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Abstract. Human Activity Recognition (HAR) is typically modelled as
a classification task where sensor data associated with activity labels are
used to train a classifier to recognise future occurrences of these activi-
ties. An important consideration when training HAR models is whether
to use training data from a general population (subject-independent), or
personalised training data from the target user (subject-dependent). Pre-
vious evaluations have shown personalised training to be more accurate
because of the ability of resulting models to better capture individual
users’ activity patterns. From a practical perspective however, collecting
sufficient training data from end users may not be feasible. This has made
using subject-independent training far more common in real-world HAR
systems. In this paper, we introduce a novel approach to personalised
HAR using a neural network architecture called a matching network.
Matching networks perform nearest-neighbour classification by reusing
the class label of the most similar instances in a provided support set,
which makes them very relevant to case-based reasoning. A key advan-
tage of matching networks is that they use metric learning to produce
feature embeddings or representations that maximise classification accu-
racy, given a chosen similarity metric. Evaluations show our approach
to substantially out perform general subject-independent models by at
least 6% macro-averaged F1 score.

1 Introduction

Human Activity Recognition (HAR) is the computational discovery of human
activity from sensor data and is increasingly being adopted in health, secu-
rity, entertainment and defense applications [10]. An example of the applica-
tion of HAR in healthcare is SelfBACK1, a system designed to improve self-
management of low back pain (LBP) by monitoring users’ physical activity levels
in order to provide advice and guidance on how best to adhere to recommended
1 This work was fully sponsored by the collaborative project SelfBACK under con-

tract with the European Commission (# 689043) in the Horizon2020 framework.
Details of this project are available at: http://www.selfback.eu.
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physical activity guidelines [2]. Guidelines for LBP recommend that patients
should not be sedentary for long periods of time and should maintain moderate
levels of physical activity. The SelfBACK system uses a wrist-worn sensor to
continuously recognise user activities in real time. This allows the system to
compare the user’s activity profile to the recommended guidelines for physical
activity and produce feedback to inform the user on how well they are adher-
ing to these guidelines. Other information in the user’s activity profile include
the durations of activities and, for walking, the counts of steps taken, as well
as intensity e.g. slow, normal or fast. The categorisation of walking into slow,
normal and fast allows us to better match the activity intensity (i.e. low, mod-
erate or high) recommended in the guidelines. HAR is typically modelled as a
classification task where sensor data associated with activity labels are used to
train a classifier to predict future occurrences of those activities.

An important consideration for HAR is classifier training, where training
examples can either be acquired from a general population (subject-independent),
or from the target user of the system (subject-dependent). Previous works have
shown using subject-dependent data to result in superior performance [5,7,19,
21]. The relatively poorer performance of subject-independent models can be
attributed to variations in activity patterns, gait or posture between different indi-
viduals [12]. However, training a classifier exclusively with user provided data is
not practical in a real-world configuration as this places significant burden on the
user to provide sufficient amounts of training data required to build a personalised
model.

In this paper, we introduce an approach to personalised HAR using matching
networks. Matching Networks are a type of neural network architecture intro-
duced for the task of one-shot learning [22] which is a scenario where an algorithm
is trained to recognise a new class from just a few examples of that class. Given
a (typically small) support set of labelled examples, matching networks are able
to classify an unlabelled example by reusing the class labels of the most simi-
lar examples in the support set. To apply matching networks for personalised
HAR, we require the user to provide a small number of examples for each type
of activity. Note that this is no different to the calibration approach which is
commonly employed in gesture control devices and is already in use in the Nike
+ iPod fitness device [12]. The examples provided by the user are treated as
the support set used by the matching network to classify future occurrences of
the user’s activities. In this way, the matching network generates a personalised
classifier that is better able to recognise the individual user’s activity pattern.

An advantage of matching networks is that they use metric learning in order
to produce feature embeddings or representations that maximise nearest neigh-
bour classification accuracy.

At the same time, because classification is only conditioned on the support
set, matching networks behave like non-parametric models and can reason with
any set of examples that are provided at runtime, without the need for retraining
the network. This makes our system able to continuously adapt to changes in
the user’s context easily which is an important goal of CBR.
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The rest of this paper is organised as follows: in Sect. 2, we discuss important
related work on personalised HAR and highlight the importance of CBR and
k-nearest neighbour in particular for personalisation. Section 3 presents tech-
nical details of the steps for training a HAR classifier. In Sect. 4, we formally
introduce matching networks and in Sect. 5 we present how we apply this to the
task of personalised HAR. A description of our dataset is presented in Sect. 6,
evaluations are presented in Sect. 7 and conclusions follow in Sect. 8.

