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1 Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
Jean.Lieber@loria.fr

2 IRIT, University of Toulouse, Toulouse, France
3 QCIS, University of Technology, Sydney, Australia

Abstract. Case-based reasoning usually exploits source cases (consist-
ing of a source problem and its solution) individually, on the basis of the
similarity between the target problem and a particular source problem.
This corresponds to approximation. Then the solution of the source case
has to be adapted to the target. We advocate in this paper that it is also
worthwhile to consider source cases by two, or by three. Handling cases by
two allows for a form of interpolation, when the target problem is between
two similar source problems. When cases come by three, it offers a basis
for extrapolation. Namely the solution of the target problem is obtained,
when possible, as the fourth term of an analogical proportion linking the
three source cases with the target, where the analogical proportion han-
dles both similarity and dissimilarity between cases. Experiments show
that interpolation and extrapolation techniques are of interest for reusing
cases, either in an independent or in a combined way.
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1 Introduction

Case-based reasoning (CBR) [18] aims at solving a new problem—the target
problem—thanks to a set of cases (the case base), where a case is a pair consist-
ing of a problem and a solution of this problem. A source case is a case from the
case base, consisting of a source problem and one of its solutions. The classical
approach to CBR consists in (i) selecting source cases similar to the target prob-
lem and (ii) adapting them to solve it. In such a view, the target and the source
are compared in terms of similarity, which is a (two-valued or gradual) binary
relation, while information about the way they differ is not really considered in
general.

In this paper, in addition to the binary relation of similarity (which is the
basis of approximation), two other relations are considered: the betweenness and
the analogical proportion, which in a way or another leave room to dissimilarity.
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Betweenness is a ternary relation stating that an object is “between” two
other objects. It is used as an interpolation principle: if the target problem is
between two source problems then it is plausible that a solution of it is between
the solutions of these source problems. In a graded setting, this suggests that if
the target problem is closer to one of two source problems, its solution should be
closer as well to the solution to the corresponding source problem. In the Boolean
setting, betweenness view may lead to several potential solutions, except if the
solutions of the two source problems coincide.

Analogical proportion is a quaternary relation: four objects a, b, c and d are
in analogical proportion if “a is to b as c is to d”. A logical modeling of it [14,16]
has pointed out that it expresses that “a differs from b as c differs from d (and
vice-versa)”, and that“what a and c have in common, b and d have it also”.
Thus, analogical proportion is a matter of both dissimilarity and similarity. The
fact that we are no longer considering similarity only, enables us to escape the
strict vicinity of known cases, and to perform a form of adaptation for free.
More precisely, in a CBR perspective, we use it as an extrapolation principle:
if the target problem and three source problems are in analogical proportion,
the solutions of these four problems are (likely to be) in analogical proportion as
well. Such an analogical jump enables us to extrapolate the solution of the target
problem from the solutions of three distinct source problems. An illustration of
this is given in [2] where in three distinct situations the recommended actions
are respectively to (i) serve tea without milk without sugar, (ii) serve tea with
milk without sugar, (iii) serve tea without milk with sugar, while in a fourth
situation that makes an analogical proportion with the three others, the action
to do would be (iv) “serve tea with milk with sugar”.

The approach described in this paper combines the use of closeness, between-
ness and analogical proportion for a knowledge-light approach to CBR. In fact,
the only source of knowledge used in the inference lies in the case base: there is
no domain knowledge nor adaptation knowledge and the similarity is based on
some distance function.

Section 2 introduces the notions and notations used throughout the paper
and the assumptions it is based on. Section 3 describes the approach for applying
approximation, interpolation and extrapolation to CBR. Section 4 provides an
evaluation in a Boolean setting. Section 5 presents a discussion and a comparison
with related work, while Sect. 6 points out lines for future research.

2 Definitions, Notations and Assumptions

In this section, definitions are presented in a Boolean setting (objects are tuples
of Boolean values).

