads t0, . . . , tn−1 and variables v0, . . . , vn−1. Each thread ti runs
in a loop, and iteratively performs vi+=v(i+1(mod n)). The checked property is
that v0 does not surpass an upper bound. The chain case is identical except that
for the last thread, tn−1, we break the chain and perform vn−1+=1 instead of
vn−1+=v0. Figure 6 presents the results of this comparison. All the programs in
the table are safe and with two loop iterations. The timeout was set to 1200 s.

For the ring case, all tools fail to verify programs with ≥ 4 threads. Threader
presents similar results for both ring and chain topologies. VVT benefits from
the less dependent chain topology, but still timeouts on > 3 threads. CoMuS, on
the other hand, is designed to exploit hierarchy, and benefits significantly from
the chain topology, where it verifies all instances. UL-CSeq is excluded from the
table as it times-out on the “fib bench” examples (both in our experiments and
in the SV-COMP results).

The reason for CoMus’s different runtime on the chain and ring variants
is that for programs that have no clear hierarchy (as in the ring programs),
the conditions passed to the environment queries must include information rele-
vant to the caller thread; a manual inspection shows that they typically become
more complex. As similar phenomenon happens if the verification order used by
CoMuS is not aligned with the hierarchy of the program. For example, switch-
ing the verification order of the last two threads in the long th3 safe example,
increases the verification time from 10 to 25 s.

Fig. 6. Run times [secs] for fib bench programs with ring topology vs. chain topology.

General concurrent programs. We also evaluated the tools on a partial subset
of the SV-COMP concurrency benchmark, whose code is supported by CoMuS.
Typically, on these runs CoMuS was outperformed by the other tools. We con-
clude that even though our method can be applied to programs without a clear
hierarchical structure, it is particularly beneficial for programs in which the hier-
archy is inherent.

Conclusion. In this work we develop an automatic, modular and hierarchical
method for proving or disproving safety of concurrent programs by exploiting
model checking for sequential programs. The method can handle infinite-state
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programs. It is sound and unbounded. We implemented our approach in a pro-
totype tool called CoMuS, which compares favorably with top scoring model
checkers on a particular class of problems, as previously characterized. In the
future we intend to exploit internal information gathered by the sequential model
checker (e.g., SeaHorn) to further speedup our results. We would also like to
examine how to apply our approach to other hierarchies (e.g., trees).
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Abstract. Automated program verification is a difficult problem. It is
undecidable even for transition systems over Linear Integer Arithmetic
(LIA). Extending the transition system with theory of Arrays, further
complicates the problem by requiring inference and reasoning with uni-
versally quantified formulas. In this paper, we present a new algorithm,
Quic3, that extends IC3 to infer universally quantified invariants over
the combined theory of LIA and Arrays. Unlike other approaches that
use either IC3 or an SMT solver as a black box, Quic3 carefully man-
ages quantified generalization (to construct quantified invariants) and
quantifier instantiation (to detect convergence in the presence of quan-
tifiers). While Quic3 is not guaranteed to converge, it is guaranteed to
make progress by exploring longer and longer executions. We have imple-
mented Quic3 within the Constrained Horn Clause solver engine of Z3
and experimented with it by applying Quic3 to verifying a variety of
public benchmarks of array manipulating C programs.

1 Introduction

Algorithmic logic-based verification (ALV) is one of the most prominent
approaches for automated verification of software. ALV approaches use SAT and
SMT solvers to reason about bounded program executions; and generalization
techniques, such as interpolation, to lift the reasoning to unbounded executions.
In recent years, IC3 [8] (originally proposed for hardware model checking) and
its extensions to Constrained Horn Clauses (CHC) over SMT theories [21,24] has
emerged as the most dominant ALV technique. The efficiency of the IC3 frame-
work is demonstrated by success of such verification tools as SeaHorn [19].

The IC3 framework has been successfully extended to deal with arith-
metic [21], arithmetic and arrays [24], and universal quantifiers [23]. However, no
extension supports the combination of all three. Extending IC3 to Linear Integer
Arithmetic (LIA), Arrays, and Quantifiers is the subject of this paper. Namely,
we present a technique to discover universally quantified solutions to CHC over
the theories of LIA and Arrays. These solutions correspond to universally quan-
tified inductive invariants of array manipulating programs.

For convenience of presentation, we present our approach over a transition
system modelled using the theories of Linear Integer Arithmetic (LIA) and
c© Springer Nature Switzerland AG 2018
S. K. Lahiri and C. Wang (Eds.): ATVA 2018, LNCS 11138, pp. 248–266, 2018.
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Arrays, and not the more general, but less intuitive, setting of CHCs. Inductive
invariants of such transition systems are typically quantified, which introduces
two major challenges: (i) quantifiers tremendously increase the search space for
a candidate inductive invariant, and (i) they require deciding satisfiability of
quantified formulas – itself an undecidable problem.

Existing ALV techniques for inferring universally quantified arithmetic invari-
ants either restrict the shape of the quantifiers and reduce to quantifier free
inference [7,20,29], or guess quantified invariants from bounded executions [1].

In this paper, we introduce Quic3 – an extension of IC3 [8,21,25] to uni-
versally quantified invariants. Rather than fixing the shape of the invariant, or
discovering quantifiers as a post-processing phase, Quic3 computes the neces-
sary quantifiers on demand by taking quantifiers into account during the search
for invariants. The key ideas are to allow existential quantifiers in proof obliga-
tions (or, counterexamples to induction) so that they are blocked by universally
quantified lemmas, and to extend lemma generalization to add quantifiers.

Generating quantifiers on demand gives more control over the inductiveness
checks. These checks (i.e., pushing in IC3) require deciding satisfiability of uni-
versally quantified formulas over the combined theory of Arrays and LIA. This
is undecidable, and is typically addressed in SMT solvers by quantifier instanti-
ation in which a universally quantified formula ∀x · ϕ(x) is approximated by a
finite set of ground instances of ϕ. SMT solvers, such as Z3 [12], employ sophisti-
cated heuristics (e.g., [15]) to find a sufficient set of instantiations. However, the
heuristics are only complete in limited situations (recall, the problem is unde-
cidable in general), and it is typical for the solver to return unknown, or, even
worse, diverge in an infinite set of instantiations.

Instead of using an SMT solver as a black-box, Quic3 generates and main-
tains a set of instantiations on demand. This ensures that Quic3 always makes
progress and is never stuck in a single inductiveness check. The generation of
instances is driven by the blocking phase of IC3 and is supplemented by tra-
ditional pattern-based triggers. Generating both universally quantified lemmas
and their instantiations on demand, driven by the property, offers additional
flexibility compared to the eager quantifier instantiation approach of [7,20,29].

Combining the search for all of the ingredients (quantified and quantifier-free
formulas, and instantiations) in a single procedure improves the control over the
verification process. For example, even though there is no guarantee of conver-
gence (the problem is, after all, undecidable), we guarantee that Quic3 makes
progress, exploring more of the program, and discovering a counter-example
(even the shortest one) if it exists.

While our intended target is program verification, we have implemented
Quic3 in a more general setting of Constrained Horn Clauses (CHC). We build
on the Generalized PDR engines [21,25] in Z3. The input is a set of CHC in
SMT-LIB format, and the output is a universally quantified inductive invariant,
or a counter-example. To evaluate Quic3, we have used array manipulating C
programs from SV-COMP. We show that our implementation is competitive and
can automatically discover non-trivial quantified invariants.
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In summary, the paper makes the following contributions: (a) extends IC3
framework to support quantifiers; (b) develops quantifier generalization tech-
niques; (c) develops techniques for discovering quantifier instantiations during
verification; and (d) reports on our implementation for software verification.

2 Preliminaries

Logic. We consider First Order Logic modulo the combined theory of Linear
Integer Arithmetic (LIA) and Arrays. We denote the theory by T and the logic
by FOL(T ). We assume that the reader is familiar with the basic notions of
FOL(T ) and provide only a brief description to set the notation. Formulas in
FOL(T ) are defined over a signature Σ which includes sorts int and array, where
sort int is also used as the sort of the array indices and data. We assume that
the signature Σ includes equality (=), interpreted functions, predicates, and
constants of arithmetic (i.e., the functions +, −, ∗, the predicates <, ≤, and the
constants 1, 2, etc.) and of arrays (i.e., the functions sel and store).

In addition, Σ may be extended with uninterpreted constants. In particular,
we assume that Σ includes special Skolem uninterpreted constants SK = {ski}
of sort int for i in natural numbers.

We denote by ΣT the interpreted part of Σ, and by X ⊆ Σ the set of
uninterpreted constants (e.g., a or ski, but not 1). In the sequel we write ϕ(X),
and say that ϕ is defined over X, to denote that ϕ is defined over signature
Σ = ΣT ∪ X. We write Const(ϕ) ⊆ X for the set of all uninterpreted constants
that appear in ϕ. In the rest of the paper, whenever we refer to constants, we
only refer to the uninterpreted ones.

We write T for the set of terms of FOL(T ), and V for the set of (sorted)
variables. We assume that int variables in V are of the form vi, where i is a
natural number. Thus, we can refer to all such variables by their numeric name.
For a formula ϕ, we write Terms(ϕ) ⊆ T and FVars(ϕ) ⊆ V for the terms and
free variables of ϕ, respectively.

A substitution σ : V → T is a partial mapping from V to terms in T that
pertains to the sort constraints. We write dom(σ) to denote the domain of σ,
and range(σ) to denote its range. For a formula ϕ, we write ϕσ for the result
of applying substitution σ to ϕ. Abusing notation, we write ∅ for an empty
substitution, i.e., a substitution σ such that dom(σ) = ∅. Given two substitutions
σ1 and σ2, we write (σ1 | σ2) for a composition of substitutions defined such that:
(σ1 | σ2)(x) = σ1(x) if x ∈ dom(σ1), and σ2(x), otherwise. We define a special
Skolem substitution sk : V → T such that sk(vi) = sk i for sk i ∈ SK . Given a
formula L, we write Lsk for Lsk , and given a substitution σ.

We write abs(U,ϕ) = (ψ, σ) for an abstraction function that given a set of
uninterpreted constants U and a formula ϕ returns an abstraction ψ of ϕ in
which the constants are replaced by free variables, as well as a substitution σ
that records the mapping of variables back to the constants that they abstract.
Formally, we require that abs(U,ϕ) = (ψ, σ) satisfies the following: ψσ = ϕ,
dom(σ) = FVars(ψ) \ FVars(ϕ), and U ∩ Terms(ψ) = ∅. The requirements
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ensure that abs abstracts all uninterpreted constants in U , and σ maps the
newly introduced variables back to the constants. Furthermore, we require that
for every skolem constant sk i in U , abs(U,ϕ) abstracts sk i in ϕ to vi in ψ, and
accordingly, σ(vi) = sk i. This ensures that applying skolemization, followed by
abstraction of SK , reintroduces the same variables and does not result in variable
renaming. That is, abs(SK , ϕsk ) = (ϕ, ).

We write ∀ϕ for a formula obtained from ϕ by universally quantifying all
free variables of ϕ, and ∃ϕ for a formula obtained by existential quantification,
respectively. For convenience, given a set of constants U and a ground formula
ϕ (i.e., a formula where all terms are ground), we write ∃U · ϕ for ∃ψ, where
(ψ, σ) = abs(U,ϕ). We write ϕ ⇒ ψ do denote the validity of ϕ → ψ.

Model Based Projection. Given a ground formula ϕ, a model M of ϕ, and a
set of uninterpreted constants U ⊆ Const(ϕ), (partial, or incomplete) Model
Based Projection, MBP, is a function pMbp(U,ϕ,M) = (ψ,W ) such that
1. ψ is a ground monomial (i.e., conjunction of ground literals), 2. W ⊆ U
and Const(ψ) ⊆ Const(ϕ) \ (U \ W ), 3. ψ ⇒ (∃U \ W · ϕ), 4. M |= ψ, 5.
pMbp is finite ranging in its third argument: for a fixed U and ϕ, the set
{pMbp(U,ϕ,M) | M |= ϕ} is finite. Intuitively, the monomial ψ underapproxi-
mates (implies) the result of eliminating the existential quantifiers pertaining to
U \ W from ϕ (where quantifier elimination itself may not even be defined). It,
therefore, represents one of the ways of satisfying the result of quantifier elimi-
nation. The underapproximation ψ is chosen such that it is consistent with the
provided model M . In this paper, MBP is used as a way to underapproximate
the pre-image of a set of states represented implicitly by some formula.

An MBP is called complete if W is always empty. A complete MBP for
Linear Arithmetic has been presented in [25] and a partial MBP for the theory
of arrays has been presented in [24]. Importantly, in the partial MBP of [24],
the remaining set of constants, W , never contains any constant of sort array.
We refer the readers to [24,25] and to [6] for details. A complete MBP under-
approximates quantifier elimination relative to a given model. Such an MBP
can only exist if the underlying theory admits quantifier elimination. Since the
theory of arrays does not admit quantifier elimination it only admits a partial
MBP.

In the paper, we further require an MBP to eliminate all the constants of
sort array from U , such as the MBP of [24].

Interpolation. Given a ground formula A, and a ground monomial B such that
A ⇒ ¬B, (partial) interpolation, ITP, is a function pItp(A,B) = (ϕ,U), s.t. 1.
ϕ is a ground clause (i.e., a disjunction of ground literals), 2. U ⊆ Const(B) \
Const(A) and Const(ϕ) ⊆ (Const(A) ∩ Const(B)) ∪ U , 3. A ⇒ ∀U · ϕ, and 4.
ϕ ⇒ ¬B. The set of constants U denotes the constants of ϕ that exceed the set
of shared constants of A and B. An interpolation procedure is complete if for
any pair A, B, the returned set U is always empty. The formula ϕ produced by
a complete interpolation procedure is called an interpolant of A and B. Note
that our definitions admit a trivial partial interpolation procedure defined as
pItptriv (A,B) = (¬B,Const(B) \ Const(A)).
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Safety problem. We represent transition systems via formulas in FOL(T ). The
states of the system correspond to structures over a signature Σ = ΣT ∪X, where
X denotes the set of (uninterpreted) constants. The constants in X are used to
represent program variables. A transition system is a pair 〈Init(X),Tr(X,X ′)〉,
where Init and Tr are quantifier-free ground formulas in FOL(T ). Init rep-
resents the initial states of the system and Tr represents the transition rela-
tion. We write Tr(X,X ′) to denote that Tr is defined over the signature
ΣT ∪ X ∪ X ′, where X is used to represent the pre-state of a transition, and
X ′ = {a′ | a ∈ X} is used to represent the post-state. A safety problem is a triple
〈Init(X),Tr(X,X ′),Bad(X)〉, where 〈Init ,Tr〉 is a transition system and Bad
is a quantifier-free ground formula in FOL(T ) representing a set of bad states.

The safety problem 〈Init(X),Tr(X,X ′),Bad(X)〉 has a counterexample of
length k if the following formula is satisfiable:

BMC k(Init ,Tr ,Bad) = Init(X0) ∧
k−1∧

i=0

Tr(Xi,Xi+1) ∧ Bad(Xk),

where Xi = {ai | a ∈ X} is a copy of the constants used to represent the state
of the system after the execution of i steps. The transition system is safe if the
safety problem has no counterexample, of any length.

Interpolation sequence and inductive invariants. An interpolation sequence of
length k for a safety problem 〈Init(X),Tr(X,X ′),Bad(X)〉 is a sequence of for-
mulas I1(X), . . . , Ik(X) such that (i) Init(X) ⇒ I1(X), (ii) Ij(X)∧Tr(X,X ′) ⇒
Ij+1(X ′) for every 1 ≤ j ≤ k − 1, and (iii) Ik(X) ⇒ ¬Bad(X). If an
interpolation sequence of length k exists, then the transition system has no
counterexample of length k. An inductive invariant is a formula Inv(X) such
that (i) Init(X) ⇒ Inv(X), (ii) Inv(X) ∧ Tr(X,X ′) ⇒ Inv(X ′), and (iii)
Inv(X) ⇒ ¬Bad(X). If such an inductive invariant exists, then the transition
system is safe.

3 Quantified IC3

In this section, we present Quic3 – a procedure for determining a safety of a tran-
sition system by inferring quantified inductive invariants. Given a safety prob-
lem, Quic3 attempts to discover an inductive invariant Inv(X) as a universally-
quantified formula of FOL(T ) (where quantification is restricted to variables of
sort int) or produce a counterexample.

We first present Quic3 as a set of rules, following the presentation style
of [5,18,21,24,25]. We focus on the data structures, the key differences between
Quic3 and IC3, and soundness of the rules. An imperative procedure based
on these rules is presented in Sect. 4. We assume that the reader is familiar
with the basics of IC3. Throughout the section, we fix a safety problem P =
〈Init(X),Tr(X,X ′),Bad(X)〉, and assume that Init , Tr and Bad are quantifier
free ground formulas. For convenience of presentation, we use the notation F(A)
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Input: A safety problem 〈Init(X),Tr(X, X ′),Bad(X)〉.
Assumptions: Init , Tr and Bad are quantifier free.
Data: A POB queue Q, where a POB c ∈ Q is a triple 〈m, σ, i〉, m is a

conjunction of literals over X and free variables, σ is a substitution s.t.
mσ is ground, and i ∈ N. A level N . A quantified trace T = Q0, Q1, . . .,
where for every pair (�, σ) ∈ Qi, � is a quantifier-free formula over X and
free variables and σ a substitution s.t. �σ is ground.

Notation: F(A) = (A(X) ∧ Tr(X, X ′)) ∨ Init(X ′); qi(Q) = {�σ | (�, σ) ∈ Q};
∀Q = {∀� | (�, σ) ∈ Q}.

Output: Safe or Cex
Initially: Q = ∅, N = 0, Q0 = {(Init , ∅)}, ∀i > 0 · Qi = ∅.
repeat

Safe If there is an i < N s.t. ∀Qi ⊆ ∀Qi+1 return Safe.

Cex If there is an m, σ s.t. 〈m, σ, 0〉 ∈ Q return Cex .

Unfold If qi(QN ) ⇒ ¬Bad , then set N ← N + 1.

Candidate If for some m, m ⇒ qi(QN ) ∧ Bad , then add 〈m, ∅, N〉 to Q.

Predecessor If 〈m, ξ, i + 1〉 ∈ Q and there is a model M s.t.
M |= qi(Qi) ∧ Tr ∧ (m′

sk ), add 〈ψ, σ, i〉 to Q, where (ψ, σ) = abs(U, ϕ) and
(ϕ, U) = pMbp(X ′ ∪ SK ,Tr ∧ m′

sk , M).

NewLemma For 0 ≤ i < N , given a POB 〈m, σ, i + 1〉 ∈ Q s.t.
F(qi(Qi)) ∧ m′

sk is unsatisfiable, and L′ = Itp(F(qi(Qi)), m
′
sk ),

add (�, σ) to Qj for j ≤ i + 1, where (�, ) = abs(SK , L).

Push For 0 ≤ i < N and ((ϕ ∨ ψ), σ) ∈ Qi, if (ϕ, σ) �∈ Qi+1, Init ⇒ ∀ϕ and
(∀ϕ) ∧ ∀Qi ∧ qi(Qi) ∧ Tr ⇒ ∀ϕ′, then add (ϕ, σ) to Qj , for all j ≤ i + 1.

until ∞;
Algorithm 1: The rules of Quic3 procedure.

to denote the formula (A(X) ∧ Tr(X,X ′)) ∨ Init(X ′) that corresponds to the
forward image of A over the Tr extended by the initial states.

The rules of Quic3 are shown in Algorithm 1. Similar to IC3, Quic3 main-
tains a queue Q of proof obligations (POBs), and a monotone inductive trace T
of frames containing lemmas at different levels. However, both the proof obliga-
tions and the lemmas maintained by Quic3 are quantified.

Quantified Proof Obligations. Each POB in Q is a triple 〈m,σ, i〉, where m is a
monomial over X such that FVars(m) are of sort int, σ is a substitution such that
FVars(m) ⊆ dom(σ) and range(σ) ⊆ X ′ ∪ SK , and i is a natural number repre-
senting the frame index at which the POB should be either blocked or extended.
The POB 〈m,σ, i〉 expresses an obligation to show that no state satisfying ∃m
is reachable in i steps of Tr . The substitution σ records the specific instance of
the free variables in frame i + 1 that were abstracted during construction of m.
Whenever the POB is blocked, a universally quantified lemma ∀� is generated
in frame i (as a generalization of ∀¬m), and, σ is used to discover the specific
instance of ∀� that is necessary to prevent generating the same POB again.
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Quantified Inductive Trace. A quantified monotone inductive trace T is a
sequence of sets Qi. Each Qi is a set of pairs, where for each pair (�, σ) in Qi,
� is a formula over X, possibly with free variables, such that all free variables
FVars(�) are of sort int, and σ is a substitution such that FVars(�) ⊆ dom(σ) and
range(σ) ⊆ X ′∪SK . Intuitively, a pair (�, σ) corresponds to a universally quanti-
fied lemma ∀� and its ground instance �σ. If � has no free variables, it represents
a ground lemma (as in the original IC3). We write ∀Qi = {∀L | (L, σ) ∈ Qi} for
the set of all ground and quantified lemmas in Qi, and qi(Qi) = {�σ | (�, σ) ∈ Qi}
for the set of all instances in Qi.

Quic3 maintains that the trace T is inductive and monotone. That is, it
satisfies the following conditions, where N is the size of T :

Init ⇒ ∀Q0 ∀0 ≤ i < N · ∀Qi ∧ Tr ⇒ ∀Qi+1 ∀Qi+1 ⊆∀Qi

The first two conditions ensure inductiveness and the last ensures syntactic
monotonicity. Both are similar to the corresponding conditions in IC3.

The rules. The rules Safe, Cex, Unfold, Candidate are essentially the same
as their IC3 counterparts. The only exception is that, whenever the lemmas of
frame i are required, the instances qi(Qi) of the quantified lemmas in Qi are
used (instead of ∀Qi). This ensures that the corresponding satisfiability checks
are decidable and do not diverge.

Predecessor rule. Predecessor extends a POB 〈m, ξ, i + 1〉 ∈ Q from frame
i + 1 with a predecessor POB 〈ψ, σ, i〉 at frame i. The precondition to the rule
is satisfiability of qi(Qi) ∧Tr ∧ (m′

sk ). Note that all free variables in the current
POB m are skolemized via the substitution sk (recall that all the free variables
are of sort int) and all constants are primed.

Predecessor rule extends the corresponding rule of IC3 in two ways. First,
POBs are generated using partial MBP. The pMbp(X ′∪SK ,Tr∧m′

sk ,M) is used
to construct a ground monomial ϕ over X ∪X ′ ∪SK , describing a predecessor of
m′

sk . Whenever ϕ contains constants from X ′∪SK, these are abstracted by fresh
free variables to construct a POB ψ over X. Thus, the newly constructed POB
is not ground and its free variables are implicitly existentially quantified. (Since
pMbp is guaranteed to eliminate all constants of sort array, the free variables are
all of sort int). Second, the Predecessor maintains with the POB ψ the substi-
tution σ that corresponds to the inverse of the abstraction used to construct ψ
from ϕ, i.e., ψσ = ϕ. It is used to introduce a ground instance that blocks ψ as
a predecessor of 〈m, ξ, i + 1〉 when the POB is blocked (see NewLemma).

The soundness of Predecessor (in the sense that it does not introduce
spurious counterexamples) rests on the fact that every state in the generated
POB has a Tr successor in the original POB. This is formalized as follows:

Lemma 1. Let 〈m, ξ, i + 1〉 ∈ Q and let (ψ, σ, i) be the POB computed by Pre-
decessor. Then, (∃ψ) ⇒ ∃X ′ · (Tr ∧ ∃m′).

Proof. From the definition of Predecessor, (ψ, σ) = abs(U,ϕ), where (ϕ,U) =
pMbp(X ′ ∪ SK ,Tr ∧ m′

sk ,M). The set U ⊆ X ′ ∪ SK are the constants that



Quantifiers on Demand 255

were not eliminated by MBP. Then, by properties of pMbp, ψσ ⇒ ∃(X ′,SK ) \
U · Tr ∧ m′

sk . Note that (∃U · ϕ) = ∃ψ. By abstracting U in ϕ and existentially
quantifying over the resulting variables in both sides of the implication, we get
that ∃ψ ⇒ ∃X ′,SK · Tr ∧ m′

sk . Since SK does not appear in Tr, the existential
quantification distributes over Tr : ∃X ′,SK · Tr ∧ m′

sk ≡ ∃X ′ · (Tr ∧ ∃m′). �

By induction and Lemma 1, we get that if 〈ψ, σ, i〉 is a POB in Q, then every
state satisfying ∃ψ can reach a state in Bad .

NewLemma rule. NewLemma creates a potentially quantified lemma � and
a corresponding instance �σ to block a quantified POB 〈m,σ, i + 1〉 at level
i + 1. Note that if � is quantified, then while the instance �σ is guaranteed to be
new at level i + 1, the lemma � might already appear in Qi+1. The lemma � is
first computed as in IC3, but using a skolemized version of the POB. Second,
if any skolem constants remain in the lemma, then they are re-abstracted into
the original variables. The corresponding instance of � is determined by the
substitution σ of the POB. Note that the instance �σ is well defined since abs
abstracts skolem constants back into the variables (of sort int) that introduced
them, ensuring that FVars(�) ⊆ dom(σ). Note further that if � has no free
variables, then the substitution σ is redundant and could be replaced by an
empty substitution. (In fact, it is always sufficient to project σ to FVars(�).)

Fig. 1. An array manipulating program.

The soundness of NewLemma follows form the fact that every lemma (�, σ)
that is added to the trace T keeps the trace inductive. Formally:

Lemma 2. Let (�, σ) be a quantified lemma added to Qi+1 by NewLemma.
Then, F(∀Qi) ⇒ (∀�′).

Proof. � is abs(SK , L), where L′ = Itp(F(qi(Qi)),m′
sk ). Therefore, F(qi(Qi))∧

¬L′ is unsatisfiable. Let Ψ be F(∀Qi) ∧ (¬∀�′), and assume, to the contrary,
that Ψ is satisfiable. Since no constants from SK appear in F(∀Qi) and � is
abs(SK , L), Ψ is equi-satisfiable to F(∀Qi)∧ (¬L′). Let M be the corresponding
model. Then, in contradiction, M |= F(qi(Qi)) ∧ (¬L′). �

Rules Predecessor and NewLemma use m′
sk that is skolemized with our

special skolem substitution where sk(vi) = sk i. We note that while the skolem
constants in m′

sk are always a subset of SK and do not overlap with X ∪X ′, they
may overlap the existing skolem constants that appear in the rest of the formula
(e.g., if the rest of the formula contains qi(Qi−1), where the ground instances
result from previously blocked POBs and, therefore, also contain skolem con-
stants). In this sense, our skolemization appears non-standard. However, all the
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claims in this section only rely on the fact that the range of sk is SK and that
SK is disjoint from X ∪ X ′, which holds for sk .

Push rule. Push is similar to its IC3 counterpart. It propagates a (potentially
quantified) lemma to the next frame. The key difference is the use of quantified
formulas ∀Qi (and their instantiations qi(Qi) in the pre-condition of the rule.
Thus, checking applicability of Push requires deciding validity of a quantified
FOL formula, which is undecidable in general. In practice,, we use a weaker,
but decidable, variant of these rules. In particular, we use a finite instantiation
strategy to instantiate ∀Qi in combination with all of the instantiations qi(Qi)
discovered by Quic3 before theses rules are applied. This ensures progress (i.e.,
Quic3 never gets stuck in an application of a rule) at an expense of completeness
(some lemmas are not pushed as far as possible, which impedes divergence).

We illustrate the rules on a simple array-manipulating program init array
shown in Fig. 1. In the program, assume and assert stand for the usual assume
and assert statements, respectively, and nd returns a non-deterministic value.
We assume that the program is converted into a safety problem as usual. In
this problem, a special variable pc is used to indicate the program counter. The
first POB found by Candidate is pc = 3 ∧ sel(A, j) �= 0. Its predecessor, is
pc = 2 ∧ sel(A, v0) �= 0 ∧ 0 ≤ v0 < sz and the corresponding substitution
is (v0 �→ j). Note that since pMbp could not eliminate j, it was replaced by
a free variable. Eventually, this POB is blocked, the lemma that is added is
∀((pc = 2 ∧ 0 ≤ v0 < sz) ⇒ sel(A, v0) = 0).

Fig. 2. Main Procedure (Quic3 Main). Wlog, we assume that Bad is a monomial.

Soundness. We conclude this section by showing that applying Quic3 rules from
Algorithm 1 in any order is sound:

Lemma 3. If Quic3 returns Cex, then P is not safe (and there exists a coun-
terexample). Otherwise, if Quic3 returns Safe, then P is safe.

Proof. The first case follows immediately from Lemma 1. The second case follows
from the properties of the inductive trace maintained by Quic3 that ensure that
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whenever Safe is returned (by Safe rule), a safe inductive invariant is obtained.
Lemma 2 ensures that these properties are preserved whenever a new quantified
lemma is added. Soundness of all other rules follows the same argument as the
corresponding rules of IC3. �

In fact, Quic3 ensures a stronger soundness guarantee:

Lemma 4. In every step of Quic3, for every k < N , the sequence {∀Qi}ki=1 is
an interpolation sequence of length k for P .

Thus, if Quic3 reaches N > k, then there are no counterexample of length k.

4 Progress and Counterexamples

Safety verification of transition systems described in the theory of LIA and
Arrays is undecidable in general. Thus, there is no expectation that Quic3
always terminates. None-the-less, it is desirable for such a procedure to have
strong progress guarantees – the longer it runs, the more executions are explored.
In this section, we show how to orchestrate the rules defining Quic3 (shown in
Algorithm 1) into an effective procedure that guarantees progress in exploration
and produces a shortest counterexample, if it exists.

Realization of Quic3. Figure 2 depicts procedure Quic3 Main – an instance of
Quic3 where each iteration, starting from N = 0, consists of a Quic3 MakeSafe
phase followed by a Quic3 Push phase. The Quic3 MakeSafe phase, described
in Fig. 3, starts by initializing Q to the POB (Bad , ∅, N) (this is a degenerate
application of Candidate that is sufficient when Bad is a monomial). It then
applies Predecessor and NewLemma iteratively until either a counterexample
is found or Q is emptied. NewLemma is preceded by an optional generalization
procedure (Line 3) that may introduce additional quantified variables and record
the constants that they originated from by extending the substitution ξ. We defer
discussion of this procedure to Sect. 5; in the simplest case, it will return the same
lemma with the same substitution ξ. At the end of Quic3 MakeSafe, the trace
(Qi)i is an interpolation sequence of length N . The Quic3 Push applies Push
iteratively from frame i = 1 to i = N . The corresponding satisfiability queries
are restricted to use the existing instances of quantified lemmas and a finite set
of instantiations pre-determined by heuristically chosen triggers. If, as a result of
pushing, two consecutive frames become equal (rule Safe), Quic3 Main returns
Safe.

Progress. Recall that we use a deterministic skolemization procedure. Namely,
for a POB 〈m, ξ, i〉, in every satisfiability check of the form qi(Qi−1) ∧ Tr ∧
(m′

sk ), the same skolem substitution (defined by sk(vi) = sk i) is used in m′
sk ,

even if the rest of the formula (i.e., qi(Qi−1)) changes. The benefit of using a
deterministic skolemization procedure is that it ensures that all applications of
pMbp in Predecessor use exactly the same formula Tr ∧ m′

sk and exactly the
same set of constants. As a result, the number of predecessors (POBs) generated
by applications of Predecessor for each POB is bounded by the finite range of
pMbp in its third (model) argument:
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Fig. 3. Quic3 MakeSafe procedure of Quic3.

Lemma 5. If a deterministic skolemization is used, then for each POB 〈m, ξ, i〉,
the number of POBs generated by applying Predecessor on 〈m, ξ, i〉 is finite.

Proof. For simplicity, we ignore the application of quantified generalization; the
proof extends to handle it as well. After a quantified lemma (�, ξ) is added to
Qi−1, every model M |= qi(Qi−1) ∧ Tr ∧ m′

sk that is discovered when applying
Predecessor on 〈m, ξ, i〉 will be such that M |= �ξ. Recall that the lemma was
generated by a POB 〈ϕ, σ, i − 1〉 that was blocked since qi(Qi−2) ∧ Tr ∧ ϕ′

sk

was unsatisfiable, and (�, ) = abs(SK , L) where L′ = Itp(qi(Qi−2 ∧ Tr), ϕ′
sk ).

Therefore L∧ϕsk ≡ ⊥. Since abs maps each skolem constant back to the variable
that introduced it, we have that the skolems in L are abstracted to the original
variables from ϕ. Hence, �∧ϕ ≡ ⊥, which implies that �ξ∧ϕξ ≡ ⊥. Thus, if M |=
qi(Qi−1) ∧Tr ∧ m′

sk then M �|= ϕξ. Therefore, pMbp(X ′ ∪ SK , T r ∧ m′
sk ,M) �=

(ϕξ, ). Meaning, once the POB that generated the lemma was blocked, it cannot
be rediscovered as a predecessor of 〈m, ξ, i〉. Since the first two arguments of
pMbp are the same in all applications of Predecessor on 〈m, ξ, i〉 (due to the
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deterministic skolemization), the finite range of pMbp implies that only finitely
many predecessors are generated for the POB 〈m, ξ, i〉. �

Thus, for any value of N , there is only a finite number of POBs that are
added to Q and processed by the rules, resulting in a finite number of rule
applications. Moreover, since Quic3 Push restricts the use of quantified lemmas
to existing ground instances and a finite instantiation scheme, and since the other
rules also use only these instances, all satisfiability queries posed to the solver
are of quantifier-free formulas in the combined theories of LIA and Arrays, and
as a result guaranteed to terminate. This means that each rule is terminating.
Therefore, Quic3 Main always makes progress in the following sense:

Lemma 6. For every k ∈ N, Quic3 Main either reaches N = k, returns Safe,
or finds a counterexample.

Shortest Counterexamples. Quic3 Main increases N only after an interpolation
sequence of length N is obtained, in which case it is guaranteed that no coun-
terexample up to this length exists. Combined with Lemma 6 that ensures
progress, this implies that Quic3 Main always find a shortest counterexample, if
one exists:

Corollary 1. If there exists a counterexample, then Quic3 Main is guaranteed
to terminate and return a shortest counterexample.

5 Quantified Generalization

Quic3 uses quantified POBs to generate quantified lemmas. However, these
lemmas are sometimes too specific, hindering convergence. This is addressed
by quantified generalization (QGen), a key part of Quic3. The Quic3 rules
in Algorithm 1 are extended with the rule QGen shown in Algorithm 2, and
Quic3 MakeSafe (Fig. 3) is extended with a call to QGen, which implements
QGen, before a new lemma is added to its corresponding frame.

QGen For 0 ≤ i < n and a lemma (�, ξ) ∈ Qi+1, let g be a formula and σ a
substitution such that (i) gσ ≡ �ξ, (ii) FVars(�) ⊆ FVars(g), and (iii)
F(qi(Qi)) → ∀g′. Then, add (g, σ) to Qj for all 0 ≤ j ≤ i + 1.

Algorithm 2: QGen rule for Quantified Generalization in Quic3.

QGen rule. QGen generalizes a (potentially quantified) lemma (�, ξ) ∈ Qi+1

into a new quantified lemma (g, σ) such that (∀g) → (∀�) is valid, i.e., the new
lemma g is stronger than �. The new quantified lemma g and a substitution ρ (s.t.
gρ ≡ �) are constructed by abstracting some terms of � with fresh universally
quantified variables. If the new formula ∀g is a valid lemma, i.e., F(qi(Qi)) → ∀g′

is valid, then QGen adds (g, σ) to Qj for 0 ≤ j ≤ i + 1, where σ = ξ|ρ. Note
that the check ensures that the new lemma maintains the interpolation sequence
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property of the trace. In the rest of this section, we describe two heuristics to
implement QGen that we found useful in our benchmarks.

Simple QGen abstracts a single term in the input lemma � by introducing one
additional universally quantified variable to �. In the new lemma g, the new
variable v appears only as an index of an array (e.g., sel(A, v)) or as an offset
(e.g., sel(A, i + v)). Simple QGen considers all sel terms in � and identifies
sub-terms t of index terms for which � imposes lower and upper bounds. Each
term t is abstracted in turn with bounds used as guards. For example, if � is
0 < sz → (sel(A, 0) = 42) and t = 0 of sel(A, 0), then a candidate (g, σ) is
0 ≤ v0 < sz → sel(A, v0) = 42, and {v0 �→ 0}, where v0 is universally quantified.

Arithmetic QGen. Simple QGen does not infer correlations neither between
abstracted terms nor between index and value terms. For example, it is unable to
create a lemma of the form ∀v·0 ≤ v < sz → (sel(A, v) = exp(v)), where exp(v) is
some linear expression involving v. Arithmetic QGen addresses this limitation
by extracting and generalizing a correlation between interpreted constants in
the input lemma �. Arithmetic QGen works on lemmas � of the form (ψ ∧
φ0 ∧ · · · ∧ φn−1) → φn, where there is a formula p(v) with free variables v
and a set of substitutions {σk}nk=0 s. t. φk = pσk. For example, � is ((1 <
sz) ∧ (sel(A, 0) = 42)) → (sel(A, 1) = 44), where p(i, j) is sel(A, i) = j, σ0

is {i �→ 0, j �→ 42}, and σ1 is {i �→ 1, j �→ 44}. The substitutions can be
viewed as data points and generalized by a convex hull, denoted ch. For example,
ch({σ0, σ1}) = 0 ≤ i ≤ 1 ∧ j = 2i + 42. The lemma � is strengthened by
replacing the substitution of φn with the convex hull by rewriting � into ∀v ·
(ch({σ1, . . . , σn}) ∧ ψ ∧ φ0 · · · ∧ φn−1) → p(v). In our running example, this
generates ∀i, j · (0 ≤ i ≤ 1 ∧ j = 2i + 42 ∧ 1 < sz) ∧ (sel(A, 0) = 42)) →
(sel(A, i) = j). Note that only φn is generalized, while all other φk, 0 ≤ k < n,
provide the data points. Applying standard generalization might simplify the
lemma further by dropping (sel(A, 0) = 42) and combining i ≤ 1 ∧ 1 < sz into
1 < sz, resulting in ∀i · (0 ≤ i ≤ sz) → (sel(A, i) = 2i+42). Note that arithmetic
QGen applies to arbitrary linear arithmetic terms by replacing the convex hull
(ch) with the polyhedral join (�).

These two generalizations are sufficient for our benchmarks. However, the
power of Quic3 comes from the ability to integrate additional generalizations,
as required. For example, arithmetic QGen can be extended to consider not only
a single lemma, but also mine other existing lemmas for potential data points.

6 Experimental Results

We have implemented Quic3 within the CHC engine of Z3 [12,22] and evalu-
ated it on array manipulating C programs from SV-COMP [4] and from [13].
We have converted C programs to CHC using SeaHorn [19]. In most of these
examples, array bounds are fixed constants. We have manually generalized array
bounds to be symbolic to ensure that the problems require quantified invariants.
Note, however, that our approach is independent of the value of the array bound
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(concrete or symbolic). We stress that using SeaHorn prevents us from using
the “best CHC encoding” for a given problem, which is unfortunately a common
evaluation practice. By using SeaHorn as is, we show how Quic3 deals with
complex realistic intermediate representation. For example, SeaHorn generates
constraints supporting memory allocation and pointer arithmetic. This compli-
cates the necessary inductive invariants even for simple examples. While we could
have used a problem-specific encoding for specially selected benchmarks, such
an encoding does not uniformly extend to all SV-COMP benchmarks.

Experiments were done on a Linux machine with an Intel E3-1240V2 CPU
and a timeout of 300 seconds. The source code for Quic3 is available in the
main Z3 repository at https://github.com/Z3Prover/z3. The CHC for all the
benchmarks are available at https://github.com/chc-comp/quic3. The results
for the safe instances – the most interesting – are shown in Table 1. We compare
with the Spacer engine of Z3. Spacer supports arrays, but not quantifiers.
As expected, Spacer times out on all of the benchmarks. We emphasize the
difference in the number of lemmas discovered by both procedures. Clearly, since
Quic3 discovers quantified lemmas, it generates significantly fewer lemmas than
Spacer. Each quantified lemma discovered by Quic3 represents many ground
lemmas that are discovered by Spacer.

As shown in Table 1, Quic3 times out on some of the instances. This is due
to a deficiency of the current implementation of QGen. Currently, QGen only
considers one candidate for abstraction, and generalization fails if that candidate
fails. Allowing QGen to try several candidates should solve this issue.

Unfortunately, we were unable to compare Quic3 to other related
approaches. To our knowledge, tools that participated in SV-COMP 2018 are not
able to discover the necessary quantified invariants and often use unsound (i.e.,
bounded) inference. The closely related tools, including Safari [1], Booster [2],
and [13] are no longer available. Based on our understanding of their heuristics,
the invariants required in our benchmarks are outside of the templates supported
by these heuristics.

7 Related Work

Universally quantified invariants are necessary for verification of systems with
unbounded state size (i.e., the size of an individual system state is unbounded)
such as array manipulating programs, programs with dynamic memory allo-
cation, and parameterized systems in general. Thus, the problem of universal
invariant inference has been a subject of intense research in a variety of areas
of automated verification. In this section, we present the related work that is
technically closest to ours and is applicable to the area of software verification.

Classical predicate abstraction [3,17] has been adapted to quantified invari-
ants by extending predicates with skolem (fresh) variables [14,26]. This is suf-
ficient for discovering complex loop invariants of array manipulating programs
similar to the ones used in our experiments. These techniques require a decision
procedure for satisfiability of universally quantified formulas, and, significantly

https://github.com/Z3Prover/z3
https://github.com/chc-comp/quic3
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Table 1. Summary of results. TO is timeout; Depth is the size of inductive trace;
Lemmas and Inv are the number of lemmas discovered overall and in invariant, respec-
tively.

Benchmark QUIC Z3/Spacer

Depth Lemmas Inv Time [s] Depth Lemmas

Array-init-const 6 24 7 0.14 130 4,483

Array-init-partial 9 45 12 0.34 126 4,224

Array-mono-set 6 25 9 0.22 70 2,436

Array-mono-tuc 6 25 9 0.21 70 2,422

Array-mul-init-tuc 129 8,136 – TO 131 8,393

Array-nd-2-c-true 6 37 – TO 39 1,482

Array-reverse 6 21 5 0.18 144 729

Array-shadowinit-tuc 30 252 – TO 99 5,005

Array-swap 13 136 64 6.38 45 2,700

Array-swap-twice 14 155 – TO 45 2,991

Sanfoundry-02-tucg 11 89 31 1.57 46 1,986

Sanfoundry-10-tucg 11 71 23 0.67 109 3,245

Sanfoundry-27-tucg 6 24 7 0.14 131 4,568

Std-compMod-tucg 10 120 61 5.48 58 3,871

Std-copy1-tucg 6 33 14 0.33 89 4,035

Std-copy2-tucg 9 65 25 0.77 73 2,751

Std-copy3-tucg 13 109 39 1.86 76 2,806

Std-copy4-tucg 18 217 – TO 85 3,416

Std-copy5-tucg 19 233 76 5.47 90 3,642

Std-copy6-tucg 22 301 – TO 97 3,991

Std-copy7-tucg 25 357 – TO 101 4,321

Std-copy8-tucg 27 430 105 8.05 106 4,581

Benchmark Quic3 Z3/Spacer

Depth Lemmas Inv Time [s] Depth Lemmas

Std-copy9-tucg 31 538 145 14.74 111 5,078

Std-copyInitSum2-tucg 32 511 – TO 77 2,987

Std-copyInitSum3-tucg 14 127 – TO 76 3,103

Std-copyInitSum-tucg 9 59 21 0.43 78 3,085

Std-copyInit-tucg 10 69 27 0.59 75 2,851

Std-find-tucg 8 35 7 0.32 105 2,915

Std-init2-tucg 7 29 8 0.14 88 3,662

Std-init3-tucg 7 30 8 0.14 95 4,122

Std-init4-tucg 7 31 8 0.14 94 3,898

(continued)
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Table 1. (continued)

Benchmark QUIC Z3/Spacer

Depth Lemmas Inv Time [s] Depth Lemmas

Std-init5-tucg 7 32 8 0.14 93 4,152

Std-init6-tucg 7 33 8 0.15 95 4,090

Std-init7-tucg 7 34 8 0.14 100 4,916

Std-init8-tucg 7 35 8 0.15 97 4,604

Std-init9-tucg 7 32 11 0.21 100 4,929

Std-maxInArray-tucg 7 30 9 0.33 132 4,618

Std-minInArray-tucg 7 30 10 0.27 133 4,686

Std-palindrome-tucg 5 14 – TO 64 1,717

Std-part-orig-tucg 10 83 11 11.59 138 5,035

Std-part-tucg 13 103 41 1.7 132 4,746

Std-sort-N-nd-assert-L 12 100 15 5.02 5 17

Std-vararg-tucg-tt 9 40 10 0.23 133 4,622

Std-vector-diff-tucg 12 112 14 2.94 76 2,964

complicate predicate discovery (e.g., [27]). Quic3 extends this work to the IC3
framework in which the predicate discovery is automated and quantifier instan-
tiation and instance discovery are carefully managed throughout the procedure.

Recent work [7,20,29] studies this problem via the perspective of discovering
universally quantified models for CHCs. These works show that fixing the num-
ber of expected quantifiers in an invariant is sufficient to approximate quantified
invariants by discovering a quantifier free invariant of a more complex system.
The complexity comes in a form of transforming linear CHC to non-linear CHC
(linear refers to the shape of CHC, not the theory of constraints). Unlike predi-
cate abstraction, guessing the predicates apriori is not required. However, both
the quantifiers and their instantiations are guessed eagerly based on the syntax
of the input problem. In contrast, Quic3 works directly on linear CHC (i.e.,
a transition system), and discovers quantifiers and instantiations on demand.
Hence, Quic3 is not limited to a fixed number of quantifiers, and, unlike these
techniques, is guaranteed to find the shortest counterexample.

Model-Checking Modulo Theories (MCMT) [16] extends model checking to
array manipulating programs and has been used for verifying heap manipulat-
ing programs and parameterized systems (e.g., [11]). It uses a combination of
quantifier elimination (QELIM) for computing predecessors of Bad , satisfiability
checking of universally quantified formulas for pruning exploration (and conver-
gence check), and custom generalization heuristics. In comparison, Quic3 uses
MBP instead of QELIM and uses generalizations based on bounded exploration.
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Safari [1] (and later Booster [2]), that extend MCMT with Lazy Abstrac-
tion With Interpolation (LAWI) [28], is closest to Quic3. As in LAWI, interpo-
lation (in case of Safari, for the theory of arrays [10]) is used to construct a
quantifier-free proof π of bounded safety. The proof π is generalized by univer-
sally quantifying out some terms, and a decision procedure for universally quan-
tified formulas is used to determine convergence. The key differences between
Safari and Quic3 are the same as between Lawi and IC3. We refer the reader
to [30] for an in-depth comparison. Specifically, Quic3 MakeSafe computes an
interpolation sequence that can be used for Safari. However, unlike Safari,
Quic3 does not rely on an external array interpolation procedure. Moreover,
in Quic3, the generalizations are dynamic and the quantifiers are introduced
as early as possible, potentially exponentially simplifying the bounded proof.
Finally, Quic3 manages its quantifier instantiations to avoid relying on an exter-
nal (semi) decision procedure. The acceleration techniques used in Booster are
orthogonal to Quic3 and can be combined in a form of pre-processing.

To our knowledge, UPDR [23] is the only other extension of IC3 to quanti-
fied invariants. The key difference is that UPDR focuses on programs specified
using the Effectively PRopositional (EPR) fragment of uninterpreted first order
logic (e.g., without arithmetic) for which quantified satisfiability is decidable. As
such, UPDR does not deal with quantifier instantiation and its mechanism for
discovering quantifiers is different. UPDR is also limited to abstract counterex-
amples (i.e., counterexamples to existence of universal inductive invariants, as
opposed to counterexamples to safety).

Interestingly, Quic3 is closely related to algorithms for quantified satisfiabil-
ity (e.g., [6,9,15]). Quic3 uses a MBP to construct a complete instantiation, if
possible. However, unlike [9,15], the convergence (of Quic3 MakeSafe) does not
rely on any syntactic feature of the quantified formula.

8 Conclusion

In this paper, we present Quic3, an extension of IC3 to reasoning about array
manipulating programs by discovering quantified inductive invariants. While our
extension keeps the basic structure of the IC3 framework, it significantly affects
how lemmas and proof obligations are managed and generalized. In particular,
guaranteeing progress in the presence of quantifiers requires careful manage-
ment of the necessary instantiations. Furthermore, discovering quantified lem-
mas, requires new lemma generalization techniques that are able to infer uni-
versally quantified facts based on several examples. Unlike previous works, our
generalizations and instantiations are done on demand guided by the property
and current proof obligations. We have implemented Quic3 in the CHC engine
of Z3 and show that it is competitive for reasoning about C programs.
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instances and beyond. In: FMCAD (2013)

12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

13. Dillig, I., Dillig, T., Aiken, A.: Fluid updates: beyond strong vs. weak updates. In:
European Symposium on Programming (ESOP) (2010)

14. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL
(2002)

15. Ge, Y., de Moura, L.M.: Complete instantiation for quantified formulas in satisfi-
ability modulo theories. In: Computer Aided Verification (CAV) (2009)

16. Ghilardi, S., Ranise, S.: MCMT: a model checker modulo theories. In: Giesl, J.,
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Abstract. We introduce a new logic called Signal Convolution Logic
(SCL) that combines temporal logic with convolutional filters from digi-
tal signal processing. SCL enables to reason about the percentage of time
a formula is satisfied in a bounded interval. We demonstrate that this
new logic is a suitable formalism to effectively express non-functional
requirements in Cyber-Physical Systems displaying noisy and irregular
behaviours. We define both a qualitative and quantitative semantics for
it, providing an efficient monitoring procedure. Finally, we prove SCL at
work to monitor the artificial pancreas controllers that are employed to
automate the delivery of insulin for patients with type-1 diabetes.

1 Introduction

Cyber-Physical Systems (CPS) are engineering, physical and biological systems
tightly integrated with networked computational embedded systems monitoring
and controlling the physical substratum. The behaviour of CPS is generally mod-
elled as a hybrid system where the flow of continuous variables (representing the
state of the physical components) is interleaved with the occurrence of discrete
events (representing the switching from one mode to another, where each mode
may model a different continuous dynamics). The noise generated by sensors
measuring the data plays an important role in the modes switching and it can
be captured using a stochastic extension of hybrid systems.

The exhaustive verification for these systems is in general undecidable. The
available tools for reachability analysis are based on over-approximation of the
possible trajectories and the final reachable set of states may result too coarse
(especially for nonlinear dynamics) to be meaningful. A more practical approach
is to simulate the system and to monitor both the evolution of the continuous

E.B. and L.N. acknowledge the partial support of the Austrian National Research
Network S 11405-N23 (RiSE/SHiNE) of the Austrian Science Fund (FWF). E.B.,
L.N. and S.S. acknowledge the partial support of the ICT COST Action IC1402
(ARVI).

c© Springer Nature Switzerland AG 2018
S. K. Lahiri and C. Wang (Eds.): ATVA 2018, LNCS 11138, pp. 267–283, 2018.
https://doi.org/10.1007/978-3-030-01090-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01090-4_16&domain=pdf


268 S. Silvetti et al.

and discrete state variables with respect to a formal requirement that specifies
the expected temporal behaviour (see [4] for a comprehensive survey).

Temporal logics such as Metric Interval Temporal Logic (MITL) [13] and
its signal variant, Signal Temporal Logic (STL) [7], are powerful formalisms
suitable to specify in a concise way complex temporal properties. In particular,
STL enables to reason about real-time properties of components that exhibit
both discrete and continuous dynamics. The Boolean semantics of STL decides
whether a signal is correct or not w.r.t. a given specification. However, since a
CPS model approximates the real system, the Boolean semantics is not always
suitable to reason about its behaviour, because it is not tolerant to approximation
errors or to uncertainty.

More recently, several notions of quantitative semantics (also called robust-
ness) [7,9,14] have been introduced to overcome this limitation. These semantics
enrich the expressiveness of Boolean semantics, passing from a Boolean concept
of satisfaction (yes/no) to a (continuous) degree of satisfaction. This allows us
to quantify “how much” (w.r.t. a given notion of distance) a specific trajec-
tory of the simulated system satisfies a given requirement. A typical example is
the notion of robustness introduced by Fainekos et al. in [9], where the binary
satisfaction relation is replaced with a quantitative robustness degree function.
The positive or negative sign of the robustness value indicates whether the for-
mula is respectively satisfied or violated. This notion of quantitative semantics is
typically exploited in the falsification analysis [1,4,8,16] to systematically gen-
erate counterexamples by searching, for example, the sequence of inputs that
would minimise the robustness towards the violation of the requirement. On the
other hand, the maximisation of the robustness can be employed to tune the
parameters of the system [2–4,6] to obtain a better resilience. A more thorough
discussion on other quantitative semantics will be provided in Sect. 2.

Motivating Challenges. Despite STL is a powerful specification language, it
does not come without limitations. An important type of properties that STL
cannot express are the non-functional requirements related to the percentage of
time certain events happen. The globally and eventually operators of STL can
only check if a condition is true for all time instants or in at least one time
instant, respectively. There are many real situations where these conditions are
too strict, where it could be interesting to describe a property that is in the mid-
dle between eventually and always. Consider for instance a medical CPS, e.g., a
device measuring glucose level in the blood to release insulin in diabetic patients.
In this scenario, we need to check if glucose level is above (or below) a given
threshold for a certain amount of time, to detect critical settings. Short periods
under Hyperglycemia (high level of glucose) are not dangerous for the patient.
An unhealthy scenario is when the patient remains under Hyperglycemia for
more than 3 h during the day, i.e., for 12.5% of 24 h (see Fig. 1 left). This prop-
erty cannot be specified by STL. A second issue is that often such measurements
are noisy, and measurement errors or short random fluctuations due to environ-
mental factors can easily violate (or induce the satisfaction) of a property. One
way to approach this problem is to filter the signal to reduce the impact of noise,



Signal Convolution Logic 269

Fig. 1. (left) A graphical representation of the property φ : G(t) ≥ 180 for at least
12.5% in [0,24 h], meaning that the concentration of glucose has to be greater than 180
for at least 3h in 24h. (right) A graphical representation of the property ψ : G(t) > 70
for at least 95% in [0,24h]. The bars represents the percentage.

This requires a signal pre-processing phase, which may however alter the signal
introducing spurious behaviours. Another possibility, instead is to ask that the
property is true for at least 95% of operating time, rather than for 100% of time,
this requirements can be seen as a relaxed globally condition (see Fig. 1 right).
Finally, there are situations in which the relevance of events may change if they
happen at different instants in a time window. For instance, while measuring
glucose level in blood, it is more dangerous if the glucose level is high just before
meal, that means “the risk becomes greater as we move away from the previous
meal and approach the next meal”. To capture this, one could give different
weights if the formula is satisfied or not at the end or in the middle of a time
interval, i.e., considering inhomogeneous temporal satisfaction of a formula. This
is also not possible in STL.

Contributions. In this paper, we introduce a new logic based on a new temporal
operator, 〈kT , p〉φ, that we call the convolution operator, which overcomes these
limitations. It depends on a non-linear kernel function kT , and requests that
the convolution between the kernel and the signal (i.e., the satisfaction of φ) is
above a given threshold p. This operator allows us to specify queries about the
fraction of time a certain property is satisfied, possibly weighting unevenly the
satisfaction in a given time interval T , e.g., allowing to distinguish traces that
satisfy a property in specific parts of T . We provide a Boolean semantics, and
then define a quantitative semantics, proving its soundness and correctness with
respect to the former. Similarly to STL, our definition of quantitative semantics
permits to quantify the maximum allowed uniform translation of the signals
preserving the true value of the formula. We also show that SCL is strictly
more expressive than STL(♦,�) (the fragment of STL which considers only
eventually ♦ and globally � operators) and then we provide the monitoring
algorithms for both semantics. Finally, we show SCL at work to monitor the
behaviour of an artificial pancreas device releasing insulin in patients affected
by type-I diabetes.
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Paper structure. The rest of the paper is organized as follows. In Sect. 2 we
discuss the related work. Section 3 provides the necessary preliminaries. Section 4
presents the syntax and the semantics of SCL and discuss its expressiveness.
In Sect. 5, we describe our monitoring algorithm and in Sect. 6 we show an
application of SCL for monitoring an insulin releasing device in diabetic patients.
Finally, we draw final remarks in Sect. 7.

2 Related Work

The first quantitative semantics, introduced by Fainekos et al. [9] and then used
by Donze et al. [7] for STL, is based on the notion of spatial robustness. Their
approach replaces the binary satisfaction relation with a function returning a
real-value representing the distance from the unsatisfiability set in terms of the
uniform norm. In [7] the authors consider also the displacement of a signal in the
time domain (temporal robustness). These semantics, since are related with the
uniform-norm, are very sensitive to glitches (i.e., sporadic peaks in the signals
due to measurement errors).

To overcome this limitation Rodionova et al. [14] proposed a quantitative
semantics based on filtering. More specifically they provide a quantitative seman-
tics for the positive normal form fragment of STL which measures the number
of times a formula it is satisfied within an interval associating with different
types of kernels. However, restricting the quantitative semantics to the positive
normal form gives up the duality property between the eventually and the glob-
ally operators, and the correctness property, which instead are both kept in our
approach. Furthermore, their work is just theoretical and there is no discussion
on how to efficiently evaluate such a properties.

In [1], Akazaki et al. have extended the syntax of STL by introducing aver-
aged temporal operators. Their quantitative semantics expresses the preference
that a specific requirement occurs as earlier as possible or for as long as possible,
in a given time range. Such time inhomogeneity can be evaluated only in the
quantitative semantics (i.e. the new operators, at the Boolean level, are equal
to the classic STL temporal operators). Furthermore, the new operators force
separations of two robustness (positive and negative) and it is lost also in this
case the correctness property.

An alternative way to tackle the noise of a signal is to consider explicitly their
stochasticity. Recently, there has been a great effort to define several stochastic
extensions of STL, such as Stochastic Signal Temporal Logic (StSTL) [12], Prob-
abilistic Signal Temporal Logic (PrSTL) [15] and Chance Constrained Temporal
Logic (C2TL) [11]. The type of quantification is intrinsically different, while the
probabilistic operators quantify on the signal values, our convolutional operator
quantifies over the time in which the nested formula is satisfied. Furthermore,
all these approaches rely on the use of probabilistic atomic predicates that need
to be quantified over the probability distribution of a model (usually a subset
of samples). As such, they need computationally expensive procedures to be
analyzed. Our logic, instead, operates directly on the single trace, without the
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Table 1. Different kind of kernels.

Kernel Expression

Constant (flat(x)) 1(x)/(T1 − T0)

Exponential (exp[α](x)) exp(αx)/
∫
T

exp(ατ)dτ

Gaussian (gauss[μ, σ](x)) exp((x − μ)2)/σ2)/
∫
T

exp((x − μ)2)/σ2)dτ

need of any probabilistic operator, in this respect being closer to digital signal
processing.

3 Background

In this section, we introduce the notions needed later in the paper: signals,
kernels, and convolution.

Definition 1 (Signal). A signal s : T → S is a function from an interval
T ⊆ R to a subset S of Rn, n < +∞. Let us denote with D(T ;S) a generic set
of signals.

When S = {0, 1}, we talk of Boolean signals. In this paper, we consider piecewise
constant signals, represented by a sequence of time-stamps and values. Different
interpolation schemes (e.g. piecewise linear signals) can be treated similarly as
well.

Definition 2 (Bounded Kernel). Let be T ⊂ R a closed interval. We call
bounded kernel a function kT : R → R such that:

∫
T

kT (τ)dτ = 1 and ∀t ∈ T, kT (t) > 0. (1)

Several examples of kernels are shown in Table 1. We call T the time window
of the bounded kernel kT , which will be used as a convolution 1 operator, defined
as:

(kT ∗ f)(t) =
∫

t+T

kT (τ − t)f(τ)dτ

We also write kT (t) ∗ f(t) in place of (kT ∗ f)(t).
In the rest of the paper, we assume that the function f is always a Boolean

function: f : R → {0, 1}. This implies that ∀t ∈ R, (kT ∗ f)(t) ∈ [0, 1], i.e. the
convolution kernel will assume a value in [0, 1] This value can be interpreted
as a sort of measure of how long the function f is true in t + T . In fact, the
kernel induces a measure on the time line, giving different importance of the
time instants contained in its time window T . As an example, suppose we are
interested in designing a system to make an output signal f as true as possible
1 This operation is in fact a cross-correlation, but here we use the same convention of

the deep learning community and call it convolution.
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in a time window T (i.e., maximizing kT ∗ f). Using a non-constant kernel kT

will put more effort in making f true in the temporal regions of T where the
value of the kernel kT is higher. More formally, the analytical interpretation of
the convolution is simply the expectation value of f in a specific interval t + T
w.r.t. the measure kT (dx) induced by the kernel. In Fig. 2 (a) we show some
example of different convolution operators on the same signal.

4 Signal Convolution Logic

In this section, we present the syntax and semantics of SCL, in particular of the
new convolutional operator 〈kT , p〉 , discussing also its soundness and correctness,
and finally comment on the expressiveness of the logic.

Syntax and Semantics. The atomic predicates of SCL are inequalities on a
set of real-valued variables, i.e. of the form μ(s):=[g(s) ≥ 0], where g : S → R is
a continuous function, s ∈ S and consequently μ : S → {,⊥}. The well formed
formulas LSCL of SCL are defined by the following grammar:

φ := ⊥ | |μ | ¬φ |φ ∨ φ | 〈kT , p〉φ, (2)

where μ are atomic predicates as defined above, kT is a bounded kernel and p ∈
[0, 1]. SCL introduces the novel convolutional operator 〈kT , p〉φ (more precise,
a family of them) defined parametrically w.r.t. a kernel kT and a threshold p.
This operator specifies the probability of φ being true in T , computed w.r.t.
the probability measure kT (ds) of T , the choice of different types of kernel k
will give rise to different kind of operators (e.g. a constant kernel will measure
the fraction of time φ is true in T , while an exponentially decreasing kernel will
concentrate the focus on the initial part of T ). As usual, we interpret the SCL
formulas over signals.

Before describing the semantics, we give a couple of examples of proper-
ties. Considering again the glucose scenario presented in Sect. 1. The prop-
erties in Fig. 1 are specified in SCL as φ : 〈flat[0,24h], 0.125〉G(t) ≥ 180,
ψ : 〈flat[0,24h], 0.95〉G(t) ≥ 70. We can use instead an exponential increas-
ing kernel to described the more dangerous situation of high glucose closed to
the next meal, e.g. ψ : 〈exp[0,8h], 0.95〉G(t) ≥ 180.

We introduce now the Boolean and quantitative semantics. As the tempo-
ral operators 〈kT , p〉 are time-bounded, time-bounded signals are sufficient to
assess the truth of every formula. In the following, we denote with T (φ) the
minimal duration of a signal allowing a formula φ to be always evaluated. T (φ)
is computed as customary by structural recursion.

Definition 3 (Boolean Semantics). Given a signal s ∈ D(T ;S), the Boolean
semantics χ : D(T ;S) × T × LSCL → {0, 1} is defined recursively by:

χ(s, t, μ) = 1 ⇐⇒ μ(s(t)) =  where μ(X) ≡ [g(X) ≥ 0] (3a)
χ(s, t,¬φ) = 1 ⇐⇒ χ(s, t, φ) = 0 (3b)

χ(s, t, φ1 ∨ φ2) = max(χ(s, t, φ1), χ(s, t, φ2)) (3c)
χ(s, t, 〈kT , p〉φ) = 1 ⇐⇒ kT (t) ∗ χ(s, t, φ) ≥ p (3d)
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Moreover, we let χ(s, φ) = 1 ⇐⇒ χ(s, 0, φ) = 1.

The atomic propositions μ are inequalities over the signal’s variables. The
semantics of negation and conjunction are the same as classical temporal logics.
The semantics of 〈kT , p〉φ requires to compute the convolution of kT with the
truth value χ(s, t, φ) of the formula φ as a function of time, seen as a Boolean
signal, and compare it with the threshold p.

An example of the Boolean semantics can be found in Fig. 2 (left - bottom)
where four horizontal bars visually represent the validity of ψ = 〈k[0,0.5], 0.5〉(s >
0), for 4 different kernels k (one for each bar). We can see that the the only kernel
for which χ(s, ψ) = 1 is the exponential increasing one k = exp[3].

Definition 4 (Quantitative semantics). The quantitative semantics ρ :
D(T ;S) × T × LSCL → R is defined as follows:

ρ(s, t,) = +∞ (4a)
ρ(s, t, μ) = g(s(t)) where g is such that μ(X) ≡ [g(X) ≥ 0] (4b)

ρ(s, t,¬φ) = −ρ(φ, s, t) (4c)
ρ(s, t, φ1 ∨ φ2) = max(ρ(φ1, s, t), ρ(φ2, s, t)) (4d)
ρ(s, t, 〈kT , p〉φ) = max{r ∈ R | kT (t) ∗ [ρ(s, t, φ) > r] ≥ p} (4e)

Moreover, we let ρ(s, ϕ) := ρ(s, 0, ϕ).

where [ρ(s, t, φ) > r] is a function of t such that [ρ(s, t, φ) > r] = 1 if ρ(s, t, φ) >
r, 0 otherwise. Intuitively the quantitative semantics of a formula φ w.r.t. a
primary signal s describes the maximum allowed uniform translation of the
secondary signals g(s) = (g1(s), . . . , gn(φ)(s)) in φ preserving the truth value
of φ. Stated otherwise, a robustness of r for φ means that all signals s′ such
that ‖g(s′) − g(s)‖∞ ≤ r will result in the same truth value for φ: χ(s, t, φ) =
χ(s′, t, φ). Fig. 2(b) shows this geometric concept visually. Let us consider the
formula φ = 〈k[0,3], 0.3〉(s > 0), k a flat kernel. A signal s(t) satisfies the formula
if it is greater than zero for at most the 30% of the time interval T = [0, 3].
The robustness value corresponds to how much we can translate s(t) s.t. the
formula is still true, i.e. r s.t. s(t) − r still satisfies φ. In the figure, we can see
that r = 0.535. The formal justification of it is rooted in the correctness theorem
(Theorem 2).

Soundness and Correctness. We turn now to discuss soundness and correct-
ness of the quantitative semantics with respect to the Boolean one. The proofs
of the theorems can be found in the on-line version of the paper on arXiv.

Theorem 1 (Soundness Property). The quantitative semantics is sound
with respect to the Boolean semantics, than means:

ρ(s, t, φ) > 0 =⇒ (s, t) |= φ and ρ(s, t, φ) < 0 =⇒ (s, t) �|= φ
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Fig. 2. (left - top) A Boolean signal s(t) TRUE in [0.3, 0.9] and FALSE outside. (left
- middle) Convolution of the kernel function (exp[3][0,0.5]∗s)(t) (blue), (exp[−3][0,0.5]∗
s)(t) (orange), (flat[0,0.5] ∗ s)(t) (green) and (gauss[0,0.5] ∗ s)(t) (red) with the signal
above in the time windows. The horizontal threshold is set to 0.5. (left - bottom) The
4 horizontal bars show when χ(s, ψ, t) = 1, with ψ = 〈k[0,0.05], 0.5〉(s > 0), i.e when
(k[0,0.5] ∗ s)(t) > 0.5. (right) Example of quantitative semantics of SCL. A signal s(t)
satisfies the formula φ = 〈k[0,3], 0.3〉(s > 0), with k a flat kernel, if it is greater than zero
for at most the 30% of the time interval T = [0, 3]. The robustness value corresponds to
how much we can translate s(t) s.t. the formula is still true, i.e. ρ(s, φ) = r s.t. s(t)− r
still satisfies φ, (red line). In the figure we can see that ρ(s, φ) = 0.535.

Definition 5. Consider a SCL formula φ with atomic predicates μi := [gi(X) ≥
0], i ≤ n, and signals s1, s2 ∈ D(T ;S). We define

‖s1 − s2‖φ := max
i≤n

max
t∈T (φ)

|gi(s1(t)) − gi(s2(t))|

Theorem 2 (Correctness Property). The quantitative semantics ρ satisfies
the correctness property with respect to the Boolean semantics if and only if, for
each formula φ, it holds:

∀s1, s2 ∈ D(T ;S), ‖s1 − s2‖φ < ρ(s1, t, φ) ⇒ χ(s1, t, φ) = χ(s2, t, φ)

Expressiveness. We show that SCL is more expressive than the fragment of
STL composed of the logical connectivities and the eventually ♦ and globally �

temporal operators, i.e., STL(♦,�).
First of all, globally is easily definable in SCL. Take any kernel kT , and

observe that �T φ ≡ 〈kT , 1〉φ, as 〈kT , 1〉φ holds only if φ is true in the whole
interval T . This holds provided that we restrict ourselves to Boolean signals of
finite variation, as for [13], which are changing truth value a finite amount of
times and are never true or false in isolated points: in this way we do not have
to care what happens in sets of zero measure. With a similar restriction in mind,
we can define the eventually, provided we can check that kT (t) ∗ χ(s, t, φ) > 0.

To see how this is possible, start from the fundamental equation kT (t) ∗
χ(s, t,¬φ) = 1 − kT (t) ∗ χ(s, t, φ). By applying 3d and 3b we easily get
χ(s, t,¬〈kT , 1 − p〉¬φ) = 1 ⇐⇒ kT (t) ∗ χ(s, t,¬φ) < 1 − p ⇐⇒ kT (t) ∗
χ(s, t, φ) > p. For compactness we write 〈kT , p〉∗ = ¬〈kT , 1 − p〉¬, and thus
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define the eventually modality as ♦T φ ≡ 〈kT , 0〉∗φ. By definition, this is the
dual operator of �T . Furthermore, consider the uniform kernel flatT : a prop-
erty of the form 〈flatT , 0.5〉φ, requesting φ to hold at least half of the time
interval T , cannot be expressed in STL, showing that SCL is more expressive
than STL(♦,�).

Note that defining a new quantitative semantics has an intrinsic limitation.
Even if the robustness can help the system design or the falsification process
by guiding the underline optimization, it cannot be used at a syntactic level. It
means that we cannot write logical formulas which predicate about the property.
For example, we cannot specify behaviors as the property has to be satisfied in
at least the 50% of interval I, but we can only measure the percentage of time
the properties has been verified. Furthermore, lifting filtering and percentage
at the syntactic level has other important two advantages. First, it preserves
duality of eventually and globally operator, meaning that we are not forced to
restrict our definition to positive formulae, as in [14], or to present two separate
robustness measures as in [1]. Second, it permits to introduce a quantitative
semantics which quantifies the robustness with respect to signal values instead
of the percentage values and that satisfies the correctness property.

5 Monitoring Algorithm

In this section, we present the monitoring algorithms to evaluate the convolu-
tion operators 〈kT , p〉φ. For all the other operators we can rely on established
algorithms as [13] for Boolean monitoring and [7] for the quantitative one.

Boolean Monitoring. We provide an efficient monitor algorithm for the
Boolean semantics of SCL formulas. Consider an SCL formula 〈k[T0,T1], p〉φ and
a signal s. We are interested in computing χ(s, t, 〈k[T0,T1], p〉φ) = [H(t)−p ≥ 0],
as a function of t, where H is the following convolution function

H(t) = kT (t) ∗ χ(s, t, φ) =
∫

t+T

kT (τ − t)χ(s, τ, φ)dτ (5)

It follows that the efficient monitoring of the Boolean semantics of SCL is
linked to the efficient evaluation of H(t)− p, which is possible if H(t+ δ) can be
computed by reusing the value of H(t) previously stored. To see how to proceed,
assume the signal χ(s, t, φ) to be unitary, namely that it is true in a single
interval of time, say from time u0 to time u1, and false elsewhere. We remark
that is always possible to decompose a signal in unitary signals, see [13].

In this case, it easily follows that the convolution with the kernel will be
non-zero only if the interval [u0, u1] intersects the convolution window t + T .
Inspecting Fig. 3, we can see that sliding the convolution window forward of a
small time δ corresponds to sliding the positive interval of the signal [u0, u1] of δ
time units backwards with respect to the kernel window. In case [u0, u1] is fully
contained into t + T , by making δ infinitesimal and invoking the fundamental
theorem of calculus, we can compute the derivative of H(t) with respect to time
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Fig. 3. Sketch of the general monitoring algorithm. The green arrows represents [u0, u1]
in the constitutional window at time t, the red arrows instead represents the same
interval at time t + δ (backwards translation).

as d
dtH(t) = kT (u0 − t)−kT (u1 − t). By taking care of cases in which the overlap

is only partial, we can derive a general formula for the derivative:

d

dt
H(t) = kT (u0 − (t+T0))I{u0 ∈ t+T}− kT (u1 − (t+T1))I{u1 ∈ t+T}, (6)

where I is the indicator function, i.e. I{ui ∈ t + T} = 1 if ui ∈ t + T and
zero otherwise. This equation can be seen as a differential equation that can
be integrated with respect to time by standard ODE solvers (taking care of
discontinuities, e.g. by stopping and restarting the integration at boundary times
when the signal changes truth value), returning the value of the convolution for
each time t. The initial value is H(0), that has to be computed integrating
explicitly the kernel (or setting it to zero if u0 ≥ T1). If the signal χ(s, t, φ) is
not unitary, we have to add a term like the right hand side of 6 in the ODE of
H(t) for each unitary component (positive interval) in the signal. We use also a
root finding algorithm integrated in the ODE solver to detect when the property
will be true or false, i.e. when H(t) will be above or below the threshold p.

The time-complexity of the algorithm for the convolution operator is pro-
portional to the computational cost of numerically integrating the differential
equation above. Using a solver with constant step size δ, the complexity is pro-
portional to the number of integration steps, times the number NU of unitary
components in the input signal, i.e. O(NU (Ts/δ)). A more detailed description
of the algorithm can be found in the on-line version of the paper on arXiv.

Quantitative Monitoring. In this paper, we follow a simple approach to mon-
itor it: we run the Boolean monitor for different values of r and t in a grid,
using a coarse grid for r, and compute at each point of such grid the value
H(t, r) = kT (t) ∗ [ρ(s, t, φ) > r] − p. Relying on the fact that H(t, r) is mono-
tonically decreasing in r, we can find the correct value of r, for each fixed t, by
running a bisection search starting from the unique values rk and rk+1 in the
grid such that H(t, r) changes sign, i.e. such that H(t, rk) < 0 < H(t, rk+1). The
bounds of the r grid are set depending on the bounds of the signal, and may be
expanded (or contracted) during the computation if needed. Consider that the
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robustness can assumes only a finite number of values because of the finite val-
ues assumed by the piecewise-constant inputs signals. A more efficient procedure
for quantitative monitoring is in the top list of our future work, and it can be
obtained by exploring only a portion of such a grid, combining the method with
the Boolean monitor based on ODEs, and alternating steps in which we advance
time from t to t + h (fixing rt to its exact value at time t), by integrating ODEs
and computing H(t+h, rt), and steps in which we adjust the value of rt at time
t + h by locally increasing or decreasing its value (depending if H(t + h, rt) is
negative or positive), finding rt+h such that H(t + h, rt+h) = 0.

6 Case Study: Artificial Pancreas

In this example, we show how SCL can be useful in the specification and moni-
toring of the Artificial Pancreas (AP) systems. The AP is a closed-loop system
of insulin-glucose for the treatment of Type-1 diabetes (T1D), which is a chronic
disease caused by the inability of the pancreas to secrete insulin, an hormone
essential to regulate the blood glucose level. In the AP system, a Continuous
Glucose Monitor (CGM) detects the blood glucose levels and a pump delivers
insulin through injection regulated by a software-based controller.

The efficient design of control systems to automate the delivery of insulin
is still an open challenge for many reasons. Many activities are still under con-
trol of the patient, e.g., increasing insulin delivery at meal times (meal bolus),
and decreasing it during physical activity. A complete automatic control includes
several risks for the patient. High level of glucose (hyperglycemia) implies ketaci-
dosis and low level (hypoglycemia) can be fatal leading to death. The AP con-
troller must tolerate many unpredictable events such as pump failures, sensor
noise, meals and physical activity.

AP Controller Falsification via SMT solver [18] and robustness of STL [5] has
been recently proposed. In particular, [5] formulates a series of STL properties
testing insulin-glucose regulatory system. Here we show the advantages of using
SCL for this task.

PID Controller. Consider a system/process which takes as input a function
u(t) and produces as output a function y(t). A PID controller is a simple closed-
loop system aimed to maintain the output value y(t) as close as possible to a set
point sp. It continuously monitors the error function, i.e., e(t) = sp − y(t) and
defines the input of the systems accordingly to u(t) = Kp · e(t)+Ki ·

∫ t

0
e(s)ds+

Kd · d
dte(t). The proportional (Kp), integral (Ki) and derivative (Kd) parameters

uniquely define the PID controller and have to be calibrated in order to achieve
a proper behavior.

System. PID controllers have been successfully used to control the automatic
infusion of insulin in AP. In [18], for example, different PID have been synthe-
sized to control the glucose level for the well studied Hovorka model [10]:

d

dt
G(t) = F (G(t), u(t),Θ), (7)
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where the output G(t) represents the glucose concentration in blood and the
input u(t) is the infusion rate of bolus insulin which has to be controlled. The vec-
tor Θ = (dg1, dg2, dg3, T1, T2) are the control parameters which define the quan-
tity of carbohydrates (dg1, dg2, dg3) assumed during the three daily meals and
the inter-times between each of them T1 and T2. Clearly a PID controller for Eq.
(7) has to guarantee that under different values of the control parameters Θ the
glucose level remains in the safe region G(t) ∈ [70, 180]. In [18], four different PID
controllers that satisfy the safe requirement, have been discovered by leveraging
SMT solver under the assumption that the inter-times T1 and T2 are both fixed to
300 minutes (5 hrs) and that (dg1, dg2, dg3) ∈ (N (40, 10),N (90, 10),N (60, 10)),
which correspond to the average quantity of carbohydrates contained in break-
fast, lunch and dinner2. Here, we consider the PID controller C1 which has been
synthesized by fixing the glucose setting point sp to 110mg/dl and maximizing
the probability to remain in the safe region, provided a distribution of the con-
trol parameter Θ as explained before. We consider now some properties which
can be useful to check expected or anomalous behaviors of an AP controller.

Hypoglycemia and Hyperglycemia. Consider the following informal spec-
ifications: never during the day the level of glucose goes under 70mg/dl, and
never during the day the level of glucose goes above 180mg/dl, which techni-
cally mean that the patient is never under Hypoglycemia or Hyperglycemia,
respectively. These behaviours can be formalized with the two STL formu-
las φHO

STL = �[0,24h]G(t) ≥ 70 and ψHR
STL = �[0,24h]G(t) ≤ 180. The problem

of STL is that it does not distinguish if these two conditions are violated for
a second, few minutes or even hours. It only says those events happen. Here
we propose stricter requirements described by the two following SCL formu-
las φHO

SCL = 〈flat[0,24h], 0.95〉G(t) ≥ 70 for the Hypoglycemia regime, and
φHR

SCL = 〈flat[0,24h], 0.95〉G(t) ≤ 180 for the Hyperglycemia regime. We are
imposing not that globally in a day the hypoglycemia and the hyperglycemia
event never occur, but that these conditions persist for at least 95% of the day
(i.e., 110 minutes). We will show above in a small test case how this requirement
can be useful.

Prolongated Conditions. As already mentioned in the motivating exam-
ple, the most dangerous conditions arise when Hypoglycemia or Hyperglycemia
last for a prolongated period of the day. In this context a typical condition
is the Prolongated Hyperglycemia which happens if the total time under
hyperglycemia (i.e., G(t) ≥ 180) exceed the 70% of the day, or the Prolon-
gated Severe Hyperglycemia when the level of glucose is above 300mg/dl
for at least 3 hrs in a day. The importance of these two conditions has been
explained in [17], however the authors cannot formalized them in STL. On
the contrary, SCL is perfectly suited to describe these conditions as shown
by the following two formulas: φPHR

SCL = 〈flat[0,24h], 0.7〉G(t) ≥ 180 and
φPSHR

SCL = 〈flat[0,24h], 0.125〉G(t) ≥ 300. Here we use flat kernels to mean that
the period of a day where the patient is under Hyperglycemia or Severe Hyper-

2 N (μ, σ2) is the Gaussian distribution with mean μ and variance σ2.
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glycemia does not count to the evaluation of the Boolean semantics. Clearly, an
hyperglycemia regime in different times of the day can count differently. In order
to capture this “preference” we can use non-constant kernels.

Inhomogeneous time conditions. Consider the case of monitoring Hyper-
glycemia during the day. Even if avoiding that regime during the entire day
is always a best practice, there may be periods of the day where avoid-
ing it is more important than others. We imagine the case to avoid hyper-
glycemia with a particular focus on the period close to the first meal. We can
express this requirement considering the following SCL formula: φPHR

SCL(Gauss) =
〈gauss[0.03, 0.1][0,24h], 0.07〉G(t) ≥ 180. Thanks to an decreasing kernel, indeed,
the same quantity of time under hyperglycemia which is close to zero counts more
than the same quantity far from it.

Correctness of the insulin delivery. During the Hypoglycemia regime the
insulin should not be provided. The SCL formula: �[0,24h](〈flat[0,10min], 0.95〉
G(t) ≤ 70 → 〈flat[0,10min], 0.90〉 I(t) ≤ 0) states that if during the next 10 min-
utes the patient is in Hypoglycemia for at least the 95% of the time then the deliv-
ering insulin pump is shut off (i.e., I(t) ≤ 0) for at least the 90% of the time. This
is the “cumulative” version of the STL property �[0,24h](G(t) ≤ 70 → I(t) ≤ 0)
which says that in hypoglycemia regime no insulin should be delivered. During
the Hyperglycemia regime the insulin should be provided as soon as possible. The
property SCL formula: �[0,24h](G(t) ≥ 300 → 〈exp[−1][0,10min], 0.9〉 I(t) ≥ k)
says that if we are in severe Hyperglycemia regime (i.e., G(t) ≥ 300) the delivered
insulin should be higher than k for at least the 90% of the following 10 minutes.
We use a negative exponential kernel to express (at the robustness level) the
preference of having a higher value of delivered insulin as soon as possible.

