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POCUS 2018 Preface

For the full potential of point-of-care ultrasound (POCUS) to be realized, POCUS
systems must be approached as if they were new diagnostic modalities, not simply
inexpensive, portable ultrasound image systems. Building on the highly successful
MICCAI 2017 POCUS Workshop, this MICCAI 2018 workshop dedicated to the
research and clinical evaluations of the technologies specific to POCUS. POCUS
involves automated data analyses, rugged hardware, and specialized interfaces to guide
novice users to properly place and manipulate an ultrasound probe and interpret the
returned ultrasound data. In particular, the output of a POCUS system should typically
be quantitative measures and easy-to-understand reformulations of the acquired data,
not b-mode images; it should be assumed that the expertise needed to interpret b-mode
images will not be readily available at the points of care. Image analysis algorithms as
well as tracking and systems engineering are essential to POCUS applications.
Example applications include detection of intra-abdominal bleeding by emergency
medical services (EMS) personnel for patient triage at the scene of an accident,
diagnosis of increased intra-cranial pressure by medics using computer-assisted mea-
surement of optic nerve sheath diameter, and monitoring of liver tissue health in the
homes of at-risk patients. At the workshop, attendees learned from leaders in POCUS
research via oral presentations as well as via numerous live demonstrations.

September 2018 Stephen Aylward
Emad Boctor

Gabor Fitchinger



BIVPCS 2018 Preface

Imaging and visualization are among the most dynamic and innovative areas of
research of the past few decades. Justification of this activity arises from the require-
ments of important practical applications such as the visualization of computational
data, the processing of medical images for assisting medical diagnosis and intervention,
and the 3D geometry reconstruction and processing for computer simulations. Cur-
rently, owing to the development of more powerful hardware resources, mathematical
and physical methods, investigators have been incorporating advanced computational
techniques to derive sophisticated methodologies that can better enable the solution
of the problems encountered. Consequent to these efforts, any effective methodologies
have been proposed, validated, and some of them have already been integrated into
commercial software for computer simulations. The main goal of this MICCAI
workshop on “Bio-Imaging and Visualization for Patient-Customized Simulations” is
to provide a platform for communication among specialists from complementary fields
such as signal and image processing, mechanics, computational vision, mathematics,
physics, informatics, computer graphics, bio-medical practice, psychology and indus-
try. Another important objective of this MICCAI workshop is to establish a viable
connection between software developers, specialist researchers, and applied end-users
from diverse fields related to signal processing, imaging, visualization, biomechanics
and simulation. This book contains the full papers presented at the MICCAI 2018
workshop on “Bio-Imaging and Visualization for Patient-Customized Simulations”
(MWBIVPCS 2018), which was organized under the auspices of the 21st International
Conference on Medical Image Computing and Computer-Assisted Intervention 2018
that was held in Granada, Spain, during September 16–20, 2018. MWBIVPCS 2018
brought together researchers representing several fields, such as biomechanics, engi-
neering, medicine, mathematics, physics, and statistics. The works included in this
book present and discuss new trends in those fields, using several methods and tech-
niques, including convolutional neural networks, similarity metrics, atlas, level-set,
deformable models, GPGPU programming, sparse annotation, and sensors calibration,
in order to address more efficiently different and timely applications involving signal
and image acquisition, image processing and analysis, image visualization, image
segmentation, image reconstruction, image fusion, computer simulation, image based
modelling, ray tracing, virtual reality, image-based diagnosis, surgery planning and
simulation, and therapy planning. The editors wish to thank all the MWBIVPCS 2018
authors and members of the Program Committee for sharing their expertise, and also
the MICCAI Society for having hosted and supported the workshop within MICCAI
2018.

September 2018 João Manuel R. S. Tavares
Shuo Li



CuRIOUS 2018 Preface

Radical brain tumor resection can effectively improve the patient’s survival. However,
resection quality and safety can often be heavily affected by intra-operative brain tissue
shift due to factors such as gravity, drug administration, intracranial pressure change,
and tissue removal. Such tissue shift can displace the surgical target and vital structures
(e.g., blood vessels) shown in pre-operative images while these displacements may not
be directly visible in the surgeon’s field of view. Intra-operative ultrasound (iUS) is a
robust and relatively inexpensive technique to track intra-operative tissue shift. To
update pre-surgical plans with this information, accurate and robust image registration
algorithms are needed in order to relate pre-surgical magnetic resonance imaging
(MRI) to iUS images. Despite the great progress so far, medical image registration
techniques are still not in routine clinical use in neurosurgery to directly benefit patients
with brain tumors. The MICCAI Challenge 2018 for Correction of Brain Shift with
Intra-Operative Ultrasound (CuRIOUS) offered a snapshot of the state-of-the-art pro-
gress in the field through extended discussions, and provided researchers with an
opportunity to characterize their image registration methods on a newly released
standardized dataset of iUS-guided brain tumor resection.

September 2018 Ingerid Reinertsen
Hassan Rivaz
Yiming Xiao

Matthieu Chabanas



CPM 2018 Preface

On September 16, 2018, the Workshop and Challenges in Computational Precision
Medicine were held in Granada, Spain, in conjunction with the 21st International
Conference on Medical Image Computing and Computer-Assisted Intervention
(MICCAI). This year’s edition featured a workshop held in the morning followed by
the presentation of challenges in the afternoon.

The workshop featured topics in quantitative imaging data science, artificial intel-
ligence and machine learning, and applications of radiomics in cancer diagnosis and
therapy. Invited speakers included prominent members of the community: Drs.
J. Kalpathy-Cramer (Massachusetts General Hospital), C. Davatzikos (University of
Pennsylvania), A. Simpson (Memorial Sloan Kettering Cancer Center), D. Fuller (MD
Anderson), K. Yan, R. Summers (National Cancer Institutes), Anne Martel (University
of Toronto), and J. Liu (National Institutes of Health).

Members of the MICCAI community were encouraged to participate in four chal-
lenges this year:

1. Pancreatic Cancer Survival Prediction Challenge
2. Combined Imaging and Digital Pathology Brain Tumor Classification Challenge
3. Digital Pathology Nuclei Segmentation Challenge
4. Radiomics Stratifiers in Oropharynx Challenge

In response to the call for challenge participants, 239 participants registered for the
Pancreatic Cancer Survival Prediction Challenge, 203 participants registered for the
Combined Imaging and Digital Pathology Brain Tumor Classification Challenge, and
261 participants registered for the Digital Pathology Nuclei Segmentation Challenge.
The top three winners of each challenge gave brief presentations of their algorithms
during the challenge sessions.

This volume of papers represents the top two submissions from the Pancreatic
Cancer Survival Prediction Challenge. Participants were provided with segmented CT
scans and limited clinical data. The task was to predict overall survival. The training
phase of the challenge started on May 15, 2018, and the test phase started on August 1,
2018, and concluded on August 15, 2018.



We thank the MICCAI Program Committee for the opportunity to host the CPM
workshop and challenges again this year. Our thanks also go out to our workshop
presenters and to all of the teams that participated in the challenges.

August 2018 Spyridon Bakas
Hesham El Halawani

Keyvan Farahani
John Freymann

David Fuller
Jayashree Kalpathy-Cramer

Justin Kirby
Tahsin Kurc

Joel Saltz
Amber Simpson
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Robust Photoacoustic Beamforming
Using Dense Convolutional Neural

Networks

Emran Mohammad Abu Anas1(B), Haichong K. Zhang1, Chloé Audigier2,
and Emad M. Boctor1,2

1 Electrical and Computer Engineering, Johns Hopkins University,
Baltimore, MD, USA
eanas1@jhmi.edu

2 Radiology and Radiological Science, Johns Hopkins University,

Baltimore, MD, USA

Abstract. Photoacoustic (PA) is a promising technology for imaging
of endogenous tissue chromophores and exogenous contrast agents in a
wide range of clinical applications. The imaging technique is based on
excitation of a tissue sample using short light pulse, followed by acquisi-
tion of the resultant acoustic signal using an ultrasound (US) transducer.
To reconstruct an image of the tissue from the received US signals, the
most common approach is to use the delay-and-sum (DAS) beamform-
ing technique that assumes a wave propagation with a constant speed
of sound. Unfortunately, such assumption often leads to artifacts such
as sidelobes and tissue aberration; in addition, the image resolution is
degraded. With an aim to improve the PA image reconstruction, in this
work, we propose a deep convolutional neural networks-based beamform-
ing approach that uses a set of densely connected convolutional layers
with dilated convolution at higher layers. To train the network, we use
simulated images with various sizes and contrasts of target objects, and
subsequently simulating the PA effect to obtain the raw US signals at
an US transducer. We test the network on an independent set of 1,500
simulated images and we achieve a mean peak-to-signal-ratio of 38.7 dB
between the estimated and reference images. In addition, a comparison
of our approach with the DAS beamforming technique indicates a sta-
tistical significant improvement of the proposed technique.

Keywords: Photoacoustic · Beamforming · Delay-and-sum
Convolutional neural networks · Dense convolution
Dilated convolution

1 Introduction

Photoacoustic (PA) is considered as a hybrid imaging modality that combines
optical and ultrasound (US) imaging techniques. The underlying physics of this

c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): POCUS 2018/BIVPCS 2018/CuRIOUS 2018/CPM 2018,
LNCS 11042, pp. 3–11, 2018.
https://doi.org/10.1007/978-3-030-01045-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01045-4_1&domain=pdf
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imaging technology is based on the PA effect that refers to the phenomenon of
generation of acoustic waves following a short light pulse absorption in a soft-
tissue sample. To exploit the PA effect and enable imaging of that soft-tissue,
a light source (laser or light emitting diode) is employed to excite the soft-
tissue, and simultaneously an US transducer is used to collect the instantaneously
generated acoustic signal. In contrast to the acoustic properties-based pure US
imaging technique, the PA imaging modality provides functional information
(e.g., hemoglobin in blood and melanin in skin) of the anatomy. Based on this
fact, the key applications of PA imaging have been found in detection of ischemic
stroke, breast cancer or skin melanomas [3,7]. In addition to tissue chromophores,
the PA technique has shown its ability to image exogenous contrast agents in a
number of clinical applications including molecular imaging and prostate cancer
detection [1,18].

The most common approach to reconstruct a PA image from the received
US signal (channel data) is the delay-and-sum (DAS) beamforming technique
due to its simple implementation and real-time capability. In short, the output
of the DAS method is obtained by averaging the weighted and delayed versions
of the received US signals. The delay calculation is based on an assumption of
an US wave propagation with a constant speed of sound (SoS), therefore, it
compromises the image quality of a DAS beamformer [5]. To improve the beam-
forming with PA imaging, a significant number of works have been reported
using, for example, minimum variance [11], coherence factor [13], short-lag spa-
tial coherence beamforming [4], adaptive beamforming [15] and double-stage
delay-multiply-and-sum beamforming [12]. Though these approaches have shown
their potential to improve the beamforming, they are less robust to tackle the
SoS variation in different applications.

In the recent years, deep learning based approaches have demonstrated their
promising performance compared to the previous state-of-the-art image pro-
cessing approaches in almost all areas of computer vision. In addition to vision
recognition, deep neural techniques have been successfully applied for beamform-
ing [2,9,10,14] of US signal. Luchies et al. [9,10] presented deep neural networks
for US beamforming from the raw channel data. However, their proposed net-
work is based on fully connected layers that are prone to overfit the network
parameters. Nair et al. [14] recently proposed a deep convolutional neural net-
works (CNN)-based image transformation approach to map the channel data to
US images. In fact, their output US image is a binary segmentation map instead
of an intensity image, therefore, it does not preserve the relative contrast among
the target objects that is considered quite important in functional PA imaging.

In this work, we propose a deep CNN-based approach to reconstruct a PA
image from the raw US signals. Unlike the techniques in [9,10], we use fully
convolutional networks for the beamforming of the US signals that reduces the
problem of overfitting the network parameters. In addition, our proposed net-
work maps the channel data to an intensity image that keeps the relative con-
trast among the target objects. The network consists of a set of densely con-
nected convolutional layers [6] that have shown their effectiveness to eliminate
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the gradient vanishing problem during training. Furthermore, we exploit dilated
convolution [17] at higher layers in our architecture to allow feature extraction
without loss of resolution. The training of the network is based on simulation
experiments that consist of simulated target objects in different SoS environ-
ments. Such a variation in SoS during training makes the proposed network less
sensitive to SoS changes when mapping the channel data to a PA image.

2 Methods

Figure 1(a) shows the architecture of our proposed deep CNN that maps an input
channel data to an output PA image. Note that the channel data refers to the
pre-beamformed RF data in this whole work. The sizes of the input and output
images of the network are 384 × 128. The network consists of five dense blocks
representing convolution at five different scales. In each dense block, there are
two densely connected convolutional layers with 16 feature maps in each layer.
The size of all of the convolutional kernels is 9×9 and each convolution is followed
by rectified linear unit (ReLU). The key principle of dense convolution is using
all of the previous features at its input, therefore, the features are propagated
more effectively, subsequently, the vanishing gradient problem is eliminated [6].
In addition to dense convolution, we use dilated convolution [17] at higher layers
of our architecture to overcome the problem of losing resolution at those layers.
We set the dilation factors for the dense block 1 to 5 as 1, 2, 4, 8 and 16,
respectively (Fig. 1(a)). The dilated convolution is a special convolution that

Fig. 1. The proposed beamforming approach. (a) The neural network architecture to
map the channel data to a PA image. The network consists of five dense blocks, where
each dense block consists of two densely connected convolutional layers followed by
ReLU. The difference among five dense blocks lies in the amount of dilation factor.
(b) Effect of dilation on the effective receptive field size. A dilated convolution of a
kernel size of 9 × 9 with a dilation factor of 2 indicates an effective receptive field size
of 19 × 19.
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allows the convolution operation without decreasing the resolution of the feature
maps but using the same number of convolutional kernel parameters. Figure 1(b)
shows an example of a dilated convolution for a kernel size of 9 × 9 with a
dilation factor of 2 that represents an effective receptive field size of 19 × 19. A
successive increase in the dilation factor across layer 1 to 5, therefore, indicates
a successively greater effective receptive field size. At the end of the network, we
perform 1×1 convolution to predict an output image from the generated feature
maps. The loss function of the network consists of the mean square losses between
the predicted and target images.

3 Experiments and Training

3.1 Experiments and Materials

We perform simulation experiments to train, validate and test the proposed
network. Each experiment consists of a number of simulated 2D target objects
with different sizes and contrasts. In this work, we consider only circular target
objects because their shapes are highly similar to those of the blood vessels
in 2D planes, where most of the PA applications have been reported. In each
simulation, we randomly choose the total number (between 1 and 6 inclusive) of
target objects. In addition, the SoS of the background as well as of the targets
is set as constant for each experiment and it is randomly chosen in the range of
1450–1550 m/s. Each target is modeled by a Gaussian function, where position
of the target and its peak intensity (corresponding to contrast) are randomly
chosen. The size of the target is controlled by the standard deviation of the
Gaussian function, and it is also chosen randomly within a range of 0.2–1.0 mm.
We have performed a total of 5,000 simulations to obtain the simulated images.
For each image, we generate the channel data considering a linear transducer
with 128 elements at the top of the simulated image (simulating PA effect) using
the k-Wave simulation toolbox [16]. In addition, we have introduced white noise
with Gaussian distribution on the channel data to allow the proposed network
to be robust against the noise. The variance of the noise is randomly chosen as
a number that is always less than the power of the signal in each experiment.
Figure 2 shows an example of simulated image and corresponding channel data
with 4 target objects with different sizes and contrasts.

We divide all of our images into three groups to constitute the training,
validation and test sets. The images are distributed independently as 60% vs
10% vs 30% for the training, validation and test sets, respectively. Therefore,
the total number of training, validation and test images are 3,000, 500 and
1,500, respectively, in this work.

3.2 Training and Validation

We use the TensorFlow library (Google, Mountain View, CA) with Adam [8]
optimization technique to train the proposed network based on the training set.



Robust Photoacoustic Beamforming Using Deep Neural Networks 7

Fig. 2. An example of simulated PA image with 4 targets (left figure). We can notice
the variation of sizes and contrasts among the targets. From the simulated image, we
use the k-Wave simulation toolbox [16] to obtain the channel data (right figure).

A total of 8,000 epochs is used to optimize the network parameters in our GPU
(NVIDIA GeForce GTX 1080 Ti with 11 GB RAM) with a mini-batch size of
16. The initial learning rate is set to 10−3 and there is an exponential decay of
the learning rate after each successive 2,000 epochs with a decay factor of 0.1.

While the training set is used to optimize the network parameters, the valida-
tion set in our work is used to fix the hyper-parameters of our network including
the size of the convolutional kernel (9×9), the number of convolutional layers (2)
in each dense block, the number of feature maps (16) in each dense convolution
and the initial learning rate (10−3) in the Adam optimization.

4 Evaluation and Results

4.1 Evaluation

To evaluate the proposed beamforming approach using the test set, we use
the peak-signal-to-noise-ratio (PSNR) that is based on the mean square losses
between the estimated and reference images in decibels (dB) as:

PSNR = 20 log10

(
Imax√
MSE

)
dB, (1)

where,

MSE =
1

MN

M−1∑
m=0

N−1∑
n=0

(
Iref(m,n) − Iest(m,n)

)2

.
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Here, Iref and Iest (both sizes of M × N) indicate the reference and estimated
images, respectively; and Imax represents the maximum intensity in the reference
image.

In addition to the evaluation based on PSNR, we investigate the sensitivity
of the proposed beamforming technique with respect to SoS variation across dif-
ferent test images. For this purpose, we divide the whole range (1450–1550 m/s)
of SoS distribution in the test set into 10 different non-overlapping sets, followed
by computation of the PSNR in that non-overlapping region. Furthermore, we
compare our approach with widely accepted DAS beamforming technique. Note
that the SoS parameter in the DAS method is set to 1500 m/s in this compar-
ison. Finally, we report the computation time of the proposed method in GPU
to check its real-time capability.

4.2 Results

Based on 1,500 test images, we achieve a PSNR of 38.7 ± 4.3 dB compared to
that of 30.5 ± 2.4 dB for the DAS technique. A student t-test is performed to
determine the statistical significance between the obtained results of these two
techniques, and the obtained p-value � 0.01 indicates the superiority of the
proposed method.

Figures 3(a–c) present a qualitative comparison among reference, DAS- and
our CNN-beamformed images, respectively. In this particular example, we
observe the distortion of the circular targets (marked by arrows) by the DAS
beamforming technique. In contrast, the presented technique preserves the
shapes and sizes of the targets. For a better visualization, we plot the PA inten-
sity along a line (marked by dotted lines in Figs. 3(a–c)) in Fig. 3(d) and it
indicates the promising performance of our proposed beamforming method, i.e.,
the width of the object is well preserved in our reconstruction.

Figure 3(e) shows a comparison between our and DAS methods in PSNR with
respect to SoS variation based on the test set. As mentioned earlier, for a better
interpretation of the sensitivity of the beamforming approaches, we divide the
whole range (1450–1550 m/s) of SoS into 10 different non-overlapping sets, and
we use the mean SoS of each set along the x-axis in this figure. The comparison
between our and DAS beamforming techniques indicates less sensitivity of the
DAS technique on the SoS variation in the test images. It is also interesting to
note that the best performance of the DAS method is obtained for a SoS in the
1490–1500 m/s range. It is expected as this SoS is closer to the inherent SoS
(1500 m/s) assumption in the DAS technique.

The run-time of the proposed CNN-based beamforming method is 18 ms in
our GPU-based computer.
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Fig. 3. Results and comparison of our proposed CNN-based beamforming method.
(a–c) A comparison between DAS and our technique with respect to the reference
PA image. The distortions in the targets are well visible in the DAS-beamformed
image (marked by arrows). (d) The PA intensity variation along depth. This particular
intensity variation corresponds to the dotted lines in (a–c). (e) Sensitivity of our and
DAS methods with respect to SoS variation. For this figure, we divide the whole range
of SoS (1450–1550 m/s) distribution in the test set into 10 different non-overlapping
sets, and the x-axis represents the mean values of these sets. We can observe less
sensitivity of our technique on SoS changes, in contrast, the DAS method shows its
best performance at SoS near 1500 m/s.

5 Discussion and Conclusion

In this work, we have presented a deep CNN-based real-time beamforming app-
roach to map the channel data to a PA image. Two notable modifications in the
architecture are the incorporation of dense and dilated convolutions that lead
to an improved training and a feature extraction without losing the resolution.
The network has been trained using a set of simulation experiments with various
contrasts and sizes of multiple targets. On the test set of 1,500 simulated images,
we could obtain a mean PSNR of 38.7 dB.

A comparison of our result with that of the DAS beamforming method indi-
cates a significant improvement achieved by the proposed technique. In addition,
we have demonstrated how our method preserves the shapes and sizes of various
targets in PA images (Figs. 3(a–d)).
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We have investigated the sensitivity of the proposed and DAS beamform-
ing methods on the SoS variation in test images. Since there is a inherent SoS
assumption in the DAS method, it has shown its best performance at SoS near its
SoS assumption. In contrast, our proposed beamforming technique has demon-
strated less sensitivity to SoS changes in the test set (Fig. 3(e)).

Future works include training with non-circular targets, and testing on phan-
tom and in vivo images. In addition, we aim to compare our method with neural
networks-based beamforming approaches.

In conclusion, we have demonstrated the potential of the proposed CNN-
based technique to beamform the channel data to a PA image in real-time while
preserving the shapes and sizes of the targets.
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Abstract. PURPOSE: This paper describes an open-source ultrasound-guided
central line insertion training system. Modern clinical guidelines are increas-
ingly recommending ultrasound guidance for this procedure due to the decrease
in morbidity it provides. However, there are no adequate low-cost systems for
helping new clinicians train their inter-hand coordination for this demanding
procedure. METHODS: This paper details a training platform which can be
recreated with any standard ultrasound machine using inexpensive components.
We describe the hardware, software, and calibration procedures with the
intention that a reader can recreate this system themselves. RESULTS: The
reproducibility and accuracy of the ultrasound calibration for this system was
examined. We found that across the ultrasound image the calibration error was
less than 2 mm. In a small feasibility study, two participants performed 5 needle
insertions each with an average of slightly above 2 mm error. CONCLUSION:
We conclude that the accuracy of the system is sufficient for clinician training.

Keywords: Open-source � Webcam tracking � Central line insertion
Medical training

1 Introduction

Central line insertion is the placement of a catheter usually through a major vein in the
neck for administering medication and fluids directly into the heart. This common
procedure is routinely performed to directly monitor venous pressure, to deliver large
volumes of fluids, or to infuse solutions that would harm peripheral veins.

In many countries, the standard of care for central line insertion includes the use of
ultrasound (US) guidance [1]. Ultrasound helps the operator find the optimal needle
insertion location at the first insertion attempt, and helps prevent accidental puncture of
the carotid artery. US is also used to visualize a patients’ anatomy and provide guid-
ance during the insertion of the needle. To insert a needle under US guidance, a
clinician must simultaneously manipulate an ultrasound probe and the needle, one in
each hand. Maintaining this coordination amidst the many steps of a venous cannu-
lation is a daunting task for new clinicians. This problem is compounded by a lack of
accessible practical training tools for medical students and clinician trainees to practice
this coordination. In this paper we detail an inexpensive and portable system designed
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to foster this skill in new clinicians by real time position tracking of the instruments for
virtual reality visualization.

1.1 Standard Procedure for Central Line Insertion

To perform central line insertion, a clinician will first select a vein for catheterization.
Typical sites include the internal jugular vein (in the neck), the femoral vein (in the
thigh), or the subclavian vein (in the upper chest). In this paper we focus on internal
jugular vein insertions, but the skills developed apply equally to using US guidance at
any of the three sites [2].

Once the clinician has selected the insertion site, they will examine the patient’s
anatomy and attempt to discriminate between the vein and other nearby structures,
including arteries, nerves and the surrounding tissues. This step is crucially important.
Accidental cannulation of the artery is a serious complication in this procedure with the
potential to cause significant morbidity or mortality [3]. Other serious complications
include pneumothorax (collapsed lung), infection, air embolus, and losing the guide-
wire into the vasculature. To help avoid these complications, many modern clinical
guidelines suggest the use of ultrasound when performing central line insertion. US
guidance is especially effective for helping to discern the artery from the vein. In a 900-
patient randomized study, Karakitsos et al. compared the use of ultrasound against
anatomical landmarks for central line insertion. They found a significant reduction in
access time, as well as significant reductions in many of the common complications [4].
For these reasons, modern clinical standards are recommending the use of US guidance
for this procedure.

There are two common techniques for the positioning of the ultrasound probe
relative to the vein for the needle insertion. The first technique is called an “out of
plane” insertion, where the imaging plane bisects the vein at a right angle. Out of plane
insertion provides excellent visualization of the vein and the artery, helping to prevent
accidental arterial cannulation. The two vessels can be distinguished by their relative
positions within the anatomy. However, the drawback of the out of plane insertion
method is that the operator must advance the needle and the probe iteratively, being
very careful not to advance the needle ahead of the US imaging plane. If this were to
happen, the operator would lose visualization of the advancing needle’s path.

The second common technique for central line insertion is an “in plane” insertion
where the US plane is parallel to the vessel. This technique has the advantage of
continuous needle tip visualization, at the expense of making it more difficult to dis-
tinguish the artery from the vein. Hybrid techniques have been suggested where the
clinician holds the probe at an oblique angle relative to the vein. This is intended to
combine the advantages of the in plane and out of plane insertions [5]. In this paper we
demonstrate our visualization with the out of plane approach, though it can be easily
used for the in plane or oblique approaches by rotating the probe.

1.2 Training Challenges

One of the major challenges faced by new clinicians learning to use US guidance for
needle insertion is the development of the requisite hand coordination. Clinicians must
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be able to simultaneously control the US probe in one hand, and the needle in the other.
We have found in earlier studies that 3-dimensional visualization of the ultrasound
image and the needle in real time is an effective training tool in learning coordination
skills in ultrasound-guided needle placement [6]. This training setup requires position
tracking of the ultrasound and the needle. Position tracking has additional advantages
besides enabling 3-dimensional visualization as a training tool. Tracking can be used
for the quantification of trainee skills for objective competency assessment [7], and for
providing real time information to the trainee on the next procedure steps to perform in
the early phases of training [8].