2.1 Boolean Setting

Let B = {0, 1} be the set of Boolean values. The Boolean operators are denoted
by the connector symbols of propositional logic: for a, b ∈ B, ¬a = 1 − a,
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a ∧ b = min(a, b), a ∨ b = max(a, b), a ⊕ b = |b − a| (⊕ is the exclusive or)
and a ≡ b = ¬(a ⊕ b).

Let p be a positive integer. In the examples, an element of Bp is noted without
parentheses and commas: (0, 1, 0, 0, 1) is simply noted by 01001. The Hamming
distance H on B

p is defined by H(a, b) =
∑p

i=1 |bi−ai|. For example, with p = 5,
H(01001, 11011) = 2.

2.2 CBR

CBR aims at solving the target problem with the help of the case base. It
consists most of the time (1) in selecting relevant source cases (retrieval), (2) in
reusing these source cases in order to solve the target problem (adaptation). The
other classical steps of CBR are not considered in this paper: they concern the
validation-repair of the newly formed case and its potential adding to the case
base.

Let P and S be two sets called the universe of problems and the universe
of solutions: a problem x (resp., a solution y) is by definition an element of P
(resp., of S). Here, P = B

m, where m ≥ 1 is a constant. Similarly, S = B
n,

n ≥ 1. A binary relation on P × S denoted by � and read “has for solution”
is assumed to exist. Thus, “y solves x” is denoted by x � y. A case is a pair
(x, y) ∈ P × S such that x � y. The case base CB is a finite set of cases. A
source case is an element of CB. The target problem is the problem to be solved.
Note that � is usually not completely known to the CBR system: such a system
provides plausible solutions to problems, on the basis of what is known of �
from the case base.

In some situations, it is assumed that � is functional. This assumption means
that there exists a function f : P → S such that x � y iff y = f(x), for any
x ∈ P and y ∈ S.

2.3 Betweenness

Let U be a set whose elements are represented by numerical features (including
Boolean features). Let a, b, c ∈ U ; a is between b and c, denoted by b−−−a−−−c, if
for every feature i, ((bi ≤ ai ≤ ci) or (ci ≤ ai ≤ bi)).1 Let Between(b, c) = {a ∈
U | b−−−a−−−c}, for b, c ∈ U . For example, in U = B

5, Between(01001, 11011) =
{01001, 11001, 01011, 11011}. For a logical view on betweenness, we refer to [22].

2.4 Analogical Proportion

Let U be a set. An analogical proportion on U is a quaternary relation between
four elements a, b, c and d of U , read “a is to b as c is to d” and denoted by
a:b::c:d, having the following properties (see, e.g. [16]), for any a, b, c, d ∈ U :

1 When these values are Boolean, this can also be written (bi ∧ ci ⇒ ai) ∧ (ai ⇒
bi ∨ ci) = 1.
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reflexivity a:b::a:b,
symmetry if a:b::c:d then c:d::a:b,
central permutation if a:b::c:d then a:c::b:d.

In the Boolean setting, the analogical proportion considered is defined on B

by
a:b::c:d if (a ∧ ¬b ≡ c ∧ ¬d) ∧ (¬a ∧ b ≡ ¬c ∧ d) = 1

that can be read “a differs from b as c differs from d” and “b differs from a as
d differs from c”. This can also be rewritten b − a = d − c, but mind that these
differences belong to {−1, 0, 1} (− is not an operation that is closed in B). Thus,
the patterns abcd such that a:b::c:d are 0000, 1111, 0011, 1100, 0101 and 1010.

This analogical proportion can be extended on U = B
p by

a:b::c:d if ai:bi::ci:di for each i ∈ [1, p]

Given a, b, c ∈ U , solving the analogical equation a:b::c:y aims at finding the
y ∈ U satisfying this relation. It may have no solution, e.g., when a = 0, b = 1
and c = 1. The equation a:b::c:y in B has a solution iff (a ≡ b) ∨ (a ≡ c) = 1
and, when this is the case, the solution is unique: y = c ≡ (a ≡ b).