2 Related Work

The standard approach to classifier training for HAR involves using subject-
independent examples to create a general classification model. However, com-
parative evaluation with personalised models, trained using subject-dependent
examples, show this to produce more accurate predictions [5,7,21]. In [21], a
general model and a personalised model both trained using a C4.5 decision
tree classifier are compared. The general model produced an accuracy of 56.3%
while the personalised model produced an accuracy of 94.6%, an increase of
39.3%. Similarly, [5,7] reported increases of 19.0% and 9.7% between personalised
and general models respectively which are trained using the same classification
algorithm. A more recent improvement on standard subject-dependent training
which uses online multi-task (OMT) learning is presented in [20]. Here, individual
users are treated as separate tasks where each task only contains the respective
user’s data. Personalised classifiers for each task are then trained jointly which
allows the models to influence one-another, thereby improving accuracy. Evalu-
ation shows OMT to perform better than personalised models trained indepen-
dently. A common disadvantage of all subject-dependent approaches is that they
require access to significant amounts of good quality end-user data for training.
Such approaches have limited practical use for real-world applications because
of the burden they place on users to provide sufficient training data.

An alternative solution is to bootstrap a general model with a small set of
examples acquired from the user through semi-supervised learning approaches.
Different types of semi-supervised learning approaches have been explored for
personalised HAR e.g. self-learning, co-learning and active learning, which boot-
strap a general model with examples acquired from the user [12]. Both self-
learning and co-learning attempt to infer accurate activity labels for unlabelled
examples without querying the user. This way, both approaches manage to avoid
placing any labelling burden on the user. In contrast, active learning selectively
chooses the most useful examples to present to the user for labelling using
techniques such as uncertainty sampling which consistently outperform ran-
dom sampling [16]. Evaluations show semi-supervised approaches mainly pro-
duce improvements in situations where baseline classification accuracy is low
but no improvements were observed in situations where baseline accuracy was
already very high [12]. In addition, semi-supervised approaches require retrain-
ing of the classifier at runtime every time new data needs to be incorporated
into the model, which can be very expensive, especially on mobile devices.
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Case-based reasoning (CBR) offers a convenient solution to the problem of
model retraining at runtime. The k-nearest neighbour (kNN) retrieval approach
at the core of CBR does not learn a model, which makes it able to easily assim-
ilate new examples at runtime. However, performance of kNN largely depends
on the choice of similarity metric, and manually defining good similarity metrics
for specific problems is generally difficult [4].

Metric learning is an approach that is used to automatically learn a similar-
ity metric from data in a way that better captures the important relationships
between examples in that data [23]. An important point to note about metric
learning is that learning a similarity metric from data is equivalent to transform-
ing the data to a new representation and computing the similarity in this new
space using any standard metric e.g. Euclidean [4]. For a comprehensive review
of metric learning, we refer the reader to [4,9]. A more recent sub-field of metric
learning called deep metric learning uses deep learning algorithms to learn this
feature transformation, thereby taking advantage of the ability of deep learning
algorithms to extract higher-level, abstract feature representations. Matching
networks are an example in this category that are able to incorporate any deep
learning architecture e.g. convolutional neural networks [11] or recurrent neural
networks [6].

Given the novelty of deep metric learning, very few applications of this are
available in case-based reasoning. A very recent work that uses deep metric learn-
ing in a Case-based reasoning system for adaptable clickbait detection is [14],
where a word2vec model [15] is used in combination with a deep convolutional
neural network to learn similarity between clickbait articles. Another CBR sys-
tem for image-based Web page classification which uses Siamese convolutional
neural networks is presented in [13]. Siamese neural networks learn a similar-
ity metric by minimising a contrastive loss which penalises dissimilar example
pairs being placed close in the representation space, and rewards similar pairs
being placed close together [8]. In this work, we focus on matching networks in
particular which have the ability to both learn appropriate feature transforma-
tions using metric learning, and at the same time perform nearest neighbour
classification using neural attention mechanism [3].

3 Human Activity Recognition

The computational task of HAR consists of three main steps: windowing, feature
extraction and classifier training as illustrated in Fig. 1. Windowing is the process
of partitioning continuous sensor data into discrete instances of length l, where
l is typically specified in seconds. Figure 2 illustrates how windowing is applied
to a tri-axial accelerometer data stream with channels: a, b and c. Windows can
be overlapped especially at train time in order have better coverage of the data,
which also increases the number of examples available for training. We do not
overlap windows at test time in order to simulate real-time streaming data.
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Fig. 1. Steps of human activity recognition.

