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Abstract. Clinically, the transthalamic plane of the fetal head is manually
examined by sonographers to identify whether it is a standard plane. This
examination routine is subjective, time-consuming and requires comprehensive
understanding of fetal anatomy. An automatic and effective computer aided
diagnosis method to determine the standard plane in ultrasound images is highly
desirable. This study presents a novel method for the quality assessment of fetal
head in ultrasound images based on Faster Region-based Convolutional Neural
Networks (Faster R-CNN). Faster R-CNN is able to learn and extract features
from the training data. During the training, Fast R-CNN and Region Proposal
Network (RPN) share the same feature layer through joint training and alternate
optimization. The RPN generates more accurate region proposals, which are used
as the inputs for the Fast R-CNNmodule to perform target detection. The network
then outputs the detected categories and scores. Finally, the quality of the
transthalamic plane is determined via the scores obtained from the numbers of
detected anatomical structures. These scores detect the standard plane as well.
Experimental results demonstrated that our method could accurately locate five
specific anatomical structures of the transthalamic plane with an average accuracy
of 80.18%, which takes only an approximately 0.27 s running time per image.
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1 Introduction

Ultrasound image has been preferred as an imaging modality for prenatal screening due
to its noninvasive, real-time tracking, and low-cost. In prenatal diagnosis, it is
important to obtain standard planes (e.g., the transthalamic plane) for prenatal ultra-
sound diagnosis. With the standard plane, doctors can measure the fetal physiological
parameters to assess the growth and development of the fetus. Moreover, the weight of
the fetus also can be obtained by measuring the parameters of biparietal diameter and
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head circumference. This clinical practice is challenging for novices since it requires
high-level clinical expertise and comprehensive understanding of fetal anatomy. Nor-
mally, ultrasound images scanned by novices are evaluated by experienced ultrasound
doctors in the clinical practice, which is time-consuming and unappealing. To assist
junior doctors by tracking the quality of the scanned image, automatic computer aided
diagnosis for the quality assessment of ultrasound image is highly demanded.
Accordingly, “intelligent ultrasound” [1] has become an inevitable trend due to the
rapid development of image processing techniques. Powered by the machine learning
and deep learning techniques, many dedicated research works have been proposed for
this interesting topic, which mainly focus on the quality assessment of fetal ultrasound
images to locate and identify the specific anatomical structures. For instance, Li et al.
[2] combined Random Forests and medicine prior knowledge to detect the region of
interest (ROI) of the fetal head circumference. Vaanathi et al. [3] utilized FCN
architecture to detect the fetal heart in ultrasound video frames. Each frame is classified
into three common standard views, e.g. four chamber view (4C), left ventricular out-
flow tract view (LVOT) and three vessel view (3V) captured in a typical ultrasound
screening. Dong et al. [4] found the standard plane by fetal abdominal region local-
ization in ultrasound using radial component model and selective search. Chen et al. [5]
proposed an automatic framework based on deep learning to detect standard planes.
The automatic framework achieved competitive performance and showed the potential
and feasibility of deep learning for regions localization in ultrasound images. However,
there are still lack of existing methods proposed under the clinical quality control
criteria for quality assessment of fetal transthalamic plane in ultrasound images [6].

For quality control under the clinical criteria, the quality evaluation of the ultra-
sound images is scored via the number of the detected regions of important anatomical
structures. The scores are given by comparing the detected region results with the
bounding boxes annotated by doctors. Specifically, a standard transthalamic plane of
fetal consists of 5 specific anatomical parts which can be clearly visualized, including
lateral sulcus (LS), thalamus (T), choroid plexus (CP), cavum septi pellucidi (CSP) and
third ventricle (TV). The ultrasound map and the specific pattern of the fetal head plane
including transthalamic plane, transventricular plane, transcerebellar plane are shown
in Fig. 1. However, the ultrasound images of these three planes are very similar and the
doctors are confusing. In addition, there are remaining challenges for quality assess-
ment of the ultrasound images due to the following limitations: (1) The quality of
ultrasound images is often affected by noise; (2) The anatomical structure’s area is
scanned in different magnification levels; (3) The scanning angle and the fetal location
are unstable due to the rotation of the anatomical structure; (4) There are high variations
in shapes and sizes of the anatomical structures among the patients.