3 Reusing Cases by Approximation, Interpolation and
Extrapolation

This section describes the three mentioned approaches: approximation, interpo-
lation and extrapolation. For an integer k ≥ 1, case retrieval can be done by
considering ordered sets of k source cases. This principle is detailed in Sect. 3.2
and applied in Sects. 3.3, 3.4 and 3.5 respectively for k = 1, 2, and 3. The com-
bination of these three approaches is discussed in Sect. 3.6. Let us start with an
example.

3.1 A Basic Example

In order to support the intuition, we consider the following example where a
suitable dish type (described via 3 two-valued attributes, i.e., S = B

3) has to be
suggested to an individual (described via 8 two-valued attributes, i.e., P = B

8).
The 8 attributes representing an individual x have the following semantics: x1: x
suffers from gout, x2: x has diabetes, x3: x is allergic to nuts, x4: x does not eat
mammal meat (beef, pork, etc.), x5: x needs to have a regular calcium supple-
ment, x6: x needs to have a regular iron supplement, x7: x likes vegetables, and
x8: x does not like dairy products. A dish type y is represented via 3 attributes:
y1: y is a dish with sauce, y2: y is based on starchy food (e.g., a pasta dish),
y3: y is a dish with fish. x � y can be read as: y is a suitable dish type for x.
For a healthy individual 00010010 (with no specific requirement), all dishes are
suitable. Therefore, � is not functional in this application, as several types of
dishes might be suitable for the same individual. The 3 approaches of case reuse
developed in this paper can be applied to this application as follows (where yj

is a suitable class of dish for xj):
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Approximation: If an individual xtgt is not far from x1, it is plausible that a
suitable dish for xtgt will not be far from a suitable dish y1 for x1.

Interpolation: If an individual xtgt is between x1 and x2; it is plausible that a
suitable dish for xtgt will be between a suitable dish y1for x1 and a suitable
dish y2 for x2.

Extrapolation: If an individual xtgt is as similar to x3 as x2 is similar to x1,
it is plausible that a suitable dish for xtgt will be as similar to y3 as y2 is
similar to y1.

3.2 General Principle

Let k ∈ {1, 2, 3}: the approach presented here covers approximation (k = 1),
interpolation (k = 2) and extrapolation (k = 3). Two (k + 1)-ary relations
are considered: RelP on P and RelS on S. Ideally, it would be assumed that
these relations have the following properties, for (x1, . . . , xk, xk+1) ∈ Pk+1 and
(y1, . . . , yk, yk+1) ∈ Sk+1, with the hypothesis that ∀j ∈ [1; k + 1], xj � yj :

if RelP
(
x1, . . . , xk, xk+1

)
then RelS

(
y1, . . . , yk, yk+1

)

However, this assumption is usually too strong: since the relation � is only par-
tially known to the CBR system, it seems odd to have such a certain relationship
about � given by the pair (RelP , RelS). So, only the following relaxed form of
this property is assumed:

if RelP
(
x1, . . . , xk, xk+1

)
and xj � yj for j ∈ [1; k + 1]

then it is plausible that RelS
(
y1, . . . , yk, yk+1

)
(1)

This property (1) can be used for CBR. Let xtgt be the target problem. A
candidate is an ordered set of k cases ((x1, y1), . . . , (xk, yk)) ∈ CBk such that
RelP(x1, . . . , xk, xtgt). Based on this notion, the following CBR steps can be
specified:

retrieval: The set of candidates is computed.
adaptation: For a candidate ((x1, y1), . . . , (xk, yk)), it is plausible that the solu-

tion ytgt of xtgt satisfies RelS(y1, . . . , yk, ytgt).

