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Abstract. Medical ultrasound is rapidly advancing both through more
powerful hardware and software; in combination these allow the modality
to become an ever more indispensable point-of-care tool. In this paper,
we summarize some recent developments on the image analysis side that
are enabled through the proprietary ImFusion Suite software and corre-
sponding software development kit (SDK). These include 3D reconstruc-
tion of arbitrary untracked 2D US clips, image filtering and classifica-
tion, speed-of-sound calibration and live acquisition parameter tuning in
a visual servoing fashion.

1 Introduction

Today, a steadily increasing number of US device vendors dedicate their efforts
on Point-of-Care Ultrasound (POCUS), including Philips1, Butterfly2, Clarius3,
UltraSee4, and others. In general, these systems’ development is hardware-driven
and aims at introducing conventional scanning modes (B-mode, color Doppler)
in previously inaccessible surroundings in the first place [1].

At the same time, significant work on improving non-point-of-care US has
been presented in recent years [2]. Amongst them, three-dimensional (3D) US
relying on external hardware tracking is already translating into clinical rou-
tine, enabling advanced live reconstruction of arbitrary anatomy [3]. Naturally,
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the trend to employ deep learning tools has not stopped short of US, exhibit-
ing remarkable progress to segment challenging anatomies or classify suspicious
lesions, as shown in the review by Litjens et al. [4] and references therein.

In liaison, these breakthroughs in terms of hardware and image processing
allow us to look beyond conventional usage of US data. In this work, we sum-
marize recent advances in POCUS and interventional US using innovative image
analysis and machine learning technologies, which were implemented within our
medical imaging framework ImFusion Suite.

For instance, very long 3D US scans facilitate automatic vessel mapping,
cross-section and volume measurements as well as interventional treatment plan-
ning (available on an actual medical device now, see PIUR tUS5). Brain shift
compensation based on multi-modal 3D US registration to pre-operative MR
images enables accurate neuro-navigation, which has successfully been proven
on real patients during surgery [5].

In the remainder of the paper, we start with a brief overview of the impor-
tant features of our ImFusion software development kit (SDK) allowing for such
developments and then highlight the following applications in greater detail:
(i) Employing deep learning and optionally inertial measurement units (IMU),
we have been able to show that 3D reconstruction is even possible without exter-
nal tracking systems. (ii) For orthopedic surgery, precise bone surface segmen-
tation facilitates intra-operative registration with sub-millimeter accuracy, in
turn allowing for reliable surgical navigation. (iii) Last but not least, ultrasound
uniquely allows to close the loop on the acquisition pipeline by actively influenc-
ing how the tissue is insonified and the image formed. We perform a tissue-
specific speed-of-sound calibration, apply learning-based filtering to enhance
image quality and optimally tune the acquisition parameters in real-time.

2 ImFusion SDK as Research Platform

A variety of open source C++ platforms and frameworks for medical imaging
and navigation with US have evolved in the past, including 3D Slicer [6] with the
SlicerIGT extension [7], the PLUS toolkit [8], CustusX [9], and more recently
SUPRA [10]. All of these have a research focus, and have successfully helped to
prototype novel algorithms and clinical workflows in the past, some with a very
active development community striving for continuous improvement. Neverthe-
less, turning an algorithm from a research project into a user-friendly, certified
medical product may be a long path.

Complementary to the above, we are presenting the ImFusion Suite & SDK,
a platform for versatile medical image analysis research and product-grade soft-
ware development. The platform is based on a set of proprietary core compo-
nents, whereupon openly accessible plugins contributed by the research commu-
nity can be developed. In this work, we emphasize the platform’s capabilities
to support academic researchers in rapid prototyping and translating scientific
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ideas to clinical studies and potential subsequent commercialization in the form
of university spin-offs. The SDK has been employed by various groups around
the world already [5,11–14].