To solve the above-mentioned challenges, we propose a deep learning based
method for quality assessment of the fetal transthalamic plane. Specifically, our pro-
posed method is based on the popular faster region-based convolutional network
(Faster R-CNN [7]) technique. The remarkable ability of Faster R-CNN has been
demonstrated in effectively learning and extracting discriminative features from the
training images. Faster R-CNN is able to simultaneously perform classification and
detection tasks. First, the images and the annotated ground-truth boxes are fed into
Faster R-CNN. Then, Faster R-CNN generates the bounding boxes and the scores to
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denote the detected regions and the quality of the detected regions, respectively. The
output results are used to determine whether the ultrasound image is a standard plane.
To the best of our knowledge, our proposed method is the first fully automatic deep
learning based method for quality assessment of the fetal transthalamic plane in
ultrasound images.

Overall, our contributions can be mainly highlighted as follows: (1) This is the first
Faster R-CNN based method for the quality assessment of transthalamic plane of fetal;
(2) The proposed framework could effectively assist doctors and reduce the workloads
in the quality assessment of the transthalamic plane in ultrasound images; (3) Experi-
mental results suggest that Fast R-CNN can be feasibly applied in many applications of
ultrasound images. The proposed technique is generalized and can be easily extended
to other medical image localization tasks.

2 Methodology

Figure 2 illustrates the framework of the proposed method for quality assessment of the
fetal transthalamic plane. Faster R-CNN contains Fast R-CNN and RPN module.
Images are cropped with a fixed-size of 224 � 224. The shared feature map, Fast
R-CNN and RPN module of Faster R-CNN are explained in detail in this section.

2.1 Shared Feature Map

To achieve a fast detection while ensuring the accuracy of positioning results, the RPN
module and Fast R-CNN [8] module share the first 5 convolutional layers of the
convolutional neural network. However, the final effect and outputs of RPN and Fast
R-CNN are different since the convolutional layers are modified in different ways.

Fig. 1. The ultrasound map and the specific pattern of three fetal head plane. (a) transthalamic
plane; (b) transventricular plane; (c) transcerebellar plane.
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At the same time, the feature map of the shared convolutional layer extraction must
include the features required by both modules. This requirement cannot be easily
obtained by just only using back propagation, which is in combination with the loss
function optimization of the two modules. Fast R-CNN may not converge when the
RPN could not provide fixed sizes of predicted bounding boxes.

To tackle the mentioned difficulties, Faster R-CNN learns the shared features
through joint training and alternative optimization. Specifically, the pre-trained model
of VGG16 is initialized and fine-tuned for training the RPN module. The generated
bounding boxes are used as inputs to Fast R-CNN module. A separate detection
network is then trained by Fast R-CNN. The pre-trained model of Fast R-CNN is the
same as the pre-trained model of RPN module. However, these two networks are
trained separately and do not share parameters. Next, the detection network is used to
initialize the RPN training, but we fix the shared convolutional layer and only fine tune
the RPN-specific layers. Then, we still keep the shared convolutional layer fixed and
the RPN result is used to fine-tune the full connection layer of the Fast R-CNN module
again. As a result, the two networks keep sharing the same convolutional layer until the
end of the network training. Also, the detection and identification sets form a unified
network.

2.2 Fast R-CNN Module

The structure of Fast R-CNN is designed based on R-CNN. In R-CNN, the processing
steps (e.g., region proposal extraction, CNN features extraction, support vector
machine (SVM) classification and box regression) are separated from each other that

Fig. 2. The framework of our method based on Faster R-CNN.
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causes the training process hardly to optimize the network performance. By contrast,
the training process of Fast R-CNN is executed in an end-to-end manner (except for the
region proposal step). Fast R-CNN directly adds an region of interest (ROI) pooling
layer, which is essentially equivalent to the simplification of spatial pyramid pooling
(SPP). With ROI layer, Fast R-CNN convolutes an ultrasound image only once. Then,
it extracts feature from the original image and locates its region proposal boxes, which
greatly improves the speed of the network. Fast R-CNN eventually outputs the
localization scores and the detected bounding-boxes simultaneously.

