
Exploration vs. Exploitation in Case-Base
Maintenance: Leveraging

Competence-Based Deletion with Ghost
Cases

David Leake(B) and Brian Schack

School of Informatics, Computing, and Engineering, Indiana University,
Bloomington, IN 47408, USA

{leake,schackb}@indiana.edu

Abstract. Case-base maintenance research has extensively stud-
ied strategies for competence-retaining case base compression. Such
approaches generally rely on the representativeness assumption that cur-
rent case base contents can be used as a proxy for future problems when
determining cases to retain. For mature case bases in stable domains, this
assumption works well. However, representativeness may not hold for
sparse case bases during initial case base growth, for dynamically chang-
ing domains, or when a case base built for one task is applied to cross-
domain problem-solving in another. This paper presents a new method
for competence-preserving deletion, Expansion-Contraction Compression
(ECC), aimed at improving competence preservation when the represen-
tativeness assumption is only partially satisfied. ECC precedes compres-
sion with adaptation-based exploration of previously unseen parts of the
problem space to create “ghost cases” and exploits them to broaden
the range of cases available for competence-based deletion. Experimen-
tal results support that this method increases competence and quality
retention for less representative case bases. They also reveal the unex-
pected result that ECC can improve retention of competence and quality
even for representative case bases.

Keywords: Case base maintenance · Competence
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1 Introduction

Much case-based reasoning research focuses on how to develop compact, com-
petent case bases (e.g., [1,2,7,19,27,34,38]. The desire for compact, competent
case bases arose from retrieval efficiency concerns (e.g., [9,32,35]). Such efficiency
concerns remain an issue for CBR applied to big data, and case base compression
remains important for other reasons as well. Compact case bases are easier for
humans to maintain, and compact case bases may facilitate knowledge sharing
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and reasoning about the competence of other agents in distributed case-based
reasoning [30].

Many methods have been developed for controlling case base growth. Because
case deletion may result in unrecoverable knowledge loss, a central focus has
been selective deletion aimed at maximum competence preservation, starting
with seminal work by Smyth and Keane [33] and continuing with many other
methods (e.g., [19,20,27,34]). Retention methods generally estimate the com-
petence contribution of each case, to prioritize retention decisions according to
maximum competence contributions. Estimating the future competence contri-
butions of a case is difficult because it depends on predicting the problems a
CBR system will encounter. Smyth and McKenna proposed addressing this with
the representativeness assumption [34] that the prior problems are representa-
tive of the problems to be encountered in the future. Under this assumption,
the future competence contribution of a case can be estimated as its competence
contribution in the existing case base. Although the assumption may not always
hold, Smyth and McKenna advanced a compelling argument for its appropri-
ateness for CBR systems: Because CBR is based on the assumption that future
problems will resemble previous problems (problem-distribution regularity [23]),
domains for which the representativeness hypothesis fails would be ill-suited for
CBR.

Case-base compression relying on the representativeness assumption has been
shown effective in many domains. However, in domains for which only a small
part of the problem space has yet been encountered, or in which concept drift
shifts the problem distribution [5], representativeness may not hold, and in turn,
competence may suffer [26]. Likewise, if a case base generated for one task is
applied to a new task for cross-domain problem-solving [21], there is no guarantee
that the problems of the first space will be representative of problems in the
second.

A well-known strength of CBR is that it can draw on multiple knowledge
containers whose contributions overlap, in the sense that strengths in one can
compensate for weaknesses in another [31]. This paper investigates how a CBR
system can draw on adaptation knowledge to handle experience gaps when build-
ing a case base. By adapting cases already in the case base, a CBR system can
pre-populate sparsely populated regions of the case base—transferring some of
the knowledge of its adaptation component into the case component to expand
the set of cases. This in turn enables the system to generate the compressed
case base from a set of candidates larger than its retained experience. This can
be seen as shifting from maintenance that only exploits existing experiences,
to maintenance that explores the space of future problems. Combining case
base exploitation with problem space exploration is a novel step for case-base
maintenance.