Test Case: falsification. As a first example we show how SCL logic can be
effectively used for falsification. The AP control system has to guarantee that
the level of glucose remains in a safe region, as explained before. The falsifica-
tion approach consists in identifying the control parameters (Θ∗) which force
the system to violate the requirements, i.e., to escape from the safe region. The
standard approach consists in minimizing the robustness of suited temporal logic
formulas which express the aforementioned requirements, e.g. φHR

SCL, φHO
SCL. In

this case the minimization of the STL robustness forces the identification of the
control parameters which causes the generation of trajectories with a maximum
displacement under the threshold 70 or above 180. To show differences among
the STL and SCL logics, we consider the PID C1 + Hovorka model and perform
a random sampling exploration among its input parameters. At each sampling
we calculate the robustness of the STL formulas φHO

STL and the SCL formula
φHO

SCL and separately store the minimum robustness value. For this minimum
value, we estimate the maximum displacement with respect to the hypoglycemia
and hyperglycemia thresholds and the maximum time spent violating the hypo-
glycemia and hyperglycemia thresholds. Fig. 4(left, middle) shows the trajectory
with minimum robustness. We can see that the trajectory which minimizes the
robustness of the STL formula has an higher value of the displacement from
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the hypoglycemia (13) and hyperglycemia (98) thresholds than SCL trajectory
(which are 11 and 49 respectively). On the contrary, the trajectory which min-
imizes the robustness of the SCL formula remains under hypoglycemia (for 309
min) and hyperglycemia (for 171 min) longer than the STL trajectory (189 min
and 118 min, respectively). These results show how the convolutional operator
and its quantitative semantics can be useful in a falsification procedure. This
is particularly evident in the Hyperglycemia case (Fig. 4 (middle)) where the
falsification of the SCL Hyperglycemia formula φHR

SCL shows two subintervals
where the level of glucose is above the threshold. In order to show the effect of
non-homogeneous kernel, we perform the previous experiment, with the same
setting, for properties φPHR

SCL and φPHR
SCL(Gauss). From the results (Fig. 4 (right))

is evident how the Gaussian kernel of property φPHR
SCL(Gauss) forces the glucose to

be higher of the hyperglycemia threshold just before the first meal (t ∈ [0, 200])
and ignores for example the last meal (t ≥ 600).

Fig. 4. (left),(middle) The solution of the SCL formula falsification (red line) maxi-
mize the time under Hypoglycemia (left) and Hyperglycemia (right), whereas the solu-
tion of the STL formula falsification (blue line) maximizes the displacement w.r.t the
predicate thresholds. (right) Solution of the falsification for the SCL properties φPHR

SCL

(blue line) and φPHR
SCL(Gauss) (red line) which implement flat and gaussian kernel,

respectively.

Test Case: noise robustness. Now we compare the sensitivity to noise of SCL
and STL formulae. We consider three degrees of hypoglycemia hk(t) = {G ≤ k},
where k ∈ {55, 60, 65, 70} and estimate the probability that the Hovorka model
controlled by the usual PID C1 (i.e., PID C1 + Hovorka Model) satisfies the STL
formulas φk

STL = ♦[0,24h] hk and the SCL formulas φk
SCL = 〈flat[0,24h], 0.03〉hk

under the usual distribution assumption for the control parameters Θ. The
results are reported in column “noise free” of Table 2. Afterwards, we consider a
noisy outcome of the same model by adding a Gaussian noise, i.e., ε ∈ N (0, 5),
to the generated glucose trajectory. We estimate the probability that this noisy
system satisfies the STL and SCL formulas above, see column “with noise” of
Table 2. The noise correspond to the disturbance of the original signals which
can occur, for example, during the measurement process.

As shown in Table 2, the probability estimation of the STL formulas changes
drastically with the addition of noise (the addition of noise forces all the trajec-
tory to satisfy the STL formula). On the contrary, the SCL formulas φk

SCL are
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Table 2. Results of the falsification test case. The performance of STL and SCL for-
mulas verified on the PID C1 + Hovorka model with noise and noise free are compared.
The STL formula on the noisy model is uninformative.

Noise free With noise

h55 h60 h65 h70 h55 h60 h65 h70

♦[0,24h] 0.00 0.19 0.81 1.00 0.98 1.00 1.00 1.00

〈flat[0,24], 0.03〉 0.00 0.00 0.20 0.91 0.00 0.02 0.77 1.00

more stable under noise and can be even used to approximate the probability
of the STL formulas on the noise-free model. To better asses this, we checked
how much the STL formula φk

STL and the SCL formula φk
SCL, evaluated in the

noisy model, agree with the STL formula φk
STL evaluated in the noise-free model,

by computing their truth value on 2000 samples, each time choosing a random
threshold k ∈ [50, 80]. The score for STL is 56%, while SCL agrees on 78% of
the cases.

7 Conclusion

We have introduced SCL, a novel specification language that employs signal pro-
cessing operations to reason about temporal behavioural patterns. The key idea
is the definition of a family of modal operators which compute the convolution
of a kernel with the signal and check the obtained value against a threshold.
Our case study on monitoring glucose level in artificial pancreas demonstrates
how SCL empowers the classical temporal logic operators (i.e., such as finally
and globally) with noise filtering capabilities, and enable us to express temporal
properties with soft time bounds and with non symmetric treatment of time
instants in a unified way.

The convolution operator of SCL can be seen as a syntactic bridge between
temporal logic and digital signal processing, trying to combine the advantages
of both these two worlds. This point of view can be explored further, bringing
into the monitoring algorithms of SCL tools from frequency analysis of signals.
Future work includes the release of a Python library, and the design of efficient
monitoring algorithms also for the quantitative semantics. Finally, we also plan
to develop online monitoring algorithms for real-time systems using hardware
dedicated architecture such as field-programmable gate array (FPGA) and dig-
ital signal processor (DSP).
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14. Rodionova, A., Bartocci, E., Ničković, D., Grosu, R.: Temporal logic as filtering.
In: Proceedings of HSCC 2016, pp. 11–20. ACM (2016)

15. Sadigh, D., Kapoor, A.: Safe control under uncertainty with probabilistic signal
temporal logic. In: Robotics: Science and Systems XII, University of Michigan,
Ann Arbor, Michigan, USA, June 18 - June 22, 2016 (2016)

https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-319-23820-3_1
https://doi.org/10.1007/978-3-319-23820-3_1
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12


Signal Convolution Logic 283

16. Sankaranarayanan, S., Fainekos, G.: Falsification of temporal properties of hybrid
systems using the cross-entropy method. In: Proc. of HSCC. pp. 125–134 (2012)

17. Sankaranarayanan, S., Kumar, S.A., Cameron, F., Bequette, B.W., Fainekos, G.,
Maahs, D.M.: Model-based falsification of an artificial pancreas control system.
SIGBED Rev. 14(2), 24–33 (2017). Mar

18. Shmarov, F., Paoletti, N., Bartocci, E., Lin, S., Smolka, S.A., Zuliani, P.: SMT-
based synthesis of safe and robust PID controllers for stochastic hybrid systems.
In: Proceedings of HVC, pp. 131–146 (2017)



Efficient Symbolic Representation of
Convex Polyhedra in High-Dimensional

Spaces

Bernard Boigelot and Isabelle Mainz(B)

Institut Montefiore, B28, Université de Liège, 4000 Liège, Belgium
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Abstract. This work is aimed at developing an efficient data structure
for representing symbolically convex polyhedra. We introduce an origi-
nal data structure, the Decomposed Convex Polyhedron (DCP), that is
closed under intersection and linear transformations, and allows to check
inclusion, equality, and emptiness. The main feature of DCPs lies in
their ability to represent concisely polyhedra that can be expressed as
combinations of simpler sets, which can overcome combinatorial explo-
sion in high dimensional spaces. DCPs also have the advantage of being
reducible into a canonical form, which makes them efficient for represent-
ing simple sets constructed by long sequences of manipulations, such as
those handled by state-space exploration tools. Their practical efficiency
has been evaluated with the help of a prototype implementation, with
promising results.

1 Introduction

Convex polyhedra, i.e., the subsets of Rn defined by finite conjunctions of linear
constraints, are extensively used in many areas of computer science. Among
their many applications, convex polyhedra are employed in optimization theory
and in particular linear programming [23], constraint programming, Satisfiability
Modulo Theories (SMT) solving [10], abstract interpretation, for which they are
one of the most used numerical abstract domains [12,13], and computer-aided
verification [5,15,19].

Our motivation for studying convex polyhedra is to use them for representing
the reachable sets produced during symbolic state-space exploration of linear
hybrid systems and temporal automata [1,7,9,18]. For this application, one needs
a data structure that is closed under intersection and linear transformations, in
order to be able to compute the image of sets by the transition relation of the
system under analysis. Furthermore, it should be possible to decide inclusion,
equality, and emptiness of represented sets, in order to detect that a fixed point
has been reached, as well as for comparing the reachability set against the safety
property of interest. Our choice is to aim for an exact symbolic representation,
in the sense that it should both rely only on exact arithmetic, and not over- or
under-approximate the represented sets.
c© Springer Nature Switzerland AG 2018
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Existing solutions to this problem have several drawbacks. Representations
based on logical formulas are notoriously difficult to simplify. This makes them
inefficient for handling simple sets constructed by long sequences of manipula-
tions, such as those produced by state-space exploration procedures.

Another well known representation is the double description method [11,22],
used by most popular software libraries for handling convex polyhedra, such
as cdd [16], PolyLib [21], NewPolka [20], and PPL [4]. This technique consists
in jointly describing a polyhedron by two different geometric representations: a
constraint system, expressing the polyhedron as the set of solutions of a finite
conjunction of linear constraints, and a generator system, defining the polyhe-
dron as the convex-conical combination of a finite set of vertices and extremal
rays. These two representations are equivalent, in the sense that each of them
can be reconstructed from the other. However, keeping both of them makes it
possible to speed up some operations, such as removing their redundant ele-
ments. The major drawback of the double description method is that it suffers
from combinatorial explosion in high dimensional spaces. For instance, the n-
cube [0, 1]n is characterized by 2n constraints, but its generator system contains
2n vertices, which leads to a representation that grows exponentially with n.

From a mathematical point of view, the geometrical structure of a convex
polyhedron is precisely described by its face lattice, which corresponds to a
partial ordering of its faces. The double description method can actually be seen
as an explicit representation of the non trivial top and bottom layers of this face
lattice. Another strategy is to keep a representation of the whole face lattice of
polyhedra, which has the advantage of providing complete information about
the adjacency relation between their faces. This information makes it possible,
in particular, to remove redundant constraints and elements of the generator
system in polynomial time [3].

A data structure that explicitly represents the face lattice is the Real Vector
Automaton, whose expressive power goes beyond first-order additive arithmetic
of mixed integer and real variables [8]. When it represents a convex polyhedron,
an RVA is essentially a deterministic decision graph for determining which face
contains a given point. RVA have the advantage of being easily reducible to a
minimal canonical form, which makes the representation of a set independent
from its construction history. Nevertheless, their size grows linearly with the
coefficients of linear constraints, and they suffer from the same combinatorial
explosion as the double description method. The former drawback is alleviated
by the Implicit Real Vector Automaton (IRVA) [14] and the Convex Polyhedron
Decision Diagram (CPDD)[7], in which parts of the decision graph are encoded
by more efficient algebraic structures.

Our goal is to make CPDDs efficient in high dimensional spaces. In order to
deal with the combinatorial explosion of the generator system, a decomposition
mechanism for convex polyhedra has been proposed in [17]. The approach con-
sists in partitioning syntactically the variables involved in the linear constraints
into independent subsets. Roughly speaking, convex polyhedra are decomposed
into Cartesian products of simpler ones defined over disjoint subsets of variables.
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This procedure has the disadvantage of being unable to handle efficiently con-
straints that jointly involve many variables, which makes it ill-suited for our
intended applications. During the reachability analysis of timed automata for
instance, applying a time-step operation to a polyhedron will generally produce
constraints linking together all clock variables, making decomposition unfeasible.

The contributions of this work are twofold. First, by keeping an explicit rep-
resentation of the face lattice of polyhedra, we obtain a significant advantage
over the double description method, leading in particular to a more efficient
implementation of the projection operation. Second, we tackle the combinato-
rial explosion in high dimensional spaces by introducing a novel decomposition
mechanism. As opposed to the purely syntactic approach of [17], this mecha-
nism is not affected by non-singular linear transformations, which significantly
broadens its applicability. The resulting data structure, the Decomposed Convex
Polyhedron (DCP), admits an easily computable canonical form, which simpli-
fies comparison operations and leads to concise representations of simple sets
constructed in a complex way. DCPs share the same advantages as CPDDs,
such as offering a simple decision procedure for checking which face of a convex
polyhedron contains a given point.

The rest of this paper is organized as follows. Section 2 recalls basic con-
cepts and the principles of the double description method. Section 3 introduces
DCPs, starting from CPDDs and enhancing them with a decomposition mecha-
nism. Section 4 discusses the implementation of operations over DCPs. Section 5
assesses the practical efficiency of our proposed data structure with the help of
a prototype implementation.

2 Preliminaries

2.1 Basics

A convex polyhedron P is defined as the set of solutions of a finite conjunction of
linear constraints, i.e., P = {x ∈ R

n | ∧k
i=1 ai .x#i bi} where, for all i, ai ∈ Z

n,
bi ∈ Z, and #i ∈ {≤, <}. Such polyhedra can either be bounded or unbounded,
as well as topologically closed or not1. We denote by P the topological closure
of P , that is, the set P = {x ∈ R

n | ∧k
i=1 ai .x ≤ bi}.

Given a constraint ai .x#i bi, a point v ∈ R
n satisfies this constraint if

ai .v#i bi, and saturates it if ai .v = bi. Constraints of the form ai .x ≤ bi are
called closed, or non-strict, and constraints of the form ai .x < bi are called
open, or strict. The dimension of a convex polyhedron P , noted dim P , is the
dimension of its affine hull, i.e the smallest affine space that contains P . The
lineality space lin P of P is the largest vector space L such that P + L = P ,
where + denotes the Minkowski sum.

A closed convex polyhedron P can be represented as a finite intersection of
halfspaces by its constraint system H = {ai .x ≤ bi}. Alternatively, P can be
expressed in terms of a generator set G = (V,R), where V, R ∈ Q

n are finite sets

1 They are also known as NNC (Not Necessarily Closed) polyhedra, or copolyhedra.
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of (respectively) vertices and extremal rays. One then has P = {∑p
i=1 λivi +∑q

i=1 μiri}, where V = {v1, . . . ,vp}, R = {r1, . . . , rq}, λi, μi ≥ 0 for all i, and∑p
i=1 λi = 1. The pair (H,G) forms the double description of P [11,22].

2.2 Face Lattice of a Polyhedron

With respect to a polyhedron P , a linear inequality c.x ≤ δ is said to be valid if it
is satisfied by all x ∈ P . A face of P is any set F such that F = P ∩ {x | c.x = δ},
where c.x ≤ δ is valid. Note that from the valid inequalities 0.x ≤ 0 and 0.x ≤ 1,
we get that P and the empty set ∅ are both faces of P . These two faces are said
to be trivial. Note that a face is itself a polyhedron; the dimension of a face is
its dimension as a polyhedron. The faces of dimension 0, 1, and dimP − 1 are
respectively called vertices, edges, and facets. Remark that the intersection of
any set of faces of P is itself a face of P .

A partial order � over a set S is a binary relation that is reflexive, anti-
symmetric and transitive. We then say that (S,�), or simply S if the partial
order is clear from the context, is a partially ordered set. A partially ordered set
S is a lattice if every two elements x, y ∈ S admit a unique minimal upper bound
in S, called the join x � y, and a unique maximal lower bound in S, called the
meet x 	 y.

The set F ′(P ) of nonempty faces of P is partially ordered by set inclusion.
However, this set does not necessarily contain a minimum element, hence we
define the smallest face of P as the intersection F0 = ∩F∈F ′(P )F of all its
nonempty faces. The set F(P ) = {F0} ∪ F ′(P ) is a finite lattice under set
inclusion, called the face lattice of P .

For F , G ∈ F(P ), the face F � G = ∩{H ∈ F(P ) | F ∪ G ⊆ H}, is the
smallest one containing both F and G. Similarly, the face F 	 G = F ∩ G is
the largest one contained in both F and G. Furthermore, we say that F is an
ascendant of G, or equivalently that G is a descendant of F , if F ⊂ G. We use the
terms direct ascendant and direct descendant if there does not exist H ∈ F(P )
such that F ⊂ H ⊂ G.

2.3 Canonical Representation of Convex Polyhedra

In the double description (H,G) of a closed convex polyhedron P , the constraint
system H and the generator system G admit minimal forms, meaning that no
element can be removed from them without affecting P .

Under two hypotheses, the minimal forms of H and G are unique for a given
P , which implies that (H,G) can then provide a canonical representation of P .
The first hypothesis is to have a fully dimensional polyhedron, meaning that
P ⊆ R

n is such that dim P = n. If P is not fully dimensional, then it can be
expressed as the image P = AQ+b of a fully dimensional polyhedron Q ⊂ R

m of
smaller dimension m < n by a linear transformation (A, b), with A ∈ Z

n×m and
b ∈ Q

n. This transformation can be made canonical by Gaussian elimination.
The second hypothesis is to have a polyhedron P with a lineality space of

dimension 0. If this condition is not satisfied, then P can be expressed as a sum
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P = Q + L, where lin Q = 0, L = lin P , and dimP = dim Q + dim L. The vector
space L can be described canonically by applying Gaussian elimination to one
of its bases.

Consider a polyhedron P that satisfies both hypotheses, for which the double
description (H,G) has been made minimal. This means that all redundant con-
straints have been removed from H, hence the saturated form of each constraint
in H is a facet. More generally, each face of P corresponds to a subset of sat-
urated constraints in H. Similarly, the vertices of G correspond to the minimal
non-trivial faces of P . If P is bounded, then G does not contain extremal rays,
and the double description (H,G) exactly contains the minimal and maximal
non-trivial elements of the face lattice of P . If P is unbounded, the extremal
rays of G can be computed from the direct descendants of the vertices.

3 Decomposed Convex Polyhedra

We now present our proposed data structure, by first introducing the principles
of CPDDs, and then enhancing them with a decomposition mechanism.

3.1 Convex Polyhedron Decision Diagram

A Convex Polyhedron Decision Diagram (CPDD) [7] representing a convex poly-
hedron P is a directed acyclic graph (Q,T, q0) such that:

– Q is a finite set of nodes. Each node q ∈ Q corresponds to a face of P , and
is labeled by the constraints of P that are saturated by that face. (In the
special case where q represents the empty face, all constraints are considered
to be saturated.) Moreover, q is associated with a binary polarity that is true
if each constraint that is saturated by q is an open constraint of P , and false
otherwise. This polarity is used for representing the strictness of constraints;
the representations of P and P only differ in the polarity of their nodes.

– q0 ∈ Q is an initial node, representing the unique minimal element of the face
lattice of P .

– T ⊆ Q × Q is a transition relation corresponding to the inclusion relation
between faces, removing the edges that are redundant by transitivity. An
edge (q1, q2) ∈ T is labeled by the constraints that are saturated in q1 but
not in q2.

An example of a CPDD is given in Fig. 1. This data structure can be seen as
a deterministic decision graph for determining which face of P contains a given
point v ∈ R

n. This operation consists in starting from the initial node, and
then following edges labeled by constraints satisfied by v. The procedure ends
either upon reaching a node q labeled by constraints saturated by v, in which
case q represents the face of P containing v, and the polarity of q indicates
whether v belongs to P , or when no outgoing edge can be followed from the
current node, corresponding to v ∈ P . Note that if several paths can be followed
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Fig. 1. Example of CPDD.

from a given node, one of them can be chosen arbitrarily without the need for
backtracking, since for every pair of nodes q1, q2 ∈ Q, all paths linking q1 to q2
are labeled with the same constraints. Intuitively, a CPDD can be understood
as a compact representation of a deterministic finite automaton accepting the
points of a convex polyhedron [7,8].

3.2 Decomposition of Convex Polyhedra

Like the double description method, CPDDs suffer from combinatorial explosion
in high dimensional spaces. For instance, a simple polyhedron such as the n-cube
[0, 1]n has 2n vertices, which makes its representation grow exponentially with
the dimension n.

In this example, each constraint involves a single variable. In order to check
whether a given point p = (p1, . . . , pn) belongs to the cube, one can separately
check that each pi is inside [0, 1]. This essentially amounts to decomposing the
n-cube into a Cartesian product of intervals, that can be processed individually.
This idea is developed in [17], which shows how to determine syntactically blocks
of variables that can be considered independently from each other.

This approach is however not sufficient for handling the reachable sets com-
puted by state-space exploration tools. In particular, the analysis of timed
automata often produces constraints that involve all variables, expressing that
they share an identical rate of variation with time. Another example is given
by the polyhedron in Fig. 1, which depicts a typical region obtained during the
state-space exploration of a linear hybrid system.

In this latter example, one notices however that the polyhedron can become
decomposable into a Cartesian product of two intervals by expressing it in a dif-
ferent coordinate system, for instance the one defined by the basis {(2, 1), (1, 3)}.
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The idea behind our improved decomposition scheme is to detect whether a suit-
able coordinate system exists, that makes the polyhedron decomposable into a
Cartesian product of simpler ones. The main advantage of this strategy over a
purely syntactic one is that the decomposability property of polyhedra remains
unaffected by changes of coordinate system, or equivalently, by non-singular lin-
ear transformations (cf. Sect. 4.2).

We define a decomposition of a finite set of vectors S ⊂ R
n as a partition of

S into blocks, such that:

– If a block B contains at least two elements, then each of them can be written
as a linear combination of the other ones. Formally, if B = {b1, . . . , bk} with
k ≥ 2, then

∀i ∈ [1, k] : ∃β1 . . . , βk ∈ R
n : bi =

∑

j∈[1,k], j �=i

βjbj .

– For each block B, there does not exist a non-zero linear combination of the
elements of B that can be written as a linear combination of the elements of
the other blocks. Formally, if B = {b1, . . . , bk}, then

∑

bi ∈B

βibi =
∑

bi
′∈S\B

β′
ibi

′ ⇒
∑

bi ∈B

βibi = 0.

Intuitively, a decomposition of a set of vectors partitions this set into blocks
that are linearly independent from each other. For example, the set {(1, 1, 1),
(1, 1, 2), (−2,−2,−2), (1,−1, 0), (0, 1, 1)} admits the decomposition {{(1, 1, 1),
(−2,−2,−2)}, {(1, 1, 2), (1,−1, 0), (0, 1, 1)}}.

If P1 and P2 are two partitions of a set S, then P1 is finer than P2 (or,
equivalently, P2 is coarser than P1) if every block of P1 is a subset of some block
of P2. This notion generalizes to decompositions as follows.

Proposition 1. If D1 and D2 are decompositions of a set S, then the partition

D = D1 ∩ D2 = {Bi ∩ B′
j | Bi ∩ B′

j = ∅ ∧ Bi ∈ D1, B′
j ∈ D2}

is itself a decomposition.

This property naturally leads to a notion of finest decomposition of a set,
obtained by computing the intersection of all its decompositions. This finest
decomposition is, by definition, unique.

The finest decomposition of a given set S can be computed by an incremental
procedure that considers successively all vectors v in S. At each step, one checks
whether v can be expressed as a linear combination of the vectors that have
already been dealt with. In the positive case, the blocks containing these vectors
have to be merged into a single one, to which the vector v is added. Otherwise,
a new block is created, containing only v.

We are now ready to apply our notion of decomposition to polyhedra. The
canonical decomposition of a convex polyhedron P ⊆ R

n is defined as the finest
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Fig. 2. Example of DCP.

decomposition of the set of normal vectors of its bounding hyperplanes, that is,
of the set {a1, . . . ,ak} where P = {x ∈ R

n | ∧k
i=1 ai .x#i bi}.

Let D = {B1, . . . , Bk} be the canonical decomposition of P . In order to
express P in a coordinate system in which it can be decomposed into a Carte-
sian product of simpler polyhedra, one builds a new basis of Rn by computing
individual bases for the blocks B1, . . . , Bk, and then taking their union. The
next step is to perform a coordinate change by expressing the constraints of P
in terms of this new basis. This operation will turn a constraint ai .x#i bi into
ai

′.x#i b
′
i, in which the components of ai

′ are all zero, except for the ones pro-
vided by the basis of the block Bj containing ai . In other words, if Bj contains
up to d linearly independent vectors, then the constraint ai

′.x#i b
′
i will only

involve d variables. The change of coordinates induced by the canonical decom-
position of P is the one that maximizes the possibility of separating syntactically
the variables.

3.3 Decomposed Convex Polyhedron

A Decomposed Convex Polyhedron representing a polyhedron P ⊆ R
n is a tuple

(A, b, q0, C), where

– (A, b) with A ∈ Z
n×m and b ∈ Q

n is a linear transformation such that
P = AQ + b, where Q ∈ R

m is a fully dimensional polyhedron (cf. Sect. 2.3).
– q0 is an initial node labeled with the canonical decomposition D of Q, and

its associated change of coordinates.
– C is a finite set of CPPDs, each of them being associated to an element of

D. One thus has |C| = |D|. The transition from q0 to an element of C is
called a decomposition branch. Each decomposition branch is labeled by its
corresponding variables in the new coordinate system.

An example of DCP is given in Fig. 2. In this example, the represented
polyhedron is fully dimensional, thus the transformation (A, b) can be chosen
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as the identity relation, which we do not depict for clarity sake. Decomposi-
tion branches are denoted by dashed edges. The set of normal vectors of the
constraints is {(−3, 1), (1,−2), (3,−1), (−1, 2)}, the canonical decomposition of
which is {{(−3, 1), (3,−1)}, {(1,−2), (−1, 2)}}. The basis of R2 induced by this
decomposition is {(3,−1), (1,−2)}.

In order to determine whether a given point v ∈ R
n belongs to a polyhe-

dron P represented by a DCP (A, b, q0, C), the first step consists in computing
v′ ∈ R

m such that v = Av′ +b. If no such vector exists, then the answer is nega-
tive. Otherwise, the coordinate change associated to q0 is applied to v′, yielding
vectors y1, . . .yk such that k = |C| and dimv′ = dimy1+· · ·+dimyk . One then
runs the point location procedure described in Sect. 3.1 for one yi in each of the
k decomposition branches, all of which have to succeed in order to conclude that
v belongs to P . Determining which face of P contains v amounts to combining
together the faces reached in each decomposition branch. For example, in Fig. 2,
the point v = (2, 1.5) is found to belong to the universal (bottom) node in the
branch labeled by y1, and to the node y2 = −1 in the one labeled by y2. The
corresponding face of P is thus x1 − 2x2 = −1.

Finally, it is worth mentioning that in the case of a polyhedron with a lineality
space of non-zero dimension d, our decomposition strategy will produce d trivial
decomposition branches, associated to the universal set. Such branches do not
have to be explicitly constructed and can be omitted in an actual implementation
of the data structure.

4 Operations

4.1 Intersection

We now discuss the computation of operations over convex polyhedra represented
by DCPs, starting with the intersection P1∩P2 of two given polyhedra P1 and P2.
These polyhedra may define different decompositions. We go around this problem
by proceeding incrementally, starting from P1 and successively intersecting the
polyhedron with each constraint of P2.

Dealing with Decompositions. In order to intersect a polyhedron P with
a constraint c.x# δ, the first step consists in inserting c in the current decom-
position of P , following the procedure outlined in Sect. 3.2. If c is placed in a
single existing branch, or in a newly created one, then the intersection can be
computed locally over the CPDD associated to this branch. Otherwise, if several
decomposition blocks become merged, then a single CPDD corresponding to the
Cartesian product of their associated branches first needs to be constructed.
The intersection operation is then computed over this CPDD, leaving the other
decomposition branches untouched. Then, after having intersected a CPDD with
a constraint, the result is inspected in order to detect whether it is further decom-
posable. This is achieved by applying the procedure of Sect. 3.2 to its system of
constraints. A final step is to check whether the resulting polyhedron is fully
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dimensional, which amounts to inspecting the bottom component of the CPDD
of the branch affected by the intersection. Depending on the outcome of this
operation, it may be needed to adapt the linear transformation of the DCP.

CPDD Intersection. The intersection of a polyhedron P represented by a
CPDD with a constraint c.x# δ is computed by means of a coloring procedure,
consisting in labeling the nodes of the CPDD with a color that indicates how
they are affected by the operation.

Recall that the CPDD nodes correspond to the faces of P . The coloring
scheme uses the colors Green, Red, Blue, and Yellow. A face F is colored Red if
∀x ∈ F : c.x ≥ δ ∧ ∃x ∈ F : c.x > δ (no point in F satisfies the open form of
the constraint), Green if ∀x ∈ F : c.x ≤ δ ∧ ∃x ∈ F : c.x < δ (all points in F
satisfy the closed form of the constraint), Blue if ∀x ∈ F : c.x = δ (all points in
F saturate the constraint), and Yellow if ∃x,y ∈ F : c.x < δ ∧ c.y > δ (some
points in F satisfy the constraint, and some others do not).

The color of all nodes can be computed by first coloring the minimal non-
trivial faces of P , and then propagating this information through its face lattice.
Consider for instance the case of a face F that has a direct ascendant F1 labeled
Green, and another one F2 labeled Red. Thus, there exist x1 ∈ F1 such that
c.x1 < δ and x2 ∈ F2 such that c.x2 > δ. Since F1 ∪ F2 ⊆ F , the face F must
be colored Yellow.

Similar propagation rules are easily obtained for all cases, except for a tech-
nical difficulty arising when P is unbounded. In such a case it is possible for a
face G to have a single direct ascendant F . In order to determine the color of G
from the color of F , one then needs to take into account a direction d from F
to G, defined as a vector satisfying ∀x′ ∈ G : ∃x ∈ F, λ ≥ 0 : x′ = x+ λd. This
direction will be colored Green if it is compatible with the constraint (c.d < 0),
Red if it is not (c.d > 0), and Blue if it saturates it (c.d = 0). It will then be
considered as an additional ascendant of G. Intuitively, this direction simulates
a face F ′ with the same dimension as F , located infinitely far away from F in
the same direction as G.

After all nodes have been colored, a CPDD representing the result of the
intersection is obtained as follows. All Green and Blue nodes remain unchanged,
since they represent faces that satisfy c.x ≤ δ. Similarly, Red nodes disappear,
since all points of their associated face violate the constraint. Yellow faces F
are split into two new faces: A first one F1 = F ∩ {x | c.x ≤ δ} with the same
dimension as F , and another one F2 = F ∩ {x | c.x = δ} of smaller dimension.
Note that F1 is associated with the same set of saturated constraints as F , and
can thus be considered as being a modified copy of F .

After having computed all the faces of the resulting polyhedron, it remains
to restore the inclusion relation between them. For the nodes left untouched by
the intersection operation, such as Green and Blue ones, this information can
simply be copied from the original CPDD. For Yellow nodes, an additional step
needs to be performed. Consider two Yellow nodes F and G such that F is a
direct ascendant of G. The nodes F and G will respectively be split into F1, F2,



294 B. Boigelot and I. Mainz

and G1, G2, where F2 (resp. G2) is a direct ascendant of F1 (resp. G1). In this
situation, one has F2 ⊂ G2, hence an edge needs to be added linking F2 to G2.
A similar phenomenon occurs when a Blue face F has a Green direct descendant
G, that has a Yellow direct descendant H. The node H is split into H1 and H2

with dim H2 < dim H1. In this case, one has F ⊂ H2, hence an edge must be
added between those nodes. These two situations are illustrated in Fig. 3 (added
edges are in bold).

Fig. 3. Restoring the inclusion relation between faces.

A pseudocode version of the CPDD intersection algorithm is sketched in
Fig. 4.

Implementation Issues. In our implementation, the coloring procedure is
implemented lazily, meaning that it only considers the nodes that will potentially
be present in the resulting CPDD. In particular, the descendants of a Red node
will not be explored, except if they are reached by another path. When several
decomposition branches need to be merged upon processing a new constraint,
the CPDD representing their Cartesian product is not explicitly constructed
but computed on-the-fly, which helps keeping the memory used by the procedure
under control. Finally, we keep a canonical double representation of the maximal
and non-trivial minimal faces of polyhedra within their respective nodes of their
face lattice. This information makes it possible to speed up the computation of
the color of minimal faces, as well as the check for full dimensionality.

4.2 Linear Transformations

We now address the problem of computing the image of a convex polyhedron
P ⊆ R

n represented by a DCP by an affine transformation π : x �→ Ax + b,
with A ∈ Q

n×n and b ∈ Q
n.

There are two cases to consider. First, if A is a non-singular matrix, then
applying the transformation amounts to expressing P in a new coordinate sys-
tem. The decomposition of P and the structure of its face lattice are thus left
unchanged, and the operation can be implemented by translating the constraints
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Fig. 4. CPDD intersection algorithm.

of P in the new coordinate system, and then updating the labels of the nodes
and edges of the DCP accordingly.

If on the other hand A is singular, then the transformation represents a
projection, mapping P into a polyhedron P ′ = π(P ) such that dimP ′ = rank(A),
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hence dim P ′ < dim P . It is well known that P ′ is itself a convex polyhedron,
and that for each face F ′ of P ′, there exists a face F of P such that π(F ) = F ′.
Moreover, the face lattice of P ′ shares the same structure as the one of P .

W.l.o.g., we assume rank(A) = n − 1, since any projection can easily be
expressed as a sequence of projections that satisfy this hypothesis. The first
step of the computation consists in checking whether the decomposition of the
DCP can be preserved. This is done by computing a direction for the projection,
defined as a vector d that satisfies Ad = 0. This intuitively means that two
points that only differ in a multiple of this direction are projected identically.
In the current decomposition, all the branches that are not orthogonal to d
(i.e., containing a vector a such that a.d = 0) must be merged together. The
projection is then applied separately to the CPDD associated to each branch.

Consider a CPDD representing a polyhedron P ⊆ R
n. The computation

of its projection by π proceeds bottom-up in its face lattice, as opposed to
the intersection operation that was carried out in top-down order. We start by
projecting the trivial face of dimension n (corresponding to the whole polyhedron
P ). This projection yields the trivial face P ′ = π(P ), of dimension n − 1.

The next step consists in projecting the following two layers, that is, the facets
of P (of dimension n− 1), and their direct ascendants (of dimension n− 2). The
projection π(F ) of a facet F of P may either be of dimension n − 1 or n − 2. In
the former case, it corresponds to the unique trivial face of dimension n − 1 of
P ′. In the latter, the set π(F ) needs to be explicitly computed.

The projection π(F ) of a face F of P such that dim F = n − 2 can either be
a face of P ′ (of dimension n − 2 or n − 3), or it will not be a face of P ′. These
situations are distinguished by performing Fourier-Motzkin elimination. This is
illustrated in Fig. 5, the two parts of which show a vertex (of dimension 0) that
respectively remains as a face of P ′, or vanishes after projecting out x2.

Fig. 5. Effect of Fourier-Motzkin projection.

The major difference with the double description method [11,22] is that we
only apply Fourier-Motzkin elimination to the constraints that intersect at the
face of interest, which are readily determined using the adjacency relation rep-
resented in the face lattice. This is the key to the efficiency of our procedure.

After having projected the first two non-trivial layers, it remains to compute
the projection of the other faces. Since the face lattice of P ′ matches the one
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of P , this is simply done by following the structure of this lattice in bottom
up order, computing each face as the meet (thus, the intersection), of its direct
descendants. The resulting representation of P ′ is, by construction, free from
redundancy in its constraint and generator systems.

Finally, the computation of the projection of a DCP is followed by a cleanup
step aimed at detecting further decompositions and checking full dimensionality.
This step is identical to the last operation of the intersection algorithm presented
in Fig. 4.

5 Experimental Results

In order to assess the advantages of DCPs against other solutions for dealing
with convex polyhedra, we have implemented a prototype tool that builds the
minimal DCP representing a polyhedron given by its set of constraints. Unsur-
prisingly, other tools based on the double description method do not come with
benchmarks containing problems expressed in high dimensional spaces. Our first
idea was to construct a set of examples composed of polyhedra that are decom-
posable by design. Our implementation handles them in an exponentially faster
way than the other tools that we have considered, but this was expected since
these examples were specifically tailored to our decomposition mechanism.

Obtaining instances of realistic problems related to the state-space explo-
ration of hybrid systems, which was the main motivation for this work, is not easy
since to the best of our knowledge, no existing tool can handle high-dimensional
problems. We therefore turned to the domain of SMT solving, for which exten-
sive benchmarks of problems involving a large number of variables are available.
Our approach consisted in running the SMT prover veriT [10] on the verifi-
cation problem uart-9.base2 from the QF LRA benchmark of the SMT-LIB
library [6]. During its operation, the SMT prover generates systems of linear
inequalities that are checked for satisfiability by an external simplex procedure.
We replaced this procedure by an explicit construction of a DCP representing
the corresponding convex polyhedron.

The results of this experimental evaluation are summarized in Fig. 6. We
compare the execution time (in seconds) of our prototype implementation against
cdd [16] and PPL [4], which are based on the double description method with
some clever optimizations, as well as lrs [2], which implements the reverse search
algorithm for computing the vertices of polyhedra. The experiments were carried
out on a computer equipped with a i7-970 processor running at 3.2 GHz, with
turbo boost disabled. Timeout was set at one hour. The indices 1, 50, 100, . . . of
the instances correspond to the steps at which these problems were produced by
veriT (selected arbitrarily), and not to the increasing value of some parameter. In
this setting, the results show that our approach (DCP) compares quite favorably
against the other tools.

2 The test cases are available at http://www.montefiore.ulg.ac.be/∼boigelot/research/
atva2018-case-study.tgz.

http://www.montefiore.ulg.ac.be/~boigelot/research/atva2018-case-study.tgz
http://www.montefiore.ulg.ac.be/~boigelot/research/atva2018-case-study.tgz
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Fig. 6. Experimental results (times in s).

6 Conclusions

This paper introduces a new data structure, the Decomposed Convex Polyhe-
dron (DCP), for representing symbolically convex polyhedra in R

n. This data
structure is based on an explicit representation of the whole face lattice of poly-
hedra, including complete adjacency information between its faces, which makes
some operations (such as projection) more efficient. It is able to scale up to
high dimensional spaces thanks to a novel decomposition mechanism that is not
affected by changes of coordinates. DCPs have been evaluated experimentally
with a prototype implementation. On an SMT solving case study related to
software verification, they perform better than other existing tools for handling
convex polyhedra.

Future work will focus on implementing additional operations on DCPs, such
as the time-elapse operator needed for exploring the state-space of linear hybrid
systems, and on improving our prototype with some optimization mechanisms
borrowed from other tools. The practical cost of operations performed over DCPs
also needs to be thoroughly evaluated in the scope of a more detailed case study.

Acknowledgment. The authors wish to thank Pascal Fontaine and Laurent Poirrier
for their precious help in obtaining relevant benchmarks.
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Abstract. Parametric Markov chains occur quite naturally in various
applications: they can be used for a conservative analysis of probabilistic
systems (no matter how the parameter is chosen, the system works to
specification); they can be used to find optimal settings for a parameter;
they can be used to visualise the influence of system parameters; and
they can be used to make it easy to adjust the analysis for the case that
parameters change. Unfortunately, these advancements come at a cost:
parametric model checking is—or rather was—often slow. To make the
analysis of parametric Markov models scale, we need three ingredients:
clever algorithms, the right data structure, and good engineering. Clever
algorithms are often the main (or sole) selling point; and we face the
trouble that this paper focuses on – the latter ingredients to efficient
model checking. Consequently, our easiest claim to fame is in the speed-
up we have often realised when comparing to the state of the art.

1 Introduction

The analysis of parametric Markov models is a young and growing field of
research. As not only the research direction but also the term ‘parametric Markov
models’ is attractive, it has been used for various generalisations of traditional
Markov models. We use Markov chains, where the parameter is used to deter-
mine the probabilities and rewards, such that we can reason about the likelihood
of obtaining simple temporal properties like safety and reachability as well as
standard reward functions, such as long-run average.

What we do not intend to do in this paper is to use parameters to change
the size of the system or the shape of the Markov chain. (The latter can, of
course, be encoded by using parameters to assign a probability of 0 to an edge,
effectively removing it. This would, however, come at the cost of efficiency and
is not what we want to use the parameters for.)

Using parameters to describe the probabilities of transitions is not quite as
easy as it sounds: even when parameters appear in a simple way, like ‘p’ or
‘1 − p’, the terms that represent the likelihood of obtaining a temporal property
or an expected reward can quickly become quite intricate. One ends up with
rational functions. We make a virtue of necessity by using this as a motivation
to allow for using rational functions of the occurring parameters to represent the
probabilities and payoffs.
c© Springer Nature Switzerland AG 2018
S. K. Lahiri and C. Wang (Eds.): ATVA 2018, LNCS 11138, pp. 300–316, 2018.
https://doi.org/10.1007/978-3-030-01090-4_18
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To allow for an efficient analysis of such complex parametrised systems, we
have taken a look at different strategies for the evaluations of—parametric and
non-parametric—Markov chains, and considered their suitability for our pur-
poses. We found the stepwise elimination of vertices from a model to be the
most attractive approach to port.

Broadly speaking, this approach works like the transformation from finite
automata to regular expressions: a vertex is removed, and the new structure has
all successors of this state as—potentially new—successors of the predecessors of
this vertex. In the transformation from finite automata to regular expressions,
one changes the expressions on the edges, while we adjust the probabilities and,
if applicable, the rewards on the edges.

When using this approach with explicit probabilities and rewards, one ends
up with a Directed Acyclic Graph (DAG) structure in the evaluation. This DAG
structure has been exploited to reduce the cost of re-calculating the probabilities
for simple temporal properties or expected rewards, and it proves that it also
integrates nicely into our framework, where the probabilities and rewards are
provided as rational functions. In fact it integrates so naturally that it seems
surprising in hindsight that it has not been discovered earlier.

The natural connection occurs when choosing a similar data structure to
represent the rational functions that represent the probabilities and rewards. To
make full use of the DAG structure that comes with the elimination, we represent
these functions in the form of arithmetic circuits—which are essentially DAGs.
We have integrated the resulting representation organically in a small extension
of ePMC, and tested it on a range of case studies. We have obtained a speed-up
of a hefty factor of 20 to 120 when compared to storing functions in terms of
coprime numerator and denominator polynomials.

Related work. For (discrete-time) Markov chains (MCs), Daws [6] has devised
a language-theoretic approach to solve this problem. In this approach, the transi-
tion probabilities are considered as letters of an alphabet. Thus, the model can be
viewed as a finite automaton. Then, based on the state elimination method [22],
a regular expression that describes the language of such an automaton is calcu-
lated. In a post-processing step, this regular expression is recursively evaluated,
resulting in a rational function over the parameters of the model. One of the
authors has been involved in extending and tuning this method [16] so as to
operate with rational functions, which are stored as coprime numerator and
denominator polynomials rather than with regular expressions.

The process of computing a function that describes properties (like reachabil-
ity probabilities or long-run average rewards) that depend on model parameters
is often costly. However, once the function has been obtained, it can very effi-
ciently be evaluated for given parameter instantiations. Because of this, paramet-
ric model checking of Markov models has also attracted attention in the area of
runtime verification, where the acceptable time to obtain values is limited [3,11].

Other works in the area are centred around deciding the validity of boolean
formulas depending on the parameter range using SMT solvers or extending
these techniques to models that involve nondeterminism [5,7,14,27].
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Fig. 1. Simulating a biased dice by a biased coin.

As an example for a para-
metric model, consider Fig. 1.
Knuth and Yao [24] have shown
how a six-sided dice can be
simulated by repeatedly toss-
ing a coin. The idea is to build
a Markov chain with transi-
tion probabilities of only 0.5
or 1. Borrowing a model from
the PRISM website, we have
extended this example to a
biased dice, simulated by toss-
ing a biased coin. With prob-
ability x we see heads, while
with probability 1 − x we see
tails. This way, we move around
in the Markov chain until we
obtain a result.

Organisation of the paper. After formalising our setting in Sect. 2, we
describe how we exploit DAGs in the representation of rational functions, and
exploit them using synergies with the DAG-style state elimination technique, in
Sect. 3. We then describe how to expand this technique to determine long-run
average rewards in Sect. 4. In Sect. 5, we evaluate our approach on a range of
benchmarks, and discuss the results briefly in Sect. 6.

2 Preliminaries

2.1 Parametric Markov Chains with State Rewards

Let V = {v1, . . . , vn} denote a set of variables over R. A polynomial g over V is
a sum of monomials

g(v1, . . . , vn) =
∑

i1,...,in

ai1 , . . . ,in vi1
1 . . . vinn ,

where each ij ∈ N and each ai1 , . . . ,in ∈ R. A rational function f over a set of
variables V is a fraction f(v1, . . . , vn) = f1(v1,...,vn)

f2(v1,...,vn)
of two polynomials f1, f2

over V . We denote the set of rational functions from V to R by FV .

Definition 1. A parametric Markov chain (PMC) is a tuple D = (S, s,P, V ),
where S is a finite set of states, s is the initial state, V = {v1, . . . , vn} is a
finite set of parameters, and P is the probability matrix P : S × S → FV . A
path ω of a PMC D = (S, s,P, V ) is a non-empty finite, or infinite, sequence
s0, s1, s2, . . . where si ∈ S and P(si, si+1) > 0 for i � 0. We let Ω denote the
set of infinite paths. With Prs, we denote the parametric probability measure
over Ω assuming that we start in state s, with pr = prs. We use Exps, Exp to
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Algorithm 1 Parametric Reachability Probability for PMCs
1: procedure StateElimination(D,B)
2: requires: A PMC D = (S, s,P, V ) and set of target states B ⊆ S, where

reachD(s, s) holds for all s ∈ S.
3: E ← S
4: while E �= ∅ do
5: se ← choose(E)
6: E ← E \ {se}
7: for all s ∈ postD(se) do
8: P(se, s) ← P(se, s)/(1 − P(se, se))
9: end for

10: P(se, se) ← 0
11: for all (s1, s2) ∈ preD(se) × postD(se) do
12: P(s1, s2) ← P(s1, s2) + P(s1, se)P(se, s2)
13: end for
14: if se �= s ∧ se /∈ B ∧ postD(se) �= ∅ then
15: Eliminate(D, se) // remove se and incident transitions from D
16: end if
17: end while
18: return

∑
s∈B P(s, s)

19: end procedure

denote according expectations. With X(D)s,i : Ω → S, X(D)s,i(s0, s1, . . .) = si
we denote the random variable expressing the state occupied at step i ≥ 0, and
let X(D)i = X(D)s,i.

Definition 2. Given a PMC D = (S, s,P, V ), the underlying graph of D is
given by GD = (S, E) where E = {(s, s′) | P(s, s′) > 0}. A bottom strongly
connected component (BSCC) is a set A ⊆ S such that in the underlying graph
each state s1 ∈ A can reach each state s2 ∈ A and there is no s3 ∈ S\A reachable
from s1.

Given a state s, we denote the set of all immediate predecessors and successors of
s in the underlying graph of D by preD(s) and postD(s), respectively, excluding
s itself. We write reachD(s, s′) if s′ is reachable from s in the underlying graph
of D.

Given a PMC D = (S, s,P, V ) we are interested in computing the function
that represents the probability of reaching some set of target states B ⊂ S.

Reach(D,B) = Pr [∃i ≥ 0.X(D)s,i ∈ B]

Our base algorithm to obtain this value is described in Algorithm 1. A state se ∈
S is selected, and then eliminated by considering each pair (s1, s2) ∈ preD(se) ×
postD(se) and updating the existing probability P(s1, s2) by the probability of
reaching s2 from s1 via se. Heuristics to determine the order in which states are
chosen for elimination by the choose function are discussed in Sect. 5.5.



304 P. Gainer et al.

Definition 3. A parametric reward function for a PMC D = (S, s,P, V ) is a
function r : S → FV .

The reward function labels states in D with a rational function over V that
corresponds to the reward that is gained if that state is visited. Given a PMC
D = (S, s,P, V ) and a reward function r : S → FV , we are interested in the
parametric expected accumulated reward defined as

Acc(D, r) = Exp

[ ∞∑

i=0

r(X(D))s,i

]

or a variation [25], the parametric expected accumulated reachability reward given
B ⊆ S defined as

Acc(D, r,B) = Exp

⎡

⎣
{j|X(D)s,j∈B}∑

i=0

r(X(D))s,i

⎤

⎦ .

This can, however, be transformed to the former.
Algorithm 1 can be extended to compute the parametric expected accumu-

lated reward. In addition to updating the probability matrix for each predecessor
and successor pair, we also update the reward function as follows:

r(s1) ← r(s1) + P(s1, se)
P(se, se)

1 − P(se, se)
r(se).

The updated value for r(s1) reflects the reward that would be accumulated if a
transition would be taken from s1 to se, where the expected number of self-loops
would be P(se,se)

1−P(se,se)
. Upon termination, the algorithm returns the value r(s).

3 Representing Formulas Using Directed Acyclic Graphs

In existing tools for parametric model checking of Markov models, rational func-
tions have traditionally been represented in the form f(v1, . . . , vn) = f1(v1,...,vn)

f2(v1,...,vn)
,

where f1(v1, . . . , vn) and f2(v1, . . . , vn) [8,15,26] are coprime. As a result, for
some cases the representations of such functions are very short. Often, during
the state elimination phase, large common factors can be cancelled out, such that
one can operate with relatively small functions throughout the whole algorithm.
There are, however, many cases without—or with very few—large common fac-
tors. The nominator-denominator representations then become larger and larger
during the analysis. In this case, the analysis is slowed down severely, mostly
by the time taken for the cancellation of common factors. Cancelling out such
factors is non-trivial, and indeed a research area in itself. In addition, if formulas
become large, this can also lead to out-of-memory problems.

To overcome this issue, we propose the representation of rational functions by
arithmetic circuits. These arithmetic circuits are directed acyclic graphs (DAG).
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Terminal nodes are labelled with either a variable of the set of parameters V , or
with a rational number. Non-final nodes are labelled with a function to be applied
on the nodes it has edges to. In our setting, we require two unary functions,
additive inverse and multiplicative inverse, and two binary functions, addition
and multiplication. All functions used are represented using a single DAG, and
a function is represented by a reference to a node of this common DAG.

This representation has two advantages. Firstly, all operations are practically
constant time: to apply an operator on two functions, one simply introduces a
new node labelled with the according operator, with edges pointing to the two
nodes to connect. In particular, we do not have to use expensive methods to
cancel out common factors. Secondly, because we are using a DAG and not a
tree, common sub-expressions can be shared between different formulas, which
is not possible when representing rational functions in terms of two polynomials
represented as a list of monomials.

For illustration, let us consider the example from Fig. 1. We analyse the
probability that the final result is . This probability can be described by the
function

−x2 + 2x − 1
x − 2

.

In our DAG-based representation, we would represent the function as in Fig. 2;

Fig. 2. Probability of rolling
.

When operating with arithmetic circuits, there
are a number of ways to reduce their memory foot-
print, which will, however, lead to a higher run-
ning time. The simplest one is that, while creating
a new node to represent a function, it might turn
out that there already exists a node with exactly
the same operator, and exactly the same operand.
In this case, it is better to drop the newly created
node and use a reference to the existing node to
counter the growth of the DAG. In case we use
hash maps for the lookup, we can also still keep the
overhead close to constant time. Another optimi-
sation is to use simple algebraic equivalences. This
includes computing the values of constant functions.
E.g. instead of creating a node representing 2+3 we
introduce a new terminal node labelled 5, and if we
are about the create a new node for y + x but we
already have a node for x + y we reuse this node
instead. We also take the additive and multiplicate
neutral elements into account (rather than creat-
ing a new node for 0 + x, we return the one for
x, and the like). Another optimisation method is
to evaluate functions of the DAG at random points
and then to identify functions if the result of this
evaluation is the same. Using the Schwartz-Zippel
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Lemma [9,29,30], we can then bound the probability that we mistakenly iden-
tify two nodes although they do not represent the same function. We can again
minimise the overheads incurred by this method by using hash maps.

Arithmetic circuits sometimes become very large, consisting of millions of
nodes. This way, they cannot serve as a concise, human-readable description
of the analysis result. Compared to performing a non-parametric analysis, it is
however often still beneficial to obtain a function representation in this form.
Even for large dags, obtaining evaluating parameter instantiations is very fast,
and linear in the number of DAG nodes. This is useful in particular if a large
number of points is required, for instance for plotting a graph. In this case,
results can be obtained much faster than using non-parametric model checking,
as demonstrated in Sect. 5. In particular, for any instantiation, values can be
obtained in the same, predictable, time. This is quite in contrast to value itera-
tion, where the number of iterations required to obtain a certain precision varies
with the concrete values of parameters.

For this reason, parametric model checking is particularly useful for online
model checking or runtime verification [3]. Here, one can precompute the DAG
before running the actual system, while concrete values can be instantiated at
runtime, with a running time that can be precisely calculated offline. Using arith-
metic circuits expands the range of systems for which this method is applicable.
Evaluation of parameter instantiations can be performed using exact arithmetic
or floating-point arithmetic. From our experience, the quality of the floating-
point results using DAGs is often better than the one using the representation of
rational functions as coprime numerator and denominator, which has been used
so far in known implementations. The reason is that, in the latter approach,
one often runs into numerical problems such as cancellation, which often forces
the use of expensive exact arithmetic to be used for evaluation. The DAG-based
method seems to be more robust against such problems.

It has recently come noted by the verification community that the usual way
in which value iteration is implemented is not safe, and solutions have already
been proposed [1]. While this solves the problem, it requires more complex algo-
rithms and leads to increased model checking time. In case arithmetic circuits
are used, it is easy to obtain conservative upper and lower bounds for parameter
instantiations. One only has to use interval arithmetic and provide implementa-
tions for the basic operations used (addition, multiplication, additive and multi-
plicative inverse). The increase in the time to evaluate functions is small. In our
experiments, the largest interval diameter we have obtained is around 10−13.

4 Computation of Fractional Long-Run Average Values

Consider a PMC D = (S, s,P, V ) together with two reward functions ru : S →
FV and rl : S → FV . The problem we are interested in is computing the value
fractional long-run average reward [2,10]

LRA(D, ru, rl, s)=Exp

[
lim

n→∞

∑n
i=0 ru(X(D)s,i)∑n
i=0 rl(X(D)s,i)

]
, LRA(D, ru, rl)=LRA(D, ru, rl, s).
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In a simple case, rl(·) = 1, which means that we compute the long-run average
reward

Exp

[
lim
n→∞

1
n + 1

n∑

i=0

ru(X(D)s,i)

]
,

where each step is assumed to take the same amount of time. Solution methods
for this property has been implemented (but to the best of our confidence, not
been published) for parametric models in PRISM and Storm. The fractional
long-run average reward is more general and allows to express values like the
average energy usage per task performed more easily. Given a reward structure
r : S → FV , we define the recurrence reward as

Return(D, r, s) = Exp

⎡

⎣
min{j|X(D)s,j=s∧j>0}∑

i=0

r(X(D)s,i)

⎤

⎦ ,Return(D, r) = Return(D, r, s).

It is known [4] that this value is the same for all states of a BSCC. Furthermore,
for rl(·) = 1 we have

Return(D, ru, s)
Return(D, rl, s)

= LRA(D, ru, rl, s),

which immediately extends to the general case.
In Sect. 2, we have discussed how state elimination can be used to obtain

values for the expected accumulated reward values. For this, we have repeatedly
eliminated states so as to bring the PMC of interest into a form in which reward
values can be obtained in a trivial way. It is easy to see that the transformations
for the expected accumulated rewards also maintains the recurrence rewards.
After having handled each state of our model, we have two possible outcomes
(Fig. 3).

Fig. 3. Computation of long-run average values.

In the simpler case, the
remaining model consists of the
initial state s with a self-loop
with probability one and ru =
us, rl = ls. In this case, we
have LRA(D, ru, rl) = us

ls
. In the

other case, the remaining model
consists of the initial state s
which has a probability of pi
to move to one of the other
n remaining states si , i =
1, . . . , n, which all have a self-
loop with probability one and ru(si) = ui, rl(si) = li. In this case, we have
LRA(D, ru, rl) =

∑
i=1,...,n pi

ui

li
.
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5 Experiments

We now consider four case studies that illustrate the efficiency and scalability of
our approach. Three models [21,23,28] are taken from the PRISM benchmark
suite1, and the last is taken from the authors’ work on synchronisation proto-
cols [12,13]. All experiments were conducted on a PC with an Intel Core i7-2600
(tm) processor at 3.4 GHz, equipped with 16 GB of RAM, and running Ubuntu
16.04. For each case study we compare the performance times obtained for model
analysis when using the parametric engine of the model checker ePMC [17]2,
using either polynomial fractions or DAGs to represent the functions corre-
sponding to transition probabilities and state rewards. Basically, the DAG is
implemented as an array of 64-bit integers. Functions are represented as indices
to this array. 4 bits describe the type of the node. For terminal nodes, the remain-
ing bits denote the parameter or number used. For non-terminal nodes, 2 × 30
bits are used to refer to the operands within the DAG. We also compare our
results to those obtained using the parametric engine of PRISM [26], and the
parametric and sampling engines of Storm [8]3.

Given a parametric model, and a set of valuations for its parameters, we are
interested in the total time taken to check some property of interest for every
valuation for the parameters. Since our primary concern is the efficiency of mul-
tiple evaluations of an existing model, we omit model construction times and
restrict our analysis to the total time taken for the evaluation of all parameter
valuations. For the parametric engines of ePMC, PRISM, and Storm, we record
the total time taken for both state elimination and the evaluation of the resulting
function for all parameter valuations. For the sparse engine of Storm, we record
the total time taken for value iteration, using default settings to determine con-
vergence. For Storm, we set the precision to 10−10 rather than the default of
10−6. This had a very minor influence on the runtime, and allowed a better
comparison to ePMC, the results of which have a precision of < 10−13.

5.1 Crowds Protocol

The Crowds protocol [28] provides anonymity for a crowd consisting of N Inter-
net users, of whom M are dishonest, by hiding their communication via random
routing, where there are R different path reformulates. The model is a PMC
parametrised by B = M

M+N , the probability that a member of the crowd is
untrustworthy, and P , the probability that a member sends a package to a ran-
domly selected receiver. With probability 1−P the packet is directly delivered to
the receiver. The property of interest is the probability that the untrustworthy
members observe the sender more than they observe others.

Table 1 shows the performance statistics for different values of N and R,
where each entry shows the total time taken to check all pairwise combinations of

1 http://www.prismmodelchecker.org/benchmarks/.
2 http://iscasmc.ios.ac.cn/?p=1241, https://github.com/liyi-david/ePMC.
3 http://www.stormchecker.org/.

http://www.prismmodelchecker.org/benchmarks/
http://iscasmc.ios.ac.cn/?p=1241
https://github.com/liyi-david/ePMC
http://www.stormchecker.org/
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Table 1. Performance statistics for crowds protocol.

N R States Trans. PRISM ePMC ePMC(D) ePMC(DS) Storm(P) Storm(S)

5 3 1198 2038 722 737 13 13 681 26

5 5 8653 14953 745 806 15 15 723 64

5 7 37291 65011 818 900 19 17 735 153

10 3 6563 15143 732 771 15 14 690 26

10 5 111294 261444 1146 910 23 16 712 63

10 7 990601 2351961 –T– –T– 103 42 737 159

15 3 19228 55948 761 825 16 16 703 26

15 5 592060 1754860 –T– –M– 42 28 709 64

15 7 8968096 26875216 –M– –M– –M– –M– 777 174

20 3 42318 148578 814 805 15 14 709 26

20 5 2061951 7374951 –M– –M– 108 90 720 67

Fig. 4. Upper crowds protocol (L). Bounded retransmission protocol (R).

values for B,P taken from 0.002, 0.004, . . . , 0.998. There is a substantial increase
in the performance of ePMC when using non-simplified DAGs (ePMC(D)), and
using DAGs (ePMC(DS)) simplified by evaluating random points (cf. Sect. 3),
instead of polynomial fractions (ePMC) to represent functions. Here, ePMC
clearly outperforms the parametric engines of both PRISM and Storm. In some
instances, ePMC turns out to be the fastest choice, while the sampling engine of
Storm proves to be faster for other instances. Processes that exceeded the time
limit of one hour are indicated by –T–, and processes that ran out of memory are
indicated by –M–. In Fig. 4 (left) we plot the results for N = 5 and R = 7.

5.2 Bounded Retransmission Protocol

The bounded retransmission protocol [21] divides a file, which is to be transmit-
ted, into N chunks. For each chunk, there are at most MAX retransmissions over
two lossy channels K and L that send data and acknowledgements, respectively.
The model is a PMC parametrised by pK and pL, the reliability of the chan-



310 P. Gainer et al.

Table 2. Performance statistics for bounded retransmission protocol.

N MAX States Trans. PRISM ePMC ePMC(D) ePMC(DS) Storm(P) Storm(S)

64 4 4139 5543 1029 1016 36 38 991 160

64 5 4972 6695 1145 1118 36 33 1021 188

256 4 16427 22055 –M– –M– 48 40 3332 403

256 5 19756 26663 –M– –M– 35 15 –T– 318

512 4 32811 44071 –M– –M– 29 19 –T– 491

512 5 39468 53287 –M– –M– 28 23 –T– 596

nels. We are interested in the probability that the sender reports an unsuccessful
transmission after more than 8 chunks have been sent successfully.

The performance statistics for different values of N and MAX are shown in
Table 2, where each entry shows the total time taken to check all pairwise combi-
nations of values for pK, pL taken from 0.002, 0.004, . . . , 0.998. Here, ePMC with
DAGs again has the best performance: the running time remains approximately
constant when using this data structure, even for much larger problem instances.
In contrast, the running time for both engines of Storm scale linearly. Both the
parametric engine of PRISM and ePMC with polynomial fraction representation,
run out of memory for all larger problem instances.

Figure 4 (right) plots the results obtained for N = 256 and MAX = 4. As we
see the probability of interest first increases with increasing channel reliability,
but then decreases again. The reason is that, on the one hand, if the channel
reliability is low, then we do not send many chunks successfully. On the other
hand, if the channel reliability is high, then it is unlikely that the transmission
will fail in the end.

5.3 Cyclic Polling Server

This cyclic server polling model [23] is a model of a network, described as a
continuous-time Markov chain. There are two parameters, μ and γ. The model
consists of one server and N clients. When a client is idle, then a new job arrives
at this client with a rate of μ/N . The server ‘polls’ the clients in a cyclic manner.
At each point of time, it observes a single client. If there is a job waiting for a
given client, the server servers its job (provided there is one) with a rate of μ.
When the client it observes is idle, then the server moves on to observe the next
client with a rate of γ. Even though our method targets discrete-time models,
we can handle this model by computing the embedded DTMC.

In this case study, we consider the probability that, in the long run, Station
1 is idle. That is, the expected limit average of the time that Station 1, or, due
to symmetry, any other station, is idle. We compute this long-run average value
using the method described in Sect. 4. Probabilities are displayed as a function
of the parameters in Fig. 5, and Table 3 shows how the various tools perform on
this benchmark. With increasing γ the likelihood that Station 1 is idle increases:
if we increase γ, then the server will more quickly find stations to be served. As
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Table 3. Performance statistics for cyclic polling server.

N States Trans. PRISM ePMC ePMC(D) ePMC(DS) Storm(P) Storm(S)

4 96 272 1166 888 14 14 953 50

5 240 800 –T– –T– 28 25 –T– 121

6 576 2208 3550 –T– 108 102 –T– 305

7 1344 5824 1399 –T– 759 736 –T– 801

8 3072 14848 1052 –T– –T– –T– –T– 1991

9 6912 36864 –T– –T– –M– –M– –T– –T–

Fig. 5. Cyclic polling server (L). Synchronisation model (R).

the long-run average idle time only depends on the rate between μ and γ, the
likelihood that Station 1 is idle falls with increasing μ.

For the current configuration, classic parametric model checking does not
seem to be advantageous. Using our DAG-based implementation, however, is
much more efficient than classic parametric model checking, but it is space con-
suming. With the chosen number of parameter instantiations, our method does
not quite compete with non-parametric model checking.

5.4 Oscillator Synchronisation

The models of [12,13] encode the behaviour of a population of N coupled nodes
in a network. Each node has a clock that progresses, cyclically, through a range of
discrete values 1, . . . , T . At the end of each clock cycle a node transmits a message
to other nodes in the network. Nodes that receive this message adjust their clocks
to more closely match those of the firing node. The model is a PMC, parametrised
by the likelihood ML that a firing message is lost in the communication medium.
The property of interest is the expected power consumption of the network (in
Watt-hours) to reach a state, where the clocks of all nodes are synchronised.



312 P. Gainer et al.

Table 4. Performance statistics for synchronisation model.

N T States Trans. PRISM ePMC ePMC(D) ePMC(DS) Storm(P) Storm(S)

4 6 218 508 280 304 6 4 6 20

4 7 351 822 302 399 7 4 6 28

4 8 535 1257 542 1520 9 5 13 37

5 6 449 1179 354 499 10 5 11 39

5 7 799 2094 1694 –T– 11 6 34 60

5 8 1333 3533 –T– –T– 17 8 137 90

6 6 841 2491 1070 –T– 12 7 48 74

6 7 1639 4820 –T– –T– 19 8 239 130

6 8 2971 8871 –T– –T– 33 10 2311 211

Table 4 shows the results for different values of N and T , where each
entry shows the total time taken to check all values of ML taken from
10−5, 2 · 10−5, . . . , 1 − 10−5.

Figure 5 (right) plots the results obtained for N = 6 and T = 8. For extremal
values of ML, the network is expected to use much more energy to synchronise,
because the expected time required for this to occur increases. Very high values
of ML result in nearly all firing messages being lost, and hence nodes cannot
communicate well enough to coordinate, while very low values of ML lead to
perpetually asynchronous states for the network, an artefact of the discreteness
of the clock values [12].

In this case study, the DAG-based method, in particular with random points
evaluation, performs best, followed by the sampling-based method of Storm. We
note that the time required for each value iteration is relatively high, while the
cost of evaluating a point for the DAG-based method is quite low. Therefore, the
advantage of our approach would have been even more pronounced, if we had
evaluated more instantiations in the experiments above. The method of choice
thus depends mostly on whether such a high number of instantiations is required.

We have performed value iteration with a (local) precision of 10−10 for Storm.
This does, however, not guarantee any global precision [1]. Obtaining guaranteed
results using value iteration is relatively expensive while, as discussed in Sect. 3,
extending our approach to obtain conservative guarantees is relatively simple—
and inexpensive—to achieve by using basic interval arithmetic.

5.5 Heuristics

An important consideration when performing state elimination is the order, in
which different states are eliminated from the graph. Using different elimination
orders to evaluate the same model can result in functions, whose representa-
tions (nominator-denominator or DAGs) vary greatly in size, and hence also in
the corresponding memory footprint and analysis time. Heuristics for efficient
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Table 5. Performance statistics for different heuristics.

Model Elimination Heuristic

NumNew MinProd TargetBFS Random BFS ReverseBFS

Crowds (N = 10, R = 5) 19 103 5 14 22 6

BRP (N = 512, MAX = 5) 4 11 4 –M– 5 4

Cyclic (N = 7) 7 9 8 8 8 8

Synch (N = 6, T = 8) 18 18 17 19 18 17

state elimination have been studied in automata theory, to obtain shorter regular
expressions from finite-state automata [18,19], and in graph theory, for efficient
peeling of a probabilistic network [20]. We employ the following heuristics, con-
sisting of both existing schemes taken from the literature, and novel schemes
that prove to be effective for some models.

– NumNew: each state is weighted by the number of new transitions that are
introduced to the model when that state is eliminated. That is, we consider
each predecessor-successor pair for that state, and add one to the weight if the
transition from the predecessor to the successor was not already defined in the
underlying graph before state elimination. States with the lowest weight are
eliminated first. The aim here is to minimise the total number of transitions
as elimination progresses.

– MinProd: similarly to NumNew, we consider each predecessor-successor pair.
However, one is added to the weight irrespective of whether that transition
already existed in the underlying graph. Again states with the lowest weight
are considered first.

– TargetBFS: states are eliminated in the order in which they are discovered
when conducting a breadth-first search backwards from the target states.

– Random: a state is selected uniformly at random for elimination from the set
of remaining states.

– BFS: states are eliminated in the order in which they are discovered when
conducting a breadth-first search from the initial state(s) of the model.

– ReverseBFS: similar to BFS, except states are eliminated in reverse order.

In Table 5, we compare the different heuristics described. We have applied
each of them for each considered model, and provide the time in seconds required
for medium-sized instances. As seen, it turns out that TargetBFS is in general a
good choice. In one case, however, NumNew turns out to be faster.

6 Conclusion and Future Work

We have implemented an approach for the evaluation of parametric Markov
chains that exploits the synergies of using DAGs in a state-elimination based
analysis and using DAGs in an encoding of rational functions as arithmetic cir-
cuits. Our experimental evaluation suggests that these two approaches integrated
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so seamlessly that they often sprovide a notable speedup. The nicest observation
is that this seems so natural in hindsight that it is almost more surprising that
this has not been attempted before than that it works so well. We therefore hope
to have discovered one of these simple and natural approaches that will stand
the test of time.

The next step in exploiting our approach could be an integration into appli-
cations. One of the applications we have in mind is to use it in the context
of parameter extraction, which we expect to work similar to Model extraction,
for online Model checking. The growing knowledge of the model can be used to
refine or adjust the parameters in this application. Our application can help to
provide the speed required to make the approach scale, and to keep the analysis
and, if required, the visualisation4 of the effect of the learnt parameters (and the
confidence area around them) efficient.

We also note that interval arithmetic could be used to evaluate boxes—
hyperrectangles [a1, b1]×· · · [an, bn] of parameter ranges—so as to obtain bounds
on the lower and upper values taken by any occurring function value in the box.
This approach could be used instead of using SMT solvers (as in [7,14]) to decide
PCTL properties. A similar approach to avoid using SMT solvers has been pro-
posed [27], which is however not based on computing a function depending on
the parameters but on value iteration. We assume that the DAG-based approach
will perform better when a high coverage of the parameter space is required.

It would also be straightforward to parallelise evaluation of points using
SIMD approaches such as GPGPU.
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Abstract. We provide a framework for speeding up algorithms for time-
bounded reachability analysis of continuous-time Markov decision pro-
cesses. The principle is to find a small, but almost equivalent subsystem
of the original system and only analyse the subsystem. Candidates for
the subsystem are identified through simulations and iteratively enlarged
until runs are represented in the subsystem with high enough proba-
bility. The framework is thus dual to that of abstraction refinement.
We instantiate the framework in several ways with several traditional
algorithms and experimentally confirm orders-of-magnitude speed ups
in many cases.

1 Introduction

Continuous-time Markov decision processes (CTMDP) [Ber95,Sen99,Fei04]
are the natural real-time extension of (discrete-time) Markov decision pro-
cesses (MDP). They can likewise be viewed as non-deterministic extensions of
continuous-time Markov chains (CTMC). As such, CTMDP feature probabilis-
tic and non-deterministic behaviour as well as random time delays governed by
exponential probability distributions. Prominent application areas of CTMDP
include operations research [BDF81,Fei04], power management and schedul-
ing [QQP01], networked, distributed systems [HHK00,GGL03], as well as epi-
demic and population processes [Lef81]. Moreover, CTMDPs are the core seman-
tic model underlying formalisms such as generalised stochastic Petri nets, Marko-
vian stochastic activity networks, and interactive Markov chains [EHKZ13].

A large variety of properties can be expressed using logics such as
CSL [ASSB96]. Apart from classical techniques from the MDP context, the
analysis of such properties relies fundamentally on the problem of time-bounded
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reachability (TBR), i.e. what is the maximal/minimal probability to reach a given
state within a given time bound. Since this is the cornerstone of the analysis, a
manifold of algorithms have been proposed for TBR [BHHK04,BFK+09,NZ10,
FRSZ11,BS11,HH13,BHHK15]. While the algorithmic approaches are diverse,
relying on uniformisation and various forms of discretization, they are mostly
back-propagating the values computed, i.e. in the form of value iteration.

Not surprisingly, all these algorithms naturally process the state space of
the CTMDP in its entirety. In this work we instead suggest a framework that
enables TBR analysis with guaranteed precision while often exploring only a
small, property-dependent part of the state space. Similar ideas have appeared
for (discrete-time) MDPs and unbounded reachability [BCC+14] or mean pay-
off [ACD+17]. These techniques are based on asynchronous value-iteration
approaches, originally proposed in the probabilistic planning world, such as
bounded real-time dynamic programming (BRTDP) [MLG05]. Intuitively, the
back-propagation of values (value iteration steps) are not performed on all states
in each iteration (synchronously), but always only the “interesting” ones are con-
sidered (asynchronously); in order to bound the error in this approach, one needs
to compute both an under- and an over-approximation of the actual value.

In other words, the main idea is to keep track of (under- and over-
)approximation of the value when accepting that we have no information about
the values attained in certain states. Yet if we can determine that these states
are reached with very low probability, their effect on the actual value is provably
negligible and thus the lack of knowledge only slightly increases the difference
between the under- and over-approximations. To achieve this effect, the algo-
rithm of [BCC+14] alternates between two steps: (i) simulating a run of the
MDP using a (hopefully good) scheduler, and (ii) performing the standard value
iteration steps on the states visited by this run.

It turns out that this idea cannot be transferred to the continuous-time set-
ting easily. In technical terms, the main issue is that the value iteration in this
context takes the form of synchronous back-propagation, which when imple-
mented in an asynchronous fashion results in memory requirements that tend to
dominate the memory savings expectable due to partial exploration.

Therefore, we twist the above approach and present a yet simpler algorithmic
strategy in this paper. Namely, our approach alternates between several simula-
tion steps, and a subsequent run of TBR analysis only focussed on the already
explored subsystem, instead of the entire state space. If the distance between
under- and over-approximating values is small enough, we can terminate; other-
wise, running more simulations extends the considered state subspace, thereby
improving the precision in the next round. If the underlying TBR analysis pro-
vides an optimal scheduler along with the value of time-bounded reachability,
then our solution as well provides the optimal scheduler for the TBR problem
on the given CTMDP.

There are thus two largely independent components to the framework,
namely (i) a heuristic how to explore the system via simulation, and (ii) an algo-
rithm to solve time-bounded reachability on CTMDP. The latter is here instan-
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tiated with some of the classic algorithms mentioned above, namely the first
discretization-based algorithm [NZ10] and the two most competitive improve-
ments over it [BS11,BHHK15], based on uniformisation and untimed analysis.
The former basically boils down to constructing a scheduler resolving the non-
determinism effectively. We instantiate this exploration heuristics in two ways.
Firstly, we consider a scheduler returned by the most recent run of the respec-
tive TBR algorithm, assuming this to yield a close-to-optimal scheduler, so as
to visit the most important parts of the state space, relative to the property in
question. Secondly, since this scheduler may not be available when working with
TBR algorithms that return only the value, we also employ a scheduler resolving
choices uniformly. Although the latter may look very straightforward, it turns
out to already speed up the original algorithm considerably in many cases. This
is rooted in the fact that that scheduler best represents the available knowledge,
since the uniform distribution is the one with maximimal entropy.

Depending on the model and the property under study, different ratios of
the state space entirety need to be explored to achieve the desired precision.
Furthermore, our approach is able to exploit that the reachability objective is of
certain forms, in stark contrast to the classic algorithm that needs to perform the
same computation irrespective of the concrete set of target states. Still, the app-
roach we propose will naturally profit from future improvements in effectiveness
of classic TBR analysis.

We summarize our contribution as follows:

– We introduce a framework to speed up TBR algorithms for CTMDP and
instantiate it in several ways. It is based on a partial, simulation-based explo-
ration of the state space spanned by a model.

– We demonstrate its effectiveness in combination with several classic algo-
rithms, obtaining orders of magnitude speed ups in many experiments. We
also illustrate the limitations of this approach on cases where the state space
needs to be explored almost in its entirety.

– We conclude that our framework is a generic add-on to arbitrary TBR algo-
rithms, often saving considerably more work than introduced by its overhead.

2 Preliminaries

In this section, we introduce some central notions. A probability distribution on
a finite set X is a mapping ρ : X → [0, 1], such that

∑
x∈X ρ(x) = 1. D(X)

denotes the set of all probability distributions on X.

Definition 1. A continuous-time Markov decision process (CTMDP) is a tuple
M = (sinit, S,Act,R, G) where S is a finite set of states, sinit is the initial state,
Act is a finite set of actions, R : S ×Act×S → R≥0 is a rate matrix and G ⊆ S
is a set of goal states.

For a state s ∈ S we define the set of enabled actions Act(s) as follows:
Act(s) = {α ∈ Act | ∃s′ ∈ S : R(s, α, s′) > 0}. States s′ for which R(s, α, s′) > 0
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form the set of successor states of s via α, denoted as Succ(s, α). W. l. o. g.
we require that all sets Act(s) and Succ(s, α) are non-empty. A state s, s. t.
∀α ∈ Act(s) : Succ(s, α) = {s} is called absorbing.

For a given state s and action α ∈ Act(s), we denote by λ(s, α) =∑
s′ R(s, α, s′) the exit rate of α in s and Δ(s, α, s′) = R(s, α, s′)/λ(s, α).
An example CTMDP is depicted in Fig. 1a. Here states are depicted in circles

and are labelled with numbers from 0 to 5. The goal state G is marked with a
double circle. Dashed transitions represent available actions, e.g. state 1 has two
enabled actions α and β. A solid transition labelled with a number denotes the
rate, e.g. R(1, β,G) = 1.1, therefore there is a solid transition from state 1 via
action β to state G with rate 1.1. If there is only one enabled action for a state,
we only show the rates of the transition via this action and omit the action itself.
For example, state 0 has only 1 enabled action (lets say α) and therefore it only
has outgoing solid transition with rate 1.1 = R(0, α, 1).

Fig. 1. Example CTMDPs.

The system starts in the initial state s0 = sinit.
While being in a state s0, the system picks an action
α0 ∈ Act(s). When an action is picked the CTMDP
resides in s0 for the amount of time t0 which is sam-
pled from exponential distribution with parameter
λ(s0, α0). Later in this paper we refer to this as
residence time in a state. After t0 time units the
system transitions into one of the successor states
s1 ∈ Succ(s0, α0) selected randomly with distribu-
tion Δ(s0, α0, ·). After this transition the process
is repeated from state s1 forming an infinite path
ρ = s0

α0,t0−→ s1
α1,t1−→ s2 . . .. A finite prefix of an infi-

nite path is called a (finite) path. We will use ρ↓
to denote the last state of a finite path ρ. We will
denote the set of all finite paths in a CTMDP with
Paths∗, and the set of all infinite paths with Paths.

CTMDPs pick actions with the help of sched-
ulers. A scheduler is a measurable1 function π :
Paths∗ × R�0 → D(Act) such that π(ρ, t) ∈ Act(ρ↓). Being in a state s at
time point t the CTMDP samples an action from π(ρ, t), where ρ is the path
that the system took to arrive in s. We denote the set of all schedulers with Π.

Fixing a scheduler π in a CTMDP M, the unique probability measure PrM
π

over the space of all infinite paths can be obtained [Neu10], denoted also by Prπ

when M is clear from context.

Optimal Time-Bounded Reachability
Let M = (sinit, S,Act,R, G) be a CTMDP, s ∈ S, T ∈ R�0 a time bound, and
opt ∈ {sup, inf}. The optimal (time-bounded) reachability probability (or value)
of state s in M is defined as follows:

valsM(T ) := optπ∈Π PrM
π

[
♦�T G

]
,

1 Measurable with respect to the standard σ-algebra on the set of paths [NZ10].
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where ♦�T G = {s0
α0,t0−→ s1

α1,t1−→ s2 . . . | s0 = s ∧ ∃i : si ∈ G ∧ ∑i−1
j=0 tj ≤ T} is

the set of paths starting from s and reaching G before T .
The optimal (time-bounded) reachability probability (or value) of M is

defined as valM(T ) = valsinit
M (T ). A scheduler that achieves optimum for

valM(T ) is the optimal scheduler. A scheduler that achieves value v, such that
||v − valM(T )||∞ < ε is called ε-optimal.

3 Algorithm

In this work we target CTMDPs that have large state spaces, but only a small
subset of those states is actually contributing significantly to the reachability
probability.

Fig. 2. Schematic representation
of polling system

Consider, for example, the polling system
represented schematically in Fig. 2. Here two
stations store continuously arriving tasks in a
queue. Tasks are to be processed by a server. If
the task is processed successfully it is removed
from the queue, otherwise it is returned back
into the queue. State space of the CTMDP
M modelling this polling system is a tuple
(q1, q2, s), where qi is the amount of tasks in
queue i and s is a state of the server (could be
e. g. processing task, awaiting task, etc.).

One of the possible questions could be, for example, what is the maximum
probability of both queues to be full after a certain time point. This corresponds to
goal states being of the form (N,N, s), where N is the maximal queue capacity
and s – any state of the server. Given that both queues are initially empty, all
the paths reaching goal states have to visit states (q1, q2, ·), where qi = [0..N ].
However, for similar questions, for example, what is the maximum probability
of the first queue to be full after a certain time point, the situation changes.
Here goal states are of the form (N, q2, s), where q2 = 0..N and s – any state
of the server. The scheduler that only extracts tasks from the second queue is
the fastest to fill the first one and is therefore the optimal one. The set of states
that are most likely visited when following this scheduler are those states where
the size of the second queue is small. This naturally depends on the rates of
task arrival and processing. Assuming that the size of the queue rarely exceeds
2 tasks, all the states (·, q2, ·), where q2 = 3..N do not affect the reachability
probability too much.

As a more concrete example, consider the CTMDP of Fig. 1a. Here all the
states in the center have exit rate 1 and form a long chain. Due to the length of
this chain the probability to reach the goal state via these states within time 2
is very small. In fact, the maximum probability to reach the target state within
2 time units in the CTMDP on the left and the one on the right are exactly the
same and equal 0.4584. Thus, on this CTMDP, 40% of the state space can be
reduced without any effect on the reachability value.
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Classical model checking algorithms do not take into account any information
about the property and perform exhaustive state-space exploration. Given that
only a subset of states is relevant to the reachability value, these algorithms may
perform many unnecessary computations.

Our Solution
Throughout this section we work with a CTMDP M = (sinit, S,Act,R, G) and
a time bound T ∈ R�0.

The main contribution of this paper is a simple framework for solving the
time-bounded reachability objective in CTMDPs without considering their whole
state-space. This framework in presented in Algorithm 1. The algorithm involves
the following major steps:

Algorithm 1 SubspaceTBR

Input: CTMDP M = (sinit, S, Act,R, G), time bound T , precision ε
Output: (�, u) ∈ [0, 1]2 such that � � val(T ) � u and u − � < ε and

ε− optimal scheduler π for valM(T )

1: if sinit ∈ G then return (1, 1), and an arbitrary scheduler π ∈ Π

2: � = 0, u = 1
3: πsim = πuniform

4: S′ = {sinit}
5: while u − � � ε do
6: S′ = S′ ∪ getRelevantSubset(M, T, πsim)
7: M = lower(M, S′), M = upper(M, S′)
8: � = valM(T ), u = valM(T )
9: πopt ← optimal scheduler for valM(T ), πopt ← optimal scheduler for valM(T )

10: πsim = ChooseScheduler(πuniform, πopt) // choose a scheduler for simulations

11: ∀t ∈ [0, T ], ∀s ∈ S′ : π(s, t) = πopt(s, t)
12: ∀t ∈ [0, T ], ∀s ∈ S \S′ : π(s, t) ← any α ∈ Act(s) // extend optimal scheduler to S
13: return (�, u), π

Step 1 A “relevant subset” of the state-space S′ ⊆ S is computed (line 6).
Step 2 Using this subset, CTMDPs M and M are constructed (line 7). We

define functions upper(M, S′) and lower(M, S′) later in this section.
Step 3 The reachability values of M and M are under- and over-

approximations of the reachability value valM(T ). The values are computed
in line 8 along with the optimal schedulers in line 9.

