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Abstract. Gliomas are primary brain tumors of central nervous system.
Appropriate resection of gliomas in the early tumor stage is known to increase
survival rate. However, the accurate resection of tumor is a challenging problem
because the soft tissue shift may occur during the operation. To provide proper
guidance to neurosurgery, it is necessary to align magnetic resonance imaging
(MRI) and intra-operative ultrasound (iUS). In previous studies, many algo-
rithms tried to find fiducial points that can lead to the appropriate registration.
But these methods required manual specifications from experts to ensure the
reliability of the fiducials. In this study, we proposed a data-driven approach for
MRI-iUS non-linear registration using structural skeletons. The visualization of
our results indicated that our approach might provide better registration
performance.
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1 Introduction

Gliomas are primary brain tumors of central nervous system (CNS) [1]. The gliomas
arise from the glia which supports the CNS and can permeate to the neighboring areas.
They can be categorized in grade from I to IV based on their histological characteristics
defined by the World Health Organization (WHO) [2]. The grade I and II gliomas are
classified as low-grade gliomas (LGG) and grade III and IV gliomas are classified as
high-grade gliomas (HGG). The LGG grow comparatively slowly but due to their
infiltrative attribute and threatening behavior, the mean 10-year survival is 30% [1]. It
is generally accepted that the resection of the LGG may increase the survival rate [3].

Intra-operative ultrasound (iUS) was first proposed as a potential tool for guiding
resection of intracranial tumors in 1980 [4]. The iUS is still generally used because it
enables the surgeons to track the brain tissues and surgical tools in a fast, inexpensive,
and real-time way. In addition, the gliomas can often be detected in iUS images even
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when they are not detectable under the microscope. This can promote accurate
resection and helps to obtain better surgical results. However, it is difficult to design
effective surgical plans without the high-quality image-guidance. One of the principal
reason is that the surgical target and the other tissues can be shifted by intra-operative
factors such as tissue removal, change of intracranial pressure and drug administration.
However, these shifts may not be easily observed in the surgeon’s field of view.

To estimate and rectify for spatial errors resulting from intra-operative brain shifts,
registration of pre-operative magnetic resonance imaging (MRI) to iUS image has been
suggested [5–7]. This approach helps updating the surgical plans under the continuous
brain tissue shift in contrast to comparing directly between pre- and intra-operative
images. Many algorithms for registration have been proposed in the past years.
However, it is technically demanding because of its intrinsic limits such as the dif-
ferences between modalities and image qualities. Because of these problems, most MRI
to iUS registration methods were conducted by using manually selected fiducial points.

In this paper, we proposed an automatic non-linear MRI-iUS registration algorithm
using structural skeletons. First, we conducted several pre-processing steps on the MRI
and iUS. Then we calculated the structural skeletons of both modalities. Finally, we
calculated the displacement fields using the pairs of skeleton for the MRI-iUS
registration.

2 Materials and Methods

2.1 Dataset

As this proposal is submitted to the CURIOUS 2018 challenge, we used the Retro-
spective Evaluation of Cerebral Tumors (RESECT) dataset [8]. The dataset includes
pre-operative 3T MRI images including Gadolinium-enhanced T1w and T2 FLAIR
scans, iUS images as a 3D volume covering the entire tumor region after craniotomy
but before dura opening and the expert-labeled homologous anatomical landmarks,
defined on all image modalities. All reconstructed images were acquired from the same
subject and were spatially aligned under the same world coordinate space.

The MR protocol included T1w Gadolinium-enhanced sequence (TE = 2.96 ms,
TR = 2000 ms, 192 slices, slice thickness = 1 mm, acquisition matrix = 256 � 256,
in-plane resolution = 1.0 � 1.0 mm2) and FLAIR sequence (TE = 388 ms, TR =
5000 ms, 192 slices, slice thickness = 1 mm, acquisition matrix = 256 � 256, in-
plane resolution = 1.0 � 1.0 mm2), acquired on a 3T MRI scanner with a 20-channel
head coil. For subject 2, 14, 15 (Case 2, 14, 15), the pre-operative MRI included T1w
sequence (TE = 2.3 ms, TR = 2500 ms, 176 slices, slice thickness = 1 mm, acquisi-
tion matrix = 512 � 496, in-plane resolution = 1.0 � 1.0 mm2) and FLAIR sequence
(TE = 333 ms, TR = 6000 ms, 176 slices, slice thickness = 1 mm, acquisition
matrix = 256 � 224, in-plane resolution = 1.0 � 1.0 mm2) acquired on a 1.5T MRI
scanner with a 12-channel head coil.