Although position tracking of the ultrasound and needle has many advantages
during training of central line insertion, it is currently an expensive and complicated
system. In this paper, we aim to show how a tracking system can be built for central
line training using only open-source software and an inexpensive webcam for optical
tracking. We evaluate the reproducibility and accuracy of the system and perform a
small feasibility study.

2 Methods

2.1 Hardware

One major barrier in training new clinicians for US guided central line catheterization is
the high cost for specialized, non-portable hardware. In creating this system we used
only off the shelf components that are robust and relatively inexpensive to obtain. The
design of every custom tool we used is open-sourced and the tools can be printed on
any inexpensive 3D printer. Excluding the computer and the US machine, the total
hardware cost for this system is *$200 US. The system can be built around any
computer and any ultrasound machine; we endeavor to describe the system assembly in
enough detail to allow it to be replicated easily. Additional instructions, source files,
screenshots and information are available on the project’s GitHub page1.

In our experiments, we used a modern Lenovo laptop computer and a
Telemed USB ultrasound with a L12 linear probe (Telemed Ltd., Lithuania). We have
found this portable ultrasound machine to be incredibly suitable for US training
applications. In addition to this, we used an Intel RealSense D415 depth camera (Intel,
California, USA). We chose this camera in particular because it has fixed focus. We
have found in the past that webcam autofocus can cause interruptions in tracking.
Another advantage of this camera is its integrated depth sensor, capable of producing a
point cloud of the scene in front of it. We envision several possible extensions to this
system which would make use of this feature.

In addition to the components we purchased, we needed to design and manufacture
several tools shown in Fig. 1. The STL models and source files for all these tools are
open source, and accessible on the project’s GitHub page and in the PLUS model

1 Project Github page: https://github.com/SlicerIGT/OMTCentralLineTraining.
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repository2. Each tool has a black and white marker to be used with the ArUco marker
tracking toolkit [9]. The first tool (A) is a clip to connect an ArUco marker to the US
probe. This clip also has a built-in dimple for performing pivot calibration. The middle
tool (B) is a marker plane to rigidly fix an ArUco marker to the syringe. The hockey
stick shaped tool (C) is a tracked stylus used to perform the calibration needed to
visualize the US image in 3D space. To create these components, we used the Autodesk
Fusion 360 (Autodesk, California, USA) CAD software to create the STL models. We
then 3D printed these on an inexpensive 3D printer (Qidi Tech, Rui’an, China).

An important consideration when creating these tracked tools is the orientation of
the marker with respect to the tracker. This is important to maintain good tracking
accuracy. The goal is to ensure the plane of the ArUco marker is close to perpendicular
to a ray drawn between the tracker and the center of the marker. This consideration
must be balanced against ergonomic constraints and marker occlusion avoidance. We
have found the use of 3D printing to be a useful tool in solving this problem because it
enables the rapid creation of iterative prototypes. Typically it takes multiple prototypes
to arrive at a satisfactory design.

Fig. 1. Open source 3D printed tools with ArUco markers for tracking. A: ultrasound probe with
marker bracket, embedded pivot calibration dimple is circled in red. B: tracked syringe mounted
to steel needle. C: tracked stylus for US calibration, note the pointed tip. (Color figure online)

2 PLUS Toolkit open source model catalog, accessible at: http://perk-software.cs.queensu.ca/plus/doc/
nightly/modelcatalog/.
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2.2 System Design

To capture real-time US frames and tracking data we used the PLUS toolkit [10]. In
order to track the tools using the Intel RealSense webcam, we used the Opti-
calMarkerTracking device built into PLUS [11]. This software device allows tracking
to be performed using any RGB webcam, including the webcams built into modern
laptops. It leverages the ArUco marker tracking toolkit to enable distortion correction
of the camera image and pose computation of the black and white patterns shown
above.

We built the visualization and training software on top of 3D Slicer, a widely used
open-source application framework for medical image computing. Specifically, we
leveraged the functionality in the image guided therapy extension built for 3D Slicer
called SlicerIGT [12]. Using these two tools, this system was assembled without
writing any custom software. Instead, we created a Slicer scene through configuration
of Slicer widgets in Slicer’s graphical user interface. Then we saved the scene into
MRML file, an XML-based file format for medical computing. The MRML scene can
then be loaded from Slicer on any computer (Fig. 2), providing an easy distribution
mechanism for software developed in this manner.

2.3 Calibration

One of the critical steps in building any tracked ultrasound system is to calibrate the US
image with respect to the position sensor mounted on the US probe. This process is
typically referred to as ultrasound calibration. To calibrate this training tool, we used a
fiducial based registration procedure. The general idea of this method is to track the

Fig. 2. The complete training system in use.
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positions of the stylus and probe, using corresponding points in each frame of reference
to determine the transformation between the two coordinate systems. This process
begins by computing the tip of the stylus in its own coordinate system via pivot
calibration. Then, a sampling of points distributed across the US image are collected
along with their corresponding points in 3D space. We typically choose to use 6–10
such points in our calibrations. In Fig. 3, the selection of a sample point is shown. The
position of the stylus tip is recorded in the US image (top left quadrant) and in 3D space
(top right quadrant). The frame of video data from the webcam-based marker tracking
is shown in the bottom left quadrant for reference. A more detailed description of this
calibration process can be found in the SlicerIGT tracked ultrasound calibration
tutorial3.

2.4 Calibration Verification

To verify the reproducibility of our US calibration, we performed a sequence of 5
calibrations. We then placed imaginary points in 5 regions of interest in the US frame -
the center and each of the four corners. The center was selected because it is typically
where the target for needle insertion will be, and the corners because any rotational
error in the calibration will be most significant there. We transformed each of these
points to physical space using all 5 of the US calibrations resulting in 5 clusters of 5
points each. For each cluster of 5, we took the center of mass as our best approximation
to the true physical space position of the point. We then computed the average distance
of the points in each cluster from the approximation of the true spatial position.

Fig. 3. Selection of points during US calibration. Top left: stylus tip position in US image
coordinates. Top right: stylus tip position in 3D space. Bottom left: image of stylus & US probe
from which tracking data was computed.

3 SlicerIGT tracked ultrasound calibration tutorial: http://www.slicerigt.org/wp/user-tutorial/.

A Training Tool for Ultrasound-Guided Central Line Insertion 17

http://www.slicerigt.org/wp/user-tutorial/


Lastly, we tested the system by having 2 users, one experienced with ultrasound
and the other an intermediate operator, perform 5 needle insertions each. For each
insertion, the operator targeted a 2 mm steel sphere implanted into a clear plastisol
phantom. To assess their accuracy, we measured the maximum distance between the
center of their needle tip and the closest side of the steel sphere. During the insertion
the users were requested not to look directly at the phantom, relying only on the display
of the training system.

3 Results

For each of the 5 calibration trials we recorded the root mean square (RMS) error of the
pivot and fiducial registrations (Table 1). Note that these RMS errors are not a metric of
accuracy, however they are a good measurement of the reproducibility of the system.

Using each of the 5 US calibrations, we mapped 5 fiducials into their 3D positions
using the image to probe transformation. The average distance of the 5 fiducials in each
region from their center of mass is summarized in Table 2. Then using the best US
calibration, two participants performed 5 needle localizations each on a simulated
phantom using only the training system for guidance. The average distance from the
simulated target for each participant is shown in Table 3.

Table 1. RMS error from each pivot calibrations and corresponding fiducial registration.

Calibration # Pivot RMS Error (mm) FRE (RMS, mm)

1 0.41 1.31
2 0.55 1.92
3 0.58 1.47
4 0.46 1.78
5 0.53 1.41
Mean (STD) 0.51 (0.06) 1.58 (0.23)

Table 2. US calibration errors.

Region of Interest Average Distance (mm)

Top Left 1.21
Top Right 1.64
Center 1.51
Bottom Left 1.49
Bottom Right 1.99

Table 3. Target localization errors.

Participant Average distance from
target mm (SD)

Intermediate 2.16 (1.10)
Experienced 2.32 (0.82)
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4 Discussion

Overall, the errors in the calibration of the system
fall within an acceptable target range for use in US
guided needle insertion training.

Participants noted that an advantage of using
the clear phantom is the immediate spatial feed-
back it provides post-localization. After each
insertion participants could look at the phantom
and quickly see where their needle was placed with
respect to the target (Fig. 4). The authors feel that
this may be an effective feedback for honing ability
with this technique.

4.1 Limitations of Methods

The measurement of the needle to target sphere distance using calipers is subject to
optical distortion in the clear phantom. To mitigate this, the phantom was designed with
flat sides to minimize the lens effect. Ideally, we would have measured the needle –

sphere distance using X-Ray or CT imaging, but these modalities were infeasible in the
confines of this preliminary study.

4.2 Potential Improvements

Our lab currently develops a system called Central Line Tutor, which provides guid-
ance to trainees learning the sequence of steps for performing US guided central line
insertion. It would be a straightforward exercise to integrate these two platforms,
providing a complete low-cost toolkit for central line insertion training.

5 Conclusion

We have demonstrated the feasibility of using a webcam-based system for training new
clinicians hand coordination for ultrasound guided central line insertion. Our training
platform focused on developing the requisite inter-hand coordination for performing
the needle insertion portion of the procedure.
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Fig. 4. Needle localization seen
through clear phantom.
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Abstract. Displacement estimation is a critical step in ultrasound elas-
tography and failing to estimate displacement correctly can result in large
errors in strain images. As conventional ultrasound elastography tech-
niques suffer from decorrelation noise, they are prone to fail in estimating
displacement between echo signals obtained during tissue deformations.
This study proposes a novel elastography technique which addresses
the decorrelation in estimating displacement field. We call our method
GLUENet (GLobal Ultrasound Elastography Network) which uses deep
Convolutional Neural Network (CNN) to get a coarse but robust time-
delay estimation between two ultrasound images. This displacement is
later used for formulating a nonlinear cost function which incorporates
similarity of RF data intensity and prior information of estimated dis-
placement [3]. By optimizing this cost function, we calculate the finer
displacement exploiting all the information of all the samples of RF data
simultaneously. The coarse displacement estimate generated by CNN is
substantially more robust than the Dynamic Programming (DP) tech-
nique used in GLUE for finding the coarse displacement estimates. Our
results validate that GLUENet outperforms GLUE in simulation, phan-
tom and in-vivo experiments.

Keywords: Convolutional neural network · Ultrasound elastography
Time-delay estimation · TDE · Deep learning · Global elastography

1 Introduction

Ultrasound elastography can provide mechanical properties of tissue in real-time,
and as such, has an important role in point-of-care ultrasound. Estimation of
tissue deformation is very important in elastography, and further has numerous
other applications such as thermal imaging [9] and echocardiography [1].

Over the last two decades, many techniques have been reported for estimat-
ing tissue deformation using ultrasound. The most common approach is window-
based methods with cross-correlation matching techniques. Some reported these
techniques in temporal domain [5,10,14] while others reported in spectral domain
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[8,11]. Another notable approach for estimating tissue deformation is usage of
dynamic programming with regularization and analytic minimization [3,12]. All
these approaches may fail when severe decorrelation noise exists between ultra-
sound images.

Tissue deformation estimation in ultrasound images is an analogous to the
optical flow estimation problem in computer vision. The structure and elastic
property of tissue impose the fact that tissue deformation must contain some
degree of continuity. Hence, tissue deformation estimation can be considered as
a special case of optical flow estimation which is not bound by structural con-
tinuity. Apart from many state-of-the-art conventional approaches for optical
flow estimation, very recently notable success has been reported at using deep
learning network for end-to-end optical flow estimation. Deep learning networks
enjoy the benefit of very fast calculation by trained (fine-tuned) weights of the
network while having a trade-off of long-time computationally exhaustive train-
ing phase. Deep learning has been recently applied to estimation of elasticity
from displacement data [4]. A promising recent network called FlowNet 2.0 [6]
has achieved up to 140 fps at optical flow estimation. These facts indicate the
potential for using deep learning for tissue deformation estimation.

This work takes advantage of the fast FlowNet 2.0 architecture to estimate an
initial time delay estimation which is robust from decorrelation noise. This initial
estimation is then fine-tuned by optimizing a global cost function [3]. We call
our method GLUENet (GLobal Ultrasound Elastography Network) and show
that it has many advantages over conventional methods. The most important
one would be the robustness of the method to severe decorrelation noise between
ultrasound images.

2 Methods

The proposed method calculates the time delay between two radio-frequency
(RF) ultrasound scans which are correlated by a displacement field in two phases
combining fast and robust convolutional neural network with the more accurate
global optimization based coarse to fine displacement estimation. This combi-
nation is possible due to the fact that the global optimization-based method
depends on coarse but robust displacement estimation which CNN can provide
readily and more robustly than any other state-of-the-art elastography method.

Optical flow estimation in computer vision and tissue displacement estima-
tion in ultrasound elastography share common challenges. Therefore, optical
flow estimation techniques can be used for tissue displacement estimation for
ultrasound elastography. The latest CNN that can estimate optical flow with
competitive accuracy with the state-of-the-art conventional methods is called
FlowNet 2.0 [6]. This network is an improved version of its predecessor FlowNet
[2], wherein Dosovitskiy et al. trained two basic networks namely FlowNetS and
FlowNetC for optical flow prediction. FlowNetC is a customized network for opti-
cal flow estimation whereas FlowNetS is rather a generic network. The details
of these networks can be found in [2]. These networks were further improved for
more accuracy in [6] which is known as FlowNet 2.0.
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Fig. 1. Full schematic of FlowNet 2.0 architecture: The initial network input is Image 1
and Image 2. The input of the subsequent networks includes the image pairs, previously
estimated flow, Image 2 warped with the flow, and residual of Image 1 and warped
image (Brightness error). Input data is concatenated (indicated by braces).

Figure 1 illustrates the complete schematic of FlowNet 2.0 architecture. It can
be considered as the stacked version of a combination of FlowNetC and FlowNetS
architectures which help the network to calculate large displacement optical flow.
For dealing with the small displacements, small strides were introduced in the
beginning of the FlowNetS architecture. In addition to that, convolution layers
were introduced between upconvolutions for smoothing. Finally, the final flow is
estimated using a fusion network. The details can be found in [6].

The displacement estimation from FlowNet 2.0 is robust but needs more
refinement in order to produce strain images of high quality. Global Time-Delay
Estimation (GLUE) [3] is an accurate displacement estimation method provided
that an initial coarse displacement estimation is available. If the initial displace-
ment estimation contains large errors, then GLUE may fail to produce accurate
fine displacement estimation. GLUE refines the initial displacement estimation
by optimizing a cost function incorporating both amplitude similarity and dis-
placement continuity. It is noteworthy that the cost function is formulated for
the entire image unlike its motivational previous work [12] where only a single
RF line is optimized. The details of the cost function and its optimization can
be found in [3]. After displacement refinement, strain image is obtained by using
least square or a Kalman filter [12].

3 Results

GLUENet is evaluated using simulation and experimental phantom, and in-vivo
patient data. The simulation phantom contains a soft inclusion in the middle
and the corresponding displacement is calculated using Finite Element Method
(FEM) by ABAQUS Software (Providence, RI). For ultrasound simulation, the
Field II software package [7] is used. A CIRS breast phantom (Norfolk, VA) is
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used as the experimental phantom. RF data is acquired using an Antares Siemens
system (Issaquah, WA) at the center frequency of 6.67 MHz with a VF10-5 linear
array at a sampling rate of 40 MHz. For clinical study, we used in-vivo data
of three patients. These patients were undergoing open surgical RF thermal
ablation for primary or secondary liver cancer. The in-vivo data were collected
at John Hopkins Hospital. Details of the data acquisition are available in [12]. For
comparison of the robustness of our method, we use mathematical metrics such as
Mean Structural Similarity Index (MSSIM) [13], Signal to Noise Ratio (SNR) and
Contrast to Noise Ratio (CNR). Among them, MSSIM incorporates luminance,
contrast, and structural similarity between ground truth and estimated strain
images which makes it an excellent indicator of perceived image quality.

3.1 Simulation Results

Field II RF data with strains ranging from 0.5% to 7% are simulated, and
uniformly distributed random noise with PSNR of 12.7 dB is added to the RF
data. The additional noise is for illustrating the robustness of the method to
decorrelation noise given that simulation does not model out-of-plane motion
of the probe, complex biological motion, and electronic noise. Figure 2(a) shows
ground truth axial strain and (b–c) shows axial strains generated by GLUE
and GLUENet respectively at 2% applied strain. Figure 2(d–f) illustrates the
comparable performance of GLUENet against GLUE [3] in terms of MSSIM,
SNR and CNR respectively.

3.2 Experimental Phantom Results

Figure 3(a–b) shows axial strains of the CIRS phantom generated by GLUE and
GLUENet respectively. The large blue and red windows in Fig. 3(a–b) are used
as target and background windows for calculating SNR and CNR (Table 1). The
small windows are moved to create a total combination of 120 window pairs (6
as target and 20 as background) for calculating CNR values. The histogram of
these CNR values is plotted in Fig. 3(c) to provide a more comprehensive view
which shows that GLUENet has a high frequency at high CNR values while
GLUE is highly frequent at lower values. We test both methods on 62 pre- and
post- compression RF signal pairs chosen from 20 RF signals of CIRS phantom
for a measure of consistency. The best among the estimated strain images is
visually marked to compare with other strain images using Normalized Cross
Correlation (NCC). A threshold at 0.6 is used to determine failure rate of the
methods (Table 1). GLUENet shows very low failure rate (19.3548%) compared
to GLUE (58.0645%) which indicates greater consistency of GLUENet.

3.3 Clinical Results

Figure 4 shows axial strains of patient 1–3 from GLUE and GLUENet and his-
togram of CNR values. Similar to experimental phantom data, small target and
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Fig. 2. First row shows axial strain images of simulation phantom with added random
noise (PSNR: 12.7 dB); (a) Ground truth, (b) GLUE and (c) GLUENet. Second row
shows the performance metrics graph with respect to various range of applied strain;
(d) MSSIM vs Strain, (e) SNR vs Strain and (f) CNR vs Strain.

Fig. 3. Axial strain images of experimental phantom data generated by (a) GLUE and
(b) GLUENet, and (c) histogram of CNR values of GLUE and GLUENet. (Color figure
online)
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Fig. 4. Axial strain images of patients and histogram of CNR values: The three rows
correspond to patients 1–3 respectively. First and second columns depict axial strain
images from GLUE and GLUENet respectively. Third column shows histogram of CNR
values of GLUE and GLUENet. (Color figure online)
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Table 1. SNR and CNR of the strain images, and failure rate of GLUE and GLUENet
for experimental phantom data and in-vivo data of patients 1–3.

GLUE GLUENet

SNR CNR Failure rate (%) SNR CNR Failure rate (%)

Phantom 39.0363 12.6588 58.0645 43.4363 15.5291 19.3548

Patient 1 53.9914 22.1641 34.6939 54.7700 27.9264 04.8469

Patient 2 47.5051 22.7523 68.3673 55.9494 25.4911 14.5408

Patient 3 31.2440 07.7831 77.0408 28.6152 19.6954 60.7143

background windows are moved to create a total combination of 120 window
pairs for calculating CNR values. Their histogram shows that GLUENet has a
high frequency at high CNR values while GLUE is more frequent at low val-
ues. Table 1 shows the SNR and CNR values for all patients which is calculated
by using the large blue and red windows as target and background. We calcu-
late failure rate of GLUE and GLUENet from 392 pre- and post- compression
RF echo frame pairs chosen from 60 RF echo frames of all three patients. The
best axial strain is marked visually to compare with other strains using NCC.
A threshold of 0.6 is used to determine the failure rate of the methods shown
in Table 1. The failure rate of GLUENet is very low compared to GLUE for all
patient data thus proving the robustness of GLUENet to decorrelation noise in
clinical data.

The failure rates of GLUE in Table 1 are generally high because no parame-
ter tuning is performed for the hyperparameters. Another reason for high failure
rates is that we select pairs of frames that are temporally far from each other
to test the robustness at extreme levels. This substantially increases non-axial
motion of the probe and complex biological motions, which leads to severe decor-
relation in the RF signal. In real-life, the failure rate of these methods can be
improved by selecting pairs of RF data that are not temporally far from each
other.

4 Conclusions

In this paper, we introduced a novel technique to calculate tissue displacement
from ultrasound images using CNN. This is, to the best of our knowledge, the
first use of CNN for estimation of displacement in ultrasound elastography. The
displacement estimation obtained from CNN was further refined using GLUE
[3], and therefore, we referred to our method as GLUENet. We showed that
GLUENet is robust to decorrelation noise in simulation, experiments and in-
vivo data, which makes it a good candidate for clinical use. In addition, the high
robustness to noise allows elastography to be performed by less experienced
sonographers as a point-of-care imaging tool.
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Abstract. Thermotherapy is a clinical procedure to induce a desired
biological tissue response through temperature changes. To precisely
operate the procedure, temperature monitoring during the treatment is
essential. Ultrasound propagation velocity in biological tissue changes
as temperature increases. An external ultrasound element was inte-
grated with a bipolar radiofrequency (RF) ablation probe to collect
time-of-flight information carried by ultrasound waves going through the
ablated tissues. Recovering temperature at the pixel level from the lim-
ited information acquired from this minimal setup is an ill-posed prob-
lem. Therefore, we propose a learning approach using a designed con-
volutional neural network. Training and testing were performed with
temperature images generated with a computational bioheat model sim-
ulating a RF ablation. The reconstructed thermal images were com-
pared with results from another sound velocity reconstruction method.
The proposed method showed better stability and accuracy for different
ultrasound element locations. Ex-vivo experiments were also performed
on porcine liver to evaluate the proposed temperature reconstruction
method.

Keywords: Ultrasound thermal monitoring
Temperature image reconstruction · Bipolar ablation · Hyperthermia
Thermotherapy · CNN · Ultrasound

1 Introduction

Thermotherapy is a clinical procedure that uses thermal energy to induce a
desired biological tissue response. Mild and localized hyperthermia can be used
in combination with chemotherapy or drug delivery to improve the therapy
response [1,2]. Thermal ablation can be achieved by applying sufficient thermal
energy to reach a complete destruction of various kinds of cancer cells. However,
the main challenge is to cover completely the target region while preserving
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the surrounding healthy tissues. Monitoring the temperature across this region
is necessary to control the delivered thermal energy and operating duration to
precisely and successfully operate the procedure [3].

A widely accepted approach to measure temperature is the use of invasive
thermometers [4]. However, it allows temperature monitoring only at a few spa-
tial locations. Magnetic resonance imaging (MRI) is the current clinical stan-
dard to monitor the spatial temperature distribution [5]. In addition to the high
cost of MRI, it requires the therapy instruments to be MR-compatible. Further-
more, MRI is not suitable for patients with pacemaker, neurostimulator or metal
implants. An alternative is to use portable and affordable ultrasound (US) tech-
niques, and a significant number of related works have been reported [6]. These
approaches exploit the temperature dependent ultrasound properties such as
sound velocity and attenuation to estimate the temperature. Sound velocity or
attenuation images can be generated using ultrasound tomography techniques,
which typically require extensive data acquisition from multiple angles. Ultra-
sound tomographic images can also be reconstructed using time-of-flight (TOF)
information from limited angles using an isothermal model [7]. To overcome the
sparsity of the data, machine learning is a promising alternative [8].

In this work, we propose a deep learning approach for tomographic recon-
struction of sound velocity images. We collected TOFs using a clinical ultrasound
transducer and by integrating an active ultrasound element on a bipolar radiofre-
quency (RF) ablation probe. The number of acquired TOFs is limited by the
number of elements in the ultrasound transducer, usually insufficient to solve
for the sound velocity in the heated region. Therefore, we implemented a con-
volutional neural network (CNN) to reconstruct temperature images using this
limited information. For the training of the network, thermal images are gener-
ated with a computational bioheat model of RF ablation, and then converted to
sound velocity images to obtain simulated TOF datasets. We performed simu-
lation and ex-vivo experiments to evaluate the proposed method.

2 Methods

2.1 Thermal Ablation Procedure and Monitoring Setup

The thermal ablation procedure is performed with bipolar RF needles to gen-
erate various ablation patterns [9] and an active ultrasound element is used for
temperature monitoring as shown in Fig. 1(a). As the element can be integrated
with the ablation probe, it does not increase the overall invasiveness of the pro-
cedure. Two different ablation patterns were considered: horizontal and diagonal
as illustrated in Fig. 1(b). We created the horizontal pattern by activating the
two electrodes at the tips of the RF probes, and the diagonal pattern by activat-
ing crossing electrodes. During the procedure, the external ultrasound element
transmits ultrasound pulses. TOF data are collected with an ultrasound trans-
ducer to detect the change in sound velocity. Therefore, the monitored region is
the triangular area created between the ultrasound transducer and the element.
It belongs to the monitoring image plane between the two RF probes showed
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Fig. 1. (a) The ultrasound thermal monitoring setup. (b) Left: Horizontal ablation
pattern. Right: Diagonal ablation pattern.

in Fig. 1. In this plane, the horizontal pattern showed a round-shaped tempera-
ture distribution, while the diagonal pattern showed an ellipsoid one.

2.2 Thermal Image Reconstruction Using Neural Network

Training Set Generation: A RFA computational model is used to simulate
the temperature evolution in a 3D domain with various tissue parameters to
provide temperature images for training. A reaction-diffusion equation (Eq. 1)
following the Pennes bioheat model [10] is used:

ρtct
∂T

∂t
= Q + ∇ · (dt∇T ) + R(Tb0 − T ) (1)

where ρt, ct, dt are the density, heat capacity, and conductivity of the tis-
sue. Tb0, R, Q, the blood temperature, reaction term, and source term modeling
the heat from the ablation device. The implementation is based on the Lattice
Boltzmann Method and inhomogeneous tissue structures can be considered [11].
To simulate RF ablation with bipolar probes, and thus various ablation lesion
shapes, we assume the two RF electrodes as independent heating sources. Their
temperatures are imposed as Dirichlet boundary conditions [11]. For each abla-
tion pattern, we simulated a procedure of 8 min of heating followed by 2 min of
cooling, which corresponds to 600 temperature images having a temporal resolu-
tion of 1 s. We wanted to mimic the ex-vivo experiment setup, therefore porcine
tissue parameters were used, even though a shorter cooling period was achieved
due to a data storage limitation in the current experimental setup [11]. For the
horizontal pattern, the temperature range was between 22.0 ◦C and 37.8 ◦C,
and for the diagonal pattern, between 23.0 ◦C and 35.9 ◦C.