Let Candidates be the set of candidates. When Candidates = ∅, the app-
roach fails. Let potentialSols be the multiset of y ∈ S such that (x, y) ∈
Candidates. When there are several distinct solutions in this multiset, there
is a need for a function to integrate these solutions into one. Let integrate :
potentialSols �→ y ∈ S be such a function. The nature of this function can be
different, depending on the solution space. When S = B (or, more generally, a
set of low cardinality) then integrate can be a simple vote. When S = B

n, the
integration could be a component by component vote, for example:

integrate({{001, 001, 010, 111, 111}}) = 011

(with an arbitrary choice in case of ties).
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3.3 Reusing Cases by Singletons: Approximation

When k = 1, candidates are singletons and source cases are considered individu-
ally in relation to the target problem. Usually RelP and RelS binary relations are
related to the notion of similarity and denoted x1  x2 and y1  y2. When a dis-
tance dist is available on the universe,  is defined as a  b iff dist(a, b) ≤ τdist
where τdist > 0 is a fixed threshold. Applying the general principle (1) leads to:

if x1  x2 and xj � yj for j ∈ {1, 2}
then it is plausible that y1  y2

i.e., similar problems have similar solutions, a principle often emphasized in CBR
(see e.g., [9]).

Fig. 1. The approximation method.

Back to our initial example, let us consider 2 individuals with close profiles
(in terms of Hamming distance), e.g., x1 = 00010010 and x2 = 00010011. In
that example, H(x1, x2) = 1 (x2 does not like dairy product), and a dish type
y2 = 011 without sauce, at distance 1 of y1 = 111 (a dish type suitable for x1)
will be suitable for x2.

Figure 1 summarizes the approximation method with an algorithm.

3.4 Reusing Cases by Pairs: Interpolation

When k = 2, candidates are pairs, relations RelP and RelS are betweenness on
P and on S. The general principle (1) applied here leads to:

if x1−−−x3−−−x2 and xj � yj for j ∈ {1, 2, 3}
then it is plausible that y1−−−y3−−−y2

Applied to CBR, a retrieved pair {(x1, y1), (x2, y2)} ∈ Candidates is such that
x1−−−xtgt−−−x2 and then adaptation takes advantage of the inferred information
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y1−−−ytgt−−−y2. A way to get a unique solution is to have y1 = y2, which entails
ytgt = y1 as a candidate solution for xtgt. If Candidates = ∅, the equality
y1 = y2 can be relaxed in dist(y1, y2) ≤ τdist (where dist is here a distance
function on S). In that case, uniqueness of ytgt is not guaranteed anymore.
By contrast, if Candidates is considered to be too large, it can be restricted
by allowing only the pairs {(x1, y1), (x2, y2)} such that dist(x1, x2) ≤ τbetween,
where τbetween > 0 is a given threshold.

Fig. 2. The interpolation method (for the situation in which the solutions of the
retrieved cases are equal).

Back to our initial example, let xtgt = 11010010, (x1, y1) = (01110010, 001),
and (x2, y2) = (10010010, 001) (i.e. H(x1, x2) = 3): xtgt, x1 and x2 differ only in
the fact that the chosen individuals have/do not have gout/diabetes/allergy to
nuts. y1 = y2 = 001 is the solution “dish without sauce, not based on starchy
food, with fish”. Since x1−−−xtgt−−−x2, a solution is ytgt ∈ Between(y1, y2) = {y1},
i.e., ytgt = y1 = y2.

Figure 2 summarizes the interpolation method in an algorithm.

3.5 Reusing Cases by Triples: Extrapolation

When k = 3, candidates are triples. RelP and RelS are analogical proportions
on P and on S. The property (1) applied here leads to:

if x1:x2::x3:x4 and xj � yj for j ∈ {1, 2, 3, 4}
then it is plausible that y1:y2::y3:y4

Applied to CBR, an element of Candidates is a triple ((x1, y1), (x2, y2), (x3, y3))
of source cases such that (i) x1:x2::x3:xtgt and (ii) the equation y1:y2::y3:y has
a solution. Such a solution, unique in the Boolean setting, is considered as a
plausible solution of xtgt.
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Fig. 3. The extrapolation method (in 2 versions: a simple one (a) and a more efficient
one (b)).
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Back to our example where we are searching for a suitable dish type ytgt for
an individual xtgt:

x1 = 00001011 y1 = 010
x2 = 00100010 y2 = 110
x3 = 10001011 y3 = 001
xtgt = 10100010 ytgt = ???

