
Quantitative Echocardiography:
Real-Time Quality Estimation and View
Classification Implemented on a Mobile

Android Device

Nathan Van Woudenberg1, Zhibin Liao1, Amir H. Abdi1, Hani Girgis2,
Christina Luong2, Hooman Vaseli1, Delaram Behnami1, Haotian Zhang1,

Kenneth Gin2, Robert Rohling1, Teresa Tsang2(B),
and Purang Abolmaesumi1(B)

1 University of British Columbia, Vancouver, BC, Canada
purang@ece.ubc.ca

2 Vancouver General Hospital, Vancouver, BC, Canada
t.tsang@ubc.ca

Abstract. Accurate diagnosis in cardiac ultrasound requires high qual-
ity images, containing different specific features and structures depend-
ing on which of the 14 standard cardiac views the operator is attempting
to acquire. Inexperienced operators can have a great deal of difficulty
recognizing these features and thus can fail to capture diagnostically
relevant heart cines. This project aims to mitigate this challenge by pro-
viding operators with real-time feedback in the form of view classification
and quality estimation. Our system uses a frame grabber to capture the
raw video output of the ultrasound machine, which is then fed into an
Android mobile device, running a customized mobile implementation of
the TensorFlow inference engine. By multi-threading four TensorFlow
instances together, we are able to run the system at 30 Hz with a latency
of under 0.4 s.

Keywords: Echocardiography · Deep learning · Mobile · Real time

1 Introduction

Ischaemic heart disease is the primary cause of death worldwide. Practicing effec-
tive preventative medicine of cardiovascular disease requires an imaging modal-
ity that can produce diagnostically relevant images, while at the same time
being widely available, non-invasive, and cost-effective. Currently, the method
that best fits these requirements is cardiac ultrasound (echocardiography, echo).
Modern echo probes can be used to quickly and effectively evaluate the health of
the patient’s heart by assessing its internal structure and function [3]. The major

T. Tsang and P. Abolmaesumi—Joint senior authors.

c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): POCUS 2018/BIVPCS 2018/CuRIOUS 2018/CPM 2018,
LNCS 11042, pp. 74–81, 2018.
https://doi.org/10.1007/978-3-030-01045-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01045-4_9&domain=pdf

Mobile Quantitative Echocardiography 75

caveat of this process is that the interpretation of these images is highly subject
to the overall image quality of the captured cines, which, in turn, is dependent
on both the patient’s anatomy and the operator’s skill. Poor quality echoes cap-
tured by inexperienced operators can jeopardize clinician interpretation and can
thus adversely impact patient outcomes [8]. With the proliferation of portable
ultrasound technology, more and more inexperienced users are picking up ultra-
sound probes and attempting to capture diagnostically relevant cardiac echoes
without the required experience, skill or knowledge of heart anatomy.

In addition to the task of acquiring high quality images, ultrasound operators
can also be expected to acquire up to 14 different cross-sectional ‘views’ of the
heart, each with their own set of signature features. Some of these views are quite
similar to an inexperience eye, and switching between them can require very pre-
cise adjustments of the probe’s position and orientation. In point-of-care ultra-
sound (POCUS) environments, the four views most frequently acquired by clini-
cians are apical four-chamber (AP4), parasternal long axis (PLAX), parasternal
short axis at the papillary muscle level (PSAX-PM), and subcostal four-chamber
(SUBC4).

In this work, we attempt to reduce the adverse effect of inter-operator vari-
ability on the quality of the acquired cardiac echoes acquired. The system we
developed attempts to do this by providing the user with real-time feedback of
both view classification and image quality. This is done through the use of a
deep learning neural network, capable of simultaneous 14-class view classifica-
tion and a quality estimation score. Furthermore, we implemented the system in

Fig. 1. The physical system setup. The frame grabber connects to the DVI output of
the ultrasound machine. It is then connected to an OTG adapter and plugged directly
into the Android’s USB-C port.

76 N. Van Woudenberg et al.

the form of an Android application, and ran it on an off-the-shelf Samsung S8+
mobile phone, with the goal of making our system portable and cost effective.
As shown in Fig. 1, the system receives its input directly from the DVI port of
the ultrasound machine, using an Epiphan AV.IO frame grabber to capture and
convert the raw video output to a serial data stream. The frame grabber out-
put is then adapted from USB-A to USB-C with a standard On-The-Go (OTG)
adapter, allowing us to pipe the ultrasound machine’s video output directly into
the Android device and through a neural network running on its CPU, using Ten-
sorFlow’s Java inference interface. The classified view and its associated quality
score are then displayed in the app’s graphical user interface (GUI) as feedback
to the operator. Figure 2 shows the feedback displayed in the GUI for four AP4
cines of differing quality levels. These four sample cines, from left to right, were
scored by our expert echocardiographer as having image quality of 25%, 50%,
75%, and 100%, respectively.