Base Network: Fast R-CNN is trained on VGG16 and the network is modified to be
able to receive both input images and the annotated bounding boxes. Fast R-CNN
preserves 13 convolutional layers and 4 max pooling layers of the VGG-16 architec-
ture. In addition, the last fully connected layer and softmax of VGG16 are replaced by
two sibling layers.

ROI Pooling Layer: The last max pooling layer of VGG16 is replaced by an ROI
pooling layer to extract the fixed-length of feature vectors from the generated feature
maps. Fast R-CNN is able to convolute an image only once. It extracts feature from the
original image and locates its region proposal boxes, which boosts the speed of the
network. Since the size of the ROI pooling input is varying, each pooling grid size
needs to be designed, which ensures that the subsequent classification in each region
can be normally preceded. For instance, the input size of a ROI is h � w, the output
size of the pooling is H � W, and the size of each grid is designed as h/H � w/W.

Loss Function: Two output layers of Fast R-CNN include the classification proba-
bility score prediction for each ROI region p, and the offset for each ROI region’s

coordinate tu ¼ tux ; t
u
y ; t

u
w; t

u
h

� �
; 0� u�U, where U is the number of object classes. The

loss function of Fast R-CNN is defined as follows:

L ¼ Lcls p; uð Þþ kLloc tu; vð Þ; if u is a structure;
Lcls p; uð Þ; if u is a background;

�
ð1Þ

where Lcls is the loss function of the classification, and Lloc is the loss function for the
localization. It is worthy mentioned that we do not consider the loss function of the
bounding boxes location if the classification result is misclassified as the background.
The loss function of Lcls is defined as follows:

Lcls p; uð Þ ¼ log pu; ð2Þ

where Lloc is also described as the difference between the predicted parameter tu

corresponding to the real classification and the true translation scaling parameter t. Lloc
is defined as follows:

Lloc tu; vð Þ ¼
X4

i¼1
g tui � vi
� �

; ð3Þ
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where g is the smooth deviation, which is more sensitive to the outlier. g is defined as

g xð Þ ¼ 0:5x2; xj j\1;
xj j � 0:5; otherwise:

�
ð4Þ

2.3 RPN Module

The role of RPN module is to output the coordinates of a group of rectangular predicted
bounding boxes. The implementation of RPN module did not slow down the training
and detection process of the entire network because of the shared feature map. By
taking the shared feature map as input of the RPN network, repetitive feature extraction
is avoided and the calculation of regional attention is nearly cost-free. The RPN module
performs convolution with a 3 � 3 sliding window on the incoming convolutional
feature map and generate a 512-dimension feature matrix.

Then, RPN module also takes advantage of the principle of parallel output and
accesses both branches after generating a 512-dimensional feature. The first branch is
used to predict the upper left coordinates x, y, width w, and height h of the predicted
bounding boxes corresponding to the central anchor points of the bounding boxes. For
the diversity of predicted bounding boxes, the multi-scale method commonly is used in
the RPN module. In order to obtain the more accurate predicted bounding boxes, the
parameterizations of bounding box’s coordinates are introduced. The second branch
classifies the predicted bounding regions by the softmax classifier, which obtains a
foreground bounding boxes and a background predicted bounding boxes (detection
target is a foreground predicted bounding boxes). The last two branches converge at the
FC layer, which is responsible for synthesizing the foreground predicted bounding box
scores and the bounding box regression offsets, while removing the candidate boxes
that are too small and out of bounds. In fact, the RPN module can get about 20,000
predicted bounding boxes, but there are many overlapping boxes. Here, a non-
maximum suppression method is introduced to set the Intersection over Union (IOU) to
a threshold of 0.7, i.e., preserving only predicted bounding boxes with local maximum
score not exceeding 0.7. Finally, RPN module only passes 300 bounding boxes with
higher score to the Fast R-CNN module. The RPN module not only simplifies the
network input and improves the detection performance, but also enables the end-to-end
training of the entire network, which is important for performance optimization.