Step 4 Scheduler πsim, used for obtaining the relevant subset, is selected at line
10.

Step 5 If the two approximations are sufficiently close, i. e. valM(T ) −
valM(T ) < ε,

[
valM(T ), valM(T )

]
is the interval in which the actual reach-

ability value lies. The algorithm is stopped and this interval along with the
ε-optimal scheduler are returned. If not, the algorithm repeats from line 6,
growing the relevant subset in each iteration.
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Algorithm 2 getRelevantSubset(M, T, πsim)
Input: CTMDP M = (sinit, S, Act,R, G), time bound T , a scheduler πsim

Parameters: nsim ∈ N

Output: S′ ⊆ S

1: for (i = 0; i < nsim; i = i + 1) do
2: ρ = sinit, t = 0
3: while t < T and ρ↓ �∈ G do
4: s = ρ↓
5: Sample action α from distribution D(Act(s)) = πsim(ρ, 0)
6: Sample t′ from exponential distribution with parameter λ(s, α)
7: Sample a successor s′ of s with distribution Δ(s, α, ·)
8: ρ = ρ

t′−→ s′, t = t + t′

9: add all states of ρ to S′

In the following section, we elucidate these steps and discuss several instan-
tiations and variations of this framework.

3.1 Step 1: Obtaining the Relevant Subset

The main challenge of the approach is to extract a relatively small representative
set S′ ⊆ S, for which valM(T ) and valM(T ) are close to the value valM(T ) of
the original model. If this is possible, then instead of computing the probability
of reaching goal in M, we can compute the same in M and M to get an ε-width
interval in which the actual value is guaranteed to lie. If the sizes of M and M
are relatively small, then the computation is generally much faster.

In this work we propose a heuristics for selecting the relevant subset based
on simulations. Simulation of continuous-time Markov chains (CTMDPs with
singleton set Act(s) for all states) is a widely used approach that performs very
well in many practical cases. It is based on sampling a path of the model accord-
ing to its probability space. Namely, upon entering a state s the residence time
is sampled from the exponential distribution and then the successor state s′ is
sampled randomly from the distribution Δ(s, α, s′). Here α is the only action
available in state s. The process is repeated from state s′ until a goal state is
reached or the cumulative time over this path exceeds the time-bound.

However this approach only works for fully stochastic processes, which is
not the case for arbitrary CTMDPs due to the presence of multiple available
actions. In order to make the process fully stochastic one has to fix a scheduler
that decides which actions are to be selected during the run of a CTMDP.

Our heuristic is presented in Algorithm 2. It takes as input the CTMDP,
time bound and a scheduler πsim. The algorithms performs nsim simulations and
outputs all the states visited during the execution. Here nsim ∈ N is a parameter
of the algorithm. Each simulation run starts in the initial state. At first an action
is sampled from D(Act(s)) = πsim(ρ, 0) and then the simulation proceeds in the
same way as described above for CTMCs by sampling residence times and suc-
cessor states. Notice that even though time-point 0 is used for the scheduler, this
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does not affect the correctness of the approach, since it is only used as a heuris-
tic to sample the subspace. In fact, one could instantiate getRelevantSubset
with an arbitrary heuristic (e. g. from artificial intelligence domain, or one that
is more targeted towards a specific model). Correctness of the lower and upper
bounds will not be affected by this. However, termination of the algorithm can-
not be ensured for any arbitrary heuristic. Indeed, one has to make sure that
the bounds will eventually converge to the value.

Example 1. Consider the CTMDP from Fig. 3a. Figure 3b, c show two possible
sampled paths. The path in 3c reaches the target within the given time-bound
and the path in 3b times out before reaching the goal state. The relevant subset
is thus all the states visited during the two simulations.

3.2 Step 2: Under- and Over-Approximating CTMDP

We will now explain line 7 of Algorithm 1. Here we obtain two CTMDPs, such
that the value of M is a guaranteed lower bound, and the value of M is a
guaranteed upper bound on the value of M.

Let S′ ⊆ S be the subset of states obtained in line 6. We are interested in
extracting some information regarding the reachability value of M from this
subset. In order to do this, we consider two cases. (i) A pessimistic case, where
all the unexplored states are non-goal states and absorbing (or sink states); and
(ii) an optimistic case, where all the unexplored states are indeed goals. It is
easy to see that the “pessimistic” CTMDP M will have a smaller (or equal)
value than the original CTMDP, which in turn will have a value smaller (or
equal) than the “optimistic” CTMDP M. Notice that for the reachability value
the goal states can also be made absorbing and this will not change the value2.
Before we define the two CTMDPs formally, we illustrate the construction on an
example. Note that the fringe “one-step outside” of the relevant subset is still a
part of the considered sub-CTMDPs.

Example 2. Let S′ be the state space of the CTMDP from Fig. 3a explored in
Example 1. Figure 4a depicts the sub-CTMDP obtained by restricting the state
space of the original model to S′. Figure 4b, c demonstrate how the “pessimistic”
and “optimistic” CTMDPs can be obtained. All the states that are not part of
S′ are made absorbing for the “pessimistic” CTMDP Fig. 4b and are made goal
states for the “optimistic” CTMDP Fig. 4c.

Formally, we define methods lower(M, S′) and upper(M, S′) that return
the pessimistic and optimistic CTMDP, respectively. The lower(M, S′) method
returns a CTMDP M = (sinit, S̃,Act, R̃, G), where S̃ = S′ ∪ Succ(S′), and
∀s′, s′′ ∈ S̃:

R̃[s′, α, s′′] =

⎧
⎨

⎩

R[s′, α, s′′] if s′ ∈ S′

λ if s′ �∈ S′, s′′ = s′

0 otherwise,
2 This is due to the fact that for the reachability value, only what happens before the

first arrival to the goal matters, and everything that happens afterwards is irrelevant.
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Fig. 3. A simple CTMDP is presented in (a) with rates and action labels ignored. (b)
shows a sampled run which ends on running out of time while exploring the left-most
branch. (c) shows a simulation which ends on discovering a target state.

Fig. 4. (a) depicts the relevant subset obtained at line 6 of Algorithm 1. (b, c) show
the addition of successors (in highlight) of the states at the fringe. In (b), the appended
states are made absorbing by adding a self-loop of rate λ. Meanwhile in (c), the newly
added states are made goals.

where λ is the maximum exit rate in M. And the method upper(M, S′) returns
CTMDP M = (sinit, S̃,Act, R̃, G), where G = G ∪ (S̃ \ S′), and state space S̃

and the rate matrix R̃ are the same as for lower(M, S′).
Since many states are absorbing now large parts of the state space may

become unreachable, namely all the states that are not in S̃.

Lemma 1. valM(T ) � valM(T ) � valM(T )

3.3 Step 3: Computing the Reachability Value

Algorithm 1 requires computing the reachability values for CTMDPs M and
M (line 9). This can be done by any algorithm for reachability analysis, e. g.
[BHHK15,NZ10,HH13,BS11,FRSZ11,BHHK04] which approximate the value
up to an arbitrary precision ε. These algorithms usually also compute the ε-
optimal scheduler along with the approximation of the reachability value. In
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the following we will use interchangeably the notions of the value and its ε-
approximation, as well as an optimal scheduler and an ε-optimal scheduler.

Notice that some of the algorithms mentioned above compute optimal reach-
ability value only w. r. t. a subclass of schedulers, rather than the full class Π.
In this case the result of Algorithm 1 will be the optimal reachability value with
respect to this subclass and not class Π.

3.4 Step 4: The Choice of Scheduler πsim

At line 10 of Algorithm 1 the scheduler πsim is selected that is used in the
subsequent iteration for refining the relevant subset of states. We propose two
ways of instantiating the function ChooseScheduler(πuniform, πopt), one with
the uniform scheduler πuniform, and another with the scheduler πopt. Depending
on the model, its goal states and the time bound one of the options may deliver
smaller relevant subset than another:

Fig. 5. An example of a CTMDP where the uniform scheduler delivers possibly smaller
relevant subset than the optimal scheduler (a), and vice versa (b).

Example 3. Consider, the CTMDP in Fig. 5a and the time bound 3.0. Assuming
that the goal state has not yet been sampled from the right and left chains,
action α delivers higher reachability value than action β. For example, if states
a1 to a2 are sampled from the chain on the left and c1 to c2 from the chain on
the right, the reachability value of the respective over-approximating CTMDP
when choosing action β is 0.1987 and when choosing action α is 0.1911. And this
situation persists also when states b1 − b10 are sampled due to high exit rates of
the respective transitions. However if state b11 is sampled, the reachability value
when following α becomes 0.1906. Only at this moment the optimal behaviour
is to choose action β. However, when following the uniform scheduler, there is
a chance that the whole chain on the right is explored before any of the states
bi are visited. If the precision ε = 0.01, then at the moment the goal state is
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reached via the right chain and at least states a1 to a2 are sampled on the left,
the algorithm has converged. Thus using the uniform scheduler SubspaceTBR
may in fact explore fewer states than when using the optimal one.

Naturally, there are situation when following the optimal scheduler is the
best one can do. For example, in the CTMDP in Fig. 5b it is enough to explore
only state f1 on the right to realise that action β is sub-optimal. From this
moment on only action α is chosen for simulations, which is in fact the best way
to proceed. At the moment the goal state is reached the algorithm has converged
for precision 0.01.

One of the main advantages of the uniform scheduler is that it does not
require too much memory and is simple to implement. Moreover, since some
algorithms to compute time-bounded reachability probability do not provide an
optimal scheduler in the classical way as defined in Sect. 2 ([BHHK15]), the use
of πuniform may be the only option. In spite of its simplicity, in many cases this
scheduler generates very succinct state spaces, as we will show in Sect. 4.

Using the uniform scheduler is beneficial in those cases when, for example,
different actions of the same state have exit rates that differ drastically, e. g.
by an order of magnitude. If the goal state is reachable via actions with high
rates, choosing an action with low rate leads to higher residence times (due
to properties of the exponential distribution) and therefore fewer states will be
reachable within the time bound, compared to choosing an action with a high
exit rate. In this case using the uniform scheduler may lead to larger sub-space,
compared to using the optimal scheduler. However, the experiments show this
difference is typically negligible.

The drawback of the uniform scheduler is that the probability of it choosing
each action is positive. Thus it will choose also those actions that are clearly
suboptimal and could be omitted during the simulations. The uniform scheduler
πuniform does not take this information into account while the scheduler πopt does.
The latter is optimal on the sub-CTMDP obtained during the previous iterations.
This scheduler will thus pick only those actions that look most promising to be
optimal. Using this scheduler may induce smaller sampled state space than the
one generated by πuniform, as we also show in Sect. 4.

Notice that it is possible to alternate between using πuniform and πopt at
different iterations of Algorithm 1, for instance, when πopt is costly to obtain
or simulate. However, in our experiments, we always choose either one of the
two, with the exception for the first iteration when only the uniform scheduler
is available.

3.5 Step 5: Termination and Optimal Schedulers

The algorithm runs as long as the values of M and M, as computed in Step 3
are not sufficiently close. It terminates when the difference becomes less than ε.
The scheduler πopt obtained in line 9 is ε-optimal for M since it is obtained by
running a standard TBR algorithm on M. From this scheduler one can obtain
ε-optimal scheduler π for M itself by choosing the same actions as πopt on the
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relevant subset of states (S′ in Algorithm 1) and any arbitrary action on other
states.

Lemma 2. Scheduler π computed by Algorithm 1 is ε-optimal.

Theorem 1. Algorithm 1 converges almost surely.

On any CTMDP, if πsim = πuniform, Algorithm 1 will, in the worst case,
eventually explore the whole CTMDP. In such a situation, M and M will be
the same as M. The algorithm would then terminate since the condition on line
5 would be falsified. If πsim = πopt, the system is continuously driven to the fringe
as long as the condition on line 5 holds. This is because all unexplored states
act as goal states in the upper-bound model. Such a scheduler will eventually
explore the state-space reachable by the optimal scheduler on the original model
and leave out those parts that are only reachable with suboptimal decisions.

4 Experiments

The framework described in Sect. 3 was evaluated against 5 different benchmarks
available in the MAPA3 language [TKvdPS12]:

Fault Tolerant Work Station Cluster (ftwc-n) [HHK00]: models two net-
works of n workstations each. Each network is interconnected by a switch.
The switches communicate via a backbone. All the components may fail and
can be repaired only one at a time. The system starts in a fully functioning
state and a state is goal if in both networks either all the workstations or
the switch are broken.

Google File System (gfs-n) [HCH+02,GGL03]: in this benchmark files are
split into chunks, each maintained by one of n chunk servers. We fix the
number of chunks a server may store to 5000 and the total number of chunks
to 10000. The GFS starts in the state where for one of the chunks no replica
is stored and the target is to have at least 3 copies of the chunk available.

Polling System (ps-j-k-g): We consider the variation of the polling system case
[GHH+13,TvdPS13], that consists of j stations and one server. Incoming
requests of j types are buffered in queues of size k each, until they are
processed by the server and delivered to their station. The system starts in
a state with all the queues being nearly full. We consider 2 goal conditions:
(i) all the queues are empty (g=all) and (ii) one of the queues is empty
(g=one).

Erlang Stages (erlang-k-r): this is a synthetic model with known characteris-
tics [ZN10]. It has two different paths to reach the goal state: a fast but risky
path or a slow but sure path. The slow path is an Erlang chain of length k
and rate r.

Stochastic Job Scheduling (sjs-m-j) [BDF81]: models a multiprocessor
architecture running a sequence of independent jobs. It consists of m identical
processors and j jobs. As goal we define the states with all jobs completed;

3 Translated to explicit state format by the tool Scoop [Tim11].
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Our algorithm is implemented as an extension to PRISM [KNP11] and we use
IMCA [GHKN12] in order to solve the sub-CTMDPs (M and M). We would like
to remark, however, that the performance of our algorithm can be improved by
using a better toolchain than our PRISM-IMCA setup (see [ABHK18, Appendix
A.2]).

In order to instantiate our framework, we need to describe how we perform
Steps 1 and 3 (Sect. 3). Recall from Sect. 3.1 that we proposed two different
schedulers to be used as the simulating scheduler πsim : the uniform scheduler
πuniform and the optimal scheduler πopt obtained by solving M.

For Step 3, we select three algorithms for time-bounded reachability analysis:
the first discretisation-based algorithm [NZ10] (D), and the two most compet-
itive algorithms according to the comparison performed in [BHHK15], namely
the adaptive version of discretization [BS11] (A) and the uniformisation-based
[BHHK15] (U). SubspaceTBR instantiated with these algorithms and with
πsim = πuniform is referred to with Duni, Auni and Uuni respectively. For πsim = πopt,
the instantiations are referred to as Dopt, Aopt and Uopt. Since U does not provide
the scheduler in a classical form as defined in Sect. 2, we omit Uopt. We also omit
experiments on Dopt as our experience with D and Duni suggested that Dopt would
also run out of time on most experiments.

We compare the performance of the instantiated algorithms with their orig-
inals, implemented in IMCA. We set the precision parameter for SubspaceTBR
and the original algorithms in IMCA to 0.01. Indicators such as the median model
checking time (excluding the time taken to load the model into memory) and
explored state-space are measured.

Table 1. An overview of the experimental results along with the state-space sizes.
Runtime (in seconds) for the various algorithms are presented. ‘-’ indicates a timeout
(1800 s). Uuni, Auni and Aopt perform quite well on erlang, gfs and ftwc while only Aopt
is better than U and A on the ps-one family of models. ps-4-8-all and sjs are hard
instances for both πuniform and πopt. D times out on all benchmarks except on sjs due
to its small state-space.

Benchmark States U Uuni A Auni Aopt D Duni

erlang-106-10 1,000k 71 1 4 1 1 - 299

gfs-120 1,479k - 2 - 2 2 - -

ftwc-128 597k 251 10 114 11 15 - -

ps-4-24-one 7,562k 507 - 171 - 105 - -

ps-4-8-all 119k 1,475 - 826 - - - -

sjs-2-9 18k 6 99 2 139 - 1,199 -

Tables 1 and 2 summarize the main results of our experiments. Table 1 reports
the runtime of the algorithms on several benchmarks, while Table 2 reports on
the state-space complexity. Here the last column refers to the smallest relevant



330 P. Ashok et al.

Table 2. For each benchmark, we report (i) the size of the state-space; (ii) total
states explored by our instantiations of SubspaceTBR; (iii) size of the final over-
approximating sub-CTMDP M; and (iv) size of the relevant subset returned by the
greedy search of Sect. 4.1. We use ps-4-4-one and sjs-2-7 instead of larger models in
their respective families as running the greedy search is a highly computation-intensive
task.

Benchmark States Explored Size of last M Post greedy reduction

by πsim %

erlang-106-10 1,000k 559 0.06 561 496

gfs-120 1,479k 105 0.01 200 85

ftwc-128 597k 296 0.05 858 253

sjs-2-7 2k 2,537 93.86 2,704 1,543

ps-4-4-one 10k 697 6.63 2,040 696

ps-4-8-all 119k - - - -

ps-4-24-one 7,562k 23,309 0.31 - -

subset of M that we can obtain with reasonable effort. This subset is computed
by running the greedy algorithm described in Sect. 4.1 on M. It attempts to
reduce more states of the explored subset without sacrificing the precision too
much. We run the greedy algorithm with a precision of ε/10, where ε is the
precision used in SubspaceTBR.

We recall that our framework is targeted towards models which contain a
small subset of valuable states. We can categorize the models into three classes:

Easy with Uniform Scheduler (πsim = πuniform). Surprisingly enough, the
uniform scheduler performs well on many instances, for example erlang,
gfs and ftwc. For erlang and gfs, it was sufficient to explore a few hun-
dred states no matter how the parameter which increased the state-space was
changed (see description of the models above). Here the running time of the
instantiations of our framework outperformed the original algorithms due to
the fact that less than 1% of the state-space is sufficient to approximate the
reachability value up to precision 0.01.

Easy with Optimal Scheduler (πsim = πopt). Predictably, there are cases in
which uniform scheduler does not provide good results. For example con-
sider the case of ps-4-24-one. Here the goal condition requires that one of
the queues be empty. An action in this benchmark determines the queue
from which the task to be processed is picked. Choosing tasks uniformly
from different queues, not surprisingly, leads to larger explored state spaces
and longer runtimes. Notice that all the instantiations that use uniform
scheduler run out of time on this instance. On the other hand, targeted
exploration with the most promising scheduler (column Aopt) performs even
better than the original algorithm A, finishing within 105 s compared to 171 s
and exploring only 0.31% of the state space.
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Hard Instances. Naturally there are instances where it is not possible to find
a small sub-CTMDP that preserves the properties of interest. For example
in ps-4-8-all, the system is started with all queues being nearly full and the
property queried requires all of the queues in the polling system to be empty.
As discussed in the beginning of Sect. 3, most of the states of the model
have to be explored in order to reach the goal state. In this model there is
simply no small sub-CTMDP that preserves the reachability probabilities.
As expected, all instantiations timed out and nearly all the states had to be
explored. The situation is similar with sjs. We identified (using the greedy
algorithm in Sect. 4.1) that on some small instances of this model, only 30%
to 40% of the state-space can be sacrificed.

Explored State Space and Running Time. In general, as we have men-
tioned in Sect. 3, the problem is heavily dependent not only on the structure
of the model, but also on the specified time-bound and the goal set. Increas-
ing the time-bound for erlang, for example, leads to higher probability to
explore fully the states of the Erlang chain. This in turn affects the optimal
scheduler and for some time-bounds no small sub-CTMDP preserving the
value exists.
Naturally, whenever the algorithm explored only a small fraction of the state
space, the running time was usually also smaller than the running time of the
respective original algorithm. The performance of our framework is heavily
dependent on the parameter nsim. This is due to the fact that computation
of the reachability value is an expensive operation when performed many
times even on small models. Usually in our experiments the amount of sim-
ulations was in the order of several thousands. For more details please refer
to [ABHK18, Appendix A.2].

4.1 Smallest Sub-CTMDP

In this section, we provide an argument that in the cases where our techniques
do not perform well, the reason is not a poor choice of the relevant subsets,
but rather that in such cases there are no small subsets which can be removed,
at least not such that can be easily obtained. An ideal brute-force method to
ascertain this would be to enumerate all subsets of the state space, make the
states of the subset absorbing (M) or goal (M) and then to check whether the
difference in values of M and M is ε-close only for small subsets. Unfortunately,
this is computationally infeasible. As an alternative, we now suggest a greedy
algorithm which we use to search for the largest subset of states one could remove
in reasonable time.

The idea is to systematically pick states and observe their effect on the value
when they are made absorbing (M(s)) or goal (M(s)). If a state does not influ-
ence the value of the original CTMDP too much, then δ(s) = valM(s)(T ) −
valM(s)(T ) would be small. We first sort all the states in ascending order accord-
ing to the value δ(s). And then iteratively build M and M by greedily picking
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states in this order and making them absorbing (for M) and goal (for M). The
process is repeated until valM(T ) − valM(T ) exceeds ε.

The results of running this algorithm is presented in the right-most column
of Table 2. The comparison of the last two columns of the table shows that the
portion of the state space our heuristic explored is of the same order of magnitude
as what can be obtained with high computational effort. Consequently, this
suggests that the surprising choice of the simple uniform scheduler is not poor,
but typically indeed achieves the desired degree of reduction.

5 Conclusion

We have introduced a framework for time-bounded reachability analysis of
CTMDPs. This framework allows us to run arbitrary algorithms from the litera-
ture on a subspace of the original system and thus obtain the result faster, while
not compromising its precision beyond a given ε. The subspace is iteratively
identified using simulations. In contrast to the standard algorithms, the amount
of computation needed reflects not only the model, but also the property to be
checked.

The experimental results have revealed that the models often have a small
subset which is sufficient for the analysis, and thus our framework speeds up all
three considered algorithms. For the exploration, already the uninformed uni-
form scheduler proves efficient in many settings. However, the more informed
scheduler, fed back from the analysis tools, may provide yet better results. In
cases where our technique explores the whole state space, our conjecture, con-
firmed by the preliminary results using the greedy algorithm, is that these models
actually do not posses any small relevant subset of states and cannot be exploited
by this approach.

This work is agnostic of the structure of the models. Given that states are
typically given by a valuation of variables, the corresponding structure could be
further utilized in the search for the small relevant subset. A step in this direc-
tion could follow the ideas of [PBU13], where discrete-time Markov chains are
simulated, the simulations used to infer invariants for the visited states, and then
the invariants used to identify a subspace of the original system, which is finally
analyzed. An extension of this approach to a non-deterministic and continuous
setting could speed up the subspace-identification part of our approach and thus
decrease our overhead. Another way to speed up this process is to quickly obtain
good schedulers (with no guarantees), e.g. [BBB+17], use them to identify the
subspace faster and only then apply a guaranteed algorithm.

References

[ABHK18] Ashok, P., Butkova, Y., Hermanns, H., Křet́ınský, J.: Continuous-Time
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[Neu10] Neuhäußer, M.R.: Model checking nondeterministic and randomly timed
systems. Ph.D. thesis, RWTH Aachen University (2010)
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Abstract. Many temporal specifications used in practical model check-
ing can be represented as universal very weak automata (UVW). They
are structurally simple and their states can be labeled by simple tempo-
ral logic formulas that they represent. For complex temporal properties,
it can be hard to understand why a trace violates a property, so when
employing UVWs in model checking, this information helps with inter-
preting the trace. At the same time, the simple structure of UVWs helps
the model checker with finding short traces.
While a translation from computation tree logic (CTL) with only univer-
sal path quantifiers to UVWs has been described in earlier work, complex
temporal properties that define sequences of allowed events along compu-
tations of a system are easier to describe in linear temporal logic (LTL).
However, no direct translation from LTL to UVWs with little blow-up is
known.
In this paper, we define a fragment of LTL that gives rise to a simple
and efficient translation from it to UVW. The logic contains the most
common shapes of safety and liveness properties, including all nestings of
“Until”-subformulas. We give a translation from this fragment to UVWs
that only has an exponential blow-up in the worst case, which we show to
be unavoidable. We demonstrate that the simple shape of UVWs helps
with understanding counter-examples in a case study.

1 Introduction

Complex reactive systems often have complex specifications. To obtain a suffi-
cient degree of quality assurance, a model of the system can be verified against
the specification. Automata-based model checking is a classical approach in this
context, as it permits the specification to be written in a powerful logic such as
linear temporal logic (LTL, [1]), which is then translated to an automaton for
the verification process [2].

Whenever the system to be verified is found to violate the specification, a
model checker can compute a (lasso-shaped) counter-example trace [2,3]. Such
traces are often lengthy and the problem of explaining why the system behaves
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in the way observed in the trace has received some attention in the literature
[4,5]. However, finding out why the behavior actually violates the property is
also difficult [5]. While the trace includes a run of the automaton built from
the specification, the various optimizations in the translation process from the
specification to the automaton normally lead to a loss of structure. Hence, the
run of the automaton does not give rise to an easy interpretation of the reason
for the violation of the specification written by a system engineer. When not
optimizing an automaton, it frequently becomes huge, which translates to a
higher computational workload and can also lead to longer counter-example
traces.

These observations give rise to the question if we can help a model checker
with finding easy to interpret counter-example traces by employing very struc-
tured, but still small automata in the verification process. We present an app-
roach for this purpose in this paper that is based on universal very weak ω-
automata. Maidl [6] showed that this automaton class captures exactly the spec-
ifications that are representable both in linear temporal logic (LTL) and compu-
tation tree logic (CTL), where in the latter case only universal path quantifiers
are used. Universal very weak automata (UVWs) expose the sequences of events
that must not lead to errors, deadlocks or livelocks. They can be decomposed
into a finite number of so-called simple chains that represent these sequences
of events. There are multiple reasons for why this makes them interesting for
counter-example trace generation:

1. Whenever a property is violated, we can search for counter-example traces
for all simple chains. The information for which of these chains a violation
can be found is helpful for pinpointing the error.

2. Counter-example traces for different simple chains can have different lengths,
so the shortest one can be reported to the system engineer.

3. Along a trace, a UVW run can move to a different state only few times. These
state changes represent points in time in which interesting events happen, so
they can be highlighted to the engineer.

4. Every state in a UVW can be labeled by a relatively simple temporal logic
formula that the state represents, and no two states in a minimized automaton
are labeled in the same way, which eases the interpretation of a trace by the
engineer.

So for those specification parts that can be represented as universal very weak
automata, employing them for model checking the specification part simplifies
debugging the model and hence speeds up the iterations of model and specifi-
cation refinement that are characteristic for a model-based system development
process.

Despite their nice properties, universal very weak automata are not well-
studied. It is for example currently unknown how much blow-up is unavoidable
when translating from LTL to UVW. Earlier work [7] contained a translation
construction, but it requires the input to be represented as a deterministic Büchi
automaton, which implies at least a doubly-exponential translation time and
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potentially large automata. Furthermore, the construction computes the UVW
in an iterative way, which further increases the computation times.

To counter this problem, we provide a characterization of a subset of lin-
ear temporal logic (LTL) that permits an efficient translation to universal very
weak automata in this paper. This characterization is given in the form of a
context-free grammar and captures, for example, all possible nestings of the
Until -operator of LTL. We provide a translation procedure from formulas in
the grammar to UVW. All states in the resulting UVWs represent languages
of Boolean combinations of subformulas in the LTL specification. While we do
employ simulation-based state minimization techniques, they are used in a way
in which they do not invalidate the temporal logic state labeling in the UVW
case. At the same time, no two states represent the same LTL (sub-)formulas,
which can happen for minimally-sized classical Büchi automata, which are nor-
mally used in model checking. Hence, the state information in counter-example
traces produced by a model checker is easy to interpret.

We demonstrate in a case study (using the model checker spin [8]) that the
structure of the specification UVWs helps with finding the root cause of a spec-
ification violation. Since our LTL fragment covers the majority of specification
shapes found in the literature, our construction is applicable in many application
contexts.

1.1 Related Work

Translating properties from linear temporal logic (LTL) to automata is a classical
topic in the formal methods literature as it is a required step for automata-based
model checking (or reactive synthesis). When translating to non-deterministic
Büchi automata, an exponential blow-up cannot be avoided [9], but by applying
simulation-based minimization of the resulting automaton, automata sizes can be
substantially reduced in practice [3,10]. Since model checking problems generally
become easier when employing small automata, they are normally preferred. It
has been noted, however, that the efficiency of model checking is also influenced
by the shape of the specification automata. In particular, automata that delay
the first visit to an accepting state have been found to lead to better model
checking efficiency [3].

Another special automaton shape are very weak ω-automata. In such
automata, all loops are self-loops, and universal very weak automata (UVW)
have been identified as the automaton class that exactly characterizes the word
languages that can be represented in LTL and for which the containment of all
paths in a computation tree in the language can also be represented by a formula
in computation tree logic (CTL) using only universal path quantifiers [6] (abbre-
viated as ACTL). This fragment is interesting as it unifies the two commonly
used specification logics and because UVWs can be decomposed for distributed
model checking, as we show in Sect. 2. While Maidl gave a construction to trans-
late from ACTL to UVW whenever possible, the subset of LTL for which she gave
a translation to UVW is highly restrictive and does not even allow to express
aU b (a holds until b holds at least once). Effectively, her approach requires the
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specification engineer to encode the structure of a UVW into the logical spec-
ification. The grammar that we define in the next section does not have this
restriction and allows arbitrary nestings of U operators. It also includes Maidl’s
LTL subset as a special case.

All of the automata translations discussed so far compute automata that can
have a very complicated structure and that are hard to interpret. For exam-
ple, one of the classical approaches to translating from LTL to Büchi automata
involves de-alternation [11], which introduces breakpoints into the automaton
structure. The main alternative translation appraoch involves de-generalizing
generalized Büchi automata [12], which introduces a similar automaton struc-
ture. Subsequent automaton minimization steps [10] lead to additional inco-
herence between the automaton structure and the original specification. As a
consequence, observing a run of an automaton does not help to explain why a
trace satisfies a specification or not.

To solve this issue, Basin et al. [5] defined a calculus for annotating a counter-
example obtained from a model checker (which has a lasso shape) with an expla-
nation why it violates a given LTL property. Their approach is only applicable
after a lasso has been computed, and there is no guarantee that the model checker
picks a lassos that has an easy to explain reason for violating the specification.
While short lassos make this more likely, their length is still influenced by the
structure of the specification automaton. Asking for a counter-example trace of
the form uvω with |u| + |v| as short as possible would solve this problem, but
approximating the minimal attainable length |u| + |v| by any factor has been
shown to be NP-hard [13], unlike finding shortest lassos.

In the approach that we present in this paper, we solve this problem by
computing automata that have a simple structure and whose states are labeled
by the LTL property that the state represents. The automata can be decomposed
so that a model checker that searches for short lassos also searches for lassos that
have an easy explanation.

2 Preliminaries

An ω-word automaton over some finite alphabet Σ (which we assume to be 2AP

for some set AP for the scope of this paper) is a tuple A = (Q, δ,Q0,F) with
the finite set of states Q, the transition relation δ ⊆ Q×Σ ×Q, the set of initial
states Q0 ⊆ Q, and the acceptance condition F ⊆ Q.

Given a word w = w0w1 . . . ∈ Σω, we say that A induces an infinite run
π = π0π1 . . . ∈ Qω if π0 ∈ Q0 and for all i ∈ IN, we have (πi, wi, πi+1) ∈ δ. For
the scope of this paper, we are only interested in infinite runs.

Word automata come in different types. In this paper, we will consider two
types, namely non-deterministic Büchi automata (NBA) and universal very weak
automata (UVW). For the former, we say that the automaton accepts a word w
if there exists a run π induced by it and A along which states in F occur infinitely
often. For a universal very weak automaton A, we say that it accepts a word w if
for all infinite runs π induced by A and w, we have that states in F appear only
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Fig. 1. A UVW and its decomposition into simple UVW chains for the property of
G((a → b) U c) ∧ GF(d U e)

finitely often along π. For an automaton to be a UVW, its states furthermore
need to be ranked, i.e., there exists a ranking function r : Q → IN such that
for every q ∈ Q and q′ ∈ Q, if there exists a x ∈ Σ with (q, x, q′) ∈ δ then
r(q′) < r(q) or q = q′. Intuitively, this means that all loops in the automaton are
self-loops (as visualized in Fig. 1). Due to the existence of a ranking function, the
acceptance of a word basically boils down to stating that no infinite run should
eventually get stuck in a state q ∈ F . We call F the set of rejecting states in
case of UVWs, and the set of accepting states for NBAs. The language of an
automaton A, denoted as L(A), is defined to be the set of words accepted by A.

If the set AP is suitable for modeling the current state of a system to be
verified, ω-word automata over the alphabet Σ = 2AP serve as an (internal) rep-
resentation of a specification for model checking. They are however cumbersome
to write, so a temporal logic such as linear temporal logic (LTL, [1]) typically
serves as specification language used by system engineers, with the aim to auto-
matically translate LTL properties to automata. LTL enriches Boolean logic by
the addition of the next (X), until (U), weak until (W), release (R), globally (G),
and finally (F) operators, and a formal definition of the logic and its semantics
can be found in [1]. We say that an automaton is equivalent to an LTL formula
if the set of words over 2AP that are models of the LTL formula is the same as
the language of the automaton. A finite word over the character set 2AP is a bad
prefix for some LTL formula ψ if it cannot be extended to a word that satisfies
the formula. A good prefix of some LTL formula ψ is a finite word all of whose
infinite extensions satisfy the LTL formula. A specification for which all words
that violate it have a bad prefix is called a safety specification. A specification
without bad prefixes is called a liveness specification.

In the following, we use subsets of atomic propositions and their characteris-
tic (Boolean) functions interchangeably. A transition (q1, t, q2) for some Boolean
formula t represents transitions from a state q1 to q2 for all x ∈ Σ that satisfy
t. The ⊥ symbol henceforth represents an invalid Boolean formula – applying
any operation to it yields ⊥ again. We also use these notations in figures depict-
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ing automata, where states are given as circles, states in F are doubly-circled,
and transitions are depicted by arrows that are labeled by Boolean formulas t.
When depicting UVWs, we furthermore draw them in a way that their ranking
functions become apparent, e.g., by letting all non-self-loop transitions lead to
the right or down.

In the verification literature, non-deterministic Büchi automata are often
used to represent a set of traces that a system to be verified should not permit
and hence represent the complement of a specification. By switching from non-
deterministic to universal branching (as common in the literature on ACTL ∩
LTL [6,14]), we avoid this complementation in reasoning, as UVWs accept all
traces that do satisfy the specification. The complement of a specification repre-
sentable as a UVW can be represented as a nondeterministic Büchi automaton
(with exactly the same automaton tuple elements).

A UVW A can be decomposed into multiple sub-automata A1, . . . ,An (for
some n ∈ IN), where each sub-automaton represents one path through A, as
shown in Fig. 1. We call these paths simple chains, and formally, the intersection
of their languages is the language of A, i.e., we have L(A1)∩L(A2)∩. . .∩L(An) =
L(A).

3 A Temporal Logic for Universal Very Weak Automata

In this section, we give a context-free grammar that captures a subclass of LTL
formulas and a translation from this subclass to UVWs. Without loss of gen-
erality, we assume that occurrences of the negation operator in front of tem-
poral operators have already been pushed inwards, just like in the negation
normal form [2] of LTL. Negation operators located in front of pure Boolean
sub-formulas do not have to be pushed inwards. The grammar for UVWs has
the following components:

χ:: = p | ¬χ | χ ∧ χ | χ ∨ χ | true | false
ψ:: = χ | ψ ∨ ψ | Fψ | φ U ψ

φ:: = ψ | φ ∧ φ | φ ∨ φ | Gφ | Xφ | ψ Rφ | (b ∧ φ)U (¬b ∧ φ) | (b ∧ φ)W (¬b ∧ φ)

In this grammar, p denotes an atomic proposition and b is a Boolean formula
without temporal operators. Such formulas are accepted by the nonterminal χ.
Note that in the last two rules for φ, we assume that the Boolean formula b is
the same for both occurrences.

The acceptance of an LTL formula by the top-level nonterminal φ indicates
that the LTL formula can be translated to a UVW, as we show below. The
nonterminal ψ represents subformulas for which quitting points can be detected,
which are defined as follows:

Definition 1. Let f be an LTL formula with (strict) subformulas S for some
set of propositions AP. A prefix word w = w0 . . . wn ∈ (2AP)∗ is called a quitting
point if there exists a Boolean combination f ′ of subformulas from S such that
for all words u = w0 . . . wn−1wnun+1un+2 . . . ∈ Σω, we have u |= f if and only
if wnun+1un+2 . . . |= f ′.
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Fig. 2. Building a UVW for the LTL formula f = (a U b) U (c U d) in a step-by-step
way from the UVW for the subformulas. Rejecting states are doubly-circled.

Quitting points intuitively represent prefix words for some LTL formula for which
the top-level formula does not need to be monitored in order to find out if a word
satisfies the formula after the point has been reached. For example, for the LTL
formula f = (aU b)U c, any prefix word that ends with a character that includes
c is such a quitting point, as after a c is seen along a trace, the outer-level
obligation encoded in f is satisfied. However, when a quitting point has been
reached, this does not necessarily mean that the satisfaction of the LTL formula
is already established. For example, for f = (aU b)U c, the prefix word {a}{a, c}
is a quitting point, but the remainder of the word still has to satisfy aU b for f
to be satisfied along the complete trace.

In the grammar given above, ψ has been carefully defined to only contain
subformulas for which quitting points can be detected without recall for the
history of the prefix word observed earlier. This enables us to construct UVWs
for a specification with liveness objectives. Take for example the specification
f = (aU b)U (cU d). The sub-formula (aU b) has all words ending with b as
quitting points, whereas the second sub-formula has all words ending with d
as quitting points. We can implement a translation to a UVW by adding one
UVW state for each until-subformula f1 U f2 such that at least one run stays
in this state until a quitting point has been seen, and until that is the case,
the run branches to a state representing that f1 ∨ f2 should hold. The overall
translation is depicted in Fig. 2. Note that a disjunction of two sub-formulas that
enable history-free detection of quitting points has this property again, which
we use in the translation.

The (recursive) Translate function that builds on this idea is given in
Algorithm 1. The function takes an LTL formula and returns a pair consisting
of a UVW for the LTL formula and a Boolean formula that encodes the set
of characters with which quitting point prefixes for the LTL formulas end. For
our implementation that we evaluate in Sect. 5, we cache the results of calls to
Translate on an LTL subformula in case it occurs multiple times for the input
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Algorithm 1 Translation procedure from an LTL subformula to a UVW and
the characters that indicate that a quitting point has been just seen.
1: function Translate(f)
2: if f = t for some subformula t without temporal operators then
3: A ← ({q0, q1}, {(q0, ¬t, q1), (q1, true, q1)}, {q0}, {q1})
4: return (A, t)

5: if f = f1 ∧ f2 then
6: ((Q1, δ1, Q1

0, F1), X1) ← Translate(f1)
7: ((Q2, δ2, Q2

0, F2), X2) ← Translate(f2)
8: A ← (Q1 � Q2, δ1 ∪ δ2, Q1

0 ∪ Q2
0, F0 ∪ F1)

9: return (A, ⊥)

10: if f = f1 ∨ f2 then
11: (A1, X1) ← Translate(f1), (A2, X2) ← Translate(f2)
12: return (A, X1 ∨ X2), where A is the product of A1 and A2, where every

state is rejecting for which both factor states are rejecting.

13: if f = f1 U f2 then
14: ((Q1, δ1, Q1

0, F1), X1) ← Translate(f1 ∨ f2)
15: ((Q2, δ2, Q2

0, F2), X2) ← Translate(f2)
16: A ← (Q1 � Q2 � {q0}, {(q0, x, q1) | ∃q10 ∈ Q1

0, (q
1
0 , x, q1) ∈ δ1, x �|= X2} ∪

{(q0, x, q1) | ∃q20 ∈ Q2
0, (q

2
0 , x, q1) ∈ δ2, x |= X2} ∪ {(q0, x, q0) | x �|= X2}, {q0}, F0 ∪

F1 ∪ {q0})
17: return (A, X2)

18: if f = f2 R f1 then
19: ((Q1, δ1, Q1

0, F1), X1) ← Translate(f1 ∨ f2)
20: ((Q2, δ2, Q2

0, F2), X2) ← Translate(f2)
21: A ← (Q1 � Q2 � {q0}, {(q0, x, q1) | ∃q10 ∈ Q1

0, (q
1
0 , x, q1) ∈ δ1} ∪ {(q0, x, q1) |

∃q20 ∈ Q2
0, (q

2
0 , x, q1) ∈ δ2, x |= X2} ∪ {(q0, x, q0) | x �|= X2}, {q0}, F0 ∪ F1 ∪ {q0})

22: return (A, ⊥)

23: if f = Xf1 then
24: ((Q1, δ1, Q1

0, F1), X1) ← Translate(f1)
25: A ← (Q1 ∪ {q0}, δ1 ∪ {(q0, true, q1) | q1 ∈ Q1

0}, {q0}, F1)
26: return (A, ⊥)

27: if f = (b ∧ f1) U (¬b ∧ f2) or f = (b ∧ f1) W (¬b ∧ f2) then
28: ((Q1, δ1, Q1

0, F1), X1) ← Translate(f1)
29: ((Q2, δ2, Q2

0, F2), X2) ← Translate(f2)
30: A ← (Q1 � Q2 � {q0}, {(q0, x ∧ b, q1) | ∃q10 ∈ Q1

0, (q
1
0 , x, q1) ∈ δ1} ∪ {(q0, x ∧

¬b, q1) | ∃q20 ∈ Q2
0, (q

2
0 , x, q1) ∈ δ2} ∪ {(q0, b, q0)}, {q0}, F0 ∪ F1 ∪ K) for K = {q0}

if f = (b ∧ f1) U (¬b ∧ f2) and K = ∅ otherwise
31: return (A, ⊥)

formula. The number of generated UVW nodes is then at most exponential
in the size of the formula (as every node generated by the algorithm can be
labeled by an LTL formula for its language, which is always a disjunction of
subterms present in the original LTL formula). The algorithm does not show the
implementations of the G and F operators, as they are special cases of the other
operators (using the equivalences Gf ≡ trueR f and Ff ≡ trueU f).
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The construction is mostly straight-forward. For the disjunction case, we
have to build a product automaton, which can lead to some blow-up.

Theorem 1. Algorithm1 computes a correct UVW for a given LTL formula
under the assumption that the LTL formula is accepted by the grammar given in
Sect. 3.

Proof. Before we start with the main part of the proof, we need to show that
for every subformula f1 U f2 and f2 R f1 in an overall LTL formula that is
accepted by the nonterminal ϕ, we have that TRANSLATE(f2) returns a UVW
with exactly a single initial state. Since both of these temporal operators require
that the operand f2 is accepted by the ψ nonterminal, we only have to prove
this for all subformulas accepted by this non-termininal. For all non-temporal
subformulas, this sub-claim is true, as the UVW computed have exactly two
states each, where only one is initial. This case forms our induction basis. For
the disjunction case (ψ:: = ψ ∨ ψ), the claim is also true as when taking the
product of two UVW with one initial state each, the product also has only one
initial state. Finally, the part of Algorithm1 for the φ U ψ and ψ Rφ cases all
return UVWs with one initial state each.

Similarly, it can also be shown that for every subformula accepted by the ψ
nonterminal, the second element of the tuple returned by Translate is never
⊥, which we use for the proof.

Now to the main part of the proof. We prove the claim by induction on the
structure of the LTL formula, where we use the induction hypothesis that for
every subformula f , TRANSLATE(f) returns a pair (A,X) consisting of

1. a UVW A for f and
2. a subset X ⊆ Σ such that

(a) every prefix word ending with a letter from the subset is a quitting point,
(b) X characterizes the one-letter prefix words that are good prefixes for f ,
(c) every word that is a model of f has to contain a character from X, and
(d) for every prefix word w0 . . . wn ∈ Σ∗ that is a good prefix of f , we have

that wn ∈ X and w1 . . . wn is a good prefix for f as well.
We also call X the set of quitting characters henceforth.

In this definition and henceforth, we treat character sets and LTL formulas that
are free of temporal operators and that characterize such sets interchangeably.
We still use ⊥ to symbolize that no set/no Boolean function is provided.

Induction Basis: The only case in which TRANSLATE(f) does not recurse
is when f is free of temporal operators. By the LTL semantics, the returned
UVW should reject exactly the words not starting with a character that satisfies
f . The UVW returned by the function has exactly two states. The non-initial
one rejects all words. The initial one has a transition to the non-initial one
that is taken whenever the first character of an input word does not satisfy f .
Whenever this happens, the word is rejected as a run then visits the second non-
initial state that is rejecting and self-loops on all characters. This implements
exactly the semantics of an LTL formula that is free of temporal operators.
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The quitting characters returned along with the UVW are exactly the set of
characters satisfying f (or, more precisely, for which exactly the words starting
with one of them satisfy f), which is a valid set of quitting characters for f (by
its definition).

Induction Step: We do a case split on the type of operator and assume that
for the f1 and f2 sub-formulas, recursive calls to Translate yielded the UVWs
A1 and A2 along with the quitting character sets X1 and X2, respectively.

– Case f1∧f2: In this case, the resulting UVW should accept a word if and only
if both of the UVWs for f1 and f2 accept a word. So all runs of both of them
must accept a word. Under the inductive hypothesis that the UVWs returned
by the calls to TRANSLATE(f1) and TRANSLATE(f2) are correct, this is
achieved by merging the two UVWs into one and taking the initial states
of both of them as new initial state set. The set of quitting characters is ⊥,
which means “does not apply” and is – by definition – a safe return value.

– Case f1 ∨ f2: In this case, the resulting UVW should accept a word if and
only if one of the UVWs for f1 and f2 accept the word. This case uses
a product construction, where given the UVWs A1 = (Q1, δ1, Q1

0,F1) and
A2 = (Q2, δ2, Q2

0,F2), the product UVW A = (Q, δ,Q0,F) with the following
components is computed:

• Q = Q1 × Q2

• δ = {((q1, q′1), x, (q2, q′2)) ∈ Q×Σ ×Q | (q1, x, q2) ∈ δ1, (q′1, x, q′2) ∈ δ2}
• Q0 = Q1

0 × Q2
0

• F = F1 × F2

Let a word be given that is accepted by, w.l.o.g., A1. Then, every trace of A1

visits rejecting states only finitely often. All runs in A simulate runs of A1

and A2 in parallel. Since F = F1 × F2, we know that a run for A then also
only visits rejecting states finitely often.
On the other hand, let a word be rejected by both A1 and A2. Then there exist
rejecting runs for both A1 and A2, and by the construction of A, the product
of these rejecting runs is a run of A. Since both rejecting runs eventually get
stuck in rejecting states, the product run in A also eventually gets stuck in
a state in F1 × F2 = F , and hence is rejecting as well. Thus, the word is
rejected by A as well.
If furthermore a character set X ⊆ Σ is returned by the Translate function
for both f1 and f2 (i.e., not the ⊥ element is returned), then the function
definition declares its own returned character set to be the union of the char-
acter sets for f1 and f2. By the inductive hypothesis, any word starting with
a character in the union of the characters satisfies one of f1 and f2. Likewise,
every word without characters in this union is, by the inductive hypothe-
sis, rejected by both A1 and A2. The same argument can be made for the
conditions 2.(a) and 2.(d) of the inductive hypothesis given above.

– Case f1 U f2: We assume that X2 has the properties stated in the induc-
tive hypothesis. By the definition, a word can only be a model of f1 U f2 if
eventually, a character from X2 occurs in the word. The construction from
Algorithm 1 for this case generates an initial state that is not left until such a
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character is read. Before the occurrence of this character, the outgoing tran-
sitions of the state are taken, which model the transitions leaving the initial
states of a UVW for f1 ∨ f2.
So see why this construction is correct, let a word be given that satisfies
f1 U f2, where at positions 0 to j, f1 is satisfied and at position j + 1, f2 is
satisfied. Let, without loss of generality, j be the least possible such index.
A character from X2 may first occur at a position j′ ≥ j (it cannot occur
earlier because otherwise j would not be the earliest possible such index).
From positions 0 to j, the word surely satisfies f1 ∨ f2 as it satisfies f1.
At position j + 1 it satisfies f2. In between positions j and j′ in the word,
we however now also know that f2 is satisfied from there by the inductive
hypothesis for X2: by it, the word from position j onwards is a good prefix
for f2, and every suffix of this good prefix is a good prefix as well (except for
the empty suffix). This includes the words from positions j + 1, j + 2, . . .,
until the character from X2 occurs along the trace.
Note that the UVW generated for f1 U f2 also does not accept too many
words, as it enforces f1 U f2 to hold until a letter has been seen that guaran-
tees that f2 is met. If f1 ∨f2 is always satisfied before this point, this implies
that f1Uf2 holds at the beginning of the word as well.
The algorithm returns X2 as the set of quitting characters. This is correct as
1. no word not containing a character in X2 can satisfy f1 U f2

2. If a word satisfies f1Uf2 from the first character, then it also satisfies
f1Uf2 from the second character onwards if f2 is only satisfied later.
If f2 is satisfied from the first character onwards, then by the inductive
hypothesis, the suffix of the word satisfies it as well (as otherwise X2

would need to be ⊥).
– Case f1 R f2: This case is analogous to the f1 U f2 case, except that ⊥ is

returned as quitting character set (which is always safe).
– Case X f1: In this case, a new UVW is generated that has one initial state

from which all initial states of the UVW for f1 are reached unconditionally.
This implements exactly that the first character of a (suffix) trace is ignored.
The algorithm returns ⊥ as quitting character set, which is a safe choice.

– Cases (α∧φ)U (¬α∧φ) and (α∧φ)W (¬α∧φ): These special cases are similar
to the f1 U f2 and f1 R f2 cases above, except that quitting character sets
are not needed for determining whether at least one run should stay in the
initial state added to A1 and A2 by the construction. Instead, the b condition
is used to detect when every run should leave the added state. As quitting
character set, the Translate function returns ⊥ in this case, which is always
safe.

The termination of the algorithm for every possible LTL formula follows from
the fact that the algorithm only recurses on disjunctions of sub-formulas that are
present in the original LTL specification and it always recurses into strict subfor-
mulas. Note that this observation also shows that the computed automata have
a number of states that is at most exponential in the length of the LTL formula.
Cichon et al. [9] showed that the smallest non-deterministic Büchi automata for
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LTL formulas of the shape
∧

1≤i≤n Fp1 need a number of states that is exponen-
tial in n in general. Since the negation of these LTL formulas are accepted by the
grammar given above, it follows that an exponential blow-up for translating LTL
formulas in our grammar to UVWs is unavoidable (as every UVW for a speci-
fication is also a non-deterministic Büchi word automaton for the complement
language).

After constructing a UVW with the procedure from Algorithm1, it makes
sense to minimize it. Unlike in the general Büchi automaton case [10], in UVWs
it is always sound to merge states with the same language. The only case in
which this would be unsound is if both states lie in the same strongly connecting
component, which cannot happen in UVWs. When merging UVW states, we
can simply reroute all transitions to a higher-ranked state to the lower-ranked
states (for some arbitrary valid ranking function). In addition we merge states
that are reachable using the same prefix words, and if for some pair of states q1
and q2, we have that q1 has a language that is a subset of the language of q2, but
whenever q2 is reached for some prefix trace, so is q1, we remove q2 (if q1 and
q2 are not reachable from each other). For simplicity, we approximate language
inclusion by fair simulation [10].

4 Discussion

Before looking into how UVWs can simplify the debugging process of models in
the next section, we want to discuss the merits and drawbacks of the grammar
and construction given in the preceding section.

The grammar that we defined in the preceding section does not support the
use of the ∧ operator for the nonterminal ψ. This is a necessity. For example, the
property φ = aU (b ∧ (cU d)) cannot be represented as a UVW. When building
a state in which the UVW waits for (b∧ (cU d)) to hold and checks for a to hold
along the way, we cannot predict when the state should be left. If the character
{a, b, c} occurs, then the next character could be {a} (so that a UVW run has to
stay in the state), but the next character could also be {c} (and then we would
have just observed a good prefix for the LTL formula). We verified that indeed
no UVW for this LTL formula exists by using the tool ltl2dstar to translate it
to a single-pair deterministic Rabin automaton, and then applying the test from
[14] (implemented as part of the bassist reactive synthesis tool [7]).

The UVWs computed by the construction from the previous section can be
labeled by temporal logic formulas that they represent. For example, Fig. 1 shows
a UVW for the LTL property ψ = G((a → b)U c) ∧ GF(d U e) that we computed
with our approach. The states can be labeled by

− q0 ≡ ψ, − q2 ≡ (a → b)U c,

− q1 ≡ true, − q3 ≡ F(d U e),

which explains how the individual states contribute to the encoding of the LTL
property. Our implementation of Algorithm1 computes such a labelling auto-
matically by keeping track of for which subformula a sub-UVW was computed.
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Fig. 3. A (minimally-sized) nondeterministic Büchi automaton for the language GFa.
All states represent the same language.

The later automaton minimization steps do not lead to a loss of this information,
and since in UVWs, two states that represent the same language can always be
merged, there is always only one state for each subformula, which makes them
easy to understand. This is not the case for (non-deterministic) Büchi automata.
Figure 3 shows an example nondeterministic Büchi automaton with two states
that represent the same language. In fact, all Büchi automata that encode the
same LTL formula have this property.

5 Case Studies and Experiments

5.1 LTL to UVW Translation

We implemented the translation from LTL to UVWs in Python. All experiments
reported in the following were conducted on a computer with an Intel Core i5-
7200U CPU and 16 GB of memory while using spin version 6.4.7 and spot [15]
version 2.4.1 under the Ubuntu 16.04 LTS operating system. From the formal
verification framework spot, we only use the ltl2tgba [15] tool for translat-
ing LTL properties to (non-deterministic) Büchi automata. In many cases the
automata computed by our construction and by spot (for the negation of the
respective specification) are very similar, but our construction always guarantees
that the output is a very weak automaton. For example, spot does not translate
the negation of the LTL property ψ = G(a∨Xb) to a very weak automaton, even
though there exists an equivalent UVW for ψ.

As a first experiment, we tested how many of the properties that Blahoudek
et al. [3] compiled for a study are accepted by the grammar that we define in
this paper. Out of the 134 unique properties, 77 can be translated to UVWs, as
we found out using the construction from [14]. Of these, 74 are accepted by our
grammar, and their translation to UVWs took 257 milliseconds of computation
time in total. Out of the remaining three properties, one is equivalent to true
and the other two differ only in the names of the atomic propositions.

5.2 Case Study

The General Inter-Orb Protocol (GIOP) is a key component in the Common
Object Request Broker Architecture (CORBA). Kamel and Leue [16] gave a
model and specifications for this protocol. One of the specifications that they
give for this model is quite convoluted, and we chose it as main benchmark, as
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it can be translated to a non-trivial UVW. The property is as follows:

ψ = G(Fr → (G((s ∧ Fr) → (r U p))
∧ G((s ∧ Fr) → ((p ∧ r)U (r ∨ ((p ∧ r)U (r ∨ (p U r))))))))

It is neither a pure safety property, nor a pure liveness property. Proposition
s represents that a user sends a request, p represents that a server processes a
request, and r represents that a user receives a reply. Intuitively, the formula
states that if a user sends a request and eventually a reply message is received,
that particular request was served exactly once in case of successful processing
by the server or at most once in case of unsuccessful processing. So in any case,
the same request should not be served and processed twice by the server.

The original model by Kamel and Leue is too large to model check it against
the specification with spin and 16 GB of memory. To demonstrate how the
simple shape of UVWs helps with understanding counter-example traces, we
injected an error into the model, so that the model checker spin can compute a
counter-example trace within the memory limit.

We use spin’s exhaustive verification algorithm. The ltl2tgba tool of spot
translates the (negation of the) LTL specification above to a Büchi automaton
comprising of 6 states (which happens to be very weak). When trying to verify
the GIOP model with this automaton as specification, spin generates an error
trace of length 526 in 3.4 s using 893 Mbytes of memory. The error trace is quite
long and hence hard to inspect. While the trace involves only few state changes
in the specification automaton, due to the absence of a labelling of the states
with the LTL properties that they represent, interpreting the trace is difficult.

The same experiment when executed with a UVW constructed with the
algorithm presented in this paper leads to an error trace of length 524 in 1.71 s
using a total memory of 510 Mbytes. Figure 4 shows the full UVW computed
for the LTL property given above. It can be decomposed into 6 simple chains,
which are highlighted by different colors. The smallest chain comprises of just
two states, whereas the longest one has five states. When running spin for all
simple chains (and the model) separately, we first of all observe that spin finds
counter-example traces for all chains except for the chains along q0 → T and
q0 → q2 → T , for which the verification process ran out of memory (in 59.9 and
77 s, respectively). Out of remaining four, for two chains a trace of length 526
was computed by spin in 3.69 and 4.0 s. For the other two, traces of length 455
were computed in 5.24 and 2.16 s, respectively.

We analyze one of the traces of length 455, as they are shorter and hence
easier to understand. We show the values of the variables s, r, and p in the
characters of the counter-example trace in Fig. 5 along with the UVW chain.
The UVW states are labeled by the following LTL formulas:

− q0 ≡ ψ − q5 ≡ G¬r ∨ (¬p U r)
− q4 ≡ G¬r ∨ ((p ∧ ¬r)U(r ∨ (¬p U r))) − q2 ≡ G¬r

Only those characters that lead to a state change in the UVW chain are
shown. Restricting our attention to these characters gives us a summary of the
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error trace. The labelling shows that from state q4, the trace character spr leads
to the second disjunct of q4 to only be satisfiable if ¬p U r holds in the future.
The following two highlighted characters then successively lead to the violation
of every disjunct of the remaining obligation. We can also see that the s variable
has a true value in all cases, which implies that user requests are sent more
than once, or that the sending process does not leave the “just sent” state along
the trace. After a request is sent in character t1, it is processed twice in t2 and
t3, which is the cause for the violation – an absorbing rejecting state is reached
immediately afterwards. With this analysis of the cause of the error, we could
now further inspect the trace to find the parts of the execution leading towards
the double processing of the request.

Fig. 4. UVW computed from our construction for the first case study. Each decomposed
chain is highlighted with different color coding.

Fig. 5. Error trace analysis with a single chain of the UVW decomposition.

6 Conclusion

We defined a context-free grammar for a subset of LTL and a translation from
specifications accepted by this grammar to universal very weak automata. The
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key technical contribution was the definition of quitting points for LTL prop-
erties, which we exploited to give a grammar that covers the vast majority of
the properties that are translatable to UVWs from an LTL property database
compiled by Blahoudek et al. [3]. Furthermore, our grammar contains all pos-
sible nestings of the LTL Until operator. All states in the UVWs computed by
our construction are automatically labeled by LTL formulas that they represent,
and even when applying classical simulation-based state reduction techniques,
this information is not lost. We demonstrated using a short case study how
the favourable properties of UVWs can be used to simplify a model debugging
process. For space reasons, more thorough experiments are left for future work.

We believe that UVWs are also a useful automaton model for many other
applications in the domain of formal methods. For instance, the translation pre-
sented in this paper is useful for reactive synthesis, where very large specifications
need to be processed. Using UVWs to represent the specifications enables the
use of anti-chains [17] as data structure for solving synthesis games without the
introduction of counters that are normally used in bounded synthesis [18] for full
LTL, which has the potential to substantially improve synthesis times.
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Abstract. Word equations are a crucial element in the theoretical foun-
dation of constraint solving over strings. A word equation relates two
words over string variables and constants. Its solution amounts to a func-
tion mapping variables to constant strings that equate the left and right
hand sides of the equation. While the problem of solving word equations
is decidable, the decidability of the problem of solving a word equation
with a length constraint (i.e., a constraint relating the lengths of words
in the word equation) has remained a long-standing open problem. We
focus on the subclass of quadratic word equations, i.e., in which each
variable occurs at most twice. We first show that the length abstractions
of solutions to quadratic word equations are in general not Presburger-
definable. We then describe a class of counter systems with Presburger
transition relations which capture the length abstraction of a quadratic
word equation with regular constraints. We provide an encoding of the
effect of a simple loop of the counter systems in the existential theory of
Presburger Arithmetic with divisibility (PAD). Since PAD is decidable,
we get a decision procedure for quadratic words equations with length
constraints for which the associated counter system is flat (i.e., all nodes
belong to at most one cycle). In particular, we show a decidability result
(in fact, also an NP algorithm with a PAD oracle) for a recently pro-
posed NP-complete fragment of word equations called regular-oriented
word equations, when augmented with length constraints. Decidability
holds when the constraints are extended with regular constraints with a
1-weak control structure.

1 Introduction

Reasoning about strings is a fundamental problem in computer science and math-
ematics. The first order theory over strings and concatenation is undecidable.
A seminal result by Makanin [24] (see also [11,15]) shows that the satisfiability
problem for the existential fragment is decidable, by giving an algorithm for the
satisfiability of word equations. A word equation L = R consists of two words L
and R over an alphabet of constants and variables. It is satisfiable if there is a
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mapping σ from the variables to strings over the constants such that σ(L) and
σ(R) are syntactically identical.

An original motivation for studying word equations was to show undecidabil-
ity of Hilbert’s 10th problem (see, e.g., [26]). While Makanin’s later result shows
that word equations could not, by themselves, show undecidability, Matiyase-
vich in 1968 considered an extension of word equations with length constraints
as a possible route to showing undecidability of Hilbert’s 10th problem [26]. A
length constraint constrains the solution of a word equation by requiring a linear
relation to hold on the lengths of words in a solution σ (e.g., |x| = |y|, where
| · | denotes the string-length function). The decidability of word equations with
length constraints remains open.

In recent years, reasoning about strings with length constraints has found
renewed interest through applications in program verification and reasoning
about security vulnerabilities. The focus of most research has been on devel-
oping practical string solvers (cf. [1,5,6,14,16,21,28,31–33]). These solvers are
sound but make no claims of completeness. Relatively few results are known
about the decidability status of strings with length and other constraints (see
[9] for an overview of the results in this area). The main idea in most existing
decidability results is the encoding of length constraints into Presburger arith-
metic [1,9,13,22]. However, as we shall see in this paper, the length abstraction
of a word equation (i.e. the set of possible lengths of variables in its solutions)
need not be Presburger definable.

In this paper, we consider the case of quadratic word equations, in which
each variable can appear at most twice [12,19], together with length constraints
and regular constraints (conjunctions

∧n
i=1 x ∈ Li of assertions that the variable

x must be assigned a string in the regular language Li for each i). For quadratic
word equations, there is a simpler decision procedure (called the Nielsen trans-
form or Levi’s method) based on a non-deterministic proof tree construction.
The technique can be extended to handle regular constraints [12]. However, we
show that already for this class (even for a simple equation like xaby = yabx,
where x, y are variables and a, b are constants), the length abstraction need not
be Presburger-definable. Thus, techniques based on Presburger encodings are
not sufficient to prove decidability.

Our first observation in this paper is a connection between the problem of
quadratic word equations with length constraints and a class of counter systems
with Presburger transitions. Informally, the counter system has control states
corresponding to the nodes of the proof tree constructed by Levi’s method,
and a counter standing for the length each word variable. Each step of Levi’s
method may decrease at most one counter. Thus, from any initial state, the
counter system terminates. We show that the set of initial counter values which
can lead to a successful leaf (i.e., one containing the trivial equation ε = ε) is
precisely the length abstraction of the word equation.

Our second observation is that the reachability relation for a simple loop
of the counter system can be encoded in the existential theory of Presburger
arithmetic with divisibility (PAD). The encoding is non-trivial in the presence
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of regular constraints, and depends on structural results on semilinear sets. As
PAD is decidable [18,23], we obtain a technique to symbolically represent the
reachability relation for flat counter systems, in which each node belongs to at
most one loop.

Moreover, the same encoding shows decidability for word equations with
length constraints, provided the proof tree is associated with flat counter sys-
tems. In particular, we show that the class of regular-oriented word equations,
introduced by [10], have flat proof trees. Thus, the satisfiability problem for
quadratic regular-oriented word equations with length constraints is decidable
(and in NEXP1).

While our decidability result is for a simple subclass, this class is already non-
trivial without length and regular constraints: satisfiability of regular-oriented
word equations is NP-complete [10]. Our result generalizes previous decidabil-
ity results [9]. Moreover, we believe that the techniques in this paper — the
connection between acceleration and word equations, and the use of existential
Presburger with divisibility — can pave the way to more sophisticated decision
procedures based on counter system acceleration.

2 Preliminaries

General notation: Let N = Z≥0 be the set of all natural numbers. For integers
i ≤ j, we use [i, j] to denote the set {i, i + 1, . . . , j − 1, j} of integers. If i ∈ N,
let [i] denote [0, i]. We use � to denote the component-wise ordering on N

k, i.e.,
(x1, . . . , xk) � (y1, . . . , yk) iff xi ≤ yi for all i ∈ [1, k]. If x̄ � ȳ and x̄ �= ȳ, we
write x̄ ≺ ȳ.

If S is a set, we use S∗ to denote the set of all finite sequences, or words,
γ = s1 . . . sn over S. The length |γ| of γ is n. The empty sequence is denoted
by ε. Notice that S∗ forms a monoid with the concatenation operator ·. If γ′ is
a prefix of γ, we write γ′ � γ. Additionally, if γ′ �= γ (i.e. a strict prefix of γ),
we write γ′ ≺ γ. Note that the operator � is overloaded here, but the meaning
should be clear from the context.

Words and automata: We assume basic familiarity with word combina-
torics and automata theory. Fix a (finite) alphabet A. For each finite word
w := w1 . . . wn ∈ A∗, we write w[i, j], where 1 ≤ i ≤ j ≤ n, to denote the
segment wi . . . wj .

Two words x and y are conjugates if there exist words u and v such that
x = uv and y = vu. Equivalently, x = cyck(y) for some k and for the cyclic
permutation operation cyc : A∗ → A∗, defined as cyc(ε) = ε, and cyc(a·w) = w·a
for a ∈ A and w ∈ A∗.

Given a nondeterministic finite automaton (NFA) A := (A,Q,Δ, q0, qF ), a
run of A on w is a function ρ : N → Q with ρ(0) = q0 that obeys the transition
relation Δ. We may also denote the run ρ by the word ρ(0) · · · ρ(n) over the

1 In fact, it is a NP algorithm with an oracle access to PAD. The best complexity
bound for the latter is NEXP and NP-hardness [18].
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alphabet Q. The run ρ is said to be accepting if ρ(n) = qF , in which case we say
that the word w is accepted by A. The language L(A) of A is the set of words
in A∗ accepted by A. In the sequel, for p, q ∈ Q we will write Ap,q to denote the
NFA A with initial state replaced by p and final state replaced by q.

Word equations: Let A be a (finite) alphabet of constants and V a set of
variables; we assume A∩V = ∅. A word equation E is an expression of the form
L = R, where (L,R) ∈ (A ∪ V )∗ × (A ∪ V )∗. A system of word equations is a
nonempty set {L1 = R1, L2 = R2, . . . , Lk = Rk} of word equations. The length
of a system of word equations is the length

∑k
i=1(|Li|+ |Ri|). A system is called

quadratic if each variable occurs at most twice in all. A solution to a system of
word equations is a homomorphism σ : (A ∪ V )∗ → A∗ which maps each a ∈ A
to itself that equates the l.h.s. and r.h.s. of each equation, i.e., σ(Li) = σ(Ri)
for each i = 1, . . . , k.

For each variable x ∈ V , we shall use |x| to denote a formal variable that
stands for the length of variable x, i.e., for any solution σ, the formal variable
|x| takes the value |σ(x)|. Let LV be the set {|x| | x ∈ V }. A length constraint
is a formula in Presburger arithmetic whose free variables are in LV .

A solution to a system of word equations with a length constraint
Φ(|x1|, . . . , |xn|) is a homomorphism σ : (A ∪ V )∗ → A∗ which maps each
a ∈ A to itself such that σ(Li) = σ(Ri) for each i = 1, . . . , k and moreover
Φ(|σ(x1)|, . . . , |σ(xn)|) holds. That is, the homomorphism maps each variable to
a word in A∗ such that each word equation is satisfied, and the lengths of these
words satisfy the length constraint.

The satisfiability problem for word equations with length constraints asks,
given a system of word equations and a length constraint, whether it has a
solution.

We also consider the extension of the problem with regular constraints. For
a system of word equations, a variable x ∈ V , and a regular language L ⊆ A∗,
a regular constraint x ∈ L imposes the additional restriction that any solution
σ must satisfy σ(x) ∈ L. Given a system of word equations, a length constraint,
and a set of regular constraints, the satisfiability problem asks if there is a solu-
tion satisfying the word equation, the length constraints, as well as the regular
constraints.

In the sequel, for clarity of exposition, we restrict our discussion to a system
consisting of a single word equation.

Linear arithmetic with divisibility: Let P be a first-order language with
equality, with binary relation symbol ≤, and with terms being linear polynomials
with integer coefficients. We write f(x), g(x), etc., for terms in integer variables
x = x1, . . . , xn. Atomic formulas in Presburger arithmetic have the form f(x) ≤
g(x) or f(x) = g(x). The language PAD of Presburger arithmetic with divisibility
extends the language P with a binary relation | (for divides). An atomic formula
has the form f(x) ≤ g(x) or f(x) = g(x) or f(x)|g(x), where f(x) and g(x) are
linear polynomials with integer coefficients. The full first order theory of PAD
is undecidable, but the existential fragment is decidable [18,23].
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Note that the divisibility predicate x|y is not expressible in Presburger arith-
metic: a simple way to see this is that {(x, y) ∈ N

2 | x|y} is not a semi-linear set.

Counter systems: In this paper, we specifically use the term “counter sys-
tems” to mean counter systems with Presburger transition relations (e.g. see
[3]). These more general transition relations can be simulated by standard Min-
sky’s counter machines, but they are more useful for coming up with decidable
subclasses of counter systems. A counter system C is a tuple (X,Q,Δ), where
X = {x1, . . . , xm} is a finite set of counters, Q is a finite set of control states, and
Δ is a finite set of transitions of the form (q, Φ(x̄, x̄′), q′), where q, q′ ∈ Q and Φ is
a Presburger formula with free variables x1, . . . , xm, x′

1, . . . , x
′
m. A configuration

of C is a tuple (q,v) ∈ Q × N
m.

The semantics of counter systems is given as a transition system. A transition
system is a tuple S := 〈S;→〉, where S is a set of configurations and → ⊆
S × S is a binary relation over S. A path in S is a sequence s0 → · · · → sn of
configurations s0, ..., sn ∈ S. If S′ ⊆ S, let pre∗(S′) denote the set of s ∈ S such
that s →∗ s′ for some s′ ∈ S′. We might write pre∗

→(S′) to disambiguate the
transition system.

A counter system C generates the transition system SC = 〈S;→〉, where S is
the set of all configurations of C, and (q,V ) → (q′,V ′) if there exists a transition
(q, Φ(x̄, x̄′), q′) ∈ Δ such that Φ(v,v′) is true.

In the sequel, we will be needing the notion of flat counter systems [3,4,7,20].
Given a counter system C = (X,Q,Δ), the control structure of C is an edge-
labeled directed graph G = (V,E) with the set V = Q of nodes and the set
E = Δ. The counter system C is flat if each node v ∈ V is contained in at most
one simple cycle.

3 Solving Quadratic Word Equations

We start by recalling a simple textbook recipe (Nielsen transformation, a.k.a.,
Levi’s Method) [11,19] for solving quadratic word equations, both for the cases
with and without regular constraints. We then discuss the length abstractions
of solutions to quadratic word equations, and provide a natural example that is
not Presburger-definable.

3.1 Nielsen Transformation

We will define a rewriting relation E ⇒ E′ between quadratic word equations
E,E′. Let E be an equation of the form αw1 = βw2 with w1, w2 ∈ (A∪V )∗ and
α, β ∈ A ∪ V . Then, there are several possible E′:

– Rules for erasing an empty prefix variable. These rules can be applied if α ∈ V
(symmetrically, β ∈ V ). We nondeterministically guess that α be the empty
word ε, i.e., E′ is (w1 = βw2)[ε/α]. The symmetric case of β ∈ V is similar.

– Rules for removing a nonempty prefix. These rules are applicable if each of α
and β is either a constant or a variable that we nondeterministically guess to
be a nonempty word. There are several cases:
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(P1) α ≡ β (syntactic equality). In this case, E′ is w1 = w2.
(P2) α ∈ A and β ∈ V . In this case, E′ is w1[αβ/β] = β(w2[αβ/β]). In the

sequel, to avoid notational clutter we will write βw2[αβ/β] instead of
β(w2[αβ/β]).

(P3) α ∈ V and β ∈ A. In this case, E′ is α(w1[βα/α]) = w2[βα/α].
(P4) α, β ∈ V . In this case, we nondeterministically guess if α � β or β � α.

In the former case, the equation E′ is w1[αβ/β] = β(w2[αβ/β]). In the
latter case, the equation E′ is E′ is α(w1[βα/α]) = w2[βα/α].

Note that the transformation keeps an equation quadratic.

Proposition 1. E is solvable iff E ⇒∗ (ε = ε). Furthermore, checking if E is
solvable is in PSPACE.

See [11] for a proof. Roughly speaking, the proof uses the fact that each
step either decreases the size of the equation, or the length of a length-minimal
solution. It runs in PSPACE because each rewriting does not increase the size
of the equation.

3.2 Handling Regular Constraints

Nielsen transformation easily extends to quadratic word equations with regular
constraints (e.g. see [12]). We assume that a regular constraint x ∈ L is given
as an NFA Ap,q representing L. If q0 and qF are the initial and final states
(respectively) of an NFA A, we can be more explicit and write Aq0,qF instead
of A.

Our rewriting relation ⇒ now works over a pair consisting of an equation E
and a set S of regular constraints over variables in E. Let E be an equation of
the form αw1 = βw2 with w1, w2 ∈ (A ∪ V )∗ and α, β ∈ A ∪ V . We now define
(E,S) ⇒ (E′, S′) by extending the pervious definition of ⇒ without regular
constraints. Firstly, we make sure that S is satisfiable by a standard automata-
theoretic algorithm, which can be done in PSPACE. In particular, it has to be
the case that E ⇒ E′ and additionally do the following:

– Rules for erasing an empty prefix variable α. When applied, ensure that each
regular constraint α ∈ L in S satisfies ε ∈ L. Define S′ as S minus all regular
constraints of the form α ∈ L.

– Rules for removing a nonempty prefix. For (P1), we set S′ to be S minus all
constraints of the form α ∈ L if α is a variable. For (P2)–(P4), assume that
E′ is w1[αβ/β] = β(w2[αβ/β]); the other case is symmetric. For each regular
constraint β ∈ L(Ap,q), we nondeterministically guess a state r, and add α ∈
L(Ap,r) and β ∈ L(Ar,q) to S′. In the case when α ∈ A, we could immediately
perform the check α ∈ L(Ap,r): a positive outcome implies removing this
constraint from S′, while on a negative outcome our algorithm simply fails
on this branch. For any variable y that is distinct from β, we add all regular
constraints y ∈ L in S to S′. If α still occurs in E′, add regular constraints
α ∈ L in S to S′. If S′ is unsatisfiable, fail on this this branch.
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Proposition 2. (E,S) is solvable iff (E,S) ⇒∗ (ε = ε, ∅). Furthermore, check-
ing if (E,S) is solvable is in PSPACE.

Note that this is still a PSPACE algorithm because it never creates a new NFA
or adds new states to existing NFA in the regular constraints, but rather adds
a regular constraint x ∈ L(Ap,q) to a variable x, where A is an NFA that is
already in the regular constraint.

3.3 Generating All Solutions Using Nielsen Transformation

One result that we will need in this paper is that Nielsen transformation is able
to generate all solutions of quadratic word equations with regular constraints. To
clarify this, we extend the definition of ⇒ so that each a configuration E or (E,S)
in the graph of ⇒ is also annotated by an assignment σ of the variables in E to
concrete strings. We write E1[σ1] ⇒ E2[σ2] if E1 ⇒ E2 and σ2 is the modification
from σ1 according to the operation used to obtain E2 from E1. Observe that
the domain of σ2 is a subset of the domain of σ1; in fact, some rules (e.g.,
erasing an empty prefix variable) could remove a variable in the prefix in E1 from
σ1. The following example illustrates how ⇒ works with this extra annotated
assignment. Suppose that σ1(x) = ab and σ1(y) = abab and E1 := xy = yx and
E2 is obtained from E1 using rule (P4), i.e., substitute xy for y. In this case,
σ2(x) = σ2(y) = σ1(x) = ab. Observe that E2[σ2] ⇒ E3[σ3] ⇒ E4[σ4], where
E3 := E2, σ3(x) = ab, σ3(y) = ε, E4 := x = x, and σ4(x) = ab. The definition
for the case with regular constraints is identical.

Proposition 3. (E,S)[σ] →∗ (ε = ε, ∅)[σ′] where σ′ has the empty domain iff
σ is a solution of (E,S).

This proposition immediately follows from the proof of correctness of Nielsen
transformation for quadratic word equations (cf. [11]).

3.4 Length Abstractions and Semilinearity

Given a quadratic word equation E with constants A and variables V =
{x1, . . . , xk}, its length abstraction is defined as follows

Len(E) = {(|σ(x1)|, . . . , |σ(xk)|) : σis a solution to E},

namely the set of tuples of numbers corresponding to lengths of solutions to E.

Example 1. Consider the quadratic equation E := xaby = yz, where V =
{x, y, z} and A contains at least two letters a and b. We will show that its length
abstraction Len(E) can be captured by the Presburger formula |z| = |x| + 2.
Observe that each (nx, ny, nz) ∈ Len(E) must satisfy nz = nx + 2 by a length
argument on E. Conversely, we will show that each triple (nx, ny, nz) ∈ N

3

satisfying nz = nx + 2 must be in Len(E). To this end, we will define a solution
σ to E such that (|σ(x)|, |σ(y)|, |σ(z)|) = (nx, ny, nz). Consider σ(x) = anx .
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Then, for some q ∈ N and r ∈ [nx + 1], we have ny = q(nx + 2) + r. Let w
be a prefix of σ(x)ab of length r. Therefore, for some v, we have wv = σ(x)ab.
Define σ(y) = (σ(x)ab)qw. We then have σ(x)abσ(y) = σ(y)vw. Thus, setting
σ(z) = vw gives us a satisfying assignment for E which satisfies the desired
length constraint. �

However, it turns out that Presburger Arithmetic is not sufficient for capturing
length abstractions of quadratic word equations.

Theorem 1. There is a quadratic word equation whose length abstraction is not
Presburger-definable.

To this end, we show that the length abstraction of xaby = yabx, where a, b ∈ A
and x, y ∈ V , is not Presburger definable.

Lemma 1. The length abstraction Len(xaby = yabx) coincides with tuples
(|x|, |y|) of numbers satisfying the expression ϕ(|x|, |y|) defined as:

|x| = |y| ∨ (|x| = 0 ∧ |y| ≡ 0 (mod 2)) ∨ (|y| = 0 ∧ |x| ≡ 0 (mod 2))
∨ (|x|, |y| > 0 ∧ gcd(|x| + 2, |y| + 2) > 1)

Observe that this would imply non-Presburger-definability: for otherwise, since
the first three disjuncts are Presburger-definable, the last disjunct would also be
Presburger-definable, which is not the case since the property that two numbers
are relatively prime is not Presburger-definable. Let us prove this lemma. Let
S = Len(xaby = yabx). We first show that given any numbers nx, ny satisfying
ϕ(nx, ny), there are solutions σ to xaby = yabx with |σ(x)| = nx and |σ(y)| = ny.
If they satisfy the first disjunct in ϕ (i.e., nx = ny), then set σ(x) = σ(y) to
an arbitrary word w ∈ Anx . If they satisfy the second disjunct, then aby = yab
and so set σ(x) = ε and σ(y) ∈ (ab)∗. The same goes with the third disjunct,
symmetrically. For the fourth disjunct (assuming the first three disjuncts are
false), let d = gcd(nx + 2, ny + 2). Define σ(x), σ(y) ∈ (ad−1b)∗(ad−2) so that
|σ(α)| = nα for α ∈ V . It follows that σ(x)abσ(y) = σ(y)abσ(x).

We now prove the converse. So, we are given a solution σ to xaby = yabx
and let u := σ(x), v := σ(y). Assume to the contrary that ϕ(|u|, |v|) is false and
that u and v are the shortest such solutions. We have several cases to consider:

– u = v. Then, |u| = |v|, contradicting that ϕ(|u|, |v|) is false.
– u = ε. Then, abv = vab and so v ∈ (ab)∗, which implies that |v| ≡ 0 (mod 2).

Contradicting that ϕ(|u|, |v|) is false.
– v = ε. Same as previous item and that |u| ≡ 0 (mod 2).
– |u| > |v| > 0. Since ϕ(|u|, |v|) is false, we have gcd(|u| + 2, |v| + 2) = 1.

It cannot be the case that |u| = |v| + 1 since then, comparing prefixes of
uabv = vabu, the letter at position |u|+2 would be b on l.h.s. and a on r.h.s.,
which is a contradiction. Therefore |u| ≥ |v| + 2. Let u′ = u[|v| + 3, |u|], i.e.,
u but with its prefix of length |v| + 2 removed. By Nielsen transformation,
we have u′abv = vabu′. It cannot be the case that u′ = ε; for, otherwise,
abv = vab implies v ∈ (ab)∗ and so u = vab, implying that 2 divides both
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|u| + 2 and |v| + 2, contradicting that gcd(|u| + 2, |v| + 2) = 1. Therefore,
|u′| > 0. Since gcd(|u′| + 2, |v| + 2) = gcd(|u| + 2, |v| + 2) = 1, we have a
shorter solution to xaby = yabx, contradicting minimality.

– |v| > |u| > 0. Same as previous item.

4 Reduction to Counter Systems

In this section, we will provide an algorithm for computing a counter system from
(E,S), where E is a quadratic word equation and S is a set of regular constraints.
We will first describe this algorithm for the case without regular constraints, after
which we show the extension to the case with regular constraints.

Given the quadratic word equation E, we show how to compute a counter
system C(E) = (X,Q,Δ) such that the following theorem holds.

Theorem 2. The length abstraction of E coincides with

{v ∈ N
|V | | (E, v) ∈ pre∗

C(E)({ε = ε} × N
|V |)}

Before defining C(E), we define some notation. Define the following formulas:

– ID(x̄, x̄′) :=
∧

x∈x̄ x′ = x
– SUBy,z(x̄, x̄′) := z ≤ y ∧ y′ = y − z ∧ ∧

x∈x̄,x�=y x′ = x
– DECy(x̄, x̄′) := y > 0 ∧ y′ = y − 1 ∧ ∧

x∈x̄,x �=y x′ = x

Note that the �= symbol in the guard of
∧

denotes syntactic equality (i.e. not
equality in Preburger Arithmetic). We omit mention of the free variables x̄ and
x̄′ when they are clear from the context.