Fig. 2. The mobile application GUI showing the predicted view and quality for four
different AP4 cines of increasing quality.

2 System Design

2.1 Deep Learning Design

A single deep learning network is used to learn the echo quality prediction and
view classification for all 14 views. The model was trained on a dataset of over
16 K cines, distributed across the 14 views as shown in the following table:

Window Apical Parasternal Subcostal Suprasternal

view AP2 AP3 AP4 AP5PLAXRVIFPSAXA PSAXM PSAXPM PSAXAP SC4SC5 IVCSUPRA

of cines 1,928 2,094 2,165 541 2,745 373 2,126 2,264 823 106 759 54 718 76

The network architecture can be seen in Fig. 3. The input to the network is
a ten-frame tensor randomly extracted from an echo cine, and each frame is a

Mobile Quantitative Echocardiography 77

Fig. 3. The network architecture. Relevant features are extracted from the individual
frames by the DenseNet blocks, which are then fed into the Long Short-Term Memory
(LSTM) blocks to extract the temporal information across ten sequential echo cine
frames.

120×120 pixel, gray-scale image. The network has four components, as shown
in Fig. 3: (1) A seven-layer DenseNet [5] model that extracts per-frame features
from the input; (2) an LSTM [4] layer with 128 units that captures the temporal
dependencies from the generated DenseNet features, which produces another set
of features, one for each frame; (3) a regression layer that produces the quality
score from the output feature of the LSTM layer for each frame; and (4) a
softmax classifier that predicts the content view from the LSTM features for
each frame.

Our DenseNet model uses the following hyper-parameters. First, the
DenseNet has one convolution layer with sixteen 3× 3 filters, which turns the
gray-scale (1-channel) input images to sixteen channels. Then, the DenseNet
stacks three dense blocks, each followed by a dropout layer and an average-
pooling layer with filter size of 2× 2. Each dense block has exactly one dense-
layer, which consists of a batch-normalized [6] convolution layer with six 3× 3
filters and a Rectified Linear Unit (ReLU) [7] activation function. Finally, the
per-frame quality scores and view predictions are averaged, respectively, to pro-
duce the final score and prediction for the ten-frame tensor.

2.2 Split Model

Initially, our system suffered from high latency due to the long inference times
associated with running the entire network on an Android CPU. Since the
network contains a ten-frame LSTM, we needed to buffer ten frames into a
120× 120× 10 tensor, then run that tensor through both the Dense and LSTM
layers of the network before getting any result. This produced a latency of up to
1.5 s, which users found frustrating and ultimately detrimental to the usefulness
of the system.

78 N. Van Woudenberg et al.

In order to reduce the latency of the feedback, we split the previously
described network into two sections: the Convolution Neural Network (CNN)
section, which performs the feature extraction on each frame as they come in,
and the Recurrent Neural Network (RNN) section, which runs on tensors now
containing the features extracted from the previous ten frames. With the split
model, we can essentially parallelize the feature extracting CNNs and the quality
predicting RNN. See Fig. 6 for a visual view of the CNN/RNN timing.

2.3 Software Architecture

Figure 4 shows the data flow pipeline of the application. Input frames are cap-
tured by the frame grabber and are fed into the mobile application’s Main Activ-
ity at a resolution of 640× 480 at 30 Hz. We created a customized version of
the UVCCamera library, openly licensed under Apache License, to access the
frame grabber as an external web camera [2]. The application then crops the
raw frames down to include only the ultrasound beam, the boundaries of which
can be adjusted by the user. The cropped data is resized down to 120× 120 to
match the network’s input dimensions. A copy of the full-resolution data is also
saved for later expert evaluation. The resized data is then sent to an instance
of TensorFlow Runner, a custom class responsible for preparing and running
our data through the Android-Java implementation of the TensorFlow inference
engine [1]. Here, we first perform a simple contrast enhancement step to mitigate
the quality degradation introduced by the frame grabber. The frames are then
sent to one of three identical Convolutional Neural Networks (CNN-1, CNN-2,
or CNN-3). Each CNN runs in a separate thread in order to prevent lag during
particularly long inference times. The extracted features are saved into a feature
buffer which shared between all three threads. Once the shared feature buffer
fills, the RNN thread is woken up and runs the buffered data through the LSTM
portion of the network to produce the classification and quality predictions to
be displayed in the GUI.

Fig. 4. Flow diagram of the software design.

Mobile Quantitative Echocardiography 79

3 Results

3.1 Classification

The training accuracy for the view classification was 92.35%, with a test accuracy
of 86.21%. From the confusion matrix shown in Fig. 5, we can see that the
majority of the classification error results from the parasternal short axis views,
specifically PSAXM , PSAXPM , and PSAXAPIX . These 3 views are quite similar
both visually and anatomically, and some of the cines in our training set contain
frames from multiple PSAX views which may be confusing our classifier. The
subcostal 5-chamber view also performed poorly, due to the small number of
SC5 cines in our training set.