Different ultrasound element locations can also be considered. We defined
a 2D image coordinate system as (Axial, Lateral) axis in millimeter scale. The
image plane was divided in 60 by 60 pixels. A 6 cm linear 128 element ultrasound
probe was placed between (0, 0) and (0, 60), and the ultrasound element was
located within the image plane. The network training set is made of those images
as well as the corresponding simulated TOF information.

In order to simulate the acquisition of TOF dataset, we converted the tem-
perature images into sound velocity images as the sound velocity within the
tissue changes with temperature. Since the major component of biological tissue
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is water, the relationship between sound velocity and temperature for biological
tissue has a trend similar to the water one [12]. In this paper, we used a convert-
ing equation acquired from a tissue-mimicking phantom with a sound velocity
offset compensation [13] to simulate TOF information affected by a change in
temperature and therefore in sound velocity even though a tissue-specific rela-
tionship could be used if the tissue type is known.

We simulated 49 different ultrasound element locations around the location
used in the ex-vivo experiment, with the heating center kept fixed. For the hor-
izontal pattern, we moved the element location from (36, 40.5) to (42, 46.5) by
a 1 mm step in both lateral and axial directions. For the diagonal pattern, ele-
ment locations between (43.5, 51) and (49.5, 57) were considered. For each of
the 49 locations, data were split randomly with a 6:1 ratio between training and
testing sets. Therefore, for each ablation pattern, the total number of samples
was 29,400, split into 4,200 testing and 25,200 training sets. This large dataset
may ensure an effective training of the network parameters without over-fitting.

Image Reconstruction Network: Figure 2 shows the temperature image
reconstruction neural network, which consists of two fully connected layers
wrapping series of CNN. The convolutional network is symmetrically designed,
consisting of convolution and trans-convolution layers. After the convolution
operation, each CNN layer includes a ReLU followed by a batch normalization
operation.

Fig. 2. Temperature image reconstruction network.

We concatenated the 128-length initial TOF vector with any TOF vector dur-
ing the procedure into a 256-length input vector. The initial TOF is always used
since it provides the element location and allows to access the TOF differences
during the ablation procedure, valuable information for temperature reconstruc-
tion. As we reconstructed 3600 pixel temperature images with a 256-length input
vector, we expanded the parameters at the beginning of the network.

Training Results: For each ablation pattern, we performed 1000 epochs using
the Pytorch library [14]. Adam optimizer and mean squared error loss func-
tion were used. We compared the results to those obtained from another recon-
struction method (CSRM) [13] in Table 1 at the 49 different ultrasound ele-
ment locations. In this case, the ground truths are the simulated temperature
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Table 1. Comparison of the CNN approach with a sound velocity reconstruction
method using RFA modeling (CSRM) for the 49 different ultrasound element loca-
tions. The error is the difference of temperature in the imaging plane between the
reconstructed image and the simulated image (ground truth).

Method CSRM CNN

Pattern Horizontal Diagonal Horizontal Diagonal

Maximum errors (◦C) 1.118 ± 2.701 0.788 ± 1.904 0.174 ± 0.198 0.064 ± 0.010

Mean errors (◦C) 0.107 ± 0.243 0.070 ± 0.144 0.019 ± 0.018 0.011 ± 0.017

images. The CRSM method used an optimization approach with additional con-
straints brought by a computational RFA modeling. The CNN reconstruction
method had 0.94 ◦C and 0.72 ◦C less maximum temperature error in the imag-
ing plane than CSRM for the horizontal and diagonal pattern respectively. We
also observed that the standard deviation decreased with the CNN approach.
With the CSRM method, the reconstruction accuracy is highly affected by the
ultrasound element location. Indeed, for certain locations, the ultrasound prop-
agation paths may not intersect with the heating center. Among the 49 different
element locations considered, the maximum error in the sound velocity recon-
struction exceeds 5 m/s with CSRM at 7 and 2 locations for the horizontal and
diagonal pattern respectively. The CNN reconstruction method showed less tem-
perature error at those locations since it could estimate the temperature at the
heating center more precisely using information learned from other temperature
distributions.

We also tested with a fully connected network by replacing the middle struc-
ture with four dense networks which were the same as the last dense network
in Fig. 2. The regression accuracy was similar to the CNN network with more
parameters. To minimize over-fitting, we chose the hyper-parameters with the
minimal number of layers maintaining the regression accuracy. The initial learn-
ing rate was 10−3, and we re-trained with a smaller learning rate of 10−5. We
also tested our network without the last dense layers, the regression accuracy
was inferior to the original network.

3 Ex-vivo Liver Ablation with Ultrasound Monitoring

3.1 Experiment Setup

Two ex-vivo porcine liver experiments were performed to test the performance of
the trained model. Liver tissues were placed at room temperature for 12 h before
performing the ablation. We used the setup illustrated in Fig. 1(a). Bipolar abla-
tion probes were inserted 2-cm apart and in parallel by using a holder to perform
horizontal and diagonal ablation patterns. The ablation power was provided by a
RF generator (Radionics Inc., USA). The ultrasound element was placed within
the porcine liver tissue. We adjusted its location to the ultrasound transducer
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Fig. 3. Results of the ex-vivo experiments on porcine livers. (a) Temperature recon-
struction for the horizontal and diagonal ablation patterns. (b) Temperature evolution
over time at three different positions in the imaging plane. (Left): Horizontal ablation
pattern. (Right): Diagonal ablation pattern.
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by finding the maximum signal strength within the imaging plane. We used a
10 MHz linear transducer L14-5W/60 (Ultrasonix Corp., Canada) with a 5–14
MHz bandwidth and a SonixDAQ (Ultrasonix Corp., Canada) with a sampling
frequency of 40 MHz. The ultrasound data was collected with a pitch-and-catch
mode. The ultrasound element transmitted a pulse while the ultrasound trans-
ducer and DAQ received the signal simultaneously. The transmission and collec-
tion were synchronized by an external function generator at 1 Hz. We performed
8 min of ablation, after what the ablation probes remained in the tissue for an
extra 1 min without RF power.

3.2 Temperature Image Reconstruction

TOF was detected by finding the first peak from the ultrasound channel data.
The received signal had a center frequency of 3.7 MHz with a bandwidth of 2.5–
5.6 MHz. During the two ablations, we collected 540 TOF dataset for 9 min.
The element was localized at (39.0, 43.6) and (46.6, 54.2) in the horizontal and
diagonal pattern experiments. We reconstructed temperature images using the
model trained with the simulation datasets and we observed a convincing tem-
perature trend over time. The temperature evolutions at three different points:
heating center, −5 and −10 mm away from the center along the axial direction
are shown in Fig. 3. The maximum TOF shift was 300 ns for the horizontal,
and 475 ns for the diagonal pattern. In the horizontal pattern experiment, at
around 180 and 230 s, the TOF increased for few samples compared to previous
frames which was unexpected. This induced a temperature decrease at those
time points. Nonetheless, we observed an overall temperature increase trend.

4 Discussion and Conclusion

As we use the relative changes in TOF to monitor the temperature during a
thermal ablation, the complication of calculating the absolute sound velocity
of different tissues is decreased. However, the variety of sound velocity changes
against temperature in different tissue types may cause errors in the recon-
structed temperature results. To overcome this problem, a calibration method
for different tissue types can be used [13], and dataset from diverse tissue types
should also be used to train the network. In this paper, the ablation power was
limited due to the ongoing development of the bipolar ablation device, which
limited the temperature range. But this method can be applied to ablation
where higher temperatures are reached. Moreover, the ex-vivo experiment results
could not be validated with other thermometry methods. MR-thermometry for
example, was not an option since the ablation system is not MR-compatible.
Thermocouples could block the ultrasound propagation paths, and only pro-
vide temperature information at few points. Therefore, we validated the method
with simulation data, and observed an increasing temperature trend in ex-vivo
experiments. Patient motion can affect the reconstruction accuracy, which is the
main challenge for many ultrasound thermometry approaches. With our method,
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patient motion will change the location of the ultrasound element relative to the
ultrasound transducer, which can be detected by a sudden change in TOF. The
CNN model is trained with various ultrasound element locations, and the system
could be further improved in the future to continue reconstructing temperature
images using prior temperature information in the occurrence of patient motion.

Ultrasound is a preferable imaging modality due to its accessibility, cost-
effectiveness, and non-ionizing nature. We have introduced a temperature moni-
toring method using an external ultrasound element and CNN. We have trained
the model with simulation data, and applied it to ex-vivo experiments. One of
the advantages of the proposed method is the fact that we can generate unlim-
ited simulation datasets for the training. This method will be further extended
for tomographic applications using sparse datasets.
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Abstract. Clinically, the transthalamic plane of the fetal head is manually
examined by sonographers to identify whether it is a standard plane. This
examination routine is subjective, time-consuming and requires comprehensive
understanding of fetal anatomy. An automatic and effective computer aided
diagnosis method to determine the standard plane in ultrasound images is highly
desirable. This study presents a novel method for the quality assessment of fetal
head in ultrasound images based on Faster Region-based Convolutional Neural
Networks (Faster R-CNN). Faster R-CNN is able to learn and extract features
from the training data. During the training, Fast R-CNN and Region Proposal
Network (RPN) share the same feature layer through joint training and alternate
optimization. The RPN generates more accurate region proposals, which are used
as the inputs for the Fast R-CNNmodule to perform target detection. The network
then outputs the detected categories and scores. Finally, the quality of the
transthalamic plane is determined via the scores obtained from the numbers of
detected anatomical structures. These scores detect the standard plane as well.
Experimental results demonstrated that our method could accurately locate five
specific anatomical structures of the transthalamic plane with an average accuracy
of 80.18%, which takes only an approximately 0.27 s running time per image.

Keywords: Fetal head � Quality assessment � Ultrasound images
Faster R-CNN � Anatomical structure detection

1 Introduction

Ultrasound image has been preferred as an imaging modality for prenatal screening due
to its noninvasive, real-time tracking, and low-cost. In prenatal diagnosis, it is
important to obtain standard planes (e.g., the transthalamic plane) for prenatal ultra-
sound diagnosis. With the standard plane, doctors can measure the fetal physiological
parameters to assess the growth and development of the fetus. Moreover, the weight of
the fetus also can be obtained by measuring the parameters of biparietal diameter and

© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): POCUS 2018/BIVPCS 2018/CuRIOUS 2018/CPM 2018,
LNCS 11042, pp. 38–46, 2018.
https://doi.org/10.1007/978-3-030-01045-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01045-4_5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01045-4_5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01045-4_5&amp;domain=pdf


head circumference. This clinical practice is challenging for novices since it requires
high-level clinical expertise and comprehensive understanding of fetal anatomy. Nor-
mally, ultrasound images scanned by novices are evaluated by experienced ultrasound
doctors in the clinical practice, which is time-consuming and unappealing. To assist
junior doctors by tracking the quality of the scanned image, automatic computer aided
diagnosis for the quality assessment of ultrasound image is highly demanded.
Accordingly, “intelligent ultrasound” [1] has become an inevitable trend due to the
rapid development of image processing techniques. Powered by the machine learning
and deep learning techniques, many dedicated research works have been proposed for
this interesting topic, which mainly focus on the quality assessment of fetal ultrasound
images to locate and identify the specific anatomical structures. For instance, Li et al.
[2] combined Random Forests and medicine prior knowledge to detect the region of
interest (ROI) of the fetal head circumference. Vaanathi et al. [3] utilized FCN
architecture to detect the fetal heart in ultrasound video frames. Each frame is classified
into three common standard views, e.g. four chamber view (4C), left ventricular out-
flow tract view (LVOT) and three vessel view (3V) captured in a typical ultrasound
screening. Dong et al. [4] found the standard plane by fetal abdominal region local-
ization in ultrasound using radial component model and selective search. Chen et al. [5]
proposed an automatic framework based on deep learning to detect standard planes.
The automatic framework achieved competitive performance and showed the potential
and feasibility of deep learning for regions localization in ultrasound images. However,
there are still lack of existing methods proposed under the clinical quality control
criteria for quality assessment of fetal transthalamic plane in ultrasound images [6].

For quality control under the clinical criteria, the quality evaluation of the ultra-
sound images is scored via the number of the detected regions of important anatomical
structures. The scores are given by comparing the detected region results with the
bounding boxes annotated by doctors. Specifically, a standard transthalamic plane of
fetal consists of 5 specific anatomical parts which can be clearly visualized, including
lateral sulcus (LS), thalamus (T), choroid plexus (CP), cavum septi pellucidi (CSP) and
third ventricle (TV). The ultrasound map and the specific pattern of the fetal head plane
including transthalamic plane, transventricular plane, transcerebellar plane are shown
in Fig. 1. However, the ultrasound images of these three planes are very similar and the
doctors are confusing. In addition, there are remaining challenges for quality assess-
ment of the ultrasound images due to the following limitations: (1) The quality of
ultrasound images is often affected by noise; (2) The anatomical structure’s area is
scanned in different magnification levels; (3) The scanning angle and the fetal location
are unstable due to the rotation of the anatomical structure; (4) There are high variations
in shapes and sizes of the anatomical structures among the patients.

To solve the above-mentioned challenges, we propose a deep learning based
method for quality assessment of the fetal transthalamic plane. Specifically, our pro-
posed method is based on the popular faster region-based convolutional network
(Faster R-CNN [7]) technique. The remarkable ability of Faster R-CNN has been
demonstrated in effectively learning and extracting discriminative features from the
training images. Faster R-CNN is able to simultaneously perform classification and
detection tasks. First, the images and the annotated ground-truth boxes are fed into
Faster R-CNN. Then, Faster R-CNN generates the bounding boxes and the scores to

Quality Assessment of Fetal Head Ultrasound Images 39



denote the detected regions and the quality of the detected regions, respectively. The
output results are used to determine whether the ultrasound image is a standard plane.
To the best of our knowledge, our proposed method is the first fully automatic deep
learning based method for quality assessment of the fetal transthalamic plane in
ultrasound images.

Overall, our contributions can be mainly highlighted as follows: (1) This is the first
Faster R-CNN based method for the quality assessment of transthalamic plane of fetal;
(2) The proposed framework could effectively assist doctors and reduce the workloads
in the quality assessment of the transthalamic plane in ultrasound images; (3) Experi-
mental results suggest that Fast R-CNN can be feasibly applied in many applications of
ultrasound images. The proposed technique is generalized and can be easily extended
to other medical image localization tasks.

2 Methodology

Figure 2 illustrates the framework of the proposed method for quality assessment of the
fetal transthalamic plane. Faster R-CNN contains Fast R-CNN and RPN module.
Images are cropped with a fixed-size of 224 � 224. The shared feature map, Fast
R-CNN and RPN module of Faster R-CNN are explained in detail in this section.

2.1 Shared Feature Map

To achieve a fast detection while ensuring the accuracy of positioning results, the RPN
module and Fast R-CNN [8] module share the first 5 convolutional layers of the
convolutional neural network. However, the final effect and outputs of RPN and Fast
R-CNN are different since the convolutional layers are modified in different ways.

Fig. 1. The ultrasound map and the specific pattern of three fetal head plane. (a) transthalamic
plane; (b) transventricular plane; (c) transcerebellar plane.
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At the same time, the feature map of the shared convolutional layer extraction must
include the features required by both modules. This requirement cannot be easily
obtained by just only using back propagation, which is in combination with the loss
function optimization of the two modules. Fast R-CNN may not converge when the
RPN could not provide fixed sizes of predicted bounding boxes.

To tackle the mentioned difficulties, Faster R-CNN learns the shared features
through joint training and alternative optimization. Specifically, the pre-trained model
of VGG16 is initialized and fine-tuned for training the RPN module. The generated
bounding boxes are used as inputs to Fast R-CNN module. A separate detection
network is then trained by Fast R-CNN. The pre-trained model of Fast R-CNN is the
same as the pre-trained model of RPN module. However, these two networks are
trained separately and do not share parameters. Next, the detection network is used to
initialize the RPN training, but we fix the shared convolutional layer and only fine tune
the RPN-specific layers. Then, we still keep the shared convolutional layer fixed and
the RPN result is used to fine-tune the full connection layer of the Fast R-CNN module
again. As a result, the two networks keep sharing the same convolutional layer until the
end of the network training. Also, the detection and identification sets form a unified
network.

2.2 Fast R-CNN Module

The structure of Fast R-CNN is designed based on R-CNN. In R-CNN, the processing
steps (e.g., region proposal extraction, CNN features extraction, support vector
machine (SVM) classification and box regression) are separated from each other that

Fig. 2. The framework of our method based on Faster R-CNN.
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causes the training process hardly to optimize the network performance. By contrast,
the training process of Fast R-CNN is executed in an end-to-end manner (except for the
region proposal step). Fast R-CNN directly adds an region of interest (ROI) pooling
layer, which is essentially equivalent to the simplification of spatial pyramid pooling
(SPP). With ROI layer, Fast R-CNN convolutes an ultrasound image only once. Then,
it extracts feature from the original image and locates its region proposal boxes, which
greatly improves the speed of the network. Fast R-CNN eventually outputs the
localization scores and the detected bounding-boxes simultaneously.

Base Network: Fast R-CNN is trained on VGG16 and the network is modified to be
able to receive both input images and the annotated bounding boxes. Fast R-CNN
preserves 13 convolutional layers and 4 max pooling layers of the VGG-16 architec-
ture. In addition, the last fully connected layer and softmax of VGG16 are replaced by
two sibling layers.

ROI Pooling Layer: The last max pooling layer of VGG16 is replaced by an ROI
pooling layer to extract the fixed-length of feature vectors from the generated feature
maps. Fast R-CNN is able to convolute an image only once. It extracts feature from the
original image and locates its region proposal boxes, which boosts the speed of the
network. Since the size of the ROI pooling input is varying, each pooling grid size
needs to be designed, which ensures that the subsequent classification in each region
can be normally preceded. For instance, the input size of a ROI is h � w, the output
size of the pooling is H � W, and the size of each grid is designed as h/H � w/W.

Loss Function: Two output layers of Fast R-CNN include the classification proba-
bility score prediction for each ROI region p, and the offset for each ROI region’s

coordinate tu ¼ tux ; t
u
y ; t

u
w; t

u
h

� �
; 0� u�U, where U is the number of object classes. The

loss function of Fast R-CNN is defined as follows:

L ¼ Lcls p; uð Þþ kLloc tu; vð Þ; if u is a structure;
Lcls p; uð Þ; if u is a background;

�
ð1Þ

where Lcls is the loss function of the classification, and Lloc is the loss function for the
localization. It is worthy mentioned that we do not consider the loss function of the
bounding boxes location if the classification result is misclassified as the background.
The loss function of Lcls is defined as follows:

Lcls p; uð Þ ¼ log pu; ð2Þ

where Lloc is also described as the difference between the predicted parameter tu

corresponding to the real classification and the true translation scaling parameter t. Lloc
is defined as follows:

Lloc tu; vð Þ ¼
X4

i¼1
g tui � vi
� �

; ð3Þ
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where g is the smooth deviation, which is more sensitive to the outlier. g is defined as

g xð Þ ¼ 0:5x2; xj j\1;
xj j � 0:5; otherwise:

�
ð4Þ

2.3 RPN Module

The role of RPN module is to output the coordinates of a group of rectangular predicted
bounding boxes. The implementation of RPN module did not slow down the training
and detection process of the entire network because of the shared feature map. By
taking the shared feature map as input of the RPN network, repetitive feature extraction
is avoided and the calculation of regional attention is nearly cost-free. The RPN module
performs convolution with a 3 � 3 sliding window on the incoming convolutional
feature map and generate a 512-dimension feature matrix.

Then, RPN module also takes advantage of the principle of parallel output and
accesses both branches after generating a 512-dimensional feature. The first branch is
used to predict the upper left coordinates x, y, width w, and height h of the predicted
bounding boxes corresponding to the central anchor points of the bounding boxes. For
the diversity of predicted bounding boxes, the multi-scale method commonly is used in
the RPN module. In order to obtain the more accurate predicted bounding boxes, the
parameterizations of bounding box’s coordinates are introduced. The second branch
classifies the predicted bounding regions by the softmax classifier, which obtains a
foreground bounding boxes and a background predicted bounding boxes (detection
target is a foreground predicted bounding boxes). The last two branches converge at the
FC layer, which is responsible for synthesizing the foreground predicted bounding box
scores and the bounding box regression offsets, while removing the candidate boxes
that are too small and out of bounds. In fact, the RPN module can get about 20,000
predicted bounding boxes, but there are many overlapping boxes. Here, a non-
maximum suppression method is introduced to set the Intersection over Union (IOU) to
a threshold of 0.7, i.e., preserving only predicted bounding boxes with local maximum
score not exceeding 0.7. Finally, RPN module only passes 300 bounding boxes with
higher score to the Fast R-CNN module. The RPN module not only simplifies the
network input and improves the detection performance, but also enables the end-to-end
training of the entire network, which is important for performance optimization.

3 Experiments

3.1 Dataset

The ultrasound images, which contain one single fetus, are collected from a local
hospital. The gestation age of the fetus varies from 14 to 28 weeks. The most clearly
visible images are selected in the second trimester. As a result, a total of 513 images
which clearly visualize the 5 anatomical structures of LS, CP, T, CSP and TV are
selected.
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Due to the diversity of image sizes in the original dataset, the images are resized to
720 � 960 for further processing. Since the training for Faster R-CNN requires a large
number of images, we increase the numbers and varieties of images by adopting a
commonly used data augmentation method (e.g., random cropping, rotating and mir-
roring). As a result, a total of 4800 images are finally selected for training and the
remaining 1153 images are used for testing. All the training and testing images are
annotated and confirmed by an 8 years clinical experienced ultrasound doctor. All
experiments are performed on a computer with CPU Inter Xeon E5-2680 @ 2.70 GHz,
GPU NVIDIA Quadro K4000, and 128G of RAM.

3.2 Results

The setting of the training process is kept the same whenever possible for fair com-
parison. Recall (Rec), Precision (Prec) and Average Precision (AP) are used as per-
formance evaluation metrics. We adopt 2 popular object detection methods including
Fast R-CNN and Yolov2 [10] for performance comparisons. Table 1 summarizes the
experimental results of each network. We observe that the detection results for single
anatomical structure of the LS and CP are the best. This is because LS and CP have
distinct contour, moderate size with high contrast and less surrounding interference.
Another reason is that LS and CP classes contain more training samples than other
classes, making the detection biased to detect these classes and misdetect other classes.
The results of TV are quite low due to its blurry anatomical structure, small size, and
structure similarity of other tissues.

Generally, the detection performance of Faster R-CNN is better than Fast R-CNN
and Yolov2. In particular, Faster R-CNN has significantly improved the detection
performance of TV. The running time per image from Fast R-CNN, YOLOv2, and
Faster R-CNN is 2.7 s, 0.0006 s, and 0.27 s, respectively. Although the running time
of Faster R-CNN is not the fastest, its speed still satisfies the clinical requirements.

Figure 3 shows the structure localization results using the proposed technique
compared with other methods. The green, red, yellow, blue and green bounding boxes

Table 1. Comparison of the proposed method with other methods (%).

Method Value LS CP T CSP TV

Fast R-CNN Rec 87.6 63.7 62.6 44.2 –

Prec 84.7 57.0 60.8 29.3 –

AP 70.6 36.3 39.5 19.8 –

YOLOv2 Rec 90.4 83.7 34.7 48.6 4.2
Prec 99.6 97.2 79.9 94.1 85.2
AP 90.3 82.9 30.3 46.9 3.6

Faster R-CNN (VGG16) Rec 96.8 96.0 89.6 89.3 56.5
Prec 96.6 96.7 77.1 94.6 72.8
AP 94.9 93.8 81.0 87.1 44.1
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indicate the LS, CP, T, CSP and TV, respectively. As shown in Fig. 3, our method can
simultaneously locate multiple anatomical structures in an ultrasound image and
achieve the most superior localization results.

4 Conclusion

In this paper, we propose an automatic detection technique for quality assessment of
fetal head in ultrasound images. We utilize Faster R-CNN to automatically locate five
specific anatomical structures of the fetal transthalamic plane. Accordingly, the quality
of the ultrasound image is scored and the standard plane is determined based on the
number of detected regions. Experimental results demonstrate that it is feasible to
employ deep learning for the quality assessment of fetal head ultrasound images. This
technique can be also extended to many ultrasound images tasks. Our future work will
tackle the existing problem of inhomogeneity of image contrast in ultrasound images,
which will apply intensity enhancement method to enhance the contrast between the
anatomical structures and the background. The clinical prior-knowledge will be utilized
to achieve better detection and localization.

Acknowledgement. This work was supported partly by National Key Research and Develop
Program (No. 2016YFC0104703).

Fig. 3. The detection results of Fast R-CNN, YOLOv2, and Faster R-CNN (VGG16),
respectively. The purple, yellow, cyan, red, and green boxes locate the lateral fissure, choroid
plexus, thalamus, transparent compartment, and third ventricle, respectively. (Color figure online)
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Abstract. Medical ultrasound is rapidly advancing both through more
powerful hardware and software; in combination these allow the modality
to become an ever more indispensable point-of-care tool. In this paper,
we summarize some recent developments on the image analysis side that
are enabled through the proprietary ImFusion Suite software and corre-
sponding software development kit (SDK). These include 3D reconstruc-
tion of arbitrary untracked 2D US clips, image filtering and classifica-
tion, speed-of-sound calibration and live acquisition parameter tuning in
a visual servoing fashion.

1 Introduction

Today, a steadily increasing number of US device vendors dedicate their efforts
on Point-of-Care Ultrasound (POCUS), including Philips1, Butterfly2, Clarius3,
UltraSee4, and others. In general, these systems’ development is hardware-driven
and aims at introducing conventional scanning modes (B-mode, color Doppler)
in previously inaccessible surroundings in the first place [1].