We now define the counter system. Given a quadratic word equation E with
constants A and variables V , we define a counter system C(E) = (X,Q,Δ) as
follows. The counters X will be precisely all variables that appear in E, i.e.,
X := V . The control states are precisely all equations E′ that can be rewritten
from E using Nielsen transformation, i.e., Q := {E′ : E ⇒∗ E′}. The set Q is
finite (at most exponential in |E|) as per our discussion in the previous section.

We now define the transition relation Δ. We use x̄ to enumerate V in
some order. Given E1 ⇒ E2 with E1, E2 ∈ Q, we then add the transition
(E1, Φ(x̄, x̄′), E2), where Φ is defined as follows:

– If E1 ⇒ E2 applies a rule for erasing an empty prefix variable y ∈ x̄, then
Φ := y = 0 ∧ ID.

– If E1 ⇒ E2 applies a rule for removing a nonempty prefix:
• If (P1) is applied, then Φ = ID.
• If (P2) is applied, then Φ = DECβ .
• If (P3) is applied, then Φ = DECα.
• If (P4) is applied and α � β, then Φ = SUBβ,α. If β � α, then Φ = SUBα,β .
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Observe that if (E1,v1) → (E2,v2), then |E1| ≤ |E2| and v1 � v2. In addition,
if v1 = v2, then |E1| < |E2|. This implies the following lemma.

Lemma 2. The counter system C(E) terminates from every configuration
(E0,v0).

The proof of Theorem2 immediately follows from Proposition 3 that Nielsen
transformation generates all solutions.

Extension to the case with regular constraints: In this extension, we
will only need to assert that the counter values belong to the length abstrac-
tions of the regular constraints, which are effectively semilinear due to Parikh’s
Theorem [27]. Given a quadratic word equation E with a set S of regular con-
straints, we define the counter system C(E,S) = (X,Q,Δ) as follows. Let C(E) =
(X1, Q1,Δ1) be the counter system from the previous paragraph, obtained by
ignoring the regular constraints. We define X = X1. Let Q be the finite set of all
configurations reachable from (E,S), i.e., Q = {(E′, S′) : (E,S) ⇒∗ (E′, S′)}.
Given (E1, S1) ⇒ (E2, S2), we add the transition ((E1, S2), Φ(x̄, x̄′), (E2, S2)) as
follows. Suppose that (E1, Φ

′(x̄, x̄′), E2) was added to Δ1 by E1 ⇒ E2. Then,

Φ := Φ′ ∧
∧

x∈x̄

⎛

⎝x ∈ Len(
⋂

(x∈L)∈S

L) ∧ x′ ∈ Len(
⋂

(x∈L)∈S′
L)

⎞

⎠ .

The size of the NFA for
⋂

(x∈L)∈S L is exponential in the number of constraints
of the form (x ∈ L) in S (of which there are polynomially many). The constraint
x ∈ Len(L) is well-known to be effectively semilinear [27]. In fact, using the
algorithm of Chrobak-Martinez [8,25,29], we can compute in polynomial time
two finite sets A,A′ of integers and an integer b such that, for each n ∈ N,
n ∈ U := A ∪ (A′ + bN) is true iff n ∈ Len(L). Note that U is a finite union of
arithmetic progressions (with period 0 and/or b). In fact, each number a ∈ A∪A′

(resp. the number b) is at most quadratic in the size of the NFA, and so it is
a polynomial 2 size even when they are written in unary. Therefore, treating U
as an existential Presburger formula ϕ(x) with one free variable (an existential
quantifier is needed to guess the coefficient n such that x = ai + bn for some i),
the resulting Φ′ is a polynomial-sized existential Presburger formula.

Theorem 3. The length abstraction of (E,S) coincides with

{v ∈ N
|V | | ((E,S), v) ∈ pre∗

C(E,S)({(ε = ε, ∅)} × N
|V |)}

As for the case without regular constraints, the proof of Theorem2 immediately
follows from Proposition 3 that Nielsen transformation generates all solutions.

2 Note that we mean polynomial in the size of the NFA, which can be exponential in
|S|.
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5 Decidability via Linear Arithmetic with Divisibility

5.1 Accelerating a 1-Variable-Reducing Cycle

Consider a counter system C = (X,Q,Δ) with Q = {q0, . . . , qn−1}, such that
for some y ∈ X the transition relation Δ consists of precisely the following
transition (qi, Φi, qi+1 (mod n)), for each i ∈ [n − 1], and each Φi is either SUBy,z

(with z a variable distinct from y) or DECy. Such a counter system is said to be
a 1-variable-reducing cycle.

Lemma 3. There exists a polynomial-time algorithm which given a 1-variable-
reducing cycle C = (X,Q,Δ) and two states p, q ∈ Q computes an for-
mula ϕp,q(x̄, x̄′) in existential Presburger arithmetic with divisibility such that
(p,v) →∗

C (q,w) iff ϕp,q(v,w) is satisfiable.

This lemma can be seen as a special case of the acceleration lemma for flat
parametric counter automata [7] (where all variables other than y are treated as
parameters). However, its proof is in fact quite simple. Without loss of generality,
we assume that q = q0 and p = qi, for some i ∈ N. Any path (q0,v) →∗

C
(qi,w) can be decomposed into the cycle (q0,v) →∗ (q0,v′) and the simple
path (q0,w0) → · · · → (qi,wi) of length i. Therefore, the reachability relation
(q0,x) →∗

C (qi,y) can be expressed as

∃z0, · · · , zi−1 : ϕq0,q0(x, z0) ∧ Φ0(z0, z1) ∧ · · · ∧ Φi−1(zi−1,y).

Thus, it suffices to show that ϕq0,q0(x,x′) is expressible in PAD. Consider a
linear expression M = a0+

∑
x∈X\{y} axx, where a0 is the number of instructions

i in the cycle such that Φi = DECy and ax is the number of instructions i such
that Φi = SUBy,x. Each time around the cycle, y decreases by M . Thus, for some
n ∈ N we have y′ = y − nM , or equivalently

nM = y − y′

The formula ϕq0,q0 can be defined as follows:

ϕq0,q0 := M | (y − y′) ∧ y′ ≤ y ∧
∧

x∈X\{y}
x′ = x.

Handling unary Presburger guards: Recalling our reduction for the case
with regular constraints from Sect. 4 reveals that we also need unary Presburger
guards on the counters. We will show how to extend Lemma3 to handle such
guards. As we will see shortly, we will need a bit of the theory of semilinear sets.

As before, our counter system C = (X,Q,Δ) has Q = {q0, . . . , qn−1}, and
the control structure is a simple cycle of length n, i.e., the transitions in Δ
are precisely (qi, Φi, qi+1 (mod n)) for some Presburger formula Φi(x̄, x̄′), for each
i ∈ [n − 1]. We say that C is 1-variable-reducing with unary Presburger guards if
there exists a counter y ∈ X such that each Φi is of the form θi ∧ ψi, where θi is
either SUBy,z (with z a variable distinct from y) or DECy, and ψi is a conjunction
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of formulas of the form x ∈ Ai ∪ (A′
i + bN), where both Ai and A′

i are finite sets
of natural numbers and x ∈ X. For each counter x ∈ X, we use ψi,x to denote
the set of conjuncts in ψi that refers to the counter x.

Lemma 4. There exists a polynomial-time algorithm which given a 1-variable-
reducing cycle with unary Presburger guards C = (X,Q,Δ) and two states
p, q ∈ Q computes an formula λp,q(x̄, x̄′) in existential Presburger arithmetic
with divisibility such that (p,v) →∗

C (q,w) iff λp,q(v,w) is satisfiable.

Unlike Lemma 3, this lemma does not immediately follow from the results of [7]
on flat parametric counter automata. To prove this, let us first take the formula
ϕp,q(x̄, x̄′) from Lemma 3 applied to C′, which is obtained from C by first remov-
ing the unary Presburger guards. We can insert these unary Presburger guards
to ϕp,q, but this is not enough because we need to make sure that all “interme-
diate” values of y have to also satisfy the Presburger guards corresponding to
y on that control state. More precisely, let the counter decrement in θi be αi

(which can either be a variable x distinct from y or 1). Write f(x̄) =
∑n−1

i=0 αi.
Then, we can write

λq0,q0 := x̄′ = x̄ ∨
(

ϕq0,q0 ∧
n−1∧

i=0

ψi(x̄) ∧ ηq0,q0

)

ηq0,q0 := ∀k : y′ + (k + 1)f(x̄) ≤ y −→
⎛

⎝
n−1∧

i=0

∧

(αi∈A∪A′+bN)∈ψi,y

y′ + kf(x̄) + αi ∈ A ∪ (A′ + bN)

⎞

⎠

Owing to the constraint ϕq0,q0 , the premise y′ + (k + 1)f(x̄) ≤ y in ηq0,q0 could
have been rewritten to y′ + (k + 1)f(x̄) = y. As we shall soon see, the former
will be more useful for completing our proof of Lemma4. The formula λq0,q0 is
a correct expression that captures the reachability relation (q0,w) →∗

C (q0,w′),
but the problem is that it has a universal quantifier and therefore is not a formula
of existential Presburger arithmetic with divisibility. To fix this problem, we will
need to exploit the semilinear structure of unary Presburger guards. To this end,
we first notice that, by taking the big conjunction over i and the big conjunction
over αi out, the formula ηq0,q0 is equivalent to:

ηq0,q0 ≡
n−1∧

i=0

∧

(αi∈A∪A′+bN)∈ψi,y

∀k : y′ + (k + 1)f(x̄) ≤ y −→

(y′ + kf(x̄) + αi ∈ A ∪ (A′ + bN))

Therefore, it suffices to rewrite each conjunct C(x̄) := ∀k : y′ + (k + 1)f(x̄) ≤
y −→ (y′ + kf(x̄) + αi ∈ A ∪ (A′ + bN) as an existential Presburger formula,
for each i and constraint (αi ∈ A∪A′ + bN). To this end, let a := max A and let
N denote |A′|. We claim that ϕq0,q0 entails
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C(x̄) ⇔
a∧

i=0

y′ + (i + 1)f(x̄) ≤ y → y′ + if(x̄) + αi ∈ A ∪ (A′ + bN)

∧
a+N+1∧

i=a+1

y′ + (i + 1)f(x̄) ≤ y → y′ + if(x̄) + αi ∈ A′ + bN.

Simply put, we distinguish the cases when y′+if(x̄)+αi is “small” (i.e., less than
the maximum threshold that can keep this number in an arithmetic progression
with 0 period), and when this number is “big” (i.e. must be in an arithmetic
progression with a nonzero period). To prove this equivalence, it suffices to show
that if y′ +kf(x̄)+αi /∈ A∪(A′ +bN) with k > a+N +1 and y′ +(k+1)f(x̄) ≤ y
(i.e. y′ + kf(x̄) + αi ≤ y since y′ = y + hf(x̄) for some h because of ϕq0,q0), then
we can find k′ ≤ a + N + 1 such that y′ + k′f(x̄) + αi /∈ A ∪ (A′ + bN). Suppose
to the contrary that such k′ does not exist. Then, since there are N +1 numbers
in between a + 1 and a + N + 1, by pigeonhole principle there is an arithmetic
progression a′+bN and two different numbers a+1 ≤ j1 < j2 ≤ a+N+1 such that
y′+jhf(x̄)+αi ∈ a′+bN, for h = 1, 2. Let d := (j2−j1). Note that df(x̄) denotes
the difference between y′+j1f(x̄)+αi and y′+j2f(x̄)+αi, and this difference is of
the form mb, for some positive integer m. We now find a number j ∈ [a+1, a+N ]
with j + qd = k for some positive integer q. Since y′ + jf(x̄) + αi ∈ a′′ + bN
for some a′′ ∈ A′, it must be the case that y′ + (j + qd)f(x̄) + αi ∈ a′′ + bN for
q ∈ N, contradicting that y′ + kf(x̄) + αi /∈ A ∪ (A′ + bN).

We have proven correctness, and what remains is to analyse the size of the
formula λq0,q0 . To this end, it suffices to show that each formula C(x̄) is of
polynomial size. This is in fact the case since there are at most polynomially
many numbers in A and A′ and that the size of all numbers in A ∪ A′ ∪ {b} are
of polynomial size even when they are written in unary.

5.2 An Extension to Flat Control Structures and an Acceleration
Scheme

The following generalisation to flat control structures is an easy corollary of
Lemmas 3 and 4.

Theorem 4. There exists a polynomial-time algorithm which, given a flat Pres-
burger counter system C = (X,Q,Δ), each of whose simple cycle is 1-variable-
reducing with unary Presburger guards and two states p, q ∈ Q, computes an
formula λp,q(x̄, x̄′) in existential Presburger with divisibility such that (p,v) →∗

C
(q,w) iff λp,q(v,w) is satisfiable.

Indeed, to prove this theorem, we can simply use Lemma 4 to accelerate all cycles
and the fact that transition relations expressed in existential Presburger with
divisibility is closed under composition.
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5.3 Application to Word Equations with Length Constraints

Theorem 4 gives rise to a simple and sound (but not complete) technique for
solving quadratic word equations with length constraints: given a quadratic word
equation (E,S) with regular constraints, if the counter system C(E,S) is flat,
each of whose simple cycle is 1-variable-reducing with unary Presburger guards,
then apply the decision procedure from Theorem 4. In this section, we show
completeness of this method for the class of regular-oriented word equations
recently defined in [10], which can be extended with regular constraints given
as 1-weak NFA [2]. A word equation is regular if each variable x ∈ V occurs at
most once on each side of the equation. Observe that xy = yx is regular, but
xxyy = zz is not. It is easy to see that a regular word equation is quadratic. A
word equation L = R is said to be oriented if there is a total ordering < on V
such that the occurrences of variables on each side of the equation preserve <,
i.e., if w = L or w = R and w = w1αw2βw3 for some w1, w2, w3 ∈ (A ∪ V )∗ and
α, β ∈ V , then α < β. Observe that xy = yz (i.e. that x and z are conjugates) is
oriented, but xy = yx is not oriented. It was shown in [10] that the satisfiability
for regular-oriented word equations is NP-hard. We show satisfiability for this
class with length constraints is decidable.

Theorem 5. The satisfiability problem of regular-oriented word equations with
length constraints is decidable in nondeterministic exponential time.

This decidability (in fact, an NP upper bound) for the strictly regular-ordered
subcase, in which each variable occurs precisely once on each side, was proven
in [9]. For this subcase, it was shown that Presburger Arithmetic is sufficient,
but the decidability for the general class of regular-oriented word equations with
length constraints remained open. Theorem 5 shows the problem is decidable.

We start with a simple lemma that ⇒ preserves regular-orientedness. Its
proof can be found in the full version.

Lemma 5. If E ⇒ E′ and E is regular-oriented, then E′ is also regular-
oriented.

Next, we show a bound on the lengths of cycles and paths of the counter
system associated with a regular-oriented word equation.

Lemma 6. Given a regular-oriented word equation E, the counter system C(E)
is flat. Moreover, the length of each simple cycle (resp. path) in the control
structure of C(E) is of length O(|E|) (resp. O(|E|2)).

Let E := L = R. We first show that the length of a simple cycle in the
control structure of C(E) is of length at most N = max{|L|, |R|} − 1. Given a
simple cycle E0 ⇒ E1 ⇒ · · · ⇒ En with n > 0 (i.e. E0 = En and Ei �= Ej for
all 0 ≤ i < j < n), it has to be the case that each rewriting in this cycle applies
one of the (P2)–(P4) rules since the other rules reduce the size of the equation.
We have |E0| = |E1| = · · · = |En|. Let Ei := Li = Ri with Li = αiwi and
Ri = βiw

′
i. Let us assume that E1 be w0[α0β0/β0] = β0w

′
0[α0β0/β0]; the case
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with E1 be α0w0[β0α0/α0] = w′
0[β0α0/α0] will be easily seen to be symmetric.

This assumption implies that β0 is a variable y, and that L0 = uyv for some
words u, v ∈ (A ∪ V )∗ (for, otherwise, |E1| < |E0| because of regularity of E).
Furthermore, it follows that, for each i ∈ [n − 1], Ei+1 is wi[αiy/] = yw′

i and
βi = y, i.e., the counter system C(E) applies either SUBy,x (in the case when
x = αi) or DECy (in the case when αi ∈ A). For, otherwise, taking a minimal
i ∈ [1, n−1] with Ei+1 being αiwi[yαi/αi] = w′

i[yαi/αi] for some variable x = αi

shows that Ei is of the form x...y... = y...x... (since |Ei+1| = |Ei|) contradicting
that Ei is oriented. Consequently, we have

– Ri = Rj for all i, j, and
– Li = cyci(u)yv for all i ∈ [n]

implying that the length of the cycle is at most |L0| − 1 ≤ |L| − 1.
Consider the control structure C(E) as a dag of SCCs. In this dag, each edge

from one SCC to the next is size-reducing. Therefore, the maximal length of a
path in this dag is |E|. Therefore, since the maximal path of each SCC is N
(from the above analysis), the maximal length of a simple path in the control
structure is at most N2.

Handling regular constraints: First, we note that the length abstraction
of regular-oriented word equations with regular constraints is already not
Presburger-definable in general (see full version for proof):

Proposition 4. The regular-oriented word equation xy = yz over the alphabet
{a, b,#}, together with regular constraints x, y ∈ #(a + b)∗ has non-Presburger-
definable length abstraction.

It is difficult to extend Theorem5 to the case with regular constraints because
they may introduce nestings of cycles (which breaks the flat control structure)
even for regular-oriented word equation. However, we can show that restricting
to regular constraints given by 1-weak NFA [2] (i.e. a dag of SCCs, each with at
most one state) preserves the flat control structure. A 1-weak regular constraint
is of the form x ∈ L where L is accepted by a 1-weak NFA. The class of 1-
weak automata is in fact quite powerful, e.g., when considered as recognisers of
languages of ω-words, they capture the subclass of LTL with operators F and
G [2]. They have also been used to obtain a decidable extension of infinite-state
concurrent systems in term rewriting systems, e.g., see [17,30]. Note that the
regular constraint in Proposition 4 is accepted by a 1-weak NFA: the NFA has
two states q0 and q1, and transitions q0

#−→ q1 and q1
a,b−→ q1, where q0 is an

initial state and q1 a final state.

Theorem 6. The satisfiability problem of regular-oriented word equations with
1-weak regular constraints and length constraints is solvable in nondeterministic
double exponential time (2NEXP).

Let us prove this theorem. Suppose E is a regular-oriented word equation with
the set S of 1-weak regular constraints. Let C(E,S) = (X,Q,Δ) be the cor-
responding counter system. Let M(S) denote the maximum number of states
ranging over all NFA in S.
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Lemma 7. The counter system C(E,S) is flat. Moreover, the length of each
simple cycle in the control structure of C(E,S) is of length O(|E|), while the
length of each simple path is of length O(|E|2|V ||S|M(S)3).

By virtue of Theorem4, this lemma implies decidability of Theorem 6, but it
does NOT imply the nondeterministic exponential time upper bound since each
unary Presburger guard in C(E) will be of the form x ∈ Len(

⋂
(x∈L)∈S L).

Even though we know that |S| is always of a polynomial size, their intersection
requires performing a product automata construction, which will result in an
NFA of an exponential size. Therefore, we obtain a nondeterministic double
exponential time complexity upper bound (2NEXP), instead of NEXP as for
the case without regular constraints. The proof of Lemma 7 can be found in the
full version.

Remark 1. Our proof of Theorem 6 does not extend to the case when we allow
generalised flat NFA (i.e. after mapping all the letters in A to a new symbol
’?’, the control structure of the NFA is flat) in the regular constraints. This
is because a simple cycle involving two or more states will result in a counter
system that is no longer flat.

6 Future Work

One research direction is to study extensions of our techniques to deal with
the class of regular (but not necessarily oriented) word equations with length
constraints. We believe that this is a key subproblem of the general class of
quadratic word equations with length constraints. We also conjecture that the
length abstractions of general quadratic word equations can be effectively cap-
tured by existential Presburger with divisibility.
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Abstract. We consider systems with unboundedly many processes that
communicate through shared memory. In that context, simple verifica-
tion questions have a high complexity or, in the case of pushdown pro-
cesses, are even undecidable. Good algorithmic properties are recovered
under round-bounded verification, which restricts the system behavior
to a bounded number of round-robin schedules. In this paper, we extend
this approach to a game-based setting. This allows one to solve synthesis
and control problems and constitutes a further step towards a theory of
languages over infinite alphabets.

1 Introduction

Ad-hoc networks, mobile networks, cache-coherence protocols, robot swarms,
and distributed algorithms have (at least) one thing in common: They are
referred to as parameterized systems, as they are usually designed to work for
any number of processes. The last few years have seen a multitude of approaches
to parameterized verification, which aims to ensure that a system is correct no
matter how many processes are involved. We refer to [15] for an overview.

Now, the above-mentioned applications are usually part of an open world, i.e.,
they are embedded into an environment that is not completely under the control
of a system. Think of scheduling problems, in which an unspecified number of
jobs have to be assigned to (a fixed number of) resources with limited capacity.
The arrival of a job and its characteristics are typically not under the control of
the scheduler. However, most available verification techniques are only suitable
for closed systems: A system is correct if some or every possible behavior satisfies
the correctness criterion, depending on whether one considers reachability or,
respectively, linear-time objectives.

This paper is a step towards a theory of synthesis and control, which provides
a more fine-grained way to reason about parameterized systems. Our system
model is essentially that from [24], but defined in a way that reveals similar-
ities with data automata/class-memory automata, a certain automata model
over infinite alphabets [8,9]. Actually, we consider parameterized pushdown sys-
tems, as each process has a dedicated stack to model recursion. A parameterized
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pushdown system distinguishes between a finite-state global process (sometimes
referred to as a global store or leader process) and a local process. The global
process can spawn new local processes. Thus, while a system configuration con-
tains only one global state, the number of instantiations of local processes is
unbounded. Moreover, when a local process takes a transition, it is allowed to
read, and modify, the global store.

So far so good. Now, it is well-known that reachability is undecidable as
soon as two pushdown processes communicate through shared memory. And
even when local processes are finite-state, the problem is at least as hard as
reachability in Petri nets [9]. This led La Torre, Madhusudan, and Parlato to
consider round-bounded verification of parameterized systems, which restricts
system executions to a bounded number of round-robin schedules [24]. Not only
did they show that reachability drops to PSPACE, but the corresponding fixed-
point computation also turned out to be practically feasible. Moreover, they give
a sound method (i.e., a sufficient criterion) for proving that all reachable states
can already be reached within a bounded number of round-robin schedules. This
is done using a game that is different from the one we introduce here. Actually,
we extend their model by adding the possibility to distinguish, in parameterized
pushdown automata, between controllable global states and uncontrollable ones.

The classical reachability problem then turns into a reachability objective in
an infinite-state game. As our main result, it is shown that the winner of such a
game can be computed, though in (inherently) non-elementary time. Our proof
makes a detour via games on multi-pushdown systems, which are undecidable in
general but decidable under a bound on the number of phases, each restricting
the number of pop operations to a dedicated stack [5,29]. Note that round-robin
schedules maintain processes in a queue fashion. However, bounding the number
of rounds allows us to store both the states of a local process as well as its stack
contents in a configuration of a multi-pushdown system. It is worth noting that
multi-pushdown systems have been employed in [23], too, to solve seemingly
different verification problems involving queues.

Related Work. As already mentioned, there is a large body of literature on
parameterized verification, mostly focusing on closed systems (e.g., [2,4,14,15]).

Infinite-state games have been extensively studied over vector addition sys-
tems with states (VASS) (e.g., [3,7,10,12,19]). However, reachability is already
undecidable for simple subclasses of VASS games, unless coverability objec-
tives are considered. Unfortunately, the latter do not allow us to require that
all local processes terminate in a final state. Interestingly, tight links between
VASS/energy games and games played on infinite domains have recently been
established [16].

Underapproximate verification goes back to Qadeer and Rehof [27]. In the
realm of multi-threaded recursive programs, they restricted the number of con-
trol switches between different threads. The number of processes, however, was
considered to be fixed. Another kind of bounded verification of parameterized
systems with thread creation was studied in [6]. Contrary to our restriction, the
order in which processes evolve may vary from round to round.
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We believe that our results will fertilize synthesis of parameterized systems
[18] and more classical questions whose theoretical foundations go back to the 50s
and Church’s synthesis problem. Let us cite Brütsch and Thomas, who observed
a lack of approaches to synthesis over infinite alphabets [11]: “It is remarkable,
however, that a different kind of ‘infinite extension’ of the Büchi-Landweber
Theorem has not been addressed in the literature, namely the case where the
input alphabet over which ω-sequences are formed is infinite.” Indeed, an exe-
cution of a parameterized system can be considered as a sequence of letters,
each containing the process identifier of the process involved in performing the
corresponding action. Recall that our model of parameterized systems is largely
inspired by data automata/class-memory automata [8,9], which were originally
defined as language acceptors over infinite alphabets. The automata studied in
[11] are quite different. Since synthesis problems are often reduced to game-
theoretic questions, our work can be considered as an orthogonal step towards
a theory of synthesis over infinite alphabets.

Outline. We define parameterized pushdown systems in Sect. 2, where we also
recall known results on reachability questions. The control problem is addressed
in Sect. 3, and we conclude in Sect. 4. Missing proof details can be found at the
following link: https://hal.archives-ouvertes.fr/hal-01849206.

2 Reachability in Parameterized Systems

We start with some preliminary definitions.

Words. Let Σ be a (possibly infinite) set. A word w over Σ is a finite or (count-
ably) infinite sequence a0a1a2 . . . of elements ai ∈ Σ. Let Σ∗ denote the set of
finite words over Σ, Σω the set of infinite words, and Σ∞ = Σ∗ ∪ Σω. Given
w ∈ Σ∞, we denote by |w| the length of w, i.e., |w| = n if w = a0 . . . an−1 ∈ Σ∗,
and |w| = ω if w ∈ Σω. In particular, the length |ε| of the empty word ε is 0.

Transition Systems. A transition system is a triple T = (V,E, vin) such that V
is a (possibly infinite) set of nodes, E ⊆ V × V is the transition relation, and
vin ∈ V is the initial node. For (u, v) ∈ E, we call v a successor of u.

A partial run of T is a non-empty, finite or infinite sequence ρ = v0v1v2 . . . ∈
V ∞ such that, for all 0 < i < |ρ|, vi is a successor of vi−1. If, in addition, we have
v0 = vin, then we call ρ a run. A (partial) run from u to v is a finite (partial)
run of the form u . . . v. In particular, u is a partial run (of length 1) from u to u.

2.1 Parameterized Pushdown Systems

We consider parameterized systems in which processes may be created dynami-
cally. Every process can manipulate a stack as well as its local state. Information
shared by all the processes is modeled in terms of a global state.

Definition 1. A parameterized pushdown system (PPS) is given by a tuple
P = (S,L, Γ, sin, �in,Δ, Fglob, Floc) where

https://hal.archives-ouvertes.fr/hal-01849206
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– S is the finite set of global states, including the initial global state sin,
– L is the finite set of local states, including the initial local state �in,
– Γ is the finite stack alphabet,
– Δ ⊆ (S × L) × (Act × Γ ) × (S × L) is the transition relation with Act =

{push, pop, int} (where int stands for internal), and
– Fglob ⊆ S and Floc ⊆ L are the sets of accepting global states and accepting

local states, respectively. We assume that sin �∈ Fglob.

A configuration of P is a tuple c = (s, (�1, γ1), . . . , (�k, γk)) where k ∈ N

(possibly k = 0), s ∈ S is the current global state, and, for each p ∈ {1, . . . , k},
�p ∈ L and γp ∈ Γ ∗ are respectively the local state and stack content of process
p. We let CP denote the set of configurations of P. The initial configuration is
(sin) and a configuration c = (s, (�1, γ1), . . . , (�k, γk)) is final if s ∈ Fglob and
{�1, . . . , �k} ⊆ Floc. The size |c| of a configuration c is the number k of processes
in c.

The semantics of a PPS P is defined as a transition system [[P]] = (V,E, vin)
where V = CP , vin = (sin), and the transition relation is E =

⋃
p≥1 Ep with

Ep defining the transitions of process p. Actually, Ep contains two types of
transitions. The first type corresponds to the activity of a process that has
already been created. Formally, for two configurations (s, (�1, γ1), . . . , (�k, γk))
and (s′, (�′

1, γ
′
1), . . . , (�

′
k, γ′

k)) of size k ≥ 1,

((s, (�1, γ1), . . . , (�k, γk)), (s′, (�′
1, γ

′
1), . . . , (�

′
k, γ′

k))) ∈ Ep

if and only if p ≤ k and there are op ∈ Act and A ∈ Γ such that

– ((s, �p), (op, A), (s′, �′
p)) ∈ Δ,

– �q = �′
q and γq = γ′

q for all q ∈ {1, . . . , k} \ {p}, and
– one of the following holds: (i) op = push and γ′

p = A · γp, (ii) op = pop and
γp = A · γ′

p, or (iii) op = int and γp = γ′
p (in which case A is meaningless).

Note that the topmost stack symbol can be found at the leftmost position of γp.
The second type of transition is when a new process joins the system. For a

configuration (s, (�1, γ1), . . . , (�k, γk)) of size k ≥ 0,

((s, (�1, γ1), . . . , (�k, γk)), (s′, (�1, γ1), . . . , (�k, γk), (�k+1, γk+1))) ∈ Ep

if and only if p = k + 1 and there are op ∈ Act and A ∈ Γ such that
((s, �in), (op, A), (s′, �k+1)) ∈ Δ and one of the following holds: (i) op = push
and γk+1 = A, or (ii) op = int and γk+1 = ε.

A run of P is a run of the transition system [[P]]. A finite run of P is accepting
if it ends in a final configuration.

Similarly, we define a parameterized finite-state system (PFS), which is a PPS
without stacks. That is, a PFS is a tuple P = (S,L, sin, �in,Δ, Fglob, Floc) where
Δ ⊆ (S×L)×(S×L) and the rest is defined as in PPS. Configurations in CP are
tuples c = (s, �1, . . . , �k) with k ≥ 0. The semantics of P is [[P]] = (CP , E, (sin))
with E =

⋃
p≥1 Ep defined as follows:

((s, �1, . . . , �k), (s′, �′
1, . . . , �

′
k)) ∈ Ep
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if and only if p ≤ k, ((s, �p), (s′, �′
p)) ∈ Δ, and �q = �′

q for all q �= p, and

((s, �1, . . . , �k), (s′, �1, . . . , �k, �k+1)) ∈ Ep

if and only if p = k + 1 and ((s, �in), (s′, �k+1)) ∈ Δ. The notions of runs and
accepting runs are defined accordingly.

Reachability Problems. Consider Table 1. The problem PPS-Reachability
(respectively, PFS-Reachability) consists in deciding if, in a given PPS
(respectively, PFS), there is an accepting run, starting in the initial configu-
ration.

In the general case, these problems are already known and we recall here the
results. The first is folklore (cf. also [28]), as two stacks are already sufficient
to simulate a Turing machine. For the second, we observe that parameterized
systems without stacks are essentially Petri nets (cf. [9]).

Theorem 1. PPS-Reachability is undecidable, while PFS-Reachability
is decidable (and as hard as Petri-net reachability).

2.2 Round-Bounded Behaviors

To regain decidability in the case of PPS, we restrict ourselves to runs that
are round-bounded, a notion introduced in [24]. Intuitively, during a round, the
first process will do any number of transitions (possibly 0), then the second
process will do any number of transitions, and so on. Once process p + 1 has
started performing transitions, process p cannot act again in this round. A run
is then said to be B-round bounded if it uses at most B rounds. Formally, given
a natural number B ≥ 1 and a PPS P = (S,L, Γ, sin, �in,Δ, Fglob, Floc), we define
the bounded semantics of P as the transition system [[P]]B = (V B , EB , vB

in ) where

– nodes are enhanced configurations of the form v = (c, p, r) with c ∈ CP a
configuration, say, of size k, p ∈ {0, . . . , k} represents the last process that
made a transition (or 0 if it is not yet defined), and r ∈ {1, . . . , B} is the
number of the current round,

– the initial node is vB
in = ((sin), 0, 1), and

– there is an edge between (c, p, r) and (c′, p′, r′) if, in [[P]] = (V,E, vin), there
is an edge (c, c′) in Ep′ and either

• p′ ≥ p and r′ = r, or
• p′ < p, r < B, and r′ = r + 1.

The bounded semantics of a PFS is defined accordingly.
A B-run (or simply run if B is understood) of P is a run of [[P]]B . A B-run is

accepting if it is finite and ends in a node (c, p, r) where c is a final configuration.
Consider the problems on the right-hand side of Table 1 (note that B is

encoded in unary). Deciding the existence of an accepting B-run is PSPACE-
complete for both PPS and PFS.
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Table 1. Reachability Problems

PPS-Reachability

I: PPS P
Q: Is there an accepting run of P ?

PPS-Reachabilityrb

I: PPS P; B ≥ 1 (given in unary)
Q: Is there an accepting B-run of P ?

PFS-Reachability

I: PFS P
Q: Is there an accepting run of P ?

PFS-Reachabilityrb

I: PFS P; B ≥ 1 (given in unary)
Q: Is there an accepting B-run of P ?

Theorem 2. PPS-Reachabilityrb and PFS-Reachabilityrb are
PSPACE-complete.

The rest of this section is devoted to the proof of this theorem. Actually,
we prove that PPS-Reachabilityrb is in PSPACE and PFS-Reachabilityrb

is PSPACE-hard. The upper bound has already been stated in [24], the lower
bound in [25], for a similar model. For the sake of completeness, we give proofs
for both bounds.

PPS-Reachabilityrb is in PSPACE. We give an (N)PSPACE algorithm solv-
ing the problem PPS-Reachabilityrb using a slight variant of the notion of
interfaces as described in [24]. Let P = (S,L, Γ, sin, �in,Δ, Fglob, Floc) be a PPS
and B ≥ 1 be the maximal number of rounds.

An interface for a single process is a triple I = [t, (s1, . . . , sB), (s′
1, . . . , s

′
B)] ∈

{1, . . . , B} × SB × SB satisfying the following conditions:

1. For all 1 ≤ i < t, we have si = s′
i.

2. There are local states �t−1, . . . , �B and stack contents γt−1, . . . , γB such
that (i) for all t ≤ i ≤ B there is a finite partial run in [[P]] from
ci = (si, (�i−1, γi−1)) to c′

i = (s′
i, (�i, γi)), (ii) this run has length at least

two (i.e., it performs at least one transition) if i = t, and (iii) �t−1 is the
initial local state, γt−1 = ε, and �B is an accepting local state.

We refer to the first B-tuple of I as I� and to the second B-tuple as Ir. The
natural number t is the starting round and is referred to as tI . We say that an
interface I1 is compatible with an interface I2 if tI1 ≤ tI2 and Ir

1 = I�
2.

Intuitively, an interface represents the possibility of a computation of a single
process during a run of the PPS. Global states are the only piece of information
needed to be able to coordinate between different processes, since a process can-
not access the local content of another one. Moreover, when a process is created,
it takes the last position in a round. The starting round t of each interface is
needed to check that the order of the processes respects the order of their cre-
ation. In other words, interfaces can be viewed as the skeleton of a run of P.
This is formalised in the following lemma, which is illustrated in Fig. 1.
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Fig. 1. A run as the composition of compatible interfaces; all starting rounds are 1

Lemma 1. There is an accepting B-run of P if and only if there are k interfaces
I1, . . . , Ik for k ≥ 1 verifying the following conditions:

– For all 1 < i ≤ k, Ii−1 is compatible with Ii.
– Let I�

1 = (s1, . . . , sB) and Ir
k = (s′

1, . . . , s
′
B). Then, s1 is the initial global

state sin, s′
B is an accepting global state, and sj = s′

j−1 for all 1 < j ≤ B.

Given I = [t, (s1, . . . , sB), (s′
1, . . . , s

′
B)], one can check in polynomial time

whether I is an interface. To do this, we check the emptiness of a pushdown
automaton that simulates the actions of P on a single process and has special
transitions to change the global state from s′

j to sj+1. As non-emptiness of a
pushdown automaton can be checked in polynomial time [17], so can the validity
of a given interface.

The algorithm to solve PPS-Reachabilityrb first guesses an interface I1

for the first process, and stores tI1 , I�
1, and Ir

1 . Then, it guesses an interface
I2 for the second process, checks that it is compatible by comparing tI2 and
I�
2 with the previously stored tI1 and Ir

1 , and then replaces Ir
1 by Ir

2 and tI1

by tI2 (so only I�
1, tI2 , and Ir

2 are stored). We continue guessing compatible
interfaces, storing at each step i the values of I�

1, tIi
, and Ir

i . Eventually, the
algorithm guesses that the last process has been reached. At that point, there
are two halves of interfaces stored in memory: the left interface I�

1 = (s1, . . . , sB)
of the first process, and the right interface Ir

k = (s′
1, . . . , s

′
B) of the last process.

We accept if, for all i ∈ {1, . . . , B − 1}, we have that s′
i = si+1, s1 = sin, and

s′
B ∈ Fglob. By Lemma 1, there is an accepting B-run of P.

PFS-Reachabilityrb is PSPACE-hard. This can be shown by a reduction
from the non-emptiness of the intersection of a collection of finite automata
A1, . . . ,An, which is PSPACE-complete [21]. The bound B on the number of
rounds will be n. We construct a PFS that non-deterministically guesses a word
w in the first round. Moreover, in round i, it will check that w is accepted by
Ai. To do this, each process simulates one transition of Ai on one letter of w.
That is, the number of processes is |w|. Each process performs exactly one action
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each round, and, to ensure that the word w is the same for each Ai, stores the
corresponding letter in its local state. The global state stores the state of the
currently simulated automaton.

3 Round-Bounded Control of Parameterized Systems

We will extend parameterized pushdown systems to a game-based setting with
the aim of modeling systems with a centralized control that are embedded into
an uncontrollable environment.

3.1 Parameterized Pushdown Games

Games. A game is given by an arena, i.e., a transition system G = (V,E, vin)
where V = V0 � V1 is partitioned into the set of states controlled by Player 0
and Player 1, respectively, along with a winning condition W ⊆ V ∞.

A play of G is a run of the underlying transition system. A play is maximal if
it is infinite, or ends in a node that has no successor. A maximal play is winning
for Player 0 if it is in W, otherwise it is winning for Player 1.

We will be concerned with two winning conditions: A reachability condition
is given by a set of nodes F ⊆ V . It induces the set WF = {ρ = v0v1v2 . . . ∈
V ∞ | vi ∈ F for some 0 ≤ i < |ρ|}. A parity condition is given by a ranking
function α : V → Col where Col ⊆ N is a finite set of colors. It induces the
set Wα = {ρ ∈ V ω | min(Infα(ρ)) is even} with Infα(v0v1v2 . . .) = {m ∈ Col |
m appears infinitely often in α(v0)α(v1)α(v2) . . .}. I.e., Wα contains an infinite
run if and only if the minimal color seen infinitely often is even.

Let j ∈ {0, 1}. A strategy for Player j is a partial mapping fj : V ∗Vj → V
such that, for all w ∈ V ∗ and v ∈ Vj , the following hold: if fj(wv) is defined,
then (v, fj(wv)) ∈ E; otherwise, v has no successor.

Fix strategies f0 and f1 for Players 0 and 1, respectively. An (f0, f1)-play of
G is a maximal play ρ = v0v1v2 . . . such that, for all 0 < i < |ρ| and j ∈ {0, 1},
if vi−1 ∈ Vj , then fj(v0 . . . vi−1) = vi.

We say that fj is winning if, for all strategies f1−j , the unique maximal
(f0, f1)-play is winning for Player j. A game is determined if either Player 0 has
a winning strategy, or Player 1 has a winning strategy. Furthermore, we say that
fj is memoryless if, for all w,w′ ∈ V ∗ and v ∈ Vj , we have fj(wv) = fj(w′v),
i.e., the strategy only depends on the last node.

Theorem 3 (cf. [13,33]). Games with a parity winning condition are deter-
mined, and if Player j has a winning strategy, then Player j has a winning
memoryless strategy.

Parameterized Pushdown Games. We now introduce the special case of games
played on the infinite transition system induced by a round-bounded PPS.

A round-bounded parameterized pushdown game is described by a PPS P =
(S,L, Γ, sin, �in,Δ, Fglob, Floc) together with a partition S = S0 �S1. For a bound
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B ≥ 1, the B-round-bounded parameterized pushdown game induced by P is the
game GB

P given by the transition system [[P]]B = (V B , EB , vB
in ) where a node

v = (c, p, r) ∈ V B with c = (s, (�1, γ1), . . . , (�k, γk)) belongs to Player j if s ∈ Sj .
We consider the reachability winning condition WF given by F = {(c, p, r) ∈
V B | c is a final configuration of P}. Since a reachability game can be easily
transformed into a parity game, Theorem3 implies that GB

P is determined.
Parameterized games on PFS are defined similarly as for PPS. Note that,

without a bound on the number of rounds, games on PFS are already undecid-
able, which is shown by an easy adaptation of the undecidability proof for VASS
games [1]. Therefore, we only define control for round-bounded games:

Controlrb

I: PPS P = (S0 � S1, L, Γ, sin, �in, Δ, Fglob, Floc); B ≥ 1

Q: Does Player 0 have a winning strategy in GB
P ?

We are now ready to present our main result, which is shown in the remainder
of this section:

Theorem 4. Controlrb is decidable, and inherently non-elementary.

3.2 Upper Bound

Decidability of Controlrb comes from decidability of games on phase-bounded
multi-pushdown systems (short: multi-pushdown games), which were first stud-
ied in [29] and rely on the phase-bounded multi-pushdown automata from [22].

Multi-pushdown Games. Intuitively, a phase is a sequence of actions in a run
during which only one fixed “active” stack can be read (i.e., either make a
pop transition or a zero-test transition), but push and internal transitions are
unrestricted. There are no other constraints on the number of transitions or the
order of the transitions done during a phase.

Definition 2. A multi-pushdown system (MPS) is a tuple M = (κ,N, S0 �
S1, Γ,Δ, sin, α) where the natural number κ ≥ 1 is the phase bound, N ∈ N is
the number of stacks, S = S0 �S1 is the partitioned finite set of states, Γ is the
finite stack alphabet, Δ ⊆ S × Actzero × {1, . . . , N} × Γ × S is the transition
relation where Actzero = {push, pop, int, zero}, sin ∈ S is the initial state, and
α : S → Col with Col ⊆ N a finite set is the ranking function.

The associated game GM is then played on the transition system [[M]] =
(V = V0 � V1, E, vin) defined as follows.

A node v ∈ V is of the form v = (s, γ1, . . . , γN , st , ph) where s ∈ S, γσ ∈ Γ ∗ is
the content of stack σ, and st ∈ {0, . . . , N} and ph ∈ {1, . . . , κ} are used to keep
track of the current active stack (0 when it is undefined) and the current phase,
respectively. For j ∈ {0, 1}, we let Vj = {(s, γ1, . . . , γN , st , ph) ∈ V | s ∈ Sj}.
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Given nodes v = (s, γ1, . . . , γN , st , ph) ∈ V and v′ = (s′, γ′
1, . . . , γ

′
N , st ′,

ph ′) ∈ V , we have an edge (v, v′) ∈ E if and only if there exist op ∈ Actzero,
σ ∈ {1, . . . , N}, and A ∈ Γ such that (s, op, σ, A, s′) ∈ Δ and the following hold:

– γτ = γ′
τ for all τ �= σ,

– γσ = γ′
σ if op = int, γ′

σ = A · γσ if op = push, γσ = A · γ′
σ if op = pop, and

γσ = γ′
σ = ε if op = zero,

– if op ∈ {int, push}, then st = st ′ and ph = ph ′ (the active stack and, hence,
the phase do not change),

– if op ∈ {pop, zero}, then either st = 0, st ′ = σ, and ph = ph ′ = 1 (this is the
first time a current stack is defined), or st = σ, st ′ = σ, and ph = ph ′ (the
stack σ corresponds to the current active stack), or st �= σ, ph < κ, st ′ = σ,
and ph ′ = ph + 1 (stack σ is not the active stack so that a new phase starts).

The initial node is vin = (sin, ε, . . . , ε, 0, 1). The winning condition of GM is a
parity condition given by α : V → Col where, for v = (s, γ1, . . . , γN , st , ph), we
let α(v) = α(s).

The control problem for MPS, denoted by ControlMPS, is defined as follows:
Given an MPS M, does Player 0 have a winning strategy in GM?

Theorem 5 ([5,29]). ControlMPS is decidable, and is non-elementary in the
number of phases.

The upper bound was first shown in [29] by adopting the technique from
[32], which reduces pushdown games to games played on finite-state arenas. On
the other hand, [5] proceeds by induction on the number of phases, reducing a
(κ+1)-phase game to a κ-phase game. Similarly, we could try a direct proof of our
Theorem 4 by induction on the number of rounds. However, this proof would be
very technical and essentially reduce round-bounded parameterized systems to
multi-pushdown systems. Therefore, we proceed by reduction to multi-pushdown
games, providing a modular proof with clearly separated parts.

From Parameterized Pushdown Games to Multi-pushdown Games.
We reduce Controlrb to ControlMPS. Let P = (S,L, Γ, sin, �in,Δ, Fglob, Floc),
with S = S0 � S1, be a PPS and B ≥ 1. We will build an MPS M such that
Player 0 has a winning strategy in GB

P if and only if Player 0 has a winning
strategy in GM. In the following, given s ∈ S, we let pl(s) ∈ {0, 1} denote the
player associated with s, i.e., pl(s) = 0 if and only if s ∈ S0.

The main idea of the reduction is to represent a configuration

of GB
P as a configuration in GM of the form depicted in Fig. 2.
Component j ∈ {0, 1} of the global state denotes the current player (which,

by default, is pl(s)). We explain f1 and f2 further below.
The process p that has moved last is considered as the active process whose

local state �p is kept in the global state of GM along with s, and whose stack
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((s, �p, f1, f2, j, r),
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(�p+1, gp+1)�⏐⏐γp+1

...
(�k, gk)

γk

,

⏐⏐�γp−1

(�p−1, gp−1)
...⏐
γ1

(�1, g1)

, st , ph)

Fig. 2. Encoding of a configuration in GB
P by a configuration in GM

contents γp is accessible on stack 1 (in the correct order). This allows the multi-
pushdown game to simulate transitions of process p, modifying its local state and
stack contents accordingly (see Basic Transitions in the formalization below).

If a player decides to take a transition for some process p′ > p, she will store
�p on stack 2 and shift the contents of stack 1 onto stack 2 until she retrieves the
local state �p′ of p′ along with its stack contents γp′ (see Fig. 3 and Transitions
for Process Change in the formalization of M).

If, on the other hand, the player decides to take a transition for some process
p′ < p, then she stores �p on stack 1 and shifts the contents of stack 2 onto stack 1
to recover the local state �p′ and stack contents γp′ (see Fig. 4 and Transitions for
Round Change). This may imply two phase switches, one to shift stack symbols
from 2 to 1, and another one to continue simulating the current process on stack
1. However, 2B − 1 phases are sufficient to simulate B rounds.

There are a few subtleties: First, at any time, we need to know whether
the current configuration of GM corresponds to a final configuration in GB

P . To
this aim, the state component (s, �p, f1, f2, j, r) of M contains the flags f1, f2 ∈
{✓, ✗} where, as an invariant, we maintain f1 = ✓ if and only if {�p+1, . . . , �k} ⊆
Floc and f2 = ✓ if and only if {�1, . . . , �p−1} ⊆ Floc. Thus, Player 0 wins in GM as
soon as she reaches a configuration with global state (s, �, f1, f2, j, r) such that
s ∈ Fglob, � ∈ Floc, and f1 = f2 = ✓. To faithfully maintain the invariant, every
local state �q that is pushed on one of the two stacks, comes with an additional
flag gq ∈ {✓, ✗}, which is ✓ if and only if all local states strictly below on the
stack are contained in Floc. It is then possible to keep track of a property of
all local states on a given stack simply by inspecting and locally updating the
topmost stack symbols.

Second, one single transition in P is potentially simulated by several transi-
tions in M in terms of the gadgets given in Figs. 3 and 4. The problem here is
that once Player j commits to taking a transition by entering a gadget, she is
not allowed to get stuck. To ensure progress, there are transitions from inside a
gadget to a state win1−j that is winning for Player 1 − j.

Third, suppose that, in a non-final configuration of GB
P , it is Player 1’s turn,

but no transition is available. Then, Player 1 wins the play. But how can Player 1
prove in GM that no transition is available in the original game GB

P ? Actually,
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he will give the control to Player 0, who will eventually get stuck and, therefore,
lose (cf. transitions for Change of Player below).

Let us define the MPS M = (κ,N, S′ = S′
0 � S′

1, Γ
′,Δ′, s′

in, α) formally. We
let κ = 2B − 1, N = 2 (the number of stacks), and Γ ′ = Γ � (L × {✓, ✗}).

States. The set of states is S′ = {s′
in} � Ssim � {win0,win1} � I where s′

in is
the initial state. Moreover, Ssim = S × L × {✓, ✗}2 × {0, 1} × {1, . . . , B}. A
state (s, �, f1, f2, j, r) ∈ Ssim stores the global state s and the local state � of
the last process p that executed a transition. The third and forth component
f1 and f2 tell us whether all processes p′ > p and, respectively, p′ < p of the
current configuration are in a local final state (indicated by ✓). Then, j denotes
the player that is about to play (usually, we have j = pl(s), but there will
be deviations). Finally, r is the current round that is simulated. Recall that
(s, �, f1, f2, j, r) represents a final configuration if and only if s ∈ Fglob, � ∈ Floc,
and f1 = f2 = ✓. Let F ⊆ Ssim be the set of such states. The states win0 and
win1 are self-explanatory. Finally, we use several intermediate states, contained
in I, which will be determined below along with the transitions.

The partition S′ = S′
0 � S′

1 is defined as follows: First, we have s′
in ∈ S′

pl(sin)
.

Concerning states from Ssim, we let (s, �, f1, f2, j, r) ∈ S′
j . The states win0 and

win1 both belong to Player 0 (but this does not really matter). Membership of
intermediate states is defined below. The ranking function α maps win0 to 0,
and everything else to 1. In fact, we only need a reachability objective and use
the parity condition to a very limited extent.

Initial Transitions. For all transitions (sin, �in)
(op,A)−−−−→ (s′, �′) in P, we introduce,

in M, a transition s′
in

(op,1,A)−−−−−−→ (s′, �′, ✓, ✓, pl(s′), 1).
Final Transitions. For all states (s, �, f1, f2, j, r) ∈ F, we will have a transition
(s, �, f1, f2, j, r)

int−−→ win0 (we omit the stack symbol, as it is meaningless), which
will be the only transition outgoing from (s, �, f1, f2, j, r). Moreover, win0

int−−→
win0 and win1

int−−→ win1.
Basic Transitions. We now define the transitions of M simulating transitions
of P that do not change the process. For all (s, �, f1, f2, j, r) ∈ Ssim \ F and

transitions (s, �)
(op,A)−−−−→ (s′, �′) from Δ (in P), the MPS M has a transition

(s, �, f1, f2, j, r)
(op,1,A)−−−−−−→ (s′, �′, f1, f2, pl(s′), r).

Transitions for Process Change. For all (s, �, f1, f2, j, r) ∈ Ssim\F, we introduce,
in M, the gadget given in Fig. 3. As we move to another process, the current
local state � is pushed on stack 2, along with flag f2, which tells us whether,
henceforth, all states on stack 2 below the new stack symbol are local accepting
states. Afterwards, the value of f2 kept in the global state has to be updated,
depending on whether � ∈ Floc or not. Actually, maintaining the value of f2 is
done in terms of additional (but finitely many) states. For the sake of readability,
however, we rather consider that f2 is a variable and use upd(f2, �) to update its
value. We continue shifting the contents of stack 1 onto stack 2 (updating f2 when
retrieving a local state). Now, there are two possibilities. We may eventually pop
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s �
f1 f2
j r

B B ∈ Γ

�′′ �′′ ∈ L

s �̂
f ′
1 f2

s′ �′

f ′
1 f2

pl(s′) r

for all transitions

(s, �̂)
(op,A)−−−−→ (s′, �′)
in Δ

push 2 (�, f2) ;
upd(f2, �)

pop 1 B push 2 B

pop 1 (�̂, f ′
1)(

�̂ ∈ L
f ′
1 ∈ { , }

)

zero 1
�̂ := �in
f ′
1 :=

op 1 A

pop 1 (�′′, )
push 2 (�′′, f2) ;

upd(f2, �′′)

win1−j

Fig. 3. Change from process p to some process p′ > p (staying in the same round).
All intermediate states belong to Player j; from every intermediate state, there is an
outgoing internal transition to win1−j . Moreover, upd(f2, �̄) stands for the update rule
If (f2 = ✓ ∧ �̄ ∈ Floc) Then f2 := ✓ Else f2 := ✗

a new current local state �̂ and then simulate the transition of the corresponding
existing process. Or, when there are no more symbols on stack 1, we create a
new process.

Transitions for Round Change. For all (s, �, f1, f2, j, r) ∈ Ssim \ F such that
r < B, we introduce, in M, the gadget given in Fig. 4. It is similar to the
previous gadget. However, we now shift symbols from stack 2 onto stack 1 and
have to update f1 accordingly.

Change of Player. When Player 1 thinks he does not have an outgoing transition
(in P), he can give the token to Player 0. That is, for all (s, �, f1, f2, 1, r) ∈
Ssim \ F, we introduce the transition (s, �, f1, f2, 1, r) int−−→ (s, �, f1, f2, 0, r).

Lemma 2 Player 0 has a winning strategy in GM if and only if Player 0 has a
winning strategy in GB

P .

3.3 Lower Bound

Our lower-bound proof is inspired by [5], but we reduce from the satisfiability
problem for first-order formulas on finite words, which is known to be non-
elementary [30]. Note that the lower bound already holds for PFS.
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s �
f1 f2
j r

B B ∈ Γ

�′′ �′′ ∈ L

s �̂
f1 f ′

2

s′ �′

f1 f ′
2

pl(s′) r + 1

for all transitions

(s, �̂)
(op,A)−−−−→ (s′, �′)
in Δ

push 1 (�, f1) ;
upd(f1, �)

pop 2 B push 1 B

pop 2 (�̂, f ′
2)(

�̂ ∈ L
f ′
2 ∈ { , }

)
op 1 A

pop 2 (�′′, )
push 1 (�′′, f1) ;

upd(f1, �′′)

win1−j

Fig. 4. Go from a process p to some process p′ < p (involving a round change). All
intermediate states belong to Player j; from every intermediate state, there is an out-
going internal transition to win1−j . Moreover, upd(f1, �̄) stands for the update rule
If (f1 = ✓ ∧ �̄ ∈ Floc) Then f1 := ✓ Else f1 := ✗

Let Var be a countably infinite set of variables and Σ a finite alphabet.
Formulas ϕ are built by the grammar ϕ ::= a(x) | x < y | ¬(x < y) | ϕ∨ϕ | ϕ∧
ϕ | ∃x.ϕ | ∀x.ϕ where x, y ∈ Var and a ∈ Σ.

Let w = a0 . . . an−1 ∈ Σ∗ be a word. Variables are interpreted as positions of
w, so a valuation is a (partial) function ν : Var → {0, . . . , n−1}. The satisfaction
relation is defined as follows. We let w, ν |= a(x) if and only if aν(x) = a.
Moreover, w, ν |= x < y if and only if ν(x) < ν(y). Quantification, negation,
disjunction, and conjunction are defined as usual. We refer to [31] for details.
A formula ϕ without free variables is satisfiable if there is a word w such that
w, ∅ |= ϕ. We suppose that ϕ is given in prenex normal form.

We build a PFS-based round-bounded game that is winning for Player 0 if
and only if ϕ is satisfiable. In the first round of the game, Player 0 chooses a
word w by creating a different process for each letter of w, each of them holding
the corresponding letter in its local state. To prove that w is indeed a model of
ϕ, the following rounds are devoted to the valuation of the variables appearing
in ϕ, ν(x) = i being represented by memorizing the variable x in the local state
of the ith process. If x appears in the scope of a universal quantifier, the choice
of the process is made by Player 1, otherwise it is made by Player 0. The last
round is used to check the valuation of the variables. To this end, the players will
inductively choose a subformula to check, until they reach an atomic proposition:
If the subformula is a disjunction ϕ1∨ϕ2, Player 0 chooses either ϕ1 or ϕ2; if it is
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a conjunction, Player 1 chooses the next subformula. Finally, to verify whether
a(x) is satisfied, we check that there is a process with letter a and variable x in
its local state. For x < y, we check that the process with x in its local state is
eventually followed by a distinct process with y in its local state. This check is
done during the same round, which guarantees that the positions corresponding
to x and y are in the correct order. The number of states needed and the number
of rounds are linearly bounded in the length of the formula.

4 Conclusion

We extended the verification of round-bounded parameterized systems to a
game-based setting, which allows us to model an uncontrollable environment.
It would be interesting to consider game-based extensions for the setting from
[6], too. Moreover, as games constitute an important approach to verifying
branching-time properties (e.g., [26]), our results may be used for branching-
time model checking of parameterized systems (using a variant of data logics
[20] and a reduction of the model-checking problem to a parameterized push-
down game).
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10. Brázdil, T., Jančar, P., Kučera, A.: Reachability games on extended vector addi-
tion systems with states. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 478–489.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-1 40
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Abstract. PSense is a novel system for sensitivity analysis of proba-
bilistic programs. It computes the impact that a noise in the values of
the parameters of the prior distributions and the data have on the pro-
gram’s result. PSense relates the program executions with and without
noise using a developer-provided sensitivity metric. PSense calculates the
impact as a set of symbolic functions of each noise variable and supports
various non-linear sensitivity metrics. Our evaluation on 66 programs
from the literature and five common sensitivity metrics demonstrates
the effectiveness of PSense.

1 Introduction

Probabilistic programing offers a promise of user-friendly and efficient proba-
bilistic inference. Recently, researchers proposed various probabilistic languages
and frameworks, e.g., [10–12,19,24,27]. A typical probabilistic program has the
following structure: a developer first specifies the initial assumptions about the
random variables as prior distributions. Then the developer specifies the model
by writing the code that relates these variables selecting those whose values have
been observed. Finally, the developer specifies the query that asks how this evi-
dence changes the distribution of some of the unobserved (latent) variables, i.e.,
their posterior distribution.

In many applications, both the choices of the prior parameters and the
observed data points are uncertain, i.e., the used values may diverge from the
true ones. Understanding the sensitivity of the posterior distributions to the per-
turbations of the input parameters is one of the key questions in probabilistic
modeling. Mapping the sources of sensitivity can help the developer in debugging
the probabilistic program and updating it to improve its robustness.

Sensitivity analysis has a rich history in engineering and statistics [15,22] and
has also been previously studied in the context of probabilistic models in machine
learning [5,7,17,25]. While useful, these techniques are typically sampling-based
(providing only sensitivity estimates) or work for a limited subset of discrete
models. However, sensitivity in probabilistic programming has not been stud-
ied extensively. Recently, Barthe et al. proposed a logic for reasoning about the
expected sensitivity of probabilistic programs [4]. While sound, this approach
requires a developer to prove properties using a proof assistant, supports only
c© Springer Nature Switzerland AG 2018
S. K. Lahiri and C. Wang (Eds.): ATVA 2018, LNCS 11138, pp. 387–403, 2018.
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expectation distance and presets results for only a few examples. Like similar
techniques for deterministic programs [8], its reliance on linearity of noise prop-
agation may result in coarse over-approximations of non-linear operations.

Key Challenges. Key challenges for an effective probabilistic sensitivity anal-
ysis include (1) automation that aims to maintain both soundness and precision
and (2) ability to work with non-linear programs and sensitivity metrics. Solv-
ing these challenges can help with understanding and improving robustness of
probabilistic programs.

Our Work. PSense is a system for automatic sensitivity analysis of probabilistic
programs. For each parameter in a probabilistic program, the analysis answers
the question: if the parameter/data value is changed by some value ε, how much
does the posterior distribution change? The analysis is fully symbolic and exact:
it produces the distance expression that is valid for all legal values of ε. It uses a
developer-specified sensitivity metric that quantifies the change in the posterior
distributions between the programs with and without the noise. In this paper
we present analysis with five classical metrics from statistics: two versions of
expectation distance, Kolmogorov-Smirnov statistic, Total variation distance,
and Kullback-Leibler divergence.

PSense can also answer sensitivity-related optimization queries. First, it can
compute the numerical value of the maximum posterior distance given that ε is
in some range. More interestingly, for a given acceptable threshold of difference
between the posterior distributions, PSense can compute the maximum and
minimum values of ε that satisfy the threshold.

PSense operates on imperative probabilistic programs with mixed discrete
and continuous random variables, written in the PSI language [10]. PSI also
comes with a powerful symbolic solver for exact probabilistic inference. One
of the key insights behind PSense’s design is that the sensitivity analysis can
directly leverage PSI’s inference. However, we also identified that PSI’s anal-
ysis alone is not sufficient: (1) the expressions for distribution distance can-
not be easily simplified by PSI’s solver and (2) PSI does not support opti-
mization queries. We therefore formulated these (non-linear and non-convex)
queries and solved symbolically with Mathematica computer algebra system [2].
PSense workflow demonstrates the synergistic usage of symbolic solvers, guided
by the domain-specific information. PSense is open-source software, available at
http://psense.info.

In addition to the exact sensitivity analysis, PSense also supports an approx-
imate analysis via a sampling-based backend. PSense translates the sensitivity
analysis queries into WebPPL programs. WebPPL [13] is a probabilistic language
with support for approximate MCMC inference. This way, PSense implements
a common empirical approach for estimating sensitivity in probabilistic models.

Results. We evaluated PSense on a set of 66 probabilistic programs from the
literature. We ran the sensitivity analysis for five metrics and 357 parameters
per metric. Both the programs and the metrics are challenging: the programs
have both discrete and continuous variables and many metrics are non-linear.

http://psense.info
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The results show that (1) PSense, applied on all sensitivity metrics, successfully
computed the exact sensitivity for the majority of analyzed parameters and
data points, with a typical analysis being well under a minute; (2) PSense’s
optimization is also effective in computing the maximum noise that keeps the
posterior difference below an acceptable threshold; (3) PSense’s exact symbolic
analysis is often significantly more precise than the sampling-based approach.
Jointly, these results demonstrate that symbolic analysis is a solid foundation
for automatic and precise sensitivity analysis.

Contributions. The paper makes the following contributions:

� System for Automated Sensitivity: To the best of our knowledge,
PSense is the first automated system for exact symbolic analysis of sensi-
tivity in probabilistic programs.
� Symbolic Analysis and Optimization: We present PSense’s global sen-
sitivity analysis, which solves queries exactly, by building on the capabilities
of PSI and Mathematica symbolic engines. We also present how to formulate
and solve sensitivity-related optimization queries.
� Evaluation: We evaluated PSense on 66 probabilistic programs from the
literature, with a total of 357 parameter analyses. The experiments show the
effectiveness and efficiency of PSense in analyzing sensitivity and solving opti-
mization problems for various sensitivity metrics. We also show that PSense’s
symbolic analysis is often significantly more precise than sampling.

2 Examples

We demonstrate the capabilities of PSense through two representative examples.
The first example shows the analysis of a simple discrete program. The second
shows the analysis of stochastic gradient descent algorithm.

2.1 Sensitivity Analysis of Discrete Programs

def main(){

A:=flip(0.5);

B:=flip(0.5);

C:=flip(0.5);

D:=A+B+C;

observe(D>=2);

return A;

}

Fig. 1. Example

Figure 1 presents a program that flips three coins. Each
coin toss is a “head” (1) or a “tail” (0). The first three
statements simulate tossing three independent coins. The
variable D sums up the outcomes. While the value of D is
not known, the developer includes the condition that at
least two heads were observed (but not for which coins).
We want to know the posterior probability that the coin
toss A resulted in a “head”, given this evidence.

Problem Definition. The program has three constant
parameters for the Bernoulli distributions assigned to A,
B, and C. Different values of the parameters will give different posterior distri-
butions. We are interested in the question: what happens to the posterior distri-
bution if we perturb the parameter of the prior distribution?
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To estimate the change in the output distribution, we can add noise to each
of our prior flip(0.5). In particular, PSense interprets the first statement as
A:=flip(0.5+eps), where the variable eps represents this noise. The noise may
have any legal value, such that the flip probability is between 0.0 and 1.0.

Sensitivity Results. PSense first computes the posterior distribution of the
variable A, which is a function of the noise variable eps. Then it compares it to
the distribution of the program without noise using a sensitivity metrics. PSense
can compute several built-in metrics of sensitivity, defined in Sect. 3.

For instance, the Expectation distance has been defined in [4] as the absolute
difference between E[maineps] and E[main] the expectations of the program’s
output distributions with and without noise: DExp =| E[maineps] − E[main] |.
After changing the parameter of the first flip statement, PSense produces the
symbolic expression of this distance: (3*Abs[eps])/(4*(1+eps)). It also calculates
the range of legal values for eps, which is [−0.5, 0.5]. PSense can successfully
obtain the symbolic expressions for all other metrics and parameters.

Other Queries. PSense can perform several additional analyses:

– It can find the maximum value of the Expectation distance with respect
to the noise eps within e.g., ±10% of the original parameter value. PSense
formulates and solves an optimization problem, which in this case returns
that the maximum value of the Expectation distance is approximately 0.0395,
when eps is −0.05. One can similarly obtain the maximum absolute eps
subject to the bound on the sensitivity metric.

– It analyzes whether the distance grows linearly as the noise eps increases.
Interestingly, even for this a simple example, the Expectation distance is not
linear, because eps appeared in the denominator. This is due to the rescal-
ing of the posterior caused by the observe statement. In the version of the
program without the observe statement, the Expectation distance is linear.

2.2 Sensitivity Analysis of Stochastic Gradient Descent

We now turn to a more complicated example, which implements a stochastic
gradient descent (SGD) algorithm, in Fig. 2. It is derived from the algorithm
analyzed in [4], applied to the linear regression scenario (as in [1]).

The variables x and y are two arrays that store the observed data. We fit a
simple linear regression model yi = w1 + w2xi. We first set the parameters w1

and w2 to some initial values. Then we use the gradient descent algorithm to
adjust the parameters in order to minimize the error of the current fit. To make
the model simpler, we set w1 to a concrete initial value and assume w2 follows
the uniform distribution. We set the learning rate a to 0.01. In each iteration we
adjust the value of w1 and w2 so that the square error in the prediction moves
against the gradient and towards the minimum. Finally we want to find how
much does the choice of the initial value of w2 affect the precision. Therefore,
we return the distribution of w2 after multiple iterations of the algorithm – in
this experiment, between 1 and 10 (the iteration count must be fixed, which is
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a limitation of the underlying PSI solver). With more iterations, the value of w2

approaches 2.0, as expected.

def main(){

x := [1.4,1.8,3.3,4.3,4.8,6.0,

7.5,8.1,9.0,10.2];

y := [2.2,4.0,6.1,8.6,10.2,12.4,

15.1,15.8,18.4,20.0];

w1 := 0;

w2 := uniform(0, 1);

a := 0.01;

for t in [0..8){

i := t;

xi := x[i];

yi := y[i];

w1 = w1-a*2*(w1+w2*xi-yi);

w2 = w2-a*2*(xi*(w1+w2*xi-yi));

}

return w2;

}

Fig. 2. Sample SGD program

Find Sensitivity with PSense. We
want to find out how the output distri-
bution of w2 changes if we perturb the
parameters of the prior distribution.
We add noise eps to each parameter in
uniform(0,1). PSense can output the
results for different metrics, including
expectation distance, KL divergence
and total variation distance.

Figure 3 presents the change of the
expectation distance subject to the
fixed noise in the lower bound of the
uniform distribution (w2.lower) and
the upper bound of the uniform dis-
tribution (w2.upper) in the prior of
w2. The Y-axis shows the maximum
expectation distance after each iter-
ation on the X-axis. The solid line
is produced by the symbolic backend,
while the dashed lines are generated by the sampling backend. The function for
w2.lower and w2.upper for the symbolic backend are the same (and mark them
as just w2). The results indicate that the noise in the prior has little effect on
the output distribution after several iterations of the algorithm. The plot also
illustrates the imprecision of the sampling backend: the computed sensitivities
significantly differ in several iterations.

Fig. 3. Analysis of SGD Fig. 4. PSense workflow

3 PSense System

Figure 4 presents the overview of the PSense workflow. PSense accepts programs
written in the PSI language (Sect. 3.1). A developer also provides the sensitivity
metrics that characterize parameter sensitivities (Sect. 3.2).
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PSense supports two backends: Symbolic and Sampling. The symbolic back-
end first leverages PSI’s analysis to get the distribution expression for the modi-
fied program. Then, it compiles the results from the programs with and without
noise, and computes the sensitivity metric and other queries. PSense builds its
query solver on top of Mathematica (Sect. 3.3). The sampling backend trans-
lates the programs into WebPPL, and instructs it to run the programs with and
without noise for a specific number of times (Sect. 3.4).

As its output, PSense creates a table that presents the sensitivity of the
program result to the change of each parameter/observation. The sensitivity
is either a symbolic expression for symbolic backend, or an estimate and its
variance for the sampling backend.

n ∈ Z

r ∈ R

x ∈ Var
a ∈ ArrVar

bop ∈ {+,−, ∗, /, }̂ lop ∈ {&&, | |} cop ∈ {==, �=, <,>,≤,≥}
Dist ∈ {Bernoulli, Gaussian, Uniform,. . . }
p ∈ Prog → Func+

f ∈ Func → def Id(V ar∗) {Stmt; return Var∗}
se ∈ Expr → n | r | x | ?x | a[Expr] | Dist(Expr+) | f(Expr∗) |

Expr bop Expr | Expr cop Expr | Expr lop Expr

s ∈ Stmt → x := Expr | a := array(Expr) | x = Expr | a[Expr] = Expr |
observe Expr | assert Expr | skip | Stmt; Stmt |
if Expr Stmt else Stmt for x in [Expr..Expr) Stmt

Fig. 5. PSI language syntax [10]

3.1 Language

Figure 5 presents the syntax of PSI programs. Overall, it is a simple impera-
tive language with scalar and array variables, conditionals, bounded for-loops
(each loop can be unrolled as a sequence of conditional statements) and func-
tion calls. The language supports various discrete and continuous distributions.
To sample from a distribution, a user assigns the distribution expression to a
variable. The observe statement conditions on the expressions of random vari-
ables. PSense supports the following distributions: Bernoulli, Uniform, Binomial,
Geometric, Poisson (discrete), Normal, Uniform, Exponential, Beta, Gamma,
Laplace, Cauchy, Pareto, Student’s t, Weibull, and Rayleigh (continuous).

PSI has the ability to symbolically analyze probabilistic programs with uncer-
tain variables. They may take any value and do not have a specified distribu-
tion. Uncertain variables in PSI are specified as arguments of the main function.
PSense uses uncertain variables to represent noise.

3.2 Sensitivity Metrics

To compare the distributions, PSense uses a developer-selected metric. PSense
currently supports several standard metrics for continuous and discrete distri-
butions. Let P be a cumulative distribution function over the support Ω. For
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probabilistic programs, we denote the distribution represented by the noisy pro-
gram as Pmaineps = P [main | eps] and the distribution represented by the original
program (without noise) as Pmain = P [main | eps = 0]. We present the metrics
for discrete distributions:

∗ (ED1) Expectation distance: DED1 = |EX∼main[X]−EY ∼maineps[Y ]|, which
was defined in [4].
∗ (ED2) Expectation distance (alternative): DED2 = E [|X − Y |], where X ∼
main, Y ∼ maineps; It is a more natural definition of distance, generalizing
absolute distance, but harder to compute (as it is not easy to decompose).
∗ (KS) Kolmogorov-Smirnov statistic: DKS = supω∈Ω |Pmain(ω)−Pmaineps(ω)|.
∗ (TVD) Total variation distance: DTVD = 1

2

∑
ω∈Ω |Pmain(ω)−Pmaineps(ω)|.

∗ (KL) Kullback-Leibler divergence: DKL =
∑

ω∈Ω Pmaineps(ω) log Pmaineps(ω)
Pmain(ω) .

The metrics for continuous distributions are defined analogously, replacing
sums with the corresponding integrals. The metrics provide several computa-
tional challenges, such as (1) integrations in ED2, TVD, and KL, (2) mathemat-
ical optimization in KS, and (3) non-linearity in ED2, KS, and KL.

3.3 PSense Symbolic Analysis

Algorithm 1 presents the pseudo-code of PSense’s analysis algorithm. The sym-
bolic analysis goes through several stages and synergistically leverages the capa-
bilities of PSI and Mathematica. We describe each stage below.

Identifying Noisy Parameters. PSense’s front end identifies all parameters
that are used inside the distribution expressions (such as flip(0.5) in the
first example) and observations (such as observe(D>=2) in the same example).
For each of these parameters, PSense generates a probabilistic program that
expresses uncertainty about the value of the parameter. PSense leverages the
uncertain variables, such as eps, to generate legal PSI programs with noise.

Computing Posterior Distribution with Noise. For each program with
uncertain variables, PSI computes symbolic distribution expressions (both prob-
ability mass/density and cumulative distribution functions) parameterized by
the uncertain variables. PSI can work with programs that have discrete or con-
tinuous distributions. Many of PSI’s simplification and integration rules can
operate on programs with uncertain variables and produce posterior distribu-
tions that fully solve integrals/summations. In the analysis of while loops (which
are unrolled up to some constant, after which a status assertion will fail), the
dependence of the iteration count on eps will be reflected through the probability
of failure, which will also be a function of eps.

Both PSense and PSI analyses keep track of the legal parameter values for the
distribution parameters. Based on this, PSense can then automatically determine
the legal bounds of the noise variables. For instance, for flip(0.7+eps), the
computed distribution expression will specify that the variable eps should be
between −0.7 and 0.3 (because the parameter of Bernoulli is between 0 and 1).
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Algorithm 1 PSense Algorithm
INPUT : Program Π, Sensitivity Metric M
OUTPUT : Sensitivity Table T : Param → Expr × Bool

1: procedure PSense
2: P ← IdentifyParams(Π)
3: d ← PSI(Π)
4: for p ∈ P do
5: Π′ ← transformProgram(Π, p)
6: dε ← PSI(Π′)
7: s ← distrSupport(dε)
8: Δ0 ← M(d, dε)
9: Δ ← MathematicaSimplify(Δ0, s)

10: if (doApproximate ∧ hasIntegral(Δ)) then
11: Δ ← approximateIntegral(Δ, s)
12: end if
13: l ← isLinear(Δ, s)
14: T [p] ← (Δ, l)
15: end for
16: return T
17: end procedure

Computing Sensitivity Metrics. In general, one can define the computation
of the sensitivity as a product program that has two calls to main with and
without noise, however we optimize the analysis to skip the computation of
the posterior for the original program (without noise), since we can obtain it
by substituting eps with zero. After computing the distribution expression for
one program with PSI, PSense calls Mathematica to compute and simplify the
expression of the sensitivity metric. Some metrics, such as KS and ED2 may
take advantage of the support Ω of the distribution, to successfully simplify the
expression. PSense implements a support computation as Mathematica code.

To address these challenges, we combine the solving mechanisms from Math-
ematica and PSI. Our experience is that Mathematica has a more powerful
simplification engine (when it scales) and has capabilities to perform symbolic
and numerical optimization and interpolation, which are out of the scope of PSI.

To support the symbolic analysis and provide an additional context to the
user, we implemented several procedures that check for various properties of the
functions of the noise variable eps:

– Linearity Check: We have two linearity checks. The exact version checks
the standard property from calculus, that the derivative of the function is a
non-zero constant with respect to eps. An alternative approximate version
searches for the upper and lower linear coefficients that tightly bound the
function (as tangents that touch it). If the distance between these lines is
within a specified tolerance, PSense reports approximate linearity.
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– Convexity/Concavity Check: For this check, we also implement the test in
Mathematica based on the standard definition from calculus: a function of a
variable eps is convex (resp. concave) if the second derivative is non-negative
(resp. negative) for all legal values of eps. To establish this property, we set
the appropriate inequalities and query Mathematica to find counterexamples.
PSense returns if the expression is in any of these categories.

– Distribution support: A distribution support is a set of values for which
the distribution mass/density function is non-zero. Knowing support is criti-
cal for efficient computation of sums and integrals that appear in the distance
expressions, especially for optimization problems and for the optional approx-
imate integration. Surprisingly, solving for support in Mathematica is not
straightforward. Among several alternatives, we found that the most effective
one was the built-in function FunctionDomain[f], which returns the interval
on which the function f is defined. To use it, we redefine the query to check
the domain of a fractional function that is defined only when dist[eps] is
non-negative.

– Numerical Integration: The analysis of continuous distributions may pro-
duce complicated (potentially multidimensional) integrals. Since not all inte-
grals have a closed-form, PSense implements numerical approximation that
evaluates integrals that PSI/Mathematica could not solve. The numerical
integration can be optionally selected by the user. The approximation cre-
ates a hypercube of the parameter values and samples the values of eps
and the other variables at the regular boundaries. It uses the distribution
support computed by PSense’s analysis and relies on the user to set up the
lower/upper integration bounds.

Properties. Soundness of the technique follows from the soundness of the under-
lying solvers: given the legal intervals for the uncertain variables, both PSI and
Mathematica do sound simplification of mathematical expressions; In addition,
PSense’s analyses for determining distribution support, linearity and convexity
are derived from the standard mathematical definitions. The time complexity of
the analysis is determined by the underlying inference (which is #P for discrete
programs) and algebraic simplifications.

Global vs. Local Sensitivity. In the present analysis, the value of eps is
bound only by the legality range and can assume any value. This therefore
enables us to conduct a global sensitivity analysis, which asks a question, whether
some property about the distribution holds for all values of eps. This is in
contrast to a local sensitivity analysis, which assumes that eps is a constant
small perturbation around an input x0, e.g., x0 − 0.1 and x0 + 0.1. Computing
the local analysis follows directly from the result of the global analysis.

Our approach can, in principle, also analyze multiple uncertain variables in
parallel (multi-parameter sensitivity analysis). While PSense algorithm would
apply to this setting, we note that when selecting all variables as noisy, the cur-
rent solvers would not be able to apply effective simplification on such expressions
(unless most of noise variables are 0).
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3.4 Sampling-Based Sensitivity Algorithm

We also implemented a sampling backend as an approximate alternative to the
exact symbolic analysis. For a concrete numerical value of noise (e.g., 1%, 5%,
or 10% of the original value), the sampling backend translates the program
with and without noise to WebPPL, a popular probabilistic language with an
approximate MCMC backend and runs its inference. The translation between
PSI and WebPPL is mostly straightforward, except for the loops, which are
translated as recursions. The translated program calls the two functions, main
and maineps, which are the translated functions, and eps is a constant:

var sensitivity = function() {

var eps = 0.01;

var r1 = main();

var r2 = maineps(eps);

return sensitivity_metric(r1, r2);

}

var dist = Infer({method: ’MCMC’, samples: 1000}, sensitivity);

While the sampling-based sensitivity analysis will typically work for a wider
variety of probabilistic programs than the symbolic analysis, it has at least three
important limitations: (1) it may produce imprecise results, especially when eps
is small and therefore a user cannot rely on it soundness, and (2) it works only
for concrete values of eps, and cannot express global properties (for all eps),
and (3) it cannot be used in the optimization queries we describe next.

4 Optimization

PSense can leverage the results from the symbolic analysis to formulate and
solve sensitivity-related optimization problems.

Maximum Acceptable Perturbation. This optimization problem seeks the
answer to the question: What is the maximum absolute noise of the input such
that the distance between the output distributions does not exceed a provided
constant? A user provides an acceptable threshold τ on the distribution distance
of their choice. We then leverage PSense analysis (Sect. 3) to get the symbolic
expression for the distribution distance Δ(ε) for a noise variable ε. We define
the optimization problem as follows:

Maximize: | ε |
Constraints: 0 ≤ Δ(ε) ≤ τ

LegalityChecks(ε)

Variable: ε ∈ Domain

The optimization problem maximizes the absolute value of ε subject to the
constraint given by the distance expression. In general, a distance expression Δ



PSense: Automatic Sensitivity Analysis for Probabilistic Programs 397

may have multiple branches (expressed as Boole functions). In such cases, we
break Δ into non-overlapping branch components and make sure all of them
are within the bound τ . We also support a non-symmetric optimization problem
that independently maximizes ε and −ε to get more precise bounds.

As already mentioned, PSense keeps track of the legal values of the distribu-
tion parameters for each standard distribution. These checks typically have the
form a ≤ ε ≤ b. It is possible for a variable to have multiple such (sub)intervals,
which we add all to the optimization problem. Finally, ε’s domain may be either
reals or integers. While most parameters are real (e.g., for Bernoulli and Gaus-
sian), integer noise exists in distributions such as uniform for integers (upper
and lower bounds) or negative binomial (first parameter).

The optimization problem is univariate, but the constraint on Δ can be non-
linear. We use Mathematica’s function Maximize[], which symbolically solves
optimization problems, producing the infinite-precision value for ε. In addition,
PSense runs an auxiliary convexity check, which can indicate whether the found
optimum is global one (if the function is convex, then a local maximum is also
the global maximum).

Optimization for Local Sensitivity. We can similarly formulate the local-
sensitivity query: What is the maximum distance between the output distributions
when the input noise is within an interval [x0 − σ, x0 + σ]? (x0 is the original
value, and the constant σ is a radius of the ball around it). The optimization
problem is formulated similarly as the previous one. The optimization objective
is to maximize Δ(ε), subject to the constraint ε ∈ [−σ, σ] and legality checks for
ε. If Δ(ε) has multiple terms, we solve for each and combine. For this problem, we
also use Mathematica’s Maximize[] to compute the (exact) symbolic solution.

5 Evaluation

Our evaluation focuses on the following research questions:

� RQ1: Is PSense effective in computing the sensitivity of the parameters of
prior distributions?
� RQ2: Is PSense effective in computing the sensitivity of the observations?
� RQ3: Is PSense effective in finding maximum allowed parameter sensitivity
subject to the bound on the final noise?
� RQ4: How does the precision of PSense symbolic approach compare to a
sampling-based sensitivity analysis?

Benchmarks. We evaluated PSense on three sets of programs: (1) 21 benchmark
programs from the PSI paper [10], (2) a subset of the programs from the book
Probabilistic Models of Cognition [14] that we translated into PSI, and (3) three
code examples from [4]: SGD that we specialized for regression, one-dimensional
population dynamics, and path coupling.
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Table 1. Benchmark statistics
#Progs 66

#Params 357

#Priors/Prog min: 1

avg: 4.6

max: 16

#Observe/Prog min: 0

avg: 0.77

max: 10

#LOC min: 3

avg: 16.8

max: 76

Table 1 presents the statistics of the
benchmark programs. In addition to the
total number of programs and the constant
parameters that can be changed, it also
presents the number of statements that spec-
ify prior distributions per benchmark, the
number of observation statements, and the
number of lines of code. Note that even
when a probabilistic program has only a few
lines of code, they still represent complicated
probabilistic models that can be challenging
for automated analyses.