The relation x1:x2::x3:xtgt holds, and the equation y1:y2::y3:y has a unique solu-
tion ytgt = 101. Our principle tells us that ytgt = 101 is a suitable option for
xtgt. If we consider the intended meaning of the parameters, xtgt has gout, no
diabetes, is allergic to nut, is not refractory to meat, has no need for calcium
nor iron supplement, likes vegs and dairy. The dish type ytgt = 101 describing
fish with sauce and no starchy food is suitable for this type of individual.

Figure 3(a) summarizes the extrapolation method in an algorithm and
Fig. 3(b) presents a more efficient method described further.

3.6 Combining These Approaches

Now, we have three methods, approximation, interpolation and extrapolation,
to solve a problem. These methods are plausible and incomplete: for a target
problem xtgt, each of them may fail either by providing an incorrect solution
or by not providing any solution at all. A complete discussion of the options
for combining these methods is out of the scope of this paper and constitutes
a future work. However, this section discusses some ideas about the design of a
good combination method.

Fig. 4. The combination method based on a preference relation on the set of methods
{approximation, interpolation, extrapolation}.

A simple way to combine these methods is to use a preference relation
between them: if the preferred method provides a solution, this is the solu-
tion returned, else the second preferred method is tried, and so on (this simple
combination method is summarized in Fig. 4). This makes sense since a method
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may provide results unfrequently but with high plausibility and should be tried
before a method providing frequent results with lower plausibility.

Now, given the three methods, how can such a preference relation be cho-
sen? For this purpose, an analysis of the case base may help. In particular, for
the extrapolation method, it has been shown that the functions f such that
x1:x2::x3:x4 entails f(x1):f(x2)::f(x3):f(x4) for each (x1, x2, x3, x4) ∈ P4 are the
affine functions [6].2 Thus, if � is functional (� = f) and f is affine, then the
extrapolation method never gives an incorrect solution. If f is closed to an affine
function, then this method gives good results (and should be highly ranked in
the preference relation). A measure of closeness to affinity is the BLR test [3]
that can be run on the case base.

Another approach to method combination consists in having a preference
between methods depending on the target problem. For this purpose, an idea is
to associate to the output of each method a score that is relative to the confidence
of the method wrt its output: the preferred method is the one with the higher
score. For example, the approximation method would have a high confidence if
many source cases support the returned solution and few ones go against it. A
similar principle can be applied for interpolation and extrapolation.

4 Evaluation

The objective of the evaluation is to study the behaviour of the three approaches,
on various types of Boolean functions, in order to determinate which approach
is the best and in which circumstancies. First experimental results are presented
and a combination method based on the preference relation is proposed according
to these results.

4.1 Experiment Setting

In the experiment, P = B
8 and S = B

3, as in the running example. � is assumed
to be functional: � = f.

The function f is randomly generated using the following generators that are
based on the three main normal forms, with the purpose of having various types
of functions:

CNF f is generated in a conjunctive normal form, i.e., f(x) is a conjunction of nconj

disjunctions of literals, for example f(x) = (x1 ∨ ¬x7) ∧ (¬x3 ∨ x7 ∨ x8) ∧ x4.
The value of nconj is randomly chosen uniformly in {3, 4, 5}. Each disjunction
is generated on the basis of two parameters, p+ > 0 and p− > 0, with
p+ + p− < 1: each variable xi occurs in the disjunct in a positive (resp.
negative) literal with a probability p+ (resp., p−). In the experiment, the
values p+ = p− = 0.1 were chosen.

2 An affine function f : B
m → B has the form f(x) = xi1 ⊕ . . . ⊕ xiq ⊕ c where

{i1, . . . , iq} is a subset of [1,m] and c ∈ {0, 1}. An affine function f : Bm → B
n is of

the form f(x) = (f1(x), . . . , fn(x)) where fj : Bm → B is an affine function.
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DNF f is generated in a disjunctive normal form, i.e., it has the same form as for
CNF except that the connectors ∧ and ∨ are exchanged. The parameters ndisj,
p+ and p− are set in the same way.