To combine exploitation and exploration for case-base compression, this
paper proposes the new method expansion-contraction compression (ECC). ECC
adapts existing cases to generate additional candidate cases, which we call “ghost
cases,” providing a more diverse set of cases for compression to consider. In ECC,
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the union of the case base and ghost cases is then provided to the condensed
nearest neighbor algorithm (CNN) [11] in order of competence contribution.
This provides competence-based deletion with a wider set of cases from which
to select that can include cases from unseen but solvable parts of the problem
space. If case adaptation is considered sufficiently reliable, the result of ECC
can be used as-is. Otherwise, the selected ghost cases can become targets for
verification, e.g., by asking a human expert in an active learning process, or
provenance information [22] about the origin of ghost cases could be used to
predict confidence when they are used.

This paper presents an evaluation of ECC for four standard data sets manip-
ulated to enable controlled comparisons with CNN for case bases with varying
representativeness. We hypothesized that ECC would provide better compe-
tence retention than CNN as representativeness decreased and observed this in
the results. We also hypothesized that ECC would not provide benefit for stan-
dard case bases and would even impose a competence penalty, due to ghost cases
increasing the coverage density for non-representative problems at the expense of
coverage density for representative problems. Surprisingly, however, ECC often
improved competence retention even for standard case bases. We attribute this to
the addition of ghost cases providing CNN with more extensive choices, enabling
it to select a more effective mix of cases.

2 Background

2.1 Compressing the Case Base

A primary early motivation for case-base compression was the swamping util-
ity problem for CBR (e.g., [9,32,35]). As the case base grows, case retrieval
costs generally increase, while case adaptation costs tend to decrease due to
the increased similarity of retrieved cases. The swamping utility problem occurs
when the increased retrieval cost swamps the adaptation cost savings. Recent
arguments propose that current computing resources and limited case base sizes
for many tasks can make this less important in practice [14]. However, CBR for
domains such as big data health care (e.g., [13]) and large-scale e-commerce,
for which customer data can measure in the hundreds of millions of cases will
continue to face challenges (cf. [15] for an alternative approach to addressing
the utility problem, based on big data retrieval methods). Likewise, provenance
capture for e-science can result in extremely large provenance cases [4] making
case-base compression potentially important for sheer case size. In addition, con-
trolling size can be important even without extreme size, if maintenance requires
manual intervention or if the case-bases will be transmitted or replicated, as pos-
sible in distributed CBR.

2.2 Knowledge Container Transfer

The relationship of the four CBR knowledge containers—vocabulary, similarity
measure, case base, and adaptation knowledge—has given rise to much research
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on knowledge container transfer, such as improving adaptation knowledge by
transfer from cases [10,16,17,28,29,36], and from adaptation knowledge to sim-
ilarity [18]. Whenever a case-based problem-solver adapts a previous case and
stores the result, it can be seen as transferring some of its adaptation knowledge
into the case base, in a lazy manner, on demand. ECC, which generates ghost
cases by adapting existing cases and adding them to the case base, can be seen
as performing eager knowledge transfer from the adaptation component to the
case base.

2.3 Exploration of the Problem Space Versus Exploitation of Cases
in the Case Base

The notion of exploration versus exploitation concerns how an agent should
allocate effort between exploiting existing resources versus exploring in search
of others. The explore/exploit trade-off has proven a useful framework in many
fields [12]. In traditional case-base maintenance, all maintenance effort is focused
on exploitation of existing cases; the ECC process of generating ghost cases using
adaptation knowledge explores the space of potential cases. ECC provides both
existing cases and the fruits of exploration to CNN to select those cases expected
to be most valuable in the compressed case base.

Contrasts Between Ghost Case Generation and Adaptation on Demand: Both
ECC and normal CBR do adaptation, but the effect of ECC is different from
simply compressing the original case base and adapting the retained cases to
solve new problems. For ECC, the system selects new problems to solve. This
could potentially be guided by trend detection, to hypothesize areas in which
additional case coverage is especially important. For example, the system could
note shifts in the types of problems the system is solving [37] to focus ghost case
generation there.