Setup. We analyzed the programs with five
sensitivity metrics defined in Sect. 3.2. We
set the timeout for computing the individ-
ual metric to 10 min. We performed the experiments on Xeon CPU E5-2687W
(3.00GHz) with 64GB RAM, running Ubuntu 16.04.

Table 2. Sensitivity to perturbation of priors

Metric Discrete Continuous

OK Fail T/O N/A Time (s) OK Fail T/O N/A Time (s)

ED1 94 44 5 25 4.47±2.08 49 30 39 20 9.84±2.62

ED2 136 1 6 25 18.7±6.82 39 0 79 20 115±30.0

KS 142 2 24 0 27.1±7.90 38 19 81 0 81.3±23.6

TVD 127 7 34 0 19.1±6.58 55∗ 16 67 0 87.9±26.9

KL 128 17 23 0 23.1±6.18 32∗ 17 89 0 114±28.0

5.1 Sensitivity to Perturbation of Priors

We computed the sensitivity of the result to the change in each prior parameter.
Table 2 presents the counts of the outcomes of parameter sensitivity, separately
for discrete and continuous/mixed programs. The first column presents the met-
rics from Sect. 3.2. Column “OK” counts the cases for which PSense successfully
computed the symbolic noise expression (we denote ∗ if we applied approximate
integration). Column “Fail” counts the cases for which PSense was unable to
compute the result automatically; we discuss the reasons below. Column “T/O”
counts the cases that did not complete within the timeout. Column “N/A” counts
cases for which the metrics cannot be applied (e.g., when the program returns a
tuple). Finally, Column “Time” presents the average time and standard devia-
tion of the analysis runs.

The results show that PSense can be effective in producing sensitivity infor-
mation for many benchmark programs. For discrete programs, we analyze all
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programs fully symbolically and provide exact difference expressions. In addi-
tion, for all these programs, we were able to compute the linearity and the
maximum input noise that corresponds to the pre-specified output noise in the
case of KS distribution distance. For continuous programs, PSense can compute
the expectation and KS distances exactly, but for TVD and KL, the majority of
the integrals do not have the closed form, and therefore we instructed PSense to
compute the approximate integrals.

Table 3. Sensitivity to perturbations of observed data

Metric Discrete Continuous

OK Fail T/O N/A Time (s) OK Fail T/O N/A Time (s)

ED1 6 19 1 6 0.45±0.31 6 5 6 2 5.07±3.20

ED2 25 0 1 6 7.58±7.15 8 0 9 2 39.4±23.6

KS 28 0 4 0 4.27±2.46 9 1 9 0 3.22±2.60

TVD 28 0 4 0 3.61±1.94 11∗ 1 7 0 56.5±35.6

KL 9 20 3 0 22.7±16.1 3∗ 1 15 0 1.34±0.83

Some of the PSense analyses failed to produce the results. We manually
inspected these programs. For expectation distance, all failures are due to expec-
tation expressions that have multiple cases. For instance, one case when eps >=
0 and another when eps < 0. We currently do not support the sensitivity of such
composite expressions, but plan to do so in the future. For KS distance, the fail-
ures were due to the internal exceptions in PSI (problems computing results) or
in Mathematica’s Maximize (returns “Indeterminate”). For TVD/KL, the fail-
ures happen when PSense cannot find the distribution support. For continuous
distributions, Mathematica’s numerical integration (NIntegrate) can result in 0
in the denominator or raise an “Infinity, or Indeterminate” exception. In some
cases, we cannot apply the computation – e.g., expectation distances ED1 and
ED2 are not defined when the program returns a tuple.

The execution time consists of three components: (1) the time to do PSI
analysis, (2) the time to determine the distribution support, and (3) the time
to compute the sensitivity metric. Out of those, our current computation of the
distribution support takes about 20 s (for most programs), while the computa-
tion of the sensitivity metric takes between 4 s (ED2) and 20 s (KL). Continuous
distributions typically take more time, since the analysis needs to solve compli-
cated integrals or optimizations (e.g., ED2, KS), in contrast to the discrete cases,
which only have finite sums. For continuous TVD and KL, the time of approxi-
mate integration is proportional to the number of points for which the integrals
are numerically computed. Finally, complex integrals cause more timeouts for
continuous programs.
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5.2 Sensitivity to Perturbations of Observed Data

Similarly, we ran PSense to add a noise variable to the expressions within each
observation statement. Table 3 presents the counts of observation sensitivity
analyses (one for each observe statement) and their outcomes, separately for
discrete and continuous/mixed programs. The columns have the same meaning
as for Table 2. We identify the same trends for the ability of PSense to analyze
sensitivity as in the case of the prior distributions in Sect. 5.1 for the majority
of metrics. The exceptions are ED1 and KL (discrete cases), where the sensitiv-
ity expressions are more likely to be discontinuous or nonlinear because noise
variables in observations result in more complicated constraints.

5.3 Solving Optimization Problem

We also present the results of solving the optimization problem, which seeks
the maximum absolute value of the noise variable, subject to the bound on the
program’s final distance. We set the maximum acceptable program threshold
to 10% of the true distance. We analyzed only the programs for which PSense
(Sects. 5.1 and 5.2) gave an “OK” status. We only optimized the exact symbolic
expressions, therefore skipping TVD and KL distances for continuous programs.

Table 3 presents the counts of problems that were successfully solved. The
columns of the table have the same meaning as in the previous sections. The
results show that many of the problems can be successfully (and exactly) solved
by the Mathematica backend that PSense calls. For the several cases that failed
to produce the result, Mathematica was not able to generate initial points that
satisfy the inequality or the solution failed to converge, typically for programs
with discrete variables, which resolve to plateaus in optimization. Only a small
fraction of analyses experienced timeout, indicating that the current symbolic
techniques are effective in solving a variety of problems.

Table 4. PSense results for solving optimization problems

Metric Discrete Continuous

OK Fail T/O N/A Time (s) OK Fail T/O N/A Time (s)

ED1 99 0 1 31 3.11±1.81 54 0 1 22 7.26±2.25

ED2 160 1 0 31 14.7±5.43 42 3 2 22 94.7±25.0

KS 138 23 9 0 163±12.4 25 7 15 0 105±29.6

TVD 148 7 0 0 5.72±2.51 - - - - -

KL 113 21 3 0 13.4±4.46 - - - - -

5.4 Comparison with Sampling Sensitivity Analysis

Finally, we compared the results and the execution times of PSense compared to
estimating sensitivity using the sampling (WebPPL-based) backend. We set the
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Table 5. Symbolic vs. sampling algorithm for expectation distances

Metric Total Diff. (>1-stderr) Diff. (>2-stderr) Time Symbolic Time Sampling

ED1 86 57 (66%) 35 (41%) 0.45±0.027 0.29±0.002

ED2 78 62 (79%) 44 (56%) 0.21±0.003 0.29±0.002

value of the noise variable to 10% of the original value and run 1000 simulations.
Since the sampling backend has to operate only on the concrete values of noise
variables, we evaluated symbolic analysis too with the specific noise value. We
selected only the programs for which PSI returned that Pr[error] (probability
of error state) is zero. For each analysis run, we checked if there exists a significant
difference between the exact symbolic sensitivity and approximate sensitivity
from the simulation by running a statistical t-test with one (p = 0.32) and two
standard errors (p = 0.05).

Table 5 presents the comparison. Column “Total” presents the total number
of sensitivity analyses run. Column “Different” presents the number of simulation
runs that were significantly different from the exact result, according to the t-
test. This backend therefore complements PSense’s symbolic analysis. Columns
“Time Symbolic” and “Time Sampling” present the average execution times
in seconds for the two analyses. Since both analyses operate with a particular
numerical value for the noise variable, the run time is much shorter than for the
previous analyses that considered the symbolic noise variable. The results show
that for a substantial fraction (41% of ED1 analyses and 57% of ED2 analyses),
sampling produced a sensitivity estimate that is more than two standard errors
away from the exact sensitivity. The trend is even more visible with one standard
error distance (66% and 79% of the analyses have a significantly different result).
Both indicate that sampling-based analysis is imprecise (for a similar execution
time).

6 Related Work

Probabilistic Programming Systems. Recent years have seen a significant
interest in probabilistic programming languages [10–12,19,20,27]. A developer
who wants to check the sensitivity of their models needs to manually modify the
programs for every parameter, and since most languages support only approx-
imate inference, the analysis is only valid for concrete values or distribution of
noise. In comparison, the goal of PSense is to fully automate the sensitivity
analysis and present exact results via symbolic analysis.

Researchers have also looked into various static analyses that compute safe
upper bounds of the probabilities of assertions in the program executions, e.g., [3,
9,16,21,23,26]. We anticipate that the future advances in static analysis and
appropriate abstractions, as well as principled combinations of analysis with
sampling [20] will improve the scalability of PSense and related analyses.
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Comparison with PSI and Mathematica. While PSense leverages PSI’s core
analysis, PSI alone cannot identify locations of noise variables, compute the dis-
tance, run optimization for computing KS distance and other optimization and
linearity/continuity queries. PSI’s engine cannot solve various integrals arising
from TVD and KL. On the other hand, Mathematica is limited when simplifying
arbitrary program state expressions [10]. PSense builds on and reformulates the
problems hard for PSI as more efficiently computable Mathematica queries and
computes hints, e.g., distribution supports, to make the analysis feasible.

Sensitivity Analyses. Sensitivity techniques from machine learning [5–7,17,25]
are typically numeric and mainly analyze local sensitivity. For instance, Darwiche
and Chan present a framework for testing individual discrete-only parameters
of Belief networks [6] and later present how to extend the analysis for multiple
parameters and capture their interactions [7]. Like [6], PSense focuses on indi-
vidual parameters, but can analyze both discrete and continuous distributions.
Recently, Llerena et al. [18] present an analysis of perturbed Markov Decision
Processes, but only analyze models of systems and do not analyze program code.
Barthe et al. presented a logic for reasoning about probabilistic program sensi-
tivity [4]. Unlike PSense, it is manual, requiring a developer to prove properties
using a proof assistant, but it supports overapproximation. In contrast, PSense
is fully automated and computes various non-linear sensitivity metrics.

7 Conclusion

We presented PSense, a system for automatic sensitivity analysis of probabilis-
tic programs to the perturbations in the prior parameters and data. PSense
leverages symbolic algebra techniques to compute the exact sensitivity expres-
sions and solve optimization queries. The evaluation on 66 programs and 357
parameters shows that PSense can compute the exact sensitivity expressions for
many existing problems. PSense demonstrates that symbolic analysis can be a
solid foundation for automatic and precise sensitivity analysis of probabilistic
programs.

Acknowledgments. We thank the anonymous reviewers for the useful comments on
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No. CCF 17-03637 and CCF 16-29431.

References

1. Wikipedia: SGD. https://en.wikipedia.org/wiki/Stochastic gradient descent
2. Mathematica (2015). https://www.wolfram.com/mathematica/
3. Albarghouthi, A., D’Antoni, L., Drews, S., Nori, A.: Fairsquare: probabilistic ver-

ification of program fairness. In: OOPSLA (2017)
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Abstract. Resource sharing while preserving privacy is an increasingly
important problem due to a wide-scale adoption of cloud computing.
Under multitenancy, it is common to have multiple mutually distrustful
“processes” (e.g. cores, threads, etc.) running on the same system simul-
taneously. This paper explores a new approach for automatically identi-
fying and quantifying the information leakage in protocols that arbitrate
utilization of shared resources between processes. Our approach is based
on symbolic execution of arbiter protocols to extract constraints relating
adversary observations to victim requests, then using model counting
constraint solvers to quantify the information leaked. We present enu-
merative and optimized methods of exact model counting, and apply
our methods to a set of nine different arbiter protocols, quantifying their
leakage under different scenarios and allowing for informed comparison.

Keywords: Arbiter protocols · Quantitative information flow
Model counting · Symbolic execution

1 Introduction

Many of the computer systems we use today have access to secret information,
confidentiality of which should not be compromised. In program analysis, meth-
ods of secure information flow (SIF) are dedicated to tracking the propagation of
sensitive information through a program. SIF methods aim to produce a binary
answer: yes, there is an information leak, or no, there is not, and have seen
success in verifying anonymity protocols [13], firewall protocols [3], and network
security protocols [7]. However, a binary answer to information leakage is not suf-
ficient in general, due to cost of establishing strict non-interference, side-channels
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that may leak information through non-functional properties of a system, or due
to application semantics that require some information leakage (for example, a
password checker always leaks information by reporting if the input matched
the secret password). Hence, the general question about information flow in a
computer system is not if information leaks, but how much information leaks?
This “how much” question led to the development of Quantitative Information
Flow (QIF) techniques, which provide a foundational framework for measuring
information leakage [25].

In this paper, we present a QIF technique for assessment and compari-
son of information leakage among resource sharing protocols. Various arbiter
protocols have been developed for coordinating processes that share common
resources [11]. An arbiter takes resource requests and grants access to the
resource based on its policy. We assume that the requests made by one process
should not be revealed to another process. In an ideal situation no process should
reveal any information to another process unless it is intentional. In reality, many
designs need to leak some degree of information to meet other design goals. We
demonstrate that using the QIF technique we present one can determine and
compare the amount of information leakage for different arbiter protocols.

Previous work on information flow properties of protocols has been limited.
The techniques we present in this paper introduce a new dimension in protocol
analysis, and provide a new way to classify protocols with respect to the amount
of information they leak. Interestingly, as our experiments demonstrate, reducing
information leakage can conflict with other desirable properties of protocols. For
example, improving resource usage or fairness in a given protocol could increase
the amount of information leaked.

Our approach is based on symbolic execution and constraint model counting
techniques and can handle randomized protocols. Given a protocol specification,
we extend symbolic execution to extract constraints characterizing relationships
between the secret and the adversary-observable events. With model counting
constraint solvers, we quantify the amount of information leaked, in terms of
entropy, by observable events. We present a novel, efficient and exact model
counting technique for a class of constraints extracted during QIF analysis of
arbiter protocols.

The rest of the paper is organized as follows. Section 2 discusses different
arbiter protocols to be analyzed; Sect. 3 explains our method of computing
leakage of the protocols. Section 4 contains our optimized method of constraint
counting, vastly improving performance of the analysis. Section 5 gives our exper-
imental results, Sect. 6 discusses related work, and Sect. 7 concludes.

2 Arbiter Protocols

We model synchronous arbiter protocols as a multi-process, multi-round model
with n processes and k rounds. Each process i in each round j sends the arbiter
a request bit for a shared resource (Rij , where if the bit is one the process is
requesting the resource), and receives a grant bit (Gij , where if the bit is one
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the request is granted) as a response from the arbiter. The basic arbiter protocol
architecture is shown in Fig. 1. In the protocols we analyze only one process can
be granted access to the shared resource in each round. The basic problem is
whether an adversary process can infer the sequence of request bits of another
process from the grant bits that adversary receives, and to what extent.

Fig. 1. Arbiter protocol model. Shaded box depicts a bit set to one, white – to zero.
Number of processes is 3, rounds 6.

Example. Consider an arbiter protocol that resolves simultaneous requests
for the same resource by giving access to the process with the minimum process
ID, (e.g. the Priority procedure in Fig. 2, also depicted in Fig. 1). Suppose an
adversary controls Process 2 and targets a victim Process 1. If Process 2 requests
access to the resource and does not get the access granted, it is so because the
Process 1 has also requested access during the same arbitration round. On the
other hand, if Process 2 is granted the access, it must be the case that Process 1
did not request in that round. Consequently, Process 2 can fully infer the request
pattern of Process 1. Now suppose the adversary controls Process 3, makes a
request, and does not get the access granted. Then the attacker can infer that
either Process 1 or Process 2 or both have requested, but cannot distinguish
among these cases based on its own response from the arbiter, thereby learning
only partial information. In fact, the best strategy for the adversary is to keep
requesting in each round, as Process 3 in Fig. 1. One expects that resolving
resource-request races randomly (e.g. the Random procedure in Fig. 2) should
not allow one process to infer the request pattern of another process from its
own pattern of access grants.

For more complex protocols, it becomes difficult to manually reason about
the information flow properties. In this paper, we give automatic techniques
for quantifying the amount of information that can be gained from an arbiter
protocol by any process about any other process.

We categorize arbiter protocols based on three characteristics: (I) how the
concurrent requests are resolved; (II) whether the protocols are stateful or state-
less; and (III) whether the processes are stateful or stateless.

We say a protocol (or a process) is stateless if access grants (respectively
requests) made at each round are independent from those of the previous rounds;
and is stateful otherwise. Among the stateful process behaviors, we consider the
one in which every process holds each initiated request without interruption
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across the rounds until the arbiter grants access to this process, after which the
process is unconstrained on when to initiate a new request.

We resolve concurrent request in three ways: (i) based on a predefined static
priority, (ii) based on a dynamically-defined priority, or (iii) randomly. We define
a static priority based on the process IDs—the lower a process ID, the higher its
priority. Dynamic priorities are defined in, and by, the stateful protocols where
the priority of a process at the current round depends on the requests and grants
for all processes made at the previous rounds. Concurrences are resolved ran-
domly either in a uniformly-distributed random or a weighted random manner.
Handling random components in symbolic analysis is a challenging task on its
own. We introduce our approach for extending the quantitative symbolic analysis
to support symbolic random components in the arbiter protocols in Sect. 3.3.

Below, we present various arbiter protocols and discuss how to quantify their
information flow properties using our automated approach. We give pseudocode
of arbiter protocols for a single round. Let P = {P1, P2, . . . , Pn} be a list of
processes communicating with an arbiter. In a single round, the arbiter receives a
list of requests from these processes R = {R1, R2, . . . , Rn} for a shared resource,
and returns a grant response to each of the processes, G = {G1, G2, . . . , Gn}. The
requests Ri and grants Gi are modeled to take Boolean values: � if the request
(respectively, grant) is instantiated (respectively, granted), and ⊥ otherwise.

Stateless arbiters. A priority-based arbiter (Priority) and a randomized
arbiter (Random) are stateless arbiters which differ by how they resolve con-
current requests when multiple processes place a request within the same round.

(1) The Priority arbiter resolves concurrent requests based on a predefined
static priority, always granting access to the process with the highest priority.
Without loss of generality, we assume the order P1 � P2 � · · · � Pn on the
processes and say that P1 has the highest priority and Pn the lowest.

(2) The Random arbiter resolves concurrent requests randomly.
Pseudocode for a single round of these protocols is shown in Fig. 2. IsRace(R)
routine returns true if and only if multiple processes request concurrently. Pick-
Rnd(R) randomly selects a process, among those racing, with equal probability.
If a single process requests, FindReq(R) returns the ID of this process, and
returns NULL when no process requests.

Stateful arbiters. This category includes a round robin arbiter (Round
Robin), a lottery-based arbiter (Lottery), a first-come-first-serve-based arbiter
(FCFS), and a longest-idle-based arbiter (LongestIdle) as shown in Figs. 3,
4 and 5. The concurrences are resolved with a dynamic priority order on the
processes based on the history of the previous rounds.

(3) The RoundRobin arbiter grants access to processes in a circular order
by passing around a token incremented at each round: if a process with an ID
equal to the value of the token has requested access in a given round the arbiter
grants access to this process, otherwise the arbiter does not grant access to any
process and moves to the next round with the incremented token. When the
token reaches the last process ID it resets to the first one.
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Procedure Priority
Input: R[1..n] an array of requests
Output: G[1..n] an array of responses
1: G ← (⊥, . . . , ⊥)
2: for i ← 1 to n do
3: if R[i] = � then
4: G[i] ← �
5: break
6: end if
7: end for
8: return G

Procedure Random
Input: R[1..n] an array of requests
Output: G[1..n] an array of responses
1: G ← (⊥, . . . , ⊥)
2: if IsRace(R) then
3: G[PickRnd(R)] ← �
4: else
5: pid ←FindReq(R)
6: if pid �= NULL then
7: G[pid] ← �
8: end if
9: end if
10: return G

Fig. 2. Priority and random arbiters.

(4) RoundRobinSkip is a variant of the round robin protocol that never
passes a round without a grant when there is a requesting process. The routine
FindFirst(R, tkn) returns an ID of the first requesting process it finds starting
from the token and following in a circular manner by skipping over the idle
processes that made no request in a given round; if no process made a request
in the round—the routine returns NULL.

Global: tkn

Procedure RoundRobin
Input: R[1..n] an array of requests
Output: G[1..n] an array of responses
1: G ← (⊥, . . . , ⊥)
2: if tkn = n + 1 then tkn ← 1
3: end if
4: if R[tkn] then
5: G[tkn] ← �
6: end if
7: tkn ← tkn + 1
8: return G

Global: tkn

Procedure RoundRobinSkip
Input: R[1..n] an array of requests
Output: G[1..n] an array of responses
1: G ← (⊥, . . . , ⊥)
2: if tkn = n + 1 then tkn ← 1
3: end if
4: pid = FindFirst(R, tkn)
5: if pid �= NULL then
6: G[pid] ← �
7: tkn ← pid + 1
8: end if
9: return G

Fig. 3. Round robin and round robin skip arbiters.

(5) The Lottery arbiter selects a process in a weighted-random manner.
In contrast with the Random arbiter, it counts the wait-times of the pro-
cesses that have been waiting for the access to be granted and resolves con-
current requests by probabilistically prioritizing processes with longer waiting
time. W = (W1, . . . ,Wn) is a list of wait-times of each process. PickRnd(W )
selects a process among the racing ones in a weighted-random manner.
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Global: W [1..n] an array of wait-times
Procedure Lottery
Input: R[1..n] an array of requests
Output: G[1..n] an array of responses
1: G ← (⊥, . . . , ⊥)
2: for i ← 1 to n do
3: if R[i] = � then
4: W [i] ← W [i] + 1
5: else
6: W [i] ← 0
7: end if
8: end for

9: if IsRace(R) then
10: pid ←PickRnd(W )
11: else
12: pid ←FindReq(R)
13: end if
14: if pid �= NULL then
15: G[pid] ← �
16: W [pid] ← 0
17: end if
18: return G

Fig. 4. Lottery arbiter.

(6) The FCFS (first-come-first-served) arbiter resolves concurrent requests
by considering wait-times of the processes W . The AllMax(W ) routine returns
the IDs of the processes with the maximal wait-time. If multiple processes have
been waiting for the permission grant for the same number of rounds, PickOne()
breaks ties. We consider two approaches for PickOne(): based on the static
priority where the process with the lowest ID gets access, and uniformly random.

(7) The LongestIdle arbiter does the opposite to the FCFS in the sense
that it prioritizes processes by length of idle time. I = (I1, . . . , In) is a list of
idle-times of each process. Ties are broken in the same manner as in FCFS.

3 Information Leakage in Arbiter Protocols

We consider a system, which accepts a public input (also referred as the low
security input) L, a secret input (or the so-called private, high-security input)
H, and produces an observable output O. The model includes an adversary,
the malicious user A. The adversary invokes the system with the input L and
observes the output O. A does not have direct access to the secret H, but would
like to learn its value. Before invoking the system, A has some initial uncertainty
about the value of H, while after observing O, some amount of information is
leaked, thereby reducing A’s uncertainty about H.

In our model, we consider three types of processes (1) an adversary con-
trolled process, denoted by PA, (2) a process belonging to the victim, denoted
by PV (PV �= PA), and (3) a benign process introduced as additional unpre-
dictable behavior to the system. The adversary can observe only permis-
sion responses issued by the arbiter on his/her requests, denoted by RA =
{RA1, RA2, . . . , RAk}, with the aim to gain as much information as possible on
the permission requests of the victim’s process RV = {RV1, RV2, . . . , RVk}. We
consider the secret H = RV to be the list of permission requests of the victim
process. The low security input to the system L = RA is the adversary-controlled
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Global: W [1..n] an array of wait-times
Procedure FCFS
Input: R[1..n] an array of requests
Output: G[1..n] an array of responses
1: G ← (⊥, . . . , ⊥)
2: for i ← 1 to n do
3: if R[i] = � then
4: W [i] ← W [i] + 1
5: else
6: W [i] ← 0
7: end if
8: end for
9: if IsRace(R) then
10: pid ←PickOne(AllMax(W ))
11: else
12: pid ←FindReq(R)
13: end if
14: if pid �= NULL then
15: G[pid] ← �
16: W [pid] ← 0
17: end if
18: return G

Global: I[1..n] an array of idle-times
Procedure LongestIdle
Input: R[1..n] an array of requests
Output: G[1..n] an array of responses
1: G ← (⊥, . . . , ⊥)
2: for i ← 1 to n do
3: if R[i] = ⊥ then
4: I[i] ← I[i] + 1
5: end if
6: end for
7: if IsRace(R) then
8: pid ←PickOne(AllMax(I))
9: else
10: pid ←FindReq(R)
11: end if
12: if pid �= NULL then
13: G[pid] ← �
14: I[pid] ← 0
15: end if
16: return G

Fig. 5. First come first serve and longest idle priority arbiters.

data—the permission requests placed by the adversary process. The correspond-
ing permission grants received by the adversary on his/her own requests, denoted
by GA = {GA1, GA2, . . . , GAk}, are the data observed by the adversary O = GA
(referred as the observations).

In this work, we quantify and compare the amount of maximal expected
leakage the adversary can obtain for arbiter protocols presented in Sect. 2 con-
sidering possible choices of PA and PV . This is a QIF analysis problem through
the main channel, when the adversary observes the direct output of the system
(i.e. his/her own access grant pattern). If the adversary can also observe non-
functional aspects of the system behavior (e.g. the time it takes to respond to
a request, or the power consumed) through a side channel, then one would also
take those observations into account to quantify the information leakage through
such side-channels.

3.1 Quantifying Information Leakage Using Entropy

Intuitively, the amount of information gained by the adversary is the differ-
ence between the initial uncertainty about the secret and the remaining uncer-
tainty [25]. The field of QIF formalizes this intuitive statement by casting the
problem in the language of information theory. Information theory uses the con-
cept of entropy for the purpose of measuring the amount of information that
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can be transmitted over a channel, measuring information transmission in bits
of entropy. Then, information entropy is used as a measurement of uncertainty.

We briefly define relevant information entropy measures here. Given a ran-
dom variable X with a finite domain X , and a variable Z that indexes the
probabilities of X to take values x ∈ X , denoted as P (X = x | Z = z), the
information entropy of X, denoted as H(X | Z = z), is given by

H(X | Z = z) =
∑

x∈X
P (X = x | Z = z) log2

1
P (X = x | Z = z)

(1)

Let Z be the domain of Z. Given another random variable Y , over the domain
Y, and a conditional probabilities P (X = x | Y = y, Z = z), also indexed by Z,
the conditional Shannon entropy of X given knowledge of Y indexed by Z is

H(X | Y,Z = z) =
∑

y∈Y
P (Y = y|Z = z)H(X | Y = y, Z = z), where (2)

H(X | Y = y, Z = z) =
∑

x∈X
P (X = x | Y = y, Z = z) log2

1

P (X = x | Y = y, Z = z)

(3)

We are interested in the maximal amount of information about X that could
be learned given the knowledge of Y , as this describes the worst case leakage
scenario. For this, we use conditional Shannon entropy and compute the max-
imal amount of the expected information gain as the difference of the initial
uncertainty about X and the uncertainty after acquiring the knowledge of Y

I(X,Y,Z) = max
z∈Z

(H(X | Z = z) − H(X | Y,Z = z)) (4)

In the context of QIF, we consider the public input L to be the index variable
indexing probability distributions of the secret input H and the output O, with H
and O being random variables. Thus, the above notations correspond to Z = L,
X = H and Y = O. A value of the input L along with the corresponding
observation of the output O defines an event in the analysis.

To compute the expected maximal amount of information leaked, we need:

(i) Initial uncertainty the adversary has about the secret, Hinit(H | L = l),
for each of his/her inputs before making observations. This is computed
following the Formula (1) using the initial probability distribution of the
secret P (H = h | L = l) conditioned by the adversary’s inputs;

(ii) Expected remaining uncertainty about the secret, Hfin(H | O,L = l),
over all observations the adversary can make after he/she provides an input
l, computed as in (2):

∑
ω∈ΩP (O = ω | L = l)H(H | O = ω,L = l), where

Ω is the domain of O, P (O = ω | L = l) is the probability of the adversary
observing ω given the input l, and H(H | O = ω,L = l) is the uncertainty
about the secret given the event (ω, l), the latter computed using (3) and
the probabilities of the secret conditioned by this event P (H = h | O =
ω,L = l);
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(iii) Then I(H,O,L) = max(Hinit(H | L = l) − Hfin(H | O,L = l)) is the
expected maximal amount of information leaked, as defined in (4).

These definitions formalize our intuition that the information leaked is the
maximal difference between the uncertainty about the secret before and after
making an observation. The value of the adversary’s input L for which the max-
imal leakage is obtained defines the best strategy for the adversary to follow in
order to obtain the maximal information leakage on H.

3.2 Extracting Observation Constraints with Symbolic Execution

Symbolic execution is a technique that extracts path constraints from a system
by executing it on symbolic inputs, as opposed to concrete input values. It can
be used to extract a set of path constraints characterizing all possible execution
paths of the system (typically up to an execution depth bound).

We adopt and extend symbolic execution techniques to automatically extract
constraints that relate secret values with observations that an adversary can
make. Traditional symbolic execution does not focus on extracting constraints
on observations that can be made by an adversary, such as timing or power
measurements, or constraints on resources that can be shared with adversar-
ial processes. To formalize this concept, we introduce event constraints of the
protocol as defined below.

Let φ(H,L) be a path constraint returned by a traditional symbolic execu-
tion tool. Consider the set of observations Ω for the observable O. In practice
multiple execution paths may map to the same observation. We assume, how-
ever, that each execution path maps to a single observation. To express this,
we define a function O, where O(φ(H,L)) is the observation that the execution
path constraint φ(H,L) maps to. Then, we extend each path constraint φ(H,L)
into an event constraint Cφ(H,O,L) to pair it with the observation it yields to:

Cφ(H,O,L) : (O = ω) ∧ φ(H,L), where O(φ(H,L)) = ω (5)

The disjunction of all event constraints with the the same observation ω,
characterizes ω by a constraint Cω(H,O,L) that holds if and only if the obser-
vation ω occurs, and can be written in the form:

Cω(H,O,L) =
∨

O(φ(H,L))=ω

∧(O = ω)φ(H,L) (6)

We define a characteristic constraint C(H,O,L) for the protocol as the con-
straint that describes all possible events:

C(H,O,L) :
∨

ω∈Ω

Cω(H,O,L). (7)

Example. Let us use the Priority arbiter as a running example. For a
single round Ω = {�,⊥}. We give the characteristic constraint for a single
round of a three-process Priority arbiter where PA = P2 below:
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C = C� ∨ C⊥ :

((O = �) ∧ (R1 = ⊥ ∧ R2 = �)) ∨
∨ ((O = ⊥) ∧ (R1 = � ∨ (R1 = ⊥ ∧ R2 = ⊥ ∧ R3 = �) ∨ (R1 = ⊥ ∧ R2 = ⊥ ∧ R3 = ⊥))

3.3 Extension for the Symbolic Analysis of Random Components

Handling random components in symbolic analysis is a challenging task on its
own. The first work on supporting random instances in symbolic execution has
been introduced recently [18]. We propose a technique simulating randomness
of symbolic variables that is well-fitted for quantitative analysis and is simpler.
Since our approach is based on computing probabilities of protocol behaviors
(i.e. the probabilities of the protocol following corresponding execution paths),
we should take into account the distribution of random variables occurring in
this protocol, and thus, in the path constraints. If a path constraint contains
a random variable R, the probability of triggering that path depends on the
probability of R taking specific values defined by the path.

To incorporate the probability distribution of R into the computation of
the probabilities of the execution paths, we introduce a fresh symbolic integer
variable sym R and implement the PickRand() procedure in a way that it
simulates the desired random generator behavior and extends path constraints
to reflect the relation between sym R and R as follows: each value r of R leads
to multiple values of sym R representing the weight of r in the probability
distribution of R. Let R take values in (R1, . . . , Rn) with probability weights
W = (W1, . . . ,Wn), each Wi ∈ Z

+. PickRnd() takes W for input and returns
a value of R selected in a weighted-random manner in accord with W . For each
Wi, we define a domain interval D(Wi) of the length Wi as

D(Wi) =

{
[1,Wi], i = 1(∑i−1

j=1Wj ,
∑i

j=1Wj

]
, 1 < i ≤ n

(8)

We restrict sym R to take values in non-empty domain intervals by instru-
menting the code with the implementation of PickRnd() as given in Fig. 6. If
all domain intervals are empty, we set sym R = NULL.

3.4 Computing Event Probabilities with Model Counting

In order to compute information leakage, we need to compute the probabilities
given in (2) and (3). We compute the probability of an event by counting the
number of values that satisfy the observation constraint (i.e., the number of solu-
tions to the observation constraint) that corresponds to that event. To formalize
this, we will use the following notations. Given an ordered set of variables V and
an ordered subset V ′ ⊆ V ,we define a partial assignment on V ′ as a mapping
V ′ 
→ v, where v is an assignment on all variables in V ′. Given a constraint
Ψ(V ), we denote by Ψ(V ) |V ′ 	→v the result of assigning and propagating the
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Global: sym R a symbolic integer variable
Procedure PickRnd
Input: W [1..n] an array of weights
Output: id an ID of a randomly selected value Rid

1: for id ← 1 to id ≤ n do
2: if W [id] > 0 and sym R ∈ D(W [id]) then
3: return id
4: end if
5: end for
6: return NULL

Fig. 6. Selecting a value from a domain with a weighted-random distribution.

values v to the variables V ′ in Ψ. We denote by #Ψ(V ) |V ′ 	→v the number of
solutions to Ψ(V ) |V ′ 	→v over the free variables.

Then the probabilities in (2) and (3) are computed using model counting on
observation constraints as follows:

P (O = ω|L = l) =
#C(H,O,L) |(O,L) 	→(ω,l)

#C(H,O,L) |(L) 	→(l)
(9)

P (H = h | O = ω,L = l) =
#C(H,O,L) |(H,O,L) 	→(h,ω,l)

#C(H,O,L) |(O,L) 	→(ω,l)
(10)

Example. In Table 1, we give the probability and entropy computations for
the Priority arbiter when PA = P2 and PV = P1. We follow the computation
steps described in Sect. 3.1 using (1)–(4) for the entropy calculations and (9), (10)
for the probabilities.

Table 1. Probability and entropy computations for the Priority arbiter. Adversary
controls P2. Victim’s process is P1. C is the characteristic constraint for Priority.

r2 0 1
g2 0 1 0 1
r1 0 1 0 1 0 1 0 1
#C |(R1,G2,R2) �→(r1,g2,r2) 2 2 0 0 0 2 2 0
#C |(G2,R2) �→(g2,r2) 4 0 2 2
#C |(R2) �→(r2) 4 4

P (R1 = r1 | R2 = r2)
P (0 | 0) = 1/2 P (0 | 1) = 1/2
P (1 | 0) = 1/2 P (1 | 1) = 1/2

Hinit(R1 | R2 = r2) 1 1
P (R1 = r1 | G2 = g2, R2 = r2) 1/2 1/2 0 0 0 1 1 0
H(R1 | G2 = g2, R2 = r2) 1 0 0 0
P (G2 = g2 | R2 = r2) 1 0 1/2 1/2
Hfin(R1 | G2, R2 = r2) 1 0
ΔH 0 1
max(ΔH) 1
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4 Model Counter for Arbiter Protocol Constraints

We observed that constraints extracted with the symbolic execution of the
arbiter protocols were, on one hand, large—especially for those with random
components as the randomization increases the variety of behaviours of the pro-
tocols, with over five million distinguished protocol behaviours for 6 rounds.

On the other hand, we observed that the constraints extracted from arbiter
protocols can be characterized by a common structure. We define a grammar
representing this structure, as described in Fig. 7, and refer to its language as a
range constraint language, denoted by LRC . In the context of the constraints
extracted with the extended symbolic execution: B stands for the Boolean
variables representing each process’s requests in each round and correspond-
ing arbiter responses, and I for the integer variables, one per round, respon-
sible for random components of the protocols. For deterministic protocols the
domain of I is empty. An atomic constraint C in this grammar represents a
single event constraint Cφ(H,O,L) (defined in (5)) extracted with the extended
symbolic execution. Variables representing arbiter responses are always present
in an atomic constraint. Consequently, the atomic constraints have disjoint sets
of solutions.

C → C ∧ C | R
= = [a, b]

Fig. 7. Range constraint grammar. B ranges over Boolean, I over integer variables.

We need to compute #C(H,O,L) |(H,O,L) 	→(h,ω,l) for each tuple (h, ω, l).
Based on the above observation on event constraints in LRC , we built an efficient
exact model counter which is linear in time in the size of the input constraint.
The model counting is performed during parsing of the constraint and uses only
as much space as required to store the final counts. We give a pseudocode for our
model counter in Fig. 8, where Tuples(Cφ, PA, PV) returns a set of all tuples
(h,ω, l) of the partial assignments (RV ,GA,RA) 
→ (h,ω, l) of Cφ.

Given PV and PA, each Cφ determines values (h,ω, l) for (H,O,L), thus
contributes to model counting for the tuple (h,ω, l). We define a free variable
in an atomic constraint Cφ to be a Boolean variable from the domain of B as
a variable (i) distinguished from RV and RA; and (ii) not appearing in Cφ. An
event constraint Cφ in C contributes towards the model-counting of multiple
tuples (equally, with the same number of models s) when any of the variables
RV and RA is absent in Cφ. The number of models, s, depends only on the
number of free variables and the ranges on the integer variables in Cφ.

5 Experiments

To test our framework, we conduct quantification experiments on nine different
arbiter protocols discussed in Sect. 2, considering both stateless and stateful
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Global: S a data structure for storing model counts
Procedure LRC ModelCounter
Input: C a characteristic constraint, PV victim’s process, PA adversary’s process
Output: Model counts stored in S
1: for each Cφ in C do � Also, by construction Cφ ∈ LRC
2: m ← #FreeVars(Cφ, PV , PA)
3: s ← 2m

4: for each (r ∈ [a, b]) in I do
5: s ← (b − a + 1) × s
6: end for
7: for each tuple (h, ω, l) in Tuples(Cφ, PV , PA) do
8: S[(h, ω, l)] ← S[(h, ω, l)] + s
9: end for
10: end for

Fig. 8. Model counter for range constraints.

processes. Each experiment involves a single arbiter protocol, three processes,
and rounds from one to six. We compute the maximum expected information
leakage the adversary can learn about the victim process, and determine the
position of the victim-adversary processes for which the arbiter leaks the most.

Our current implementation requires specification of each arbiter protocol in
Java. We use SPF (Symbolic Java Pathfinder) [23], a well-established symbolic
execution tool to analyze Java bytecode, to extract characteristic constraints for
the arbiter protocols, as discussed in Sect. 3.2. Then, we perform model counting
as explained in Sects. 3.4 and 4. Based on the distribution of these counts, we
calculate the information leakage according to Sect. 3.1.

We perform model counting with two methods: an enumerative counting
method EC (Sect. 3.4), and our faster range-constraint counting method RC
(Sect. 4). The former provides us a slow method serving as a ground truth, the
latter an optimized method for higher numbers of rounds when the exponen-
tial blowup makes enumerative counting infeasible. Table 2 shows the execution
time, in seconds, for EC vs RC methods. RC ranges from 1.4x faster to 2, 647x
faster, with an average speedup of 250x (excluding time outs for EC).

Figure 9 shows the results of our experiments, executed on a 128 GB RAM
machine. The protocols are given in two groups: one with stateless processes, one
of stateful processes. The leakage for each protocol is shown for each arrangement
of (victim, adversary) process IDs and six rounds of data; six horizontal lines
in each bar delineate the information learned up through that round. The full
bar is the information learned in six rounds; the lowest line is the information
learned in the first round. The worst-case leakage of each protocol across all
process pairs, for each round, is shown in Fig. 10, which illustrates interesting
trends and groupings among the protocols.

The variety of interesting subtleties in the results are more than we can dis-
cuss here, but we note a few points. The arrangement (1, 2) is the best scenario
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Fig. 9. Computed leakage for each protocol for 1–6 rounds, given for each
(victim, adversary) process pair. Cumulative leakage is shown for 6 rounds.

for the attacker, as he/she directly follows the victim and no other processes
cause noise. The Priority arbiter leaks the most for this arrangement, but
leaks less for (2, 3) and (1, 3), and does not leak for other arrangements. The
RoundRobin protocol leaks no information in any arrangement, but it is inef-
ficient with respect to resource usage since it wastes cycles where the resource
is not utilized. Introducing a simple optimization in the RoundRobinSkip pro-
tocol improves resource usage, but introduces leakage. The random protocols
(Lottery and Random) have low leakage, but they are non-deterministic pro-
tocols in how they award resources which can lead to unfair resource alloca-
tion. Introducing randomness to other algorithms, like FCFS and LongestIdle
improve their leakage characteristics (again, at the expense of non-determinism).
Typically, the stateful process version of each protocol leaks slightly less than
the stateless version, as processes have less freedom in choosing their requests
which means that there is less amount of information (entropy) to leak.

6 Related Work

Arbiter protocols have been studied intensively for effectiveness and fairness
([11] gives a brief survey). Various arbitration techniques have been proposed and
compared in providing fairness and efficiency for shared-resource access manage-
ment. More recent work has been focusing on privacy aspects of the arbitration,
covert channel and timing side channel information leakage, including quanti-
tative leakage analysis and channel capacity evaluations [4,9,14,24]. However,
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Fig. 10. Worst-case leakage of each protocol as a function of the round number.

these approaches are either manual, or consider a fixed number of processes and
rounds, or focus on deterministic arbiters.

We make use of concepts from foundational and theoretical works in quan-
titative information flow [25] and combine them with symbolic execution and
model counting techniques to automatically quantify security vulnerabilities in
protocols. There are other model counting techniques that handle constraints
with different levels of expressiveness [1,17], and they can be integrated with
the quantitative information flow analysis we present in this paper. Quantita-
tive measurement of information leakage in programs has been an active area of
research [2,6,15,26]. Most previous works quantify the leakage in a single run of
the program given a concrete value of low input. There have been recent works
for performing automatic QIF for programs using symbolic execution [20,21],
bounded model checking [12] , and graph theoretic methods [19], or random
sampling [5], as well as in detecting and quantifying information flow and timing
side channels at the hardware design and specification level [8,10]. Multi-run
analyses based on input enumeration [16] and symbolic approaches [22] have
also been proposed for side-channel attack synthesis.



420 N. Tsiskaridze et al.

7 Conclusion

Contention for shared resources will only grow with time as we become increas-
ingly reliant on multi-tenant, cloud systems. Isolation and privacy preservation
are of the utmost importance in these systems, but virtual machines and OS
guards cannot always prevent information from crossing from one domain to
another. Adversaries can use information leakages to extrapolate privileged infor-
mation that needs to remain secure. The novel QIF analysis technique in this
paper combines and extends symbolic execution and model counting techniques
providing protocol designers and users a new dimension in assessment and com-
parison of protocols in terms of the amount of information leaked over time.
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Abstract. We introduce the State Classification Problem (SCP) for
hybrid systems, and present Neural State Classification (NSC) as an
efficient solution technique. SCP generalizes the model checking prob-
lem as it entails classifying each state s of a hybrid automaton as either
positive or negative, depending on whether or not s satisfies a given time-
bounded reachability specification. This is an interesting problem in its
own right, which NSC solves using machine-learning techniques, Deep
Neural Networks in particular. State classifiers produced by NSC tend
to be very efficient (run in constant time and space), but may be subject
to classification errors. To quantify and mitigate such errors, our app-
roach comprises: (i) techniques for certifying, with statistical guarantees,
that an NSC classifier meets given accuracy levels; (ii) tuning techniques,
including a novel technique based on adversarial sampling, that can vir-
tually eliminate false negatives (positive states classified as negative),
thereby making the classifier more conservative. We have applied NSC
to six nonlinear hybrid system benchmarks, achieving an accuracy of
99.25% to 99.98%, and a false-negative rate of 0.0033 to 0, which we
further reduced to 0.0015 to 0 after tuning the classifier. We believe that
this level of accuracy is acceptable in many practical applications, and
that these results demonstrate the promise of the NSC approach.

1 Introduction

Model checking of hybrid systems is usually expressed in terms of the following
reachability problem for hybrid automata (HA): given an HA M, a set of initial
states I, and a set of unsafe states U , determine whether there exists a trajectory
of M starting in an initial state and ending in an unsafe state. The time-bounded
version of this problem considers trajectories that are within a given time bound
T . It has been shown that reachability problems and time-bounded reachability
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problems for HA are undecidable [16], except for some fairly restrictive classes
of HA [7,16]. HA model checkers cope with this undecidability by providing
approximate answers to reachability [13].

This paper introduces the State Classification Problem (SCP), a generaliza-
tion of the model checking problem for hybrid systems. Let B = {0, 1} be the
set of Boolean values. Given an HA M with state space S, time bound T , and
set of unsafe states U ⊂ S, the SCP problem is to find a function F ∗ : S −→ B

such that for all s ∈ S, F ∗(s) = 1 if it is possible for M, starting in s, to reach
a state in U within time T ; F ∗(s) = 0 otherwise. A state s ∈ S is called positive
if F ∗(s) = 1. Otherwise, s is negative. We call such a function a state classifier.

SCP generalizes the model checking problem. Model checking, in the context
of SCP, is simply the problem of determining whether there exists a positive
state in the set of initial states. Its intent is not to classify all states in S.

Classifying the states of a complex system is an interesting problem in its
own right. State classification is also useful in at least two other contexts. First,
due to random disturbances, a hybrid system may restart in a random state
outside the initial region, and we may wish to check the system’s safety from
that state. Secondly, a classifier can be used for online model checking [27], where
in the process of monitoring a system’s behavior, one would like to determine,
in real-time, the fate of the system going forward from the current (non-initial)
state.

This paper shows how deep neural networks (DNNs) can be used for state
classification, an approach we refer to as Neural State Classification (NSC). An
NSC classifier is subject to false positives (FPs) – a state s is deemed positive
when it is actually negative, and, more importantly, false negatives (FNs) – s is
deemed negative when it is actually positive.

A well-trained NSC classifier offers high accuracy, runs in constant time
(approximately 1 ms, in our experiments), and takes constant space (e.g., a DNN
with l hidden layers and n neurons only requires functions of dimension l · n for
its encoding). This makes NSC classifiers very appealing for applications such
as online model checking, a type of analysis subject to strict time and space
constraints. NSC classifiers can also be used in runtime verification applications
where a low probability of FNs is acceptable, e.g., performance-related system
monitoring.

Our approach can also classify states of parametric HA by simply encoding
each parameter as an additional input to the classifier. This makes NSC more
powerful than state-of-the-art hybrid system reachability tools that have little or
no support for parametric analysis [12,13]. In particular, we can train a classifier
that classifies states of any instance of the parameterized HA, even instances with
parameter values not seen during training.

NSC-based classification can be lifted from states to (convex) sets of states by
applying output-range estimation [30]. Such techniques can be used to compute
safe bounds for the given state region.
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Fig. 1. Overview of the NSC approach.

The NSC method is summarized in Fig. 1. We train the state classifier using
supervised learning, where the training examples are derived by sampling the
state and parameter spaces according to some distribution. Reachability values
for the examples are computed by invoking an oracle, i.e., an hybrid system
model checker [13] or a simulator when the system is deterministic.

We consider three sampling strategies: uniform, where every state is equi-
probable, balanced, which seeks to improve accuracy by drawing a balanced num-
ber of positive and negative states, and dynamics-aware, which assigns to each
state the estimated probability that the state is visited in any time-bounded evo-
lution of the system. The choice of sampling strategy depends on the intended
application of NSC. For example, in the case of online model checking, dynamics-
aware sampling may be the most appropriate. For balanced sampling, we intro-
duce a method to generate arbitrarily large sets of positive samples based on
constructing and simulating reverse HAs.

NSC is not limited to DNN-based classifiers. We demonstrate that other
machine-learning models for classification, such as support vector machines
(SVMs) and binary decision trees (BDTs), also provide powerful solution tech-
niques.

Given the impossibility of training machine-learning models with guaranteed
accuracy w.r.t. the true input distribution, we evaluate a trained state classifier
by estimating its accuracy, false-positive rate, and false-negative rate (together
with their confidence intervals) on a test dataset of fresh samples. This allows
us to quantify how well the classifier extrapolates to unseen states, i.e., the
probability that it correctly predicts reachability for any state.

Inspired by statistical model checking [24], we also provide statistical guar-
antees through sequential hypothesis testing to certify (up to some confidence
level) that the classifier meets prescribed accuracy levels on unseen data. Note
that the systems we consider are nonprobabilistic. The statistical guarantees we
provide are for the probability that the classifier makes the correct prediction.
In contrast, the aim of probabilistic model checking [22] and statistical model
checking [24] is to compute the probability that a probabilistic system satisfies
a given correctness property. Relatedly, the focus of neural network (NN) ver-
ification [11,18,21] is on proving properties of an NN’s output rather than the
NN’s accuracy.
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We also consider two tuning methods that can reduce and virtually elim-
inate false negatives: a new method called falsification-guided adaptation that
iteratively re-trains the classifier with false negatives found through adversarial
sampling; and threshold selection, which adjusts the NN’s classification threshold
to favor FPs over FNs.

Our experimental results demonstrate the feasibility and promise of our app-
roach, evaluated on six nonlinear hybrid system benchmarks. We consider shal-
low (1 hidden layer) and deep (3 hidden layers) NNs with sigmoid and ReLU
activation functions. Our techniques achieve a prediction accuracy of 99.25% to
99.98% and a false-negative rate of 0.0033 to 0, taking into account the best
classifier for each of the six models, with DNNs yielding superior accuracy than
shallow NNs, SVMs, and BDTs. We believe that such a range for the FN rate is
acceptable in many practical applications, and we show how this can be further
improved through tuning of the classifiers.

In summary, our main contributions are the following:

– We introduce the State Classification Problem for hybrid systems.
– We develop the Neural State Classification method for solving the SCP,

including techniques for sampling, establishing statistical guarantees on a
classifier’s accuracy, and reducing its FN rate.

– We introduce a new technique for constructing the reverse HA of a given HA,
for a general class of HAs, and use reverse HAs to generate balanced training
datasets.

– We introduce a falsification-guided adaptation algorithm for eliminating FNs,
thereby producing conservative state classifiers.

– We provide an extensive evaluation on six nonlinear hybrid system models.

2 Problem Formulation

We introduce the problem of learning a state classifier for a hybrid automaton
and a bounded reachability property. First, we define these terms.

Definition 1 (Hybrid automaton). A hybrid automaton (HA) is a tuple
M = (Loc, Var , Init ,Flow ,Trans, Inv), where Loc is a finite set of discrete
locations (or modes); Var = {x1, . . . , xn} is a set of continuous variables, evalu-
ated over a continuous domain X ⊆ R

n; Init ⊆ S(M) is the set of initial states,
where S(M) = Loc × X is the state space of M; Flow : Loc −→ (X −→ X) is the
flow function, defining the continuous dynamics at each location; Trans is the
transition relation, consisting of tuples of the form (l, g, v, l′), where l, l′ ∈ Loc
are source and target locations, respectively, g ⊆ X is the guard, and v : X −→ X
is the reset ; Inv : Loc −→ 2X is the invariant at each location.

We also consider parameterized HA in which the flow, guard, reset and invari-
ant may have parameters whose values are constant throughout an execution.
We treat parameters as continuous variables with flow equal to zero and identity
reset map.
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The behavior of an HA M can be described in terms of its trajectories. A
trajectory may start from any state; it does not need to start from an initial
state. For time bound T ∈ R

≥0, let T = [0, T ] ⊆ R
≥0 be the time domain.

Definition 2 (Trajectory [3]). For HA M = (Loc,Var , Init ,Flow ,
Trans, Inv), time domain T = [0, T ], let ρ : T −→ S(M) be a function map-
ping time instants into states of M. For t ∈ T, let ρ(t) = (l(t),x(t)) be the state
at time t, with l(t) being the location and x(t) the vector of continuous variables.
Let (ξi)i=0,...,k ∈ T

k+1 be the ordered sequence of time points where mode jumps
happen, i.e., such that ξ0 = 0, ξk = T , and for all i = 0, . . . , k − 1 and for all
t ∈ [ξi, ξi+1), l(t) = l(ξi). Then, ρ is a trajectory of M if it is consistent with the
invariants: ∀t ∈ T. x(t) ∈ Inv(l(t)); flows: ∀t ∈ T. ẋ(t) = Flow(l(t))(x(t)); and
transition relation: ∀i < k. ∃(l(ξi), g, v, l(ξi+1)) ∈ Trans. x(ξ−

i+1) ∈ g ∧x(ξi+1) =
v(x(ξ−

i+1)).

Definition 3 (Time-bounded reachability). Given an HA M, set of states
U ⊆ S(M), state s ∈ S(M), and time bound T , decide whether there exists a
trajectory ρ of M starting from s and t ∈ [0, T ] such that ρ(t) ∈ U , denoted
M |= Reach(U, s, T ).

Definition 4 (Positive and negative states). Given an HA M, set of states
U ⊆ S(M), called unsafe states, and time bound T , a state s ∈ S(M) is called
positive if M |= Reach(U, s, T ), i.e., an unsafe state is reachable from s within
time T . Otherwise, s is called negative.

We will use the term positive (negative) region for M’s set of positive (negative)
states.

Definition 5 (State classification problem). Given an HA M, set of states
U ⊆ S(M), and time bound T , find a function F ∗ : S(M) −→ B such that
F ∗(s) = M |= Reach(U, s, T ) for all s ∈ S(M).

It is easy to see that the model checking problem for hybrid systems can be
expressed as an SCP in which the domain of F ∗ is the set of initial states Init ,
instead of the whole state space. SCP is therefore a generalization of the model
checking problem.

Sample sets are used by NSC to learn state classifiers and to evaluate their
performance. Unsafe states are trivially positive (for any T ), so we exclude them
from the sampling domain. Each sample consists of a state s and Boolean b
which is the answer to the reachability problem starting from state s. We call
(s, 1) a positive sample and (s, 0) a negative sample. Both kinds of samples are
generally needed for adequately learning a classifier.

Definition 6 (Sample set). For model M, set of states U ⊆ S(M), and
time bound T , a sample set is any finite set {(s, b) ∈ (S(M) \ U) × B | b = (M
|= Reach(U, s, T ))}.
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The derivation of an NSC classifier reduces to a supervised learning problem,
specifically, a binary classification problem. Given a sample set D called the
training set, NSC approximates the exact state classifier F ∗ in Definition 5 by
learning a total function F : (S(M) \ U) → B from D.

Learning F typically corresponds to finding values of F ’s parameters that
minimize some measure of discrepancy between F and the training set D. We
do not require that the learned function agree with the D on every state that
appears in D, because this can lead to over-fitting to D and hence poor gener-
alization to other states.

To evaluate the performance of F , we use three standard metrics: accuracy
PA, i.e, the probability that F produces the correct prediction; the probability of
false positives, PFP; and the probability of false negatives, PFN. In safety-critical
applications, achieving a low FN rate is typically more important than achieving
a low FP rate. Precisely computing these probabilities is, in general, infeasible.
We therefore compute an empirical accuracy measure, false-positive rate, and
false-negative rate over a test set D′ containing n fresh samples not appearing
in the training set as follows:

P̂A =
1

n

∑

(s,b)∈D′
1F (s)=b , P̂FP =

1

n

∑

(s,b)∈D′
1F (s)∧¬b , P̂FN =

1

n

∑

(s,b)∈D′
1¬F (s)∧b (1)

where 1 is the indicator function. We obtain statistically sound bounds for these
probabilities through the Clopper-Pearson method for deriving precise confi-
dence intervals.

3 Neural State Classification

This section introduces the main components of the NSC approach.

3.1 Neural Networks for Classification

NSC uses feedforward neural networks, a type of neural network with one-way
connections from input to output layers [23]. NSC uses both shallow NNs, with
one hidden layer and one output layer, and deep NNs, with multiple hidden
layers. Additional background on NNs is provided in an extended version of this
paper [26].

An NN defines a real-valued function F (x). When using an NN for classifi-
cation, a classification threshold θ is specified, and an input vector x is classified
as positive if F (x) ≥ θ, and as negative otherwise.

The theoretical justification for using NNs to solve the SCP is the following.
In [17], it is shown that shallow feedforward NNs are universal approximators;
i.e., with appropriate parameters, they can approximate any Borel-measurable
function arbitrarily well with a finite number of neurons (and just one hidden
layer). Under mild assumptions, this also applies to the true state classifier F ∗

of the SCP (Definition 5). A proof of this claim is given in [26] . Arbitrarily high
precision might not be achievable in practice, as it would require significantly
large training sets and numbers of neurons, and a precise learning algorithm.
Nevertheless, NNs are extremely powerful.
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3.2 Oracles

Given a state (sample) s of an HA M , an NSC oracle is a procedure for labeling
s; i.e., for deciding whether M |= Reach(U, s, T ). NSC utilizes the following
oracles.

Reachability checker. For nonlinear HA, NSC uses dReal [13], an SMT solver
that supports bounded model checking of such HA. dReal provides sound unsat-
isfiability proofs, but satisfiability is approximated up to a user-defined precision
(δ-satisfiability). The oracle first attempts to verify that s is negative by checking
M |= Reach(U, s, T ) for unsatisfiability. If this instance is instead δ-sat, the ora-
cle attempts to prove the unsatisfiability of M |= ¬Reach(U, s, T ), which would
imply that s is positive. The latter instance can also be δ-sat, meaning that
this oracle cannot make a decision about s. This situation never occurred in our
evaluation and can be made less likely by choosing a small δ. If it did occur, our
plan would be to conservatively mark the state as positive. The oracle requires an
upper bound on the number of discrete jumps to be considered. It supports HAs
with Lipschitz continuous dynamics and hyperrectangular continuous domains
(i.e., defined as the product of closed intervals), and allows trigonometric and
other non-polynomial functions in the initial conditions, guards, invariants, and
resets.

Simulator. For deterministic systems, we implemented a simulator based on
MATLAB’s ode45 variable-step ODE solver. To check reachability, we employ
the solver’s event-detection method to catch relevant zero-crossing events (i.e.,
reaching U).

Backwards simulator. The backwards simulator is not an oracle per se, but, as
described in Sect. 3.3, is central to one of our sampling methods. We first con-
struct the reverse HA according to Definition 7, which is more general than the
one for rectangular HAs given in [16]. We use dot-notation to indicate members
of a tuple, and lift resets v to sets of states; i.e., v(X ′) = {v(x) | x ∈ X ′}.

Definition 7 (Reverse HA). Given an HA M, its reverse HA
←−M is an HA

such that the modes, continuous variables, and invariants are the same as for M,
the flows are reversed, i.e., ∀(l, x) ∈ S(M),

←−M.Flow(l)(x) = −M.Flow(l)(x),
and for each transition (l, g, v, l′) ∈ M.Trans, the corresponding transition
(l′,←−g ,←−v , l) ∈ ←−M.Trans must be such that ←−g = v(g) and ←−v is the inverse
of v if v is injective; otherwise, ←−v updates the continuous state x to any value
in the set ←−v (x) = {x′ | x′ ∈ g ∧ v(x′) = x}.1

Although every HA admits a reverse counterpart according to Definition 7,
it is clearly impractical to find a reverse reset function ←−v (x) if v is a one-way
function. For an example of reversible HA with non-injective reset functions, see
the HA and reverse HA in [26, Appendix D.4].

1 Technically, for v non-injective, ←−v is in general a nondeterministic reset: ←−v : X −→
2X .
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Note that a deterministic HA may admit a nondeterministic reverse HA.
Since we classify all states in the state space, we assume that M and

←−M can
be initialized to any state. We next define the notion of a reverse trajectory ←−ρ ,
which intuitively is obtained by running ρ backwards, starting from ρ’s last state
and ending with its first state.

Definition 8 (Reverse trajectory). For HA M, time domain T = [0, T ], tra-
jectory ρ with its corresponding sequence of switching time points (ξi)i=0,...,k ∈
T
k+1, the reverse trajectory ←−ρ = (l(t),x(t)) of ρ and its corresponding sequence

of switching time points
(←−

ξ i

)
i=0,...,k

∈ T
k+1 are such that for i = 0, . . . , k,

←−
ξ i = T − ξk−i, and ∀i < k, ←−ρ .l(

←−
ξ i) = ρ.l(ξk−i−1) ∧ ∀t ∈ [

←−
ξ i,

←−
ξ i+1),←−ρ .l(t) = ←−ρ .l(

←−
ξ i) ∧ ←−ρ .x(t) = ρ.x(T − t).

Theorem 1. For an HA M that admits a reverse HA
←−M, every trajectory ρ

of M is reversible, i.e., the reverse trajectory ←−ρ of ρ is a trajectory of
←−M, and

every trajectory ←−ρ of
←−M is forward-feasible, i.e., the reverse trajectory ρ of ←−ρ

is a trajectory of M.

Proof. See [26, Appendix A.2].

Given an unsafe state u ∈ U of an HA M that admits a reverse HA
←−M,

Theorem 1 allows one to find a positive state s ∈ S(M) \U from which u can be
reached within time T . The method works by simulating multiple trajectories of←−M starting in u and up to time T . In particular, we explore the reverse trajec-
tories from u through an isotropic random walk, i.e., by choosing uniformly at
random, at each step of the simulation, the next transition from those available.

3.3 Generation of Training Data and Test Data

We present three sampling methods for generation of training data and test
data. Let X̄ denote the continuous component of S(M) \ U , i.e., without the
automaton’s location. Recall that model parameters, when present, are expressed
as (constant) continuous state variables. They can be sampled independently
from the other state variables using appropriate distributions, possibly different
from those described below.

Uniform Sampling. When the union of mode invariants covers X̄, the algorithm
first uniformly samples a continuous state x from X̄ and then samples a mode m
whose invariant is consistent with x (i.e, x ∈ Inv(m)). When the union of mode
invariants does not cover X̄, we first uniformly sample the mode m and then a
continuous state x ∈ Inv(m). For simplicity, we restrict attention to cases where
the region to be sampled is rectangular, although we could use algorithms for
uniform sampling of convex polytopes [20]. We use the reachability checker or
the simulator (for deterministic systems) to label the sampled states.

Balanced Sampling. In systems where the unsafe states U are a small part of the
overall state space, a uniform sampling strategy produces imbalanced datasets



430 D. Phan et al.

with insufficient positive samples, causing the learned classifier to have relatively
low accuracy. For such systems, we generate balanced datasets with equal num-
bers of negative and positive samples as follows. Negative samples are obtained
by uniformly sampling states from S(M) \ U and invoking the reachability
checker on those states. In this case, the oracle only needs to verify that the
sampled state is negative, i.e., to check that M |= Reach(U, s, T ) is unsatisfi-
able. For deterministic systems, the simulator is used instead. Positive samples
are obtained by uniformly sampling unsafe states u from U and invoking the
backwards simulator from u.

Dynamics-Aware Sampling. This technique generates datasets according to a
state distribution expected in a deployed system. It does this by estimating the
probability that a state is visited in a trajectory starting from the initial region
Init within time T ′, where T ′ > T . This is accomplished by uniformly sampling
states from Init and performing a random exploration of the trajectories from
those states up to time T ′. The resulting distribution, called dynamics-aware
state distribution, is estimated from the multiset of states encountered in those
trajectories. In our experiments, we estimate a discrete distribution, but other
kinds of distributions (e.g., smooth kernel or piecewise-linear) are also supported.
The reachability checker or simulator is used to label states sampled from the
resulting distribution. This method typically yields highly unbalanced datasets,
and thus should not be applied on its own to generate training data.

3.4 Statistical Guarantees with Sequential Hypothesis Testing

Given the infeasibility of training machine-learning models with guaranteed
accuracy on unseen data2, we provide statistical guarantees a posteriori, i.e.,
after training. Inspired by statistical approaches to model checking [24], we
employ hypothesis testing to certify that our classifiers meet prescribed levels of
accuracy, and FN/FP rates.

We provide guarantees of the form PA ≥ θA (i.e., the true accuracy value
is above θA), PFN ≤ θFN and PFP ≤ θFP (i.e., the true rate of FNs and FPs
are below θFN and θFP, respectively). Being based on hypothesis testing, such
guarantees are precise up to arbitrary error bounds α, β ∈ (0, 1), such that the
probability of Type-I errors (i.e., of accepting Px < θx when Px ≥ θx, where
x ∈ {A,FN,FP}) is bounded by α, and the probability of Type-II errors (i.e., of
accepting Px ≥ θx when Px < θx) is bounded by β. The pair (α, β) is known as
the strength of the test.

To ensure both error bounds simultaneously, the original test Px ≥ θx vs
Px < θx is relaxed by introducing a small indifference region, i.e., we test the
hypothesis H0 : Px ≥ θx + δ against H1 : Px ≤ θx − δ for some δ > 0. We use
Wald’s sequential probability ratio test (SPRT) to provide the above guarantees.
SPRT has the important advantage that it does not require a prescribed number
2 Statistical learning theory [29] provides statistical bounds on the generalization error

of learn models, but these bounds are very conservative and thus of little use in
practice. We use these bounds, however, in the proof of Theorem 2.
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of samples to accept one of the two hypotheses, but the decision is made if the
available samples provide sufficient evidence. Details of the SPRT can be found
in [26, Appendix B].

Note that in statistical model checking, SPRT is used to verify that a prob-
abilistic system satisfies a given property with probability above/below a given
threshold. In contrast, in NSC, SPRT is used to verify that the probability of
the classifier producing the correct prediction meets a given threshold.

3.5 Reducing the False Negative Rate

We discuss strategies to reduce the rate of FNs, the most serious errors from a
safety-critical perspective. Threshold selection is a simple, yet effective method,
which is based on tuning the classification threshold θ of the NN classifier (see
Sect. 3.1). Decreasing θ reduces the number of FNs but may increase the number
of FPs and thereby reduce overall accuracy. We evaluate the trade-off between
accuracy and FNs in Sect. 4.2.

Another way to reduce the FN rate is to re-train the classifier with unseen
FN samples found in the test stage. For this purpose, we devised a whitebox
falsification-guided adaptation algorithm that, at each iteration, systematically
searches for FNs using adversarial sampling ; i.e., by solving an optimization
problem that seeks to maximize the disagreement between predicted and true
reachability values. The optimization problem exploits the knowledge it possesses
of the function computed by the NN classifier (whitebox approach). FNs found
in this way are used to retrain the classifier. The algorithm iterates until the
falsifier cannot find any more FNs.

This approach can be viewed as the dual of counterexample-guided abstrac-
tion refinement [9]. CEGAR starts from an abstract model that represents an
over-approximation of the system dynamics, and uses counterexamples (FPs)
to refine the model, thereby reducing the FP rate. Our approach starts from an
under-approximation of the positive region (i.e., the set of states leading to a vio-
lation) and uses counterexamples (FNs) to make this region more conservative,
reducing the FN rate.

We show that under some assumptions about the performance of the classifier
and the falsifier, our algorithm converges to an empty set of FNs. Although it
may be difficult in practice to guarantee that these assumptions are satisfied, we
also show in Sect. 4.2 that our algorithm performs reasonably well in practice.

For a state s, let F (s) ∈ [0, 1] and b(s) ∈ {0, 1} be the NN prediction and true
reachability value, respectively. Let FN k denote the true set of false negatives
(i.e., all states s such that b(s) = 1 and F (s) < θ) at the k-th iteration of the
adaptation algorithm, and let F̂N k denote the finite subset of FN k found by
the falsifier. The cumulative set of training samples at the k-th iteration of the
algorithm is denoted Dk = D ∪ ⋃k

i=1 F̂N k, where D is the set of samples for the
initial training of the classifier.
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Assumption 1. At each iteration k, the classifier correctly predicts positive
training samples, i.e., ∀s ∈ Dk. b(s) = 1 =⇒ F (s) ≥ θ, and is such that
the FP rate w.r.t. training samples is no larger than the FP rate w.r.t. unseen
samples.

Assumption 2. At each iteration k, the falsifier can always find an FN when
it exists, i.e., FN k �= ∅ ⇐⇒ F̂N k �= ∅.
Theorem 2. Under Assumptions 1–2, the adaptation algorithm converges to an
empty set of FNs with high probability, i.e., for all η ∈ (0, 1), Pr(limk→∞ FN k =
∅) ≥ 1 − η.

Proof. See [26, Appendix A.3].

We developed a falsifier that uses a genetic algorithm (GA) [25], a nonlin-
ear optimization method for finding multiple global (sub-)optima. In our case,
we indeed have multiple solutions because FN samples are found at the deci-
sion boundaries of the classifier, separating the predicted positive and negative
regions. Due to the real-valued state space, each set FN k is either empty or
infinite.

FN states have F (s) − b(s) < −θ, while FPs are such that F (s) − b(s) ≥ θ.
By maximizing the absolute discrepancy |F (s)− b(s)|, we can identify both FNs
and FPs, where only the former are kept for retraining. Specifically, the GA
minimizes the objective function o(s) = 1/(8 · (F (s) − b(s))2) which, for default
threshold θ = 0.5, gives a proportionally higher penalty to correctly predicted
states (0.5 ≤ o(s) ≤ ∞) than wrong predictions (0.125 ≤ o(s) ≤ 0.5). We retrain
the network with all FN candidates found by the GA, not just the optima.

4 Experimental Evaluation

We evaluated our NSC approach on six hybrid-system case studies: a model of
the spiking neuron action potential [8], the classic inverted pendulum on a cart,
a quadcopter system [15], a cruise controller [8], a powertrain model [19], and
a helicopter model [2]. These case studies represent a broad spectrum of hybrid
systems and varying degrees of complexity (deterministic, nondeterministic, non-
linear dynamics including trig functions, 2–29 variables, 1–6 modes, 1–11 transi-
tions). Detailed descriptions of the case studies are given in [26, Appendix A.3].

For all case studies, NSC neural networks were learned using MATLAB’s
train function, with the Levenberg-Marquardt backpropagation algorithm opti-
mizing the mean square error loss function, and the Nguyen-Widrow initializa-
tion method for the NN layers. With this setup, we achieved better performance
than more standard approaches such as minimizing binary cross entropy using
stochastic gradient methods. Training is very fast, taking 2–19 s for a training
dataset with 20,000 samples.

We evaluated the following types of classifiers: sigmoid DNNs (DNN-S) with
3 hidden layers of 10 neurons each, with the Tan-Sigmoid activation function for
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the hidden layers and the Log-Sigmoid activation function for the output layer;
shallow NNs (SNN), with the same activation functions as DNN-S but with one
hidden layer of 20 neurons; ReLU DNNs (DNN-R), with 3 hidden layers of 10
neurons each, the rectified linear unit (ReLU) activation function for the hidden
layers, and the softmax function for the output layer; support vector machines
with radial kernel (SVM); binary decision trees (BDT); and a simple classifier
that returns the label of the nearest neighbor in the training set (NBOR). We
also obtained results for DNN ensembles that combine the predictions of multiple
DNNs through majority voting. As expected, ensembles outperformed all of the
other classifiers. Due to space limitations, these results are omitted.

We learned the classifiers from relatively small datasets, using training sets of
20 K samples and test sets of 10 K samples, except where noted otherwise. Larger
training sets significantly improved classifier performance for only two of the case
studies; see Fig. 2. Unless otherwise specified, training and test sets are drawn
from the same distribution. The NN architecture (numbers of layers and neurons)
was chosen empirically. To avoid overfitting, we did not tune the architecture
to optimize the performance for our data. We systematically evaluated other
architectures (see [26, Appendix E]), but found no alternatives with consistently
better performance than our default configuration of 3 layers and 10 neurons.
We also experimented with 1D Convolutional Neural Networks (CNNs), but they
performed worse than the DNN architectures.

In the following, when clear from the context, we omit the modifier “empiri-
cal” when referring to accuracy, FN, and FP rates over a test dataset (as opposed
to the true accuracy over the state distribution).

4.1 Performance Evaluation

Table 1 shows empirical accuracy and FN rate for all classifiers and case studies,
using uniform and balanced sampling. We obtain very high classification accu-
racy for neuron, pendulum, quadcopter and cruise. For these case studies, DNN-
based classifiers registered the best performance, with accuracy values ranging
between 99.48% and 99.98% and FN rates between 0.24% and 0%. Only a minor
performance degradation is observed for the shallow neural network SNN, with
accuracy in the range 98.89–99.85%.

Fig. 2. Performance of DNN-S classifier
on helicopter and powertrain models with
varying numbers of training samples (uni-
form sampling).

In contrast, the accuracy for the
helicopter and powertrain models is
poor if we use only 20 K training sam-
ples. These models are indeed par-
ticularly challenging, owing to their
high dimensionality (helicopter) and
highly nonlinear dynamics (power-
train). Larger training sets provide
considerable improvement in accuracy
and FN rate, as shown in Fig. 2.
For helicopter, accuracy jumps from
98.49% (20 K samples) to 99.92% (1 M
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samples), and the FN rate decreases from 0.84% (20 K) to 0.04% (1 M). For
powertrain, accuracy increases from 96.68% (20 K) to 99.25% (1 M), and the FN
rate decreases from 1.28% (20 K) to 0.33% (1 M).

In general, we found that the NN-based classifiers have superior accuracy
compared to support vector machines and binary decision trees. As expected, the
nearest-neighbor method demonstrated poor prediction capabilities. No single
sampling method provides a clear advantage over the others in terms of accuracy,
most likely because training and test sets are drawn from the same distribution.

Dynamics-aware state distribution. To evaluate the behavior of the classifiers
with the dynamics-aware state distribution (introduced in Sect. 3.3), we generate
training data with a combination of dynamics-aware sampling and either uniform
or balanced sampling, because dynamics-aware sampling alone yields unbalanced
datasets unsuitable for training. Test data consists exclusively of dynamics-aware
samples.

Table 1. Empirical accuracy (Acc) and FN rate of the state classifiers for each case
study, classifier type, and sampling method. Values are in percentages. For each mea-
sure and sampling method, the best result is highlighted in bold. False positives and
confidence intervals are reported in Tables 5 and 6 of the Appendix provided in [26].

Table 2 shows that the classifiers yield accuracy values comparable to those of
Table 1 (compiled with balanced and uniform distributions) for all case studies.
We see that the powertrain model attains 100% accuracy, indicating that its
dynamics-aware distribution favors states that are easy enough for the DNN to
classify correctly.
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Table 2. Empirical accuracy of DNN-S classifiers tested on 10 K dynamics-aware sam-
ples and trained with 20K samples. Each row corresponds to a different training distri-
bution. Unif+Dyn-aware and Bal+Dyn-aware were obtained by combining 10 K
uniform/balanced samples with 10K dynamics-aware samples. In parenthesis is the
accuracy difference with the corresponding classifier from Table 1

Neuron Pendulum Quadcopter Cruise Helicopter Powertrain

Unif+Dyn-aware 99.91 (+0.1) 99.93 (−0.05) 99.84 (+0.01) 99.14 (−0.81) 98.77 (+0.28) 100 (+3.32)

Bal+Dyn-aware 99.8 (−0.03) 99.88 (−0.01) 99.79 (−0.03) 99.35 (−0.59) 98.46 (+0.22) 100 (+2.8)

Table 3. Empirical accuracy (P̂A)
and FN rate (P̂FN ) for DNN-S clas-
sifier for neuron model with increas-
ing number of parameters.

Num. of parameters

1 2 3 4 5

P̂A 99.8 99.7 97.9 98.1 97.8

P̂FN 0.2 0.2 1.6 1.3 1.5

Parametric analysis. We show that NSC
works effectively for parametric systems,
being able to classify states in models with
parameter values not seen during training.
We derive parametric versions of the neu-
ron model by turning constants a, b, c, d, I
(see [26, Appendix D.1]) into parameters
uniformly distributed in the ±50% interval
around their default value.

Table 3 shows the accuracy and FN rates
for DNN-S, trained with 110 K samples for models with increasing numbers of
parameters, which are increasingly long prefixes of the sequence a, b, c, d, I. We
achieve very high accuracy (≥99.7%) for up to two parameters. For three to
five parameters, the accuracy decreases but stays relatively high (around 98%),
suggesting that larger training sets are required for these cases. Indeed the input
space grows exponentially in the number of parameters, while we kept the size
of the training set constant.

Statistical guarantees. We use SPRT (Sect. 3.4) to provide statistical guarantees
for four case studies, each trained with 20 K balanced samples. See Table 4. We
assess two properties certifying that the true (not empirical) accuracy and FNs
meet given performance levels: PA ≥ 99.7%, and PFN ≤ 0.2%. We omit the

Table 4. Statistical guarantees based on the SPRT. Samples were generated using
balanced sampling. In parenthesis are the number of samples required to reach the
decision. Parameters of the test are α = β = 0.01 and δ = 0.001. Thresholds are
θA = 99.7% and θFN = 0.2%.
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helicopter and powertrain models from this assessment, because performance
results for these models are clearly outside the desired levels when only 20 K
samples are used for training.

The only classifier that guarantees these performance levels for all case studies
is the sigmoid DNN. We also observe that a small number of samples suffices
to obtain statistical guarantees with the given strength: only 3 out of 48 tests
needed more than 10 K samples to reach a decision.

4.2 Reducing the False Negative Rate

Falsification-guided adaptation. We evaluate the benefits of adaptation by incre-
mentally adapting the trained NNs with false negative samples (see Sect. 3.5).
At each iteration, we run our GA-based falsifier to find FN samples, which are
then used to adapt the DNN. The adaptation loop terminates when the falsifier
cannot find a FN.

We employ MATLAB’s adapt function with gradient descent learning algo-
rithm and learning rates of 0.0005 for neuron and 0.003 for quadcopter, heli-
copter, and powertrain. For neuron and quadcopter, we use DNN-S classifiers
trained with 20 K balanced samples. We use DNN-S trained with 1 M balanced
samples for helicopter, and DNN-S trained with 1 M uniform samples for pow-
ertrain, because these classifiers have the best accuracy before adaptation. To
measure adaptation performances, we test the DNNs on 10 K samples after each
iteration of adaptation. Figure 3 shows how accuracy, FNs and FPs of the clas-
sifier evolve at each adaptation step. For the neuron, quadcopter, and helicopter
case studies, our falsification-guided adaptation algorithm works well to elim-
inate the FN rate at the cost of a slight increase in the FP rate after only
5–10 iterations. In these case studies, the number of FNs found by the falsifier
decreases quickly from hundreds or thousands to zero. For powertrain, the num-
ber of FNs found by the falsifier stays almost constant at about 70 on average
at each iteration. After 150 iterations, FN rate of the powertrain DNN decreases
slowly from 0.33% to 0.15%.

Figure 4 visualizes the effects of adaptation on the DNN-S classifier for the
neuron case study. Figure 4 (a) shows the prediction of the DNN after training

Fig. 3. Impact of incremental adaptation on empirical accuracy, FN and FP rates. FP-
rate curve for powertrain is omitted to allow using a scale that shows the decreasing
trend of the FN rate. The FP rate for powertrain increases from 0.48% to 2.89%.
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Fig. 4. Effects of adaptation on the DNN-S for the neuron case study. The white region
is the predicted negative region. The yellow region is the predicted positive region. Red
dots are FN samples. Crosses are FP samples.

with 20 K samples. Figure 4 (b) shows the prediction of the DNN after adapta-
tion. We see that adaptation expands the predicted positive region to enclose
all previous FN samples, i.e., they are correctly re-classified as positive. The
enlarged positive region also means the adapted DNN is more conservative, pro-
ducing more FPs as shown in Fig. 4 (b).

Threshold selection. We show that threshold selection can considerably reduce
the FN rate. Figure 5 shows the effect of threshold selection on accuracy, FN
rate, and FP rate for classifier DNN-S trained with uniform sampling (20 K
samples for neuron and quadcopter, 1 M samples for helicoper and powertrain).
Pendulum and cruise control case studies are excluded as they have low FN rate
(≤0.01%) prior to threshold selection.

Fig. 5. Impact of classification threshold on empirical accuracy, FN rate, and FP rate.

For the neuron case study, selecting θ = 0.32 reduces the FN rate from 10−3

to 5 · 10−4, with an accuracy loss of only 0.02%. With θ = 0.06, we obtain
a zero FN rate and a minor accuracy loss of 0.37%. For quadcopter, selecting
θ = 0.28 decreases the FN rate from 4 · 10−4 to 10−4, with an accuracy loss
of just 0.02%. Selecting θ = 0.16 yields zero FN rate and accuracy loss of just
0.12%. For helicopter, selecting θ = 0.33 reduces the FN rate from 3 · 10−4 to
2 · 10−4, with an accuracy gain of 0.01%. For powertrain, θ = 0.34 yields a good
trade-off between FN rate reduction (from 3.3 · 10−3 to 2.1 · 10−3) and accuracy
loss (0.1%).
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5 Related Work

Related work includes techniques for simulation-based verification, which enables
rigorous system analysis from finitely many executions. Statistical model check-
ing [24] for the verification of probabilistic systems with statistical guarantees is
an example of this form of verification. Simulation is also used for falsification
and reachability analysis of hybrid systems [1,2]. Our NSC approach also simu-
lates system executions (when the system is deterministic), but for the purpose
of learning a state classifier.

Other applications of machine learning in verification include parameter syn-
thesis of stochastic systems [5], techniques for inferring temporal logic specifica-
tions from examples [4], synthesis of invariants for program verification [14,28],
and reachability checking of Markov decision processes [6].

For safety-critical applications, verification of NNs has become a very active
area, with a focus on the derivation of adversarial inputs (i.e., those that
induce incorrect predictions). Most such approaches rely on SMT-based tech-
niques [11,18,21], while sampling-based methods are used in [10] for the analysis
of NN components “in the loop” with cyber-physical system models. Similarly,
our adaptation method systematically searches for adversarial inputs (FNs) to
render the classifier more conservative. A related problem is that of range esti-
mation [30], i.e., computing safe and tight enclosures for the predictions of an
NN over a (convex) input region. Such methods could be used to extend NSC
classification to sets of states.

6 Conclusions

We have introduced the state classification problem for hybrid systems and
offered a highly efficient solution based on neural state classification. NSC fea-
tures high accuracy and low false-negative rates, while including techniques for
virtually eliminating such errors and for certifying an NSC classifier’s perfor-
mance with statistical guarantees. Plans for future work include considering
more expressive temporal properties and extending our approach to stochastic
hybrid systems.
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Abstract. Most algorithms for the synthesis of reactive systems focus
on the construction of finite-state machines rather than actual programs.
This often leads to badly structured, unreadable code. In this paper,
we present a bounded synthesis approach that automatically constructs,
from a given specification in linear-time temporal logic (LTL), a program
in Madhusudan’s simple imperative language for reactive programs. We
develop and compare two principal approaches for the reduction of the
synthesis problem to a Boolean constraint satisfaction problem. The first
reduction is based on a generalization of bounded synthesis to two-way
alternating automata, the second reduction is based on a direct encoding
of the program syntax in the constraint system. We report on preliminary
experience with a prototype implementation, which indicates that the
direct encoding outperforms the automata approach.

