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Abstract. Intraoperative brain deformation reduces the effectiveness of using
preoperative images for intraoperative surgical guidance. We propose an algo-
rithm for deformable registration of intraoperative ultrasound (US) and preop-
erative magnetic resonance (MR) images in the context of brain tumor
resection. From each image voxel, a set of multi-scale and multi-orientation
Gabor attributes is extracted from which optimal components are selected to
establish a distinctive morphological signature of the anatomical and geometric
context of its surroundings. To match the attributes across image pairs, we
assign higher weights – higher mutual-saliency values - to those voxels more
likely to establish reliable correspondences across images. The correlation
coefficient is used as the similarity measure to evaluate effectiveness of the
algorithm for multi-modal registration. Free-form deformation and discrete
optimization are chosen as the deformation model and optimization strategy,
respectively. Experiments demonstrate our methodology on registering preop-
erative T2-FLAIR MR to intraoperative US in 22 clinical cases. Using manually
labelled corresponding landmarks between preoperative MR and intraoperative
US images, we show that the mean target registration error decreases from an
initial value of 5.37 ± 4.27 mm to 3.35 ± 1.19 mm after registration.
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1 Introduction

Brain shift combined with registration and tracking errors reduces the accuracy of
image-guided neurosurgery based on neuronavigation systems [1–3]. Intraoperative
ultrasound, being a real-time imaging modality, has the potential to enable the surgeon
to accurately localize the instrument trajectories in the operative field and thus facilitate
accurate resection to promote better surgical outcomes. However, registration of
intraoperative US with preoperative MR images is a challenging problem due to the
different information captured by each image modality. We present a deformable MR-
US registration algorithm that uses attribute matching and mutual-saliency weighting
and apply it to image-guided neurosurgery.

2 Methods

A registration framework usually consists of three parts: (1) the similarity measure,
which defines the criterion to align the two images; (2) the deformation model, which
defines the mechanism to transform one image to the other; and (3) the optimization
strategy, which is used to determine the best parameters of the deformation model. An
open question is how to define the similarity measure for MR-US registration. A de-
formable registration algorithm known as DRAMMS [4] has shown promise in
defining similarity based on optimal Gabor attributes modulated by quantified matching
reliabilities. It shows potential in handling large deformations and missing corre-
spondences [5]. However, the original DRAMMS defines similarity by the Sum of
Squared Differences (SSD) of attributes which limits its application in MR-US multi-
modal registration. We propose the Correlation Coefficient (CC) of attributes to better
adapt to MR-US multi-modal registration.

2.1 Problem Formulation

In the original DRAMMS formulation, given two images I1 : X1 7!R and I2 : X2 7!R in
3D image domainsXi ði ¼ 1; 2Þ �R

3, we seek a transformation T that maps every voxel
u 2 X1 to its correspondence T ðuÞ 2 X2, by minimizing an overall cost function E Tð Þ,

minT E Tð Þ ¼
Z
u2X1

ms u; T uð Þð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Mutual�Saliency

: sim AH
1 uð Þ;AH

2 T uð Þð Þ� �
du|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

AttributeMatching

þ kR Tð Þ ð1Þ

where AH
1 uð Þ i ¼ 1; 2ð Þ is the optimal attribute vector that reflects the geometric and

anatomical contexts around voxel u, and d is its dimension. The term ms u; T uð Þð Þ is a
continuously-valued mutual-saliency weight between two voxels u 2 X1 and TðuÞ 2
X2. This way, registration is driving by reliably matched voxel pairs which are not
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necessarily less deformed voxels. The term R Tð Þ is a smoothness/regularization term
usually corresponding to the Laplacian operator, or the bending energy, of the defor-
mation field T , whereas k is a parameter that controls the extent of smoothness. The
proposed framework is sketched in Fig. 1.

2.2 Attribute Matching

The aim of attribute matching is to extract and select optimal attributes that reflect the
geometric and anatomic contexts of each voxel. It consists of two parts: attribute
extraction and attribute selection.

Attribute Extraction. A set of multi-scale and multi-orientation Gabor attributes is
extracted at each voxel by convolving the images with a set of Gabor filter banks. The
parameter settings developed by [6] were adopted: the number of scales, M, is set to 4
and the number of orientations, N, is set to 6, the highest frequency is set at 0.4 Hz and
the lowest frequency at 0.05 Hz. Figure 2 shows an example of multi-scale and multi-
orientation Gabor attributes extracted from (a) intraoperative US and (b) preoperative
MR images. After attribute extraction, each voxel u ¼ x; y; zð Þ is characterized by a
Gabor attribute vector ~A1 uð Þ with dimension D ¼ M � N � 4.

Attribute Selection. The aim is to select components of attributes to increase the
reliability of matching between two images. An expectation-maximization
(EM) framework is used. Given the full-length attributes, the E-step finds spatially-
scattered (and hence spatially representative) voxel pairs with not just high similarity
but more importantly, reliably high similarity. Then on the selected voxel pairs, M-step
uses the iterative forward inclusion and backward elimination (iFIBE) feature selection
algorithm to find a subset of attribute components that maximize the similarity and
matching reliability (defined as mutual-saliency). A major difference from [4] is that the
similarity sim p; qð Þ between a pair of voxels p 2 X1; q 2 X2ð Þ is defined based on the
correlation coefficient of their attribute vectors:

sim ~A1 pð Þ; ~A2 qð Þ� � ¼ CC ~A1 pð Þ; ~A2 qð Þ� � 2 0; 1½ � ð2Þ

where higher correlation coefficient between to attribute vectors indicates higher
similarity.