It offers radiology workstation look and feel, ultra-fast DICOM loading, seam-
less CPU/OpenGL/OpenCL synchronization, advanced visualization, and vari-
ous technology modules for specialized applications. In order to deal with real-
time inputs such as ultrasound imaging or tracking sensors and other sensory
information, the streaming sub-system is robust, thread-safe on both CPU and
GPU, and easily extensible. Research users may script their algorithms using
XML-based workspace configurations or a Python wrapper. Own plugins can be
added using the C++ interface. In the context of dealing with 3D ultrasound,
further key features that go beyond what is otherwise available include robust
image-based calibration tools similar to [15], and various 3D compounding meth-
ods that allow for on-the-fly reconstruction of MPR cross-sections [16]. Last but
not least, handling of tracking sensors include various synchronization, filter-
ing and interpolation methods on the stream of homogeneous transformation
matrices. Having all of the above readily available allows researchers to focus on
advancing the state of the art with their key contribution, as demonstrated in
the following examples.

3 3D POCUS Without External Tracking

Most POCUS systems are currently based on 2D ultrasound imaging, which
greatly restricts the variety of clinical applications. While there exist systems
enabling the acquisition of three-dimensional ultrasound data, they always come
with drawbacks. 3D matrix-array ultrasound probes are very expensive and pro-
duce images with limited field-of-view and quality. On the other hand, optical or
electro-magnetic tracking systems are expensive, not easily portable, or hinder
usability by requiring a permanent line-of-sight. Finally, leveraging the inertial
measurement units (IMU) that are embedded in most current US probes provides
a good estimate of the probe orientation, but acceleration data is not accurate
enough to compute its spatial position.

Therefore, in the past decades, there has been a significant effort in the
research community to design a system that would not require additional and
cumbersome hardware [18,19], yet allowing for 3D reconstruction with a free-
hand swept 2D probe. The standard approach for a purely image-based motion
estimation was named speckle decorrelation since it exploits the frame-to-frame
correlation of the speckle pattern present in US images. However, due to the
challenging nature of the problem, even recent implementations of this approach
have not reached an accuracy compatible with clinical requirements.

Once again, deep learning enabled a breakthrough by boosting the perfor-
mance of image-based motion estimation. As we have shown in [17], it is possible
to train a network to learn the 3D motion of the probe between two successive
frames in an end-to-end fashion: the network takes the two frames as input and
directly outputs the parameters of the translation and rotation of the probe
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Fig. 1. (a) Overview of our method for a frame-to-frame trajectory estimation of the
probe. (b) Architecture of the neural network at the core of the method. (c) Results
of the reconstructed trajectories (without any external tracking) on several sweeps
acquired with a complex motion. From [17], modified.

(see Fig. 1a and b). By applying such a network sequentially to a whole freehand
sweep, we can reconstruct the complete trajectory of the probe and therefore
compound the 2D frames into a high-resolution 3D volume. We also show that
the IMU information can be embedded into the network to further improve the
accuracy of the reconstruction. On a dataset of more than 700 sweeps, our app-
roach yields trajectories with a median normalized drift of merely 5.2%, yielding
unprecedentedly accurate length measurements with a median error of 3.4%.
Example comparisons to ground truth trajectories are shown in Fig. 1c.

4 Ultrasound Image Analysis

A core feature of the ImFusion SDK consists of its capabilities for real-time image
analysis. Provided that the employed US system allows for raw data access, the
processing pipeline from live in-phase and quadrature (IQ) data regularly starts
with demodulation, log-compression, scan-line conversion, and denoising.

Image Filtering. Instead of relying on conventional non-linear image filters, it
is possible to use convolutional neural networks (CNNs) for denoising. Simple
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Fig. 2. (a) Raw B-mode image of volunteer forearm cross-section (left), and the result
of the CNN-based denoising filter (right). (b)(c) Examples of automatic bone segmen-
tations in various US images (different bones and acquisition settings), along with the
neural network detection map. From [21], modified.

networks with U-net architecture [20] can be trained with l2-loss to perform a
powerful, anatomy-independent noise reduction. Figure 2a depicts an exemplary
B-mode image of a forearm in raw and filtered form. More complex, application-
specific models could be used to emphasize a desired appearance, or to highlight
suspicious lesions automatically.