1 Introduction

In reactive synthesis, we automatically construct a reactive system, such as the
controller of a cyberphysical system, that is guaranteed to satisfy a given specifi-
cation. The study of the synthesis problem, known also as Church’s problem [1],
dates back to the 1950s and has, especially in recent years, attracted a lot of
attention from both theory and practice. There is a growing number of both
tools (cf. [2–5]) and success stories, such as the synthesis of an arbiter for the
AMBA AHB bus, an open industrial standard for the on-chip communication
and management of functional blocks in system-on-a-chip (SoC) designs [6].

The practical use of the synthesis tools has, however, so far been limited. A
serious criticism is that, compared to code produced by a human programmer,
the code produced by the currently available synthesis tools is usually badly
structured and, quite simply, unreadable. The reason is that the synthesis tools
do not actually synthesize programs, but rather much simpler computational
models, such as finite state machines. As a result, the synthesized code lacks
control structures, such as while loops, and symbolic operations on program
variables: everything is flattened out into a huge state graph.

A significant step towards better implementations has been the bounded syn-
thesis [7] approach, where the number of states of the synthesized implementa-
tion is bounded by a constant. This can be used to construct finite state machines
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with a minimal number of states. Bounded synthesis has also been extended with
other structural measures, such as the number of cycles [8]. Bounded synthesis
reduces the synthesis problem to a constraint satisfaction problem: the existence
of an implementation of bounded size is expressed as a set of Boolean constraints,
which can subsequently be solved by a SAT or QBF solver [9]. Bounded syn-
thesis has proven highly effective in finding finite state machines with a simple
structure. However, existing methods based on bounded synthesis do not make
use of syntactical program constructs like loops or variables. The situation is dif-
ferent in the synthesis of sequential programs, where programs have long been
studied as the target of synthesis algorithms [10–14]. In particular, in syntax-
guided synthesis [10], the output of the synthesis algorithm is constrained to
programs whose syntax conforms to a given grammar. A first theoretical step
in this direction for reactive systems was proposed by Madhusudan [15]. Mad-
husudan defines a small imperative programming language and shows that the
existence of a program in this language with a fixed set of Boolean variables is
decidable. For this purpose, the specification is translated into an alternating
two-way tree automaton that reads in the syntax tree of a program, simulates
its behavior, and accepts all programs whose behavior satisfies the specification.
Because the set of variables is fixed in advance, the approach can be used to syn-
thesize programs with a minimal number of variables. However, unlike bounded
synthesis, this does not lead to programs that are minimial in other ways, such
as the number of states or cycles.

In this paper, we present the first bounded synthesis approach for reactive
programs. As in standard bounded synthesis [7], we reduce the synthesis problem
to a constraint satisfaction problem. The challenge is to find a constraint system
that encodes the existence of a program that satisfies the specification, and that,
at the same time, can be solved efficiently. We develop and compare two princi-
pal methods. The first method is inspired by Madhusudan’s construction in that
we also build a two-way tree automaton that recognizes the correct programs.
The key difficulty here is that the standard bounded synthesis approach does
not work with two-way automata, let alone the alternating two-way automata
produced in Madhusudan’s construction. We first give a new automata con-
struction that produces universal, instead of alternating, two-way automata. We
then generalize bounded synthesis to work on arbitrary graphs, including the run
graphs of two-way automata. The second method follows the original bounded
synthesis approach more closely. Rather than simulating the execution of the
program in the automaton, we encode the existence of both the program and its
run graph in the constraint system. The correctness of the synthesized program
is ensured, as in the original approach, with a universal (one-way) automaton
derived from the specification. Both methods allow us to compute programs that
satisfy the given specification and that are minimal in measures such as the size
of the program. The two approaches compute the exact same reactive programs,
but differ, conceptually, in how much work is done via an automata-theoretic
construction vs. in the constraint solving. In the first approach, the verification
of the synthesized program is done by the automaton, in the second approach
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by the constraint solving. Which approach is better? While no method has a
clear theoretical advantage over the other, our experiments with a prototype
implementation indicate a strong advantage for the second approach.

2 Preliminaries

We denote the Boolean values {0, 1} by B. The set of non-negative integers is
denoted by N and for a ∈ N the set {0, 1, . . . , a} is denoted by [a]. An alphabet
Σ is a non-empty finite set of symbols. The elements of an alphabet are called
letters. A infinite word α over an alphabet Σ is a infinite concatenation α =
α0α1 . . . of letters of Σ. The set of infinite words is denoted by Σω. With αn ∈ Σ
we access the n-th letter of the word. For an infinite word α ∈ Σω we define
with Inf(α) the set of states that appear infinitely often in α. A subset of Σω is
a language over infinite words.

2.1 Implementations

Implementations are arbitrary input-deterministic reactive systems. We fix the
finite input and output alphabet I and O, respectively. A Mealy machine is a
tuple M = (I,O,M,m0, τ, o) where I is an input-alphabet, O is an output-
alphabet, M is a finite set of states, m0 ∈ M is an initial state, τ : M ×2I → M
is a transition function and o : M × 2I → 2O is an output function. A system
path over an infinite input sequence αI is the sequence m0m1 . . . ∈ Mω such
that ∀i ∈ N : τ(mi, α

I
i ) = mi+1. The thereby produced infinite output sequence

is defined as αO = αO
0 αO

1 . . . ∈ (2O)ω, where every element has to match the
output function, i.e., ∀i ∈ N : αO

i = o(mi, α
I
i ). We say a Mealy machine M

produces a word α = (αI
0 ∪ αO

0 )(αI
1 ∪ αO

1 ) . . . ∈ (2I∪O)ω, iff the output αO is
produced for input αI . We refer to the set of all producible words as the language
of M, denoted by L(M) ⊆ (2I∪O)ω.

A more succinct representation of implementations are programs. The pro-
grams we are working with are imperative reactive programs over a fixed set
of Boolean variables B and fixed input/output aritys NI/NO. Our approach
builds upon [15] and we use the same syntax and semantics. Let b ∈ B be a
variable and both �bI and �bO be vectors over multiple variables of size NI and
NO, respectively. The syntax is defined with the following grammar

〈stmt〉 :: = 〈stmt〉 ; 〈stmt〉 | skip | b := 〈expr〉 | input �bI | output �bO
| if(〈expr〉) then {〈stmt〉} else {〈stmt〉} | while(〈expr〉){〈stmt〉}

〈expr〉 :: = b | tt | ff | (〈expr〉 ∨ 〈expr〉) | (¬ 〈expr〉)

The semantics are the natural one. Our programs start with an initial variable
valuation we define to be 0 for all variables. The program then interacts with
the environment by the means of input and output statements, i.e., for a vector
over Boolean variables �b the statement “input �b” takes an input in {0, 1}NI

from the environment and updates the values of �b. The statement “output �b”
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Fig. 1. Example-Code

while

tt ;

input r1r2 ;

output r1r2if

r1 then

assignr2

ff

skip

Fig. 2. Example-Program-Tree

outputs the values stored in �b, that is an output in {0, 1}NO . Therefor a program
with input/output arity NI/NO requires at least max(NI , NO) many variables,
i.e., |B| ≥ max(NI , NO). Between two input and output statements the pro-
gram can internally do any number of steps and manipulate the variables using
assignments, conditionals and loops. Note that programs are input-deterministic,
i.e., a program maps an infinite input sequence αI ∈ ({0, 1}NI )ω to an infinite
output sequence αO ∈ ({0, 1}NO )ω and we say a program can produce a word
α = (αI

0αO
0 )(αI

1αO
1 ) . . . ∈ ({0, 1}NI+NO )ω, iff it maps αI to αO. We define the

language of T , denoted by L(T ), as the set of all producible words. We assume
programs to alternate between input and output statements.

We represent our programs as Σ-labeled binary trees, i.e., a tuple (T, τ) where
T ⊆ {L,R}∗ is a finite and prefix closed set of nodes and τ : T → Σ is a labeling
function. Based on the defined syntax, we fix the set of labels as

ΣP = {¬,∨, ; , if, then,while} ∪ B ∪ {assignb | b ∈ B}

∪{input�b | �b ∈ BNI } ∪ {output�b | �b ∈ BNO}.

We refer to ΣP -labeled binary trees as program trees. If a node has only one
subtree we define it to be a the left subtree. Note that our program trees do
therefore not contain nodes with only a right subtree. For example, Fig. 1 depicts
an arbitrary program and Fig. 2 the corresponding program tree.

We express the current variable valuation as a function s : B → B. We update
variables �b ∈ Bn with new values �v ∈ B

n using the following notation:

s[�b/�v](x) =

{
vi if bi = x, for all i

s(x) otherwise

2.2 Automata

We define alternating automata over infinite words as usual, that is a tuple
A = (Σ,Q, q0, δ, Acc) where Σ is a finite alphabet, Q is a finite set of states,
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q0 ∈ Q is an initial state, δ : Q × Σ → B
+(Q) is a transition function and

Acc ⊆ Qω is an acceptance condition.
The B üchi acceptance condition BÜCHI(F ) on a set of states F ⊆ Q is

defined as BÜCHI(F ) =
{
q0q1 . . . ∈ Qω | Inf(α)∩F �= ∅

}
and F is called the set

of accepting states. The co-Büchi acceptance condition COBÜCHI(F ) on a set
of states F ⊆ Q is defined as COBÜCHI(F ) =

{
q0q1 . . . ∈ Qω | Inf(α) ∩ F = ∅

}
,

where F is called the set of rejecting states. To express combinations of Büchi
and co-Büchi expressions we use the Streett acceptance condition. Formally,
STREETT

(
F

)
on a set of tuples F = {(Ai, Gi)}i∈[k] ⊆ Q × Q is defined as

STREETT(F ) =
{
q0q1 . . . ∈ Qω | ∀i ∈ [k] : Inf(α) ∩ Ai �= ∅ =⇒ Inf(α) ∩ Gi �=

∅
}
. A run with a Streett condition is intuitively accepted, iff for all tuples

(Ai, Gi), the set Ai is hit only finitely often or the set Gi is hit infinitely often.
Two-way alternating tree automata are tuple (Σ,P, p0, δL, δR, δLR, δ∅, Acc),

where Σ is an input alphabet, P is a finite set of states, p0 ∈ P is an initial
state, Acc is an acceptance condition, and δ are transition functions of type
δS : P ×Σ×(S∪{D}) → B

+(P ×(S∪{U})), for S ∈ {L,R,LR, ∅}. We introduce
μ : T ×{L,R,U} → T ×{L,R,D} as a function to map states and directions to
move in, to the reached states and the matching incoming directions.

μ(t, L) = (t · L,D) μ(t.L, U) = (t, L)
μ(t, R) = (t · R,D) μ(t.R, U) = (t, R)

We consider specifications given in linear time-temporal logic (LTL). Such
specifications can be translated into non-deterministic Büchi automata or dually
into an universal co-Büchi automata as shown in [16]. For an arbitrary specifi-
cation we denote by Aspec and Aspec the corresponding non-deterministic Büchi
and universal co-Büchi automaton, respectively.

3 Automata Construction

We have already argued that programs, as a more succinct representation of
implementations, are highly desirable. However, in contrast to Mealy machines,
which only dependent on the current state and map an input to a corresponding
output, in programs such a direct mapping is not possible. Instead, programs
need to be simulated, variables to be altered, expressions to be evaluated and an
output statement to be traversed until we produce the corresponding output to
the received input. These steps not only depend on the current position in the
program but additionally also on the valuation of all variables.

We build upon Madhusudans reactive program synthesis approach [15] were
program synthesis is solved by means of two-way alternating Büchi tree automata
walking up and down over program trees while keeping track of the current valu-
ation and the state of a given Büchi specification automaton, which is simulated
by the input/output produced by traversing the program tree. The automaton
accepts a program tree whenever the simulated specification automaton accepts
the provided input/output. The constructed automaton, we will further refer
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to as A, is intersected with two other constructed automata which enforce syn-
tactically correctness and reactivity of the synthesized program, respectively.
Then a reactive and syntactically correct program is synthesized by means of an
emptiness check of the obtained automaton, involving an exponential blowup to
eliminate two-wayness and alternation.

3.1 Two-Way Universal Co-Büchi Tree Automaton

We construct a two-way non-deterministic Büchi tree automaton B that is equiv-
alent to A by using deterministic evaluation of Boolean expressions. We construct
B without an exponential blowup in the state space. We then complement B into
a two-way universal co-Büchi tree automaton convenient for the bounded syn-
thesis approach.

The two-way alternating Büchi tree automaton A uses universal choices
only in relation to Boolean expression evaluation. For example, for if, while
and assignb-statements a Boolean evaluation is needed. In this cases it non-
deterministically guesses whether the expression evaluates to 0 or 1 and then
universally sends one copy into the Boolean expression, which evaluates to true
iff the expression evaluates to the expected value, and one copy to continue
the corresponding normal execution. The copy evaluating the Boolean expres-
sion walks only downwards and since the subtree corresponding to the Boolean
expression is finite, this copy terminates to either true or false after finitely
many steps. Instead of using both non-deterministic and universal choices, we
evaluate the Boolean subtree deterministically in finitely many steps and then
continue the normal execution based on the result of the evaluation.

Note that we not only remove all universal choices but additionally all unnec-
essary sources of non-determinism. Therefore, besides traversing input- and
output-labels, that introduce unavoidable non-determinism, our program sim-
ulation is deterministic.

Our automaton B with the set of states

Pexec = S × Qspec × B
NI × {inp, out} × B

PB
expr = S × Qspec × B

NI × {inp, out} × {�,⊥}

PB = PB
expr ∪ Pexec

and initial state pB
0 = (s0, q0, i0, inp, 0), is defined with the transitions shown in

Fig. 3, where s ∈ S is a variable valuation, q ∈ Qspec the state of the simulated
specification automaton, i ∈ B

NI the last received input, m ∈ {inp, out} a flag
to ensure alternation between inputs and outputs, r ∈ {�,⊥} the result of a
Boolean evaluation and t ∈ {0, 1} a flag for the Büchi condition, which ensures
that the specification automaton is simulated for infinite steps and is only set
to 1 for a single simulation step after an output statement. We express states
corresponding to Boolean evaluations and program execution as (s, q, i,m, r) ∈
PB

expr and (s, q, i,m, t) ∈ PB
exec, respectively.
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tt r → � ff r → ⊥ b r → s[b]

∨ ∨ ∨

r = �

r = ⊥

¬ ¬ r → r

while while

r = ⊥

r = �

assignb assignb s[b] → r

if

then

if

then

r = � r = ⊥

if

then

input �b {s[�b] → �val, i → �val, m → out | �val ∈ B
NI}

m = inp

output �b {q → q′, m → inp, t → 1 | q′ ∈ (q, i, s[�b])}

m = out

skip ; ; ;

Fig. 3. Semantics of the constructed two-way automata
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The notation reads as follows: If the automaton enters a node with one of the
black incoming edges, it can move in the direction of the black outgoing edges,
while updating his state corresponding to the annotated update expression,
depicted by an enclosing rectangle. Additionally, the automaton needs to fulfill
the conditions annotated to the edges it traverses. To express non-determinism
we use sets of update expressions, such that each expression represents one pos-
sible successor. All state values not contained in the update expression stay the
same, except t which is set to 0. When changing from Boolean evaluation to
program execution, we copy s, q, i, m and vice versa.

The set of accepting states is defined as

FB =
{
(s, q, i,m, 1) | q ∈ Fspec

}
A formal construction of B is given in the full version of the paper [17,

18]. Note that B behaves similar to A during normal execution and that only
Boolean evaluation was altered. Therefore, the state spaces of the automata
only differ in the states corresponding to Boolean evaluation and especially the
sets of accepting states FA and FB are equivalent. Therefore, we can prove the
equivalence by showing that both automata visit the same sequences of accepting
states and thus accept the same program trees.

Theorem 1 ([17,18]). L(A) = L(B)

We now complement the constructed two-way non-deterministic Büchi
automaton into a two-way universal co-Büchi automaton. From this point
onwards, we refer with B to the two-way universal co-Büchi automaton.

Since A accepts precisely the programs that fail the specification and inter-
act infinitely often with the environment, the complement now only accepts
programs that do satisfy the specification or interact finitely often with the envi-
ronment. We fix the remaining misbehavior by enforcing syntactical correctness
and reactiveness.

3.2 Guarantee Syntactical Correctness

Due to the fact that B was designed to correctly simulate programs of our defined
syntax and transitions were only defined for syntax-valid statements, B implic-
itly rejects programs that are syntactically invalid. But such programs are only
then rejected when their syntactically incorrect statements are traversed in the
simulation, therefore B does not check for syntactically correct subtrees that
are unreachable. It is now arguable whether the syntax check is necessary in
practice. One could expect programs to be syntactically correct in total and this
expectation is in general well-argued. On the other hand, we do perform bounded
synthesis, i.e., we search for implementations with a bound on the implementa-
tion size and then increment this bound until a valid implementation is found.
It is easy to see that programs with unreachable parts can be represented by
smaller programs with the same behavior simply by removing unreachable state-
ments. Therefore, with an incremental search one first finds the smallest and thus
syntactically correct programs.
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3.3 Guarantee Reactiveness

It now remains to guarantee reactiveness of the programs accepted by B. For
that purpose, we introduce a two-way universal Büchi automaton Breactive, which
only accepts program trees that are reactive. This automaton is designed with
the exact same states and transitions as B but with another acceptance condi-
tion. The intersection of B and Breactive then yields a two-way universal Streett
automaton B′. We construct Breactive with the set of accepting states:

FB
reactive =

{
(s, q, i,m, 1) | ∀s, q, i,m

}
Breactive accepts a program tree, iff it produces infinitely many outputs on all
possible executions. Due to the alternation between input and output statements
the program reacts infinitely often with its environment, i.e., it is reactive.

Formally, B′ is the tuple (ΣP , PB, δB
L , δB

R, δB
LR, δB

∅ ,STREETT(FB′
)), where

FB′
=

{
(FB, ∅), (PB, FB

reactive)
}
.

Lemma 1. L(B′) = L(B) ∩ L(Breactive).

Proof. Besides the acceptance condition, all three automata are equivalent. The
tuples of the Streett condition (FB, ∅) and (PB, FB

reactive) express the co-Büchi
and Büchi condition of B and Breactive, respectively. �

We capture the complete construction by the following theorem.

Theorem 2. Let B be a finite set of Boolean variables and ϕ a specification
given as LTL-formula. The constructed two-way universal Streett automaton B′

accepts program trees over B that satisfy the specification.

4 Bounded Synthesis

In this section, we generalize the bounded synthesis approach towards arbitrary
universal automata and then apply it to the constructed two-way automaton to
synthesize bounded programs.

We fix Q to be a finite set of states. A run graph is a tuple G = (V, v0, E, f),
where V is a finite set of vertices, v0 is an initial vertex, E ⊆ V × V is a set
of directed edges and f : V → Q is a labeling function. A path π = π0π1 . . . ∈
V ω is contained in G, denoted by π ∈ G, iff ∀i ∈ N : (πi, πi+1) ∈ E and
π0 = v0, i.e., a path in the graph starting in the initial vertex. We denote with
f(π) = f(π0)f(π1) . . . ∈ Qω the application of f on every node in the path, i.e.,
a projection to an infinite sequence of states. We call a vertex v unreachable,
iff there exists no path π ∈ G containing v. Let Acc ⊆ Qω be an acceptance
condition. We say G satisfies Acc, iff every path of G satisfies the acceptance
condition, i.e., ∀π ∈ G : f(π) ∈ Acc.

Run graphs are used to express all possible runs of a universal automaton
on some implementation. This is usually done for universal word automata on
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Mealy machines, but we need a generalized version to later utilize it for two-
way universal tree automata on program trees. Let Σ = 2I∪O. We define a run
graph GA

M = (V, v0, E, f) of a universal word automaton A = (Σ,Q, q0, δ, Acc)
on a Mealy machine M = (I,O,M,m0, τ, o) as an instantiation of the given
definition, where

– V = Q × M ,
– v0 = (q0,m0),
– E =

{(
(q,m), (q′,m′)

)
| ∃in ∈ 2I , out ∈ 2O :

τ(m, in) = m′ ∧ o(m, in) = out ∧ q′ ∈ δ(q, in ∪ out)
}

and
– f(q,m) = q.

Since the run graph contains all infinite runs of A on words producible by
M, A accepts M, iff all runs in GA

M are accepting, i.e., GA
M satisfies Acc.

For some bound c ∈ N we denote {0, 1, . . . , c} by Dc. For a run graph G =
(V, v0, E, f) and a bound c ∈ N a c-bounded annotation function on G is a
function λ : V → Dc. An annotation comparison relation of arity n is a family
of relations 
 = (
0, 
1, . . . , 
n−1) ∈ (2Q×Dc×Dc)n. We refer to 
i ⊆ Q×Dc ×Dc

as basic comparison relations for i ∈ [n]. We denote the arity with | 
 | = n.
We write λ(v) 
i λ(v′) for (f(v), λ(v), λ(v′)) ∈ 
i and for comparison relations of
arity | 
 | = 1 we omit the index.

We say a path π ∈ G satisfies a comparison relation 
 with arity | 
 | = n,
denoted by π |= 
, iff for every basic comparison relation there exists an anno-
tation function that annotates every node with a value such that the annotated
number for all consecutive nodes in the path satisfy the basic comparison rela-
tion, i.e., ∀i ∈ [n] : ∃λ : ∀j ∈ N : λ(πj) 
i λ(πj+1). For an acceptance con-
dition Acc ⊆ Qω we say a comparison relation 
 expresses Acc, iff all paths
in G satisfy the relation if and only if the path satisfies the acceptance con-
dition, i.e., ∀π ∈ G : π |= 
 ↔ f(π) ∈ Acc. A c-bounded annotation func-
tion λ on G = (V, v0, E, f) is valid for a basic annotation comparison relation

 ⊆ Q × Dc × Dc, iff for all reachable v, v′ ∈ V : (v, v′) ∈ E → λ(v) 
 λ(v′).

We use the following annotation comparison relations to express Büchi, co-
Büchi and Streett acceptance conditions.

– Let F ⊆ Q and Acc = BÜCHI(F ). Then 
F
B is defined as

λ(v) 
F
B λ(v′) =

{
true if f(v) ∈ F

λ(v) > λ(v′) if f(v) �∈ F

– Let F ⊆ Q and Acc = CO-BÜCHI(F ). Then 
F
C is defined as

λ(v) 
F
C λ(v′) =

{
λ(v) > λ(v′) if f(v) ∈ F

λ(v) ≥ λ(v′) if f(v) �∈ F
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– Let F = {(Ai, Gi)}i∈[k] ⊆ 2Q×Q and Acc = STREETT(F ). Then 
F
S =

(
F,0
S , 
F,1

S , . . . , 
F,k−1
S ) is defined as

λ(v) 
F,i
S λ(v′) =

⎧⎪⎨
⎪⎩

true if f(v) ∈ Gi

λ(v) > λ(v′) if f(v) ∈ Ai ∧ f(v) �∈ Gi

λ(v) ≥ λ(v′) if f(v) �∈ Ai ∪ Gi

Note that | 
F
B | = | 
F

C | = 1 and | 
F
S | = k.

Theorem 3 ([7,19]). Let F be a set, the acceptance condition of A be expressed
by 
F

X with X ∈ {B,C, S}, c ∈ N a bound and GA
M the run graph of A on M.

If and only if, there exists a valid c-bounded annotation function λi on GA
M

for each basic comparison relation 
i, then GA
M satisfies Acc.

4.1 General Bounded Synthesis

In Theorem 3 we saw that the acceptance of a Mealy machine M by a universal
automata A can be expressed by the existence of an annotation comparison
relation. To do the same for two-way automata on program trees, we generalize
this theorem towards arbitrary run graphs.

Let A = (ΣP , P, p0, δL, δR, δLR, δ∅, Acc) be a two-way universal tree automa-
ton and T = (T, τ) a program tree. We define the run graph of A on T as
GA

T = (V, v0, E, f), where
– V = P × T × {L,R,D},
– v0 = (p0, ε,D),
– E =

{(
(p, t, d), (p′, t′, d′)

)
| ∃d′′ ∈ {L,R,U} : μ(t, d′′) = (t′, d′) ∧ (p′, d′′) ∈

δt(p, τ(t), d)
}

and
– f(p, t, d) = p.

For the generalized encoding, we use the same construction for the annotation
comparison relation as presented in [19] for Street acceptance conditions, which
conveniently suffices for the general run graphs. Büchi and co-Büchi then follow
as special cases.

Lemma 2 ([17,18]). For a Streett acceptance condition Acc = Streett(F ) with
set of tuples of states F ⊆ 2Q×Q and a run graph G = (V, v0, E, f):

If G satisfies Acc, then there exists a valid |V |-bounded annotation function λ
for each basic comparison relation in 
F

S .

Theorem 4. Let G = (V, v0, E, f) be a run graph, Acc ⊆ Qω a Büchi, co-Büchi
or Streett acceptance condition expressed by the relation 
X for X ∈ {B,C, S}.

There exists a valid |V |-bounded annotation function λi on G for each basic
comparison relation 
i, if and only if G satisfies Acc.

Proof. “ ⇒ ” : Let G, Acc, 
 with arity | 
 | = n and c be given and λi be a
valid c-bounded annotation comparison relation on G for 
i for all i ∈ [n]. Let
π = π0π1 . . . ∈ G be an arbitrary path in G and i ∈ [n]. Since λi is a valid
annotation function, λi(π0) 
i λi(π1) 
i . . . holds and therefore π |= 
. Since 

expresses Acc it follows that f(π) ∈ Acc, i.e., G satisfies Acc.

“ ⇐ ” : Lemma 2. �
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4.2 General Encoding

We showed that the run graph satisfies an acceptance condition Acc, iff the
implementation is accepted by the automaton. We also proved that the satisfac-
tion of Acc by a run graph can be expressed by the existence of valid annotation
functions.

We encode these constraints in SAT. The valid implementation can then be
extracted from the satisfied encoding. Note that in our definition of program
trees the structure was implicitly expressed by the nodes and for the encod-
ing we need to express them explicitly. Therefore, the structure of the tree is
encoded with successor functions L and R, expressing the left and right child of
a node, respectively. We encode the program tree and the annotation function
as uninterpreted functions as explained in the following. We introduce the fol-
lowing variables for arbitrary two-way automata A, program trees T , bounds c
and annotation comparison relations 
:

– τt encodes label l of t with log(|Σ|) many variables, notated as τt ≡ l
– Lt iff t has left child (implicitly the next program state t + 1)
– Rt encodes right the child of t ∈ T with log(|T |) many variables
– λB

p,t,d iff state (p, t, d) is reachable in the run graph
– λ#

i,p,t,d encodes the i-th annotation of state (p, t, d) with log(c) many variables.
We omit the index i in the encoding

The SAT formula ΦA,�
T consists of the following constraints:

– The initial state is reachable and all annotations fulfill the given bound:

λB

p0,t0,D ∧
∧

p∈P,
t∈T,

d∈{L,R,D}

λ#
p,t,d ≤ c

– Bounded synthesis encoding∧
p∈P,
t∈T,
d∈D

λB

p,t,d →
∧

σ∈Σ

(τt ≡ σ) →
∧

(p′,d′′)∈δ(p,σ,d),
t′∈T,

(ϕ,d′)∈μ′(t,d′′,t′)

ϕ → λB

p′,t′,d′ ∧ λ#
p,t,d 
 λ#

p′,t′,d′

μ′ : T × D′ × T → [B(Lt, Rt) × D] returns a list of pairs (ϕ, d′), where the
formula ϕ enforces the tree structure needed to reach p′, t′, d′.

The encoding checks whether universal properties in the run graph hold.
Note that we need to additionally forbid walking up from the root node, which
is omitted here.

Theorem 5. Given a two-way universal tree automaton A with a Büchi, co-
Büchi or Streett acceptance condition Acc expressed by 
 and a bound c ∈ N.
The constraint system ΦA,�

T is satisfiable, iff there is a program tree T with size
|T | ≤ �c/|A|� that is accepted by A.
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Proof. “ ⇒ ” : Let T be accepted by A, then with Theorem 4 there exists a valid
annotation function λi on G for each i ∈ [| 
 |]. Let λi be represented by λ#

i and
λB

i be true for all reachable states in the run graph G. Then ΦA,�
T is satisfied.

“ ⇐ ” : Let ΦA,�
T be satisfied. Then there exists a valid annotation function

λi encoded by λ#
i for each i ∈ [| 
 |] (set λi(v) = 0 for all unreachable states

v, i.e., where λ#
i (v) is false) that satisfies the encoding. With Theorem 4 the

acceptance of T by A follows. �

Utilizing this theorem, we now can by means of the encoding ΦB′
S synthesize

program trees accepted by B′, i.e., precisely those program trees, which corre-
spond to reactive programs that satisfy the given specification the automaton
was constructed with.

Corollary 1. The SAT encoding ΦB′
S is satisfiable, if and only if there exists a

program tree T with size |T | ≤ �c/|B′|� accepted by B′.

Size of construction The automaton can be constructed of size O(2|B|+|ϕ|),
i.e., for a fixed set of Boolean variables the automaton is linear in the size
of the specification automaton or exponential in the size of the specification
formula. The constructed constraint system ΦB′

S is of size O(|T | · |δ| · |ΣP |) with
x many variables, where x ∈ O(|T | · (|T | + |ΣP | + |Q| · log(|Q| · |T |))). Note
that |ΣP | ∈ O(|B|NI+NO ) grows polynomial in the number of variables for fixed
input/output arities.

5 Two-Wayless Encoding

Next, we sketch the second encoding that avoids the detour via universal two-way
automata. To this end, we alter the construction in that input- and output-labels
collapse to a single InOut-label with semantics as follows

InOut {�i → �val, q → q′ | �val ∈ B
NI , q′ ∈ δ(q,�i, s[�o])}

where we use output variables �o and input variables �i that correspond to inputs
and outputs of the system, respectively. In a nutshell, our new encoding consists
of four parts:

1. The first part guesses the program and ensures syntactical correctness.
2. The second part simulates the program for every possible input from every

reachable InOut-labeled state until it again reaches the next InOut-labeled
state. Note that every such simulation trace is deterministic once the input,
read at the initial InOut-labeled state, has been fixed.
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Table 1. Comparison of the general and the two-wayless encoding.

Specification States Additional
variables

|B′| Two-way
encoding

Two-wayless
encoding

in ↔ out 6 0 16 00m16 s 00m 02 s

in ↔ out 9 1 64 11m 29 s 08m 34 s

Latch 10 0 64 >120m 08m 07 s

2-bit arbiter 10 0 128 66m 48 s 14m18 s

3. The third part extracts a simplified transition structure from the resulting
execution graph, that consists of direct input labeled transitions from one
InOut-labeled state to the next one and output labeled states.

4. In the last part, this structure is then verified by a run graph construction
that must satisfy the specification, given as universal co-Büchi automaton.
To this end, we couple inputs on the edges with the outputs of the successor
state to preserve the Mealy semantics of the program.

The first part utilizes a similar structure as used for the previous encoding
and thus is skipped for convenience here. To simulate the program in the second
part, we introduce the notion of a valuation v ∈ V, where

V = P × B
B�I × {L,R,U} × B

captures the current program state, the current values of all non-input variables,
the current direction, and the result of the evaluation of the last Boolean expres-
sion, respectively. The simulation of the program is then expressed by a finite
execution graph, in which, after fixing a inputs�i ∈ 2I , every valuation points to a
successor valuation. This successor valuation is unique, except for InOut-labeled
states, whose successor depends on the next input to be read. The deterministic
evaluation follows from the rules of Fig. 3 and selects a unique successor for every
configuration, accordingly.

In part three, this expression graph then is compressed into a simplified tran-
sition structure. To this end, we need for every input and InOut-labeled starting
valuation, the target InOut-labeled valuation that is reached as a result of the
deterministic evaluation. In other words, we require to find a shortcut from every
such valuation to the next one. We use an inductive chain of constraints to deter-
mine this shortcut efficiently. Remember that we only know the unique successor
of every valuation which only allows to make one step forward at a time. Hence,
we can store for every valuation and input a second shortcut successor, using an
additional set of variables, constrained as follows: if the evaluated successor is
InOut-labeled, then the shortcut successor must be the same as the evaluated
one. Otherwise, it is the same as the shortcut successor of the successor valua-
tion, leading to the desired inductive definition. Furthermore, to ensure a proper
induction base, we use an additional ranking on the valuations that bounds
the number of steps between two InOut labeled valuations. This annotation is
realized in a similar fashion as in the previously presented encoding.
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Table 2. Synthesized implementations for the two-wayless encoding.

With these shortcuts at hand, we then can extract the simplified transition
structure, which is verified using a standard run graph encoding as used for clas-
sical bounded synthesis. Furthermore, we use an over-approximation to bound
the size of the structure and use a reachability annotation that allows the solver
to reduce the constraints to those parts as required by the selected solution. The
size can, however, also be bound using an explicit bound that is set manually.

Using this separation into four independent steps allows to keep the encoding
compact in size, and results in the previously promised performance improve-
ments presented in the next section.

6 Experimental Results

Table 1 compares the general encoding of Sect. 4.1 and the two-wayless encoding
of Sect. 5 on a selection of standard benchmarks. The table contains the of num-
ber of states of the program’s syntax tree, the number of additional variables,
i.e., variables that are not designated to handle inputs and outputs, the size
of the two-way universal Streett automaton, created for the general encoding,
and the solving times for both encodings. Table 2 shows the results in terms of
the synthesized program trees for the two-wayless encoding. The experiments
indicate a strong advantage of the second approach.

7 Conclusions

We introduced a generalized approach to bounded synthesis that is applicable
whenever all possible runs of a universal automaton on the possibly produced
input/output words of an input-deterministic implementation can be expressed
by a run graph. The acceptance of an implementation can then be expressed
by the existence of valid annotation functions for an annotation comparison
relation that expresses the acceptance of the automaton for Büchi, co-Büchi and
Streett acceptance conditions. The existence of valid annotation functions for a
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run graph is encoded as a SAT query that is satisfiable if and only if there exists
an implementation satisfying a given bound that is accepted by the automaton.

For LTL specifications, we constructed a two-way universal Streett automa-
ton which accepts reactive programs that satisfy the specification. We then con-
structed a run graph that represents all possible runs and applied the generalized
bounded synthesis approach. Next, we constructed a SAT query that guesses a
reactive program of bounded size as well as valid annotation functions that wit-
nesses the correctness of the synthesized program.

Finally, we merged the previous transformations into an extended encoding
that simulates the program directly via the constraint solver. We evaluated both
encodings with the clear result that the encoding avoiding the explicit run graph
construction for two-way automata wins in the evaluation.

References

1. Church, A.: Application of recursive arithmetic to the problem of circuit synthesis.
J. Symb. Log. 28(4), 289–290 (1963)

2. Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R.: Anzu: a tool for property
synthesis. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp.
258–262. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73368-
3 29

3. Ehlers, R.: Unbeast: symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 25

4. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL
synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
652–657. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-
7 45

5. Faymonville, P., Finkbeiner, B., Tentrup, L.: BoSy: an experimentation framework
for bounded synthesis. [20] 325–332

6. Bloem, R., Galler, S.J., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.,
et al.: Interactive presentation: automatic hardware synthesis from specifications:
a case study. In: Lauwereins, R., Madsen, J. (eds.) DATE, pp. 1188–1193. Nice,
France, EDA Consortium, San Jose, CA, USA (2007)

7. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5–6), 519–539 (2013)
8. Finkbeiner, B., Klein, F.: Bounded cycle synthesis. In: Chaudhuri, S., Farzan, A.

(eds.) CAV 2016. LNCS, vol. 9779, pp. 118–135. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41528-4 7

9. Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of bounded
synthesis. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp.
354–370. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-
5 20

10. Alur, R., et al.: Syntax-guided synthesis. In: FMCAD, pp. 1–8. Portland, OR, USA,
IEEE (2013)

11. Gulwani, S.: Automating string processing in spreadsheets using input-output
examples. In: Ball, T., Sagiv, M. (eds.) POPL, pp. 317–330. Austin, TX, USA,
ACM (2011)

https://doi.org/10.1007/978-3-540-73368-3_29
https://doi.org/10.1007/978-3-540-73368-3_29
https://doi.org/10.1007/978-3-642-19835-9_25
https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.1007/978-3-319-41528-4_7
https://doi.org/10.1007/978-3-319-41528-4_7
https://doi.org/10.1007/978-3-662-54577-5_20
https://doi.org/10.1007/978-3-662-54577-5_20


Bounded Synthesis of Reactive Programs 457

12. Osera, P., Zdancewic, S.: Type-and-example-directed program synthesis. In: Grove,
D., Blackburn, S. (eds.) PLDI, pp. 619–630. Portland, OR, USA, ACM (2015)

13. Solar-Lezama, A.: Program sketching. STTT 15(5–6), 475–495 (2013)
14. Vechev, M.T., Yahav, E., Yorsh, G.: Abstraction-guided synthesis of synchroniza-

tion. STTT 15(5–6), 413–431 (2013)
15. Madhusudan, P.: Synthesizing reactive programs. In: Bezem, M., (ed.) CSL,

Bergen, Norway. Volume 12 of LIPIcs, pp. 428–442. Schloss Dagstuhl (2011)
16. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput.

115(1), 1–37 (1994)
17. Gerstacker, C.: Bounded Synthesis of Reactive Programs, Bachelor’s Thesis (2017)
18. Gerstacker, C., Klein, F., Finkbeiner, B.: Bounded synthesis of reactive programs.

CoRR 1807.09047 (2018)
19. Khalimov, A., Bloem, R.: Bounded Synthesis for Streett, Rabin, and CTL∗. [20]

333–352
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Abstract. Automatic synthesis from linear temporal logic (LTL) spec-
ifications is widely used in robotic motion planning and control of
autonomous systems. A common specification pattern in such applica-
tions consists of an LTL formula describing the requirements on the
behaviour of the system, together with a set of additional desirable
properties. We study the synthesis problem in settings where the overall
specification is unrealizable, more precisely, when some of the desirable
properties have to be (temporarily) violated in order to satisfy the sys-
tem’s objective. We provide a quantitative semantics of sets of safety
specifications, and use it to formalize the “best-effort” satisfaction of
such soft specifications while satisfying the hard LTL specification. We
propose an algorithm for synthesizing implementations that are optimal
with respect to this quantitative semantics. Our method builds upon the
idea of bounded synthesis, and we develop a MaxSAT encoding which
allows for maximizing the quantitative satisfaction of the soft specifica-
tions. We evaluate our algorithm on scenarios from robotics and power
distribution networks.

1 Introduction

Automatic synthesis from temporal logic specifications is increasingly becoming
a viable alternative for system design in a number of domains such as control and
robotics. The main advantage of synthesis is that it allows the system designer to
focus on what the system should do, rather than on how it should do it. Thus, the
main challenge becomes providing the right specification of the system’s required
behaviour. While significantly easier than developing a system at a lower level,
specification design is on its own a difficult and error-prone task. For example,
in the case of systems operating in a complex adversarial environment, such as
robots, the specification might be over-constrained, and as a result unrealizable,
due to failure to account for some of the behaviours of the environment. In other
cases, the designer might have several alternative specifications in mind, possibly
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with some preferences, and wants to know what the best realizable combination
of requirements is. For instance, a temporary violation of a safety requirement
might be acceptable, if it is necessary to achieve an important goal. In such
cases it is desirable that, when the specification is unrealizable, the synthesis
procedure provides a “best-effort” implementation either according to some user-
given criteria, or according to the semantics of the specification language.

The challenges of specification design motivate the need to develop synthesis
methods for the maximum realizability problem, where the input to the synthesis
tool consists of a hard specification which must be satisfied by the system, and
soft specifications which describe other desired, possibly prioritized properties.

A key ingredient of the formulation of the maximum realizability problem is
a quantitative semantics of the soft requirements. We focus on soft specifications
of the form ϕ1, . . . , ϕn, where each ϕi is a safety LTL formula, and consider
a quantitative semantics typically used in the context of robustness. The quan-
titative semantics accounts for how often each ϕi is satisfied. In particular, we
consider truth values corresponding to ϕi being satisfied at every point of an exe-
cution, being violated only finitely many times, being both violated and satisfied
infinitely often, or being continuously violated from some point on. Based on this
semantics, we define the numerical value of a conjunction ϕ1∧ . . .∧ ϕn of soft
specifications in a given implementation. We propose a method for synthesizing
an implementation that maximizes this value.

Our approach to maximum realizability is based on the bounded synthesis
technique. Bounded synthesis is able to synthesize implementations by leverag-
ing the power of SAT (or QBF, or SMT) solvers. Since maximum realizability
is an optimization problem, we reduce its bounded version to maximum satisfia-
bility (MaxSAT). More precisely, we encode the bounded maximum realizability
problem with hard and soft specifications as a partial weighted MaxSAT prob-
lem, where hard specifications are captured by hard clauses in the MaxSAT
formulation, and the weights of soft clauses encode the quantitative semantics of
soft specifications. By adjusting these weights our approach can easily capture
different quantitative semantics. Although the formulation encodes the bounded
maximum realizability problem (where the maximum size of the implementation
is fixed), by providing a bound on the size of the optimal implementation, we
establish the completeness of our synthesis method. The existence of such com-
pleteness bound is guaranteed by considering quantitative semantics in which
the values of soft specifications can be themselves encoded by LTL formulas.

We have applied the proposed synthesis method to examples from two
domains where considering combinations of hard and soft specifications is nat-
ural and often unavoidable. For example, such a combination of specifications
arises in power networks where generators of limited capacity have to power a set
of vital and non-vital loads, whose total demand may exceed the capacity of the
generators. Another example is robotic navigation, where due to the adversarial
nature of the environment in which robots operate, safety requirements might
prevent a system from achieving its goal, or a large number of tasks of different
nature might not necessarily be consistent when posed together.
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Related work. Maximum realizability and several closely related problems have
attracted significant attention in recent years. Planning over a finite horizon with
prioritized safety requirements was studied in [20], where the goal is to synthesize
a least-violating control strategy. A similar problem for infinite-horizon temporal
logic planning was studied in [12], which seeks to revise an inconsistent specifica-
tion, minimizing the cost of revision with respect to costs for atomic propositions
provided by the specifier. [14] describes a method for computing optimal plans
for co-safe LTL specifications, where optimality is again with respect to the
cost of violating each atomic proposition, which is provided by the designer. All
of these approaches are developed for the planning setting, where there is no
adversarial environment, and thus they are able to reduce the problem to the
computation of an optimal path in a graph. The case of probabilistic environ-
ments was considered in [15]. In contrast, in our work we seek to maximize the
satisfaction of the given specification against the worst-case behaviour of the
environment.

The problem setting that is the closest to ours is that of [19]. The authors
of [19] study a maximum realizability problem in which the specification is a con-
junction of a must (or hard, in our terms) LTL specification, and a number of
weighted desirable (or soft, in our terms) specifications of the form ϕ, where ϕ
is an arbitrary LTL formula. When ϕ is not a safety property it is first strength-
ened to a safety formula before applying the synthesis procedure, which then
weakens the result to a mean-payoff term. Thus, while [19] considers a broader
class of soft specifications than we do, when ϕ is not a safety property there is no
clear relationship between ϕ and the resulting mean-payoff term. When applied
to multiple soft specifications, the method from [19] combines the corresponding
mean-payoff terms in a weighted sum, and synthesizes an implementation opti-
mizing the value of this sum. Thus, it is not possible to determine to what extent
the individual desirable specifications are satisfied without inspecting the syn-
thesized implementation. In contrast, in our maximum realizability procedure
each satisfaction value is characterized as an LTL formula, which is useful for
explainability and providing feedback to the designer.

To the best of our knowledge, our work is the first to employ MaxSAT in
the context of reactive synthesis. MaxSAT has been used in [11] for preference-
based planning. However, since maximum realizability is concerned with reactive
systems, it requires a fundamentally different approach than planning.

Two other main research directions related to maximum realizability are
quantitative synthesis and specification debugging. There are two predominant
flavours of quantitative synthesis problems studied in the literature. In the first
one (cf. [4]), the goal is to generate an implementation that maximizes the value
of a mean-payoff objective, while possibly satisfying some ω-regular specifica-
tion. In the second setting (cf. [1,18]), the system requirements are formalized
in a multi-valued temporal logic. The synthesis methods in these works, how-
ever, do not solve directly the corresponding optimization problem, but instead
check for the existence of an implementation whose value is in a given set. The
optimization problem can then be reduced to a sequence of such queries.
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An optimal synthesis problem for an ordered sequence of prioritized ω-regular
properties was studied in [2], where the classical fixpoint-based game-solving
algorithms are extended to a quantitative setting. The main difference in our
work is that we allow for incomparable soft specifications each with a number of
prioritized relaxations, for which the equivalent set of preference-ordered com-
binations would be of size exponential in the number of soft specifications. Our
MaxSAT formulation avoids considering explicitly these combinations.

In specification debugging there is a lot of research dedicated to finding
good explanations for the unsatisfiability or unrealizability of temporal speci-
fications [6], and more generally to the analysis of specifications [5,9]. Our app-
roach to maximum realizability can prove useful for specification analysis, since
instead of simply providing an optimal value, it computes an optimal relaxation
of the given specification in the form of another LTL formula.

2 Maximum Realizability Problem

We first give an overview of linear-time temporal logic (LTL) and the corre-
sponding synthesis problem, which asks to synthesize an implementation, in the
form of a transition system, that satisfies an LTL formula given as input.

Then, we proceed by providing a quantitative semantics for a class of LTL
formulas, and the definition of the corresponding maximum realizability problem.

2.1 Specifications, Transition Systems, and the Synthesis Problem

Linear-time temporal logic (LTL) is a standard specification language for for-
malizing requirements on the behaviour of reactive systems. Given a finite set
P of atomic propositions, the set of LTL formulas is generated by the grammar
ϕ := p | true | false | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ | ϕ1 U ϕ2 | ϕ1 R ϕ2, where
p ∈ P is an atomic proposition, is the next operator, U is the until operator,
and R is the release operator. As usual, we define the derived operators finally :

ϕ = true U ϕ and globally : ϕ = false Rϕ. Every LTL formula can be con-
verted to an equivalent one in negation normal form (NNF), where negations
appear only in front of atomic propositions. Thus, we consider only formulas in
NNF.

Let Σ = 2P be the finite alphabet consisting of the valuations of the propo-
sitions P. A letter σ ∈ Σ is interpreted as the valuation that assigns value true
to all p ∈ σ and false to all p ∈ P \ σ. LTL formulas are interpreted over infinite
words w ∈ Σω. If a word w ∈ Σω satisfies an LTL formula ϕ, we write w |= ϕ.
The definition of the semantics of LTL can be found for instance in [3]. We
denote with |ϕ| the length of ϕ, and with subf(ϕ) the set of its subformulas.

A safety LTL formula ϕ is an LTL formula such that for each w ∈ Σω with
w �|= ϕ there exists u ∈ Σ∗ such that for all v ∈ Σω it holds that u · v �|= ϕ
(u is called a bad prefix for ϕ). A class of safety LTL formulas is the class of
syntactically safe LTL formulas, which contain no occurrences of U in their NNF.
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In the rest of the paper we assume that the set P of atomic propositions is
partitioned into disjoint sets of input propositions I and output propositions O.

A transition system over a set of input propositions I and a set of output
propositions O is a tuple T = (S, s0, τ), where S is a set of states, s0 is the
initial state, and the transition function τ : S × 2I → S × 2O maps a state s
and a valuation σI ∈ 2I of the input propositions to a successor state s′ and a
valuation σO ∈ 2O to the output propositions. Let P = I ∪ O be the set of all
propositions. For σ ∈ Σ = 2P we denote σ ∩ I by σI , and σ ∩ O by σO.

If the set S is finite, then T is a finite-state transition system. In this case
we define the size |T | of T to be the number of its states, i.e., |T | def= |S|.

An execution of T is an infinite sequence s0, (σI0∪σO0), s1, (σI1∪σO1), s2 . . .
such that s0 is the initial state, and (si+1, σOi) = τ(si, σI i) for every i ≥ 0. The
corresponding sequence (σI0 ∪ σO0), (σI1 ∪ σO1), . . . ∈ Σω is called a trace. We
denote with Traces(T ) the set of all traces of a transition system T .

We say that a transition system T satisfies an LTL formula ϕ over atomic
propositions P = I ∪ O, denoted T |= ϕ, if w |= ϕ for every w ∈ Traces(T ).

The realizability problem for LTL is to determine whether for a given LTL
formula ϕ there exists a transition system T that satisfies ϕ. The LTL synthesis
problem asks to construct such a transition system if one exists.

Often, the specification is a combination of multiple requirements, which
might not be realizable in conjunction. In such a case, in addition to reporting
the unrealizability to the system designer, we would like the synthesis proce-
dure to construct an implementation that satisfies the specification “as much as
possible”. Such implementation is particularly useful in the case where some of
the requirements describe desirable but not necessarily essential properties of the
system. To determine what “as much as possible” formally means, a quantitative
semantics of the specification language is necessary. In the next subsection we
provide such semantics for a fragment of LTL. The quantitative interpretation
is based on the standard semantics of LTL formulas of the form ϕ.

2.2 Quantitative Semantics of Soft Safety Specifications

Let ϕ1, . . . , ϕn be LTL specifications, where each ϕi is a safety LTL formula.
In order to formalize the maximal satisfaction of ϕ1 ∧ . . . ∧ ϕn, we first give
a quantitative semantics of formulas of the form ϕ.

Quantitative semantics of safety specifications. For an LTL formula of the form
ϕ and a transition system T , we define the value val(T , ϕ) of ϕ in T as

val(T , ϕ) def=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1, 1, 1) if T |= ϕ,

(1, 1, 0) if T �|= ϕ and T |= ϕ,

(1, 0, 0) if T �|= ϕ and T �|= ϕ, and T |= ϕ,

(0, 0, 0) if T �|= ϕ, and T �|= ϕ, and T �|= ϕ.

Thus, the value of ϕ in a transition system T is a vector (v1, v2, v3) ∈
{0, 1}3, where the value (1, 1, 1) corresponds to the true value in the classical
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semantics of LTL. When T �|= ϕ, the values (1, 1, 0), (1, 0, 0) and (0, 0, 0)
capture the extent to which ϕ holds or not along the traces of T . For example, if
val(T , ϕ) = (1, 0, 0), then ϕ holds infinitely often on each trace of T , but there
exists a trace of T on which ϕ is violated infinitely often. When val(T , ϕ) =
(0, 0, 0), then on some trace of T , ϕ holds for at most finitely many positions.

Note that by the definition of val , if val(T , ϕ) = (v1, v2, v3), then (1) v1 = 1
iff T |= ϕ, (2) v2 = 1 iff T |= ϕ, and (3) v3 = 1 iff T |= ϕ. Thus,
the lexicographic ordering on {0, 1}3 captures the preference of one transition
system over another with respect to the quantitative satisfaction of ϕ.

Example 1. Suppose that we want to synthesize a transition system representing
a navigation strategy for a robot working at a restaurant. We require that the
robot must serve the VIP area infinitely often, formalized in LTL as vip area.
We also desire that the robot never enters the staff’s office, formalized as

¬office. Now, suppose that initially the key to the VIP area is in the office.
Thus, in order to satisfy vip area, the robot must violate ¬office. A strat-
egy in which the office is entered only once, and satisfies ¬office, is preferable
to one which enters the office over and over again, and only satisfies ¬office.
Thus, we want to synthesize a strategy T maximizing val(T , ¬office).

In order to compare implementations with respect to their satisfaction of a
conjunction ϕ1 ∧ . . . ∧ ϕn of several safety specifications, we will extend the
above definition. We consider the case when the specifier has not expressed any
preference for the individual conjuncts. Consider the following example.

Example 2. We consider again the restaurant robot, now with two soft speci-
fications. The soft specification (req1 → table1 ) requires that each request
by Table 1 is served immediately at the next time instance. Similarly, (req2 →

table2 ), requires the same for table number 2. Since the robot cannot be at both
tables simultaneously, formalized as the hard specification (¬table1 ∨¬table2 ),
the conjunction of these requirements is unrealizable. Unless the two tables have
priorities, it is preferable to satisfy each of req1 → table1 and req2 → table2
infinitely often, rather than serve one and the same table all the time.

Quantitative semantics of conjunctions. To capture the idea illustrated in Exam-
ple 2, we define a value function, which, intuitively, gives higher values to tran-
sition systems in which a fewer number of soft specifications have low values.
Formally, let the value of ϕ1 ∧ . . . ∧ ϕn in T be

val(T , ϕ1 ∧ . . . ∧ ϕn) def=
( n∑

i=1

vi,1,

n∑

i=1

vi,2,

n∑

i=1

vi,3

)
,

where val(T , ϕi) = (vi,1, vi,2, vi,3) for i ∈ {1, . . . , n}. To compare transition
systems according to these values, we use lexicographic ordering on {0, . . . , n}3.

Example 3. For the specifications in Example 2, the above value function assigns
value (2, 0, 0) to a system satisfying (req1 → table1 ) and (req2 →
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table2 ), but neither of (req1 → table1 ) and (req2 → table2 ). It
assigns the smaller value (1, 1, 1) to an implementation that gives priority to
Table 1 and satisfies (req1 → table1 ) but not (req2 → table2 ).

According to the above definition, a transition system that satisfies all soft
requirements to some extent is considered better in the lexicographic ordering
than a transition system that satisfies one of them and violates all the others. We
could instead inverse the order of the sums in the triple, thus giving preference
to satisfying some soft specification, over having some lower level of satisfaction
over all of them. The next example illustrates the differences between the two
variations.

Example 4. For the two soft specifications from Example 2, reversing the order
of the sums in the definition of val(T , ϕ1 ∧ . . . ∧ ϕn) results in giving the
higher value (1, 1, 1) to a transition system that satisfies (req1 → table1 )
but not (req2 → table2 ), and the lower value (0, 0, 2) to the one that
guarantees only (req1 → table1 ) and (req2 → table2 ). The most
suitable ordering usually depends on the specific application.

In [7] we discuss generalizations of the framework, where the user provides
a set of relaxations for each of the soft specifications, and possibly a priority
ordering among the soft specifications, or numerical weights.

2.3 Maximum Realizability

Using the definition of quantitative satisfaction of soft safety specifications, we
now define the maximum realizability problem, which asks to synthesize a tran-
sition system that satisfies a given hard LTL specification, and is optimal with
respect to the satisfaction of a conjunction of soft safety specifications.

Maximum realizability problem: Given an LTL formula ϕ and formulas
ϕ1, . . . , ϕn, where each ϕi is a safety LTL formula, the maximum realizability

problem asks to determine if there exists a transition system T such that T |= ϕ,
and if the answer is positive, to synthesize a transition system T such that
T |= ϕ, and such that for every transition system T ′ with T ′ |= ϕ it holds that
val(T , ϕ1 ∧ . . . ∧ ϕn) ≥ val(T ′, ϕ1 ∧ . . . ∧ ϕn).

Bounded maximum realizability problem: Given an LTL formula ϕ and
formulas ϕ1, . . . , ϕn, where each ϕi is a safety LTL formula, and a bound
b ∈ N>0, the bounded maximum realizability problem asks to determine if there
exists a transition system T with |T | ≤ b such that T |= ϕ, and if the answer
is positive, to synthesize a transition system T such that T |= ϕ, |T | ≤ b and
such that for every transition system T ′ with T ′ |= ϕ and |T ′| ≤ b, it holds that
val(T , ϕ1 ∧ . . . ∧ ϕn) ≥ val(T ′, ϕ1 ∧ . . . ∧ ϕn).

3 Preliminaries

In this section we recall bounded synthesis, introduced in [17], and in particular
the approach based on reduction to SAT. We begin with the necessary prelimi-
naries from automata theory, and the notion of annotated transition systems.
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3.1 Bounded Synthesis

A Büchi automaton over a finite alphabet Σ is a tuple A = (Q, q0, δ, F ), where
Q is a finite set of states, q0 is the initial state, δ ⊆ Q × Σ × Q is the transition
relation, and F ⊆ Q is a subset of the set of states. A run of A on an infinite
word w = σ0σ1 . . . ∈ Σω is an infinite sequence q0, q1, . . . of states, where q0 is
the initial state and for every i ≥ 0 it holds that (qi, σi, qi+1) ∈ δ.

A run of a Büchi automaton is accepting if it contains infinitely many occur-
rences of states in F . A co-Büchi automaton A = (Q, q0, δ, F ) differs from a
Büchi automaton in the accepting condition: a run of a co-Büchi automaton
is accepting if it contains only finitely many occurrences of states in F . For a
Büchi automaton the states in F are called accepting states, while for a co-Büchi
automaton they are called rejecting states. A nondeterministic automaton A
accepts a word w ∈ Σω if some run of A on w is accepting. A universal automa-
ton A accepts a word w ∈ Σω if every run of A on w is accepting.

The run graph of a universal automaton A = (Q, q0, δ, F ) on a transition
system T = (S, s0, τ) is the unique graph G = (V,E) with set of nodes V = S×Q
and set of labelled edges E ⊆ V × Σ × V such that ((s, q), σ, (s′, q′)) ∈ E iff
(q, σ, q′) ∈ δ and τ(s, σ ∩ I) = (s′, σ ∩ O). That is, G is the product of A and T .

A run graph of a universal Büchi (resp. co-Büchi) automaton is accepting
if every infinite path (s0, q0), (s1, q1), . . . contains infinitely (resp. finitely) many
occurrences of states qi in F . A transition system T is accepted by a universal
automaton A if the unique run graph of A on T is accepting. We denote with
L(A) the set of transition systems accepted by A.

The bounded synthesis approach is based on the fact that for every LTL
formula ϕ one can construct a universal co-Büchi automaton Aϕ with at most
2O(|ϕ|) states such that T ∈ L(Aϕ) iff T |= ϕ for every transition system T [13].

An annotation of a transition system T = (S, s0, τ) with respect to a univer-
sal co-Büchi automaton A = (Q, q0, δ, F ) is a function λ : S ×Q → N∪{⊥} that
maps nodes of the run graph of A on T to the set N ∪ {⊥}. Intuitively, such an
annotation is valid if every node (s, q) that is reachable from the node (s0, q0)
is annotated with a natural number, which is an upper bound on the number of
rejecting states visited on any path from (s0, q0) to (s, q).

Formally, an annotation λ : S × Q → N ∪ {⊥} is valid if

– λ(s0, q0) �= ⊥, i.e., the pair of initial states is labelled with a number, and
– whenever λ(s, q) �= ⊥, then for every edge ((s, q), σ, (s′, q′)) in the run graph

of A on T we have that (s′, q′) is annotated with a number (i.e., λ(s′, q′) �= ⊥),
such that λ(s′, q′) ≥ λ(s, q), and if q′ ∈ F , then λ(s′, q′) > λ(s, q).

Valid annotations of finite-state systems correspond to accepting run graphs.
An annotation λ is c-bounded if λ(s, q) ∈ {0, . . . , c} ∪ {⊥} for all s ∈ S and
q ∈ Q.

The synthesis method proposed in [10,17] employs the following result in
order to reduce the bounded synthesis problem to checking the satisfiability of
propositional formulas: A transition system T is accepted by a universal co-
Büchi automaton A = (Q, q0, δ, F ) iff there exists a (|T | · |F |)-bounded valid
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annotation for T and A. One can estimate a bound on the size of the transition
system, which allows to reduce the synthesis problem to its bounded version.
Namely, if there exists a transition system that satisfies an LTL formula ϕ, then
there exists a transition system satisfying ϕ with at most

(
2(|subf(ϕ)|+log |ϕ|))!2

states.
Let A = (Q, q0, δ, F ) be a universal co-Büchi automaton for the LTL formula

ϕ. Given a bound b on the size of the sought transition system T , the bounded
synthesis problem can be encoded as a satisfiability problem with the following
sets of propositional variables and constraints.

Variables: The variables represent the sought transition system T , and the
sought valid annotation λ of the run graph of A on T . A transition system with
b states S = {1, . . . , b} is represented by Boolean variables τs,σI ,s′ and os,σI

for
every s, s′ ∈ S, σI ∈ 2I , and output proposition o ∈ O. The variable τs,σI ,s′

encodes the existence of transition from s to s′ on input σI , and the variable
os,σI

encodes o being true in the output from state s on input σI .
The annotation λ is represented by the following variables. For each s ∈ S

and q ∈ Q, there is a Boolean variable λB
s,q and a vector λN

s,q of log(b · |F |)
Boolean variables: the variable λB

s,q encodes the reachability of (s, q) from the
initial node (s0, q0) in the corresponding run graph, and the vector of variables
λN

s,q represents the bound for the node (s, q). The constraints are as follows.

Constraints for input-enabled T : Cτ
def=

∧
s∈S

∧
σI∈2I

∨
s′∈S τs,σI ,s′ .

Constraints for valid annotation:
Cλ

def= λB
s0,q0∧∧
q,q′∈Q

∧
s,s′∈S

∧
σI∈2I

((
λB

s,q ∧ δs,q,σI ,q′ ∧ τs,σI ,s′
)

→ succλ(s, q, s′, q′)
)
,

where δs,q,σI ,q′ is a formula over the variables os,σI
that characterizes the tran-

sitions in A between q and q′ on labels consistent with σI , and succλ(s, q, s′, q′)
is a formula over the annotation variables such that succλ(s, q, s′, q′) def= (λB

s′,q′ ∧
(λN

s′,q′ > λN
s,q)) if q′ ∈ F , and succλ(s, q, s′, q′) def= (λB

s′,q′ ∧ (λN

s′,q′ ≥ λN
s,q)) if

q′ �∈ F .

3.2 Maximum Satisfiability (MaxSAT)

While the bounded synthesis problem can be encoded into SAT, for the synthesis
of a transition system that satisfies a set of soft specifications ”as much as
possible”, we need to solve an optimization problem. To this end, we reduce the
bounded maximum realizability problem to a partial weighted MaxSAT problem.

MaxSAT is a Boolean optimization problem. A MaxSAT instance is a con-
junction of clauses, each of which is a disjunction of literals, where a literal is
a Boolean variable or its negation. The objective in MaxSAT is to compute a
variable assignment that maximizes the number of satisfied clauses. In weighted
MaxSAT, each clause is associated with a positive numerical weight and the
objective is now to maximize the sum of the weights of the satisfied clauses. In
partial weighted MaxSAT, there are two types of clauses, namely hard and soft
clauses, where only the soft clauses have weights. A solution to a partial weighted
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MaxSAT formula is a variable assignment satisfying all the hard clauses. An opti-
mal solution additionally maximizes the sum of the weights of the soft clauses.

In the encoding in the next section we use hard clauses for the hard specifi-
cation, and soft clauses to capture the soft specifications in the maximum real-
izability problem. The weights for the soft clauses will encode the lexicographic
ordering on values of conjunctions of soft specifications.

4 From Maximum Realizability to MaxSAT

We now describe the proposed MaxSAT-based approach to maximum realizabil-
ity. First, we establish an upper bound on the minimal size of an implementation
that satisfies a given LTL specification ϕ and maximizes the satisfaction of a con-
junction of the soft specifications ϕ1, . . . , ϕn according to the value function
defined in Sect. 2.2. This bound can be used to reduce the maximum realizability
problem to its bounded version, which we encode as a MaxSAT problem.

Convert ϕ to UCBA A

Construct UBA
Relax ( ϕi) for

each ϕi and ϕi

Construct UCBA
Ai for each ϕi

Set implementation size

Encode in
MaxSAT

Exceeded value threshold/
time limit/implementation bound?

Extract implementation

Increase the implementation bound

set of soft
specifications
ϕ1, . . . , ϕn

hard specification
ϕ

initial implemen-
tation bound

yes

no

Fig. 1. Schematic overview of the maximum realizability procedure.

4.1 Bounded Maximum Realizability

To establish an upper bound on the minimal (in terms of size) optimal imple-
mentation, we make use of an important property of the function val defined
in Sect. 2.2. Namely, the property that for each of the possible values of

ϕ1 ∧ . . . ∧ ϕn there is a corresponding LTL formula that encodes this value
in the classical LTL semantics, as we formally state in the next lemma.

Lemma 1. For every transition system T and soft safety specifications
ϕ1, . . . , ϕn, if val(T , ϕ1∧. . .∧ ϕn) = v, then there exists an LTL formula

ψv where

(1) ψv = ϕ′
1 ∧ . . . ∧ ϕ′

n, where ϕ′
i ∈ { ϕi, ϕi, ϕi, true} for i = 1, . . . , n,

(2) T |= ψv, and for every T ′, if T ′ |= ψv, then val(T ′, ϕ1 ∧ . . . ∧ ϕn) ≥ v.

The following theorem is a consequence of Lemma 1.
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Theorem 1. Given an LTL specification ϕ and soft safety specifications
ϕ1, . . . , ϕn, if there exists a transition system T |= ϕ, then there exists

T ∗ such that

(1) val(T ∗, ϕ1 ∧ . . . ∧ ϕn) ≥ val(T , ϕ1 ∧ . . . ∧ ϕn) for all T with T |= ϕ,
(2) T ∗ |= ϕ and |T ∗| ≤

(
(2(b+log b))!

)2
,

where b = max{|subf(ϕ ∧ ϕ′
1 ∧ . . . ∧ ϕ′

n)| | ∀i : ϕ′
i ∈ { ϕi, ϕi, ϕi}}.

Lemma 1 immediately provides a naive synthesis procedure, which searches
for an optimal implementation by enumerating possible ψv formulas and solving
the corresponding realizability questions. The total number of these formulas
is 4n, where n is the number of soft specifications. The approach that we pro-
pose avoids this rapid growth, by reducing the optimization problem to a single
MaxSAT instance, making use of the power of state-of-the-art MaxSAT solvers.

Figure 1 gives an overview of our maximum realizability procedure and the
automata constructions it involves. As in the bounded synthesis approach, we
construct a universal co-Büchi automaton A for the hard specification ϕ. For
each soft specification ϕi we construct a pair of automata corresponding to
the relaxations of ϕi, as shown in Fig. 1. The relaxation ϕi is treated as
in bounded synthesis. For ϕi and ϕi we construct a single universal Büchi
automaton and define a corresponding annotation function as described next.

4.2 Automata and Annotations for Soft Safety Specifications

We present here the reduction to MaxSAT for the case when each soft specifi-
cation is of the form ψ where ψ is a syntactically safe LTL formula. In this
case, we construct a single automaton for both ψ and its relaxation ψ, and
encode the existence of a single annotation function in the MaxSAT problem.
The size of this automaton is at most exponential in the length of ψ.

In the general case, we can treat ψ and ψ separately, in the same way
that we treat the relaxation ψ of ψ in the presented encoding. That would
require in total three instead of two annotation functions per soft specification.

We now describe the construction of a universal Büchi automaton B ψ for the
safety specification ψ and show how we can modify it to obtain an automaton
Relax ( ψ) that incorporates the relaxation of ψ to ψ.

We first construct a universal Büchi automaton B ψ = (Q ψ, q ψ
0 , δ ψ, F ψ)

for ψ such that L(B ψ) = {T | T |= ψ} and B ψ has a unique non-accepting
sink state. That is, there exists a unique state rejψ ∈ Q ψ such that F ψ =
Q ψ \ {rejψ}, and {q ∈ Q ψ | (rejψ, σ, q) ∈ δ ψ} = {rejψ} for all σ ∈ Σ.

From B ψ, we obtain a universal Büchi automaton Relax ( ψ) constructed
by redirecting all the transitions leading to rejψ to the initial state q ψ

0 . Formally,
Relax ( ψ) = (Q, q0, δ, F ), where Q = Q ψ \ {rejψ}, q0 = q ψ

0 , F = F ψ and
δ =

(
δ ψ \ {(q, σ, q′) ∈ δ ψ | q′ = rejψ}

)
∪ {(q, σ, q0) | (q, σ, rejψ) ∈ δ ψ}.

Let Rej (Relax ( ψ)) = {(q, σ, q0) ∈ δ | (q, σ, rejψ) ∈ δψ} be the set of
transitions in Relax ( ψ) that correspond to transitions in B ψ leading to
rejψ.
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The automaton Relax ( ψ) has the property that its run graph on a tran-
sition system T does not contain a reachable edge corresponding to a transition
in Rej (Relax ( ψ)) iff T is accepted by the automaton B ψ, (i.e., T |= ψ).
Otherwise, if the run graph of Relax ( ψ) on T contains a reachable edge that
belongs to Rej (Relax ( ψ)), then T �|= ψ. However, if each infinite path in
the run graph contains only a finite number of occurrences of such edges, then
T |= ψ. Based on these observations, we define an annotation function that
annotates each node in the run graph with an upper bound on the number of
edges in Rej (Relax ( ψ)) visited on any path reaching the node.

A function π : S × Q → N ∪ {⊥} is a –valid annotation for a transition
system T = (S, s0, τ) and the automaton Relax ( ψ) = (Q, q0, δ, F ) if

(1) π(s0, q0) �= ⊥, i.e., the pair of initial states is labelled with a number, and
(2) if π(s, q) �= ⊥, then for every edge ((s, q), σ, (s′, q′)) in the run graph of

Relax ( ψ) on T we have that π(s′, q′) �= ⊥, and
• if (q, σ, q′) ∈ Rej (Relax ( ψ)), then π(s′, q′) > π(s, q), and
• if (q, σ, q′) �∈ Rej (Relax ( ψ)), then π(s′, q′) ≥ π(s, q).

This guarantees that T |= ψ iff there exists a –valid |T |-bounded
annotation π for T and Relax ( ψ). Moreover, if π is |T |-bounded and
π(s0, q0) = |T |, then T |= ψ, as this means that no edge in Rej (Relax ( ψ))
is reached.

4.3 MaxSAT Encoding of Bounded Maximum Realizability

Let A = (Q, q0, δ, F ) be a universal co-Büchi automaton for the LTL formula ϕ.
For each formula ϕj , j ∈ {1, . . . , n}, we consider two universal automata:

the universal Büchi automaton Bj = Relax ( ϕj) = (Qj , q
j
0, δj , Fj), con-

structed as described in Sect. 4.2, and a universal co-Büchi automaton Aj =
(Q̂j , q̂

j
0, δ̂j , F̂j) for the formula ϕj . Given a bound b on the size of the sought

transition system, we encode the bounded maximum realizability problem as a
MaxSAT problem with the following sets of variables and constraints.

Variables: The MaxSAT formulation includes the variables from the SAT
formulation of the bounded synthesis problem, which represent the sought tran-
sition system T and the sought valid annotation of the run graph of A on T .
Additionally, it includes variables for representing the annotations πj and λj for
Bj and Aj respectively, similarly to λ in the SAT encoding. More precisely, the
annotations for πj and λj are represented respectively by variables πB,j

s,q and πN,j
s,q

where s ∈ S and q ∈ Qj , and variables λB,j
s,q and λN,j

s,q where s ∈ S and q ∈ Q̂j .
The set of constraints includes Cτ and Cλ from the SAT formulation as hard

constraints, as well as the following constraints for the new annotations.
Hard constraints for valid annotations: For each j = 1, . . . , n, let

Cj
π

def=
∧

q,q′∈Qj

∧

s,s′∈S

∧

σI∈2I

((
πB,j

s,q ∧ δj
s,q,σI ,q′ ∧ τs,σI ,s′

)
→ succj

π(s, q, s′, q′, σI)
)
,

Cj
λ

def=
∧

q,q′∈ ̂Qj

∧

s,s′∈S

∧

σI∈2I

((
λB,j

s,q ∧ δ̂j
s,q,σI ,q′ ∧ τs,σI ,s′

)
→ succj

λ(s, q, s′, q′, σI)
)
,
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where succj
π(s, q, s′, q′, σI)

def= πB,j
s′,q′∧

(
rejj(s, q, q′, σI) → πN,j

s′,q′ > πN,j
s,q

)
∧

(
¬rejj(s, q, q′, σI) → πN,j

s′,q′ ≥ πN,j
s,q

)
,

and rejj(s, q, q′, σI) is a formula over os,σI
obtained from Rej (Bj). The formula

succj
λ(s, q̂, s′, q̂′, σI) is analogous to succλ(s, q, s′, q′, σI) defined in Sect. 3.1.
Soft constraints for valid annotations: Let b ∈ N>0 be the bound on

the size of the transition system. For each j = 1, . . . , n we define

Softj def= πB,j
s0,q0 ∧ (πN,j

s0,q0 = b) with weight 1,

Softj def= πB,j
s0,q0 with weight n, and

Softj def= πB,j
s0,q0 ∨ λB,j

s0,q̂0
with weight n2.

The definition of the soft constraints guarantees that T |= ϕj if and only if
there exist corresponding annotations that satisfy all three of the soft constraints
for ϕj . Similarly, if T |= ϕj , then Softj and Softj can be satisfied.

The definition of the weights of the soft clauses reflects the ordering of transi-
tion systems with respect to their satisfaction of ϕ1∧. . .∧ ϕn. This guarantees
that a transition system extracted from an optimal satisfying assignment for the
MaxSAT problem is optimal with respect to the value of ϕ1 ∧ . . . ∧ ϕn, as
stated in the following theorem that establishes the correctness of the encoding.

Theorem 2. Let A be a given co-Büchi automaton for ϕ, and for each j ∈
{1, . . . , n}, let Bj = Relax ( ϕj) be the universal automaton for ϕj con-
structed as in Sect. 4.2, and let Aj be a universal co-Büchi automaton for ϕj.
The constraint system for bound b ∈ N>0 is satisfiable if and only if there exists
an implementation T with |T | ≤ b such that T |= ϕ. Furthermore, from the
optimal satisfying assignment to the variables τs,σI ,s′ and os,σI

, one can extract
a transition system T ∗ such that for every transition system T with |T | ≤ b and
T |= ϕ it holds that val(T ∗, ϕ1 ∧ . . . ∧ ϕn) ≥ val(T , ϕ1 ∧ . . . ∧ ϕn).

s0

s1 s2

¬r1 ∧ ¬r2

r1
∧

¬r
2

r2

¬r
1

∧
¬r
2

r1 ∧ ¬r2

r2

¬r1

r1

Fig. 2. An optimal imple-
mentation for Example 2

Figure 2 shows a transition system extracted
from an optimal satisfying assignment for Exam-
ple 2 with bound 3 on the implementation size. The
transitions depicted in the figure are defined by
the values of the variables τs,σI ,s′ . The outputs of
the implementation (omitted from the figure) are
defined by the values of os,σI

. The output in state
s1 when r1 is true is table1 ∧ ¬table2 , and the out-
put in s2 when r2 is true is ¬table1 ∧ table2 . For all
other combinations of state and input the output is
¬table1 ∧ ¬table2 .

5 Experimental Evaluation

We implemented the proposed approach to maximum realizability1 in Python
2.7. For the LTL to automata translation we use Spot [8] version 2.2.4. MaxSAT
1 The code is available at https://github.com/MahsaGhasemi/max-realizability.

https://github.com/MahsaGhasemi/max-realizability
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instances are solved by Open-WBO [16] version 2.0. We evaluated our method on
instances of two examples. Each experiment was run on machine with a 2.3 GHz
Intel Xeon E5-2686 v4 processor and 16 GiB of memory. While the processor is
quad-core, only a single core was used. We set a time-out of 1 h.

Robotic Navigation. We applied our method to the strategy synthesis for
a robotic museum guide. The robot has to give a tour of the exhibitions in a
specific order, which constitutes the hard specification. Preferably, it also avoids
certain locations, such as the staff’s office, the library, or the passage when it
is occupied. These preferences are encoded in the soft specifications. There is
one input variable designating the occupancy of the passage, and eight output
variables defining the position of the robot. The formal specifications are given
in [7].

Table 1 summarizes the results. With implementation bound of 8, the hard
specification is realizable, achieving partial satisfaction of soft specifications.
This strategy always selects the passage to transition from Exhibition 1 to Exhi-
bition 2 and hence, always avoids the library. It also temporarily violates the
requirement of not entering the staff’s office, to acquire access to Exhibition 2.
Strategies with higher values exists, but they require larger implementation size.
However, for implementation bound 10 the solver reaches a time-out.

Table 1. Results of applying the method to the robotic navigation example, with
different bounds on implementation size |T |. We report the number of variables and
clauses in the encoding, the satisfiability of hard constraints, the value (and bound) of
the MaxSAT objective function, the running times of Spot and Open-WBO, and the
time of the solver plus the time for generating the encoding.

|T | Encoding Solution Time (s)

# vars # clauses Sat. Σweights Spot Open-WBO enc.+solve

2 4051 25366 UNSAT 0 (39) 0.93 0.011 0.12

4 19965 125224 UNSAT 0 (39) 0.93 0.079 0.57

6 45897 289798 UNSAT 0 (39) 0.93 1.75 2.9

8 95617 596430 SAT 31 (39) 0.93 956 959

10 152949 954532 SAT −(39) 0.93 Time-out Time-out

Power Distribution Network. We consider the problem of dynamic recon-
figuration of power distribution networks. A power network consists of a set P
of power supplies (generators) and a set L of loads (consumers). The network
is a bipartite graph with edges between supplies and loads, where each supply
is connected to multiple loads and each load is connected to multiple supplies.
Each power supply has an associated capacity, which determines how many loads
it can power at a given time. It is possible that not all loads can be powered all
the time. Some loads are critical and must be powered continuously, while others
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are not and should be powered when possible. Some loads can be initializing,
meaning they must be powered only initially for several steps. Power supplies
can become faulty during operation, which necessitates dynamic network recon-
figuration.

We apply our method to the problem of synthesizing a relay-switching strat-
egy from LTL specifications. The input propositions I determine which, if any, of
the supplies are faulty at each step. We are given an upper bound on the number
of supplies that can be simultaneously faulty. The set O of output propositions
contains one proposition sl→p for each load l ∈ L and each supply p ∈ P that
are connected. The meaning of sl→p is that l is powered by p.

The hard specification asserts that the critical loads must always be powered,
the initializing loads should be powered initially, a load is powered by at most
one supply, the capacity of supplies is not exceeded, and when a supply is faulty
it is not in use. The soft specifications state that non-critical loads are always
powered, and that a powered load should remain powered unless its supply fails.

1 2 3 4 5 6 7 8
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(a) Encoding size

1 2 3 4 5 6 7 8

10-1

100

101

102

103

(b) Running time

Fig. 3. Results of applying the method to the instances in Table 2, with different bounds
on implementation size |T |. (a) shows the size of the MaxSAT encoding as the number
of variables (solid lines) and the number of clauses (dashed lines). (b) shows the running
time of the MaxSAT solver plus the time for the encoding.

The specifications are given in [7]. Table 2 describes the instances to which
we applied our synthesis method. Power supplies have the same capacity E+

(number of loads they can power) and at most one can be faulty. We consider
three categories of instances, depending on the network connectivity (full or
sparse), and whether we restrict frequent switching of supplies. In Fig. 3, we
show the results for the instances defined in Table 2 (detailed results in [7]). In
the first set of instances, the specifications have large number of variables (due
to full connectivity), and the bottleneck is the translation to automata. In the
third set of instances, the limiting factor is the number of soft specifications,
leading to large weights and number of variables in the MaxSAT formulation.
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We observe that the number of soft specifications is an important factor affecting
the scalability of the proposed method. Instance 12, on which the MaxSAT solver
reaches time-out for implementation size bound 6, contains 23 soft specifications.
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Abstract. Computing reachability probabilities is a fundamental prob-
lem in the analysis of probabilistic programs. This paper aims at a com-
prehensive and comparative account of various martingale-based meth-
ods for over- and underapproximating reachability probabilities. Based
on the existing works that stretch across different communities (formal
verification, control theory, etc.), we offer a unifying account. In par-
ticular, we emphasize the role of order-theoretic fixed points—a classic
topic in computer science—in the analysis of probabilistic programs. This
leads us to two new martingale-based techniques, too. We also make an
experimental comparison using our implementation of template-based
synthesis algorithms for those martingales.

1 Introduction

Fig. 1. An example of prob-
abilistic programs. The line
4 means that the value of z is
randomly sampled from the
interval [−2, 1].

Computing reachability probabilities is a fundamen-
tal problem in the analysis of probabilistic systems.
It is known that probabilistic model checking prob-
lems can be solved via reachability probabilities [4],
much like nondeterministic model checking prob-
lems are reduced to emptiness and hence to reacha-
bility [29]. While the computation of reachability
probabilities for finite-state systems is effectively
solved by linear programming, the problem becomes
much more challenging for probabilistic programs—
a paradigm that attracts growing attention as a pro-
gramming language foundation for machine learn-
ing [16]—because their transition graphs are infinite
in general.

Reachability probabilities of probabilistic programs with while loops are
clearly not computable, because the problem encompasses termination of (non-
probabilistic) while programs. Therefore the existing research efforts have
focused on sound approximation methods for reachability probabilities. An app-
roach that is widely used in the literature is to use ranking supermartingales—
a probabilistic analogue of ranking functions—as a witness for the qualitative
c© Springer Nature Switzerland AG 2018
S. K. Lahiri and C. Wang (Eds.): ATVA 2018, LNCS 11138, pp. 476–493, 2018.
https://doi.org/10.1007/978-3-030-01090-4_28
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Table 1. Martingale-based techniques for approximation of reachability probabilities.
MC stands for Markov chains, and PP stands for probabilistic programs

Certificate for From

Ranking
(super- and sub-)
martingale for
under -approximation

Additive
supermartingale
(ARnkSupM,
Sect. 5)

E(steps to C) ≤ ? [7,22]

γ-Scaled
submartingale
(γ-SclSubM,
Sect. 6)

P(reach C) ≥ ? This paper for PP,
following categorical
observations in [28]
for MC

Repulsing
supermartingale for
over -approximation

ε-Decreasing
supermartingale
(ε-RepSupM,
Sect. 3)

P(reach C) ≤ ?
P(reach C) <? 1

[12], derived from

Azuma’s martingale
concentration
inequality

Nonnegative
supermartingale
(NNRepSupM,
Sect. 4)

P(reach C) ≤ ? This paper, derived
from the Knaster–
Tarski theorem ([23,
26], without nonde-
terminism, derived
from Markov’s
concentration
inequality)

question of almost-sure reachability. Ranking supermartingales are amenable to
template-based synthesis [7,8,10], making them appealing from the automatic
analysis point of view. Recently, methods for quantitatively underapproximating
reachability probabilities are also proposed in [12,28].

The dual question of overapproximating reachability probabilities, which can
then be used to qualitatively refute almost-sure reachability, is also considered.
In the control theory, supermartingales are used as a probabilistic counterpart
of barrier certificates [23,26]. A similar idea is recently used for the purpose of
synthesizing stochastic invariants for probabilistic programs [12]. Here an over-
approximation of reachability probability serves as quantitative verification for
safety: it gives an upper bound for the probability that the system or the program
reaches a bad state.

Table 1 lists four supermartingale-based techniques for over- and underap-
proximating reachability probabilities. The table is not meant to be exhaustive—
still, it shows that multiple methods have been introduced and studied, in
different communities (formal verification, control theory, etc.) and with dif-
ferent mathematical backgrounds (ranking functions, martingale concentration
inequalities, etc.).

The current work aims at a comprehensive and comparative account of those
martingale-based techniques in Table 1. Central to our account is the role of
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order-theoretic fixed points, a classic topic in theoretical computer science. More
specifically, we characterize our objectives—namely reachability probability and
expected reaching time—as suitable least fixed points. It turns out that a large
part of the theory of martingale-based methods can be developed based on this
order-theoretic characterization, without using mathematical gadgets unique to
probabilistic settings such as martingale concentration inequalities. Our contri-
butions are summarized as follows.