When a CBR system adds ghost cases to the case base, it must do so without
benefit of the feedback that often enables CBR systems to detect and repair
solution flaws. Consequently, the solutions of ghost cases are not guaranteed to
be correct. However, because the ghost case is generated in advance, there is an
opportunity to seek confirmation of its solution to avoid future failure. (Note
that even if the solution proposed by the ghost case remains unverified, and if
later application of the ghost case results in an erroneous solution, the same
failure would have occurred if the case had been adapted on the fly.)

Benefits of Exploration: Augmenting the case base with ghost cases prior to
compression has four primary potential benefits:

1. Potential to improve competence preservation: We hypothesize that for less
representative case bases, ECC will enable increased compression for a given
competence retention level. We test this hypothesis in Sect. 6. (We expect
results to depend on the representativeness of the original case base and on
the density of the original case base: If the original case base covers only
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a small region but all problems fall within that region, adding ghost cases
for problems outside that region might exact a penalty as relevant cases are
“crowded out” by the ghost cases.)

2. Potential to improve adaptation efficiency: If ECC applies a performance-
based criterion for case retention that reflects not only competence but also
adaptation cost [24], an ECC-compressed case base could enable more effi-
cient problem-solving, by adding ghost cases useful for decreasing expected
adaptation cost. Where adaptation is not fully reliable but reliability can
be estimated by similarity distance, such ghost cases can be chosen to reduce
expected average similarity distances, and, consequently, to increase expected
solution reliability.

3. Potential to focus active learning/external pre-verification of adaptations: If
case adaptation is unreliable, the quality of ghost cases is not guaranteed.
However, by selecting useful ghost cases, ECC identifies good candidates for
external case acquisition/verification. For example, an expert could be asked
to provide the solutions to these problems, or to review system-generated
solutions (this may be easier than solution generation, e.g., verifying the
routing of pipes in the design of a house is easier than finding a routing).

4. Potential to extend the reach of adaptation: Many CBR systems restrict the
adaptation of any problem to a single adaptation step, limiting the prob-
lems they can solve (cf. [6]). When ghost cases are generated by applying an
adaptation, future adaptations can start from that adapted state, effectively
enabling two-step paths for adaptations going through that case. Generat-
ing ghost cases from longer adaptation paths further extends the range of
problems and decreases adaptation costs.

3 The Expansion-Contraction Compression Algorithm

The ECC algorithm is described in Algorithm 1. Inputs to the algorithm include
the maximum length of adaptation paths for generating ghost cases (ghostSteps)
and the criterion for whether a case can be adapted to solve a given problem
(coverageCriterion), which we implement as a similarity threshold. ECC first
expands the case base by adapting selected cases, according to an adaptation
procedure which selects adaptations to perform.

Because ECC performs adaptations in the absence of a specific problem to
solve, many strategies are possible for choosing the adaptation, e.g., selecting a
random adaptation, selecting a high confidence adaptation, selecting an adapta-
tion expected to produce the greatest difference between old and new solutions,
etc. Also, when generating a ghost case, ECC must adjust not only the solution,
but also the problem description of the case, to keep the new problem and solu-
tion consistent. The adjustment is derived from the problem description part of
the chosen adaptation rule—if the rule normally addresses a given difference D
between an input problem and a retrieved case, the problem part of the ghost
case should be the problem of the current case, adjusted by D.

After generating ghost cases, ECC then compresses the expanded case base
by CNN, presenting cases in order of decreasing coverage (other ordering criteria,
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such as relative coverage [34], could be used as well). If the resulting case base
size is below the size limit, ECC “fills out” the additional capacity by adding
cases up to the size limit, prioritized by estimated competence contribution.