The length of windows is an important consideration where very short win-
dow lengths typically produce less accurate performance, while longer windows
produce latency at runtime due to the fact that several seconds worth of data
need to be collected before before making a prediction [18]. In this work, we
choose a window length of five seconds which provides a good balance between
accuracy and latency. A tri-axial accelerometer partitioned in this way pro-
duces a window wi is comprised of real-valued vectors ai , bi and ci , such that
ai = (ai1, . . . , ail).

Fig. 2. Illustration of accelerometer data windowing.

Once windows have been partitioned, suitable features need to extracted from
each window wi in order to generate examples xi used for classifier training.
Many different feature extraction approaches have been applied for HAR. These
include hand-crafted time and frequency domain features, coefficients of fre-
quency domain transformations, as well as more recent deep learning approaches
[17]. One feature extraction approach we have previously found to be both inex-
pensive to compute and very effective, is Discrete Cosine Transform (DCT) [17].
DCT is applied to each axis (ai , bi , ci) of a given window wi to produce vectors
of coefficients va , vb and vc respectively that describe the sinusoidal wave forms
that constitute the original signal. In addition, we also include the DCT coeffi-
cients of the magnitude vector m where each entry mj in m is computed using
the Euclidean norm of corresponding entries in aj , bj and cj as defined in Eq. 1.

mj =
√

a2j + b2j + c2j (1)
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DCT produces an ordered vector of coefficients such that the most significant
information is concentrated at the lower indices of the vectors This means that the
vector of coeffcients can be truncated to the first n indices without loss of infor-
mation, making DCT ideal for compression. In this work, we truncate vectors to a
length of n = 60. The truncated coefficient vectors va , vb , vc and vm are concate-
nated together to form a single example representation xi of length 240.

4 Matching Networks

The aim of matching networks is to learn a model that maps an unlabelled
example x̂ to a class label ŷ using a small support set S of labelled examples. To
provide a formal definition of matching networks, we define a set of class labels
L and a set of examples X. We also define a support set S as shown in Eq. 2,

S = {(x, y)|x ∈ X, y ∈ Y ⊂ L} (2)

i.e. S consists of a subset of classes Y with m examples in each class. Hence,
the cardinality of S is |S| = m × |Y |. A matching networks learns a classifier
Cs which, given a test instance x̂, provides a probability distribution over class
labels y ∈ Y i.e. P (y|x̂, S). Accordingly, the class label ŷ of x̂ is predicted as the
class with the highest probability i.e.

ŷ = argmaxyP (y|x̂, S) (3)

Fig. 3. Illustration of matching network for HAR.
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Next we address the question of how to calculate P (y|x̂, S). This can be
done using an attention function a() which computes the probabilities in three
operations. Firstly, we define an embedding function fθ, which is a neural net-
work that maps a given input to an embedded representation as shown in Eq. 4
(Fig. 3).

fθ(x) = x′ (4)

The embedding function fθ is the embedding part of the matching network
and it’s goal is to produce representations that maximise similarity between
examples belonging to the same class. Thus, we define a similarity metric
sim(x̂′, x′

i) which returns the similarity between the embedded representations
of our unlabelled example x̂ and any example xi ∈ S. Here, any standard simi-
larity metric e.g. Euclidean, dot product or cosine can be used. An example of
sim using cosine similarity is shown in Eq. 5.

sim(x̂′, x′
i) =

∑
x̂′

jx
′
i,j√

x̂
′2
j

√
x

′2
i,j

(5)

The last operation of the attention function is to convert the similarity values
returned by sim into probabilities. This can be done using the softmax function
as shown in Eq. 7.

a(x̂′, x′
i) = esim(x̂′,x′

i)/

|s|∑
esim(x̂′,x′

i) (6)

Using a one-hot encoding vector y to represent any class label y, we can
estimate a class probability for x̂′ as follows:

ŷ =
|S|∑

a(x̂′, x′
i) ∗ y (7)

Since yi has a value of 1 at only the position corresponding to its class (with
the rest being zero); the multiplication with a can be viewed as providing a
similarity weighted estimate for each candidate class and thereby forming an
estimated class distribution.

We can now use this estimated ŷ class probability and the actual y class
probability (i.e. the one-hot vector) to derive the training loss using a function
such as the categorical cross-entropy as shown in Eq. 9.