– A comprehensive and comparative account of different martingale-based tech-
niques for approximating reachability probabilities. We identify their key
mathematical principles to be order-theoretic fixed points and martingale
concentration inequalities, and we emphasize the role of the former.

– We introduce two martingale-based techniques that seem to be new, namely
γ-SclSubM and NNRepSupM in Table 1. Their purely probabilistic versions
have been in the literature: γ-SclSubM is from a category-theoretic account
in [28], and NNRepSupM is from control theory [26]. We extend them to prob-
abilistic programs that additionally have nondeterminism. Moreover, com-
pleteness of ARnkSupM for probabilistic programs with real-valued variables
seems to be new.

– We formalize those techniques, taking probabilistic programs (with nondeter-
minism) as the target of analyses. We investigate soundness and completeness
of the techniques in Table 1. While the order-theoretic fixed-point foundation
gives us clear theoretical guidance, additional nondeterminism requires us to
carefully establish measure-theoretic arguments.

– We implemented template-based automated synthesis algorithms for γ-
SclSubM, ε-RepSupM and NNRepSupM, following [7,10]. Our experimental
results suggest the advantage of γ-SclSubM in quantitative reasoning, and
the comparative advantage of NNRepSupM over ε-RepSupM in the quality
of bounds.

The paper is organized as follows. Preliminaries are in Sect. 2, where we intro-
duce our system models (pCFGs) for operational semantics of probabilistic pro-
grams, and review the theory of order-theoretic fixed points (the Knaster–Tarski
and Cousot–Cousot theorems). In Sects. 3–6 we discuss the four techniques in
Table 1, offering a unifying account based on order-theoretic fixed points, and
providing some new techniques and results. In Sect. 7 we give implementations
and experiment results of template-based synthesis. After discussion of related
work in Sect. 8, we conclude in Sect. 9. Omitted proofs and details are in [27].

2 Preliminaries

We first fix some notations. We write N and R for the set of all natural numbers
(i.e. nonnegative integers) and reals, respectively. We use subscripts to denote
subsets of N and R; for example, R≥0 denotes the set of all nonnegative reals.
We write X∗,X+,Xω for the sets of all finite, nonempty finite, and infinite
sequences of elements of X, respectively.
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We use the Borel measurable structure B(R) of the set R of real numbers.
This induces the measurable structures of all the other sets used in this paper:
R

k where k ∈ N, X × R
k where X is finite, and so on. The induced measurable

structures are defined in a standard manner: for example, X × R
k where X is

finite, it is given by B(X ×R
k) =

(B(Rk)
)X . The set of probability distributions

on (X,B(X)) is denoted by D(X). The Dirac measure on x ∈ X is denoted by δx.
The support supp(d) of d ∈ D(X) is defined by supp(d) =

{
x ∈ X | for any A ∈

B(X), x ∈ A implies d(A) > 0
}
. The set of all Borel measurable function from X

to Y is denoted by B(X,Y ). The functions 0 and 1 are the real-valued constant
function of which coefficient is 0 and 1, respectively.

2.1 Probabilistic Control Flow Graphs (pCFGs)

We take the notion of pCFG from [2] and use it as our model of probabilis-
tic systems. pCFGs can be thought of as a subclass of Markov decision pro-
cesses (MDPs), but tailored for operational semantics of probabilistic programs
(Sect. 2.2).

start

l0 l1 l2 l3

l4

l5

l6 t > 100 t ≤ 100
t:=t+1 z:=Unif(-2,1)

x:=x+z

y:=y+z

Fig. 2. The pCFG that models the probabilistic program in Fig. 1. Rectangles, dia-
monds, and pentagons represent deterministic, nondeterministic and assignment loca-
tions, respectively. The variables are initially set x := 2, y := 2 and t := 0.

Definition 2.1. (pCFG, [2]) A probabilistic control flow graph (pCFG) is a
tuple Γ = (L, V, linit,xinit, �→,Up,Pr, G) consisting of the following components.

– A finite set L of locations, equipped with a partition L = LN +LP +LD +LA

into nondeterministic, probabilistic, deterministic and assignment locations.
– A finite set V = {x1, . . . , x|V |} of program variables.
– An initial location linit ∈ L, and an initial valuation vector xinit ∈ R

V .
– A transition relation �→ ⊆ L×L which is total (each location has a successor).

For l ∈ L \ LA, we write succ(l) to denote the set of all successors of l, i.e.
succ(l) = {l′ ∈ L | l �→ l′} . We require that each assignment location l ∈ LA

has a unique successor; in this case, succ(l) denotes this unique location.
– An update function Up : LA → V × U , where U = B(RV ,R) ∪ D(R) ∪

B(R). Here, three components of U represent deterministic, probabilistic and
nondeterministic assignment, respectively.

– A family Pr =
(
Prl ∈ D(succ(l))

)
l∈LP

of probability distributions.
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– A guard function G : LD × L → B(RV ) such that, for each l ∈ LD, the follow-
ing hold: (collective exhaustion)

⋃
l �→l′ G(l, l′) = R

V ; and (mutual exclusion)
l �→ l′, l �→ l′′ and l′ �= l′′ imply G(l, l′) ∩ G(l, l′′) = ∅. We write x |= G(l, l′)
if x ∈ G(l, l′).

A configuration of a pCFG Γ is a pair (l,x) ∈ L×R
V of a location and a vector.

A successor (l′,x′) of a configuration (l,x) is a one such that l �→ l′ and

– if l ∈ LN ∪ LP then x′ = x;
– if l ∈ LD then x′ = x and x |= G(l, l′); and
– if l ∈ LA and Up(l) = (xj , u), then x′ = x(xj ← a). Here x(xj ← a) denotes

an update of the vector (the xj-component of x is replaced by a), and (i)
a = u(x) if u ∈ B(L × R

V ,R), (ii) a ∈ supp(u) if u ∈ D(R), and (iii) a ∈ u if
u ∈ B(R).

A finite path of Γ is a finite sequence c0, c1, . . . , ck of configurations where
ci is a successor of ci−1 for each i. Similarly, A run of Γ is an infinite sequence
c0, c1, . . . of configurations such that each ci is a successor of ci−1.

Schedulers resolve nondeterminism. Given a history c0 . . . ci of configurations,
it gives a distribution of the successor’s location or valuation vector. We assume
that a scheduler is universally measurable, which is standard in control theory
(see e.g. [5]).

If a pCFG Γ and a scheduler σ for Γ are given, then the behavior of Γ is
determined for each initial configuration c0; we represent it by the map μσ :
(L ×R

V )+ → D(L ×R
V ). For each nonempty sequence c0 . . . ci the distribution

μσ
c0...ci

is, intuitively, the distribution of the next configuration given a current
history c0 . . . ci of configurations under the scheduler σ. For the set SchΓ of all
schedulers for Γ we define the following.

Definition 2.2 (reachability probabilities P
reach
C,σ ,P

reach

C ,Preach
C ). Let Γ be a

pCFG. The reachability probability P
reach
C,σ (c) from a configuration c0 ∈ L × R

V

to a region C ∈ B(L × R
V ) under a scheduler σ ∈ SchΓ is defined by

P
reach
C,σ (c0) =

∑

i≥1

∫

L×RV \C

μσ
c0(dc1) . . .

∫

L×RV \C

μσ
c0...ci−2

(dci−1)
∫

C

1μσ
c0...ci−1

(dci)

for the case of c0 �∈ C, and P
reach
C,σ (c0) = 1 otherwise. The upper reachability proba-

bility P
reach

C (c) from c to C is defined by P
reach

C (c) = supσ∈SchΓ
P
reach
C,σ (c); the lower

reachability probability P
reach
C (c) is defined by P

reach
C (c) = infσ∈SchΓ

P
reach
C,σ (c).

Definition 2.3 (reaching times E
steps
C,σ ,E

steps

C ,Esteps
C ). Let Γ be a pCFG. The

expected reaching time of Γ from a configuration c0 ∈ L×R
V to C ∈ B(L×R

V )
under a scheduler σ ∈ SchΓ is defined by

E
steps
C,σ (c0) =

∑

i≥1

i·
∫

L×RV \C

μσ
c0(dc1) . . .

∫

L×RV \C

μσ
c0...ci−2

(dci−1)
∫

C

1μσ
c0...ci−1

(dci)
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for the case of Preach
C,σ (c0) = 1, and E

steps
C,σ (c0) = ∞ otherwise. The upper expected

reaching time E
steps

C (c) of Γ from c to C is E
steps

C (c) = supσ∈SchΓ
E
steps
C,σ (c), and

the lower expected reaching time is E
steps
C (c) = infσ∈SchΓ

E
steps
C,σ (c).

2.2 Probabilistic Programs: APP and PPP

The goal of this paper is the reachability analysis of imperative programs with
probabilistic and nondeterministic branching. We consider two languages taken
from [10,12], called affine probabilistic programs (APP) and polynomial proba-
bilistic programs (PPP). The two languages differ only in the arithmetic expres-
sions allowed in the assignment commands and Boolean expressions. For exam-
ple, the assignment command x := xy + x + 1 is allowed in PPP but not in
APP; x := 3x + 2y − 1 is allowed in both since its right-hand side is an affine
expression.

Both APP and PPP have the standard control structure in imperative
languages—such as if-branches and while-loops. APP and PPP additionally have
nondeterministic and probabilistic if-branches (if � then . . . and if prob(p)
then . . . , respectively, where p ∈ [0, 1]). They also have nondeterministic and
probabilistic assignment commands: x := ndetA where a value is chosen from a
set A ⊆ R; and x := d where a value is sampled from a probability distribution
d over R.

The definition of the semantical model pCFG (Sect. 2.1) mirrors the structure
of these languages. The translation from APP/PPP to pCFGs is straightforward
and omitted.

2.3 Order-Theoretic Foundation of Fixed Points

Order-theoretic fixed points are central to computer science, for recursive compu-
tation, inductive/coinductive datatypes and reasoning and specification of reac-
tive behaviors, etc. In general, a fixed-point equation can have multiple solutions;
often we are interested in extremal solutions: least fixed points (lfp’s, for live-
ness, induction, etc.) and greatest ones (gfp’s, for safety, coinduction, etc.). The
following fundamental results (in a simple setting of complete lattices) give two
different characterizations of lfp’s and gfp’s.

Theorem 2.4. Let (L,�) be a complete lattice, and f : L → L be a monotone
function. Then f has the least fixed point μf and the greatest νf . Moreover,

1. (Knaster–Tarski) The lfp is the least pre-fixed point: μf = min{l ∈ L | f(l) �
l}. Similarly, the gfp is the greatest post-fixed point: νf = max{l ∈ L | l �
f(l)}.

2. (Cousot–Cousot [13]) The (potentially transfinite) ascending chain ⊥ �
f(⊥) � f2(⊥) � · · · stabilizes to μf . Here fα(⊥) is defined by obvious induc-
tion: fα+1(⊥) = f(fα(⊥)) for a successor ordinal; and fα(⊥) =

⊔
β<α fβ(⊥)

for a limit ordinal.
Similarly, the descending chain � � f(�) � · · · stabilizes to νf . �
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From these characterizations we can derive the following reasoning principles.

Corollary 2.5. – (lfp-KT) f(l) � l implies μf � l.
– (gfp-KT) l � f(l) implies l � νf .
– (lfp-CC) For each ordinal α, fα(⊥) � μf .
– (gfp-CC) For each ordinal α, νf � fα(�). �

The arguments so far are symmetric for lfp’s and gfp’s. However, if one turns
to the common proof methods for lfp specifications (termination, reachability,
liveness) and those for gfp specifications (safety), a strong contrast emerges. Here
is an example.

Lemma 2.6. Let (S, �→ ⊆ S × S) be a Kripke frame, s0 ∈ S and C ⊆ S.

– (Invariant for safety) Let I ⊆ S be an invariant, that is, I ⊆ �I. Here
�I is defined by �I = {s ∈ S | s �→ s′ implies s′ ∈ I}. Assume also that
I ∩ C = ∅. Then s0 ∈ I implies that there is no path from s0 to C.

– (Ranking function for liveness) Let η : S → N∪ {∞} be a ranking func-
tion for C. That is, 1) for each s ∈ S \ C, there is a successor s′ such that
η(s) ≥ η(s′) + 1; and 2) for each s ∈ S, η(s) = 0 implies s ∈ C. Then,
η(s0) �= ∞ implies that there is a path from s0 to C. �

Knaster–Tarski Cousot–Cousot
lfp overapprox. underapprox.
gfp underapprox. overapprox.

The difference between the two meth-
ods is accounted for by the fact that,
in Corollary 2.5, two items give under -
approximations while the other two give
over -approximations. It is clear that the invariant method in Lemma2.6 comes
from (gfp-KT) of Corollary 2.5. Its dual, (lfp-KT), gives only an overapproxima-
tion l—it can be used for refutation but not for verification. Similarly, ranking
functions come from (lfp-CC)—the role of well-foundedness of the value domain
N mirrors the structure of ordinals. Its dual (gfp-CC) only gives an overapprox-
imation of νf . The situation is summarized in the above table.

The above foundations underpin our technical developments: this is because
reachability probabilities and reaching times are characterized as least fixed
points. We note that our semantical domains L in later sections need not be
complete lattices. In those cases we exploit the ω- and ωop-cpo structures, the
corresponding continuity of f , and the Kleene theorem. The last is understood
as a variation of the Cousot–Cousot theorem.

2.4 Invariants and the Nexttime Operations

In Sects. 3–6 the following definitions will be used.

Definition 2.7 ((pure) invariant for pCFG). Let Γ be a pCFG. A measur-
able set I ∈ B(L ×R

V ) is called a (pure) invariant for Γ if (linit,xinit) ∈ I, and
for each (l,x) ∈ I, if (l′,x′) is a successor of (l,x) then (l′,x′) ∈ I.
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Definition 2.8 (the “nexttime” operation X,X). Let Γ be a pCFG, I be
a pure invariant and K ∈ B(R). For a measurable η : I → K we define the
function Xη of the same type as η as follows, provided the right-hand side of
each equation is well-defined.

– For l ∈ LN , (Xη)(l,x) = maxl �→l′ η(l′,x).
– For l ∈ LP , (Xη)(l,x) =

∑
l �→l′ Prl(l′)η(l′,x).

– For l ∈ LD, (Xη)(l,x) = η(l′,x) where l′ is the unique location s.t. x |=
G(l, l′).

– For l ∈ LA, let Up(l) = (xj , u).
• (Xη)(l,x) = η(succ(l), u(x)) if u is a measurable function.
• (Xη)(l,x) =

∫
x∈supp(u)

η(succ(l),x(xj ← x))du if u is a distribution.
• (Xη)(l,x) = supx∈u η(succ(l),x(xj ← x)) if u is a measurable set.

The function Xη : I → K is defined as above, but replacing max with min in the
first line and sup with inf in the last.

Proposition 2.9. We define a pointwise partial order � on B(I,K), i.e. f � g
if and only if f(c) ≤ g(c) holds for every c ∈ I. Let K be a proper closed convex
subset of R ∪ {±∞}. Then Xη and Xη are well-defined for every η ∈ B(I,K),
and the following hold.

1. The operators X and X are monotone endofunctions over B(I,K). In partic-
ular, Xη and Xη are Borel measurable for any η ∈ B(I,K).

2. X is ω-continuous, and X is ωop-continuous. �

3 ε-Decreasing Repulsing Supermartingales (ε-RepSupM)

In Sects. 3–6 we will discuss the four martingale-based techniques in Table 1.
Here we briefly review the notion of ε-decreasing repulsing supermartingale
(ε-RepSupM) from [12]. It is, to the best of our knowledge, the only existing
martingale-based notion for overapproximating reachability probabilities.

Definition 3.1 (ε-RepSupM [12]). Let Γ be a pCFG, I be a pure invariant,
and C ⊆ I be a Borel set. An ε-repulsing supermartingale (ε-RepSupM) for C
supported by I is a measurable function η : I → R such that i) η(c) ≥ (Xη)(c)+ε
for each c ∈ I \ C, and ii) η(c) ≥ 0 for each c ∈ C.

Theorem 3.2 (soundness, [12]). Suppose there exists an ε-RepSupM for C
supported by I such that η(linit,xinit) < 0. Further assume that η has κ-bounded
differences for some κ > 0, i.e. for each c ∈ I and its successor c′ it holds

|η(c) − η(c′)| ≤ κ. Let γ = e
− ε2

2(κ+ε)2 and α = e
ε·η(linit,x init)

(κ+ε)2 .

1. We have the following inequality:

P
reach

C (linit,xinit) ≤ α · γ	|η(linit,xinit)|/κ


1 − γ
. (1)
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2. If the right-hand side of (1) is greater than 1, still P
reach

C (linit,xinit) < 1
holds. �

We note that for any η ∈ B(I,R) that has κ-bounded differences, the func-
tion Xη is well-defined. The bound in (1) is derived from Azuma’s concentra-
tion inequality, a well-known martingale concentration lemma that exploits κ-
bounded differences. ε-RepSupM is not complete: there exist a pCFG Γ and a
set C of configurations such that P

reach

C < 1 but no ε-RepSupM can prove it. See
Fig. 3 below.

start l0 l1 l2 l3

l4

l5

x:=ndet(0,1)
x < 1

x:=2x

x ≥ 1

1
2

1
2

Fig. 3. An example of incompleteness of ε-RepSupM. Probabilistic locations are

depicted by circles. This pCFG satisfies P
reach
{l5}×R(l0, 0) = 1

2
but no ε-RepSupM can

refute its a.s. reachability. Indeed, any ε-RepSupM η for {l5} × R must satisfy
limx→+0 η(l1, x) = ∞ due to the ε-decreasing condition, but such an η cannot have
κ-bounded differences at (l0, 0).

4 Nonnegative Repulsing Supermartingales
(NNRepSupM)

We move on to another notion for overapproximating reachability probabilities,
nonnegative repulsing supermartingale (NNRepSupM). We believe this is new.
Compared to the notion of ε-RepSupM, NNRepSupM has the following features.

– NNRepSupM is derived from the theory of order-theoretic fixed points
(Sect. 2.3), unlike ε-RepSupM that relies on Azuma’s martingale concentra-
tion lemma.

– Consequently, we can show soundness and completeness of NNRepSupM
rather easily, while ε-RepSupM is sound but not complete.

– We experimentally observe that NNRepSupM often gives better bounds
(Sect. 7).

The definition of NNRepSupM resembles probabilistic barrier certificates used
in control theory [23,26]. Our technical contributions are the following: i) we
develop the theory of NNRepSupM in the presence of nondeterminism, while the
settings in [23,26] are purely probabilistic; and ii) we characterize NNRepSupM
in the general terms of order-theoretic fixed points (Sect. 2.3), unlike the previous
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theory in [23,26] that relies on Markov’s martingale concentration lemma.1 The
latter unveils the mathematical similarity between NNRepSupM and ARnkSupM
(Sect. 5).

The notion comes with upper and lower variants. They are used to overap-
proximate P

reach

C and P
reach
C , respectively (Definition 2.2). In this section we use

K = [0,∞].

Definition 4.1 (NNRepSupM for pCFG). Let Γ be a pCFG, I be a pure
invariant, and C ⊆ I be a Borel set. An upper nonnegative repulsing supermartin-
gale (U-NNRepSupM) over Γ for C supported by I is a function η ∈ B(I, [0,∞])
s.t.

(i)η(c) ≥ 1 for each c ∈ C, and (ii)η(c) ≥ Xη(c) for each c ∈ I \ C.

The function η is a lower nonnegative repulsing supermartingale (L-
NNRepSupM) if it satisfies the above conditions, but with X replaced with X.

We shall prove soundness and completeness of NNRepSupM, based on the
foundations in Sect. 2.3. The following characterization is fundamental.

Proposition 4.2. In the setting of Definition 4.1, we define endofunctions ΦC

and ΦC over B(I, [0,∞]) as follows:

ΦC(η)(x) =

{
1 (x ∈ C)
(Xη)(x) (x �∈ C),

ΦC(η)(x) =

{
1 (x ∈ C)
(Xη)(x) (x �∈ C).

Then the upper reachability probability P
reach

C : L×R
V → [0,∞]2 is the least fixed

point (lfp) of ΦC . Similarly, Preach
C is the lfp of ΦC .

Proof. (Sketch) We first need to show that P
reach

C and P
reach
C are Borel mea-

surable. This is not very easy, as they are defined via supremum or infimum
over uncountably many schedulers. We use the technique of ε-optimal scheduler
known from control theory [5].

Checking that P
reach

C and P
reach
C are fixed points is not hard, though labo-

rious. We use ε-optimal schedulers again for interchange between sup./inf. and
integration.

Finally, the proofs for minimality differ for P
reach

C and P
reach
C . For P

reach

C , we
first observe that ΦC is ω-continuous (immediate from Proposition 2.9). There-
fore by the Kleene theorem, the lfp of ΦC is given by ΦC

ω
(⊥) (i.e. the chain

in Theorem 2.4 stabilizes after ω steps). We can check the coincidence between
ΦC

ω
(⊥) and P

reach

C by direct calculation.

1 We note that the theory of NNRepSupM can also be developed using Markov’s
lemma.

2 Precisely it is the restriction of P
reach
C to I; in what follows we do this identification

for P
reach
C , Preach

C , E
steps
C , and E

steps
C .
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For Preach
C , let η be a fixed point of ΦC . Then for each ε > 0, we can construct

a scheduler σ such that Preach
C,σ (c) � η(c)+ε for each c (at the n-th step, σ chooses

a ε/2n-optimal successor). Since P
reach
C = infσ P

reach
C,σ , this proves P

reach
C � η. �

It is easy to see that a U-NNRepSupM η is nothing but a pre-fixed point of
ΦC (i.e. ΦC(η) � η), and that an L-NNRepSupM η is a pre-fixed point of ΦC .
Therefore, soundness and completeness of NNRepSupM follow essentially from
Corollary 2.5.

Corollary 4.3. 1. (Soundness) If η is a U-NNRepSupM for C supported by I,
then for each c ∈ I \ C we have P

reach

C (c) ≤ η(c).
Similarly, if η is an L-NNRepSupM for C supported by I, then for each c ∈
I \ C we have P

reach
C (c) ≤ η(c). This means, concretely, that for each ε > 0

there is a scheduler σ ∈ SchΓ such that, for any c ∈ I \C, we have P
reach
C,σ (c) ≤

η(c) + ε.
2. (Completeness) There exists a U-NNRepSupM η that gives the optimal bound

for P
reach

C . The same for L-NNRepSupM. �

5 Additive Ranking Supermartingales (ARnkSupM)

We move on to the notion of additive ranking supermartingale (ARnkSupM) in
Table 1. It is the best-known martingale-based notion for analysis of probabilistic
programs and is used for overapproximating the expected reaching time. That
its value is finite implies almost-sure reachability, too. We review its theory; the
reason is to demonstrate that the same order-theoretic structure (see Sect. 2.3)
underlies ARnkSupM and NNRepSupM in the previous section. The complete-
ness result ((2) of Corollary 5.3) for pCFGs with real-valued variables seems new,
too; See Sect. 8 for a detailed comparison to existing works. Proofs are done in
a much similar manner to the ones in Sect. 4. In this section we use K = [0,∞].

We note that completeness of U-ARnkSupM we state below is the one
for strong almost-sure reachability [3]. U-ARnkSupM is incomplete for pos-
itive almost-sure reachability [14], that is, it cannot witness the condition
∀σ.Esteps

C,σ (c) < ∞ in general.

Definition 5.1 (ARnkSupM for pCFG, [7]). Let Γ be a pCFG, I ∈ B(L ×
R

V ) be a pure invariant, and C ⊆ I be a Borel set. An upper additive ranking
supermartingale (U-ARnkSupM) over Γ for C supported by I is a function η ∈
B(I, [0,∞]) that satisfies η(c) ≥ 1 + Xη(c) for each c ∈ I \ C.

The function η is a lower additive ranking supermartingale (L-ARnkSupM)
if it satisfies the above conditions, but with X replaced with X.

Proposition 5.2. In the setting of Definition 5.1, we define endofunctions ΨC

and ΨC over B(I, [0,∞]) as follows:

ΨC(η)(x) =

{
0 (x ∈ C)
1 + (Xη)(x) (x �∈ C),

ΨC(η)(x) =

{
0 (x ∈ C)
1 + (Xη)(x) (x �∈ C).
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Then the upper expected reaching time E
steps

C : L ×R
V → [0,∞] is the lfp of ΨC .

Similarly, Esteps
C is the lfp of ΨC . �

Corollary 5.3. 1. (Soundness, e.g. [2]) If η is a U-ARnkSupM for C supported
by I, then for each c ∈ I \ C we have E

steps

C (c) ≤ η(c). In particular, for each
c ∈ I \ C that satisfies η(c) < ∞ we have P

reach
C (c) = 1.

Similarly, if η is an L-ARnkSupM for C supported by I, then for each c ∈ I\C
we have E

steps
C (c) ≤ η(c). This means, concretely, that for each ε > 0 there is

a scheduler σ ∈ SchΓ such that, for any c ∈ I\C, we have E
steps
C,σ (c) ≤ η(c)+ε.

In particular, for each c ∈ I \C that satisfies η(c) < ∞ we have P
reach

C (c) = 1.
2. (Completeness) There exists a U-ARnkSupM η that gives the optimal bound

for E
steps

C . The same holds for L-ARnkSupM. �

6 γ-Scaled Submartingales (γ-SclSubM)

Here we present the theory of γ-scaled submartingales (γ-SclSubM). It is for
underapproximating reachability (Table 1). Compared to the well-known method
of ARnkSupM, the greatest advantage is in quantitative reasoning: the value of
a γ-SclSubM is guaranteed to be below the reachability probability (which can
be less than 1), while ARnkSupM is useful only if almost reachability holds. In
this section we use K = [0, 1].

The notion of γ-SclSubM is first introduced in [28], as an instance of a cat-
egorical abstraction of ranking functions. The current paper’s contribution lies
in the following: (i) the theoretical developments about γ-SclSubM in concrete
(non-categorical) terms; (ii) introduction of nondeterminism (the setting of [28]
is purely probabilistic); and (iii) template-based synthesis of γ-SclSubM.

Definition 6.1 (γ-SclSubM for pCFG, [28]). Let γ ∈ (0, 1) be given. An
upper γ-Scaled Submartingale (U-γ-SclSubM) over Γ for C supported by I is a
function η ∈ B(I, [−∞, 1]) that satisfies η(c) ≤ γ · Xη(c) for each I \ C. A lower
γ-Scaled Submartingale (L-γ-SclSubM) over Γ for C supported by I is a function
η ∈ B(I, [−∞, 1]) that satisfies η(c) ≤ γ · Xη(c) for each I \ C.

The derivation of γ-SclSubM, from a categorical account in [28], can be
described in the following concrete terms. A γ-SclSubM is a post-fixed point
of certain functions (namely γ · ΦC and γ · ΦC below). According to (gfp-KT) in
Corollary 2.5, γ-SclSubM underapproximates a greatest fixed point—but reacha-
bility is a least fixed point. The trick here is as follows: (1) thanks to the scaling
by γ ∈ (0, 1), the gfp and lfp of γ ·ΦC coincide; and (2) the lfp (hence the gfp) of
γ ·ΦC is easily seen to be below the lfp of ΦC , that is, the reachability probability
that we are after. The overall argument signifies the role of the Knaster–Tarski
theorem.

Proposition 6.2. Let ΦC and ΦC be as defined in Proposition 4.2. Define end-
ofunctions γ · ΦC and γ · ΦC over B(I, [0, 1]) as follows: (γ · ΦC)(η)(x) =
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{
1 (x ∈ C)
γ · (Xη)(x) (x �∈ C),

and (γ · ΦC)(η)(x) =

{
1 (x ∈ C)
γ · (Xη)(x) (x �∈ C).

Then we

have i) μ(γ · ΦC) � μΦC and μ(γ · ΦC) � μΦC , and ii) ν(γ · ΦC) = μ(γ · ΦC)
and ν(γ · ΦC) = μ(γ · ΦC). �

Corollary 6.3 (soundness). If η is a U-γ-SclSubM for C supported by I, then
for each c ∈ I \ C we have P

reach

C (c) ≥ η(c). This means, concretely, that for
each ε > 0 there is a scheduler σ ∈ SchΓ such that, for any c ∈ I \ C, we have
P
reach
C,σ (c) ≥ η(c) − ε.

Similarly, if η is an L-γ-SclSubM for C supported by I, then for each c ∈ I\C
we have P

reach
C (c) ≥ η(c).

Proof. Just notice that if η is an upper- or lower-γ-SclSubM, then
so is max{0, η}. The rest is as described in the paragraph before
Proposition 6.2. �

7 Implementation and Experiments

We implemented template-based automated synthesis algorithms for NNRep-
SupM (Sect. 4) and γ-SclSubM (Sect. 6), and present some experimental results.
We implemented the following programs:

I. synthesis of a U-NNRepSupM for an APP based on a linear template.
II. synthesis of a U-NNRepSupM for a PPP based on a polynomial template.

III. synthesis of an L-γ-SclSubM for an APP based on a linear template.

Each algorithm first translates given an APP or a PPP to a pCFG Γ and a
terminal configuration C, and then solves an optimization problem of finding a
U-NNRepSupM (L-γ-SclSubM) over Γ for C that gives a small (large) value as
possible at the initial configuration. Reduction of optimization problems to LP
or SDP ones are done in standard ways in the literature; we use Farkas’ lemma
(see e.g. [7,12]) for the case of APPs, and Schmüdgen’s Positivstellensatz (see
e.g. [8,10]) for PPPs.

We have augmented the syntax of APPs and PPPs (Sect. 2.2) so that we
can specify an invariant I and a terminal configuration C. The program does
not synthesize an invariant nor prove the correctness of the given invariant, and
therefore the user has to provide a correct invariant by hand or by using some
algorithm, e.g. [20].

All the programs are implemented in OCaml. We have used glpk (v4.63) [15]
and SDPT3 [24] for the LP and SDP solvers respectively. For the implemen-
tation of Prog. II, we have also made use of a MATLAB toolbox SOSTOOLS
(v3.03) [25].

We tested our implementations for several APPs and PPPs. We have used
different benchmark sets for Prog. I–II and Prog. III because what is overapproxi-
mated by Prog. I–II (P

reach

C ) and what is underapproximated by Prog. III (Preach
C )
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are different. The benchmarks implement the following probabilistic processes
that are used as benchmarks in the literature. More details and codes are given
in [27].

(a). (Adversarial random walk) A variation of a random walk, whose anal-
ysis is more challenging because of additional adversarial nondeterministic
choices [11]. We have considered three variants: (a-1) 1D, (a-2) 2D and (a-3)
a variant of 2D. (a-1) is a random walk over R modeling a discrete queuing
system, and is parametrized by p1, p2 ∈ [0, 1] that determines the distribu-
tion of the number of packets that arrive in each round. (a-2) and (a-3) are
random walks over R

2 parametrized by M1,M2 ∈ R. They determine the
distribution of movement distances in each round. We added a queue size
limit for (a-1) and a time limit for (a-2) and (a-3). If the queue size exceeds
10 in (a-1) or 100 rounds were consumed in (a-2) or (a-3), the program
stops, and it is not counted as termination.

(b). (Room temperature control) A model of an air conditioning system
for adjacent two rooms [1,8]. It is parametrized by real numbers c and
p: the former determines the power of the air conditioner, and the latter
determines the size of perturbation. We have also added a time limit of 100
as in (a) above.

We have coded (a)–(b) as an APP. Experiments for Prog. I and III were
carried out on a MacBook Pro laptop with a Core i5 processor (2.6 GHz, 2 cores)
and 16 GiB RAM. That for Prog. II was carried out on an Amazon EC2 c4.large
instance (May 2018, 2 vCPUs and 3.75 GiB RAM) running Ubuntu 16.04.4 LTS
(64 bit). The results are in Tables 2–3. For each program, the first column (“time
(s)”) shows the total execution time, and the second column (“bound”) shows
the calculated probability bound.

(Applicability of NNRepSupM) Table 2 shows the results for Prog. I–II;
the goal of these experiments is to certify the applicability of NNRepSupM to
programs with nondeterminism (a-1). We have tested them for (a-1) with two
combinations of parameters. Prog. I–II found a nontrivial bound for the reacha-
bility probability when (p1, p2) = (0.2, 0.4) while it failed to find such a bound
when (p1, p2) = (0.8, 0.1). Intuitively, the random walk is more “unfavorable” in
the former case in the sense that the opposite direction from a terminal configu-
ration is chosen in higher probabilities. As expected, a polynomial NNRepSupM
gives tighter bound than a linear one, but it took much longer. The bound was
not improved by increasing the degree of the polynomial template.

(Applicability of γ-SclSubM) Table 3 shows the results for Prog. III; here we
wish to certify applicability of our new method γ-SclSubM. For each variant of
(a), we have tested Prog. III for two combinations of parameters. In each variant,
Prog. III gives a nontrivial probability bound for one combination and a trivial
bound for the other combination. In fact, all the cases where nontrivial bounds
were “favorable” random walks where the direction to a terminal configuration
tends to be chosen. In contrast, the cases where no nontrivial bound was found
were “unfavorable” random walks. Note that this is the converse of the results



490 T. Takisaka et al.

Table 2. Bounds by U-NNRepSupM

Prog. I (linear) Prog. II (deg.-2 poly.) Prog. II (deg.-3 poly.)

param. time (s) bound time (s) bound time (s) bound

(a-1)
p1 = 0.2
p2 = 0.4 0.021 ≤ 0.825 530.298 ≤ 0.6552 572.393 ≤ 0.6555

p1 = 0.8
p2 = 0.1 0.024 ≤ 1 526.519 ≤ 1.0 561.327 ≤ 1.0

Table 4. Probabilistic bounds given by U-
NNRepSupM and ε-RepSupM

true reachability probability U-NNRepSupM 1-RepSupM

(c-1) (0.4/0.6)5−(0.4/0.6)10

1−(0.4/0.6)10
≈ 0.116 0.505 < 1

(c-2) 0.5 0.5 —

(c-3)
∫ 1

0
( 0.25
0.75

)�log2(1/x)�dx ≈ 0.2 0.5 —

(c-4) ( 0.25
0.75

)1 ≈ 0.333 — < 1

Table 3. Bounds by L-γ-
SclSubM with γ = 0.999

Prog. III (linear)

param. time (s) bound

(a-1)
p1 = 0.2
p2 = 0.4 0.026 ≥ 0

p1 = 0.8
p2 = 0.1 0.022 ≥ 0.751

(a-2)
M1 = −1
M2 = 2 0.033 ≥ 0

M1 = −2
M2 = 1 0.033 ≥ 0.767

(a-3)
M1 = −1
M2 = 2 0.028 ≥ 0

M1 = −2
M2 = 1 0.040 ≥ 0.801

c = 0.1
p = 0.5 0.056 ≥ 0

(b)
c = 0.1
p = 0.1 0.054 ≥ 0.148

for Prog. I–III. Prog. III also succeeded in giving a nontrivial bound for (b).
However, if we increase the parameter c (i.e. if we strengthened the power of air
conditioners), it failed to give a nontrivial bound.

(Comparison between NNRepSupM and ε-RepSupM) Both of NNRep-
SupM and ε-RepSupM (Sect. 3) overapproximate P

reach

C . To compare them, we
have also tested them for the following four simple pCFGs: (c-1) a bounded ran-
dom walk over [0, 10]; (c-2) a simple system with an infinite branching where
x is assigned a value taken from a geometric distribution; (c-3) a random walk
over [0, 1] that exhibits geometric behaviors; and (c-4) an unbounded random
walk. See [27] for the concrete definitions of the pCFGs.

The results are shown in Table 4. The second column shows the true reach-
ability probability obtained by hand calculation. The third and fourth columns
show the probability bounds calculated by a linear NNRepSupM and a linear
1-RepSupM respectively.

For (c-1), both a linear NNRepSupM and a linear 1-RepSupM were found.
However, while the NNRepSupM gave a non-trivial bound for the reachability
probability, the probability bound calculated from the 1-RepSupM as in (1) was
greater than 1 and hence trivial (cf. Theorem3.2). Recall from Theorem 3.2.3.2
that the 1-RepSupM can still refute almost-sure reachability. For (c-2) and (c-3),
whose almost-sure reachability cannot be refuted by 1-RepSupMs, our algorithm
found NNRepSupMs that give non-trivial probability bounds. In contrast, for
(c-4), no NNRepSupM gave non-trivial bound while a 1-RepSupM that refutes
almost-sure reachability was found.

8 Related Work

The notion of ranking supermartingale is first proposed by [7] aiming at extend-
ing applicability of quantitative invariants [21,22] to probabilistic programs with
real-valued variables, but nondeterminism is not considered. Soundness of the
method under demonic nondeterminism is studied in [2,10,14]; among them,
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lexicographic ranking supermartingales [2] can be seen as an extension of our U-
ARnkSupM. Soundness under finite demonic/angelic nondeterminism is shown
in [11].

Completeness of U-ARnkSupM for strong almost-sure termination [3] has
previously been shown, but only in discrete settings [3,9]. The closest result to
ours is [9], where they study pCFGs with demonic nondeterminism but restrict
to integer-valued variables. Our proof that also works for real-valued variables
utilizes ε-optimal schedulers from control theory [5].

Several under- and overapproximation methods for expected runtimes of prob-
abilistic programs, which is defined inductively on its structure rather than on
its semantics, is studied in [19]. Upper invariants of while-loops among them is
a U-ARnkSupM-like notion in their setting. In [19] soundness and completeness
of the upper invariant technique are derived from order-theoretic considerations.
They handle probabilistic programs with demonic nondeterminism, but only
discrete updates are allowed.

Probabilistic barrier certificates are studied in control theory [23,26] as a
tool for overapproximating reachability. While it resembles our NNRepSupMs,
their setting is purely probabilistic; we extend applicability of the technique to
systems with nondeterminism.

ε-RepSupM [12] is also a technique for overapproximating reachability, which
is studied for the purpose of synthesizing stochastic invariants. It is combined
with ranking supermartingales to verify the persistence property of programs,
too [8,12]. While there are certain similarities between ε-RepSupMs and NNRep-
SupMs, they are technically different because ε-RepSupMs exploit the κ-bounded
differences condition, which is not assumed in our case. Their method is sound
for refuting almost-sure reachability but does not provide nontrivial probability
bound in general, and is not complete (see Fig. 3).

9 Conclusions and Future Work

We gave a comprehensive and comparative account of martingale-based tech-
niques for approximating reachability probabilities. We demonstrated that
several different approximation techniques–NNRepSupM, ARnkSupM, and γ-
SclSubM– had a common structure of order-theoretic fixed points in their the-
ory, while they originally arose from different communities. The key observation
was that the reachability probability and the expected reaching time were the
least fixed points of certain monotone endofunctions; soundness and complete-
ness of the first two techniques are derived as its corollaries, and it is the basis for
the proof of soundness of γ-SclSubM. We also implemented the techniques above
and conducted experiments, of which results suggest the advantage of γ-SclSubM
in quantitative reasoning, and the comparative advantage of NNRepSupM over
ε-RepSupM in the quality of bounds.

In this paper we have focused on over- and underapproximating (i.e. refuting
and verifying) reachability probabilities. For future work, we wish to study more
complicated specifications such as recurrence (GFϕ) and persistence (FGϕ),
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too. Some martingale-based techniques have already been used (see e.g. [8]); we
will investigate the use of lattice-theoretic progress measures, introduced in [17]
as a generalization of progress measures for parity games [18], in the probabilistic
settings.
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Abstract. Reactive synthesis aims at automatic construction of systems
from their behavioural specifications. The research mostly focuses on syn-
thesis of systems dealing with Boolean signals. But real-life systems are
often described using bit-vectors, integers, etc. Bit-blasting would make
such systems unreadable, hit synthesis scalability, and is not possible
for infinite data-domains. One step closer to real-life systems are register
transducers [10]: they can store data-input into registers and later output
the content of a register, but they do not directly depend on the data-
input, only on its comparison with the registers. Previously [5] it was
proven that synthesis of register transducers from register automata is
undecidable, but there the authors considered transducers equipped with
the unbounded queue of registers. First, we prove the problem becomes
decidable if bound the number of registers in transducers, by reducing the
problem to standard synthesis of Boolean systems. Second, we show how
to use quantified temporal logic, instead of automata, for specifications.

1 Introduction

Reactive synthesis [2] frees hardware and software developers from tedious and
error-prune coding work. Instead, the developer specifies the desired behaviour of
a system, and a synthesizer produces the actual code. The research in reactive
synthesis is mostly focused on synthesis of transducers dealing with Boolean
inputs and outputs. However, most programs and hardware designs use not only
Booleans, but also bit-vectors, integers, reals. Bit-blasting into Booleans makes
synthesized programs unreadable and hinders the synthesis scalability.

One step closer to real-life systems are register transducers [10]. Such trans-
ducers are equipped with registers; they can read the data-input from an infinite
domain; they can store the data-input into a register and later output it; they
do not depend on the exact data-input value, but on its comparison with the
registers. Thus, a transition of a register transducer can say “in state q: if the
data-input not equals to register #1, then output the value of register #1, store
the data-input into register #2, and go into state q′”. Examples of a register
transducer and automaton are in Figs. 2 and 1.

In [5], the authors introduced the problem of synthesis of register transducers.
But their transducers are equipped with an unbounded queue of registers: they
c© Springer Nature Switzerland AG 2018
S. K. Lahiri and C. Wang (Eds.): ATVA 2018, LNCS 11138, pp. 494–510, 2018.
https://doi.org/10.1007/978-3-030-01090-4_29
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can push the data-input into the queue, and later compare the data-input with
the values in the queue. For specifications, the authors use register automata
with a fixed number of registers (thus, no queue). The authors show that the
synthesis problem is undecidable; the proof relies on unboundedness of the queue.

We prove the problem becomes decidable if bound the number of registers in
transducers. Namely, we reduce synthesis of k-register transducers wrt. register
automata to synthesis of Boolean transducers wrt. Boolean automata, i.e., to
standard synthesis. The reduction relies on two ideas.

The first (folklore) idea is: instead of tracking the exact register values and
data-inputs, track only the equivalences between register values and the data-
input. The second idea is: instead of checking automaton non-emptiness, we
check automaton non-emptiness modulo words of k-register transducers.

In the second part, we suggest a temporal logic that “works well” with our
approach. Among several logics suitable to the context of infinite data [3,4,9,14],
we have chosen IPTL [14] (called VLTL in [9]), because of its naturalness. Using
this logic, we can state properties like ∀d ∈ D : G(i = d → F(o = d)): “every
data-value appearing on the input eventually appears on the output”. We show
how to convert a formula in this logic into a register automaton (in incomplete
way; there can be no complete way) that can be used by our synthesis approach.

2 Definitions

Fix a data-domain D throughout the paper, which is an infinite set of elements
(data-values). Calligraphic writing like i, o, d, r denotes data-variables or objects
closely related to them. Sets of such objects are also written in calligraphic, like
D, R, P, etc. Define N = {1, 2, ...}, N0 = {0, 1, 2, ...}, [k] = {1, ..., k} for k ∈ N;
B = {true, false}, and we often use the subscripted variants, Bi = Bo = B, to
clarify when B is related to object i or o. For an automaton A, let L(A) denote
the set of its accepting words.

2.1 Register Automata

A register automaton works on words from (2P × DP)ω, where P is a set of
Boolean signals and P is a set of data-signals. To simplify the presentation, we
assume there are only two data-signals (P = {i, o}), which makes the words to
be from (2P × D2)ω. When reading a word, a register automaton can store the
value of data-signal i into its registers. Later it can compare the content of its
registers with the current value of i. Register automata do not depend on actual
data-values—only on the comparison with the register values. Below is a formal
definition.

A (universal co-Büchi/non-deterministic Büchi) word automaton with k reg-
isters is a tuple A = 〈P,P,R, d0, Q, q0, δ, F 〉, where

– P is a set of Boolean signals;
– P = {i, o} is a set of data-signals;
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q0 q1

¬store
req
store

¬grant ∨ �=
¬store

Fig. 1. A universal co-Büchi 1-register automaton: P = {req, grant}, R = {r},
F = {q1}. The labels ¬store and store have a special meaning: store means that
the automaton stores the value of data-input i into register r; ¬store means it does
not. The expression o �= r means that the component Bo of the transition is false.
For guards and Boolean signals, the labeling is symbolic. Formally, the set of transi-
tions is

{
(q0, p, bi, bo, false, q0) : (bi, bo) ∈ B

2, p ∈ 2P
} ∪ {

(q0, p, bi, bo, true, q1) : (bi, bo) ∈
B
2, req ∈ p ∈ 2P

}∪{
(q1, p, bi, bo, false, q1) : (bi, bo) ∈ B

2, p ∈ 2P , grant �∈ p∨bo = false
}
.

– R = {r1, ..., rk} is a set of registers;
– d0 ∈ D is an initial data-value for every register;
– Q is the set of states and q0 ∈ Q is an initial state;
– F ⊆ Q is a set of accepting states ;
– δ : Q×2P ×B

k
i ×B

k
o → 2B

k×Q is a transition function. Intuitively, in a state, an
automaton reads a finite letter from 2P (which describes all Boolean signals
whose current value is true) and a data-letter from D2 (a data-value for i and
a data-value for o). Then the automaton compares the data-letter with the
content of the registers. Depending on this comparison (component Bk

i ×B
k
o ,

called guard), the automaton transits into several (for universal automaton)
or one of (for non-deterministic automaton) successor states, and for each
successor state, stores the value of data-signal i into one, several, or none of
the registers (defined by component B

k, called assignment or store).

An example of a register automaton is in Fig. 1.
A configuration is a tuple (q, d̄) ∈ Q × Dk, and (q0, dk

0 ) is initial. A path is

an infinite sequence (q0, d̄0)
(l0,i0,o0,ā0)−→ (q1, d̄1)

(l1,i1,o1,ā1)−→ ... such that for every
j ∈ N0:

– qj ∈ Q, d̄j ∈ Dk, lj ∈ 2P , ij ∈ D, oj ∈ D, and āj ∈ B
k;

– (qj+1, āj) ∈ δ
(
qj , lj , ij = d̄j [1], ..., ij = d̄j [k], oj = d̄j [1], ..., oj = d̄j [k]

)
;

– d̄0 = dk
0 ; and

– for every n ∈ [k]: d̄j+1[n] =

{
ij if āj [n] = true,
d̄j [n] otherwise.

Let Σ = 2P × D2. A word is a sequence from Σω. A word is accepted by a
universal co-Büchi automaton iff every path —whose projection into Σ equals
to the word— does not visit a state from F infinitely often; otherwise the
word is rejected. A word is accepted by a non-deterministic Büchi automaton
iff there is a path —whose projection into Σ equals to the word— that vis-
its a state from F infinitely often; otherwise the word is rejected. For exam-
ple, the universal co-Büchi 1-register automaton in Fig. 1 accepts the word
({req}, 5i, ∗o)({req, grant}, 6i, 5o)({grant}, ∗i, 6o)(∅, ∗i, ∗o)ω, where D = N0, we
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write subscripts i and o for clarity, and ∗ is anything from D (not neces-
sary the same). The automaton describes the words where every req is fol-
lowed by grant with the data-value of o being equal to the data-value of i

at the moment of the request. Such words can be described by a formula
∀d ∈ D : G

(
req ∧ i = d → XF(grant ∧ o = d)

)
, but we postpone the discus-

sion of logic until Sect. 4.

2.2 Register Transducers

Register transducers is an extension of standard transducers (Mealy machines) to
an infinite domain. A register transducer can store the input data-value into its
registers. It can only output the data-value that is currently stored in one of its
registers. Similarly to register automata, the transitions of register transducers
depend on the comparison of the data-input with the registers, but not on the
actual data-values. Let us define register transducers formally.

A k-register transducer is a tuple T = 〈I,O,I,O,R, d0, S, s0, τ〉 where:

– I and O are sets of Boolean signals, called Boolean inputs and outputs;
– I and O are sets of data-signals, called data-inputs and data-outputs; we

assume that I = {i} and O = {o}.
– S is a (finite or infinite) set of states and s0 ∈ S is initial ;
– R = {r1, ..., rk} is a set of registers;
– d0 ∈ D is an initial data-value for every register;
– τ : S ×2I ×B

k
i → (2O × [k]×B

k ×S) is a transition function. Intuitively, from
a state the transducer reads the values of the Boolean inputs (component 2I)
and compares the content of the registers with the data-value of i (component
B

k
i , called guard). Depending on that information, the transducer transits into

a unique successor state (component S), stores the data-value of i into one,
several, or none of the registers (component B

k, called assignment or store),
outputs a value for each Boolean output (component 2O), and outputs a
data-value stored in one of the registers (component [k]).

Figure 2 shows an example of a register transducer.
A configuration is a tuple (s, d̄) ∈ Q ×Dk; (s0, dk

0 ) is called initial. A path is

a sequence (s0, d̄0)
(i0,o0,i0,o0,ā0)−→ (s1, d̄1)

(i1,o1,i1,o1,ā1)−→ ... where for every j ∈ N0:

– sj ∈ S, d̄j ∈ Dk, ij ∈ 2I , oj ∈ 2O, ij ∈ D, oj ∈ D, āj ∈ B
k;

– let (out, out, store, succ) = τ(sj , ij , ij = d̄j [1], ..., ij = d̄j [k]). Then:
– sj+1 = succ;
– āj = store;
– oj = d̄j [out];
– oj = out;
– d̄0 = dk

0 ; and

– for every n ∈ [k]: d̄j+1[n] =

{
ij if āj [n] = true,
d̄j [n] otherwise.
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s0 s1

¬req/¬grant
¬store req/¬grant

store
req/grant

store

¬req/grant
¬store

Fig. 2. A 1-register transducer: I = {req}, O = {grant}, R = {r}. The mean-
ing of store and ¬store is as in the previous figure. The labeling wrt. guards and
Boolean signals is symbolic. The transducer always outputs the value of its only reg-
ister (not shown). Formally, the set of transitions is

{
(s0, ∅, bi, ∅, 1, false, s0) : bi ∈

B
} ∪ {

(s0, {req}, bi, ∅, 1, true, s1) : bi ∈ B
} ∪ {

(s1, {req}, bi, {grant}, 1, true, s1) : bi ∈
B

}∪{
(s1, ∅, bi, {grant}, 1, false, s0) :bi ∈B

}
.

Notice that a value of the data-output refers to the current register values, not
the updated ones. I.e., outputting a data-value happens before storing.

For example, a path of the register transducer in Fig. 2 can start with

(s0, 0)
({req},∅,5i,0o,true)−→ (s1, 5)

({req},{grant},6i,5o,true)−→ (s1, 6)
(∅,{grant},4i,6o,false)−→

(s0, 6), where we assumed that D = N0, d0 = 0, and the subscripts i and o

are for clarity.
A word is a projection of a transducer path into 2I∪O × D2. A register

transducer satisfies a register automaton A, written T |= A, iff all transducer
words are accepted by the automaton. For example, the register transducer from
Fig. 2 satisfies the automaton from Fig. 1.

2.3 Synthesis Problem

Model checking and cutoffs The model-checking problem is:

– Given: a register transducer T , a universal co-Büchi register automaton A.
– Return: “yes” if T |= A, otherwise “no”.

The model-checking problem is decidable, which follows from the following.
Kaminski and Francez [10, Prop.4] proved the following cutoff result (adapted
to our notions): if a data-word over an infinite domain D is accepted by a non-
deterministic Büchi k-register automaton, then there is an accepting data-word
over a finite domain Dk+1 of size k+1. (Actually, their result is for words of finite
length, but can be extended to infinite words.) Further, if we look at a given
universal co-Büchi kA-register automaton A as being non-deterministic Büchi Ã,
then L(Ã) = L(A), i.e., it describes the error words. To do model checking, as
usual, (1) build the product of the Ã and a given kT -register transducer T , then
(2) check its emptiness and return “the transducer is correct” iff the product is
empty. The product is easy to build, this is an easy extension of the standard
product construction, we note only that it is a non-deterministic Büchi (kA+kT )-
register automaton. Finally, to check emptiness of the product we can use the
cutoff result, namely, restrict the data-domain to have (kA +kT +1) data-values.
This reduces product emptiness to standard emptiness of register-less automata.
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The case of deterministic Rabin register automata and transducers with more
than single data-input and data-output was studied in [12], but the proof idea
is similar.

In this paper we focus on the synthesis problem defined below.
Synthesis. The bounded synthesis problem is:

– Given: a register-transducer interface (the number of registers kT , Boolean
and data-inputs, Boolean and data-outputs), a universal co-Büchi register
automaton A.

– Return: a kT -register transducer T of a given interface such that T |= A,
otherwise “unrealizable”.

If the number of registers kT is not given (thus we ask to find any such kT which
makes the problem realizable, or return “unrealizable” if no such kT exists), then
we get the (finite but unbounded) synthesis problem.

A related synthesis problem (let us call it “infinite synthesis problem”) was
studied in [5], but for a slightly different model of register transducers. There, the
transducers operate an unbounded queue of registers (thus, it may use an infinite
number of registers). They prove the infinite synthesis problem is undecidable
and suggest an incomplete synthesis approach.

In the next sections, we show that the bounded synthesis problem is decid-
able, and suggest an approach that reduces it to the synthesis problem of register-
less transducers wrt. register-less automata. The (unbounded) synthesis problem
is left open.

But before proceeding to our solution, let us remark why the cutoff result
does not immediately give a complete synthesis procedure.

Remark 1 (Cutoffs and synthesis). The cutoff result makes the data-domain
finite, so let the values of the registers be part of the transducer states. Then a
transducer has to satisfy the three conditions below, where condition (3) explains
why the cutoff does not work with this naive approach.

(1) “The register values are updated according to transducer store actions.”
Introduce new Boolean outputs describing the current values of the trans-
ducer registers, and new Boolean outputs describing the store action. Then
it is easy to encode the above requirement using a register-less automaton.

(2) “The value of the data-output always equals the value of one of the regis-
ters.”
With the Boolean outputs introduced in item (1), this can be easily encoded
using a register-less automaton.

(3) “The transitions depend on the guard, but not on the value of data-input.”
When considered alone, this requirement can be implemented using the
partial-information synthesis approach [11], where we search for a trans-
ducer that can access the guard, but not the actual value of data-input.
But the partial-information synthesis approach does not allow for having
partial information for transitions (needed to implement item (3)), yet full
information for outputs (needed to implement items (1) and (2)).
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Nevertheless, with the cutoff it is easy to get an incomplete synthesis approach
with SMT-based bounded synthesis [6] that allows you to fine-tune transition
and output functions dependencies.

3 Solving the Bounded Synthesis Problem

Recall that given a non-deterministic Büchi register automaton A, we search for
a kT -register transducer T such that T |= ¬A (equiv., T |= Ã where Ã is dual
to A and thus it is universal co-Büchi). Our approach is 5 points long.

(1) We start by defining a Boolean associate AB of a non-deterministic Büchi
register automaton A, which is a standard register-less non-deterministic Büchi
automaton derived from the description of A. Of course, we cannot directly
use the Boolean associate AB to answer questions about A, because AB lacks
the semantics of A. We also define a Boolean associate TB for every register
transducer T . In the end, we will synthesize TB that satisfies a certain register-
less automaton. For examples of such associates, look at the automaton and
transducer on Figs. 1 and 2 as being standard, register-less. (2) We introduce
a verifier automaton V , which tracks the equivalences between the registers
RA of A: two registers fall into the same equivalence class iff they hold the
same data-value. The automaton AB@V is AB enhanced with this equivalence-
class information. It has enough information to answer the questions like non-
emptiness A and model checking wrt. A. This is because every Boolean path
of AB@V corresponds to some data-path in A, and vice versa (which was not
the case for AB and A). But AB@V , or rather the dual universal automaton
AB@V , is not suited for synthesis —we cannot synthesize from AB@V — roughly
because the transducer should not control the store actions of the underlying A,
while the automaton AB@V gives a transducer such a control. (3) We add kT

fresh registers RT to A that will be controlled by a transducer. To this end, we
define the automaton A⊗T all. Additionally, the automaton T all filters out data-
words that do not belong to any of the transducers (e.g., data-words that have a
value for o that was not seen before on i). (4) We enhance the Boolean associate
(A⊗T all)B of A⊗T all with information about equivalences between the registers
RT and RA; the resulting automaton is called (A ⊗ T all)B@W . (5) Finally,
we hide the information that should not be visible to a transducer, namely
information related to the automaton registers RA. The resulting automaton is
called H = hideA((A⊗T all)B@W ) and it is such that ∃T : T |= Ã iff ∃TB : TB |=
H̃, where H̃ is dual to H.

3.1 Boolean Associates of Register Automata and Transducers

The transition functions of k-register automata do not contain any infinite
objects—data-values appear only in the semantics. Let us define Boolean asso-
ciates of register automata and transducers.

Given a k-register automaton A = 〈P,P,R, d0, Q, q0, δ, F 〉, let Boolean
automaton AB = 〈PB, Q, q0, δB, F 〉 be a standard register-less automaton where:
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– let Gi = {gir1 , ..., girk}, Go = {gor1 , ..., gork}, Asgn = {ar1 , ..., ark}. Then:
– PB = P ∪ Gi ∪ Go ∪ Asgn,
– δB : Q × 2PB → 2Q contains (q, l ∪ gi ∪ go ∪ a, q′) ∈ δB iff (q, l, b̄i, b̄o, ā, q′) ∈ δ,

where l ∈ 2P , gi ∈ 2Gi , go ∈ 2Go , a ∈ 2Asgn, b̄i = (gir1 ∈ gi, ..., girk ∈ gi) ∈ B
k,

b̄o = (gor1 ∈ go, ..., gork ∈ go) ∈ B
k, ā = (ar1 ∈ a, ..., ark ∈ a) ∈ B

k. Informally,
we take the assignment component (on the right side) of δ and move it to
the left side of δB, and introduce new Boolean signals to describe the Boolean
components.

For convenience, we say that a letter gi ∈ 2Gi encodes the guard (gir1 ∈
gi, ..., girk ∈ gi) ∈ B

k, and vice versa; similarly for a letter from 2Go and 2Asgn.

A Boolean path is an infinite sequence q0
l0∪gi0∪go0∪a0−→ q1

l1∪gi1∪go1∪a1−→ ... from
(Q × 2PB)ω that satisfies δB. When necessary to distinguish paths of register
automata (which are in (Q × Dk × 2P × D2)ω) from Boolean paths, we call

the former data-paths. A data-path (q0, d̄0)
(l0,i0,o0,ā0)−→ (q1, d̄1)

(l1,i1,o1,ā1)−→ ... corre-

sponds to a Boolean path q0
l0∪gi0∪go0∪a0−→ q1

l1∪gi1∪go1∪a1−→ ... where gij encodes the
guard (ij = d̄j [1], ..., ij = d̄j [k]), goj encodes the guard (oj = d̄j [1], ..., oj = d̄j [k]),
and aj ∈ 2Asgn encodes āj ∈ B

k, for j ∈ N0. From the definition of paths of reg-
ister automata on page 3, it follows that for every path of a register automaton,
there exists a path in the associated Boolean automaton to which the data-path
corresponds. Consider the reverse direction, where we say that a Boolean path
corresponds to a data-path iff the data-path corresponds to it. The reverse direc-
tion does not necessarily hold: there is a register automaton A (e.g., with 2 reg-
isters) where some Boolean paths of AB do not have a corresponding data-path
in A. This is because the letters of a Boolean path can describe contradictory
guards. For example, let a transition in a Boolean path have ā = (true, true),
meaning that in a data-path the value of data-input is stored into the registers r1
and r2. Hence, in the next transition of the data-path, i = r1 ⇔ i = r2 must hold,
but the Boolean path may have gi = {gir2} (describing the guard i �= r1∧ i = r2).
Thus, we got the following.

Observation 1.

– For every register automaton A, every data-path in A has exactly one corre-
sponding Boolean path in AB.

– There exists a register automaton A where some Boolean paths of AB do not
correspond to any data-path of A.

A Boolean word is a projection of a Boolean path into 2PB ; note that it
contains information about assignment actions.

Similarly we define Boolean transducers. Given a k-register transducer
T = 〈I,O,I,O,R, d0, S, s0, τ〉, a Boolean transducer TB = 〈IB, OB, S, s0, τB〉
is a standard register-less transducer where: IB = I ∪ Gi, Gi = {gir1 , ..., girk},
OB = O ∪ Asgn ∪ Ok, Asgn = {ar1 , ..., ark}, and Ok has enough Boolean signals
to encode the numbers [k]. The transition function τB : S×2IB → S×2OB contains
(s, l ∪ gi, o∪ ok ∪a, s′) iff (s, l, b̄i, o, õk, ā, s′) ∈ τ where s, s′ ∈ S, l ∈ 2I , a ∈ 2Asgn
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encodes ā ∈ B
k, gi ∈ 2Gi encodes b̄i ∈ B

k, and ok ∈ 2Ok encodes õk ∈ [k]. A

Boolean path is an infinite sequence s0
l0∪gi0,o0∪ok0∪a0−→ s1

l1∪gi1,o1∪ok1∪a1−→ ... from
(S × 2IB × 2OB)ω that satisfies τB.

Because every register transducer can be viewed as a register automaton, a
similar observation holds for the register transducers.

3.2 Verifier to Remove Inconsistent Guards (Vk and AB@Vk)

We introduce the automaton called verifier that filters out the Boolean paths of
AB that do not correspond to any data-paths.
Vk. Given k ∈ N, the verifier is a deterministic looping register-less automaton
Vk = 〈PV ,Π, π0, δV 〉 where

– Π is the set of all possible partitions of {r1, ..., rk}; the initial state π0 =
{{r1, ..., rk}} contains the only partition. Later, we will a partition-state to
track if the registers have the same value.

– PV = Gi ∪ Go ∪ Asgn where Gi = {gir1 , ..., girk}, Go = {gor1 , ..., gork}, Asgn =
{ar1 , ..., ark}.

– δV : Π × 2PV → Π contains π
gi∪go∪a−→ π′ where:

• the guard-letter gi ∪ go respects the current partition:
∗ for every rm = rn of π (i.e., belonging to the same partition):
girm∈ gi ⇔ girn∈ gi and gorm∈ go ⇔ gorn∈ go;
∗ for every rm �= rn of π (i.e., belonging to different partitions):
girm∈ gi ⇒ girn �∈ gi and gorm∈ go ⇒ gorn �∈ go;

• the successor partition respects the assignment-letter a, formalized as
follows. For every m, n in [k], let emn denote that π contains rm = rn,
and e′

mn is for π′. The value e′
mn is uniquely defined:

e′
mn = (arm ∧arn)∨(¬arm ∧arn ∧girm)∨(arm ∧¬arn ∧girn)∨(¬arm ∧¬arn ∧emn).

This definition, together with the previous item, ensures that all e′
mn

together form a partition (e.g., it is impossible to get e′
1,2 ∧ e′

2,3 ∧ ¬e′
1,3).

– The acceptance condition (not shown in the tuple) defines every path (infinite
by definition) to be accepting; hence, every word that has a path in the
automaton is accepted.

An example of a verifier is in Fig. 3.
AB@Vk. Given a verifier Vk =

〈
PV , QV , qV

0 , δV
〉

and a register-less non-
deterministic Büchi automaton AB =

〈
PA, QA, qA

0 , δA, FA
〉
, let AB@V denote

the non-deterministic Büchi automaton 〈P,Q, q0, δ, F 〉 where:

– P = PV ∪ PA;
– Q = QV × QA, q0 = (qV

0 , qA
0 );

– δ : Q × 2P → 2Q has
(
(qV , qA), p, (q′

V , q′
A)

)
iff (qV , p ∩ 2PV

, q′
V ) ∈ δV and

(qA, p ∩ 2PA

, q′
A) ∈ δA; and

– F = QV × FA.
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Fig. 3. A verifier automaton (a register-less looping automaton) for 2-register automata
with R = {x, y}. The edges have symbolic labels. Later, the left state {{x, y}} will be
used to denote that the registers x and y store the same value, while the right state
{{x}, {y}} will denote that they store different values. The automaton has similar
restrictions for o (not shown).

Hence, L(AB@Vk) = L(Vk) ∩ L(AB). Since PA = P ′ ∪ Gi ∪ Go ∪ Asgn (where P ′

are the Boolean signals of the register automaton A) and PV = Gi ∪ Go ∪ Asgn,
the automaton AB@Vk works on words from (P ′ ∪ Gi ∪ Go ∪ Asgn)ω. The words
of AB@Vk that do not fall out of Vk are called consistent, otherwise inconsistent.

Observation 2. For every non-deterministic Büchi k-register automaton A:

– Every data-path of A has exactly one corresponding Boolean path in AB@Vk.
– Every Boolean path of AB@Vk has either one or infinitely many corresponding

data-paths in A.

Corollary 1. For every non-deterministic Büchi k-register automaton A:
AB@Vk has an accepted Boolean word ⇔ A has an accepted data-word.

This result, namely, decidability of non-emptiness non-deterministic Büchi
register automata, was earlier established in [10, Thm.1] using cutoffs (we dis-
cussed cutoffs on page 5). Our verifier uses a similar insight, but allows us to
easily extend it to the context of synthesis.

3.3 Focusing on Transducer Data-Words (T all and A ⊗ T all)

For the next step to become clear, we need to look ahead at Theorem 1. There,
we will be interested in data-words that belong to some register transducer,
rather than general data-words. Recall that the data-words of register transduc-
ers require the signal o to have the value that appeared before in the signal i.
The automaton T all introduced below ensures this.

Tall . Given kT ∈ N, T all is a non-deterministic looping kT -register automaton
〈P,P,R, d0, Q, q0, δ, F 〉 with P = I ∪ O, P = {i, o}, Q = F = {q0}. The tran-
sition function {q0} × 2P × B

kT

i × B
kT
o → {q0} × 2B

kT , for every ḡi ∈ B
kT

i and
ḡo ∈ {ḡ ∈ B

kT ‖∃j.ḡ[j] = true}, contains (q0, ā) for every ā ∈ B
kT . I.e., it ensures

that the value of data-output o comes from a register and it does not restrict
the assignment action.

Observation 3. Fix kT ∈ N. ∀w ∈ (2I∪O × D2)ω: w |= T all ⇔ ∃T : w |= T,
where T is a kT -register transducer (possibly with |S| = ∞).
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In the observation, T might need infinitely many states, because an accepting
path of T all on w might exhibit “irregular” storing behaviour, which cannot be
expressed by a finite-state transducer (recall transducers are deterministic). This
is a minor technical detail though.
A ⊗ Tall . The product A ⊗ T all of a non-deterministic Büchi kA-
register automaton A =

〈
P,P,RA, d0, Q

A, qA
0 , δA, FA

〉
and T all =〈

P,P,RT , d0, Q
T , qT

0 , δT , FT
〉

with kT registers is a non-deterministic Büchi
(kA + kT )-register automaton 〈P,P,R, d0, Q, q0, δ, F 〉 where Q = QA × QT ,
q0 = (qA

0 , qT
0 ), F = FA × FT , R = RA ∪̇ RT , and the transition function

δ : Q × 2P × B
kA+kT

i × B
kA+kT
o → 2Q×B

kA+kT respects both the transitions
functions, δA and δT .

Observation 4. A ⊗ T all has an accepting word ⇔ A has an accepting word
that belongs to some kT -register transducer (possibly with |S| = ∞).

3.4 Synthesis-tailored Verifier (ATB@W )

For brevity, let AT denote A ⊗ T all, and let ATB be its Boolean associate.
The automaton ATB@W introduced in this section closely resembles ATB@Vk

and AB@Vk, but it is better suited for synthesis.
Recall from Sect. 3.1 that every TB generates words from (2I∪GT

i ×
2O∪AsgnT ∪OkT )ω, where AsgnT = {arT1

, ..., arTkT

}, GT
i = {girT1 , ..., girTkT

}, and OkT

has enough Boolean signals to encode the numbers [kT ]. In synthesis, we want
our target specification automaton to have the same alphabet. The automaton
ATB@Vk uses o-guards instead of Ok signals, hence we introduce the automaton
ATB@W (we do not introduce W separately).

Suppose we have ATB@Vk = 〈P,Q, q0, δ, F 〉 with P = I ∪ O ∪ GT
i ∪ GA

i ∪
GT

o ∪ GA
o ∪ AsgnT ∪ AsgnA and δ : Q × 2P → 2Q. The automaton ATB@W =

〈P ′, Q, q0, δ
′, F 〉 has the same states, but P ′ = (P \ GT

o ) ∪ Ok and the transition

function δ′ is derived from δ as follows. For every (π, q)
(i,o,gi,go,a)−→ (π′, q′) of δ

(where π and π′ are partitions of RA ∪ RT , q and q′ are states of ATB, i ∈ 2I

and o ∈ 2O, gi ∈ 2Gi and go ∈ 2Go , a ∈ 2Asgn):

– let J = {j1, ..., jl} ⊂ N be such that go contains o = rTj for every j ∈ J ;

– for every j ∈ J , add to δ′ the transition (π, q)
(i,o,gi,j̃,a)−→ (π′, q′), where j̃ ∈ 2OkT

encodes the number j.
– Note that if J is empty (go requires that

∧
t∈[kT ] o �= rTt ), then we do not add

transitions to δ′, because no transducer can produce such a value for o.

Observation 5. ATB@W has an accepting Boolean word ⇔ A has an accepting
data-word that belongs to some kT -register transducer (possibly with |S| = ∞).
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3.5 Synthesis Using Automaton hideA(ATB@W )

We cannot use ATB@W for synthesis, because it uses Boolean signals that are not
visible to transducers (underlined): I∪O×GA

i ∪GT
i ∪GA

o ∪OkT
∪AsgnA∪AsgnT .

Let us show that the simple hiding operation resolves the issue.
Given ATB@W = 〈P,Q, q0, δ, F 〉 with P = I ∪ O ∪ GA

i ∪ GT
i ∪ GA

o ∪ OkT
∪

AsgnA ∪ AsgnT , the automaton hideA(ATB@W ) is a non-deterministic Büchi
automaton 〈P ′, Q, q0, δ

′, F 〉 with P ′ = I ∪ O ∪ GT
i ∪ OkT

∪ AsgnT , and the
transition function δ′ : Q × 2I × 2O × 2GT

i × 2OkT × 2AsgnT → 2Q is such that in

every transition q
(i,o,gT

i ,j,aT )−→ Q′ the destination set Q′ ⊆ Q contains all successor
states of every transition of ATB@W starting in q and having the same common
labels:

Q′ =
⋃

gA
i

∈2G
A
i ,gA

o ∈2G
A
o ,aA∈2AsgnA

δ(q, i, o, gA
i , gT

i , gA
o , j, aT , aA).

Observation 6. For every non-deterministic Büchi register automaton A and
kT ∈ N:

– Every path of ATB@W corresponds to exactly one path of hideA(ATB@W ).
– Every path of hideA(ATB@W ) corresponds to at least one path of ATB@W .

Observations 5 and 6 result in the following.

Lemma 1. For every register transducer T and non-deterministic Büchi register
automaton A:

(∃w ∈ L(T ) : w |= A
) ⇔ (∃wB ∈ L(TB) : wB |= hideA(ATB@W )

)
.

Theorem 1. For every universal co-Büchi register automaton Ã and kT ∈ N:
(∃T : T |= Ã

) ⇔ (∃TB : TB |= ¬hideA(ATB@W )
)
,

where T is a kT -register transducer, A is dual to Ã (thus it is non-deterministic
Büchi), and ¬hideA(ATB@W ) is an automaton expressing the complemented lan-
guage of hideA(ATB@W ) (e.g., it can be the dual universal co-Büchi automaton).

The right side of the theorem (the standard Boolean synthesis problem) holds
iff it holds for finite-state transducers (e.g., see [13]). Hence we get:

Corollary 2. A given instance of the bounded synthesis problem is realizable ⇔
it is realizable by a finite-state (|S| < ∞) register transducer.

Finally, Fig. 4 depicts the relation between the languages of utilized
automata. It illustrates that the approach makes use of determinizable superset
of AT (see point 4 in the figure). (In the resulting automaton hideA(ATB@W ),
when we treat it as a register automaton, the store actions are controlled by
transducers and are deterministic, i.e., we can associate with each store action
a Boolean letter controlled by a transducer.)
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A A ⊗Tall

treat(hide(..))
Tall

T

1

2
3

4
5

Fig. 4. Inclusion between languages. The language of treat(hide(..)) denotes the lan-
guage of hideA(ATB@W ) treated as a register automaton. The existence of points 1, 2,
3, and 5 is trivial. Figure 5 justifies the existence of point 4. The snake line indicates
“if a transducer T has point 4, then it also has point 5”(follows from Lemma 1 and
observations). If T |= ¬A for some kT -register transducer, then its language is located
as shown by T .

Fig. 5. The automata to show the existence of point 4 in Fig.4. On the left is a non-
deterministic Büchi 1-register automaton A: it accepts the words where the signal i is
never equal to d0 (and no restrictions on the values of o). On the right is hideA(ATB@W )
where kT = 1: if treated as a register automaton, it accepts the words whose first
value of i is not d0 (plus some restrictions on o). Hence, L(treat(hideA(ATB@W ))) �⊂
L(A ⊗ T all). The labels related to o are omitted.

4 Using Temporal Logic in our Synthesis Approach

We proceed to the topic of synthesis of register transducers from a temporal logic.
Section 4.1 defines the first-order linear temporal logic with equality, LTL(EQ)1

and its variants ∃LTL(EQ) and ∀LTL(EQ), known as IPTL in [14] and VLTL in
[9]. Then Sect. 4.2 defines register-guessing automata that can express ∃LTL(EQ)
formulas.

The sound and complete conversion of ∃LTL(EQ) into register-guessing
automata is described in Sect. 4.3. Then Sect. 4.4 describes a sound but
incomplete conversion of register-guessing automata into register automata,
which implies the sound but incomplete conversion of ∃LTL(EQ) into register
automata. The latter automata are consumed by our synthesizer.

Unless explicitly stated, all automata are non-deterministic Büchi.

1 The name LTL(EQ) is inspired by the names of logics in SMT-LIB [1].
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4.1 LTL(EQ) (Also known as IPTL [14] and VLTL [9])

Let X be a set of data-variables and P be a set of Boolean propositions. An
LTL(EQ) (prenex-quantified) formula Φ is of the form (for every k ∈ N):

Φ = ∀x1...xk.cond.ϕ|∃x1...xk.cond.ϕ

cond = true|x �= x|cond ∧ cond

ϕ = true|p|i = x|o = x|¬ϕ|ϕ ∧ ϕ|ϕ U ϕ|Xϕ

where x1, ...,xk,x ∈ X, p ∈ P , i and o are two data-propositions, and all the
data-variables appearing in ϕ are quantified. As usual, define Gϕ to be ¬Fϕ,
Fϕ = trueUϕ, ϕ1 ∨ϕ2 is ¬(¬ϕ1 ∧¬ϕ2), ϕ1 → ϕ2 is ¬ϕ1 ∨ϕ2, and false is ¬true.

Given w = w1w2... ∈ (2P × D{i,o})ω, define the satisfaction w |= Φ:

– w |= ∀x1...xk.cond.ϕ iff for all d1, ..., dk ∈ D either cond[x1 ← d1, ...,xk ← dk]
does not hold or w |= ϕ[x1 ← d1, ...,xk ← dk];

– w |= ∃x1...xk.cond.ϕ iff there exists d1, ..., dk ∈ D such that cond[x1 ←
d1, ...,xk ← dk] holds and w |= ϕ[x1 ← d1, ...,xk ← dk];

– let φ have the same grammar as ϕ except that instead of data-variables it
has data-values; then

– w |= true;
– w �|= φ iff ¬(w |= φ);
– w |= ¬φ iff ¬(w |= φ);
– w |= p iff p ∈ w1;
– w |= φ1 ∧ φ2 iff w |= φ1 and w |= φ2;
– for every d ∈ D, w |= i = d iff in w1 the data-proposition i has the value d;

similarly for o;
– for i ∈ N, let w[i:] denote w’s suffix wiwi+1...; then
– w |= Xφ iff w[2:] |= φ; and
– w |= φ1 U φ2 iff ∃i ∈ N :

(
(w[i:] |= φ2) ∧ (∀j < i : w[j:] |= φ1)

)
.

Let ∃LTL(EQ) denote LTL(EQ) where formulas have existential quantifiers
only, and use ∀LTL(EQ) for universally quantified LTL(EQ) formulas.

4.2 Register Automata with Guessing but Without Storing

In this section we define a variation of register automata that have a non-
deterministically chosen initial register values that cannot be rewritten after-
wards. Such automata are a restricted version of variable automata [8].

A k-register-guessing automaton is a tuple A = 〈P,P,R, Q, q0, δ, F,E〉
(notice: no initial register value d0 and a new element E) with transition func-
tion δ of the form Q× 2P ×B

k
i ×B

k
o → 2Q (notice: no assignment component on

the right), where E ⊆ R × R is an inequality set2, while all other components
are like for register automata. A path is defined similarly to a path of a register
automaton, except that
2 We can get away without using E (by encoding it into δ), but it proved to be

convenient in Sect. 4.4.
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– an initial configuration (q0, d̄0) ∈ {q0} ×Dk of the path is arbitrary provided
that d̄0 satisfies the inequality set: ∀(ri, rj) ∈ E : d̄0[i] �= d̄0[j]; and

– the automaton never stores to the registers.

An accepting word is defined as for register automata.

4.3 Converting ∃LTL(EQ) into Register-Guessing Automata

This section describes the sound and complete conversion of ∃LTL(EQ) formulas
into register-guessing automata. The fact that a conversion is possible was noted
in [7, Sec.4], however they did not describe the conversion itself.

Consider an ∃LTL(EQ) formula Φ = ∃x1...xk.cond.ϕ(i, o,x1, ...,xk). We will
use the notions of wB and ϕB defined below.

(wB) Given a word w ∈ (2P ×D2)ω and x1, ...,xk ∈ D, let wB ∈ (2P ×B
k
i ×B

k
o )

ω

be the word derived from w by replacing every value of i and o in w by the
vectors of values, (i = x1, ..., i = xk) and (o = x1, ..., o = xk).
(ϕB) In ϕ(i, o,x1, ...,xk), replace every expression i = xi with giri and every
expression o = xi with gori . This introduces 2k new Boolean propositions, let
PB = P ∪{gir1 , ..., girk}∪{gor1 , ..., gork}. Let ϕB(gir1 , ..., girk , gor1 , ..., gork) be the
resulting LTL formula over Boolean propositions PB.

To convert a formula ∃x1...xk.cond.ϕ into a k-register-guessing automaton A do
the following (conversion-1).

– Convert ϕB into an NBW automaton AB = 〈PB, Q, q0, δB, F 〉 using standard
approaches. Thus, for every wB ∈ 2PB : wB |= AB iff wB |= ϕB.

– Treat AB as a k-register-guessing automaton A = 〈P,P,R, Q, q0, δ, F,E〉,
where E is derived from cond.

Observation 7. For every w ∈ (2P × D2)ω: w |= A ⇔ w |= ∃x1...xk.cond.ϕ.

4.4 Converting ∃LTL(EQ) into Register Automata

In this section, we describe a sound but incomplete conversion of register-
guessing automata into standard register automata. Together with conversion-1
from the previous section, this gives the conversion of ∃LTL(EQ) formulas into
register automata. Note that no complete conversion of ∃LTL(EQ) formulas into
register automata exists: for example, the formula ∃x.G(i �= x) has no equivalent
register automaton, although there is an equivalent register-guessing automaton.

In automata, we will use the definition of δ that is symbolic instead of explicit,
hence the transition functions of k-register-guessing automata and of k-register
automata are of the form Q × 2P × G → 2Q and Q × 2P × G → 2Q×B

k

,
(previously we had B

k
i × B

k
o instead of G), where g ∈ G has the form g =

true‖g ∧ g‖i ∼ r‖o ∼ r where ∼ denotes = or �=, and r ∈ R. Using the symbolic
definition rather than the explicit one is crucial in making our conversion more
applicable

Given a k-register-guessing automaton A = 〈P,P,R, Q, q0, δ, F,E〉, construct
the k-register automaton A′ = 〈P,P,R, d0, Q

′, q′
0, δ

′, F ′〉 (conversion-2):
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– Q′ = Q×B
k. The Boolean component encodes, for every ri ∈ R, whether the

register ri is assigned a value or not (ignoring the initial values). The initial
state q′

0 = (q0, false, ..., false). We call a register ri with bi = false uninitialized.
– F ′ = {(q, b1, ..., bk) ∈ Q′‖q ∈ F}.

– For every state (q, b1, ..., bk) ∈ Q′ and A-transition q
(l,g)−→ q′ (l ∈ 2P , g ∈ G):

• If g = true, then add to δ′ the transition (q, b1, ..., bk)
(l,g,falsek)−→

(q′, b1, ..., bk).
• Otherwise, do the following.

∗ Abort point: if there exists i ∈ [k] such that bi = false and g contains
i �= ri or o ∼ ri, then abort. Because the register ri is uninitalized
(bi = false), we cannot know the valuation of i �= ri or o �= ri. In
contrast, if the guard g contains i = ri, we can assume that it holds
and store i into ri (we cannot do this for o = ri, because the automata
do not allow for storing o).

∗ Add to δ′ the transition (q, b1, ..., bk)
(l,g′,a)−→ (q′, b′

1, ..., b
′
k) where for

every i ∈ [k]:
· b′

i = true iff bi = true or g contains i = ri.
· The action a stores i into ri iff g contains i = ri and bi = false.
· The guard g′ contains i ∼ ri iff g contains i ∼ ri and bi = true;
similarly for o ∼ ri.

∗ Finally, we account for the inequality set E and update g′ as follows.
For every (ri, rj) ∈ E: if bi = true and the action a contains rj = i,
then add to g′ the expression i �= ri.
(Here we assume that the A-transition is not contradictory, namely,
it is not the case that ∃(ri, rj) ∈ E : bi = false∧ bj = false∧ (i = ri) ∈
g ∧ (i = rj) ∈ g. Such transitions cannot be executed in A and can be
removed beforehand.)

– Note that the automaton A′ never compares i nor o with a register that was
uninitialized. Therefore, the component d0 of A′ can be anything from D.

The automaton A′ has |Q′| = |Q|·2k, but the number of reachable states is |Q| ·k.

Observation 8. If conversion-2 succeeds, then L(A) = L(A′).

Theorem 2. Given an ∃LTL(EQ) Φ = ∃x1, ...,xk.cond.ϕ. If conversion-1 and
conversion-2 succeed, then L(Φ) = L(A′).
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Abstract. Analyzing Ethereum bytecode, rather than the source code
from which it was generated, is a necessity when: (1) the source code is
not available (e.g., the blockchain only stores the bytecode), (2) the infor-
mation to be gathered in the analysis is only visible at the level of byte-
code (e.g., gas consumption is specified at the level of EVM instructions),
(3) the analysis results may be affected by optimizations performed by
the compiler (thus the analysis should be done ideally after compila-
tion). This paper presents EthIR, a framework for analyzing Ethereum
bytecode, which relies on (an extension of) Oyente, a tool that gener-
ates CFGs; EthIR produces from the CFGs, a rule-based representation
(RBR) of the bytecode that enables the application of (existing) high-
level analyses to infer properties of EVM code.