At the same time, significant work on improving non-point-of-care US has
been presented in recent years [2]. Amongst them, three-dimensional (3D) US
relying on external hardware tracking is already translating into clinical rou-
tine, enabling advanced live reconstruction of arbitrary anatomy [3]. Naturally,
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the trend to employ deep learning tools has not stopped short of US, exhibit-
ing remarkable progress to segment challenging anatomies or classify suspicious
lesions, as shown in the review by Litjens et al. [4] and references therein.

In liaison, these breakthroughs in terms of hardware and image processing
allow us to look beyond conventional usage of US data. In this work, we sum-
marize recent advances in POCUS and interventional US using innovative image
analysis and machine learning technologies, which were implemented within our
medical imaging framework ImFusion Suite.

For instance, very long 3D US scans facilitate automatic vessel mapping,
cross-section and volume measurements as well as interventional treatment plan-
ning (available on an actual medical device now, see PIUR tUS5). Brain shift
compensation based on multi-modal 3D US registration to pre-operative MR
images enables accurate neuro-navigation, which has successfully been proven
on real patients during surgery [5].

In the remainder of the paper, we start with a brief overview of the impor-
tant features of our ImFusion software development kit (SDK) allowing for such
developments and then highlight the following applications in greater detail:
(i) Employing deep learning and optionally inertial measurement units (IMU),
we have been able to show that 3D reconstruction is even possible without exter-
nal tracking systems. (ii) For orthopedic surgery, precise bone surface segmen-
tation facilitates intra-operative registration with sub-millimeter accuracy, in
turn allowing for reliable surgical navigation. (iii) Last but not least, ultrasound
uniquely allows to close the loop on the acquisition pipeline by actively influenc-
ing how the tissue is insonified and the image formed. We perform a tissue-
specific speed-of-sound calibration, apply learning-based filtering to enhance
image quality and optimally tune the acquisition parameters in real-time.

2 ImFusion SDK as Research Platform

A variety of open source C++ platforms and frameworks for medical imaging
and navigation with US have evolved in the past, including 3D Slicer [6] with the
SlicerIGT extension [7], the PLUS toolkit [8], CustusX [9], and more recently
SUPRA [10]. All of these have a research focus, and have successfully helped to
prototype novel algorithms and clinical workflows in the past, some with a very
active development community striving for continuous improvement. Neverthe-
less, turning an algorithm from a research project into a user-friendly, certified
medical product may be a long path.

Complementary to the above, we are presenting the ImFusion Suite & SDK,
a platform for versatile medical image analysis research and product-grade soft-
ware development. The platform is based on a set of proprietary core compo-
nents, whereupon openly accessible plugins contributed by the research commu-
nity can be developed. In this work, we emphasize the platform’s capabilities
to support academic researchers in rapid prototyping and translating scientific

5 PIUR imaging GmbH, Vienna, Austria, www.piurimaging.com (accessed June 2018).

www.piurimaging.com


Recent Advances in Point-of-Care Ultrasound Using the ImFusion Suite 49

ideas to clinical studies and potential subsequent commercialization in the form
of university spin-offs. The SDK has been employed by various groups around
the world already [5,11–14].

It offers radiology workstation look and feel, ultra-fast DICOM loading, seam-
less CPU/OpenGL/OpenCL synchronization, advanced visualization, and vari-
ous technology modules for specialized applications. In order to deal with real-
time inputs such as ultrasound imaging or tracking sensors and other sensory
information, the streaming sub-system is robust, thread-safe on both CPU and
GPU, and easily extensible. Research users may script their algorithms using
XML-based workspace configurations or a Python wrapper. Own plugins can be
added using the C++ interface. In the context of dealing with 3D ultrasound,
further key features that go beyond what is otherwise available include robust
image-based calibration tools similar to [15], and various 3D compounding meth-
ods that allow for on-the-fly reconstruction of MPR cross-sections [16]. Last but
not least, handling of tracking sensors include various synchronization, filter-
ing and interpolation methods on the stream of homogeneous transformation
matrices. Having all of the above readily available allows researchers to focus on
advancing the state of the art with their key contribution, as demonstrated in
the following examples.

3 3D POCUS Without External Tracking

Most POCUS systems are currently based on 2D ultrasound imaging, which
greatly restricts the variety of clinical applications. While there exist systems
enabling the acquisition of three-dimensional ultrasound data, they always come
with drawbacks. 3D matrix-array ultrasound probes are very expensive and pro-
duce images with limited field-of-view and quality. On the other hand, optical or
electro-magnetic tracking systems are expensive, not easily portable, or hinder
usability by requiring a permanent line-of-sight. Finally, leveraging the inertial
measurement units (IMU) that are embedded in most current US probes provides
a good estimate of the probe orientation, but acceleration data is not accurate
enough to compute its spatial position.

Therefore, in the past decades, there has been a significant effort in the
research community to design a system that would not require additional and
cumbersome hardware [18,19], yet allowing for 3D reconstruction with a free-
hand swept 2D probe. The standard approach for a purely image-based motion
estimation was named speckle decorrelation since it exploits the frame-to-frame
correlation of the speckle pattern present in US images. However, due to the
challenging nature of the problem, even recent implementations of this approach
have not reached an accuracy compatible with clinical requirements.

Once again, deep learning enabled a breakthrough by boosting the perfor-
mance of image-based motion estimation. As we have shown in [17], it is possible
to train a network to learn the 3D motion of the probe between two successive
frames in an end-to-end fashion: the network takes the two frames as input and
directly outputs the parameters of the translation and rotation of the probe
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Fig. 1. (a) Overview of our method for a frame-to-frame trajectory estimation of the
probe. (b) Architecture of the neural network at the core of the method. (c) Results
of the reconstructed trajectories (without any external tracking) on several sweeps
acquired with a complex motion. From [17], modified.

(see Fig. 1a and b). By applying such a network sequentially to a whole freehand
sweep, we can reconstruct the complete trajectory of the probe and therefore
compound the 2D frames into a high-resolution 3D volume. We also show that
the IMU information can be embedded into the network to further improve the
accuracy of the reconstruction. On a dataset of more than 700 sweeps, our app-
roach yields trajectories with a median normalized drift of merely 5.2%, yielding
unprecedentedly accurate length measurements with a median error of 3.4%.
Example comparisons to ground truth trajectories are shown in Fig. 1c.

4 Ultrasound Image Analysis

A core feature of the ImFusion SDK consists of its capabilities for real-time image
analysis. Provided that the employed US system allows for raw data access, the
processing pipeline from live in-phase and quadrature (IQ) data regularly starts
with demodulation, log-compression, scan-line conversion, and denoising.

Image Filtering. Instead of relying on conventional non-linear image filters, it
is possible to use convolutional neural networks (CNNs) for denoising. Simple
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Fig. 2. (a) Raw B-mode image of volunteer forearm cross-section (left), and the result
of the CNN-based denoising filter (right). (b)(c) Examples of automatic bone segmen-
tations in various US images (different bones and acquisition settings), along with the
neural network detection map. From [21], modified.

networks with U-net architecture [20] can be trained with l2-loss to perform a
powerful, anatomy-independent noise reduction. Figure 2a depicts an exemplary
B-mode image of a forearm in raw and filtered form. More complex, application-
specific models could be used to emphasize a desired appearance, or to highlight
suspicious lesions automatically.

Bone Surface Segmentation and Registration. As presented in [21], we
have shown that the automatic segmentation of bone surfaces in US images is
highly beneficial in Computer Assisted Orthopedic Surgeries (CAOS) and could
replace X-ray fluoroscopy in various intra-operative scenarios. Specifically, a fully
CNN was trained a set of labeled images, where the bone area has been roughly
drawn by several users. Because the network turned out to be very reliable,
simple thresholding and center pixel extraction between the maximum gradient
and the maximum intensity proved sufficient to determine the bone surface line,
see example results in Fig. 2b, c. Once a 3D point cloud of the bone surface was
assembled using an external optical tracking system, pre-operative datasets such
as CT or MRI can be registered by minimizing the point-to-surface error. An
evaluation on 1382 US images from different volunteers, different bones (femur,
tibia, patella, pelvis) and various acquisition settings yielded a median preci-
sion of 0.91 and recall of 0.94. On a human cadaver with fiducial markers for
ground truth registration, the method achieved sub-millimetric surface registra-
tion errors and mean fiducial errors of 2.5 mm.

5 Speed-of-Sound Calibration

In conventional delay-sum US beamforming, speed-of-sound inconsistencies
across tissues can distort the image along the scan-lines direction. The reason
is that US machines assume a constant speed-of-sound for human tissue; how-
ever, the speed-of-sound varies in the human soft tissue with an approximate
range of 150 m/s (Fig. 3a). To improve the spatial information quality, we have
developed a fast speed-of-sound calibration method based on the bone surface
detection algorithm outlined in the previous section.
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(a) Femur MRI (b) Steered US Frames

Fig. 3. (a) The difference in fat-to-muscle ratio between two patients; red and green
lines show the length of fat and muscle tissues. Considering the average speed-of-
sound in human fat and muscle (1470 m/s and 1620 m/s), one can compute the average
speed-of-sound for both images, resulting in 1590 m/s and 1530m/s, respectively. At a
depth of 6 cm, this difference can produce around 1 mm vertical shift in the structures.
(b) Superimposed steered US images before (left) and after (right) the speed-of-sound
calibration; red and green intensities are depicting the individual steered frames with
angles of ±15◦. Note the higher consistency of the bone in the right image. (Color
figure online)

As presented in [21], two US steered frames with a positive and a negative
angle are acquired in addition to the main image. Then, the bone surface is
detected in the steered images and they are interpolated into one single frame.
Wrong speed-of-sound causes both vertical and horizontal misplacements for the
bone surface in the steered images. The correct speed-of-sound is estimated by
maximizing the image similarity in the detected bone region captured from the
different angles (Fig. 3b). This method is fast enough to facilitate real-time speed-
of-sound compensation and hence to improve the spatial information extracted
from US images during the POCUS procedures.

6 Acquisition Parameter Tuning

One last obstacle of a wider adoption of ultrasound is the inter-operator variabil-
ity of the acquisition process itself. The appearance of the formed image indeed
depends on a number of parameters (frequency, focus, dynamic range, bright-
ness, etc.) whose tuning requires significant knowledge and experience. While we
have already shown above that – thanks to deep learning – US image analysis
algorithms can be made very robust to a sub-optimal tuning of such parameters,
we can even go one step further and close the loop of the acquisition pipeline.

Just like standard cameras use face detection algorithm to adjust the focus
plane and the exposure of a picture, we can leverage a real-time detection of the
object of interest in the ultrasound frame to adjust the acquisition parameters
automatically as shown in Fig. 4. Using machine learning to assess the image
quality of an ultrasound image has already been proposed (e.g. [22]), but using
a real-time detection allows to tailor our tuning of the parameters in an explicit
and straightforward way.
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Fig. 4. Automatic tuning of the US acquisition parameters based on the real-time bone
detection presented in Sect. 4, sub-optimal settings marked with red lines. (Color figure
online)

More specifically, knowing the position of the object in the image allows us
to directly set the focus plane of the ultrasound beams to the correct depth. It
also enables us to adjust the frequency empirically: the shallower the object, the
higher we can define the frequency (and vice versa). Finally, we can also choose
an adequate brightness and dynamic range based on statistics within a region
of interest that includes the target structure.

We believe such an algorithm could allow less experienced users to acquire
ultrasound images with satisfactory quality, and therefore make the modality
more popular for a larger number of clinical applications.

7 Conclusion

We have presented a number of advanced POCUS & interventional US applica-
tions through the ImFusion Suite. While many aspects of 3D ultrasound with
and without external tracking have been thoroughly investigated by the commu-
nity in the past, dealing with such data is by no means trivial, hence dedicated
software was in our experience crucial to achieve such results.

Acknowledgments. This work was partially supported by H2020-FTI grant (number
760380) delivered by the European Union.
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Abstract. Tracking of rotation and translation of medical instruments
plays a substantial role in many modern interventions and is essential
for 3D ultrasound compounding. Traditional external optical tracking
systems are often subject to line-of-sight issues, in particular when the
region of interest is difficult to access. The introduction of inside-out
tracking systems aims to overcome these issues. We propose a marker-less
tracking system based on visual SLAM to enable tracking of ultrasound
probes in an interventional scenario. To achieve this goal, we mount a
miniature multi-modal (mono, stereo, active depth) vision system on the
object of interest and relocalize its pose within an adaptive map of the
operating room. We compare state-of-the-art algorithmic pipelines and
apply the idea to transrectal 3D ultrasound (TRUS). Obtained volumes
are compared to reconstruction using a commercial optical tracking sys-
tem as well as a robotic manipulator. Feature-based binocular SLAM
is identified as the most promising method and is tested extensively in
challenging clinical environments and for the use case of prostate US
biopsies.

Keywords: 3D ultrasound imaging · Line-of-sight avoidance
Visual inside-out tracking · SLAM · Computer assisted interventions

1 Introduction

Tracking of medical instruments and tools is required for various systems in
medical imaging, as well as computer aided interventions. Especially for med-
ical applications such as 3D ultrasound compounding, accurate tracking is an
important requirement, however often comes with severe drawbacks impacting
the medical workflow. Mechanical tracking systems can provide highly precise
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D. Stoyanov et al. (Eds.): POCUS 2018/BIVPCS 2018/CuRIOUS 2018/CPM 2018,
LNCS 11042, pp. 56–64, 2018.
https://doi.org/10.1007/978-3-030-01045-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01045-4_7&domain=pdf


Markerless Inside-Out Tracking for 3D Ultrasound Compounding 57

Fig. 1. Interventional setup for fusion biopsy. Clinical settings are often char-
acterized by cluttered setups with tools and equipment around the examination bed.
While such environments are challenging for outside-in tracking, they can provide a
rich set of features for SLAM-based inside-out tracking.

tracking through a kinematic chain [1]. These systems often require bulky and
expensive equipment, which cannot be adapted to a clinical environment where
high flexibility needs to be ensured. In contrast to that, electromagnetic tracking
is flexible in its use, but limited to comparably small work spaces and can inter-
fere with metallic objects in proximity to the target, reducing the accuracy [2].

Optical tracking systems (OTS) enjoy widespread use as they do not have
these disadvantages. Despite favourable spatial accuracy under optimal condi-
tions, respective systems suffer from constraints by the required line-of-sight.
Robust marker based methods such as [3] address this problem and work even
if the target is only partly visible. However, the marker-visibility issue is further
complicated for imaging solutions relying on tracking systems, with prominent
examples being freehand SPECT [4] as well as freehand 3D ultrasound [5].

Aiming at both accurate and flexible systems for 3D imaging, a series of
developments have been proposed recently. Inside-out tracking for collaborative
robotic imaging [6] proposes a marker-based approach using infrared cameras,
however, not resolving line-of-sight issues. A first attempt at making use of
localized features employs tracking of specific skin features for estimation of
3D poses [7] in 3D US imaging. While this work shows promising results, it is
constrained to the specific anatomy at hand.

In contrast to previous works, our aim is to provide a generalizable track-
ing approach without requiring a predefined or application-specific set of fea-
tures while being easy to setup even for novice users. With the recent advent
of advanced miniaturized camera systems, we evaluate an inside-out tracking
approach solely relying on features extracted from image data for pose tracking
(Fig. 1).

For this purpose, we propose the use of visual methods for simultaneously
mapping the scenery and localizing the system within it. This is enabled by
building up a map from characteristic structures within the previously unknown
scene observed by a camera, which is known as SLAM [8]. Different image
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Fig. 2. 3D TRUS volume acquisition of prostate phantom. An inside-out cam-
era is mounted on a transrectal US transducer together with a rigid marker for an
outside-in system in the prostate biopsy OR. The consecutive images show the rele-
vant extracted data for the considered SLAM methods.

modalities can be used for visual SLAM and binocular stereo possesses many
benefits compared to monocular vision or active depth sensors.

On this foundation, we propose a flexible inside-out tracking approach rely-
ing on image features and poses retrieved from SLAM. We evaluate different
methods in direct comparison to a commercial tracking solution and ground
truth, and show an integration for freehand 3D US imaging as one potential
use-case. The proposed prototype is the first proof of concept for SLAM-based
inside-out tracking for interventional applications, applied here to 3D TRUS as
shown in Fig. 2. The novelty of pointing the camera away from the patient into
the quasi-static room while constantly updating the OR map enables advantages
in terms of robustness, rotational accuracy and line-of-sight problem avoidance.
Thus, no hardware relocalization of external outside-in systems is needed, partial
occlusion is handled with wide-angle lenses and the method copes with dynamic
environmental changes. Moreover, it paves the path for automatic multi-sensor
alignment through a shared common map while maintaining an easy installation
by clipping the sensor to tools.

2 Methods

For interventional imaging and specifically for the case of 3D ultrasound, the
goal is to provide rigid body transformations of a desired target with respect
to a common reference frame. This way, we denote TB

A as transformation A
to B. On this foundation, the transformation TW

US from the ultrasound image
(US) should be indicated in a desired world coordinate frame (W ). For the case
of inside-out based tracking - and in contrast to outside-in approaches - the
ultrasound probe is rigidly attached to the camera system, providing the desired
relation to the world reference frame

TW
US = TW

RGB · TRGB
US , (1)

where TW
RGB is retrieved from tracking. The static transformation TRGB

US

can be obtained with a conventional 3D US calibration method [9].
Inside-out tracking is proposed on the foundation of a miniature camera

setup as described in Sect. 3. The setup provides different image modalities
for the visual SLAM. Monocular SLAM is not suitable for our needs, since it
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needs an appropriate translation without rotation within the first frames for
proper initialization and suffers from drift due to accumulating errors over time.
Furthermore, the absolute scale of the reconstructed map and the trajectory is
unknown due to the arbitrary baseline induced by the non-deterministic initial-
ization for finding a suitable translation. Relying on the depth data from the
sensor would not be sufficient for the desired tracking accuracy, due to noisy
depth information. A stereo setup can account for absolute scale by a known
fixed baseline and movements with rotations only can be accounted for since
matched feature points can be triangulated for each frame.

For the evaluations we run experiments with publicly available SLAM meth-
ods for better reproducibility and comparability. ORB-SLAM2 [8] is used as
state-of-the-art feature based method. The well-known direct methods [10,11]
are not eligible due to the restriction to monocular cameras. We rely on the recent
publicly available1 stereo implementation of Direct Sparse Odometry (DSO) [12].

The evaluation is performed with the coordinate frames depicted in Fig. 3.
The intrinsic camera parameters of the involved monocular and stereo cameras
(RGB, IR1, IR2) are estimated as proposed by [13]. For the rigid transformation
from the robotic end effector to the inside-out camera, we use the hand-eye
calibration algorithm of Tsai-Lenz [14] in eye-on-hand variant implemented in
ViSP [15] and the eye-on-base version to obtain the rigid transformation from
the optical tracking system to the robot base. To calibrate the ultrasound image
plane with respect to the different tracking systems, we use the open source
PLUS ultrasound toolkit [16] and provide a series of correspondence pairs using
a tracked stylus pointer.

3 Experiments and Validation

To validate the proposed tracking approach, we first evaluate the tracking accu-
racy, followed by a specific analysis for the suitability to 3D ultrasound imaging.
We use a KUKA iiwa (KUKA Roboter GmbH, Augsburg, Germany) 7 DoF
robotic arm to gather ground truth tracking data which guarantees a posi-
tional reproducibility of ±0.1 mm. To provide a realistic evaluation, we also
utilize an optical infrared-based outside-in tracking system (Polaris Vicra, North-
ern Digital Inc., Waterloo, Canada). Inside-out tracking is performed with the
Intel RealSense Depth Camera D435 (Mountain View, US), providing RGB
and infrared stereo data in a portable system (see Fig. 3). Direct and feature
based SLAM methods for markerless inside-out tracking are compared and eval-
uated against marker based optical inside-out tracking with ArUco [17] markers
(16 × 16 cm) and classical optical outside-in tracking. For a quantitative analy-
sis, a combined marker with an optical target and a miniature vision sensor is
attached to the robot end effector. The robot is controlled using the Robot Oper-
ating System (ROS) while the camera acquisition is done on a separate machine

1 https://github.com/JiatianWu/stereo-dso, Horizon Robotics, Inc. Beijing, China,
Authors: Wu, Jiatian; Yang, Degang; Yan, Qinrui; Li, Shixin.

https://github.com/JiatianWu/stereo-dso
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Fig. 3. System architecture and coordinate frames. Shown are all involved coor-
dinate reference frames to evaluate the system performance (left) as well as the specific
ultrasound mount used for validation, integrating optical and camera-based tracking
with one attachable target (right).

Fig. 4. Quantitative evaluation setup. The first row illustrates the operating room
where the quantitative analysis is performed together with the inside-out stereo view.
The second row depicts various calculated SLAM information necessary to create the
map.

using the intel RealSense SDK2. The pose of the RGB camera and the tracking
target are communicated via TCP/IP with a publicly available library3. The
images are processed on an intel Core i7-6700 CPU, 64bit, 8 GB RAM running
Ubuntu 14.04. We use the same constraints as in a conventional TRUS. Thus,
the scanning time, covered volume and distance of the tracker is directly com-
parable and the error analysis reflects this specific procedure with all involved
components. Figure 4 shows the clinical environment for the quantitative evalu-
ation together with the inside-out view and the extracted image information for
the different SLAM methods.

2 https://github.com/IntelRealSense/librealsense.
3 https://github.com/IFL-CAMP/simple.

https://github.com/IntelRealSense/librealsense
https://github.com/IFL-CAMP/simple
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3.1 Tracking Accuracy

To evaluate the tracking accuracy, we use the setup described above and acquire
a series of pose sequences. The robot is programmed to run in gravity compen-
sation mode such that it can be directly manipulated by a human operator. The
forward kinematics of a robotic manipulator are used as ground truth (GT) for
the actual movement.

To allow for error evaluation, we transform all poses of the different tracking
systems in the joint coordinate frame coinciding at the RGB-camera of the end
effector mount (see Fig. 3 for an overview of all reference frames)

TRGB
RB = TRGB

EE · TEE
RB (2)

TRGB
SR = TRGB

EE · TEE
RB · TRB

IR1,0 · TIR1,0
SR (3)

TRGB
AR = TRGB

EE · TEE
RB · TRB

IR1,0 · TIR1,0
AR (4)

TRGB
OTS = TRGB

EE · TEE
RB · TRB

OTS · TOTS
OM , (5)

providing a direct way to compare the optical tracking system (OTS), to SLAM-
based methods (SR), and the ArUco-based tracking (AR).

In overall, 5 sequences were acquired with a total of 8698 poses. The pose
error for all compared system is indicated in Fig. 5, where the translation error is
given by the RMS of the residuals compared with the robotic ground truth while
the illustrated angle error gives angular deviation of the rotation axis. From the
results it can be observed that optical tracking provides the best results, with
translation errors of 1.90 ± 0.53 mm, followed by 2.65 ± 0.74 mm for ORB-
SLAM and 3.20 ± 0.96 for DSO, ArUco with 5.73 ± 1.44 mm. Interestingly, the
SLAM-based methods provide better results compared to OTS, with errors of
1.99 ± 1.99◦ for ORB-SLAM, followed by 3.99 ± 3.99◦ for DSO, respectively.
OTS estimates result in errors of 8.43 ± 6.35◦, and ArUco orientations are rather
noisy with 29.75 ± 48.92◦.

Fig. 5. Comparison of tracking error. Shown are translational and rotational errors
compared to ground truth for all evaluated systems.
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3.2 Markerless Inside-Out 3D Ultrasound

On the foundation of favourable tracking characteristics, we evaluate the per-
formance of a markerless inside-out 3D ultrasound system by means of image
quality and reconstruction accuracy for a 3D US compounding. For imaging, the
tracking mount shown in Fig. 3 is integrated with a 128 elements linear trans-
ducer (CPLA12875, 7 MHz) connected to a cQuest Cicada scanner (Cephason-
ics, CA, USA). For data acquisition, a publicly available real-time framework is
employed.4 We perform a sweep acquisition, comparing OTS outside-in tracking
with the proposed inside-out method and evaluate the quality of the recon-
structed data while we deploy [18] for temporal pose synchronization. Figure 6
shows a qualitative comparison of the 3D US compoundings for the same sweep
with the different tracking methods.5

Fig. 6. Visualization of 3D US compounding quality. Shown are longitudinal
and transversal slices as well as a 3D rendering of the resulting reconstructed 3D data
from a tracked ultrasound acquisition of a ball phantom for the proposed tracking using
ORB-SLAM in comparison with a commercial outside-in OTS. The structure appears
spherically while the rotational accuracy advantage of ORB-SLAM causes a smoother
rendering surface and a more clearly defined phantom boundary in the computed slices.

4 Discussion and Conclusion

From our evaluation, it appears that ArUco markers are viable only for approx-
imate positioning within a room rather than accurate tracking. Our proposed
inside-out approach shows valuable results compared to standard OTS and even
outperforms the outside-in system in terms of rotational accuracy. These findings
concur with assumptions based on the camera system design, as small rotations
close to the optical principal point of the camera around any axis will lead to

4 https://github.com/IFL-CAMP/supra.
5 A video analysis of the method can be found here: https://youtu.be/SPy5860K49Q.

https://github.com/IFL-CAMP/supra
https://youtu.be/SPy5860K49Q
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severe changes in the viewing angle, which can visually be described as inside-out
rotation leverage effect.