The iUS images were acquired using the Sonowand Invite neuronavigation system.
In most cases, the 12FLA-L linear probe with a frequency range of 6 to 12 MHz and a
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footprint of 48 � 13 mm2 was used. For smaller tumors, the 12FLA flat linear array
probe with a frequency range of 6 to 12 MHz and a footprint of 32 � 11 mm2 was used.
The resolution of reconstructed 3D volume varied from 0.14 � 0.14 � 0.14 mm3 to
0.24 � 0.24 � 0.24 mm3 depending on the probe types and imaging depth.

2.2 MRI Pre-processing

First, we corrected non-uniformity to remove field bias from the MRI image. After the
bias removal, we obtained the masks of grey matter (GM), white matter (WM) and
cerebrospinal fluid (CSF) from the T1w image. After that, we cropped the T1w image
and its masks to match with the location and size of iUS image. Then we resampled the
cropped image and masks into 0.2 � 0.2 � 0.2 mm3 voxel resolution. Because the
intensity distribution of iUS image was well matched with the GM and CSF mask from
the MRI image, we used the inversed WM mask instead of using the summation of GM
and CSF mask. The small hole of the inversed mask was removed using flood-fill
algorithm with connectivity parameter 4 per each z-slice. The output mask was used to
calculate the structural skeleton of MRI image.

2.3 iUS Pre-processing

We resampled the iUS image using the cropped and resampled T1w image as refer-
ence. As the voxel resolution of reference image was 0.2 � 0.2 � 0.2 mm3, the iUS
image resampled to the same resolution. The order of axis in iUS image was matched
with the reference image. Then, the resampled iUS image was blurred with 0.5 mm full
width at half maximum (FWHM) Gaussian kernel and filtered with 3 � 3 � 3 median
kernel under voxel coordinate space. A binary mask image was obtained by applying
threshold to the filtered image and was dilated by the ball shaped structure elements
with voxel radius 15. The dilated mask was used for calculating the skeleton. We used
a semi-automatic intensity-based segmentation algorithm to compute the binary masks
for both MRI and iUS. The masks were structurally enhanced using preprocessing steps
such as full with half maximum smoothing and morphological operations, which was
performed with typical hyperparameters.

2.4 Structural Skeleton

After the refinement of the binary masks, the Euclidean skeletons were calculated for
both masks [9, 10]. For details, we inverted the masks and computed the Euclidean
distance map. The ridges of the distance map were computed by watershed algorithm.
The final skeletons of each masks were obtained by thresholding the gradient of the
ridges.
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2.5 Registration Using Deformation Fields

We applied the Demon’s algorithm for non-linear registration [11]. This algorithm
performed over the entire space of displacement field. At first, a spatial transformation
field was initialized. Then, we iterated the following steps until the error converged:

(1) Given field s, compute a correspondence update field u by minimizing the error
E which can be defined as following Eq. (1).

E uð Þ ¼ F�M � sþ uð Þj jj j2 þ ri
rx

� �
uj jj j2 ð1Þ

(2) Let c as s + u.
(3) Use diffusion-like regularization by conducting the Gaussian smoothing to the

accumulated transformation field c
(4) Substitute s with the filtered c.

As mentioned above, the variable s accounts for the given spatial transformation
field and u for the corresponding update field. The variable F accounts for the fixed iUS
image, M for the moving MRI image, ri for the noise on the image intensity and rx for
a spatial uncertainty on the correspondences.