Fig. 5. The Confusion Matrix of the view classifier, showing all 14 heart views.

3.2 Timing

Since the system is required to run in real time on live data, the details regard-
ing the timing are important to evaluating its performance. Figure 6 shows the
timing profile of the three CNN threads, along with the single RNN thread,
collected through Android Studio’s CPU profiler tool. The three CNNs can be
seen extracting features from ten consecutive input frames before waking the
waiting RNN thread, which then runs the quality prediction on the buffered
features extracted by the CNNs. The target frame rate for the system is set
at 30 Hz, which can be inferred by the orange lines representing the arrival of

80 N. Van Woudenberg et al.

Fig. 6. Timing diagram of the three CNN and one RNN threads. The orange lines
show the arrival of the input frames.

input frames. The mean CNN run-time (including feeding the input, running
the network, and fetching the output) is 28.76 ms with an standard deviation of
16.42 ms. The mean run time of the RNN is 157.48 ms with a standard deviation
of 21.85 ms. Therefore, the mean latency of the feedback is 352.58± 38.27 ms,
when measured from the middle of the ten-frame sequence.

In order to prevent lag resulting from the build-up of unprocessed frames,
the CNNs and RNN need to finish running before they are requested to process
the next batch of data. To accomplish this reliably, all the per-frame processing
must complete within Tmax,CNN , calculated as follows:

Tmax,CNN = (# of CNNs) × 1
FPS

=
3
30

= 100 ms (1)

while the RNN needs to complete its processing before the features from the
next ten frames are extracted:

Tmax,RNN = (buffer length) × 1
FPS

=
10
30

= 333.33ms (2)

With the chosen three-CNN-one-RNN configuration, the application required
the fewest number of threads while still providing enough tolerance to avoid
frame build-up.

Mobile Quantitative Echocardiography 81

4 Discussion

In this paper, we present a system that provides ultrasound operators with
real-time feedback about the heart echoes being captured, in the form of view
classification and image quality estimation. The system is implemented in an
Android application on an off-the-shelf Samsung S8+ and can be connected to
any ultrasound machine with a DVI output port. In order to reduce the latency
of the system, the neural network is split into two sections: the CNN and the
RNN, allowing us to parallelize their execution. With the split model, the system
is able to operate at 30 frames per second, while providing feedback with a mean
latency of 352.91± 38.27 ms.

The next step of this project is to validate the system in a clinical setting.
Our group is currently running a study at Vancouver General Hospital, in which
we ask subjects to acquire cines of the four POCUS views once with and once
without displaying the quality and view feedback in the app. The two datasets
will be scored by expert echocardiographers and then compared in order to quan-
tify the accuracy and utility of the system. We also plan to migrate the backend
to TensorFlow Lite, a lightweight implementation of the inference engine, which
will allow us to leverage the hardware acceleration available on modern Android
devices to help us further reduce the system’s latency.

Acknowledgements. The authors wish to thank the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) and the Canadian Institutes for Health
Research (CIHR) for funding this project. We would like to also thank Dale Hawley
from the Vancouver Coastal Health Information Technology for providing us access to
the echo data during the development of this project.

References

1. Tensorflow android camera demo. https://github.com/tensorflow/tensorflow/tree/
master/tensorflow/examples/android. Accessed 4 Feb 2018

2. Uvccamera. https://github.com/saki4510t/UVCCamera. Accessed 16 Dec 2017
3. Ciampi, Q., Pratali, L., Citro, R., Piacenti, M., Villari, B., Picano, E.: Identification

of responders to cardiac resynchronization therapy by contractile reserve during
stress echocardiography. Eur. J. Heart Failure 11(5), 489–496 (2009)

4. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

5. Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected con-
volutional networks. In: IEEE CVPR, vol. 1–2, p. 3 (2017)

6. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: Proceedings of the 32nd International Confer-
ence on Machine Learning, ICML 2015, pp. 448–456. JMLR (2015)

7. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: Proceedings of the 27th International Conference on Machine Learning
(ICML-2010), pp. 807–814 (2010)

8. Tighe, D.A., et al.: Influence of image quality on the accuracy of real time three-
dimensional echocardiography to measure left ventricular volumes in unselected
patients: a comparison with gated-spect imaging. Echocardiography 24(10), 1073–
1080 (2007)

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/saki4510t/UVCCamera

	Quantitative Echocardiography: Real-Time Quality Estimation and View Classification Implemented on a Mobile Android Device
	1 Introduction
	2 System Design
	2.1 Deep Learning Design
	2.2 Split Model
	2.3 Software Architecture

	3 Results
	3.1 Classification
	3.2 Timing

	4 Discussion
	References