One main advantage of the proposed methods is with respect to usability in
practice. By not relying on specific markers, there is no need for setting up an
external system or a change in setup during procedures. Additionally, we can
avoid line-of-sight problems, and potentially allow for highly accurate tracking
even for complete rotations around the camera axis without loosing tracking.
This is in particular interesting for applications that include primarily rotation
such as transrectal prostate fusion biopsy. Besides the results above, our pro-
posed method is capable of orientating itself within an unknown environment by
mapping its surrounding from the beginning of the procedure. This mapping is
build up from scratch without the necessity of any additional calibration. Our
tracking results for a single sensor also suggest further investigation towards
collaborative inside-out tracking with multiple systems at the same time, orien-
tating themselves within a global map as common reference frame.
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Abstract. Ultrasound imaging can be used to identify a variety of lung
pathologies, including pneumonia, pneumothorax, pleural effusion, and acute
respiratory distress syndrome (ARDS). Ultrasound lung images of sufficient
quality are relatively easy to acquire, but can be difficult to interpret as the
relevant features are mostly non-structural and require expert interpretation. In
this work, we developed a convolutional neural network (CNN) algorithm to
identify five key lung features linked to pathological lung conditions: B-lines,
merged B-lines, lack of lung sliding, consolidation and pleural effusion. The
algorithm was trained using short ultrasound videos of in vivo swine models
with carefully controlled lung conditions. Key lung features were annotated by
expert radiologists and snonographers. Pneumothorax (absence of lung sliding)
was detected with an Inception V3 CNN using simulated M-mode images.
A single shot detection (SSD) framework was used to detect the remaining
features. Our results indicate that deep learning algorithms can successfully
detect lung abnormalities in ultrasound imagery. Computer-assisted ultrasound
interpretation can place expert-level diagnostic accuracy in the hands of low-
resource health care providers.

Keywords: Lung ultrasound � Deep learning � Convolutional neural networks

1 Introduction

Ultrasound imaging is a versatile and ubiquitous imaging technology in modern
healthcare systems. Ultrasound enables skilled sonographers to diagnose a diverse set
of conditions and can guide a variety of interventions. Low cost ultrasound systems are
becoming widely available, many of which are portable and have user-friendly touch
displays. As ultrasound becomes more available and easier to operate, the limiting
factor for adoption of diagnostic ultrasound will become the lack of training in inter-
preting images rather than the cost and complexity of ultrasound hardware. In remote
settings like small health centers, combat medicine, and developing-world health care
systems, the lack of experienced radiologists and skilled sonographers is already a key
limiting factor for the effectiveness of ultrasound imaging. Recent advances in artificial
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intelligence provide a potential route to improve access to ultrasound diagnostics in
remote settings. State of the art computer vision algorithms such as convolutional
neural networks have demonstrated performance matching that of humans on a variety
of image interpretation tasks [1].

In this work, we demonstrate the feasibility of computer-assisted ultrasound
diagnosis by using a CNN-based algorithm to identify abnormal pulmonary conditions.
Ultrasound in most cases does not show any structural information from within the
lung due to the high impedance contrast between the lung, which is mostly air, and the
surrounding soft tissue. Despite this, lung ultrasound has gained popularity in recent
years as a technique to detect pulmonary conditions such as pneumothorax, pneumonia,
pleural effusion, pulmonary edema, and ARDS [2, 3]. Skilled sonographers can per-
form these tasks if they have been trained to find the structural features and non-
structural artifacts correlated with disease. These include abstract features such as
A-lines, B-lines, air bronchograms, and lung sliding. Pleural line is defined in ultra-
sound as a thin echogenic line at the interface between the superficial soft tissues and
the air in the lung. A-line is a horizontal artifact indicating a normal lung surface. The
B-line is an echogenic, coherent, wedge-shaped signal with a narrow origin in the near
field of the image. Figure 1 shows examples of ultrasound lung images.

Lung ultrasound is an ideal target for computer-assisted diagnosis because imaging
the lung is relatively straightforward. The lungs are easy to locate in the thorax and
precise probe placement and orientation is not necessary to visualize key features. By
selecting a target that is relatively easy to image but complicated to interpret, we
maximize the potential benefit of the algorithm to an unskilled user.

Computer processing of ultrasound images is a well-established field. Most
methods focus on tools that assist skilled users with metrology, segmentation, or tasks
that expert operators perform inconsistently, unaided [4]. Methods for detecting B-lines
have previously been reported [5–7]. A recent survey [8] outlines deep learning work
on ultrasound lesion detection but there has been less work on consolidation and
effusion. Other examples include segmentation and measurement of muscle and bones
[9], carotid artery [10], and fetus orientation [11]. Note that while these efforts utilize
CNNs, their goal is segmentation and metrology, as opposed to computer–assisted
diagnosis.

Fig. 1. Ultrasound images from swine modeling lung pathologies that demonstrate (a) single
(single arrow) and merged B-lines (double arrow), (b) pleural effusion (box), and (c) single and
merged B-lines along with consolidation (circle).
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To show the effectiveness of CNN-based computer vision algorithms for interpreting
lung ultrasound images, this work leverages swine models with various lung patholo-
gies, imaged with a handheld ultrasound system. We include an overview of the swine
models and image acquisition and annotation procedures. We provide a description of
our algorithm and its performance on swine lung ultrasound images. Our detection
framework is based on single shot detection (SSD) [12], an efficient, state-of-the-art deep
learning system suitable for embedded devices such as smart phones and tablets.

2 Approach

2.1 Animal Model, Data Collection and Annotation

All animal studies and ultrasound imaging were performed at Oregon Health & Science
University (OHSU), following Institutional Animal Care and Use Committee (IACUC)
and Animal Care and Use Review Office (ACURO) approval. Ultrasound data from
swine lung pathology models were captured for both normal and abnormal lungs.
Normal lung features included pleural lines and A-lines. Abnormal lung features
included B-lines (single and merged), pleural effusion, pneumothorax, and consoli-
dation. Models of 3 different lung pathologies were used to generate ultrasound data
with one or more target features. For normal lung data collection (i.e. pleural line and
A-line data collection), all animals were scanned prior to induction of lung pathology.
For pneumothorax and pleural effusion ultrasound features, swine underwent percu-
taneous thoracic puncture of one hemithorax followed by injection of air and infusion
with saline into the pleural space of the other hemithorax, respectively. For consoli-
dation, single and merged B-line ultrasound features, in separate swine, acute respi-
ratory distress syndrome (ARDS) was induced by inhalation of nebulized
lipopolysaccharide. Examples of ultrasound images acquired from the animal studies
are shown in Figs. 1 and 2.

Ultrasound data were acquired using a Lumify handheld system with a C5-2
broadband curved array transducer (Philips, Bothell, WA, USA). All images were
acquired after selecting the Lumify app’s lung preset. Per the guidelines for point-of-
care lung ultrasound [13], the swine chest area was divided into eight zones. For each

Fig. 2. Reconstruction of simulated M-mode images (left) and examples images (right).
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zone, at least two 3-s videos were collected at a frame rate of approximately 20 per
second. One exam was defined as the collection of videos from all eight zones at each
time point. Therefore, at least 16 videos were collected in each exam. For each swine,
the lung pathology was induced incrementally and therefore, multiple exams were
performed on each swine. Approximately 100 exams were performed with 2,200
videos collected in total. Lung ultrasound experts annotated target features frame-by-
frame using a custom Matlab-based annotation tool.

2.2 Data Pre-processing

Input data for pre-processing consisted of either whole videos or video frames (im-
ages). Frame-level data was used to locate A-lines, single B-lines, merged B-lines,
pleural line, pleural effusion, and consolidation. Video-level data was used for repre-
sentation of pneumothorax. Raw ultrasound data collected from a curvilinear probe
take the form of a polar coordinate image. These raw data were transformed from polar
coordinates to Cartesian, which served to eliminate angular variation among B-lines
and accelerate learning. The transformed images were cropped to remove uninforma-
tive data, such as dark borders and text, resulting in images with a resolution of
801�555 pixels.

Video data were similarly transformed to Cartesian coordinates. Each transformed
video was used to generate simulated M-mode images. An M-mode image is a trace of
a vertical line (azimuthal, in the original polar image) over time. The vertical sum
threshold-based method [7] was used to detect intercostal spaces. Each intercostal
space was sampled to generate ten M-mode images at equally spaced horizontal
locations.

Ultrasound video of a healthy lung displays lung sliding, caused by the relative
movement of parietal and visceral pleura during respiration. This can readily be
observed in M-mode images, where there is a transition to a “seashore” pattern below
the pleural line. Pneumothorax prevents observation of the relative pleural motion and
causes the M-mode image to appear with uniform horizontal lines as shown in Fig. 2.

2.3 Single Shot CNN Model for Image-Based Lung Feature Detection

Single Shot Detector (SSD) is an extension of the family of regional convolutional
neural networks (R-CNNs) [14–16]. Previous object detection methods used a de-facto
two network approach, with the first network responsible for generating region pro-
posals followed by a CNN to classify each proposal into target classes. SSD is a single
network that applies small convolutional filters (detection filters) to the output feature
maps of a base network to predict object category scores and bounding box offsets. The
convolutional filters are applied to feature maps at multiple spatial scales to enable
detection of objects of various sizes. Furthermore, multiple filters representing default
bounding boxes of various aspect ratios are applied at each spatial location to detect
objects of varying shapes. This architecture renders SSD an efficient and accurate object
detection framework [17], making it a suitable choice for on-device inference tasks.
Figure 3 provides an overview of the SSD architecture. Details can be found in [12].
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Training. Each detection filter in SSD corresponds to a default bounding box at a
particular location, at a particular scale, and aspect ratio. Prior to training, each ground
truth bounding box is matched against the default bounding box with maximum Jac-
card overlap. It is also matched against any default bounding box with Jaccard overlap
greater than a threshold (usually 0.5). Thus, each ground truth box may be matched to
more than one default box, which makes the learning problem smoother. The training
objective of SSD is to minimize an overall loss that is a weighted sum of localization
loss and confidence loss. Localization loss is Smooth L1 loss between location
parameters of the predicted box and the ground truth box. Confidence loss is the
softmax over multiple class confidences for each predicted box. We used horizontal
flip, random crop, scale, and object box displacement as augmentations for training the
lung features CNN models. For training the lung sliding model, we used Gaussian blur,
random pixel intensity and contrast enhancement augmentations.

Hyperparameters. We use six single-class SSD networks as opposed to a multi-class
network because the training data is small and unbalanced. Pleural lines and A-lines are
abundant as they are normal lung features, whereas pathological lung features are rare.
Furthermore, pleural line and pleural effusion features are in close proximity, thus there
is significant overlap between their bounding boxes. Closely located features, com-
bined with an unbalanced, small training set compromises performance when trained
on multi-class SSD. We plan to address these issues in future work.

The train and test set sizes for each detection model are shown in Table 1. Feature
models were trained for 300k iterations with batch size of 24, momentum 0.9, and
initial learning rate of 0.004 (piece-wise constant learning rate that is reduced by 0.95
after every 80k iterations). We used the following aspect ratios for default boxes: 1, 2,
3, 1/2, 1/3, and 1/4. The base SSD network, Inception V2 [18], started with pre-trained
ImageNet [19] weights and was fine-tuned for lung feature detection. The training
process required 2–3 days per feature with the use of one GeForce GTX 1080Ti
graphics card.

2.4 Inception V3 Architecture for Video-Based Lung Sliding Detection

Lung sliding was detected using virtual M-mode images that were generated by the
process described in Sect. 2.2. We trained a binary classifier based on the Inception
V3 CNN architecture [18]. Compared to V2, Inception V3 reduces the number of

Fig. 3. SSD network schematic
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convolutions, limiting maximum filter size to 3 � 3, increases the depth of the network
and uses an improved feature combination technique at each inception module. We
initialized Inception V3 with pre-trained ImageNet weights and fine-tuned only the last
two classification layers with virtual M-mode images. The network was trained for 10k
iterations with batch size 100 and a constant learning rate of 0.001.

Table 1. Training statistics and testing performance

Feature Training set
(frames)

Testing set
(videos)

Sensitivity
(%)

Specificity
(%)

B-line 16,300 212 28.0 93.0
Merged B-line 14,961 337 85.0 96.5
B-line
(combined)

– 521 88.4 93.0

A-line 10,510 580 87.2 89.0
Pleural line 48,429 640 85.6 93.1
Pleural effusion 21,200 143 87.5 92.2
Consolidation 18,713 444 93.6 86.3
Pneumothorax 13,255* 35 93.0 93.0

*6,743 M-mode images with lung sliding, 6,512 M-mode images without lung sliding

Fig. 4. Sample results for SSD detection models. Detected features are highlighted by bounding
boxes and confidence scores. (A) B-line, (B) pleural line, (C) A-line, (D) pleural effusion,
(E) consolidation, (F) merged B-line.
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3 Results

We compare single class SSD performance with threshold-based detection methods
[7, 20], which are effective only for pleural line and B-line features. The SSD
framework is applicable to all lung ultrasound features and our SSD detection model
detects pleural lines with 89% accuracy compared to 67% with threshold-based
methods.

Our CNN models were evaluated against holdout test dataset acquired from two
swine. Table 1 shows the final test results and Fig. 4 shows sample outputs for features
other than lung sliding. The pleural effusion model detected effusion at all fluid vol-
umes from 50 mL to 600 mL (300 mL shown). Pleural line was the most common lung
feature, present in most ultrasound videos. Videos without pleural line were uncom-
mon, making the specificity calculation unreliable. The absence of an intercostal space
in a video was treated as a pleural line negative sample. Note that for consolidation,
pleural effusion and merged B-lines, sensitivity and specificity metrics are defined on a
per video basis, rather than per object.

The algorithm achieved at least 85% in sensitivity and specificity for all features,
with the exception of B-line sensitivity. There exists a continuum of B-line density
from single B-lines, to dense B-lines, to merged B-lines. We observed that in many
cases, dense B-lines that were not detected by the B-line detection model were detected
by the merged B-line model. We combined the B-line and merged B-line output with
the idea that the distinction between these two classes may be poorly defined. The
combined B-line model achieved 88.4% sensitivity and 93% specificity, which was
significantly better than B-lines alone. The video-based pneumothorax model had the
highest overall accuracy with 93% sensitivity and specificity.

4 Conclusions and Future Work

In summary, we demonstrated that a CNN-based computer vision algorithm can
achieve a high level of concordance with an expert’s observation of lung ultrasound
images. Seven different lung features critical for diagnosing abnormal lung conditions
were detected with greater than 85% accuracy. The algorithm in its current form would
allow an ultrasound user with limited skill to identify the abnormal lung conditions
outlined here. This work with swine models is an important step toward clinical trials
with human patients, and an important proof of concept for the ability of computer
vision algorithms to effect automated ultrasound image interpretation.

In the future, we will continue this work using clinical patient data. This will help
validate the method’s efficacy in humans while providing a sufficient diversity of
patients and quantity of data to determine patient-level diagnostic accuracy. We are
also working to implement this algorithm on tablets and smartphones. To help with
runtime on mobile devices, we are streamlining the algorithm to combine the six
parallel SSD models into a single multi-class model, while eliminating the need for
coordinate transformations, which represents the bulk of the computational time during
inference.
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Abstract. Accurate diagnosis in cardiac ultrasound requires high qual-
ity images, containing different specific features and structures depend-
ing on which of the 14 standard cardiac views the operator is attempting
to acquire. Inexperienced operators can have a great deal of difficulty
recognizing these features and thus can fail to capture diagnostically
relevant heart cines. This project aims to mitigate this challenge by pro-
viding operators with real-time feedback in the form of view classification
and quality estimation. Our system uses a frame grabber to capture the
raw video output of the ultrasound machine, which is then fed into an
Android mobile device, running a customized mobile implementation of
the TensorFlow inference engine. By multi-threading four TensorFlow
instances together, we are able to run the system at 30 Hz with a latency
of under 0.4 s.

Keywords: Echocardiography · Deep learning · Mobile · Real time

1 Introduction

Ischaemic heart disease is the primary cause of death worldwide. Practicing effec-
tive preventative medicine of cardiovascular disease requires an imaging modal-
ity that can produce diagnostically relevant images, while at the same time
being widely available, non-invasive, and cost-effective. Currently, the method
that best fits these requirements is cardiac ultrasound (echocardiography, echo).
Modern echo probes can be used to quickly and effectively evaluate the health of
the patient’s heart by assessing its internal structure and function [3]. The major
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caveat of this process is that the interpretation of these images is highly subject
to the overall image quality of the captured cines, which, in turn, is dependent
on both the patient’s anatomy and the operator’s skill. Poor quality echoes cap-
tured by inexperienced operators can jeopardize clinician interpretation and can
thus adversely impact patient outcomes [8]. With the proliferation of portable
ultrasound technology, more and more inexperienced users are picking up ultra-
sound probes and attempting to capture diagnostically relevant cardiac echoes
without the required experience, skill or knowledge of heart anatomy.

In addition to the task of acquiring high quality images, ultrasound operators
can also be expected to acquire up to 14 different cross-sectional ‘views’ of the
heart, each with their own set of signature features. Some of these views are quite
similar to an inexperience eye, and switching between them can require very pre-
cise adjustments of the probe’s position and orientation. In point-of-care ultra-
sound (POCUS) environments, the four views most frequently acquired by clini-
cians are apical four-chamber (AP4), parasternal long axis (PLAX), parasternal
short axis at the papillary muscle level (PSAX-PM), and subcostal four-chamber
(SUBC4).

In this work, we attempt to reduce the adverse effect of inter-operator vari-
ability on the quality of the acquired cardiac echoes acquired. The system we
developed attempts to do this by providing the user with real-time feedback of
both view classification and image quality. This is done through the use of a
deep learning neural network, capable of simultaneous 14-class view classifica-
tion and a quality estimation score. Furthermore, we implemented the system in

Fig. 1. The physical system setup. The frame grabber connects to the DVI output of
the ultrasound machine. It is then connected to an OTG adapter and plugged directly
into the Android’s USB-C port.
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the form of an Android application, and ran it on an off-the-shelf Samsung S8+
mobile phone, with the goal of making our system portable and cost effective.
As shown in Fig. 1, the system receives its input directly from the DVI port of
the ultrasound machine, using an Epiphan AV.IO frame grabber to capture and
convert the raw video output to a serial data stream. The frame grabber out-
put is then adapted from USB-A to USB-C with a standard On-The-Go (OTG)
adapter, allowing us to pipe the ultrasound machine’s video output directly into
the Android device and through a neural network running on its CPU, using Ten-
sorFlow’s Java inference interface. The classified view and its associated quality
score are then displayed in the app’s graphical user interface (GUI) as feedback
to the operator. Figure 2 shows the feedback displayed in the GUI for four AP4
cines of differing quality levels. These four sample cines, from left to right, were
scored by our expert echocardiographer as having image quality of 25%, 50%,
75%, and 100%, respectively.

Fig. 2. The mobile application GUI showing the predicted view and quality for four
different AP4 cines of increasing quality.

2 System Design

2.1 Deep Learning Design

A single deep learning network is used to learn the echo quality prediction and
view classification for all 14 views. The model was trained on a dataset of over
16 K cines, distributed across the 14 views as shown in the following table:

Window Apical Parasternal Subcostal Suprasternal

view AP2 AP3 AP4 AP5PLAXRVIFPSAXA PSAXM PSAXPM PSAXAP SC4SC5 IVCSUPRA

# of cines 1,928 2,094 2,165 541 2,745 373 2,126 2,264 823 106 759 54 718 76

The network architecture can be seen in Fig. 3. The input to the network is
a ten-frame tensor randomly extracted from an echo cine, and each frame is a
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Fig. 3. The network architecture. Relevant features are extracted from the individual
frames by the DenseNet blocks, which are then fed into the Long Short-Term Memory
(LSTM) blocks to extract the temporal information across ten sequential echo cine
frames.

120×120 pixel, gray-scale image. The network has four components, as shown
in Fig. 3: (1) A seven-layer DenseNet [5] model that extracts per-frame features
from the input; (2) an LSTM [4] layer with 128 units that captures the temporal
dependencies from the generated DenseNet features, which produces another set
of features, one for each frame; (3) a regression layer that produces the quality
score from the output feature of the LSTM layer for each frame; and (4) a
softmax classifier that predicts the content view from the LSTM features for
each frame.

Our DenseNet model uses the following hyper-parameters. First, the
DenseNet has one convolution layer with sixteen 3× 3 filters, which turns the
gray-scale (1-channel) input images to sixteen channels. Then, the DenseNet
stacks three dense blocks, each followed by a dropout layer and an average-
pooling layer with filter size of 2× 2. Each dense block has exactly one dense-
layer, which consists of a batch-normalized [6] convolution layer with six 3× 3
filters and a Rectified Linear Unit (ReLU) [7] activation function. Finally, the
per-frame quality scores and view predictions are averaged, respectively, to pro-
duce the final score and prediction for the ten-frame tensor.

2.2 Split Model

Initially, our system suffered from high latency due to the long inference times
associated with running the entire network on an Android CPU. Since the
network contains a ten-frame LSTM, we needed to buffer ten frames into a
120× 120× 10 tensor, then run that tensor through both the Dense and LSTM
layers of the network before getting any result. This produced a latency of up to
1.5 s, which users found frustrating and ultimately detrimental to the usefulness
of the system.
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In order to reduce the latency of the feedback, we split the previously
described network into two sections: the Convolution Neural Network (CNN)
section, which performs the feature extraction on each frame as they come in,
and the Recurrent Neural Network (RNN) section, which runs on tensors now
containing the features extracted from the previous ten frames. With the split
model, we can essentially parallelize the feature extracting CNNs and the quality
predicting RNN. See Fig. 6 for a visual view of the CNN/RNN timing.

2.3 Software Architecture

Figure 4 shows the data flow pipeline of the application. Input frames are cap-
tured by the frame grabber and are fed into the mobile application’s Main Activ-
ity at a resolution of 640× 480 at 30 Hz. We created a customized version of
the UVCCamera library, openly licensed under Apache License, to access the
frame grabber as an external web camera [2]. The application then crops the
raw frames down to include only the ultrasound beam, the boundaries of which
can be adjusted by the user. The cropped data is resized down to 120× 120 to
match the network’s input dimensions. A copy of the full-resolution data is also
saved for later expert evaluation. The resized data is then sent to an instance
of TensorFlow Runner, a custom class responsible for preparing and running
our data through the Android-Java implementation of the TensorFlow inference
engine [1]. Here, we first perform a simple contrast enhancement step to mitigate
the quality degradation introduced by the frame grabber. The frames are then
sent to one of three identical Convolutional Neural Networks (CNN-1, CNN-2,
or CNN-3). Each CNN runs in a separate thread in order to prevent lag during
particularly long inference times. The extracted features are saved into a feature
buffer which shared between all three threads. Once the shared feature buffer
fills, the RNN thread is woken up and runs the buffered data through the LSTM
portion of the network to produce the classification and quality predictions to
be displayed in the GUI.

Fig. 4. Flow diagram of the software design.
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3 Results

3.1 Classification

The training accuracy for the view classification was 92.35%, with a test accuracy
of 86.21%. From the confusion matrix shown in Fig. 5, we can see that the
majority of the classification error results from the parasternal short axis views,
specifically PSAXM , PSAXPM , and PSAXAPIX . These 3 views are quite similar
both visually and anatomically, and some of the cines in our training set contain
frames from multiple PSAX views which may be confusing our classifier. The
subcostal 5-chamber view also performed poorly, due to the small number of
SC5 cines in our training set.

Fig. 5. The Confusion Matrix of the view classifier, showing all 14 heart views.

3.2 Timing

Since the system is required to run in real time on live data, the details regard-
ing the timing are important to evaluating its performance. Figure 6 shows the
timing profile of the three CNN threads, along with the single RNN thread,
collected through Android Studio’s CPU profiler tool. The three CNNs can be
seen extracting features from ten consecutive input frames before waking the
waiting RNN thread, which then runs the quality prediction on the buffered
features extracted by the CNNs. The target frame rate for the system is set
at 30 Hz, which can be inferred by the orange lines representing the arrival of
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Fig. 6. Timing diagram of the three CNN and one RNN threads. The orange lines
show the arrival of the input frames.

input frames. The mean CNN run-time (including feeding the input, running
the network, and fetching the output) is 28.76 ms with an standard deviation of
16.42 ms. The mean run time of the RNN is 157.48 ms with a standard deviation
of 21.85 ms. Therefore, the mean latency of the feedback is 352.58± 38.27 ms,
when measured from the middle of the ten-frame sequence.

In order to prevent lag resulting from the build-up of unprocessed frames,
the CNNs and RNN need to finish running before they are requested to process
the next batch of data. To accomplish this reliably, all the per-frame processing
must complete within Tmax,CNN , calculated as follows:

Tmax,CNN = (# of CNNs) × 1
FPS

=
3
30

= 100 ms (1)

while the RNN needs to complete its processing before the features from the
next ten frames are extracted:

Tmax,RNN = (buffer length) × 1
FPS

=
10
30

= 333.33ms (2)

With the chosen three-CNN-one-RNN configuration, the application required
the fewest number of threads while still providing enough tolerance to avoid
frame build-up.
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4 Discussion

In this paper, we present a system that provides ultrasound operators with
real-time feedback about the heart echoes being captured, in the form of view
classification and image quality estimation. The system is implemented in an
Android application on an off-the-shelf Samsung S8+ and can be connected to
any ultrasound machine with a DVI output port. In order to reduce the latency
of the system, the neural network is split into two sections: the CNN and the
RNN, allowing us to parallelize their execution. With the split model, the system
is able to operate at 30 frames per second, while providing feedback with a mean
latency of 352.91± 38.27 ms.

The next step of this project is to validate the system in a clinical setting.
Our group is currently running a study at Vancouver General Hospital, in which
we ask subjects to acquire cines of the four POCUS views once with and once
without displaying the quality and view feedback in the app. The two datasets
will be scored by expert echocardiographers and then compared in order to quan-
tify the accuracy and utility of the system. We also plan to migrate the backend
to TensorFlow Lite, a lightweight implementation of the inference engine, which
will allow us to leverage the hardware acceleration available on modern Android
devices to help us further reduce the system’s latency.
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Abstract. Spinal interventional procedures, such as lumbar puncture,
require insertion of an epidural needle through the spine without touch-
ing the surrounding bone structures. To minimize the number of insertion
trials and navigate to a desired target, an image-guidance technique is
necessary. We developed a single-element needle-based ultrasound system
that is composed of a needle-shaped ultrasound transducer that recon-
structs B-mode images from lateral movement with synthetic aperture
focusing. The objective of this study is to test the feasibility of needle-
based single-element ultrasound imaging on spine in vivo. Experimen-
tal validation was performed on a metal wire phantom, ex vivo porcine
bone in both water tank and porcine tissue, and spine on living swine
model. The needle-based ultrasound system could visualize the structure,
although reverberation and multiple reflections associated with the nee-
dle shaft were observed. These results show the potential of the system
to be used for in vivo environment.