Pol is the same as DNF, except that the disjunctions (∨) are replaced with exclu-
sive or’s (⊕), thus giving a polynomial normal form. The only different param-
eter is p− = 0 (only positive literals occur in the polynomial normal form).

The case base CB is generated randomly, with the values for its size: |CB| ∈
{16, 32, 64, 96, 128}, i.e. |CB| is between 1

16 and 1
2 of |P| = 28 = 256. Each source

case (x, y) is generated as follows: x is randomly chosen in P with a uniform
distribution and y = f(x).

Each method may lead to several solutions. Let Y be the multiset of these
solutions. The function integrate introduced at the end of Sect. 3.2 aims at
associating to Y a unique element y ∈ S. Here, integrate consists in making a
vote on each component: yi = argmaxyi∈Yi

multiplicity(yi, Yi), where Yi is the
multiset of the yi for y ∈ Y.

Let ntp be the number of target problems posed to the system, na be the
number of (correct or incorrect) answers (ntp − na is the number of target
problems for which the system fails to propose a solution), and sscapa be the
sum of the similarities between the correct answer (according to the generated
function f) and the predicted answer, where the similarity between two solutions
y1 and y2 is computed by 1 − H(y1, y2)/n (with n = 3 since S = B

n = B
3). For

each method, the following scores are computed:

The precision prec is the average of the ratios
sscapa

na
.

The correct answer rate car is the average of the ratios
sscapa

ntp
.

The average is computed on 1 million problem solving for each function genera-
tor, requiring the generation of 1060 f for each of them. The average computing
time of a CBR session (retrieval and adaptation for solving one problem) is about
0.8ms (for k = 1), 19ms (for k = 2) and 2ms (for k = 3) on an current standard
laptob.

The parameters for each method has been chosen as follows, after preliminary
tests based on precision:

approximation: τdist = 1 on P;
interpolation: τdist = 0 on S (i.e., y1 = y2), τbetween = 2;
extrapolation: All the triples in analogy with xtgt are considered.
combination: The chosen preference method is: interpolation preferred to

approximation preferred to extrapolation for CNF and DNF, and extrapolation
preferred to interpolation preferred to approximation for Pol.

For the sake of reproducibility, the code for this experiment is available
at https://tinyurl.com/CBRTests, with the detailed results (generated functions
and details of the evaluation).

https://tinyurl.com/CBRTests
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A Note About Implementation. A naive algorithm for implementing each k ∈
{1, 2, 3} method is in O(|CB|k) (cf. Figs. 1, 2 and 3(a)). However, this complexity
can be reduced for interpolation to search Candidates by iterating only on pairs
of cases ((x1, y1), (x2, y2)) ∈ CB2 such that H(x1, x2) ≤ τdist. For extrapolation,
the complexity can be separated in an offline and on online part (cf. Fig. 3(b)).
The offline part is in O(|CB|2) and generates a hashtable structure over keys
representing the differences between x1 and x2 (considered as vectors in R

m). For
example, key(01001, 11010) = (−1, 0, 0,−1, 0). The online part is in O(|CB|2) in
the worst case (and frequently closer to O(|CB|))3 and searches all the (x, y) ∈ CB
such that key(x, xtgt) = key(x1, x2), which is equivalent to x1:x2::x:xtgt.

4.2 Results

Figure 5 pictures the detailed results given in Table 1.

Fig. 5. Precision and correct answer rate function of the case base size for the three
generators, for each method (k = 1, k = 2, k = 3 and “combine”, i.e. combination of
the three other methods).