Fig. 1. Non-rigid deformation framework.
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2.3 Mutual-Saliency Map to Modulate Registration

We assign a continuously-valued weight to each voxel, based on the capability of each
voxel to establish reliable correspondences across images. This idea is formulated in
Eq. (3) and in the associated Fig. 3. Mutual-saliency value, ms u; T uð Þð Þ; is calculated
by dividing the mean similarity between u and all voxels in the core neighborhood
(CN) of T uð Þ, with the mean similarity between u and all voxels in the peripheral
neighborhood (PN) of T uð Þ.

(a) (b)

High freq.

Mid freq.

Low freq.

Orientation π/4 Orientation π/2 Orientation π Orientation π/4 Orientation π/2 Orientation π

Fig. 2. Multi-scale and multi-orientation Gabor attributes extracted from (a) intraoperative US
image and (b) preoperative MR images.

Fig. 3. The idea of mutual-saliency measure: (a) The matching between a pair of voxels u and
T(u) is unique if they are similar to each other and not to anything else in the neighborhood.
A delta function in the similarity map indicates a unique matching, and hence high mutual-
saliency value. (b) Mutual-saliency function measures the uniqueness of the matching between a
voxel pair in a neighborhood. Different colors represent different layers of neighborhoods.
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ms u; T uð Þð Þ ¼ MEANv2CN T uð Þð Þ sim A1 uð Þ;A2 vð Þð Þ½ �
MEANv2PN T uð Þð Þ sim A1 uð Þ;A2 vð Þð Þ½ � ð3Þ

where sim (∙, ∙) is the attribute-based similarity between two voxels (Eq. 2). The radius
of each neighborhood is adaptive to the scale in which Gabor attributes are extracted.
For a typical isotropic 3D brain image, the radius of core, transitional and peripheral
neighborhood are 2, 5, 8 voxels, respectively [4].

2.4 Deformation Model and Optimization Strategy

The diffeomorphic FFD [7, 8] is chosen because of its flexibility to handle a smooth
and diffeomorphic deformation field. We have chosen discrete optimization, a state-of-
the-art optimization strategy known for computational efficiency and robustness
regarding local optima [9, 10].

3 Results

Preoperative T2-FLAIR MR and intraoperative predurotomy US images were acquired
from 22 patients with low-grade gliomas. A set of 15 to 16 homologous landmarks
were identified across images (pre-operative MRI vs. US before resection) and used to

Fig. 4. Preoperative MR to intraoperative US registration. (a) preoperative T2-FLAIR MR and
(b) intraoperative US images. Superimposed preoperative MR to intraoperative US (c) before
registration and (d) after non-linear correction. Arrows indicate (c) the misalignment between the
tumor boundaries in the different modalities and (d) the alignment after registration.
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validate the deformable registration algorithm [11]. The Transforms Module (General
Registration Brain) in 3D Slicer was used to determine an initial rigid transformation
between each pair of images before applying our method. Figure 4 shows an example
of one pair of preoperative T2-FLAIR and intraoperative US images and their align-
ment before and after deformable registration. Table 1 presents the mean target reg-
istration error (mTRE) in mm and for each clinical case, before and after deformable
registration.

4 Conclusions

The proposed registration algorithm reduces the mean target registration error from an
initial value of 5.37 ± 4.27 mm to 3.35 ± 1.19 mm for 22 clinical cases. Our future
work includes: (i) further comparison of different similarity measures in MR-US reg-
istration, (ii) exploring different linear registration methods to initialize deformable

Table 1. Details of inter-modality landmarks for each clinical case. The number of landmarks
and the mean initial Euclidean distances between landmark pairs are shown, and the range (min–
max) of the distances is shown in parenthesis after the mean value. The last column shows the
results after registration.

Case Number of landmarks Before registration (mm) After registration (mm)

1 15 1.82 (0.56–3.84) 1.58 (0.53–3.07)
2 15 5.68 (3.43–8.99) 3.89 (2.05–4.33)
3 15 9.58 (8.57–10.34) 4.92 (1.37–5.01)
4 15 2.99 (1.61–4.55) 2.36 (1.55–3.48)
5 15 12.02 (10.08–14.18) 4.02 (1.92–5.45)
6 15 3.27 (2.27–4.26) 1.51 (0.96–3.21)
7 15 1.82 (0.22–3.63) 1.48 (0.20–3.57)
8 15 2.63 (1.00–4.15) 2.03 (0.83–3.94)
12 16 19.68 (18.53–21.30) 5.59 (1.24–6.47)
13 15 4.57 (2.73–7.52) 3.94 (1.29–4.83)
14 15 3.03 (1.99–4.43) 2.98 (1.99–4.06)
15 15 3.21 (1.15–5.90) 2.65(1.37–5.85)
16 15 3.39 (1.68–4.47) 3.28 (1.68–4.37)
17 16 6.39 (4.46–7.83) 4.78 (3.90–6.05)
18 16 3.56 (1.44–5.47) 3.25 (1.41–4.73)
19 15 3.28 (1.30–5.42) 3.07 (1.22–4.80)
21 15 4.55 (3.44–6.17) 4.51 (2.93–5.29)
23 15 7.01 (5.26–8.26) 4.67 (3.10–5.82)
24 16 1.10 (0.45–2.04) 1.10 (0.37–2.09)
25 15 10.06 (7.10–15.12) 5.55 (2.98–7.04)
26 16 2.83 (1.60–4.40) 1.93 (1.04–3.37)
27 16 5.76 (4.84–7.14) 4.58 (0.98–6.12)
Mean ± Std 5.37 ± 4.27 3.35 ± 1.39

170 I. Machado et al.



registration, (iii) using blurring and gradient information to reduce the negative
influence of speckles in the ultrasound image and (iv) investigating the potential to
combine landmark-based to voxel-wise registration.
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