Bone Surface Segmentation and Registration. As presented in [21], we
have shown that the automatic segmentation of bone surfaces in US images is
highly beneficial in Computer Assisted Orthopedic Surgeries (CAOS) and could
replace X-ray fluoroscopy in various intra-operative scenarios. Specifically, a fully
CNN was trained a set of labeled images, where the bone area has been roughly
drawn by several users. Because the network turned out to be very reliable,
simple thresholding and center pixel extraction between the maximum gradient
and the maximum intensity proved sufficient to determine the bone surface line,
see example results in Fig. 2b, c. Once a 3D point cloud of the bone surface was
assembled using an external optical tracking system, pre-operative datasets such
as CT or MRI can be registered by minimizing the point-to-surface error. An
evaluation on 1382 US images from different volunteers, different bones (femur,
tibia, patella, pelvis) and various acquisition settings yielded a median preci-
sion of 0.91 and recall of 0.94. On a human cadaver with fiducial markers for
ground truth registration, the method achieved sub-millimetric surface registra-
tion errors and mean fiducial errors of 2.5 mm.

5 Speed-of-Sound Calibration

In conventional delay-sum US beamforming, speed-of-sound inconsistencies
across tissues can distort the image along the scan-lines direction. The reason
is that US machines assume a constant speed-of-sound for human tissue; how-
ever, the speed-of-sound varies in the human soft tissue with an approximate
range of 150 m/s (Fig. 3a). To improve the spatial information quality, we have
developed a fast speed-of-sound calibration method based on the bone surface
detection algorithm outlined in the previous section.
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(a) Femur MRI (b) Steered US Frames

Fig. 3. (a) The difference in fat-to-muscle ratio between two patients; red and green
lines show the length of fat and muscle tissues. Considering the average speed-of-
sound in human fat and muscle (1470 m/s and 1620 m/s), one can compute the average
speed-of-sound for both images, resulting in 1590 m/s and 1530 m/s, respectively. At a
depth of 6 cm, this difference can produce around 1 mm vertical shift in the structures.
(b) Superimposed steered US images before (left) and after (right) the speed-of-sound
calibration; red and green intensities are depicting the individual steered frames with
angles of ±15◦. Note the higher consistency of the bone in the right image. (Color
figure online)

As presented in [21], two US steered frames with a positive and a negative
angle are acquired in addition to the main image. Then, the bone surface is
detected in the steered images and they are interpolated into one single frame.
Wrong speed-of-sound causes both vertical and horizontal misplacements for the
bone surface in the steered images. The correct speed-of-sound is estimated by
maximizing the image similarity in the detected bone region captured from the
different angles (Fig. 3b). This method is fast enough to facilitate real-time speed-
of-sound compensation and hence to improve the spatial information extracted
from US images during the POCUS procedures.

6 Acquisition Parameter Tuning

One last obstacle of a wider adoption of ultrasound is the inter-operator variabil-
ity of the acquisition process itself. The appearance of the formed image indeed
depends on a number of parameters (frequency, focus, dynamic range, bright-
ness, etc.) whose tuning requires significant knowledge and experience. While we
have already shown above that – thanks to deep learning – US image analysis
algorithms can be made very robust to a sub-optimal tuning of such parameters,
we can even go one step further and close the loop of the acquisition pipeline.

Just like standard cameras use face detection algorithm to adjust the focus
plane and the exposure of a picture, we can leverage a real-time detection of the
object of interest in the ultrasound frame to adjust the acquisition parameters
automatically as shown in Fig. 4. Using machine learning to assess the image
quality of an ultrasound image has already been proposed (e.g. [22]), but using
a real-time detection allows to tailor our tuning of the parameters in an explicit
and straightforward way.
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Fig. 4. Automatic tuning of the US acquisition parameters based on the real-time bone
detection presented in Sect. 4, sub-optimal settings marked with red lines. (Color figure
online)

More specifically, knowing the position of the object in the image allows us
to directly set the focus plane of the ultrasound beams to the correct depth. It
also enables us to adjust the frequency empirically: the shallower the object, the
higher we can define the frequency (and vice versa). Finally, we can also choose
an adequate brightness and dynamic range based on statistics within a region
of interest that includes the target structure.

We believe such an algorithm could allow less experienced users to acquire
ultrasound images with satisfactory quality, and therefore make the modality
more popular for a larger number of clinical applications.

7 Conclusion

We have presented a number of advanced POCUS & interventional US applica-
tions through the ImFusion Suite. While many aspects of 3D ultrasound with
and without external tracking have been thoroughly investigated by the commu-
nity in the past, dealing with such data is by no means trivial, hence dedicated
software was in our experience crucial to achieve such results.
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