The result precisions shows that, for CNF and DNF, interpolation gives better
results than approximation and extrapolation, and also that approximation gives
better results than extrapolation. However, when examining the results wrt the
correct answer rate, interpolation has a low performance, especially when the

3 The number of iterations in the for loop is |CB| − 1. In each iteration, the set
access(key, key table) contains at most (|CB| − 1) elements, though in practice,
this set contains in general a much smaller number of elements. So, the number
of O(1) operations of this online procedure in the worst case is not more than
(|CB| − 1) × (|CB| − 1), hence a complexity in O(|CB|2).
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Table 1. prec and car for k ∈ {1, 2, 3} and combine (c.) for the different generators.

|CB| = 16 |CB| = 32 |CB| = 64 |CB| = 96 |CB| = 128

k = 1 2 3 c. 1 2 3 c. 1 2 3 c. 1 2 3 c. 1 2 3 c.

CNF prec .87 .97 .80 .84 .88 .97 .81 .85 .90 .96 .84 .89 .93 .96 .86 .92 .95 .96 .88 .94

car .36 .04 .31 .49 .58 .15 .63 .75 .81 .42 .81 .88 .90 .67 .86 .92 .94 .83 .88 .94

DNF prec .87 .97 .80 .84 .88 .97 .81 .85 .90 .96 .84 .89 .93 .96 .87 .92 .95 .96 .88 .94

car .36 .04 .31 .49 .58 .15 .63 .75 .81 .43 .81 .88 .90 .67 .86 .92 .94 .83 .88 .94

POL prec .61 .72 .75 .67 .62 .72 .75 .70 .63 .71 .77 .75 .66 .71 .79 .78 .68 .70 .81 .80

car .25 .01 .18 .34 .41 .04 .44 .57 .57 .14 .66 .73 .64 .27 .75 .78 .68 .40 .79 .80

case base is small (|CB| ∈ {16, 32}), due to the difficulty to find two candidates
for the betweenness relations.

The results are different for Pol, for which, extrapolation provides better
results. This result can be explained by the functions that have been gener-
ated which are close to affine functions, affine functions for which extrapolation
always returns a correct answer [6]. For DNF, the second best approach wrt pre-
cision is approximation. One more time, the weakness of the two best methods
(extrapolation and interpolation) is their low correct answer rates, and it must
be noted that, in all situations, approximation provides a better car, especially
when the case base is small.

Finally, combining the three approaches by preference ordering (interpola-
tion, then approximation and then extrapolation for DNF and CNF, and extrapo-
lation, then approximation and then interpolation for Pol) improves the results
provided using only approximation, as expected.

The elaboration of a better combination method constitutes a future work.
However, some elements relative to this issue are discussed here. A simple yet
promising approach would be to estimate the average precision—and hence,
the preference relation—on the basis of the case base, using a leave-one out
approach: for each case (x, y) ∈ CB, the three methods are run with the target
problem xtgt = x and the case base CB \ {(x, y)}, and the results given by the
three methods are compared with the known solution ytgt = y, which enables
us to compute the average precision for each method.

Another issue to be studied carefully is whether it is worth searching for a
good combination method. Indeed, if all the methods are strongly correlated,
their combination would not give much improvement. For this purpose, a pre-
liminary test has been carried out that computes the covariance of the events
“incorrect answer for method k” and “incorrect answer for method �”, with
k, � ∈ {1, 2, 3} and k �= �: covk� = Pk�−PkP� where Pk� estimates the probability
that the methods k and � provide an incorrect answer, given that they both pro-
vide an answer, Pk estimates the probability that the method k provides incor-
rect answers, given that it provides an answer, and P� is defined similarly. The
results on the generated data are: cov12 = cov21  0.90, cov23 = cov32  0.41,
and cov13 = cov31  0.27. This can be interpreted as follows. The high correla-
tion between approximation and interpolation is mainly due to the tight bounds
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used in the experiments for interpolation. By contrast, extrapolation is much
less correlated with the other methods. This suggests the complementarity of
extrapolation, hence the worthiness of studying with more depth the combina-
tion issue.