Algorithm 1. The ECC Algorithm
Input:
caseBase: The case base to compress
ghostSteps: the maximum number of adaptation steps for generating ghost cases

from the case base.
targetSize: the target number of cases in the compressed case base
coverageCriterion: test for whether a case can be adapted to solve another case

Output: Compressed case base

expandedCaseBase ← caseBase
ghostCases ← ∅
for ghostLevel = 0 to ghostSteps do

for all case in expandedCaseBase do
ghostCases ← ghostCases ∪ adapt(case)

end for
expandedCaseBase ← expandedCaseBase ∪ ghostCases

end for
expandedCaseBase ← sort(expandedCaseBase, coverage, descending)
contractedCaseBase ← cnn(expandedCaseBase, targetSize, coverageCriterion)
additionalCases ← limit(expandedCaseBase − contractedCaseBase,

targetSize − size(contractedCaseBase))
contractedCaseBase ← contractedCaseBase ∪ additionalCases
return contractedCaseBase

4 Evaluation

4.1 Experimental Questions

To evaluate expansion-contraction compression, we considered five questions. For
the first four, because our tests used standard domains without associated adap-
tation knowledge, we modeled adaptation based on similarity. Our experiments
considered effects of compression on both competence (measured by number of
test problems solved) and solution quality (average similarity between problems
and the cases retrieved for them):

1. How does ECC affect preservation of quality compared to conventional
competence-based compression, for varying levels of representativeness?

2. How does the ECC affect preservation of competence compared to conventional
competence-based compression, for varying levels of representativeness?
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3. How does the number of steps in the adaptation path to generate ghost cases
affect competence retention of ECC, and how does competence compare to
CNN?

4. How does sparsity of the initial case base affect the relative preservation of
competence of ECC and CNN?

We then tested ECC in a standard domain augmented with automatically gen-
erated adaptation rules, to examine:

5. How does ECC affect preservation of competence, quality, and accuracy when
applying generated adaptation rules?

5 Experimental Design

Data: The evaluation used five data sets: Houses, with 781 cases and 8 features,
from the Datasets Wiki of the California Polytechnic University Computer Sci-
ence Department [3], and four from the UCI Machine Learning Repository [8]:
Iris, with 150 cases and 5 features, Wine, with 178 cases and 14 features, Car
Evaluation, with 1,728 cases and 7 features, and Wine Quality, with 1,599 cases
and 12 features.

Generating the Case Base and Problem Stream: Each trial partitioned each case
base into three random subsets of equal size: (1) training cases (33%), (2) testing
cases (33%), and (3) potential ghost cases (33%). Because of the random selec-
tion of the subsets, initially the training cases have normal representativeness
for the data (the effectiveness of standard competence-based compression sug-
gests that these are reasonably representative). To test the effect of decreased
representativeness, one of the experimental conditions modifies the case bases
to place a gap in a region of the case base (as might exist, for example, if cases
reflected seasonally varying outcomes and no problems had yet been encountered
for a particular season). The gap generation process picks a random case as the
starting point for the gap, and then removes all of the problems from the train-
ing case base within a given similarity threshold (the gap radius). The testing
cases and potential ghost cases remain in their original distribution, without an
added gap.

Modeling Adaptation and Generating Ghost Cases: None of the data sets include
adaptation knowledge. The first four experiments simulate adaptation-driven
generation of ghost cases as follows. The experiment repeatedly picks a random
case in the training data and filters the set of potential ghost cases for cases
within a similarity threshold (the coverage criterion) required for adaptability
from the selected training case. Those cases are then treated as the result of
an adaptation and stored as ghost cases. This simulates deriving new cases by
applying adaptation rules of limited power to the training case base. To test the
effects of more powerful adaptation, additional experiments apply this process
recursively, with selection of sequences of successive cases to simulate applying
chains of one, two, or three adaptation steps.
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Generating Adaptation Rules: For the fifth experiment, we applied the case
difference heuristic approach [10] to automatically generate a set of adaptation
rules from the data. These rules were then used to generate ghost cases by
adaptation, rather than drawing on potential ghost cases as in experiments one
through four.