Keywords: Needle-based ultrasound · Synthetic aperture focusing
Spinal intervention · Single-element ultrasound imaging

1 Introduction

Lumbar puncture (LP) is an interventional procedure for collecting cerebrospinal
fluid (CSF), which is used to diagnose central nervous system disorders such
as encephalitis or meningitis [1]. LP requires inserting a needle into the lower
lumbar intervertebral space, and conventional LP is mostly performed without
image assistance or guidance. This often results in misdiagnosis or damage to
surrounding neurovascular structures [2–6]. Obese patients with thick adipose
tissue layers further complicate the procedure, and consequently the rate of
overall complications doubles compared to non-obese patients [7,8]. Many image-
guided solutions have been proposed to resolve this challenge. A typical approach
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is to project needle position into external medical imaging modalities such as
ultrasound or CT [9–11]. However, this approach not only increases the cost by
introducing bulky systems, but also has a limited tracking accuracy depending
on the registration performance. Moreover, image quality of topical ultrasound
degrades with obese patients, where the technology is most-needed. A low-cost
and registration-free guidance system that provides an image through a needle
that can be navigated through soft tissues could improve deep needle procedures
such as challenging LPs.

Here, we propose a simple and direct needle insertion platform, enabling
image formation from sweeping a needle with single element ultrasound trans-
ducer at its tip. This needle-embedded ultrasound transducer can not only pro-
vide one-dimensional depth information as Chiang et al. reported [12,13], but
also visually locate the structures by combining transducer location tracking
and a synthetic aperture focusing algorithm [14,15]. This system can minimize
the hardware cost for production due to its simplicity, and more importantly
does not require registration process as the needle and ultrasound images are
co-registered by nature. In the prior study, we built a proto-type system which
consists of a needle-shape transducer and a mounting holster that tracks the rota-
tional position of the needle [16,17]. While the developed system could image
wire and spine phantom inside the water tank, the remaining question was that
if the system can provide sufficient contrast from a spine under practical environ-
ments, where the spine is covered by muscle and fat tissue layers. Therefore, this
paper focuses on the validation of the technique with the presence of realistic
tissue layers through both ex vivo and in vivo experiments.

2 Materials and Methods

2.1 Needle-Based Ultrasound Imaging and Synthetic Aperture
Focusing

The proposed needle-based ultrasound imaging system is a needle-shaped device
that functions as an ultrasound transducer. This transducer can transmit and
receive ultrasound signals, and collects A-line data. By tracking the position of
the needle while applying the motion, a virtual array is formed to build a B-
mode image [18]. From the image, the operator can identify the position and
angle of needle insertion. Synthetic aperture focusing is the reconstruction step
to synthesize coherent sub-aperture information at each position of the needle
and to form a final image with higher resolution and contrast. In this paper, the
translational motion was applied using a translation stage.

2.2 Experiment Setup

As the imaging system, a needle-shaped ultrasound transducer (ndtXducer,
USA) that includes the PZT-5H element on the tip was used. The diameter of
the element was 1 mm, and its center frequency is 2.17 MHz with a -6db band-
width of 0.32 MHz. The electrodes of the element are connected to a coaxial
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cable with a BNC connector so that the needle could be connected to sampling
devices. For ultrasound pulse generation and A-line ultrasound signal sampling,
US-WAVE (Lecouer, France) was connected to the element electrodes with a
100 Ω input impedance. The needle was fixed on a translation stage, and we
moved it in 0.5 mm steps to form a virtual linear array.

The developed system was tested with a metal rod phantom as well as ex
vivo and in vivo porcine spine. For the ex vivo study, the porcine spine was
placed inside the water tank to confirm the contrast from the bone without the
tissue layer first. Then, a porcine muscle tissue layer with 2–3 cm thickness was
placed on the top of spine and imaged. The image quality of phantom and ex
vivo targets was quantified using the contrast-to-noise ratio (CNR) to evaluate
the effect of synthetic aperture focusing [18]. Finally, the spine of a Yorkshire pig
was imaged for in vivo validation, where the dorsal part of the pig was faced top,
and the imaging system was fixed on the translation stage and placed above skin
surface. Ultrasound gel and water covered by plastic frame and plastic wrap were
used for acoustic coupling. The pig was anesthetized, and minimal respiratory
motion was maintained during the imaging sessions (Fig. 1).

Fig. 1. Experimental setup of phantom and ex vivo experiments. The needle-shape
ultrasound transducer is held by a gripper which is connected to a translation stage.

3 Results

3.1 Phantom Study

Figure 2 shows the imaging result of the metal rod phantom. Without synthetic
aperture focusing, the metal rod structure was defocused because there is no
acoustic focus embedded in the single element transducer (CNR: 2.61). With the
synthetic aperture focusing, the metal rod shape appears as its original shape
and size (CNR: 5.45) although reverberation and multi-reflections are observed
beyond the metal rod due to the single-element needle structure. The speed-of-
sound was set to 1490 m/s, the aperture size of 40 mm was used in beamforming.
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Fig. 2. The needle-based ultrasound images of the metal rod with and without syn-
thetic aperture focusing. The numerical scale is mm.

3.2 Ex Vivo Demonstration

We tested the visibility of ex vivo porcine spine under two conditions. In the first
condition, we placed porcine spine bones surrounded by thin muscle tissue at the
bottom of a water tank. A clinical ultrasound scanner (SonixTouch, Ultrasonix,
Canada) with a convex probe (C5-2, Ultrasonix, Canada) was used to confirm
the bone structure for reference. We collected A-line data at 80 positions by
moving in 0.5 mm steps in the sagittal plane direction. In Fig. 3, two images
are shown for comparison: an image built without synthetic aperture focusing,
and the other image with synthetic aperture focusing, where the aperture size
of 40 mm was used. Although a bone structure located at the left side of the
images was depicted in both images, the other bone located at the right side of
the images is clearly visible only in the image with synthetic aperture focusing.
The CNR improvement was from 2.15 to 7.13, corresponding to before and after
synthetic aperture focusing.

In the second condition, we performed spine bone imaging through porcine
muscle tissue to observe the tolerance to a more challenging environment. We
stacked a porcine muscle layer on top of the spine bone. The received echo signals
were attenuated more compared to the previous ex vivo experiment in the water
tank. Two bone structures were confirmed in the synthetic aperture focusing
image (CNR: 2.65) while these structures were barely visible before applying
the synthetic aperture focusing (CNR: 1.20) (Fig. 4).

3.3 In Vivo Demonstration

A spine of Yorkshire pig was imaged for in vivo validation. We scanned the
porcine spine from both sagittal and transverse planes. In both cases, the imag-
ing needle was translated for 40 mm corresponding to 80 positions. We used
a commercially available convex probe (C3, Clarius, Canada) for reference. To
minimize the effect of motion artifact, the aperture size of 20 mm was used in
beamforming. Figures 5 and 6 show the results. For the sagittal view, two spinous
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Fig. 3. The needle-based ultrasound images of ex vivo porcine spine placed inside
the water tank. (a) Before and (b) after applying synthetic aperture focusing. The
numerical scale is mm. (c) The reference image taken at the similar region using a
commercial ultrasound scanner.

Fig. 4. The needle-based ultrasound images of ex vivo porcine spine placed under
the porcine tissue. (a) Before and (b) after applying synthetic aperture focusing. The
numerical scale is mm. (c) The reference image taken at the similar region using a
commercial ultrasound scanner.
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Fig. 5. Experimental results of in vivo porcine spine images in the sagittal plane.
(a) The reference image taken using a commercial ultrasound scanner, and (b) the
needle-based ultrasound image. The numerical scale is mm. (c) The comparison of the
highlighted region of (a) (left) and (b) (right). The yellow arrow indicates the bone
structure. (Color figure online)

Fig. 6. Experimental results of in vivo porcine spine images in the transverse plane.
(a) The reference image taken using a commercial ultrasound scanner, and (b) the
needle-based ultrasound image. The numerical scale is mm. (c) The comparison of the
highlighted region of (a) (left) and (b) (right). The yellow arrow indicates the bone
structure. (Color figure online)
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processes were captured in the needle-based ultrasound image, and the position
of these processes matched with that in the reference image. For the transverse
view, it was challenging to confirm the same structure visible in the reference
image, but the signal from the processes and facet could be seen in the synthetic
aperture focusing image. Nonetheless, the imaging system suffers from the noises
caused by respiratory motion, ultrasound reverberations and multi-reflections.

4 Discussion and Conclusion

The current standard of care for LP introduces a wide range of iatrogenic com-
plications and places a heavy financial burden on the patient, physician, and
healthcare system overall. Our cost-effective single-needle ultrasound system
would lead to fewer unnecessary and expensive consequent procedures. Point
of care ultrasound technologies need to provide a solution that is built around
efficiency within the current workflow. The proposed system accomplishes this
by implementing an imaging modality into the current needle itself, providing
those important advantages. With addition of the imaging modality, physicians
can be trained for LP in a shorter time, without the hassle of keeping track of a
separate imaging probe.

In this work, we showed the feasibility of the proposed system under in
vivo environment and the potential for clinical translation. However, the recon-
structed images suffer from artifacts and noises caused by the current needle
structure and the sampling device. The image quality can be enhanced by
improving the needle fabrication and signal sampling and processing method.
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Abstract. Access to the left atrium is required for several percutaneous cardiac
interventions. In these procedures, the inter-atrial septal wall is punctured using
a catheter inserted in the right atrium under image guidance. Although this
approach (transseptal puncture - TSP) is performed daily, complications are
common. In this work, we present a novel concept for the development of an
interventional guidance framework for TSP. The pre-procedural planning stage
is fused with 3D intra-procedural images (echocardiography) using manually
defined landmarks, transferring the relevant anatomical landmarks to the inter-
ventional space and enhancing the echocardiographic images. In addition,
electromagnetic sensors are attached to the surgical instruments, tracking and
including them in the enhanced intra-procedural world. Two atrial phantom
models were used to evaluate this framework. To assess its accuracy, a metallic
landmark was positioned in the punctured location and compared with the ideal
one. The intervention was possible in both models, but in one case positioning
of the landmark failed. An error of approximately of 6 mm was registered for
the successful case. Technical characteristics of the framework showed an
acceptable performance (frame rate *5 frames/s). This study presented a proof-
of-concept for an interventional guidance framework for TSP. However, a more
automated solution and further studies are required.
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1 Introduction

Access to the left atrium (LA) is mandatory in multiple minimally invasive cardiac
interventions, such as left atrial appendage closure, atrial fibrillation ablation, mitral
valve replacement, among others [1, 2]. Since no direct percutaneous access route to
LA is available, a transseptal via is typically used. For that, a medical technique termed
transseptal puncture (TSP) is applied, where a catheter is inserted via the femoral vein
until the right atrium (RA), through which a needle is moved forward to puncture the
inter-atrial septal (IAS) wall (using its thinnest region, the fossa ovalis - FO) and gain
access to the LA body [2]. This procedure is guided using medical images, namely
fluoroscopy and echocardiography (mainly transesophageal echocardiography - TEE)
[1]. Nevertheless, the success of the intervention is still highly dependent on the
operator’s expertise, which is sub-optimal. Indeed, when puncturing the IAS, not only
the FO needs to be identified, but also the target location at the left heart and the
catheter dexterity at this region must be taken into consideration, hampering the
identification of the optimal puncture location [1].

To improve the TSP intervention, different technological innovations were pre-
sented during the last years. Three major development fields can be considered,
namely: surgical tools, pre-procedural planning techniques and guidance approaches
[1]. A high number of researchers focused on the former, presenting novel radio-
frequency/electrocautery needles (instead of the traditional mechanical ones), which
proved their clear advantages for abnormal situations [2]. Regarding the planning
techniques, a small number of studies were presented, focusing on biomechanical
simulation of the intervention [3] or automated identification of relevant landmarks
(e.g. fossa ovalis position) [4], making the planning stage faster and more reproducible.
Regarding the intraoperative guidance, several researchers explored the potential use of
novel imaging modalities (beyond the traditional ones, magnetic resonance imaging –

MRI, and intracardiac echocardiography) for TSP [1]. Moreover, electroanatomical
mapping solutions or even electromagnetic guidance solutions were also described [1].
More recently, some researchers presented image-fusion strategies [6–8], where the
bidimensional and low contrast fluoroscopic image is fused with 3D anatomical
detailed models (extracted from echocardiography or computed tomography - CT),
showing clear advantages for TSP with inferior procedural time and higher success rate
in difficult cases. Nevertheless, although such image fusion solutions showed high
potential to ease the intervention [6–8], most of them fuse intra-procedural images only
(not allowing the inclusion of pre-procedural planning information) or were not vali-
dated for TSP.

In this study, we present a novel concept for the development of an integrated
interventional guidance framework to assist the physician in successfully performing
TSP intervention.

94 P. Morais et al.



2 Methods

The proposed interventional framework is divided into (Fig. 1): (1) the pre-procedural
and (2) the intra-procedural stages. During the first stage, identification or delineation
(step A) of relevant cardiac chambers in a highly-detailed image (CT) is performed.
Then, based on the estimated contours, the full extent of the FO is estimated and the
optimal puncture location is defined by the expert (step B). The entire planning
information is then transferred to the intra-procedural world (step C), by fusing intra-
and pre-procedural data (e.g. contours or landmarks). Note that intra-procedural data is
extracted from echocardiographic images only (in this initial setup, transthoracic
echocardiography – TTE – was used). Finally, to also include the surgical instruments
into this augmented environment, a tracking strategy is applied using external elec-
tromagnetic sensors (step D). An initial calibration between the TTE image world and
the electromagnetic sensors was required (step E). By combining all these elements
(step F), a radiation-free interventional framework with enhanced anatomical infor-
mation (from the planning stage) is achieved.

2.1 Interventional Framework

The interventional framework was implemented in C++ and it exploits the potentialities
of the VTK (Visualization Toolkit) library [11] for the visualization of images/surfaces
and even 3D rendering (using OpenGL). The framework has 4 independent views (see
Fig. 2), allowing the visualization of the pre- and intra-procedural data through 2D
views or 3D renderings. The current version implements the intra-procedural guidance
stage only, presenting import functions to include the pre-procedural planning data.
Moreover, specific libraries to receive, in real-time, 3D TTE images (from a com-
mercially available ultrasound – US - machine) and the 3D position of the different
instruments were used.

As such, the different steps of the described concept were implemented as (Fig. 2):
Step A: A manual delineation of the LA and RA was performed using the Medical

Imaging Interaction Toolkit (MITK) software. In detail, multiple 2D slices were
delineated and then interpolated into a 3D surface. Each surface was independently
delineated and saved in stl (stereolitrography) format.

Fig. 1. Blocks diagram of the proposed concept.

A Novel Interventional Guidance Framework 95



Step B: Based on the 3D contours from (A), the FO was manually identified. For
that, we detected the thinnest region, as described in [4]. Then, the optimal puncture
location was marked and saved in stl format.

Step C: Both pre-procedural (CT) and intra-procedural (TTE) images were uploaded
and streamed in the described framework (Fig. 2), respectively. The CT image is
uploaded using the DICOM (Digital Imaging and Communications in Medicine) read
function currently available in VTK. In opposition, the TTE images were acquired in
real-time with a Vivid E95 (GE Vingmed, Horten, Norway) scanner, equipped with a
4 V-D transducer and streamed using a proprietary software. Regarding the image-
fusion between CT and TTE worlds, the following strategy was applied. By visualizing
both images in parallel, a set of landmarks were manually defined in both images, being
later used to fuse both image coordinate space. The optimal transformation between
CT-TTE worlds was computed through a least-square strategy. After estimating the
optimal transformation, the surfaces generated throughout steps A and B are imported
and automatically superimposed on the intra-procedural image, enhancing the relevant
anatomical landmarks.

Step D: A small electromagnetic (EM) sensor (EM, Fig. 2) with 6 degrees of
freedom (DOF), Aurora 6DOF Flex Tube, Type 2 (Aurora, Northern Digital, Waterloo,
Ontario), was attached to the tip of the transseptal sheath.

Step E: A fixed calibration was made to combine the electromagnetic and TTE
worlds. In this sense, a set of positions were identified in the TTE image. Then, the
same spatial positions were physically achieved by the EM sensor, and the final optimal
transformation was obtained by applying a least-square fitting between all positions. By
applying this spatial transformation, a unique scenario combining the enhanced intra-
procedural image with the needle position was obtained, allowing the correct guidance
of the surgical tool until the optimal puncture location. Inside the proposed guidance
framework, the needle position was represented as a red dot.

3 Experiments

Description: In this version, two patient-specific mock models of the atria were used
(Fig. 3). Both static models were constructed using the strategy described in [10].

Fig. 2. Overview of the developed interventional setup.
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Implementation Details: Since mock models were used, the TTE probe was kept
fixed (Fig. 3). Before executing the calibration, one operator selected the optimal field
of the view (FOV) of the model. Regarding the identification of relevant landmarks
(step C and E), Fig. 4 presents an overview of the target positions.

Evaluation: One operator applied the described pipeline in each phantom model
and then performed a TSP. To evaluate the error between the selected location and the
puncture position, a metallic landmark was later inserted to mark the punctured site.
Later, a CT acquisition of the model plus the landmark was acquired. This post-
interventional CT was segmented and the obtained surfaces were aligned with the
planning surfaces using an iterative closest point algorithm. Finally, the frame rate
achieved by the framework for the streaming of US data was also evaluated. All results
were computed using a personal laptop with Intel (R) i7 CPU at 2.8 GHz and 16 GB of
RAM. An integrated graphics card Nvidia Quadro K2100 was used.

4 Results

The TSP was possible in both cases. Overall, guidance with this setup was considered
challenging, due to limited information about the TSP needle position. In one phantom
model, an error of approximately 6 mm was found between the selected position and
the metallic landmark. For the second model, it was not possible to insert the metallic
landmark. Regarding the technical characteristics, a frame rate of approximately
5 frames/s was achieved. The technical calibration took *60 min. The planning stage
required *30 min.

Fig. 3. Experimental validation scenario.

Fig. 4. Relevant landmark positions for step C and E.
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5 Discussion

In this study, a novel interventional framework for TSP is described. It uses the
potentialities of the intra-procedural volumetric US image to create an integrated
interventional scenario where both pre-planning, intra-procedural data, and surgical
instrument position are fused. Thus, the not well contrasted and noisy TTE image is
enhanced by superimposing virtual anatomical surfaces. Moreover, the optimal punc-
ture location can also be visualized, potentially increasing the safety of the intervention.
In opposition to other studies [11], the current concept allows the inclusion of pre-
procedural planning information in the interventional world. Indeed, recent solutions,
such as the EchoNavigator (Philips Inc., Netherlands), [12] proved its added-value for
TSP intervention, by adding anatomical information (US images) to the fluoroscopy.
Nevertheless, although this solution allows the inclusion of specific landmarks in the
interventional image, one is not able to embed pre-procedural planning information in
the intra-procedural world [12]. In a different way, CT-fluoroscopy fusion approach
was also described and validated for TSP [7], allowing the usage of pre-procedural data
into the interventional scenario. However, since the US image is not integrated, rele-
vant online anatomical details are lost or ultimately require an independent US scanner
during the intervention.

This framework has as a key novelty the direct usage of 3D US data (by streaming
it) to fuse intra-procedural data with pre-procedural one. In fact, previous works
focused on similar methodologies for different scenarios. Nevertheless, 2D US data was
mainly streamed, requiring complex calibration scenarios to perform 2D-3D alignment
[11, 14]. Although such approaches have shown interesting results in nearly static
structures/organs [12], its application in cardiac interventions is limited. As such, by
capturing the entire 3D volume, 2D-3D alignment/reconstruction steps are removed,
potentially improving the performance and accuracy of image-fusion algorithms.
However, the described pipeline is only an initial proof-of-concept and it still presents
some drawbacks, namely manual interaction is mandatory in all stages, making the
configuration of the setup extremely time-consuming. Recently, our team has presented
different methodologies to automate this framework: (1) automatic segmentation of the
atrial region in CT [4, 15]; (2) automatic identification of the FO in CT [4]; and
(3) automatic segmentation of the LA [16]. As such, the entire planning can be per-
formed quickly (2–3 min, [4]) and the fusion stage can be quickly performed by
aligning the segmented models. Although the current automated modules are not
integrated into this framework, such options are expected in a future release. Regarding
the tracking of the different surgical tools, fixed calibration setups can be used [11],
making its calibration fast. Nevertheless, to improve the guidance of the surgical tools
and the identification of the optimal puncture route, two modifications should be
performed to the current setup: (i) multiple sensors should be embedded along the
instrument, providing a virtual representation of the entire instrument’s shape inside the
body, and (ii) an enhanced representation of the optimal puncture route can potentiate
the guidance stage and facilitate the identification of the puncture location. Finally,
regarding the frame rate, an acceptable performance (5 frames/s) was achieved by this
framework.
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The obtained results showed that accurate evaluation of the proposed framework
was not possible. First, a small number of phantom models were used. Second, the
strategy applied to mark the punctured location proved to be sub-optimal. Due to the
small entry points of the phantom model, visual identification punctured location was
challenging, hampering the insertion of the metallic landmark. Third, quantification of
the framework’s accuracy through the described approach (i.e. aligning post-
interventional data with pre-interventional one) is sensitive to small alignment errors.
In this sense and to improve the described experiment, a novel scenario is required with
the following features: (1) a large number of phantom models with different anatomies
are required; (2) inclusion of radiopaque materials to easily allow an accurate alignment
between the pre- and pos- interventional surfaces; and (3) instead of using metallic
landmarks, the TSP needle should be kept at the punctured location. Finally, since the
traditional intervention is widely dependent of the fluoroscopy, further studies to
evaluate the feasibility of this potential radiation-free framework and even to evaluate
the required learning curve are mandatory to validate it. Regarding the study limita-
tions, we would like to emphasize that: (1) static phantom models were used; (2) in-
stead of a TEE probe, a TTE one was used; and (3) the US probe was kept fixed
throughout the intervention. To overcome these limitations, dynamic phantom setups,
as described in [10], should be used, and an electromagnetic sensor should be attached
to the ultrasound probe (as described in [14]), spatially relating the ultrasound FOV
with the probe position and allowing its free manipulation throughout the intervention.
As a final remark, although this study was performed with a TTE transducer (since it
was simple to be fixated), the TEE one can also be used without any modification of the
current setup.

6 Conclusion

The described concept for the development of an interventional guidance framework
showed its initial potential usefulness for the identification of the optimal puncture
location and to guide the TSP intervention. Nevertheless, the current version requires
manual interaction in all stages, making the configuration setup extremely time-
consuming and difficult to be performed. Further studies and a different experimental
setup are required to accurately validate the proposed framework.
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Abstract. Medical experts commonly use imaging including Computed
Tomography (CT), Positron-Emission Tomography (PET) and Magnetic
Resonance Imaging (MRI) for diagnosis or to plan a surgery. These scans
give a highly detailed representation of the patient anatomy, but the
usual Three-Dimensional (3D) separate visualisations on screens does not
provide an convenient and performant understanding of the real anatom-
ical complexity. This paper presents a computer architecture allowing
medical staff to visualise and interact in real-time holographic fused CT,
PET, MRI of patients. A dedicated workstation with a wireless connec-
tion enables real-time General-Purpose Processing on Graphics Process-
ing Units (GPGPU) ray casting computation through the mixed reality
(MR) headset. The hologram can be manipulated with hand gestures
and voice commands through the following interaction features: instan-
taneous visualisation and manipulation of 3D scans with a frame rate of
30 fps and a delay lower than 120 ms. These performances give a seamless
interactive experience for the user [10].
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1 Introduction

Current surgical treatments rely on complex planning using traditional multipla-
nar rendering (MPR) of medical images including CT and MRI. The resulting
imagery shows patients anatomical slices in axial, sagittal or coronal planes to
plan surgery. However, details of vital internal structures are often scattered and
become inconspicuous [3]. The use of 3D modeling partially solves this problem,
allowing the reconstruction of patient-specific anatomy. Many studies revealed
that using 3D models benefits in different surgical fields [3,8,9,11,13] improv-
ing surgical planning, shortening patient exposure time to general anaesthesia,
decreasing blood loss and shortening wound exposure time. However, the visuali-
sation and interaction of these complex 3D models on conventional environments
with 2D screens remains difficult [1,3]. Indeed, user’s point of view is limited by
the windowing of his the screen and the manipulation via the mouse is not intu-
itive and a biased appreciation of distances [1,3]. This complicates clinical diag-
nosis and surgical planning. Today, medical data visualisation extends beyond
traditional 2D desktop environments through the development Mixed Reality
(MR) and Virtual Reality (VR) head-mounted displays [2,4,6,13]. These new
paradigms have proven their high potential in the medical field including sur-
gical training [6,13] and planning [3,14]. Specifically, the MR solutions have

Fig. 1. This figure illustrates the potential goal: medical specialists being able to work
all together on a patient dataset of fused 3D imaging modalities (MRI, PET and/or
CT). The current stage of development proposes a functional solution with a single
user.
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already shown an interest in the problem described by displaying a personal-
ized data visualisation [7]. Using MR, the interaction with the hologram can be
at the same location as where holographic presentation is perceived [1]. This
point in particular has the potential to improve surgical-planning and surgical-
navigation [3,8,9,11,12]. The main goal of this paper is to describe a MR tool
that displays interactive holograms of virtual organs from clinical data as illus-
trated in Fig. 1. With this tool, we provide a powerful means to improve surgical
planning and potentially improve surgical outcome. The end-user can interact
with holograms through an interface developed in this project that combines
different services offered by the HoloLens.

Fig. 2. Complete process from patient to medical experts using holograms to improve
understanding and communication between the different actors.
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2 Method and Technical Concepts

The usual pipeline used for viewing medical images in MR includes a step of pre-
processed segmentation and modelisation of the medical images. The HoloLens,
being an embedded system, are very far to have the processing power required
to compute an advanced volumetric rendering. Therefore, a remote server with
a high-end GPU to handle all the rendering processes is needed. We propose the
following architecture to implement the latter is shown in Fig. 2. The process
handling the volumetric rendering starts by loading the 3D scans of segmented
organs in precomputation pipeline. Once the texture loaded, data are transferred
to the GPU into the dedicated server and is used to render the 3D scene with
all the filters and ray casting stereoscopic rendering.