L(y, ŷ) = −
|L|∑
j

yj log(ŷj) (8)

Ltrain =
∑|N |

i L(yi, ŷi)
N

(9)

Accordingly the entire matching network can be trained end-to-end using gra-
dient descent.
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5 Personalised HAR Using Matching Networks

In this section, we formally describe how we apply matching networks for per-
sonalised HAR. Recall that for personalised HAR, our aim is to obtain a network
that can classify a particular user’s activity using a small set of examples pro-
vided by the same user. Therefore, training such a network requires us to define
a set of users U where each user uj ∈ U is comprised of a set of labelled examples
as follows:

uj = {(x, y)|x ∈ X, y ∈ L} (10)

Next we define a set of training instances Tj for each user uj as follows:

Tj = {(Sj , Bj)}l (11)

i.e., Tj is made up of user-specific support and target set pairs Sj and Bj respec-
tively, where Sj = {(x, y)|x ∈ ui, y ∈ L}k and Bj = {(x, y)|x ∈ uj , x �∈ Sj}. Note
that the set of labels in Sj is always equivalent to L because we are interested in
learning a classifier over the entire set of activity labels. Accordingly, Sj contains
m examples for each class y ∈ L and the cardinality of Sj is k = m×|L|. Both Sj

and Bj are sampled at random from uj l times to create Tj . Each Bj is used with
it’s respective Sj by classifying each instance in Bj using Sj and computing loss
using categorical cross entropy. This process is illustrated in Fig. 4. The network
is trained using stochastic gradient descent and back propagation.

Tj = {(Sj , Bj)}l (12)

Fig. 4. Training matching network for personalised HAR

The embedding function used in this work is a neural network with one fully-
connected layer with 1200 units. Before examples are input into the embedding
network, they are passed through Discrete Cosine Transform (DCT) feature
extraction. The fully connected layer is followed by a Batch Normalisation layer
which reduces covariate shift and has been shown to result in faster training and
better accuracy. An illustration of the configuration of the embedding network
is presented in Fig. 5.
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Fig. 5. Details of embedding network

6 Dataset

A group of 50 volunteer participants was used for data collection. The age range
of participants is 18–54 years and the gender distribution is 52% Female and
48% Male. Data collection concentrated on the activities provided in Table 1.

Table 1. Description of activity classes.

Activity Description

Lying Lying down relatively still on a plinth

Sitting Sitting still with hands on desk or thighs

Standing Standing relatively still

Walking Slow Walking at slow pace

Walking normal Walking at normal pace

Walking fast Walking at fast pace

Up stairs Walking up 4–6 flights of stairs

Down stairs Walking down 4–6 a flights of stairs

Jogging Jogging on a treadmill at moderate speed

The set of activities in Table 1 was chosen because it represents the range
of normal daily activities typically performed by most people. Three different
walking speeds (slow, normal and fast) were included in order to have an accurate
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estimate of the intensity of the activities performed by the user. Identifying
intensity of activity is important because guidelines for health and well-being
include recommendations for encouraging both moderate and vigorous physical
activity [1]. We expect the distinction between different walking speeds to be
particularly challenging for subject-independent models because one person’s
slow walking speed might be closer to another person’s normal walking speed

Data was collected using the Axivity Ax3 tri-axial accelerometer2 at a sam-
pling rate of 100 Hz. Accelerometers were mounted on the right-hand wrists of
the participants using specially designed wristbands provided by Axivity. Activ-
ities are roughly evenly distributed between classes as participants were asked to
do each activity for the same period of time (3 min). The exceptions are Up stairs
and Down stairs, where the amount of time needed to reach the top (or bottom)
of the stairs was just over 2 min on average. This data is publicly available on
Github3.

Recall that in order to apply the matching network, we require the user to
provide a small sample of data for each activity class which will be used to create
the support set. To simulate this with our dataset, we hold out the first 30 s of
each test user’s data for creating the support set. This leaves approximately
150 s of data per activity which are used for testing, except for “Up Stairs” and
“Down Stairs” classes which have about 90 s of test data each.

7 Evaluation

Evaluations are conducted using a hold-out methodology where 8 users were ran-
domly selected for testing and the remaining users’ data were used for training.
A time window of 5 s is used for signal segmentation and performance is reported
using macro-averaged F1 score, a measure of accuracy that considers both pre-
cision (the fraction of examples predicted as class ci that correctly belong to ci)
and recall (the fraction of examples truly belonging to class ci that are predicted
as ci) for each class. Discrete Cosine Transforms with features are used for data
representation.