Our rule generation approach repeatedly selects two random cases, ascribes
the difference in their solutions to the difference in their problems, and forms
a rule to apply the same difference to a solution. The rule is applied when the
input problem and the problem of the retrieved case have a difference similar
to the one from which the rule was generated. Given a problem and retrieved
case, the single rule for the most similar difference was applied. For similarity,
categorical features in problem descriptions were only considered to match if
identical. The rules adjusted the solution values by the proportional difference
of the solution values of the cases from which they were generated.

Experimental Procedure: Compression by condensed nearest neighbor [11] was
compared to compression by ECC. For comparisons with CNN, we use a version
of CNN that, like ECC, “fills out” the case base up to the size limit, so that
both methods have access to the same number of cases.

For both ECC and CNN, cases were sorted in descending order of cover-
age. Compression was done in steps of 10% from 100% to 10% of the size of
the uncompressed case base. Each level of compression starts from the uncom-
pressed case base (not the result of the previous level of compression). Each
experiment runs for ten trials with different randomly chosen partitions, with
results averaged over those runs.

6 Experimental Results

Q1: Relative preservation of quality for different representativeness
levels: Figure 1 compares the absolute quality between CNN and ECC strategies
for the Houses case base. The coverage criterion for deriving ghost cases and
solving testing problems is 5%. Each of the four graphs in Fig. 1 uses a different
value for the gap radius. When there is no gap, this value is 0%, a small gap
is 5%, a medium gap is 10%, and a large gap is 20%. The size of the gap is
measured not in the number of cases that the experiment can remove but in the
similarity distance to the most different case that the experiment can remove.
The horizontal axis shows the proportionate case base size of the compressed
case base, ranging from 100% to 10% in steps of 10%.

In all four graphs of Fig. 1, ECC uses adaptation paths with a maximum
length of two steps. The vertical axis shows the quality of the compressed case
base. Note that similarity of a retrieved case counts towards the average quality
even when the coverage criterion is not met. Quality can fall anywhere in the
range from 0 to 1, inclusive. The top and bottom graphs use different scales for
the vertical axis (0.91 to 0.97 on the top, and 0.87 to 0.95 on the bottom) in
order to “zoom in” on the difference between the strategies.
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Fig. 1. Absolute quality for condensed nearest neighbor and expansion-contraction
compression on House data set, for four different gap sizes in the training data.)

When the training case base has no gap (top left), CNN outperforms ECC
from 100% to 80% of the size of the original case base. However, from 70% to
10% size, ECC leads. Because neither the set of training cases nor the set of test-
ing problems has a gap, the training case base is expected to be approximately
representative of the testing problems. Therefore, in this graph, we believe that
the addition of ghost cases cannot be improving quality by improving represen-
tativeness, and must be doing so simply by providing a wider pool of cases from
which CNN can select alternatives. This was a small effect, but the benefit of the
increased choice is an interesting result that contradicted our initial hypothesis.
The Question 2 results show a similar but more dramatic effect on competence.

When the training case base has a small gap (top right), CNN outperforms
ECC only at 100% of the size of the original case base. Thereafter, from 90%
to 10%, the expansion-contraction strategy leads. For the medium (bottom left)
and large gap (bottom right), ECC dominates CNN throughout. Overall, as the
size of the gap increases, and the training case base less represents the testing
problems, the quality difference increases between CNN and ECC. This suggests
that part of the benefit comes from the choice of additional cases for retention
(as with the no-gap graph in the top left), and that part of the benefit comes
from correction for nonrepresentativeness.

Q2: Relative preservation of competence for different representa-
tiveness levels: Figure 2 compares the relative competence between CNN and
ECC. The results are based on using the Houses case base and a coverage cri-
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terion of 5% both for deriving ghost cases and for solving testing problems. As
for Figs. 1 and 2 includes four graphs showing different sizes for the gap in the
training case base, and the horizontal axis shows the size of the case base. How-
ever, in Fig. 2, the vertical axis shows the relative competence, the ratio of the
observed competence to the maximum competence observed with any strategy
and any case base size (intuitively, the maximum competence might be expected
to be at maximum size, but this need not always hold). The top and bottom
graphs use different scales for the vertical axis (60% to 100% on the top, and
20% to 100% on the bottom) in order to “zoom in” on the difference between
the strategies.