3 Experiments

3.1 Dataset

The ultrasound images, which contain one single fetus, are collected from a local
hospital. The gestation age of the fetus varies from 14 to 28 weeks. The most clearly
visible images are selected in the second trimester. As a result, a total of 513 images
which clearly visualize the 5 anatomical structures of LS, CP, T, CSP and TV are
selected.
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Due to the diversity of image sizes in the original dataset, the images are resized to
720 � 960 for further processing. Since the training for Faster R-CNN requires a large
number of images, we increase the numbers and varieties of images by adopting a
commonly used data augmentation method (e.g., random cropping, rotating and mir-
roring). As a result, a total of 4800 images are finally selected for training and the
remaining 1153 images are used for testing. All the training and testing images are
annotated and confirmed by an 8 years clinical experienced ultrasound doctor. All
experiments are performed on a computer with CPU Inter Xeon E5-2680 @ 2.70 GHz,
GPU NVIDIA Quadro K4000, and 128G of RAM.

3.2 Results

The setting of the training process is kept the same whenever possible for fair com-
parison. Recall (Rec), Precision (Prec) and Average Precision (AP) are used as per-
formance evaluation metrics. We adopt 2 popular object detection methods including
Fast R-CNN and Yolov2 [10] for performance comparisons. Table 1 summarizes the
experimental results of each network. We observe that the detection results for single
anatomical structure of the LS and CP are the best. This is because LS and CP have
distinct contour, moderate size with high contrast and less surrounding interference.
Another reason is that LS and CP classes contain more training samples than other
classes, making the detection biased to detect these classes and misdetect other classes.
The results of TV are quite low due to its blurry anatomical structure, small size, and
structure similarity of other tissues.

Generally, the detection performance of Faster R-CNN is better than Fast R-CNN
and Yolov2. In particular, Faster R-CNN has significantly improved the detection
performance of TV. The running time per image from Fast R-CNN, YOLOv2, and
Faster R-CNN is 2.7 s, 0.0006 s, and 0.27 s, respectively. Although the running time
of Faster R-CNN is not the fastest, its speed still satisfies the clinical requirements.

Figure 3 shows the structure localization results using the proposed technique
compared with other methods. The green, red, yellow, blue and green bounding boxes

Table 1. Comparison of the proposed method with other methods (%).

Method Value LS CP T CSP TV

Fast R-CNN Rec 87.6 63.7 62.6 44.2 –

Prec 84.7 57.0 60.8 29.3 –

AP 70.6 36.3 39.5 19.8 –

YOLOv2 Rec 90.4 83.7 34.7 48.6 4.2
Prec 99.6 97.2 79.9 94.1 85.2
AP 90.3 82.9 30.3 46.9 3.6

Faster R-CNN (VGG16) Rec 96.8 96.0 89.6 89.3 56.5
Prec 96.6 96.7 77.1 94.6 72.8
AP 94.9 93.8 81.0 87.1 44.1
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indicate the LS, CP, T, CSP and TV, respectively. As shown in Fig. 3, our method can
simultaneously locate multiple anatomical structures in an ultrasound image and
achieve the most superior localization results.

4 Conclusion

In this paper, we propose an automatic detection technique for quality assessment of
fetal head in ultrasound images. We utilize Faster R-CNN to automatically locate five
specific anatomical structures of the fetal transthalamic plane. Accordingly, the quality
of the ultrasound image is scored and the standard plane is determined based on the
number of detected regions. Experimental results demonstrate that it is feasible to
employ deep learning for the quality assessment of fetal head ultrasound images. This
technique can be also extended to many ultrasound images tasks. Our future work will
tackle the existing problem of inhomogeneity of image contrast in ultrasound images,
which will apply intensity enhancement method to enhance the contrast between the
anatomical structures and the background. The clinical prior-knowledge will be utilized
to achieve better detection and localization.
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Fig. 3. The detection results of Fast R-CNN, YOLOv2, and Faster R-CNN (VGG16),
respectively. The purple, yellow, cyan, red, and green boxes locate the lateral fissure, choroid
plexus, thalamus, transparent compartment, and third ventricle, respectively. (Color figure online)
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