5 Discussion and Related Work

An important issue raised in this paper is that the reuse of multiple cases (k ≥ 2)
does not necessarily rely on similarity (or not only): in the general situation, it
relies on two (k + 1)-ary relations on P and S, that may be non reducible to
binary similarity relations. These relations structure the problem and solution
spaces. Similar issues are addressed in other works of the CBR literature. For
example, (simple or multiple) reuse may have profit of adaptation hierarchies on
P and S [1,5,23]. Another example of relation used for multiple case retrieval
and adaptation is the use of diversity : the retrieved cases should be diverse in
order to better contribute to the solving of the target problem [13]. The main
originality of this work is the use for CBR of betweenness and analogical pro-
portion, two domain-independent relations that can be implemented in many
formalisms (though it has been considered only in the Boolean setting here),
e.g. on strings [12], and that enables to apply to CBR the principles of interpo-
lation and extrapolation, in addition to the already frequently used principle of
approximation.

The extrapolation approach based on analogical reasoning can be connected
to the work of adaptation knowledge learning (AKL) in CBR, as explained here-
after. Most approaches to AKL consist in learning adaptation rules using as
training set a set of source case pairs ((xi, yi), (xj , yj)) [7,8,10]. A similar idea
consists in considering one of such pairs as an adaptation case [11,15]. With
(x1, y1) a retrieved case, it can be adapted to solve xtgt if the difference from
x1 to xtgt equals the difference from xi to xj , which can be formalized using
analogical proportion by xi:xj ::x1:xtgt. Then, the adaptation consists in apply-
ing on y1 the difference from yi to yj , which amounts to solving the equation
yi:yj ::y1:y. Therefore, one contribution of this work is the formalization of case-
based adaptation in terms of analogical proportions on the problem and solution
spaces.

The idea of applying analogical inference based on analogical proportions in
CBR has been first advocated and outlined recently [17], based on the fact that
such an approach has given good quality results in classification [4] in machine
learning on real datasets. Interestingly enough, analogical proportions can be
always found in such datasets, and the results obtained can be favorably com-
pared to those yielded by nearest neighbor methods. The ideas of interpolative
and extrapolative reasoning can be found in the setting of conceptual spaces
furnished with qualitative knowledge [20] with an illustration in [19]. Similar
ideas have been applied to the completion of bases made of if-then rules in rela-
tion with the idea of analogical proportion [22] and to the interpolation between
default rules [21]. However, none of these papers mentions a CBR perspective.
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6 Conclusion

Classical CBR exploits each known case individually, on the basis of its simi-
larity with the target problem. In this paper, we have proposed to extend this
paradigm by taking advantage of betweenness and analogical proportion rela-
tions for linking the current situation to pairs and triples of known cases. By
doing that, we are no longer just proposing the known solution of a case problem
as an approximate solution to the current problem, but we are also taking advan-
tage of interpolation and extrapolation ideas that are respectively embedded in
betweenness and analogical proportion relations.

We have also provided a first experimental study that shows the precision and
the correct answer rate of the approximation, interpolation, and extrapolation
approaches on various types of functions. Each approach has its own merits.
Approximation is simple and is often very efficient. Interpolation provides the
most precise results, but may fail to give an answer. Extrapolation is superior to
the two other methods when the underlying function is affine or close to be, i.e.,
exhibits a form of simplicity. Moreover, the results of extrapolation are not much
correlated with the results of the two other methods. Experiments also show that
combining the approaches may be beneficial. Clearly, one should investigate less
straightforward ways for combining the approaches. More experiments would
be also of interest for varying more the parameters and for dealing with non
functional dependencies between problems and solutions. Experiments have been
made on a variety of artificial datasets, showing that the present implementation
of extrapolation is especially of interest for datasets close to obey to an affine
Boolean function, studying if another form of extrapolation would do better, or
if such datasets are often encountered in practice, is a matter of further work.

There are still two other perspectives worth of consideration. First, it would
be of interest to see how incorporating domain/retrieval/adaptation knowledge
in the process. Lastly, relations RelP and RelS have been defined here on B

p,
but allowing for gradual relations and for nominal and numerical features in the
description of problems and solutions would be an important improvement. Such
a latter development should be feasible since extensions of analogical proportions
have been satisfactorily experienced in classification for handling nominal and
numerical features [4], and the idea of betweenness seems as well to be susceptible
of natural extensions to these situations.
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