Fig. 2. Relative competence for condensed nearest neighbor and expansion-contraction
compression on Houses data set with four different representativeness levels

As shown in the no gap (top left) and small gap (top right) graphs, CNN
outperforms ECC at 100% and 90% of the size of the original case base. There-
after, from 80% to 10%, ECC leads over condensed nearest neighbor. For the
medium gap (bottom left) and large gap (bottom right) graphs, ECC dominates
CNN throughout all case base sizes. The amount of the difference between the
strategies increases as the size of the gap increases.

Question 3: Effect of length of adaptation path for generating ghost
cases: Figure 3 presents the relative competence using CNN and ECC for the
Houses case base. The gap radius for this figure is 20% (a large gap). The cov-
erage criterion for deriving ghost cases and solving testing problems is 5%, i.e.,
simulated adaptations can adapt solutions to address problem differences of up to
5%. Therefore, an adaptation path could require up to four steps to cross the
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gap. The horizontal axis shows the relative size of the case base decreasing from
100% to 10% in steps of 10%. Each of the lines shows a different upper limit
to the number of adaptations in the adaptation path to derive ghost cases. No
adaptation, which is equivalent to CNN, is the baseline strategy.

Fig. 3. Relative competence for condensed nearest neighbor and expansion-contraction
compression on Houses with three different lengths of adaptation paths

The vertical axis shows the relative competence of the compressed case base.
For all adaptation path lengths and case base sizes, ECC dominates CNN. The
largest difference in relative competence between CNN and ECC with one step
of adaptation is 15% at 30% of the size of the original case base. The smallest
difference between these two strategies is 5.1% at 100% size. The relative com-
petence for each adaptation path length varies consistently, with longer paths
associated with greater competence retention. The largest difference in relative
competence between CNN and ECC with three steps of adaptation is 27% at
40% of the size of the original case base. The smallest difference is 17% at 10%
size.

Question 4: Effect of case base sparsity: Figure 4 compares the relative
competence between CNN and ECC with a sparse case base; the sparse case
base models a case base in the early phases of case base growth. The basic
presentation of results follows Fig. 2, but the underlying experiment uses different
proportions for the partitions for training, testing, and ghost cases. As described
in the experimental design (Sect. 5), the partitions for Figs. 1, 2, and 3 are equal
thirds, but for Fig. 4, the proportions are 10% training, 70% testing, and 20%
potential ghost cases. The competence trend resembles Fig. 2 but decreases more
steeply because the case base begins with fewer cases.
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Fig. 4. Relative competence for condensed nearest neighbor and expansion-contraction
compression on Houses with a sparse initial case base and four different representative-
ness levels

Table 1 shows the relative competence difference between CNN and ECC on
five different case bases, each modified by adding a medium gap in the training
data, making it non-representative. For all five, the gap radius is set to twice the
coverage criterion (for House, this corresponds to the lower left graph in Fig. 2).
ECC outperformed CNN on four of the five case bases (Houses, Iris, Wine, and
Wine Quality), but not on Car Evaluation. This suggests that the expansion-
contraction strategy might benefit compression across many domains and raises
the question of which factors determine whether it will be beneficial.

Table 1. Difference in relative competence between ECC and CNN on five different
case bases

Case base No compression 33% compression 67% compression

Houses 6.6% 11.2% 15.8%

Iris 1.2% 7.6% 7.0%

Wine 2.8% 9.6% 13.4%

Car evaluation −3.5% 0.0% −8.0%

Wine quality (Red) 9.4% 13.4% 14.9%
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Question 5: Effect of ECC on competence, quality, and accuracy
for sample adaptation rule sets:

Experiments with adaptation rules used the Houses data set, with a gap
radius of 20% (corresponding to a large gap in the previous experiments), a 5%
coverage criterion, and 40 automatically-generated rules for each trial. ECC used
the adaptation rules both to generate ghost cases and to adapt solutions. Figure 5
shows the average preservation of competence and quality during compression by
ECC and CNN. ECC outperformed CNN in both dimensions at all compression
levels. Thus ECC was beneficial both for modeled adaptation and adaptation
with generated adaptation rules.