Details of the rendering architecture pipeline (steps 3 to 5 of the Fig. 2) are
provided in Fig. 3.

Fig. 3. Illustration of the real-time rendering pipeline.

The headset starts a remote client provided by Microsoft (MS) to receive the
hologram projection so that the medical staff can visualise the data and interact
in a natural manner. The headset sends back the spatial coordinates and the
vocal commands to the server to update the virtual scene.

Various volumetric imaging protocols are used in clinical routine for surgical
planning like CT, PET and MRI scans. Being able to mix and interact with all
patient informations (volumetric anatomy as well as patient data file as floating
windows) an AR setup constitutes a powerful framework for understanding and
apprehending complex organ and tissue and even pathology. The proposed pre-
processing pipeline could take scans as input align and encode them in a 32-bit
40962 matrix including segmented structures. It allowed to fuse complex struc-
tural and functional information in one single data structure stored as images in
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the database that can be efficiently visualised in the AR environment. The first
step required to combine those scans is to resample and align them. All scans
were first resampled to have 1 mm-edge length cubic volumetric pixels (voxels).
The nearest neighbour interpolation was used to preserve Standardized Uptake
Values SUV units in PET, whereas cubic interpolation was used for CT and
MRI. The CT scan is set as a reference and both PET and MRI are mapped
with a 3D translation. A second step consisted of cropping the data around the
object of interest. The input of the main rendering pipeline is a 4096 × 4096
32-bits-encoded matrix. Therefore, it was first reshaped all 2563 volumes into
a 16 × 16 series of 256 adjacent axial slices to match the 40962 pixel format of
the rendering pipeline input. Then, the PET, CT and MRI data bit depth were
transformed to 8 allowing us to encode all three modalities in the first three Red,
Green and Blue bytes of the 32-bits-input matrix. Since CT and PET protocols
yield voxel values corresponding to absolute physical quantities, simple object
segmentation can be achieved by image thresholding and morphological closing.
Bone was defined as voxel values fCT(x) > 300HU. Arteries were defined as
200 < fCT(x) < 250HU in CT images with IC. Various metabolic volumes were
defined as fPET(x) > t, where t is a metabolic threshold in SUV. All resulting
binary masks were closed with a spherical structural 3 mm-diameter element to
remove small and disconnected segmentation components. The binary volumes
were encoded as segmentation flags in the last Alpha byte.

The real-time virtual reconstruction of body structures in voxels is done by a
GPGPU massive parallel computation ray casting algorithm [5] using the prepro-
cessed image database described. The volumetric ray casting algorithm allows
to dynamically change how the data coming from the different aligned scan
images are used for the final rendering. As the database described above, each
rendering contains four main components: PET, CT, MRI scans and segmenta-
tion. All components are registered on an RGBα image and can be controlled
in the shader parameters. The following colour modes are available: Greyscale
for each layer, corresponding to the most widely used visualisation method in
the medical field; Scan colour highlighting, voxel intensities within the scans and
segmentation; Sliced data colouration.

Each layer can be independently controlled, filtered, colored and highlighted.
Moreover, the user can change each layer aspect using ray-tracing and enhance
target visualisation with segmentation highlight by changing the corresponding
layer intensity. The ray casting algorithm updates the volume rendering accord-
ing to the user commands: The user can quickly activate and deactivate each
scan and have a perspective on the position of each body part with voice com-
mands; The user can interact with the model in a spatial control field with the
pinch command.

Geometric manipulations like rotation, scaling and translation provide a way
to control the angles of the visualised hologram. This feature is essential to allow
medical staff to fully use the 3D rendering and see the organic structure details.
Moreover, the user can slice the 3D volume and remove data parts to focus on
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specific ones. Hand gestures and voice recognition algorithm voice based on MS
API: MR Companion Kit.

3 Results

Results of initial testing the MR application within the Otorhinolaryngology
Department of the Lausanne University Hospital (CHUV), it was concluded
that the current version of the project can be applied in three different ways:
(1) Greyscale image display (mostly used to plan surgery); (2) PET scan high-
lighted with false colours; (3) Segmentation highlighted with false colours.

The first rendering, shown in Fig. 4, is an example of a patient with a neck
oropharyngeal cancer. The first image represents the mix of the three scan layers
(PET, CT, and MRI) on a grey scale with a red highlight on the PET and CT.
The second rendering shows the bone structure. A pink segmentation highlight
is added to the 4th byte.

Fig. 4. Shaders implemented in this project according to use cases which display the
data in different renderings. Extracted directly from the final HoloLens.



108 M. Fröhlich et al.

Table 1. Benchmark of different HoloLens components

Metric Average value Standard deviation

Frames per second 29.8 fps ±1.22 fps

Latency 119.16 ms ± 14.28 ms

HoloLens CPU Usage 46.10% ±8.07%

HoloLens GPU Engine 0 22.30% ±1.24%

HoloLens GPU Engine 1 8.69% ±0.41%

Computer CPU usage 22.67% ±5.81%

Computer GPU usage 64.50% ±9.40%

Computer RAM usage 479.52 Mo ±3.84 Mo

The third rendering shown in Fig. 4, adds a slicing functionality, which
enables two kinds of renderings: one displaying a solid 2D slice and one keeping
the volumetric rendering on the slice as shown in the last rendering, adding the
optionality to navigate through different layers using different angles.

The current state of the application provides a proof that this concept and
current material can support volumetric rendering with a dedicated server and
a remote connection to the headset.

To have an estimate potential lags, a benchmark has been made with var-
ious shader models from the system as seen in Table 1. Details the average
variation performance of the following functionalities: multiple-layer activation,
user-finger input activation, vocal inputs, segmentation filtering, threshold filter-
ing, scan slicing, x-ray and surface rendering as well as several colouring modes.
The Table 1 certifies that immersion and hologram manipulation were very satis-
fying [10]. The current projects now focuses on improving the following aspects:

– Low performance when starting the remote connection;
– The remote connection resets itself if the frame reception takes too long

because of packet loss;
– Frame loss during pinching inputs often leads to inaccurate manipulations;
– The above weak performance and connection reset issues will be fixed in a

later version of the product. As for frame loss, improving the pipeline stability
might be a suitable option.

4 Conclusion and Perspective

This paper demonstrates the high potential of fused 3D data visualising. The
protocol underlines an innovative software architecture enabling real-time, prac-
tical visualisation of a massive individual patient database (i.e. 30 fps and 120 ms
delay). Moreover, the manipulation of simultaneous 3D anatomic reconstructions
of PET, CT and MRI allows better clinical interpretation of complex and spe-
cific 3D anatomy. The protocol can be adapted in different disciplines, not only
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improving surgical planning for medical professionals but also enhance surgical
training and thereby increase the surgical competence for future generations.

The next step will be adding multiple users in a single 3D scene, providing
a more intuitive interface, and conducting clinical indoor user tests. Feedback
from users point on that one of the main remaining issue concerns the easy-
to-use interface. Besides, in terms of graphical renderings, the current approach
does not allow very high image resolutions but only 1283 voxel space equivalent;
currently emphasis is placed on working on a fast and more advanced version
taking into account real environment with natural sphere maps.

5 Compliance with Ethical Standards

Conflict of interest – The authors declare that they have no conflict of interest.

Human and animal rights – This article does not contain any studies with human
participants or animals performed by any of the authors.
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Abstract. Detection of Patient Zero is an increasing concern in a world where
fast international transports makes pandemia a Public Health issue and a social
fear, in cases such as Ebola or H5N1. The development of a medical social
network and data visualization information system, which would work as an
interface between the patient medical data and geographical and/or social con-
nections, could be an interesting solution, as it would allow to quickly evaluate
not only individuals at risk but also the prospective geographical areas for
imminent contagion. In this work we propose an ideal model, and contrast it
with the status quo of present medical social networks, within the context of
medical data visualization. From recent publications, it is clear that our model
converges with the identified aspects of prospective medical networks, though
data protection is a key concern and implementation would have to seriously
consider it.

Keywords: Medical social networks � Data visualization � Epidemiology

1 Introduction

Global epidemic outbreaks are increasing in frequency and social concern, with recent
proposals focusing on global and transversal possible solutions to act with speed and
feasibility in the development of vaccines and therapeutics [1]. However, another issue
is essential in approaching global or local epidemiological outbreaks, which is the sure
and fast identification of Patient Zero. This identification matters because: (a) knowing
the medical history of the first individual to become infected with the pathogen and,
thus, becoming the first human infectious vehicle, can help determine the initial con-
ditions of the outbreak; (b) it can also indicate the original non-human source of the
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epidemiological context; and (c) the knowledge of the primordial exposure allows for
the epidemiologists to acquire precision on the ‘who’, ‘where’, ‘how’ and ‘when’ of the
outbreak.

Nevertheless, we cannot resist to quote David Heymann, of the London School of
Hygiene & Tropical Medicine, when he says that the search for Patient Zero is para-
mount as long as they still disseminate the disease as a living focus, which, for most of
the occasions, does not happen [2]. And it is regarding this latter, the localization of
Patient Zero still alive, that the use of medical social networks may be invaluable.

What we call a medical social network is a medical-based application of the
principles of social networks. Barabási, one of the pioneers of medical social networks,
wrote that networks can be found on every particulars and features of human health [3].
However complex the relationship between the network individuals, the organizing
principles are attainable through graph theory and visualization, namely as nodes and
edges [4]. In a medical context, the nodes may represent biological factors, which can
be as diverse as diseases or phenotypes, and the edges represent any chosen rela-
tionship, from physical interaction to shared trait. In the field of Epidemiology, for
instance, the nodes can be infected individuals, and the edges the physical interactions
between them. Albeit this simplification, other aspects can be added (e.g., distinguish
between female and male individuals while maintaining the infected information – vide
Fig. 1). This fusion between social networks and medicine may allow for the detection
of patterns of symptomatology, within a community, of public health interest.

Fig. 1. Example of a medical social network. Each node represents a person - circles denote
women, and squares men. Node colour denotes happiness: blue indicating the least happy, and
yellow the happiest (green are intermediate). Black edges represent siblings’ relationship, and red
edges denote friendship or spouses. [Adapted from [5], courtesy of the authors]. (Color figure
online)
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With the purpose of reviewing the status quo of medical networks and data visu-
alization within this context, the present work is divided into the following sections. In
Sect. 2, we discuss an ideal medical network model and how feasible it would be
dealing with the above mentioned issues. In Sect. 3, selected medical/health network
models are discussed in transversal analysis and contrasted with the ideal model.
Finally, our conclusions are summarized while also pointing out several prospective
paths regarding the development of future medical social networks.

2 Ideal Information System

Let us consider the following hypothetical scenario. I am a doctor and am about to meet
Mr. Silva, my patient. Prior to his entering, I access all the data he has given me
permission to. In this ideal medical Information System (IS), along with Mr. Silva’s
standard clinical data (blood tests results, X-ray images, doctor’s appointments records,
etc.), I also have access to the following social network data: (a) Mr. Silva’s kinship
network of, at least, two degree relatives (i.e., first degree relatives such as parents,
siblings, or offspring, and second degree relatives, such as uncles, aunts, grandparents
or full cousins), and their medical data relevant for Mr. Silva’s current health condition;
(b) through a user friendly interface, I can change the data shown on the network,
choosing the information that I see fit; (c) red alerts on medical networks, national
and/or local, regarding Mr. Silva’s personal connections, that is, connections within a
workplace or neighbourhood context. The importance of these outputs lies on cross-
referencing Mr. Silva’s family medical history with his social interactions.

This ideal IS’s purpose is not only to aid physicians during their consultations and
serve as a decision support for their diagnoses, but also to act as a disease prevention
and public health tool. For that, a work team of skilled IT analysts and managers, data
scientists, and health professionals from different areas, will be constantly working with
this IS, analyzing all the continuous outputs it provides, namely: (a) different medical
social networks illustrating various types of links, such as the family connections
between people with a certain medical condition on a certain geographical location, or
the working connections between people of a certain age interval that present certain
symptoms; (b) alerts for potential health threats already ongoing or as a measure of
prevention of those threats. Using this medical IS, this work team should provide
frequent reports on the state of the population health regarding all kinds of diseases,
and, of course, immediately inform the reporting hierarchies of any and all alerts.

To achieve these outputs, the input of this medical Information System consists of:
(a) all administrative data, such as patients full name and address, workplace address,
and direct contact number; (b) identification of all the patient’s direct relatives, up to
the second degree (at least); (c) the physicians’ consultations records.

Still in the scope of prevention and treatment of diseases, access to some of these
data, and even the use of some of the IS functionalities, may be requested by
researchers under official research projects.

Patients’ anonymity is of major importance, and even during Mr. Silva’s consul-
tation his doctor will only know the type of relationship Mr. Silva has with the people
in his social network(s), and their clinical data. Further, the protected data could allow
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for network pattern and community detection without exposing the identity of the
patients, which would be invaluable not only for long-term Public Health measures but
also Emergency Management. Regarding public interest, the identity of the connections
would only be known in cases of severe gravity and, cumulatively, with external
authorization. This would take into account the legal and ethical right of the patient to
privacy.

3 Medical Social Networks: The General State of Affairs

Having described the ideal medical IS, we now proceed to discuss the present and
general state of affairs of medical social networks.

To begin with, there is not, to our knowledge, a formal medical IS that incorporates
social network analysis, but there are several published models which can point out the
present capacity, possible implementation and likely reception of a formal medical IS
based on them. As such, a selection of those models, chosen due to the specific details
that can enhance a cross-reference and discussion with our proposed ideal model, are
presented by chronological order and their transversal comparison made by table data
displaying and discussion.

Table 1 presents the specifics for identifying the selected models, indicating per
row the year of publication, the authors, the subject and the type of sample. The time-
span covered by the selected models belongs to the period 2012–2017, and the cultural
context presents a wide variety from the USA, to Honduras and India. The subjects
approach both physical and emotional aspects of medical social networks, i.e., the
models can address, as portrayed in Fig. 1, psychological/sociological aspects of the
individuals as components of their overall health situation. Table 2 summarizes the
main conclusions and type of data visualization per study.

Strully et al. depart from a simple interrogation: if the adoption of aspirin of a social
element after a cardiovascular event would affect the adoption of aspirin intake as a
preventive measure by his/hers social circle [6]. Using a longitudinal logistic regression

Table 1. Medical networks’ models from recent years.

Study Year Subject Sample

[6] 2012 Aspirin use and cardiovascular
events in social networks

2,724 members of the Framingham
Heart Study, Massachusets, USA

[7] 2014 Association between social
network communities and
health behaviour

16,403 individuals in 75 villages in rural
Karnataka, India

[8] 2015 Social network targeting to
maximise population
behaviour change

Individuals aged 15 or above recruited
from villages of the Department of
Lempira, Honduras

[9] 2017 Association of Facebook use
with compromised well-being

5,208 subjects in the Gallup Panel Social
Network Study survey, USA
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model, and three waves from data extracted from the Framingham Heart Study, they
defined as dependent variable the daily intake of aspirin by the individual at the time of
the wave. The interest lay if the daily basis intake of aspirin was common in the three
waves and, if not, if there was a cardiovascular incident of a social connection that
could explain that change. The model considered several aspects of the individuals
(e.g., gender or type of social connection) and the results were displayed on tables, with
statistical functions, such as average percentage, confidence intervals or adjusted odds
ratio. The display of data did not allow a visualization of each individual specific
‘decision environment’, i.e., conclusions are drawn for the population but the indi-
vidual aspects become elusive. The authors commented that, although they detected the
sharing of the doctor as a common feature to change in aspirin intake habits, the data
did not allow knowing whether the doctors actively influenced it. In fact, the authors
stated that one of the limitations of their research was the lack of randomness, which
may have introduced some homophily-driven selection bias, based on unobserved
characteristics that may influence the use of aspirin over time, such as drug addiction.

The study conducted by Shakya et al. applied an algorithmic social network
method to several Indian village communities to explore not only possible connection
between latrine ownership and community-level and village-level latrine ownership,

Table 2. Medical networks data visualization

Study Data visualization Conclusions

[6] Table with results with columns per
statistical functions

- Predisposition for daily intake of
aspirin if a social connection presented
such routine
- Absence of individual discrimination
per social network can bias the
conclusions

[7] Table with results of multilevel logistic
regression analysis AND network
depiction of a village

- Suggestion of organic social network
communities more strongly associated
with normatively driven behaviour than
with direct or geographical social
contacts
- Norm-based interventions could be
more effective if they target network
communities within villages

[8] Network depiction of a block of villages - Friend targeting increased adoption of
the nutritional intervention
- Suggestion that network targeting can
efficiently be used to ensure the success
of certain types of public health
interventions

[9] Table with results from multivariate
regression analysis AND box/whisker
plots

- The associative process between
Facebook use and compromised well-
being is dynamic
- Suggestion that, overall, Facebook use
may not promote well-being
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but also the degree to which network cohesion affected individual latrine ownership
[7]. The authors used a social network depiction to contrast with the statistical results
and concluded more strongly regarding the effect of connections in influencing the
change in health habits (in this case, ownership of latrine), even stating that one could
consider such network understanding a new field of research, which would debunk
large data sets analysis into health policies intelligibility and its subsequent efficiency
on daily practices.

In 2015, Kim et al. evaluated with network-based approaches which methods
maximise population-level behaviour change, considering interventions on several
health areas (e.g. nutrition), and considered the results evidenced the network-based
approach had the advantage of being independent from previous network mapping [8].
Further, they considered that network-based models could sustain the development of
health policies intended to change the individual routines, albeit more research should
be conducted to discriminate which of the targeting methods presented better adequacy
to different classes of interventions.

Our final selected publication deals with the eventual effects of social media net-
work use and well-being. Shakya and Christakis assessed the potential effects of both
online and real-world social networks, cross referencing the respondent’s direct
Facebook data and real-world social networks self-reported data for a longitudinal
association in four domains of well-being [9]. They point out that the longitudinal data
was size limited due to a small number of permissions to access Facebook data and that
the models, though consistent in the direction and magnitude of some associations, did
not identify the mechanisms between Facebook use and reduced well-being.

Cross-referencing these models with our ideal medical Information System, it is
clear that: (1) data visualization may be the difference between general and non-elusive
conclusions; (2) medical social network models are becoming transversal and accepted
to understand, identify and be part of the solution of several medical issues; and
(3) data protection needs to be carefully implemented for the success of the ideal
medical IS.

4 Conclusions and Future Perspectives

Regarding prevention, it is paramount to have a medical tool allowing us to screen the
social network of the patient, as it can identify certain health issues per geographical
region and per social interaction. Though location of Patient Zero is important in a
national crisis, non-epidemiological diseases, such as depression, can present contagion
as well and are the silent epidemics. A medical social network as we suggest can locate
these silent Patient Zeros and promote overall successful Public Health policies and
individual well-being and support.
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Abstract. This paper presents a fully convolutional network-based seg-
mentation method to create an eyeball model data for patient-specific
ophthalmologic surgery simulation. In order to create an elaborate eye-
ball model for each patient, we need to accurately segment eye structures
with different sizes and complex shapes from high-resolution images.
Therefore, we aim to construct a fully convolutional network to enable
accurate segmentation of anatomical structures in an eyeball from train-
ing on sparsely-annotated images, which can provide a user with all
annotated slices if he or she annotates a few slices in each image volume
data. In this study, we utilize a fully convolutional network with full-
resolution residual units that effectively learns multi-scale image features
for segmentation of eye macro- and microstructures by acting as a bridge
between the two processing streams (residual and pooling streams). In
addition, a weighted loss function and data augmentation are utilized for
network training to accurately perform the semantic segmentation from
only sparsely-annotated axial images. From the results of segmentation
experiments using micro-CT images of pig eyeballs, we found that the
proposed network provided better segmentation performance than con-
ventional networks and achieved mean Dice similarity coefficient scores
of 91.5% for segmentation of eye structures even from a small amount of
training data.

Keywords: Segmentation · Fully convolutional networks
Eyeball modeling · Sparse annotation · Micro CT

1 Introduction

Semantic segmentation of medical images is an essential technique for creat-
ing anatomical model data that are available for surgical planning, training,
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and simulation. In the field of ophthalmology, elaborate artificial eyeball models
[1,2] have been developed for training and simulation of eye surgeries, and it is
desired to create realistic eyeball model data for patient-specific surgical simu-
lation through the segmentation of detailed eye structures. Thus, we focus on
segmenting not only the entire eyeball structure but also microstructures (e.g.,
Zinn’s zonule) in the eyeball, which conventional modalities such as computed
tomography (CT) have difficulty capturing, by using higher-resolution modalities
such as micro CT.

To efficiently create patient-specific eyeball model data from high-resolution
images, we need to take into account the following three points: (a) full- or
semi-automation of segmentation for reducing the burden of manual annotation,
(b) accurate extraction of eye structures with different sizes and complex shapes,
and (c) image processing at full resolution without downsampling. Therefore, we
utilize a fully convolutional network (FCN) [3], which is one of the most powerful
tools for end-to-end semantic segmentation, to construct a segmentation method
to fulfill the key points.

For accurate segmentation of objects with different sizes and complex shapes
in the images, it is important to construct a network architecture that can obtain
image features for localization and recognition of the objects. In general, deep
convolutional neural networks can obtain coarse image features for recognition
on deep layers and fine image features for localization on shallow layers. Many
studies [3–6] have proposed a network architecture to obtain multi-scale image
features for semantic segmentation by residual units (RUs) or skip connections,
which combine different feature maps output from different layers. U-net pro-
posed by Ronneberger et al. [6] achieved good performance for semantic seg-
mentation of biomedical images by effectively using long-range skip connections.
Moreover, their research group showed that 3D U-net [7], which was developed
as the extended version of U-net, could provide accurate volumetric image seg-
mentation based on training from sparsely-annotated images on three orthogonal
planes. However, such 3D FCNs have difficulty handling images at full resolu-
tion and obtaining full-resolution image features essential for strong localization
performance because of the limitation of GPU memory.

Therefore, we aim to construct a 2D network architecture that provides
improved localization and recognition for semantic segmentation of high-
resolution medical images by using advanced RUs instead of conventional skip
connections found in FCN-8s [3] or U-net [6]. Moreover, we also aim to propose a
training strategy in which the network can learn from sparsely-annotated images
and provide accurate label propagation to the remaining images in volumetric
image data, because it is not easy to collect a large amount of high-resolution
image volumes for network training from different cases. The concept of our pro-
posed method is shown in Fig. 1. The originality of this study lies in introducing
a FCN with the advanced RUs and its training strategy to achieve accurate
segmentation of eye structures in an end-to-end fashion even from sparsely-
annotated volumetric images.
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Fig. 1. Concept of the proposed method for segmentation of eye structures from sparse
annotation

2 Methods

2.1 Network Architecture

In this study, we focus on full-resolution residual units (FRRUs) [8], which was
designed to facilitate the combination of multi-scale image features while keeping
similar training characteristics as ResNet [9]. We utilize the network architecture
that consists of four pooling steps followed by four upsampling steps like U-
net [6] as a base and construct a residual-based FCN incorporating FRRUs
into the basal network architecture to enhance the localization and recognition
performances for segmentation of eye structures. Figure 2 shows the architectures
of U-net and the proposed network. The box in the figure represents a feature
map output by each convolution layer or FRRU and the number of channels is
denoted under the box. U-net fuses the same-size feature maps between pooling
stages and upsampling stages with skip connections, while the proposed network
jointly computes image features on two processing streams by using FRRUs.
One stream (i.e., residual stream) conveys full-resolution fine image features for
localization, which are obtained by adding successive residuals, and the other
stream (i.e., pooling stream) conveys coarse image features for recognition, which
are computed through convolution and pooling steps.

The detail of a FRRU structure is indicated in Fig. 3. Each classical RU [9]
has one input and one output, while each FRRU computes two outputs from
two inputs. Let xn and yn be the residual and the pooling inputs to n-th FRRU,
respectively. Then, the outputs are computed as follows:

xn+1 = xn + G(xn, yn;Wn) (1)
yn+1 = H(xn, yn;Wn) (2)

where Wn denote the parameters of the residual function G and the pooling
function H. As shown in Fig. 3, the FRRU concatenates the pooling input with
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the residual input operated by a pooling layer, and subsequently obtains the
concatenated features (i.e., the output of the function H) through two 3 × 3
convolution layers. The output of H is passed to the next layer as the pooling
stream. Moreover, the output of H are also resized by the function G and reused
as features added to the residual stream. This design of the FRRU makes it pos-
sible to combine and compute the two stream simultaneously and successively.

Therefore, the proposed network, which are composed of a sequence of
FRRUs, gains the ability to precisely localize and recognize objects in images by
combining the following two processing streams: the residual stream that carries
fine image features at full resolution and the pooling stream that carries image
features obtained through a sequence of convolution, pooling, and deconvolution
operations.

Fig. 2. Network architectures: (a) U-net [6] and (b) the proposed network

Fig. 3. Design of full-resolution residual unit (FRRU) [8]
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2.2 Training Strategy

We assume that the proposed network is applied to eye structures segmentation
based on sparse annotation. Thus, we need to construct a framework to enable
the network to effectively learn image features even from less annotated slices
for training.

In the case of our application, it is expected that the training and testing
subsets of images have no significant differences of geometric and visual char-
acteristics (e.g., location, scale, or contrast) between objects for segmentation
because they are derived from the same image volume. Therefore, we here adopt
rotation and elastic deformation for data augmentation to efficiently train small
geometric variations of eye structures in the images based on less annotated slices
for training, although there are many techniques for increasing the amount of
training data. Each slice in the training subset is augmented twentyfold by rotat-
ing −25◦ to 25◦ at 5 degree intervals and repeating the elastic deformation ten
times based on random shifts of 5 × 5 grid points and B-spline interpolation.

Additionally, for more effective network training, we use categorical cross-
entropy loss function weighted by the inverse of class frequency to reduce the
negative effects of class imbalance (i.e., difference of sizes between different eye
structures in the images).