2.6 Mean Target Registration Error

We measured the Euclidean distances between the MRI landmarks after the registration
and the corresponding iUS landmarks to calculate the target registration errors (TREs).
All landmarks were averaged per each case.

3 Results

3.1 Crop and Resampling

Figure 1 shows the results images after cropping and resampling. Figure 1(a) and
(b) represent the T1w image and the iUS image respectively. Both images were well
aligned to each other so that they could be used for the following processes.

3.2 Estimated Skeleton

Cropped and resampled MRI and iUS images were used to calculate their structural
skeletons. Figure 2 shows the skeletons obtained from the MRI and iUS images.
Figure 2(a) shows the MRI image and its skeleton, and Fig. 2(b) shows the iUS image
and its skeleton.

3.3 Skeleton Registration Using Displacement Fields

Figure 3 shows the results of the registration using the Demon’s deformation algo-
rithm. Figure 3(a) shows the original skeleton of the MRI image. Figure 3(b) and
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(c) represents the deformation fields along x-axis, top-to-bottom axis in this image, and
y-axis, left-to-right axis in this image respectively. The deformation field along z-axis
was also calculated but it was not shown in this figure for better visualization. Figure 3
(d) is the skeleton of the MRI image after the registration to iUS image. We compared
these results with the original iUS image and its skeleton (Fig. 4). The skeleton of the
iUS image was shown as the structural line with red color on both Fig. 4(a) and (b).
The structural line with green color on Fig. 4(a) represents the skeleton of MRI image
before the registration and the same line on Fig. 4(b) represents the skeleton after the
registration.

Fig. 1. The MRI image and iUS image obtained after crop and resampling of case 1. (a) is the
MRI image and (b) is the iUS image.

Fig. 2. The MRI image and iUS image of case 1 with their structural skeleton. (a) The structural
skeleton of the MRI was indicated with green line and (b) the structural skeleton of the iUS was
indicated with red line. (Color figure online)
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3.4 Image Registration Using Estimated Fields

As we calculated the deformation fields at each location on every axis, we could obtain
the final registered MRI image (Fig. 5). Figure 5(a) shows the original MRI image
overlapped with the iUS image. The MRI image was visualized with the green color
and the iUS image was visualized with red color. Figure 5(b) shows the registered MRI
image overlapped with the iUS image.

3.5 Landmark Evaluation

The Euclidean distances between two corresponding landmarks were measured. Then,
the mTREs of all cases were measured to evaluate the results (Table 1).

Fig. 3. The results of the registration using the Demon’s deformation algorithm. (a) is the
original skeleton of MRI. (b) and (c) shows the displacement field estimated after the registration
on the x-axis and the y-axis respectively. (d) is the skeleton of MRI after the MRI-iUS
registration.

Fig. 4. The demonstration of the registration using skeletons overlapped on the same iUS image
of case 1. (a) shows the skeleton of original MRI with red line and the skeleton of iUS image with
green line. (b) shows the skeleton of registered MRI with red line and the skeleton of iUS image
with green line. (Color figure online)
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Fig. 5. The demonstration of the registration. (a) The MRI image before the registration was
shown as green and the original iUS image was shown as red. (b) The MRI image after the
registration was shown as green and the original iUS was shown as red. (Color figure online)

Table 1. The mean target registration error for the all 22 cases.

Case Mean target before-registration
error (mm)

Mean target after-registration
error (mm)

1 1.8196 3.1779
2 5.6755 5.8900
3 9.5772 9.6980

4 2.9859 3.9038
5 12.0191 11.7075

6 3.2696 2.4846
7 1.8190 3.3739
8 2.6344 3.3612

12 19.6793 17.9112
13 4.5716 3.9380

14 3.0322 3.3116
15 3.2115 5.0273
16 3.3909 3.3728

17 6.3939 7.7679
18 3.5604 3.5396

19 3.2805 4.0459
21 4.5463 3.5659
23 7.1108 5.9944

24 1.1011 1.7430
25 10.0601 11.6948
26 2.8339 2.1951

27 5.7560 5.5233
Mean ± SD 5.38 ± 4.27 5.60 ± 3.94
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