1 Introduction

Means of creating distributed consensus have given rise to a family of dis-
tributed protocols for building a replicated transaction log (a blockchain). These
technological advances enabled the creation of decentralised cryptocurrencies,
such as Bitcoin [9]. Ethereum [12], one of Bitcoin’s most prominent successors,
adds Turing-complete stateful computation associated with funds-exchanging
transactions—so-called smart contracts—to replicated distributed storage.

Smart contracts are small programs stored in a blockchain that can be
invoked by transactions initiated by parties involved in the protocol, execut-
ing some business logic as automatic and trustworthy mediators. Typical appli-
cations of smart contracts involve implementations of multi-party accounting,
voting and arbitration mechanisms, auctions, as well as puzzle-solving games
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with reward distribution. To preserve the global consistency of the blockchain,
every transaction involving an interaction with a smart contract is replicated
across the system. In Ethereum, replicated execution is implemented by means
of a uniform execution back-end—Ethereum Virtual Machine (EVM) [12]—a
stack-based operational formalism, enriched with a number of primitives, allow-
ing contracts to call each other, refer to the global blockchain state, initiate
sub-transactions, and even create new contract instances dynamically. That is,
EVM provides a convenient compilation target for multiple high-level program-
ming languages for implementing Ethereum-based smart contracts. In contrast
with prior low-level languages for smart contract scripting, EVM features muta-
ble persistent state that can be modified, during a contract’s lifetime, by parties
interacting with it. Finally, in order to tackle the issue of possible denial-of-
service attacks, EVM comes with a notion of gas—a cost semantics of virtual
machine instructions.

All these features make EVM a very powerful execution formalism, simul-
taneously making it quite difficult to formally analyse its bytecode for possible
inefficiencies and vulnerabilities—a challenge exacerbated by the mission-critical
nature of smart contracts, which, after having been deployed, cannot be amended
or taken off the blockchain.

Contributions In this work, we take a step further towards sound and auto-
mated reasoning about high-level properties of Ethereum smart contracts.

– We do so by providing EthIR, an open-source tool for precise decompilation
of EVM bytecode into a high-level representation in a rule-based form; EthIR
is available via GitHub: https://github.com/costa-group/ethIR.

– Our representation reconstructs high-level control and data-flow for EVM
bytecode from the low-level encoding provided in the CFGs generated by
Oyente. It enables application of state-of-the-art analysis tools developed
for high-level languages to infer properties of bytecode.

– We showcase this application by conducting an automated resource analysis
of existing contracts from the blockchain inferring their loop bounds.

2 From EVM to a Rule-based Representation

The purpose of decompilation –as for other bytecode languages (see, e.g., the
Soot analysis and optimization framework[11])– is to make explicit in a higher-
level representation the control flow of the program (by means of rules which
indicate the continuation of the execution) and the data flow (by means of
explicit variables, which represent the data stored in the stack, in contract fields,
in local variables, and in the blockchain), so that an analysis or transformation
tool can have this control flow information directly available.

2.1 Extension of Oyente to Generate the CFG

Given some EVM code, the Oyente tool generates a set of blocks that store the
information needed to represent the CFG of such EVM code. However, when the

https://github.com/costa-group/ethIR
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jump address of a block is not unique (depends on the flow of the program), the
blocks generated by Oyente sometimes only store the last value of the jump
address. We have modified the structure of Oyente blocks in order to include
all possible jump addresses, so that the whole CFG is reconstructed. As an
example, Fig. 1 shows the Solidity source code for a fragment of a contract (left),
and the CFG generated from it (right). Observe that in the CFGs generated by
our extension of Oyente, the instructions SSTORE or SLOAD are annotated
with an identifier of the contract field they operate on (for instance, a SSTORE
operation that stores a value on the contract field 0 is replaced by SSTORE
0). Similarly, the EVM instructions MSTORE and MLOAD instructions are
annotated with the memory address they operate on (such addresses will be
transformed into variables in the RBR whenever possible). These annotations
cannot be generated when the memory address is not statically known, though,
(for instance, when we have an array access inside a loop with a variable index).
In such cases, we annotate the corresponding instructions with “?”.

contract BlockKing {
· · ·
uint public warriorBlock;
uint public kingBlock;
· · ·
function kingBlock(){

uint var = kingBlock;
· · ·

}

function process payment() {
uint singleDigit = warriorBlock;
· · ·
while (singleDigit > 10) {

singleDigit −= 10;
}
· · ·

}
}

Fig. 1. Solidity code (left), and EVM code for process_payment within CFG (right).

Finally, when we have Solidity code available, we are able to retrieve the
name of the functions invoked from the hash codes (see e.g. Block 152 in which
we have annotated in the second bytecode kingBlock, the name of the function
to be invoked). This allows us to statically know the continuation block.

2.2 From the CFG to Guarded Rules

The translation from EVM into our rule-based representation is done by applying
the translation in Definition 1 to each block in a CFG. The identifiers given to
the rules –block x or jump x– use x, the PC of the first bytecode in the block
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being translated. We distinguish among three cases: (1) if the last bytecode in
the block is an unconditional jump (JUMP), we generate a single rule, with an
invocation to the continuation block, (2) if it is a conditional jump (JUMPI) we
produce two additional guarded rules which represent the continuation when the
condition holds, and when it does not, (3) otherwise, we continue the execution
in block x+s (where s is the size of the EVM bytecodes in the block being
translated). As regards the variables, we distinguish the following types:

1. Stack variables: a key ingredient of the translation is that the stack is flattened
into variables, i.e., the part of the stack that the block is using is represented,
when it is translated into a rule, by the explicit variables s0, s1, . . ., where s1
is above s0, and so on. The initial stack variables are obtained as parameters
s0, s1, . . . , sn and denoted as s̄n.

2. Local variables: the content of the local memory in numeric addresses appear-
ing in the code, which are accessed through MSTORE and MLOAD with the
given address, are modelled with variables l0, l1, . . . , lr, denoted as l̄r, and are
passed as parameters. For the translation, we assume we are given a map lmap
which associates a different local variable to every numeric address memory
used in the code. When the address is not numeric, we represent it using a
fresh variable local to the rule to indicate that we do not have information
on this memory location.

3. Contract fields: we model fields with variables g0, . . . , gk, denoted as ḡk, which
are passed as parameters. Since these fields are accessed using SSTORE and
SLOAD using the number of the field, we associate gi to the ith field. As
for the local memory, if the number of the field is not numeric because it is
unknown (annotated as “?”), we use a fresh local variable to represent it.

4. Blockchain data: we model this data with variables bc, which are either
indexed with md0, . . . ,mdq when they represent the message data, or with
corresponding names, if they are precise information of the call, like the gas,
which is accessed with the opcode GAS, or about the blockchain, like the
current block number, which is accessed with the opcode NUMBER. All this
data is accessed through dedicated opcodes, which may consume some offsets
of the stack and normally place the result on top of the stack (although some
of them, like CALLDATACOPY, can store information in the local memory).

The translation uses an auxiliary function τ to translate each bytecode into cor-
responding high-level instructions (and updates the size of the stack m) and
τG to translate the guard of a conditional jump. The grammar of the resulting
RBR language into which the EVM is translated is given in Fig. 2. We optionally
can keep in the RBR the original bytecode instructions from which the higher-
level ones are obtained by simply wrapping them within a nop functor (e.g.,
nop(DUPN)). This is relevant for a gas analyzer to assign the precise gas con-
sumption to the higher-level instruction in which the bytecode was transformed.
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Definition 1. Given a block B with instructions b1, . . . , bi in a CFG starting at
PC x, and local variables map lmap, the generated rules are:

if bi ≡ JUMP p
block x(s̄n, ḡk, l̄r, ¯bcq) ⇒ τ(b1, . . . , bi−1), call(block p(s̄m−1, ḡk, l̄r, ¯bcq))

if bi ≡ JUMPI p
block x(s̄n, ḡk, l̄r, ¯bcq) ⇒ τ(b1, . . . , bc−1), call(jump x(s̄m, ḡk, l̄r, ¯bcq))
jump x(s̄n, ḡk, l̄r, ¯bcq) ⇒ τG(bc, . . . , bi−2)|call(block p(s̄m, ḡk, l̄r, ¯bcq))
jump x(s̄n, ḡk, l̄r, ¯bcq) ⇒ ¬τG(bc, . . . , bi−2)|call(block (x + s)(s̄m, ḡk, l̄r, ¯bcq))

if bi �≡ JUMP and bi �≡ JUMPI
block x(s̄n, ḡk, l̄r, ¯bcq) ⇒ τ(b1, . . . , bi), call(block (x + i)(s̄m, ḡk, l̄r, ¯bcq))

where functions τ and τG for some representative bytecodes are:

τ(JUMPDEST) = {}; m := m
τ(PUSHN v) = {sm+1 = v}; m := m + 1

τ(DUPN) = {sm+1 = sm+1−N}; m := m + 1

τ(SWAPN) = {sm+1 = sm, sm = sm−N , sm−N = sm+1}; m := m
τ(ADD|SUB|MUL|DIV) = {sm−1 = sm + | − | ∗ |/sm−1}; m := m − 1

τ(SLOAD|MLOAD v) = {sm = gv |llmap(v)}; m := m if v is numeric

= {gl|ll = sm, sm = fresh()}; m := m otherwise

τ(SSTORE|MSTORE v) = {gv |llmap(v) = sm−1}; m := m − 2 if v is numeric

= {gs1|ls1 = sm−1, gs2|ls2 = sm}; m := m − 2 otherwise
. . .

τG(GT,ISZERO)|τG(GT) = leq(sm, sm−1)|gt(sm, sm−1); m := m − 2

τG(EQ,ISZERO)|τG(EQ) = neq(sm, sm−1)|eq(sm, sm−1); m := m − 2

. . .

RBR → (B | J) RBR | ε

B → block id (in, gk, lr, bc) ⇒ Instr (Call | ε)
J → jump id (in, gk, lr, bc) ⇒ InstrJ

Instr → S Instr | ε

S → s = Exp

Exp → num | x | x + y | x − y | x ∗ y | x/y | x%y | xy

| and(x, y) | or(x, y) | xor(x, y) | not(x)
Call → call(block id(in, gk, lr, bc)) | call(jump id(in, gk, lr, bc))
InstrJ → Guard ”|” call(block id(in, gk, lr, bc))
Guard → eq(x, y) | neq(x, y) | lt(x, y) | leq(x, y) | gt(x, y) | geq(x, y)

Fig. 2. Grammar of the RBR into which the EVM is translated

– c is the index of the instruction, where the guard of the conditional jump
starts. Note that the condition ends at the index i − 2 and there is always a
PUSH at i − 1. Since the pushed address (that we already have in p) and the
result of the condition are consumed by the JUMPI, we do not store them in
stack variables.
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– m represents the size of the stack for the block. Initially we have m := n.
– variables gs1, gs2 and gl, and ls1, ls2 and ll, are local to each rule and are

used to represent the use of SLOAD and SSTORE, and MLOAD and MSTORE,
when the given address is not a concrete number. For SLOAD and MLOAD
we also use fresh(), to denote a generator of fresh variables to safely represent
the unknown value of the loaded address.

Example 1. As an example, an excerpt of the RBR obtained by translating the
three blocks on the right-hand side of Fig. 1 is as follows (selected instructions
keep using nop annotations the bytecode from which they have been obtained):

block152(s0, g11, l8, bc) ⇒
s1 = s0 nop(DUP1)

s2 = 6584849474 nop(PUSH4)

call(jump152(s2, g11, l8, bc)

nop(EQ) nop(PUSH2) nop(JUMPI)

jump152(s2, g11, l8, bc) ⇒
eq(s2, s1)
call(block694(s0, g11, l8, bc)

jump152(s2, g11, l8, bc) ⇒
neq(s2, s1)
call(block163(s0, g11, l8, bc)

block694(s0, g11, l8, bc) ⇒
s1 = 754 nop(PUSH2)

s2 = 7 nop(PUSH1)

s2 = g7 nop(SLOAD)

s3 = s1 nop(DUP2)

call(block754(s2, g11, l8, bc)

nop(JUMP)

block754(s2, g11, l8, bc) ⇒
s3 = 64 nop(PUSH1)

s4 = s3 nop(DUP1)

s4 = l0 nop(MLOAD)

s5 = s4
s4 = s2
s2 = s5 nop(SWAP2)

s5 = s2 nop(DUP3)

l1 = s4 nop(MSTORE)

s3 = l0 nop(MLOAD)

· · ·
s3 = s4 − s3 nop(SUB)

s4 = 32 nop(PUSH1)

s3 = s4 + s3 nop(ADD)

· · ·

3 Case Study: Bounding Loops in EVM using SACO

To illustrate the applicability of our framework, we have analyzed quantitative
properties of EVM code by translating it into our intermediate representation
and analyzing it with the high-level static analyzer SACO [3]. SACO is able
to infer, among other properties, upper bounds on the number of iterations of
loops. Note that this is the first crucial step to infer the gas consumption of
smart contracts, a property of much interest [4]. The internal representation of
SACO (described in [2]) matches the grammar in Fig. 2 after minor syntactic
translations (that we have solved implementing a simple translator that is avail-
able in github, named saco.py). As SACO does not have bit-operations (namely
and, or, xor, and not), our translator replaces such operations by fresh variables
so that the analyzer forgets the information on bit variables. After this, for our
running example, we prove termination of the 6 loops that it contains and pro-
duce a linear bound for those loops. We have included in our github other smart
contracts together with the loop bounds inferred by SACO for them. Other high-
level analyzers that work on intermediate forms like Integer transition systems
or Horn clauses (e.g., AproVe, T2, VeryMax, CoFloCo) could be easily
adapted as well to work on our RBR translated programs.



EthIR: A Framework for High-Level Analysis of Ethereum Bytecode 519

4 Related Approaches and Tools

In the past two years, several approaches tackled the challenge of fully formal
reasoning about Ethereum contracts implemented directly in EVM bytecode by
modeling its rigorous semantics in state-of-the-art proof assistants [5,6]. While
those mechanisations enabled formal machine-assisted proofs of various safety
and security properties of EVM contracts [5], none of them provided means for
fully automated sound analysis of EVM bytecode.

Concurrently, several other approaches for ensuring correctness and secu-
rity of Ethereum contracts took a more aggressive approach, implementing
automated toolchains for detecting bugs by symbolically executing EVM byte-
code [8,10]. However, low-level EVM representation poses difficulties in applying
those tools immediately for analysis of more high-level properties. For instance,
representation of EVM in Oyente, a popular tool for analysis of Ethereum
smart contracts [1] is too low-level to implement analyses of high-level properties,
e.g., loop complexity or commutativity conditions. Zeus, a tool for analysing
Ethereum smart contracts via symbolic execution wrt. client-provided policies,
operates directly on Solidity sources [7]. Soundness of Zeus as an analysis
approach, thus, depends on the semantics of Solidity, which is not formally
defined.
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Abstract. Hyperproperties are properties that refer to multiple com-
putation traces. This includes many information-flow security policies,
such as observational determinism, (generalized) noninterference, and
noninference, and other system properties like symmetry or Hamming
distances between in error-resistant codes. We introduce MGHyper,
a tool for automatic satisfiability checking and model generation for
hyperproperties expressed in HyperLTL. Unlike previous satisfiability
checkers, MGHyper is not limited to the decidable ∃∗∀∗ fragment of
HyperLTL, but provides a semi-decision procedure for the full logic. An
important application of MGHyper is to automatically check equiva-
lences between different hyperproperties (and different formalizations of
the same hyperproperty) and to build counterexamples that disprove
a certain claimed implication. We describe the semi-decisionprocedure
implemented in MGHyper and report on experimental results obtained
both with typical hyperproperties from the literature and with randomly
generated HyperLTL formulas.

1 Introduction

HyperLTL [3] extends linear-time temporal logic (LTL) [20] with explicit quan-
tification over traces. This makes it possible to express hyperproperties [4] like
noninterference [13] or symmetry [11], which refer to multiple traces at the same
time. Such properties are not expressible in LTL, or even in the branching-time
temporal logics CTL [2] and CTL∗ [6]. For example, noninference [18] is a variant
of noninterference stating that, for all system traces, the low-observable behav-
ior must not change when all high inputs are replaced by a dummy input. The
following HyperLTL formula expresses this policy: ∀π. ∃π′. (Gλπ′)∧π =L,out π′.

HyperLTL is supported by model checking [11] and runtime monitoring
tools [9,10]. There is also a decision procedure, EAHyper [8], which checks the
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satisfiability of a given formula from the ∃∗∀∗ fragment of HyperLTL. EAHyper
is based on a reduction from HyperLTL satisfiability to LTL satisfiability [7]. A
major application of EAHyper is to check equivalences between alternation-free
HyperLTL formulas, i.e., formulas that either contain only universal quanti-
fiers or only existential quantifiers. Such equivalences can be expressed in the
∃∗∀∗ fragment. It is impossible, however, to handle formulas that contain a
∀∃ quantifier alternation, as, for example, in noninference. This is unfortunate,
because such a quantifier alternation is often needed, in particular to account
for nondeterminism. A popular example is generalized noninterference [14]:
∀π.∀π′.∃π′′. π=H,in π′′ ∧ π′ =L,out π′′. The formula expresses that for every pos-
sible high-security input (seen on some trace π) and every possible low-security
observations (seen on some trace π′) there exists a nondeterministic execution π′′

where the high-security input and the low-security observations happen together.
Hence, the observer cannot conclude, after making the low-security observations,
that any specific high-security input actually occurred. Other properties that
need a ∀∃ quantifier alternation include restrictiveness [15], separability [17],
and forward correctability [19]. For formulas outside the ∃∗∀∗ fragment, it is no
longer possible to reduce the HyperLTL satisfiability problem to the LTL satisfi-
ability problem: the HyperLTL satisfiability problem is, in fact, undecidable [7].
In this paper, we present the first semi-decisionprocedure for full HyperLTL.
Our approach is based on a reduction to quantified boolean formulas (QBF) [12]
and has been implemented in the MGHyper tool. MGHyper can be used to
analyze and develop hyperproperties and, especially, generate models that dis-
prove equivalences or implications between different hyperproperties or different
formalizations of the same hyperproperty. For example, comparing noninference
to generalized noninterference, MGHyper instantly demonstrates that the two
properties are not equivalent.

2 A Semi-decision Procedure for HyperLTL-SAT

A hyperproperty is a set of sets of traces. Hyperproperties can be expressed in
HyperLTL, which generalizes LTL with explicit trace quantification:

ψ :: = ∃π. ψ | ∀π. ψ | ϕ

ϕ :: = aπ | ¬ϕ | ϕ ∨ ϕ | X ϕ | ϕ Uϕ | true

where Q is an existential or universal quantifier, a ∈ AP is an atomic proposition
and π ∈ V is a trace variable of an infinitely supply V. Logical connectives and
the temporal operators F, G, W and R are defined as in LTL. The semantics of
HyperLTL is defined as follows.
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Π |=T ∃π.ψ iff there exists t ∈ T : Π[π �→ t] |=T ψ
Π |=T ∀π.ψ iff for all t ∈ T : Π[π �→ t] |=T ψ
Π |=T aπ iff a ∈ Π(π)[0]
Π |=T ¬ψ iff Π 	|=T ψ
Π |=T ψ1 ∨ ψ2 iff Π |=T ψ1 or Π |=T ψ2

Π |=T Xψ iff Π[1,∞] |=T ψ
Π |=T ψ1 Uψ2 iff there exists i ≥ 0 : Π[i,∞] |=T ψ2

and for all 0 ≤ j < i we have Π[j,∞] |=T ψ1,

where Π : V �→ TR is the trace assignment function, which maps trace variables
to traces, denoted by Π[π �→ t]. The suffixes of all traces π starting at step i
is denoted by Π[i,∞]. HyperLTL-SAT is the problem to decide, if a non-empty
trace set T exists, such that {} |=T ψ.

MGHyper takes an arbitrary HyperLTL formula of the following form as
input: Q0π0 . . . Qnπn .ϕ, where Qi ∈ {∃,∀} and π0 . . . πn are vectors over V.
MGHyper evaluates to “sat” if and only if the formula is satisfiable. Basically,
MGHyper checks whether or not there exists a trace set of size m that satisfies
the HyperLTL formula under consideration. The procedure starts with trace
sets of size 1, and increment m until a witness is found, leading to the following
theorem.

Theorem 1. HyperLTL-SAT is RE-complete.

Proof. We prove membership by constructing a QBF formula ϕm
QBF , which is

satisfiable if the given HyperLTL formula ϕ is satisfiable by a trace set of size
m. The basic idea of the encoding of a HyperLTL formula to a QBF formula
is threefold: (1) we construct a quantifier prefix that resembles the quantifier
structure in the given HyperLTL formula, (2) we construct a premise that links
trace variables to actual traces, and (3) we unroll the LTL suffix into a SAT-
encoding. The third step follows the unrolling presented in [1] and will, due to
space reasons, not be discussed. We refer to the maximum trace-unrolling bound
as k (not to confuse with m), which is exponential in the size of the LTL suffix.
(1) Prefix. Let S be a set and k a natural number, we define Tracesk

S as
{ai

s | 0 ≤ i < k,∀s ∈ S,∀a ∈ AP}, which we use as the trace representation
inside the QBF encoding. Let ϕ := Q0π0 . . . Qnπn .ψ be a HyperLTL formula.
The quantifier prefix of the resulting QBF introduces existential quantifiers,
representing the trace set T of size m (the witness for satisfiability). The trace
variables are quantified according to their quantifier in the HyperLTL formula:

Prefix (ϕ) = ∃Tracesk
T .Q0Tracesk

π0
.Q1Tracesk

π1
. . . . .QnTracesk

πn
.

(2) Linking. We construct a premise to link trace variables to the trace witnesses
in Tracesk

T . For every quantifier Qi a subpremise PQi
is constructed first, which

represents the mapping of all trace variables in πi . Mapping each trace variable to
traces reassembles the trace assignment function from the HyperLTL semantics
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and is encoded by ensuring that the boolean variables with the same atomic
proposition in the same step share the same truth value.

PQi
:=

[ ∧
π∈πi

∨
ti∈T

[ ∧
(aj

ti
,aj

π)∈
Tracesk

ti
×Tracesk

π

aj
ti

↔ aj
π

]]
(1)

The linking mechanism is a combination of the subpremises. The boolean connec-
tive between the different supremises depends on the corresponding quantifier:

Linking(ϕ) := P k
Q0

◦Q0 P k
Q1

◦Q1 . . . P k
Qn−1

◦Qn−1 P k
Qn

◦Qn
, (2)

where ◦Qi
equals →, if Qi = ∀, and ◦Qi

equals ∧ if Qi = ∃. Together with
(3) the unrolling of the LTL suffix [1], the constructed ϕm

QBF a QBF formula
is satisfiable if the HyperLTL formula ϕ is satisfiable. Hardness follows from a
reduction from Post’s Correspondence Problem [7]. �

Example 1. Consider the HyperLTL formula ϕ := ∀π0∃π1∃π2.(aπ0 ∧ (aπ1 →
¬bπ1 ∧ aπ2 → bπ2)). Note that, for the sake of simplicity, the example LTL
formula does not contain temporal operators. In the first iteration, MGHyper
tries to guess a trace set T of size 1 and will not find a satisfying assignment
for the constructed QBF formula. In the second iteration, though, MGHyper
constructs the following QBF formula, with T2 = {{a0

t0 , b
0
t0}, {a0

t1 , b
0
t1}}.

∃Traces0T2
∀Traces0π0

∃Traces0π1
∃Traces0π2

.

[
∨ (a0

π0
↔ a0

t0 ∧ b0π0
↔ b0t0)

(a0
π0

↔ a0
t1 ∧ b0π0

↔ b0t1)

]

→

⎛
⎜⎜⎝

⎡
⎢⎢⎣∧

(
∨ [a0

π1
↔ a0

t0 ∧ b0π1
↔ b0t0 ]

[a0
π1

↔ a0
t1 ∧ b0π1

↔ b0t1 ]

)
(
∨ [a0

π2
↔ a0

t0 ∧ b0π2
↔ b0t0 ]

[a0
π2

↔ a0
t1 ∧ b0π2

↔ b0t1 ]

)
⎤
⎥⎥⎦ ∧ (a0

π0
∧ (a0

π1
→ ¬b0π1

∧ a0
π2

→ b0π2
))

⎞
⎟⎟⎠

This QBF formula is satisfied by the assignment A = {a0
t0 , b

0
t0 , a

0
t1 ,¬b0t1} for

the existentially quantified variables, which represent the traces (of length one in
this example). There are four possible assignment for the universally quantified
boolean variables. For {a0

π0
, b0π0

} or {a0
π0

,¬b0π0
} we can map the existentially

quantified traces variables π1 �→ t1 and π2 �→ t0, which add {a0
π1

,¬b0π1
, a0

π2
, b0π2

}
to A, such that A satisfies the formula. In the other two cases,{¬a0

π0
,¬b0π0

} or
{¬a0

π0
, b0π0

}, we cannot map to ¬a0
π0

, which leads to a false evaluation of P 0
Q0

and therefore to a true evaluation of the formula. From A we can now follow
that {{a, b}ω, {a}ω} is a model that satisfies ϕ.

3 Experimental Results

MGHyper is implemented in Ocaml and supports UNIX-based operation sys-
tems. We tested our tool against different benchmarks on a virtual machine
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running an Ubuntu (64-Bit) 14.04LTS installation on an Intel Core i7-4710MQ
with 2,50GH on 4 kernels and 8GB RAM.

Counter Examples for Implication of Security Polices. A main application
of MGHyper is to check if two arbitrary HyperLTL formulas do not
imply each other: we check if the negation of the implication is satisfi-
able. The first benchmark checks the implication of General Noninterfer-
ence [4] ((GNI):∀π1.∀π2.∃π3G(Ihigh

π1
= Ihigh

π3
) ∧ G(Olow

π2
= Olow

π3
)), Noninter-

ference ((NI): ∀π1. ∃π2. (Gλπ2) ∧ G(Oπ1 = Oπ2)) and several formalizations
of Observational Determinism [16,21,22]: (OD): ∀π1.∀π2.(I low

π1
= I low

π2
) →

G(Olow
π1

= Olow
π2

), (GOD): ∀π1.∀π2.G(I low
π1

= I low
π2

) → G(Olow
π1

= Olow
π2

),
and (WOD):∀π1.∀π2.(I low

π1
= I low

π2
)W (Olow

π1
	= Olow

π2
). MGHyper shows that

none of the formalizations of observational determinism does imply general
non-interference or noninference. Furthermore, it shows that generalized non-
interference does not imply noninference. Every check was done in under 0.05 s.

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3
existential60
universal60

existential120
universal120

Fig. 1. Runtime for random HyperLTL formulas of size 60 and 120. A formula consists
of up to 50 trace variables starting universally or existentially quantified.

Table 1. Random ∃n∀m formulas: instances solved (sol) in 120 s and average time
(avgt) in s for 100 random formulas of size 60 with 15 atomic propositions.

avgt sol avgt sol avgt sol avgt sol avgt sol avgt sol avgt sol avgt sol avgt sol avgt sol
∃1∀1 ∃1∀2 ∃1∀3 ∃1∀4 ∃1∀5 ∃1∀6 ∃1∀7 ∃1∀8 ∃1∀9 ∃1∀10

0.472 96 0.599 95 1.371 96 1.537 96 1.322 96 1.587 96 0.529 92 2.823 96 3.166 94 2.303 97
∃2∀1 ∃2∀2 ∃2∀3 ∃2∀4 ∃2∀5 ∃2∀6 ∃2∀7 ∃2∀8 ∃2∀9 ∃2∀10

6.772 80 2.743 85 2.698 93 6.319 94 4.233 97 4.107 92 3.162 87 2.906 94 4.847 92 2.131 96
∃3∀1 ∃3∀2 ∃3∀3 ∃3∀4 ∃3∀5 ∃3∀6 ∃3∀7 ∃3∀8 ∃3∀9 ∃3∀10

5.533 79 9.921 81 5.836 82 4.851 88 7.589 82 3.852 82 9.975 82 5.222 79 6.328 77 5.044 83
∃4∀1 ∃4∀2 ∃4∀3 ∃4∀4 ∃4∀5 ∃4∀6 ∃4∀7 ∃4∀8 ∃4∀9 ∃4∀10

10.316 75 8.669 80 5.631 83 3.722 83 5.843 73 5.62 81 10.074 79 6.955 76 8.037 85 5.938 79
∃5∀1 ∃5∀2 ∃5∀3 ∃5∀4 ∃5∀5 ∃5∀6 ∃5∀7 ∃5∀8 ∃5∀9 ∃5∀10

5.431 71 5.009 80 2.812 69 8.514 81 4.501 76 6.255 83 1.574 76 3.616 76 5.85 79 7.486 80
∃6∀1 ∃6∀2 ∃6∀3 ∃6∀4 ∃6∀5 ∃6∀6 ∃6∀7 ∃6∀8 ∃6∀9 ∃6∀10

3.53 78 4.378 74 3.503 71 3.057 76 4.354 71 4.513 81 3.492 79 4.836 79 6.289 80 6.0 74
∃7∀1 ∃7∀2 ∃7∀3 ∃7∀4 ∃7∀5 ∃7∀6 ∃7∀7 ∃7∀8 ∃7∀9 ∃7∀10

4.33 74 3.173 70 1.789 72 7.187 69 4.99 78 5.584 74 4.783 77 7.558 75 7.744 74 6.043 78
∃8∀1 ∃8∀2 ∃8∀3 ∃8∀4 ∃8∀5 ∃8∀6 ∃8∀7 ∃8∀8 ∃8∀9 ∃8∀10

5.681 81 4.617 79 6.803 74 5.563 75 6.219 80 5.999 74 3.013 73 2.041 72 6.146 75 3.997 75
∃9∀1 ∃9∀2 ∃9∀3 ∃9∀4 ∃9∀5 ∃9∀6 ∃9∀7 ∃9∀8 ∃9∀9 ∃9∀10

3.509 77 2.514 72 5.659 68 1.345 78 4.379 72 3.914 73 3.422 71 1.784 66 6.903 72 5.142 77
∃10∀1 ∃10∀2 ∃10∀3 ∃10∀4 ∃10∀5 ∃10∀6 ∃10∀7 ∃10∀8 ∃10∀9 ∃10∀10

3.986 81 4.553 70 5.777 70 4.791 75 8.284 75 1.534 72 4.338 71 4.18 76 5.512 65 4.529 75
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Random Formulas. We tested MGHyper against different benchmarks of ran-
dom formulas. Quantifier Alternation: We created HyperLTL formulas with up
to 49 quantifier alternations and 15 atomic proposition using randltl [5]. For each
number of alternations we tested 100 formulas of size 60 and 120, where 50 start
with ∃ and 50 with ∀. The size is the size argument provided for randltl [5]. The
runtimes are shown in Fig. 1. Quantifier Ordering: ∃n∀m Formulas: For the sake
of comparing MGHyper with EAHyper, we tested MGHyper on the largest
decidable fragment of HyperLTL, which is the ∃∗∀∗-fragment. We scaled in the
number of existential and universal quantifiers, showing that MGHyper is able
to solve formulas with up to 10 existential and 10 universal quantifier. In compar-
ison, EAHyper, implementing the first decision procedure for HyperLTL-SAT,
already runs out of memory after 5 existential and 5 universal quantifiers.

4 Conclusion

We have presented MGHyper, the first semi-decisionprocedure for checking
the satisfiability of HyperLTL formulas beyond the decidable ∃∗∀∗ fragment. An
application of MGHyper is the analysis and development of hyperproperties
and, especially, the generation of models that disprove equivalences or implica-
tions between different hyperproperties. In comparison to the existing decision
procedure EAHyper, MGHyper not only handles the much larger class of hyper-
properties, it also outperforms, as our experiments show, EAHyper within the
∃∗∀∗ fragment.
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Abstract. Rust is an emerging systems programming language with
guaranteed memory safety and modern language features that has been
extensively adopted to build safety-critical software. However, there is
currently a lack of automated software verifiers for Rust. In this work,
we present our experience extending the SMACK verifier to enable its
usage on Rust programs. We evaluate SMACK on a set of Rust programs
to demonstrate a wide spectrum of language features it supports.

1 Introduction

Rust [12] is a new programming language that aims to enable safe systems
programming by means of an elaborate type system, while providing advanced
language features such as traits, smart pointers, and closures. It avoids mem-
ory safety issues prevalent in programs written in other low-level programming
languages such as C/C++ without adding performance overhead often imposed
by runtime systems or garbage collectors. Because of these merits, Rust has
received a lot of attention from both academia and industry, and it has already
been used to implement industrial-strength safety-critical applications, such as
web browsers, cloud storage, and embedded software.

Although memory safety is enforced through type checking of Rust programs
at compile time, functional correctness (e.g., no violations of user-specified asser-
tions) is not guaranteed. Automated software verifiers based on satisfiability
modulo theories (SMT) solvers [3] are a popular choice for assuring the absence
of assertion violations. However, building a verifier, or extending an existing
one, for a new language is often tedious and time-consuming (e.g., implement
a frontend, understand and encode the language semantics). This was done in
Rust2Viper [6], which translates Rust programs from the high-level intermediate
representation (syntactically similar to Rust) into an intermediate verification
language in order to check program correctness. CRUST [14] transforms Rust
into C to verify memory safety of unsafe Rust code. As both tools use custom
translators, changes to Rust necessitate these to be updated, which is a large
undertaking; neither tool appears to be maintained. To the best of our knowl-
edge, currently there are no readily available SMT-based verifiers for Rust.
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In this paper, we describe how we enable the verification of Rust programs in
the SMACK verifier [11,13]. An advantage of SMACK is that it is mostly input-
language agnostic as it works by verifying a simple intermediate representation,
specifically LLVM IR [10]. Since the official Rust compiler, rustc, can produce
LLVM IR code corresponding to Rust programs, a large frontend development
effort was not needed as a rich set of LLVM IR features is already supported
by SMACK. Rust is an advanced, low-level programming language that controls
heap sharing and aliasing using an elaborate type system. Hence, Rust’s com-
piler emits LLVM IR code patterns that are often significantly different from
code generated by the Clang compiler, which is the primary target for SMACK.
In particular, it emits aliasing patterns that SMACK could not handle well.
Nevertheless, we managed to extend SMACK to support the verification of a
modern programming language such as Rust at a relatively small cost, and our
evaluation shows that it can already handle a variety of key language features.

Fig. 1. Toolflow of SMACK.

2 SMACK Software Verification Toolchain

SMACK [11,13] is a software verification toolchain that translates LLVM IR code
into Boogie intermediate verification language [2], which is in turn verified using
back-end Boogie verifiers such as Corral [9]. Before our Rust effort, SMACK had
been predominantly used to verify LLVM IR programs produced by the Clang
C compiler. Figure 1 shows the toolflow of SMACK, which works as follows:

1. The SMACK top-level script automates the entire toolflow. It determines
which compiler to invoke and flags to use for program compilation. In the case
of C programs, it invokes Clang to generate LLVM IR code, while including
SMACK’s C language models. The models specify the semantics of common
C library functions such as malloc, free, and string operations.

2. The common models file is then linked with the generated LLVM IR file to
provide basic verification capabilities. This includes modeling dynamic mem-
ory, and support for assertions, assumptions, and nondeterministic values.

3. The core llvm2bpl component takes an LLVM IR file as input, and produces
Boogie code that captures the semantics of LLVM IR instructions; it outputs
a Boogie file for verification.

4. Finally, the Corral back-end verifier is invoked on the generated Boogie file,
and it uses Z3 [5] as its SMT solver. (Note that SMACK supports other
back-end verifiers, which we omitted here.)
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In this work, we use Corral in its bounded verification mode, meaning that it
unrolls loops and recursion up to a certain user-provided bound.

3 Rust-Driven Extensions to SMACK

Figure 2 gives a Rust program illustrating the language features that our SMACK
extensions leverage or support. Rust’s foreign function interface (FFI) allows
zero-cost interaction with C code, verification of which had already been exten-
sively supported by SMACK. As a result, we are able to reuse SMACK’s C
models as well as perform cross-language verification of Rust programs contain-
ing calls to external C functions (line 13). For example, we implemented macros
assume (line 9) and assert (line 14) to expand into calls to SMACK’s built-in
C functions.Line 8 invokes the nondet function that introduces nondeterministic
unconstrained values. Note that we implemented these so that programs can be
easily compiled into executables even with SMACK annotations present — in
that case nondet is replaced with value 5 in the example.

Instead of being undefined or triggering wrap-around behaviors as in C, inte-
ger overflows in Rust are checked and can lead to program panic. For example,
while not visible at the source level, the signed integer addition operation at line
5 may optionally be checked for integer overflows via the Rust compiler emitting
LLVM arithmetic with overflow intrinsics; we had to extend SMACK to sup-
port such intrinsics. Finally, unlike C, standard libraries and modern language
constructs such as the Vec library (line 10) and iterators (line 4) are abundant
in Rust code. Modeling these libraries and language constructs is challenging
yet essential to build a practical Rust verifier; SMACK’s modeling mechanism
allowed us to implement models for common Rust libraries. We describe some
of these extensions in more detail next.

3.1 Supporting Rust-Generated LLVM IR Constructs

The LLVM IR code that rustc emits contains several key constructs that are not
used in IR code produced by Clang. Hence, we had to extend SMACK to add
support for such constructs.

Types. The Rust compiler generates load/store instructions of the LLVM i1

data type, which is almost never emitted by Clang. We added support for such
instructions by zero-extending their operands to i8 when a store operation
occurs, and casting them back when they are loaded.

Instructions operating on LLVM structure types occur frequently in rustc-
generated IR code, while Clang-generated IR almost always uses only primitive
types. For example, it is a common practice for Rust programmers to use the
Option type as the return type of functions. It is generic over type T and rep-
resented in LLVM IR as structure type {T,i1}, where setting i1 is used to
indicate a valid return value. Moreover, load/store instructions over structures
are frequently generated by rustc, but not by Clang. Hence, SMACK did not
have elaborate support for such instructions.



Verifying Rust Programs with SMACK 531

Fig. 2. Rust program that checks the equivalence between the Rust (fib) and C (fib c)
implementations of the Fibonacci function.

We support such instructions by modeling LLVM structure types using
uninterpreted functions that constrain each field. For example, value {v,1}
of type {T,i1} is represented using an integer s with constraint f(s, ∅) ==
v&&f(s, 1) == 1, where f is an uninterpreted function with the second argu-
ment being the index of a structure field. Such encoding allows us to model
two basic LLVM structure instructions extractvalue and insertvalue that
read and write structure fields, respectively. Loads and stores of structures into
memory are recursively translated into a sequence of instructions that generate
load/store for each field of primitive type, in conjunction with the two afore-
mentioned instructions. This extension enables SMACK to handle structure con-
structs without us having to introduce extensive modifications to its underlying
memory model.

Integer Packing. The Rust compiler frequently packs smaller structures into
8-byte integers. For example, rustc optimizes loading of a structure of type
{i32,i32} into loading of i64. This requires less scalable bit-precise reasoning
to be selected in SMACK to avoid false bugs [7]. Hence, we added an analysis
pass to SMACK that detects load/store instructions with pointer operands of
integer element type that refer to structures. We translate such instructions to
load/store directly from/into structure fields (following the encoding described
earlier), thereby essentially avoiding packing. This approach helps to scale the
verification of Rust programs by avoiding the need for bit-precise reasoning.

Intrinsics. We added support for two types of LLVM intrinsics heavily used by
rustc: llvm.expect and arithmetic with overflow. The Rust compiler emits the
LLVM intrinsic llvm.expect as an optimization hint. We modified SMACK to
transform a call to this intrinsic into essentially a no-op. As future work, we will
explore leveraging such hints to speed up verification.
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Fig. 3. Translation of an unsigned
8-bit checked-addition intrinsic,
where $a and $b are the operands
and $x is the sum.

The Rust compiler typically emits instruc-
tions for checking all integer operations
for overflow through the use of LLVM
arithmetic with overflow intrinsics, such as
llvm.uadd.with.overflow.i32. The intrin-
sics indicate the sign and bitwidth in which
to perform the given operation. We extended
SMACK with an integer overflow checking
pass that replaces the intrinsics with instruc-
tion sequences implementing the correspond-

ing overflow checking. Figure 3 shows an example translation. Lines 1 and 2
extend the precision of the arguments to double the original bitwidth, thereby
avoiding potential overflow. Line 3 computes the result of the addition, while line
4 converts the result back to the original bitwidth. Line 5 determines whether the
operation overflowed, while line 6 checks it. Note that the translation shown in
Fig. 3 is not optimal for dynamic checking since we optimized it for SMT-based
verification with SMACK. Furthermore, while the conversion of the intrinsic is
always performed, checking is made optional following the convention that it is
disabled in the release mode.

3.2 Modeling Rust Libraries

Standard Rust libraries define most of the language’s containers as generic over
the contained type, and generate the corresponding code for the container when
the program is compiled. However, the generated code is heavily optimized for
performance, and contains constructs and functions that are difficult for SMACK
to analyze, such as custom allocators. Hence, we leveraged SMACK’s existing
modeling capabilities to write models for popular Rust data structures, such as
vector (Vec). Vector is a dynamically-sized array used in many Rust programs as
well as for implementing other data structures such as stacks and queues. Cur-
rently, our vector model supports dynamic resizing, push, pop, get and mutable
get, and indexing among other features. The model resides in a separate file,
which SMACK automatically links as a Rust module.

4 Experiments

4.1 Microbenchmarks

We developed a benchmark suite containing various Rust language features to
test the SMACK extensions we developed.1 Table 1 summarizes our benchmark
suite. Every category includes both correct and buggy benchmark versions. Some
notable included features are:

1 For our tool and benchmarks see https://github.com/smackers/smack.

https://github.com/smackers/smack
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Table 1. Summary of the benchmark suite we developed.

Benchmark category #Files LOC Features demonstrated

Functions 8 153 Function calls, closures, recursion

Generics 6 55 Generic functions, structures, traits

IFC 4 214 Information flow control example

Loops 4 35 Range-based for loops

OPS 12 171 Basic operations, overflows

Structures 4 76 Creation, passing, returning of structures

Vector 6 88 Dynamic memory management

Memory-safety 4 58 Memory safety verification

Cross-language 4 48 Combining Rust and C

– The functions category tests recursion and passing closures as arguments.
– The generics category implements a generic trait for two generic structures.

A statically dispatched function is then invoked on the structures.
– The vector category tests dynamic resizing and indexing of the Rust vector.
– The cross-language category contains Rust programs that invoke C functions,

including the Fig. 2 benchmark.

Table 2. Summary of the real-world programs we verified using SMACK.Column
Time shows the runtime of applying SMACK to verify a property.

Program Checked property LOC Time

uptime General assertion 81 2 s

expr Signed integer overflow 137 5min

factor Unsigned integer overflow 100 50 s

Functional correctness 17min

– In the memory safety category, we verify the absence of buffer overflows and
memory leaks arising from C-allocated arrays in unsafe Rust programs.

– The ifc category contains the information flow control (IFC) example from
related work [1]. IFC models an access control method where access authority
can only be increased. Using nondeterministic access levels, we verify that the
IFC Rust implementation only allows access to the appropriate authority.

Currently, SMACK verifies most benchmarks in under 20 minutes. The only
exception is the full-blown IFC benchmark version that takes several hours to
complete. The development of the benchmark suite helped us to identify key
language features that SMACK struggled with, and hence it guided our efforts.
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4.2 Real-World Programs

To better judge the quality of our implementation, we tested SMACK on three
real-world programs, uptime, expr, and factor, from the uutils project [4]. The
project is a popular repository on GitHub (starred more than 4000 times) con-
taining Rust reimplementations of the GNU core utilities. Table 2 shows the
properties we verified for each program, their size, and the runtime of SMACK.
We slightly modify all the programs to simplify the verification processes. Most
notably, we replace the return values of external library calls with nondetermin-
istic values, and we ignore string literals by redefining macros that accept string
arguments, such as println!, to empty expressions.

In the uptime utility, which prints the uptime of a machine, we verify that the
reported uptime is 0 only when the system calls related to reporting the uptime
also return 0. SMACK generates an error trace through the Rust program where
an uptime of 0 is erroneously reported when certain resources are unavailable;
GNU’s version of uptime reports an error in this scenario. We reported this
problem to the developers, who issued a fix.2 The expr utility evaluates a string
argument as an arithmetic expression. We check this program for signed integer
overflows using SMACK. Our input to expr is the addition of two nondeter-
ministic 64-bit integers, and SMACK discovers input values that trigger signed
integer overflow. GNU’s version of expr either reports an error, or uses unlim-
ited precision, rather than reporting an overflowed result. We again reported the
outcome to the developers, who issued a fix.3 In the factor utility, we focused on
verifying individual functions in its numeric library, namely sm mul and big mul.
Both of these functions take 3 arguments a, b, and m, and compute (a · b)%m.
We verify several properties related to integer overflows, and that sm mul indeed
performs the specified computation. Note that we reduced the integer bit-width
to 8 bits to speed up verification.

5 Limitations and Future Work

While the described extensions we made to SMACK enable its usage on many
Rust programs, some work remains. Rust programs extensively rely on Rust’s
standard libraries. While we implemented models for the most common ones,
such as Vec, we plan to model a more substantial subset in the future. An
additional feature we plan to add is checking of unsafe pointers to ensure they
obey the semantics of the Rust’s borrow system. In particular, we want to check
pointers from external functions. The Rustbelt [8] project gives the conditions
for which pointers generated from unsafe Rust code can be verified to be safely
used. Since Rust enables legacy code to be used within a project, this feature will
enable developers to verify their wrappers adhere to Rust’s aliasing semantics.
Finally, concurrent programming is an important feature of Rust, and we plan
to support it in SMACK in the near future.

2 https://github.com/uutils/coreutils/issues/1195.
3 https://github.com/uutils/coreutils/issues/1194.

https://github.com/uutils/coreutils/issues/1195
https://github.com/uutils/coreutils/issues/1194
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Abstract. This paper presents a major new release of SBIP, an extensi-
ble statistical model checker for Metric (MTL) and Linear-time Temporal
Logic (LTL) properties on respectively Generalized Semi-Markov Pro-
cesses (GSMP), Continuous-Time (CTMC) and Discrete-Time Markov
Chain (DTMC) models. The newly added support for MTL, GSMPs,
CTMCs and rare events allows to capture both real-time and stochastic
aspects, allowing faithful specification, modeling and analysis of real-life
systems. SBIP is redesigned as an IDE providing project management,
model edition, compilation, simulation, and statistical analysis.

1 Introduction

Statistical Model Checking (SMC) is a powerful alternative to classical numer-
ical probabilistic model-checking that generally fail to handle large state-space
systems. SMC was successfully applied in the assessment of different real-life sys-
tems in various application domains. Classical model checkers [4,8] now include
SMC as part of their analysis engines and have been recently joined by a vari-
ety of specialized ones [1,6,9,12]. All these tools mainly differ in their model-
ing and properties specification formalisms. Uppaal-smc [4] considers Networks
of Priced Timed Automata, which are high-level representations of D/CTMCs
for system modeling, and weighted MTL for properties specification. Prism [8]
treats in addition Markov Decision Processes and Probabilistic Timed Automata
for modeling, and Probabilistic Computation Tree, Continuous Stochastic Logic
(CSL), and LTL for specification. Plasma Lab [6] is a modular statistical model
checker that allows to use external simulators and checkers. Its default configu-
ration supports DTMCs specified in a Prism dialect and bounded LTL. Ymer
[12] is one of the rare tools to implement SMC (Hypothesis testing) for GSMPs
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programme under grant agreements no. 700665 (CITADEL), 7300080 (ESROCOS).
∗ Institute of Engineering Univ. Grenoble Alpes.

c© Springer Nature Switzerland AG 2018
S. K. Lahiri and C. Wang (Eds.): ATVA 2018, LNCS 11138, pp. 536–542, 2018.
https://doi.org/10.1007/978-3-030-01090-4_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01090-4_33&domain=pdf


SBIP 2.0: Statistical Model Checking Stochastic Real-Time Systems 537

and CSL, however it is no more maintained. Finally, COSMOS [1] relies on Gen-
eralized Stochastic Petri Nets as input models and Hybrid Automata Stochastic
Logic, a more expressive formalism, for properties specifications.

In this paper, we present the newest release of SBIP, a statistical model
checker that enriches the existing BIP tool-set [2] with statistical analyses. BIP
provides a general framework to support design activities ranging from specifi-
cation and validation to implementation and deployment in a rigorous way. To
implement this vision, a rich tool-set was built for modeling, languages embed-
ding, functional validation, models transformation and distributed code genera-
tion.

In its previous version [9], SBIP was limited to the analysis of DTMCs
with respect to bounded LTL properties. In this release, it was redesigned and
extended to support GSMPs, CTMCs, MTL, parametric exploration of
LTL and MTL properties and analysis of rare events. The tool has also
benefited from a major revision of its workflows and GUI. It now provides an Inte-
grated Development Environment (IDE) where one can edit, compile, simulate
models, and perform analyses. Additionally, SBIP is now organized around well-
structured projects that enclose models, properties and traces. It also includes
support for graphical visualization of analysis results.

2 SBIP Design and Functionalities

SBIP is fully developed in Java and runs on GNU/Linux. It is freely available at
http://www-verimag.imag.fr/Statistical-Model-Checking.html. The tool is dis-
tributed with a large set of case studies and a detailed documentation (e.g., user
manual, installation details, video tutorials). For the sake of simplicity, we also
provide a virtual machine with a pre-installed version of the tool.

This new release was designed in a modular fashion to allow more flexi-
bility and extensibility. As depicted in Fig. 1, SBIP consists of three generic
functional modules: Stochastic Simulation Engine, Monitoring, and Statistical
Analyses that currently include Hypothesis Testing (HT), Probability Estima-
tion (PE), Parametric Exploration (PX) and Importance Splitting (IP) for rare
events analysis. All these modules are fully independent and interact through
well-defined Java interfaces. The latter also define a clean and easy way to extend
the tool with further modules (simulators, monitors and analyzers). In practice,
statistical analysis algorithms trigger the stochastic simulation engine to pro-
duce a new execution trace which is monitored against an input property to
produce a local verdict. Depending on the used analysis method, several itera-
tions are generally required, to produce the final verdict. The proposed design
allows to perform different analyses in separate workflows, namely simple simu-
lation, standard SMC analyses, parametric SMC exploration and analysis of rare
events. These workflows rely on common features such as models and properties
edition, compilation and generated traces inspection.

http://www-verimag.imag.fr/Statistical-Model-Checking.html
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Fig. 1. SBIP architecture

Stochastic Simulation Engine. Currently, SBIP allows to use two different
stochastic simulators, namely, for classical stochastic BIP [9] that enables to
model discrete-time systems (DTMCs) and for the newly implemented Stochas-
tic Real-Time BIP [10] for continuous-time systems with arbitrary distributions
(GSMPs and CTMCs)1. The former produces untimed traces needed to verify
bounded LTL properties (and to guarantee backward compatibility), whereas
the latter generates timed traces necessary to verify MTL properties. We imple-
mented simulators to produce traces in different modes, i.e., symbol-wise, piece-
wise and trace-wise. We use the first mode for online monitoring and to be able
to interrupt simulations as soon as a verdict is obtained. The second is primor-
dial for rare events analysis and allows to generate traces as a concatenation of
trace-fragments. Finally, we use the third mode for offline monitoring.

Monitor. The new release of the tool implements monitoring capabilities for
MTL and bounded LTL formulas. Our monitoring algorithms are inspired from
the rewrite-based procedures introduced in [3,11]. Given a formula and a trace,
the monitor alternates rewriting and simplification phases. Rewriting consumes
a symbol of the trace and partially evaluates the formula by unfolding temporal
operators and evaluating atomic propositions to their truth value. Simplification
applies Boolean reduction rules to the formula in order to conclude or to simplify
it. The implemented MTL/LTL grammars and monitors allow for expressing
properties with nested operators and having parameters, i.e., variables used to
represent a range of properties in a compact way.

Statistical Analyses. In addition to classical SMC algorithms, i.e., HT [12]
and PE [5], we propose in this release two additional analyses (exploitable via
independent workflows) for the exploration of properties parameters, Parametric
Exploration (PX), and for rare events analysis, Importance Splitting (IP) [7]. To
recall, HT allows to answer qualitative queries, i.e., given a stochastic system S
and a property φ, it enables to assess whether the probability for S to satisfy

1 SRT-BIP sources are available at https://gricad-gitlab.univ-grenoble-alpes.fr/
verimag/bip/compiler/tree/stochastic-real-time

https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/bip/compiler/tree/stochastic-real-time
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/bip/compiler/tree/stochastic-real-time
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φ is greater or equal to a given threshold θ. PE addresses quantitative queries,
that is to compute a probability estimate p for S to satisfy φ.
Parametric Exploration (PX) is an automated way to perform statistical model
checking on a family of properties, in a batch mode. A family of properties is
specified in a compact way as a parametric property φ(x), where x is an integer
parameter ranging over a finite instantiation domain Π. Similarly to Prism,
our implemented algorithm returns a set of SMC verdicts corresponding to the
verification of the parametric property instances φ(vx) with respect to vx ∈ Π.
This can be very useful when exploring unknown system parameters such as,
buffers sizes guaranteeing no overflow, or the amount of consumed energy. It
automates the exploration for large parameters domains as opposed to tedious
and time consuming manual procedures. This exploration differs from Uppaal-
smc parametric SMC which explores the parameters of the input model.
Importance Splitting (IP) overcomes the problem of estimating the probability
P (S |= φ) of a system S to satisfy a property φ representing a rare event. This
is done by considering a set of intermediate levels li that corresponds to less rare
properties φi, s.t., φn ⇒ φn−1 ⇒ . . . ⇒ φ1, where φn = φ. P (S |= φ) is therefore
computed as the product of the conditional probabilities to reach li from li−1,
i.e., Πn

i=1P (S |= φi | S |= φi−1). In our implementation, the intermediate levels
li and associated φi are defined via a score function given as input. To evaluate a
system trace with respect to φ, we implemented a procedure that tells the level
reached by the trace, i.e., the intermediate property it satisfies. Our algorithm is
similar to the analysis procedure proposed in Plasma Lab. It iterates over levels,
and for each one, it simulates m trace prefixes among which ms reach the next
level and mf do not. The conditional probability to reach the next level is thus
estimated as the ratio ms/m. In the next iteration, the simulation of successful
prefixes is resumed, while the rest (mf ) are replaced by successful ones sampled
uniformly. We note that IP is currently limited to the analysis of DTMCs.

3 Case Studies

In this section, we briefly present experiments performed using SBIP 2. Differ-
ent case studies covering various application domains were considered to validate
the new release of the tool. We implemented models for communication proto-
cols, namely Firewire, Bluetooth, and the Precision Time Protocol (PTP), for
a vehicle gear controller, a Pacemaker and a mutual exclusion scenario. All the
experiments were performed on a Dell Latitude 5480 with an i7-7820HQ proces-
sor and 32 GB of RAM, running Ubuntu 16.04.

On these models, we tackled different types of requirements. For the Firewire
case study, we focused on analyzing its leader election protocol in different
topologies (2, 3 and 5 nodes) with respect to convergence time, by considering
the impact of contention (φ1,2,3) and regarding the impact of a node position
on its probability to become the leader (φ4). In this study, except φ3 performed

2 See details in http://www-verimag.imag.fr/TR/TR-2018-5.pdf

http://www-verimag.imag.fr/TR/TR-2018-5.pdf


540 B. L. Mediouni et al.

using PE, the other properties were performed using PX. We also built a para-
metric model of the Bluetooth device discovery mechanism with one sender and
one receiver that can be either in an active (v1) or a sniff mode (v2). For this
model, we were interested in studying the energy consumption of the receiver in
both modes (φ6) in addition to the convergence time (φ5). The PTP protocol
was subject to the analysis of the maximal drift between the master and the
slave clocks (φ7).

Table 1. Summary of performance
Case study Model φ Analysis #smc loops avg smc time

Firewire(2) CTMC φ1 PX 11 1m 21 s

φ2 PX 9 1m 59 s

φ3 PE – 2m 28 s

φ4 PX 2 3m 27 s

Firewire(3) CTMC φ1 PX 17 1m 53 s

φ2 PX 11 3m 34 s

φ3 PE – 3m 38 s

φ4 PX 3 4m 43 s

Firewire(5) CTMC φ1 PX 18 3m 54 s

φ2 PX 17 12m 36 s

φ3 PE – 7m 23 s

φ4 PX 5 10m 16 s

Bluetooth v1 CTMC φ5 PX 9 2m 27 s

φ6 PX 16 3m 11 s

Bluetooth v2 CTMC φ5 PX 11 3m 0 s

φ6 PX 14 13m 05 s

PTP GSMP φ7 PX 15 8m 42 s

Gear Control CTMC φ8 PX 11 54 s

Pacemaker CTMC φ9 PE – 1 h 28m

φ10 PE – 1h 30m

Mutual Exclusion DTMC φ11 IP – 13 s

PE – 3m 37 s

For the gearbox
system, we investi-
gated the minimum
and maximum time
required to complete
a gear change (φ8).
We also verified
requirements regard-
ing the time relation-
ships between atrial
and ventricular
events in the pace-
maker model (φ9,10).
Analyses of the Blue-
tooth, PTP and the
gearbox models were
performed using PX,
while we used PE
for the Pacemaker.
We also considered a
model of three concurrent processes arbitrarily requesting access to a shared
resource. In this case study, the goal was to estimate the probability that each
process is able to access the resource 10 times within 30 system steps (rare prop-
erty φ11). Using our IP implementation, we obtained 2.35 × 10−7 in less than
13 s, while it was not possible to observe the rare event using PE upon 3 min of
execution.

In addition to these experiments summarized in Table 1, we report in the
last two columns some performance measures of the tool, namely, the number of
SMC loops performed for parametric exploration, and the average SMC time for
a single loop. We observed that depending on the model size and the property
complexity, the time varies from some seconds to a dozen of minutes, except for
the pacemaker model where it took more than an hour. In this particular case,
PE required 4883 long execution traces, representing approximately 8 min of real
system execution.

4 Discussion

Most SMC tools [1,4,6,8,12] use dedicated abstract models as input for verifi-
cation. In contrast, SBIP uses BIP, a full-fledged expressive component-based
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framework developed to support system design from specification to analysis
and implementation. It allows for incrementally building complex systems from
elementary components and offers real-time capabilities, in addition to high-
level coordination and synchronization primitives e.g. multi-party interactions
and priorities. Furthermore, it enables including external C++ code, e.g. for
modeling complex data structures and integrating legacy code.

We briefly discuss SBIP capabilities with respect to major SMC tools.
Regarding the analyses, SBIP implements the HT and PE algorithms simi-
larly to Uppaal-smc [4], Prism [8] and Plasma Lab [6]. Besides, only Prism
offers a parametric functionality similar to PX. Furthermore, to the best of our
knowledge only Plasma Lab and COSMOS [1] support rare events analysis. The
former is the only one implementing IP as in our tool, while the latter rather
relies on importance sampling. Our underlying modeling formalism allows for
expressing arbitrary probability distributions over time. It offers built-in stan-
dard distributions, e.g. Normal, and a simple mechanism for specifying custom
distributions. In contrast, Prism is restricted to uniform and exponential distri-
butions, whereas in Uppaal-smc one need to define such distributions manually
by using a subset of the C language. The expressiveness of BIP together with the
reliance on concrete executions result in lower runtime performance compared
to Uppaal-smc and Prism. Comparatively, the authors of Plasma Lab chose to
focus on modularity at the expense of performance. In the future, we plan to
optimize our simulation engine to improve the overall performance.
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Abstract. We present the library Owl (Omega-Words, automata, and
LTL) for ω-automata and linear temporal logic. It forms a backbone of
several translations from LTL to automata and related tools by different
authors. We describe the functionality of the library and the recent expe-
rience, which has already shown the library is apt for easy prototyping
of new tools in this area.

1 An Owl is Born: Introduction

ω-automata are finite automata over infinite words. As opposed to finite
automata over finite words, there is not a single acceptance condition, but a
wide variety of possibilities, each being more appropriate for certain applica-
tions. To give a few examples, non-deterministic Büchi automata are the most
used kind, useful in many contexts, including the modelling and analysis of
reactive systems, where both the system and the property of interest, say in
linear temporal logic (LTL) [33], are transformed into these automata. In con-
trast, the classical approach for synthesis of reactive systems [34] prefers deter-
ministic parity automata. Further, while the textbook approach to probabilis-
tic LTL model checking suggests to translate LTL formulas to deterministic
Rabin automata [4], recent approaches show that deterministic generalized Rabin
automata or limit-deterministic automata are more preferable [6,37,38]. Conse-
quently, a zoo of automata arises, both due to theoretical limitations of certain
kinds as well as practical efficiency. While the theoretical complexity of the trans-
formations between the automata and of translations from LTL to automata
is long settled, the research on practically more efficient approaches is flourish-
ing, both for non-deterministic [3,7–9,15–17,39] and more recently deterministic
[2,11–14,19,20,23,37] automata. Notably, while these constructions are based on
diverse ideas, their implementation requires almost the same infrastructure.

Tools in this area have very different purposes, ranging from tools for one specific
task, e.g. translating LTL into a particular type of automaton, e.g. [3,16,20–22],
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to educational GUI tools demonstrating the constructions, e.g. JFLAP [35], to
tools implementing a comprehensive collection of algorithms from literature,
e.g. GOAL [41] and Spot [9]. We contribute to this spectrum the library Owl,
which enables easy and fast development of transformation/translation tools,
yet yielding efficient implementations.

Owl is a full-fledged library for manipulating ω-automata and LTL. One of the
main characteristics is that it links the functionality for automata and logic in a
very tight and explicit way, providing additional support for “semantic” trans-
lations of LTL to automata. These are translations where states are described
using structures over logical formulas, as we know it from the classical, e.g.
the tableaux-based, tradition. This tradition was disrupted for deterministic
automata due to Safra’s construction [36], where the meaning of a state (the
language it recognizes) cannot be easily described in terms of the meaning of
the corresponding formulas. The “semantic” tradition has been restored recently
in the works on deterministic automata cited above and Owl provides specialised
operations (see below) on LTL that are the building blocks for obtaining such a
translation.

Apart from this characteristics, our library has several other user-friendly
traits and distinguishing features. For instance, it is built according to the on-
the-fly philosophy, it is written in Java (with no memory management issues
left for the user, being more accessible to students), extensive CLI support for
quick and easy prototyping, and a testing framework checking correctness of
translations written with the library.

In this tool paper, we briefly describe the functionality of the library and then
provide a series of actual use cases (not only by the authors), demonstrating the
usability and particular advantages of this library.

2 The Anatomy of the Owl: Functionality

Owl (Omega-Words, automata, and LTL) arose from the needs when imple-
menting Rabinizer 3.1 [13,22] and ltl2ldba [37]. When developing such trans-
lations a lot of infrastructure is necessary, e.g., LTL parsing and representation,
while the actual construction is only a small fraction of the written code. Thus,
we implemented commonly needed functionality in a reusable Java library for
LTL and ω-automata and extended it with numerous features to provide a flex-
ible infrastructure for rapid and seamless development of algorithms in these
domains.

2.1 Data Structures and Algorithms

The majority of data structures and algorithms concerns LTL and automata.

LTL. The library provides an LTL parser, a simplifier with state-of-the-art
rewrite rules, classification into syntactic fragments and transformation into nor-
mal forms. Additionally, a parser for the synthesis specification format TLSF [18]
is available and includes a conversion to LTL.
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Further, the LTL support comes with efficient rewriting according to the LTL
expansion laws, e.g. [4]. This enables the decomposition of temporal formulas into
directly checkable assertions on the current position and on the immediate tem-
poral successor, e.g. aUb ≡ b∨(a∧X(aUb)). As such, they are a core component
of both classic, e.g. tableaux-based, as well as recent semantic translations.

Automata. The library provides support for deterministic and non-
deterministic ω-automata with both classic acceptance conditions, e.g., Büchi,
coBüchi, Rabin and parity, as well as, e.g., like generalized Rabin [28] or
Emerson-Lei acceptance [10]. Internally, acceptance is represented as transition-
based acceptance and a conversion to and from state-based acceptance for inter-
facing with external tools is present.

Automata can either be stored and modified explicitly, meaning the whole
state-space and transitions are kept in memory, or defined implicitly by specify-
ing initial states and a method for successor computation. The latter approach
has two main advantages: First, new constructions can be implemented with
little effort, transferring the definition of the successor relation into code. For
example, see [24] for a ca. 60 lines Java implementation of Safra’s determinization
procedure. Second, automata can be conveniently traversed on the fly without
storing the transition system, allowing operations on huge or potentially even
infinite transition structures.

For automata, classic algorithms such as decomposition into strongly con-
nected components (SCC) and lasso-based emptiness checks are included. Fur-
thermore, constructions such as union, intersection and degeneralization are
present. In addition, modifications of the transition structure and the accep-
tance conditions are supported, e.g., removal of non-accepting or unreachable
parts of the state space, completing the transition relation, and simplifications
of the acceptance condition. Acceptance sets are stored as edge labels for efficient
rewriting, supporting arbitrarily sized acceptances, compared to, e.g., Spot [9],
which at the time of writing supports only an at compile-time determined
bounded number of sets.

2.2 Interfacing

There are two ways to interact with Owl: On the one hand, there is a command-
line interface with text-based formats, e.g., (Spot-compatible) LTL, TLSF [18],
and the Hanoi ω-automaton format (HOA) [1]. This approach is completely
agnostic of the implementation, but always requires a complete construction,
which is prohibitively expensive for huge outputs where only a small fraction
might be needed. On the other hand, there is a Java and a (specialized) C++
API offered by Owl, which allows fine-grained access and exposes the on-the-fly
nature to external code.

Command-line Interface. Major functionality of the library is avail-
able via a pipe-style CLI, which makes it easy to specify the sequence
of procedures (input parsing, translations, conversions, statistics and seri-
alization) to be performed. For example, owl ltl --- simplify-ltl ---
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ltl2dpa --- hoa reads LTL formulas from stdin line-by-line, simpli-
fies them using the default simplifier, translates them to DPAs and
writes them to stdout in the HOA format. This can be extended
to advanced pipelines, e.g., owl -I "in.ltl" --- ltl --- ltl2dgra ---
aut-stat "DGRA:%s" --- dgra2dra --- aut-stat "DRA:%s" --- null.

This pipeline reads LTL formulas from the file in.ltl, translates them to
DGRAs and DRAs, while outputting the respective sizes of the automata, and
finally discards the actual output, saving the time needed for serialization.

Moreover, we support several sources and sinks for data. While one can sim-
ply process data from files and the command line, we also added a server mode
to reduce the JVM start-up cost, where I/O is bound to a socket. Further details
on the CLI together with an in-depth example can be found on [24].

Java and C++ API. Java and Java-like (e.g., Scala) applications can import
Owl and have fine-grained control. For C++ tools, there exists a specialized
interface to access core functionality of the library. Among other things, this
enables C++ code to iteratively explore automata state by state instead of
forcing a complete construction. This iterative exploration is a core component
of the state-of-the-art synthesis tool Strix [31] and is crucial for its performance.

2.3 Development Infrastructure and Scalable Architecture

Testing. Small changes to a translation can easily introduce bugs. Thus a test
suite is included, which provides several input sets and cross-checks each transla-
tion, developed with Owl, on hundreds of formulas [25] using ltlcross [9]. Apart
from detecting bugs, the test suite offers further conveniences, e.g., it automati-
cally generates an image of an erroneous automaton together with an erroneous
run. Moreover, various statistics of the generated automata are displayed, usable
for performance testing. Lastly, integration of a newly developed translation can
be achieved by a few lines of JSON, see [24] for an example.

BDDs. Both the LTL part and the automata part of the library use binary deci-
sion diagrams (BDD) for some aspects of their functionality, e.g., for a compact
representation edge sets and (propositional) equivalence checks of formulas. We
implemented our own pure Java BDD library JBDD [30], to (i) achieve portability,
not requiring users to compile, e.g., CUDD, and (ii) provide an efficient and tuned
implementation for all used BDD operations, e.g. substitution of variables, called
compose. Particularly, compose is fundamental for a symbolic implementation
of the semantic constructions and greatly improves their runtime compared to
the explicit variants.

3 The Owl in the Wild: Use Cases

Owl has been successfully used for several published tools and student projects,
demonstrating versatility and usability even for less experienced users. To name a
few, the following published tools (in alphabetical order) using Owl are available:
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Delag [32] translates LTL into deterministic Emerson-Lei automata.Reusing
other translations based on Owl, see Rabinizer [26], it adds specialized con-
structions for fragments of LTL, exploiting a succinct encoding coupled to the
Emerson-Lei acceptance condition. The current distribution of Owl includes
the latest version of it.

MoChiBa [38] is an extension of PRISM [29] and uses limit-deterministic automata
for quantitative model checking of Markov decision processes [37]. Due to a
tight integration with Owl, additional information on the automata can be
accessed, optimizing the construction.

Rabinizer [26] is a collection of tools translating LTL to various types of deter-
ministic automata. It uses a fully BDD-based successor computation of Owl,
improving performance over the previous versions. The current distribution
of Owl includes the latest version of Rabinizer (4.0).

Strix [31] synthesises controllers (either Mealy machines or AIGER circuits)
from LTL specifications via parity games. Constructing the underlying
automata and solving the parity games take an incremental approach and
make use of the on-the-fly implementations.

The list of student projects includes1

– a re-implementation of Seminator [5],
– a specialized translation of the (F,G,X)-fragment of LTL to deterministic

parity automata, and
– reactive synthesis exploiting the Owl-supported semantic labelling of the

automata produced by Rabinizer through learning approaches.

Furthermore, rLTL (robust LTL) [40] can be easily transformed into LTL using
Owl2. Finally, to illustrate the ease with which new translations can be written,
we implemented the notoriously complicated and hard-to-implement [27] Safra’s
determinization procedure [36], which can be found on [24]. A detailed analysis
of the lines of code needed to implement the mentioned translations and the
percentage of library that is used can be found on [24].

4 This is Not the End: Conclusion

We have presented the library Owl, which provides infrastructure for easy devel-
opment of efficient prototypes in the area of LTL and automata. It has already
demonstrated its re-usability in several projects, also without the presence of the
library authors. For instance, our experience with Master students has demon-
strated that a tool for a complex translation, such as [5], can be easily imple-
mented using roughly 400 lines of code, achieving performance comparable to
the original dedicated tool. One simply defines the mathematical type of the
state space, the initial state, the successor function with the acceptance mark-
ing, whereas the rest is taken care of by the library. The library can be found at
https://owl.model.in.tum.de, including code, documentation, references and an
online demo. We greatly appreciate comments and suggestions.
1 Authored by Florian Barta, Matthias Franze, and Sebastian Fiss, respectively.
2 Originally implemented by Daniel Neider.

https://owl.model.in.tum.de
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Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479–486. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 31
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Abstract. We present EVE (Equilibrium Verification Environment), a
formal verification tool for the automated analysis of temporal equilib-
rium properties of concurrent and multi-agent systems. In EVE, systems
are modelled using the Simple Reactive Module Language (SRML) as a
collection of independent system components (players/agents in a game)
and players’ goals are expressed using Linear Temporal Logic (LTL) for-
mulae. EVE can be used to automatically check the existence of pure
strategy Nash equilibria in such concurrent and multi-agent systems and
to verify which temporal logic properties are satisfied in the equilibria.

1 Introduction

We are interested in the verification of concurrent and multi-agent systems in
which system components are modelled as open systems using a game-theoretic
approach. In this approach, multi-agent/concurrent systems correspond to multi-
player games, agents/processes to (rational) players, computation runs to plays
of the game, and individual component behaviours to player strategies. Since the
classical notion of correctness is not appropriate in this multi-agent setting [21],
one needs different concepts to analyse such systems, and game theory provides
a natural set of mathematical tools and solution concepts for that [16]. Among
the proposed solution concepts, Nash equilibrium (NE) [17] is considered as the
most important in non-cooperative and multi-player settings. In our framework,
NE is characterised 1 as follows: given a game G, with N = {1, . . . , n} the set of
players and �a a strategy profile, �a is a NE if for every player i ∈ N that does not
get her LTL goal formula satisfied in the play resulting from �a, she cannot get
her goal satisfied by unilaterally changing her strategy.

In this paper, we present EVE (Equilibrium Verification Environment), which
can be used to solve three key decision problems in rational synthesis and veri-
fication [9,21]: Non-Emptiness, E-Nash, and A-Nash. These problems ask,
respectively, whether a multi-player game has at least one NE, whether an
LTL [18] formula holds on some NE, and whether an LTL formula holds on all

1 We refer to [9,21] for the formal characterisation of NE.
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NE. EVE uses a technique based on parity games to check for the existence of NE
in a concurrent and multi-player game, and a model of strategies that is memo-
ryful and bisimulation invariant. The latter property is a (desirable) key feature
of our modelling framework since bisimilarity is a fundamental equivalence in
concurrency which allows one to perform modular and compositional reasoning
for the semantic analysis of several concurrent, reactive, and distributed systems.

There are only a few of existing tools that can be used to reason about NE
in multi-player games; PRALINE [2] and MCMAS [20] are the most comparable
to EVE, and yet both are different from EVE in critical ways. PRALINE does
not support LTL goals and uses a model of strategies that is sensitive to bisim-
ilar transformations, meaning that in PRALINE two games on bisimilar systems
may have different sets of NE; cf., [7]. On the other hand, MCMAS can check
the existence of NE in memoryless strategies only and, like PRALINE, uses a
model of strategies that does not allow for bisimulation-invariant transforma-
tions, which are made, e.g., when using symbolic methods via OBDDs or some
model-minimisation techniques. Another tool is UPPAAL [15], which has been
used to study NE in wireless networks [3]. Unlike EVE, UPPAAL works in a quan-
titative setting, uses Statistical Model Checking, and computes approximate NE.

2 Tool Description

Modelling Language. Each system component (agent/player) in EVE is repre-
sented as a SRML module, which consists of an interface that defines the name
of the module and lists a non-empty set of Boolean variables controlled by the
module, and a set of guarded commands, which define the choices available to the
module at each state. There are two kinds of guarded commands: init, used for
initialising the variables, and update, used for updating variables subsequently;
we refer to [13] for further details on the semantics of SRML. In addition, we
associate each module with a goal, which is specified as an LTL formula.

Implementation and Usage. EVE was developed in Python and is available
online from https://github.com/eve-mas/eve-parity. EVE takes as input a con-
current and multi-agent system described in SRML, with player goals and a
property φ to be checked specified in LTL. For Non-Emptiness, EVE returns
“YES” (along with a set of winning players W ) if the set of NE in the system is
not empty, and returns “NO” otherwise. For E-Nash (A-Nash), EVE returns
“YES” if φ holds on some (all) NE of the system, and “NO” otherwise. EVE
also returns a witness for each “YES” instance as a synthesised strategy profile.

3 Case Studies

We now present two examples from the literature of distributed systems to show
the practical usage of EVE. Among other things, these two examples differ in
the way they are modelled as a concurrent game. While the first one is played
in an arena implicitly given by the specification of the players in the game (as

https://github.com/eve-mas/eve-parity
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done in [9]), the second one is played on a graph, e.g., as done in [1] with the use
of concurrent game structures. Both of these modelling approaches can be used
within our tool. We also use these two examples to evaluate EVE’s performance
in practice (and compare it against MCMAS and PRALINE) in Sect. 4.

Service

RM

RM RM

FE FE

gossip

query update

query update

Clients

Fig. 1. Gossip framework structure.

module RM1 controls s1
init
:: true ∼> s1’:=true;
update
:: s1 ∼> s1’:=false;
:: s1 ∼> s1’:=true;
:: !s1 and (!s2 or ... or !sn)

∼> s1’:=true;
goal
:: G F (!s1);

Fig. 2. SRML code modelling RM1.

Gossip Protocol. Gossip protocols mimic the way social networks disseminate
information and have been used to solve problems in many large-scale distributed
systems, such as peer-to-peer and cloud computing systems. Ladin et al. [14]
developed a framework to provide high availability services based on the gossip
approach first introduced in [4,22]. The main feature of this framework is the
use of replica managers (RMs) which exchange “gossip” messages periodically to
keep the data updated. The architecture of such an approach is shown in Fig. 1.

We model each RM as follows: (1) When in servicing mode, an RM can choose
either to keep in servicing mode or to switch to gossiping mode; (2) If it is in
gossiping mode and there is at least another RM also in gossiping mode2, since
the information during gossip exchange is of (small) bounded size, it goes back
to servicing mode in the subsequent step. The goal of each RM is to be able to
gossip infinitely often. As shown in Fig. 2, the module RM1 controls a variable: s1.
Its value being true signifies that RM1 is in servicing mode; otherwise in gossiping
mode. Behaviour (1) is reflected in the first and second update commands, while
behaviour (2) is reflected in the third update command. The goal of RM1 is
specified with the LTL formula GF ¬ s1, which expresses that RM1’s goal is to
gossip infinitely often: “always” (G) “eventually” (F) gossip (¬s1).

Observe that with all RMs rationally pursuing their goals, they will adopt
any strategy which induces a run where each RM can gossip (with at least
one other RM) infinitely often. This kind of game-like modelling gives rise to a
powerful characteristic: on all runs sustained by a NE, the distributed system
is guaranteed to have two crucial non-starvation/liveness properties; RMs can
gossip infinitely often and clients are served infinitely often. These properties are
verified in the experiments; E-Nash: no NE sustains “all RMs forever gossiping”;
and with A-Nash: in all NE at least one RM is in servicing mode infinitely often.
2 The core of the protocol involves (at least) pairwise interactions periodically.
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Replica Control Protocol. Consensus is a fundamental issue in distributed
computing and multi-agent systems. Gifford [6] used a quorum-based voting
protocol to ensure data consistency in an information system by not allowing
more than one processes in the system to read or write the same data item
concurrently. To do this, each copy of a replicated data item is assigned a vote.

Fig. 3. Gifford’s proto-
col modelled as a game.

We can model a (modified version of) Gifford’s pro-
tocol as a game as follows. The set of players N =
{1, . . . , n} in the game is arranged in a request queue
represented by a sequence of states q1, . . . , qn, where qi

means that player i is requesting to read/write the data
item. At state qi, other players in N\{i} can then vote
whether to allow player i to read/write. If the majority
of players in N vote “yes”, then the transition goes to
q0, i.e., player i is allowed to read/write, and otherwise
it goes to qi+1

3. The voting process then restarts from
q1. The protocol’s structure is shown in Fig. 3. Notice
that at the last state, qn, there is only one outgoing
arrow to q0. The goal of each player i is to visit q0 right after qi infinitely often,
so that the desired behaviour of the system is sustained on all NE of the sys-
tem: a data item is not accessed by two processes concurrently and the data
is updated in every round. The associated properties are verified in the experi-
ments in Sect. 4. With E-Nash: there is no Nash equilibrium in which the data
is never updated; with A-Nash: on all NE, each player is allowed to request to
read/write infinitely often. This example uses a (deterministic) module, called
“Environment”, modelling the underlying concurrent game structure, shown in
Fig. 3, where the game is played.

4 Experimental Evaluation and Conclusions

Experiments. In order to evaluate the practical preformance of our tool and
approach against MCMAS4 and PRALINE, we present results on the tempo-
ral equilibrium analysis for the examples in Sect. 3. We ran the tools on
the two examples with different numbers of players (“P”), states (“S”), and
edges (“E”). The experiments were obtained on a PC with Intel i5-4690S CPU
3.20 GHz machine with 8 GB of RAM running Linux kernel version 4.12.14-
300.fc26.x86 64. We report the running time5 for solving Non-Emptiness (“ν”),
E-Nash (“ε”), and A-Nash (“α”). For the last two problems, since there is no
direct support in PRALINE and MCMAS, we used the reduction of E/A-Nash

3 We assume arithmetic modulo (|N| + 1) in this example.
4 The tool to automatically convert EVE’s input (SRML code) into MCMAS’s input

(ISPL code) is available online from https://github.com/eve-mas/sevia.
5 To carry out a fairer comparison (since PRALINE accepts Büchi objectives), we added

to PRALINE’s running time, the time needed to convert LTL games into its input.
Translating parity games to PRALINE’s input is possible in our particular examples
since in those cases we can map the colours/priorities directly into Büchi condition.

https://github.com/eve-mas/sevia
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to Non-Emptiness presented in [5]. Time-out (“TO”) was fixed to be 7200
seconds (2 hours).

From the experiments we observe that, in general, EVE has the best perfor-
mance, followed by PRALINE and MCMAS. Although PRALINE performed better
than MCMAS, both struggled (timed-out) with inputs with more than 100 edges,
while EVE could handle up to about 6000 edges (for Non-Emptiness) (Tables 1
and 2).

Table 1. Gossip Protocol experiment results.

P S E EVE PRALINE MCMAS

ν (s) ε (s) α (s) ν (s) ε (s) α (s) ν (s) ε (s) α (s)

2 4 9 0.02 0.24 0.08 0.02 1.71 1.73 0.01 0.01 0.01

3 8 27 0.09 0.43 0.26 0.33 26.74 27.85 0.02 0.06 0.06

4 16 81 0.42 3.51 1.41 0.76 547.97 548.82 760.65 3257.56 3272.57

5 32 243 2.30 35.80 25.77 10.06 TO TO TO TO TO

6 64 729 16.63 633.68 336.42 255.02 TO TO TO TO TO

7 128 2187 203.05 TO TO 5156.48 TO TO TO TO TO

8 256 6561 4697.49 TO TO TO TO TO TO TO TO

Table 2. Replica control experiment results.

P S E EVE PRALINE MCMAS

ν (s) ε (s) α (s) ν (s) ε (s) α (s) ν (s) ε (s) α (s)

2 3 8 0.04 0.11 0.10 0.05 0.64 0.74 0.01 0.01 0.02

3 4 20 0.11 1.53 0.22 0.12 4.96 5.46 0.02 0.06 0.11

4 5 48 0.34 1.73 0.68 0.56 65.50 67.45 1.99 4.15 11.28

5 6 112 1.43 2.66 2.91 6.86 1546.90 1554.80 1728.73 6590.53 TO

6 7 256 5.87 13.69 16.03 94.39 TO TO TO TO TO

7 8 576 32.84 76.50 102.12 2159.88 TO TO TO TO TO

8 9 1280 166.60 485.99 746.55 TO TO TO TO TO TO

Conclusion. We have presented EVE, a tool to analyse temporal equilibrium
properties in concurrent games modelling multi-agent systems. Although there
are other tools to compute pure NE (e.g., PRALINE and MCMAS), they work
in different settings. Moreover, while EVE uses a richer (bisimulation-invariant)
model of strategies, it still performed better than the other two tools. In addi-
tion, this model of strategies is amenable to the use of powerful techniques
for symbolic reasoning and model minimisation. Another important feature is
that, in addition to Non-Emptiness, EVE has direct support for other problems
in the rational verification framework [8,9,21], namely E-Nash and A-Nash.
These two problems can be considered as counterparts to model checking in
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game-theoretic settings, making them very relevant in the analysis of multi-
agent systems. We foresee many avenues for further work: games with imperfect
information [12], quantitative payoffs [11], or branching-time goals [10,19].
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