Our evaluation is composed of two parts. Firstly we explore the performance
of our matching network against a number of baseline approaches. Accordingly
we compare the following algorithms:

– kNN: Nearest-neighbour classifier trained on the entire training set
– SVM: Support Vector Machines trained on the entire training set
– MLP: A Feed-forward neural network trained on the entire training
– MNet: Our personalised matching network approach

Note that MLP is equivalent to our embedding network with one hidden layer,
batch-normalisation and softmax classification layer. The comparison with MLP
is meant to provide evidence for the effectiveness of the personalisation approach

2 http://axivity.com/product/ax3.
3 https://github.com/selfback/activity-recognition/tree/master/activity data.

http://axivity.com/product/ax3
https://github.com/selfback/activity-recognition/tree/master/activity_data
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of MNet beyond it’s use of the embedding network. Note also that increasing the
number of hidden layers beyond one for both MNet and MLP did not produce
any improvement in performance. For MNet, we use n = 6 examples per class.
These parameter values are presented in Table 2.

Table 2. Parameter settings.

Parameter kNN SVM MLP MNet

Similarity metric/Kernel Cosine Gaussian - Cosine

Neighbours 10 - - 6

Hidden layers - - 1 1

Hidden units - - 120 120

Training epochs - - 10 20

Batch size - - 64 64

Loss function - - Cross entropy Cross entropy

Optimiser - - Adam Adam

Fig. 6. Evaluation of MNet against popular classifiers.

It can be observed from Fig. 6 that MNet produces the best result; whilst
SVM and MLP have comparative performance but kNN comes in last. The poor
performance of kNN compared to SVM and MLP is consistent with our previous
evaluations [17]. MNet out performs both SVM and MLP by more than 6% which
shows the effectiveness of our matching network approach at exploiting personal
data for activity recognition.
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Fig. 7. Results of MNet with different number of samples per class.

The second part of our evaluation explores the influence of the number of
examples per class n on classification performance. Recall that the amount “user-
provided” data available to us are 30 s per activity. Considering our window
length of 5 s, this provides us a maximum of 6 examples per class. Hence, we
explore sizes of n from 1 to 6. Results are presented in Fig. 7. It can be observed
that results of MNet improve with increase in size of n. However no improve-
ment is observed between n = 5 and n = 6 which perhaps suggests not much
improvement will be gained with continued increase in size of n. Evaluating sizes
of n greater than 6 is not feasible with our experiment design and limited data,
however, this can be explored further in future work.

A reasonable argument that can be made is that MNet has the added advan-
tage of using end-user supplied data. Therefore, we present a comparison with
versions of kNN, SVM and MLP (named kNN+, SVM+ and MLP+ respec-
tively) which are trained on all user provided samples in addition to the entire
training set. Results are presented in Fig. 8.

As can be observed, addition of the small number of user samples does not
improve performance in kNN+, SVM+ and MLP+. In all three cases, results are
approximately the same as those of training on the training set only presented
in Fig. 6. An obvious explanation for the lack of improvement is the small size
of the user provided data in which case, it can be expected that larger amounts
of user data may lead to improved performance. However, the point to note is
that the same size of data is sufficient to produce marked improvement in the
performance of MNet.

A final point we explored in our evaluation is the significance of creating
personalised support sets using the same user’s data when training the matching
network. In other words, for personalised HAR, do train support sets need to be
personalised or can we get similar performance from non-personalised support
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Fig. 8. Evaluation number of examples per class.

sets. The F1 Score using non-personalised support is 0.661 compared to 0.788
with personalised support set. This highlights the importance of matching train
conditions to test condition as we have proposed in our methodology.

8 Conclusion

In this paper, we presented a novel approach for personalised HAR using match-
ing networks. Matching networks adopt principles from both metric learning and
attention in neural networks to perform effective k-nearest neighbour classifica-
tion using a small support set of examples. We demonstrated how this support
set can be constructed from a small set of labelled examples provided by the user
at runtime, which allows the matching network to effectively build a personalised
classifier for the user. Evaluation shows our approach to outperform a generals
model by at least 6% of F1 score.

There are two main advantages to the approach we presented in this paper.
Firstly, our approach is able to achieve high accuracy using only a small set of
of user provided examples (30 s in this work) which makes it more practical for
real-world applications compared to subject-dependent training which requires
the end user to provide large amounts (possible hours) of labelled training data.
Secondly, our approach does not require retraining the model at runtime when
new data becomes available which makes the approach very adaptable.

The ability of matching networks to learn similarity metrics for particular
domains as well as their ability to adapt at runtime make them very relevant for
case-based reasoning applications. We hope that this work will inspire further
work on adoption of these and similar approaches for application in CBR.
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