Fig. 5. Competence and quality for ECC and CNN on Houses data with adaptation
rules.

7 Future Work

In our experiments, ghost case generation is an unguided process, generating
ghost cases from randomly-selected cases using randomly-generated adaptations.
In addition, ghost cases are generated within neighborhoods of existing cases,
making ghost cases most likely to be added near regions that are already densely
populated. Ghost cases can be useful there, for example, as spanning cases [33],
bridging two competence regions. However, such placement may not help to
populate a distant sparse region. Identifying and targeting sparse regions on
which to focus ghost case generation might increase the benefit of ECC. On the
other hand, populating such regions might be detrimental if representativeness
generally holds. Thus determining guidance strategies for ghost case generation
and assessing their effects is an interesting area for future study.
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For example, areas to target for ghost generation could be selected by dividing
the case base into regions and applying Monte Carlo methods to assess case base
density [25]. Another interesting direction would be to develop maintenance
strategies that tracked, reasoned about, and responded to expected future case
distributions, to explicitly determine the expected utility of exploring areas of
the unseen case space.

8 Conclusion

This paper proposed a new approach to case-base compression, Expansion-
Contraction Compression (ECC), aimed at achieving better competence reten-
tion when the representativeness assumption may not hold. The ECC approach
contrasts with previous approaches, which focus on how best to exploit the cases
in the case base, in going outside problems addressed by the case base to explore
the larger problem space as licensed by case adaptation knowledge. ECC can
be seen as applying a knowledge container transfer strategy: It uses adaptation
knowledge to generate new case knowledge, ghost cases, which are then added
to the pool of cases available to the compression algorithm. Chosen ghost cases
can be retained as-is or can be used to guide verification or active learning of
new cases. Experiments support the expected result of ECC improving compe-
tence retention for less-representative case bases. Surprisingly, ECC also often
improved competence retention even for standard case bases. Thus the ECC
approach appears promising. Interesting questions remain for studying factors
affecting ECC performance and guiding ghost case generation to maximize the
effectiveness of ECC.

References

1. Angiulli, F.: Fast condensed nearest neighbor rule. In: Proceedings of the Twenty-
second International Conference on Machine Learning, pp. 25–32. ACM, New York
(2005)

2. Brighton, H., Mellish, C.: Identifying competence-critical instances for instance-
based learners. In: Liu, H., Motoda, H. (eds.) Instance Selection and Construction
for Data Mining, vol. 608, pp. 77–94. Springer, Berlin (2001). https://doi.org/10.
1007/978-1-4757-3359-4 5

3. Houses Data Set, May 2009. https://wiki.csc.calpoly.edu/datasets/wiki/Houses
4. Cheah, Y.-W., Plale, B., Kendall-Morwick, J., Leake, D., Ramakrishnan, L.: A

noisy 10GB provenance database. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.)
BPM 2011. LNBIP, vol. 100, pp. 370–381. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28115-0 35

5. Cunningham, P., Nowlan, N., Delany, S., Haahr, M.: A case-based approach to
spam filtering that can track concept drift. Technical report. TCD-CS-2003-16,
Computer Science Department, Trinity College Dublin (2003)

https://doi.org/10.1007/978-1-4757-3359-4_5
https://doi.org/10.1007/978-1-4757-3359-4_5
https://wiki.csc.calpoly.edu/datasets/wiki/Houses
https://doi.org/10.1007/978-3-642-28115-0_35
https://doi.org/10.1007/978-3-642-28115-0_35


216 D. Leake and B. Schack

6. D’Aquin, M., Lieber, J., Napoli, A.: Adaptation knowledge acquisition: a case
study for case-based decision support in oncology. Comput. Intell. 22(3/4), 161–
176 (2006)

7. Delany, S.J., Cunningham, P.: An analysis of case-base editing in a spam fil-
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