3 Experiments and Results

3.1 Experimental Setup

We validated the segmentation performance of the proposed method on a dataset
of eyeball images, which were scanned using a micro-CT scanner (inspeXio SMX-
90CT Plus, Shimadzu Co., Japan). The dataset consists of micro-CT volumes of
five pig eyeballs, and the size of each volume is 1024 × 1024 × 548 (sagittal ×
coronal × axial) voxels, with a voxel size of 50 µm. Figure 4 shows an example
of micro-CT images and label images used for the validation. As a preprocessing
step, the original micro-CT images were filtered by using a wavelet-FFT filter
[10] and a median filter to remove the ring artifacts and random noises, and sub-
sequently the filtered images were normalized based on the mean and standard
deviation on the training subset of images for each micro-CT volume. We defined
six labels, including Background, Wall and membrane, Lens, Vitreum, Ciliary
body and Zinn’s zonule, and Anterior chamber. The preprocessed images and
the corresponding manually annotated images were used for network training
and testing.

In this study, for fundamental comparative evaluation, we compared our net-
work with the following two representative networks: FCN-8s [3] and U-net [6].
To evaluate the segmentation performances associated with network architec-
tures, all the networks were trained and tested on the same datasets under the
same conditions (i.e., the same learning rate, optimizer, and loss function were
assigned to the networks). On the assumption of the semantic segmentation from



FCN-Based Eyeball Segmentation from Sparse Annotation 123

Fig. 4. Example of micro-CT images and label images

sparse annotation, 2.5% (i.e., every 40 slices) of all the slices and the remain-
ing slices on the axial plane in each volume were used as training and testing
subsets, respectively. The slices of each training subset were augmented by the
two data augmentation techniques (i.e., rotation and elastic deformation). Each
of the networks was trained from scratch on the augmented training subset of
slices for 100 epochs and tested on the testing subset. The segmentation per-
formances were quantitatively and qualitatively evaluated by comparing Dice
similarity coefficient (DSC) scores and visualization results between the net-
works. The networks used for experiments were implemented using Keras1 with
the Tensorflow backend2, and all the experiments were performed on a NVIDIA
Quadro P6000 graphic card with 24 GB memory.

3.2 Experimental Results

Table 1 indicates the comparison results of DSC scores of the three networks,
including FCN-8s, U-net, and the proposed network. The proposed network could
segment eye structures with a mean Dice score of 91.5% and achieve the best
segmentation performance of the three networks. In addition, the results showed
that the proposed network could segment almost all the labels with higher mean
score and lower standard deviation than the other networks. Even on the label
of “Ciliary body & Zinn’s zonule” that is hard to segment because of the high
variability of shapes, the proposed network provided mean DSC score of more
than 85%.

Figure 5 visualizes a part of the segmentation results obtained by the three
networks. FCN-8s generalized the segmentation results with jagged edges near
the label boundaries, and U-net produced segmentation results including some
errors despite the smooth label boundaries. Compared to these conventional
networks, we could find that the proposed network generalized more accurate
segmentation results with smoother edges for all labels than the other networks.

1 https://keras.io/.
2 https://www.tensorflow.org/.

https://keras.io/
https://www.tensorflow.org/
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Table 1. Quantitative comparison of segmentation results of pig eyeballs (n = 5)

Label DSC score (%)

(a) FCN-8s[3] (b) U-net[6] (c) Our network

Background 99.7 ± 0.2 99.7 ± 0.1 99.8± 0.1

Wall and membrane 83.2 ± 6.1 86.9 ± 3.4 89.4± 1.4

Vitreum 97.8± 0.4 96.9 ± 1.4 97.8 ± 0.8

Lens 94.4 ± 1.9 94.3 ± 1.4 95.5± 1.1

Ciliary body & Zinn’s zonule 79.7 ± 6.4 82.9 ± 3.1 85.6± 2.8

Anterior chamber 87.5 ± 4.9 85.3 ± 4.7 89.1± 1.9

Mean (except Background) 88.5 89.3 91.5

Std (except Background) 7.6 6.2 5.1

Min (except Background) 79.7 82.9 85.6

Max (except Background) 97.8 96.9 97.8

Fig. 5. Qualitative comparison of segmentation results

4 Discussion

As indicated in Table 1, the proposed network achieved high mean DSC scores
with low standard deviation for segmenting eye structures from sparse annota-
tion, although only 2.5% of all the slices (i.e., 14 of 548 slices) were used for
network training. The proposed network could consistently achieve higher accu-
racy for segmentation of eye structures with different sizes and shapes, compared
to FCN-8s and U-net. This is probably because the proposed network succeeded
in learning more robust image features against the change of sizes and shapes in
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the images. In other words, these results imply a FRRU contributes to obtaining
finer features for strong localization.

In addition, Fig. 5 showed that the proposed network could generalize seg-
mentation results with more accurate and smoother class boundaries compared
to FCN-8s and U-net, although it produced some false positives. This can be
considered to be due to the fact that the loss of fine image features occurred in
the training process, especially in the pooling operations. Although both of them
had skip connections for obtaining multi-scale features, it is probably difficult to
convey image features for precise localization by only the conventional skip con-
nections. Therefore, the network architecture incorporating FRRUs can be very
effective to learn multi-scale image features, which conventional architectures
have difficulty capturing.

However, even the network with FRRUs failed to provide accurate segmenta-
tion results on some slices. Thus, in future work, we will aim to further improve
the segmentation accuracy of our network by combining other strategies for
obtaining multi-scale image features (e.g., dilated convolutions [11]), and then
we will apply our network to segmentation of finer eye structures from higher-
resolution images such as X-ray refraction-contrast CT images [12] to create
more elaborate eyeball model.

5 Conclusion

In this study, we proposed a FCN architecture and its training scheme for seg-
menting eye structures from high-resolution images based on sparse annotation.
The network architecture consists of a sequence of FRRUs, which enable to
effectively combine multi-scale image features for localization and recognition.
Experimental results on micro-CT volumes of five pig eyeballs showed that the
proposed network outperformed conventional networks and achieved mean seg-
mentation accuracy of more than 90% by training with the weighted loss function
on the augmented data, even from very few annotated slices. The proposed seg-
mentation method may have the potential to help create an eyeball model for
patient-specific eye surgery simulation.

Acknowledgments. Parts of this work were supported by the ImPACT Program of
Council for Science, Technology and Innovation (Cabinet Office, Government of Japan),
the JSPS KAKENHI (Grant Numbers 26108006, 17K20099, and 17H00867), and the
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Abstract. Soft tissue deformation induced by craniotomy and tissue
manipulation (brain shift) limits the use of preoperative image overlay
in an image-guided neurosurgery, and therefore reduces the accuracy of
the surgery as a consequence. An inexpensive modality to compensate
for the brain shift in real-time is Ultrasound (US). The core subject of
research in this context is the non-rigid registration of preoperative MR
and intraoperative US images. In this work, we propose a learning based
approach to address this challenge. Resolving intraoperative brain shift
is considered as an imitation game, where the optimal action (displace-
ment) for each landmark on MR is trained with a multi-task network.
The result shows a mean target error of 1.21 ± 0.55 mm.

1 Introduction

In a neurosurgical procedure, the exposed brain tissue undergoes a time depen-
dent elastic deformation caused by various factors, such as cerebrospinal fluid
leakage, gravity and tissue manipulation. Conventional image-guided navigation
systems do not take any elastic brain deformation (brain shift) into account.
Consequently, the neuroanatomical overlays produced prior to the surgery does
not correspond to the actual anatomy of the brain without an intraoperative
image update. Hence, real-time intraoperative brain shift compensation has a
great impact on the accuracy of image-guide neurosurgery.

An inexpensive modality to update the preoperative MRI image is Ultra-
sound (US). Its intraoperative repeatability offers another further benefit with
respect to real-time visualization of intra-procedural anatomical information [1].
Both feature- and intensity-based deformable, multi-modal (MR-US) registra-
tion approaches are proposed to perform brain shift compensation.
c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): POCUS 2018/BIVPCS 2018/CuRIOUS 2018/CPM 2018,
LNCS 11042, pp. 129–137, 2018.
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In general, brain shift compensation approaches are based on feature-driven
deformable registration methods to update the preoperative images by establish-
ing correspondence of selected homologous landmarks. Performance of Chamfer
Distance Map [2], Iterative Closest Point (ICP) [3] and Coherent Point Drift [4]
are evaluated in phantom [2,4] and clinical studies [3]. Inherently, the accuracy
of feature-based methods is limited by the quality of the landmark segmentation
and feature mapping algorithm.

Intensity-based algorithms overcome these intrinsic problems in the feature-
based methods. Similarity metrics such as sum of squared differences [5] and
normalized mutual information [6] were first proposed to register preoperative
MR and iUS non-rigidly. However, intensity-based US-MR non-rigid registration
poses a significant challenge due to the low signal-to-noise ratio (SNR) of the
ultrasound images and different image characteristics and resolution of US and
MR images. To tackle this challenge, Arbel et al., [7] first generates a pseudo US
image based on the preoperative MR data and performs US-US non-rigid regis-
tration by optimizing the normalized Cross Correlation metric. Recently, local
correlation ratio was proposed in a PaTch-based cOrrelation Ratio (RaPTOR)
framework [8], where preoperative MR was registered to postresection US for
the first time.

Recent advances in reinforcement learning (RL) and imitation learning (or
behavior cloning) encourages the reformulation of the MR-US non-rigid registra-
tion problem. Krebs et al. [9] trained an artificial agent to estimate the Q-value
for a set of pre-calculated actions. Since the Q-value of an action effects the
current and future registration accuracy, a sequence of deformation fields for
optimal registration can be estimated by maximizing the Q-value. In general,
reinforcement learning presupposes a finite set of reasonable actions and learns
the optimal policy to predict a combinatorial action sequence of the finite set.
However, in a real world problem such as intraoperative brain shift correction,
the number of feasible actions are infinite. Consequently, reinforcement learning
is hardly to be adapted to resolve brain shift. In contrast, imitation learning is
proposed to learn the actions itself. To this end, an agent is trained to mim-
ics the action taken by the demonstrator in associated environment. Therefore,
there is no restriction on the number of the actions. It has been used to solve
tasks in robotic [10] and autonomous driving systems [11]. Our previous work
reformulated the organ segmentation problem as imitation learning and showed
good result [12].

Inspired by Turing’s original formulation of imitation game, we reformulate
the brain shift correction problem based on the theory of imitation learning
in this work. A multi-task neural network is trained to predict the movement
of the landmarks directly by mimicing the ground-truth action exhibits by the
demonstrator.

2 Imitation Game

We consider the registration of a preoperative MRI volume to the intraoperative
ultrasound (iUS) for brain-shift correction as an imitation game. The game is



Resolve Intraoperative Brain Shift as Imitation Game 131

constructed by first defining the environment. The environment E for the brain-
shift correction using registration is defined as the underlying iUS volume and
MRI volume. The key points P E = [pE

1 ,pE

2 , · · ·pE

N ]T in the MRI volume are
shifted non-rigidly in three-space to target points QE = [qE

1 , qE

2 , · · · , qE

N ]T in
the iUS volume. Subsequently, we define the demonstrator as a system able to
estimate the ideal action, in the form of a piece-wise linear transformation aE,t

i ,
for the ith key point pE,t

i , in the tth observation OE,t, to the corresponding target
point qE,t

i . The goal of the game is defined as the act of finding an agent M(·),
to mimic the demonstrator and predict the transformations of the key points
given an observation. This was formulated as a least square problem (Eq. 1).

arg min
M

=
∑

E

∑

t

‖M(OE,t) − AE,t‖22 (1)

Here, AE,t = [aE,t
1 ,aE,t

2 , · · · ,aE,t
N ]T denotes the action of all N key points. In

the context of brain shift correction, we use annotated landmarks in the MRI
as key points pt

i and landmarks in iUS as target points qt
i. A neural network is

employed as our agent M.

2.1 Observation Encoding

We encode the observation of the point cloud in the environment as a feature
vector. For each point pE,t

i in the point cloud, we extract a cubic sub-volume
centered at this point in three-space. The cubic sub-volume has an isotropic
dimension of C3 and voxel size of S3 in mm and its orientation is identical
to the world coordinate system. The value of each voxel in the sub-volume is
extracted by sampling the underlying iUS volume in the corresponding position,
and interpolating using trilinear interpolation. We denote the sub-volume encod-
ing as a matrix V E,t = [vE,t

1 ,vE,t
2 , · · ·vE,t

N ]T , where each sub-volume is flattened
into a vector vE,t

i ∈ R
C3

. Apart from the sub-volume, we also encode the point
cloud information into the observation. We normalized the point cloud to a unit
sphere and used the normalized coordinates P̃

E,t
= [p̃E,t

1 , p̃E,t
2 , · · · , p̃E,t

N ]3 as a

part in the encoding. The observation OE,t is a concatenation of V E,t and P̃
E,t

.

2.2 Demonstrator

The demonstrator predicts the action AE,t ∈ R
3×N of the key points. We define

the action for brain shift as the displacement vector for the key points to move to
their respective targets. As both the target points and the key points are known,
one intuitive way to calculate the action for each key point is to compute the
displacement field directly as aE,t

i = qE,t
i −pE,t

i . As we can see, this demonstrator
estimates the displacement independent of the observation. This can make the
learning difficult. Therefore, we also calculate the translation vector tE,ti = q̄E,t

i −
p̄E,t
i ∈ R

3×1 as the auxiliary output of the demonstrator. Hence, the objective
function is,
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arg min
M

=
∑

E

∑

t

‖M(Ot) − At‖22 + λ‖M′(Ot) − tt‖22 (2)

where, M′ denotes the agent estimating the auxiliary output and λ is the weight-
ing of the auxiliary output. In the implementation, a multi-task neural network
is implemented as both M and M′.

2.3 Data Augmentation

To facilitate the learning process, we augment the training dataset to increase the
number of samples and the overall variability. In the context of brain shift cor-
rection, data augmentation can be applied both to the environment E and to the
key points P E,t. In order to augment the environment E, the elastic deformation
proposed by Simard et al. [13] is applied to the MRI and iUS volumes. Varieties
of brain shift deformations are simulated by warping the T1, flair MRI volumes
and the iUS volume, together with their associated landmarks, independently,
using two different deformation fields.

In each of the augmented environments, we also augmented the key points’
(MRI landmarks) coordinates in two different ways. For each key point, we
added a random translation vector with a maximal magnitude of 1 mm in each
direction. This synthetic non-rigid deformation was included to mimic inter-
rater differences that may be included, during landmark annotation [14]. An
additional translation vector was also used to shift all key points with a maximal
magnitude of 6 mm in each direction. This was done to simulate the residual
rigid registration error introduced during the initial registration using fiducial
markers. Of particular importance, is how these augmentation steps were applied
to the data. We assumed the translation between the key points and target points
in the training data to be a random registration error. Consequently, we initially
aligned the key points to the center of gravity of the target points. The center of
gravity is defined as mean of all associated points. The non-rigid and translation
augmentation steps were applied subsequently, to the key points.

2.4 Imitation Network

As observation encoding and the demonstrator are both based on a point cloud,
the imitation network also works with a point cloud. Inspired by PointNet [15],
which process the point cloud data without a neighborhood assumption effi-
ciently, we proposed a network architecture that utilizes both the known neigh-
borhood in the sub-volume V E,t, and the unknown permutation of associated
key points P̃

E,t
. The network is depicted in Fig. 1. The network uses the sub-

volume and key points as two inputs and processes them independently. During
observation encoding, each row vector denotes a sub-volume vE,t

i ∈ R
C3

of the
associated key point pE,t

i . Therefore, we use three consecutive C × 1 convolu-
tions with a stride size of C × 1, to approximate a 3D separable convolution and
extract the texture feature vectors. We also employ 3 × 1 convolution kernels to
extract features from key points. These low-level features are concatenated for
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Fig. 1. Illustration imitation network architecture.

further processing. The main part of the network largely employs the PointNet
architecture, where we use a multilayer perceptron (MLP) to extract local fea-
tures, and max pooling to extract global features. The local and global features
are concatenated to propagate the gradient and facilitate the training process.
The multi-task learning formulation of the network also helps improves overall
robustness. We used batch normalization for each layer and ReLU as activation
function. One property of the network is that if a copy of a key point and a
associated sub-volume is added as additional input, the output of the network
for these key points remains unchanged. This is especially useful in the context
of brain-shift correction, where the number of key points usually varies before
and after resection. Therefore, we use the maximum number of landmarks in
the training data as input key point number of our network. For a training data
smaller than this number, we arbitrarily copy one of the key points. Finally, after
predicting the deformation of the key points, the deformation field between them
is interpolated using B-splines.

3 Evaluation

We trained and tested our method using the Correction of Brainshift with Intra-
Operative Ultrasound (CuRIOUS) MICCAI challenge 2018 data. This challenge
use the clinical dataset described in [14]. In the current phase of the challenge, 23
datasets are used as training data, in which 22 comprise the required MRI and
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ultrasound landmark annotations before dura opening. The registration method
is evaluated using target registration error (mTRE) in mm. We used leave-one-
out cross-validation to train and evaluate our method. To train the imitation
network, we used 19 datasets for training, two for validation and one as the test
set. Each training and validation dataset was augmented by 32 folds for the envi-
ronment cascaded with 32 folds key points augmentation. In total 19.4k datasets
were used for the training, 2k were used for validation. We chose a sub-volume
with isometric dimensions C = 7 and voxel size of 2 × 2 × 2mm3. 16 points
were used as input key points and a batch size of 128 was used for the training.
The adapted Adam optimizer proposed by Sashank et al. [16] with a learning
rate of 0.001 was used. The results are shown in Table 1. Using our method,
the overall mean target registration errors (mTREs) can be reduced from

Table 1. Evaluation of the mean distance between landmarks in MRI and ultrasound
before and after correction.

Patient ID Landmarks
number

Mean distance (range)
initial in mm

Mean distance (range)
corrected in mm

1 15 1.82 (0.56–3.84) 0.88 (0.25–1.39)

2 15 5.68 (3.43–8.99) 1.01 (0.42–2.32)

3 15 9.58 (8.57–10.34) 1.10 (0.30–4.57)

4 15 2.99 (1.61–4.55) 0.89 (0.25–1.58)

5 15 12.02 (10.08–14.18) 1.78 (0.66–5.05)

6 15 3.27 (2.27–4.26) 0.72 (0.27–1.26)

7 15 1.82 (0.22–3.63) 0.86 (1.72–0.28)

8 15 2.63 (1.00–4.15) 1.45 (0.73–2.40)

12 16 19.68 (18.53–21.30) 2.27 (1.17–4.31)

13 15 4.57 (2.73–7.52) 0.96 (0.31–1.44)

14 15 3.03 (1.99–4.43) 0.87 (0.31–1.92)

15 15 3.32 (1.15–5.90) 0.69 (0.23–1.17)

16 15 3.39 (1.68–4.47) 0.83 (0.34–1.96)

17 16 6.39 (4.46–7.83) 0.96 (0.31–1.61)

18 16 3.56 (1.44–5.47) 0.89 (0.33–1.33)

19 16 3.28 (1.30–5.42) 1.26 (0.41–1.74)

21 16 4.55 (3.44–6.17) 0.85 (0.26–1.33)

23 15 7.01 (5.26–8.26) 1.08 (0.28–3.40)

24 16 1.10 (0.45–2.04) 1.61 (0.52–2.84)

25 15 10.06 (7.10–15.12) 1.76 (0.62–1.76)

26 16 2.83 (1.60–4.40) 0.93 (0.47–1.44)

27 16 5.76 (4.84–7.14) 2.88 (0.79–5.45)

Mean ± STD 5.37 ± 4.27 1.21 ± 0.55
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5.37 ± 4.27 mm to 1.21 ± 0.55 mm. In a similar setting, but applied to dif-
ferent datasets, the state-of-the-art registration method RaPTOR has an overall
mTRE of 2.9 ± 0.8 mm [8].

The proposed imitation network has 0.22 M trainable parameters, requires
6.7 M floating point operations (FLOPS), and converges within 7 epochs. To
calculate the computational complexity in the application phase, we consider
the network having a complexity of O(1) due to pretraining. The observation
encoding step has a complexity of O(N × C3), where N denotes the number
of key points and C denotes the number of sub-volume dimension. Therefore,
the complexity of the proposed algorithm is O(N × C3), independent of the
resolution of underlying MRI or iUS volume. In the current implementation,
the average runtime of the algorithm is 1.77 s, of which 88% time is used for
observation encoding using CPU.

4 Discussion

To our best knowledge, an imitation learning based approach is proposed for
the first time in the context of brain shift correction. The presented method
achieves encouraging results within 2 mm with real-time capability (<2 s). In 21
out of 22 datasets, the mTREs are reduced significantly. As the mTRE in 22th

dataset is initially small, the inter-rater difference of 0.5 mm is still remarkable
[14]. Hence, these results indicates the applicability of the proposed method in
the clinical environment. However, following aspects should be concerned for
the further development. One important aspect is the number and variation of
the training data used in the proposed imitation learning algorithm. Although
the number of the training datasets are increased effectively by applying data
augmentation methods (described in Sect. 2.3), variation of the training data
such as location of the tumor and orientation of the head cannot be augmented
without further considerations. A common tool to simulate the different image
orientation is rotational augmentation. However, it alters the effect of gravity
implicitly, therefore results in unrealistic training data. Thus, rotational aug-
mentation is inappropriate for the data augmentation in context of brain shift
compensation. The other aspect is the comprehensive validation of the proposed
method. The generalizability and robustness should be evaluated with a larger
amount of data acquired with different intraoperative image modalities. In this
challenge, we use landmarks as key points and predict the deformation of the
landmarks directly. In future applications, we could also adapt our approach to
control points of a free-form deformation or contour points of a certain structure
(e.g. vessel). The associated target points could be either manually annotated
or automatically estimated with point matching algorithms.

5 Conclusion

In this study, we proposed a novel approach for intra-operative brain shift cor-
recting, during tumor resection surgery, using imitation learning. The presented
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method uses observation encoding to describe the local texture and point-cloud
information and the trained imitation network is used to estimate the movement
of landmarks defined in pre-operative MR volumes, directly to their counterparts
in iUS volumes, based on this encoding. Our network reduced the mean land-
mark distance between the pre- and intra-operative image pairs substantially,
from 5.37 ± 4.27 mm to 1.21 ± 0.55 mm, in real-time, which is particularly
compelling for its future use in a surgical setting. Additionally, the proposed
approach is flexible, as it is not modality- or anatomy-specific, and thus could
be employed in a variety of image-guided surgical interventions.
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Abstract. Gliomas are primary brain tumors of central nervous system.
Appropriate resection of gliomas in the early tumor stage is known to increase
survival rate. However, the accurate resection of tumor is a challenging problem
because the soft tissue shift may occur during the operation. To provide proper
guidance to neurosurgery, it is necessary to align magnetic resonance imaging
(MRI) and intra-operative ultrasound (iUS). In previous studies, many algo-
rithms tried to find fiducial points that can lead to the appropriate registration.
But these methods required manual specifications from experts to ensure the
reliability of the fiducials. In this study, we proposed a data-driven approach for
MRI-iUS non-linear registration using structural skeletons. The visualization of
our results indicated that our approach might provide better registration
performance.

Keywords: MRI � intra-operative US � Registration � Skeleton

1 Introduction

Gliomas are primary brain tumors of central nervous system (CNS) [1]. The gliomas
arise from the glia which supports the CNS and can permeate to the neighboring areas.
They can be categorized in grade from I to IV based on their histological characteristics
defined by the World Health Organization (WHO) [2]. The grade I and II gliomas are
classified as low-grade gliomas (LGG) and grade III and IV gliomas are classified as
high-grade gliomas (HGG). The LGG grow comparatively slowly but due to their
infiltrative attribute and threatening behavior, the mean 10-year survival is 30% [1]. It
is generally accepted that the resection of the LGG may increase the survival rate [3].

Intra-operative ultrasound (iUS) was first proposed as a potential tool for guiding
resection of intracranial tumors in 1980 [4]. The iUS is still generally used because it
enables the surgeons to track the brain tissues and surgical tools in a fast, inexpensive,
and real-time way. In addition, the gliomas can often be detected in iUS images even
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when they are not detectable under the microscope. This can promote accurate
resection and helps to obtain better surgical results. However, it is difficult to design
effective surgical plans without the high-quality image-guidance. One of the principal
reason is that the surgical target and the other tissues can be shifted by intra-operative
factors such as tissue removal, change of intracranial pressure and drug administration.
However, these shifts may not be easily observed in the surgeon’s field of view.

To estimate and rectify for spatial errors resulting from intra-operative brain shifts,
registration of pre-operative magnetic resonance imaging (MRI) to iUS image has been
suggested [5–7]. This approach helps updating the surgical plans under the continuous
brain tissue shift in contrast to comparing directly between pre- and intra-operative
images. Many algorithms for registration have been proposed in the past years.
However, it is technically demanding because of its intrinsic limits such as the dif-
ferences between modalities and image qualities. Because of these problems, most MRI
to iUS registration methods were conducted by using manually selected fiducial points.

In this paper, we proposed an automatic non-linear MRI-iUS registration algorithm
using structural skeletons. First, we conducted several pre-processing steps on the MRI
and iUS. Then we calculated the structural skeletons of both modalities. Finally, we
calculated the displacement fields using the pairs of skeleton for the MRI-iUS
registration.

2 Materials and Methods

2.1 Dataset

As this proposal is submitted to the CURIOUS 2018 challenge, we used the Retro-
spective Evaluation of Cerebral Tumors (RESECT) dataset [8]. The dataset includes
pre-operative 3T MRI images including Gadolinium-enhanced T1w and T2 FLAIR
scans, iUS images as a 3D volume covering the entire tumor region after craniotomy
but before dura opening and the expert-labeled homologous anatomical landmarks,
defined on all image modalities. All reconstructed images were acquired from the same
subject and were spatially aligned under the same world coordinate space.

The MR protocol included T1w Gadolinium-enhanced sequence (TE = 2.96 ms,
TR = 2000 ms, 192 slices, slice thickness = 1 mm, acquisition matrix = 256 � 256,
in-plane resolution = 1.0 � 1.0 mm2) and FLAIR sequence (TE = 388 ms, TR =
5000 ms, 192 slices, slice thickness = 1 mm, acquisition matrix = 256 � 256, in-
plane resolution = 1.0 � 1.0 mm2), acquired on a 3T MRI scanner with a 20-channel
head coil. For subject 2, 14, 15 (Case 2, 14, 15), the pre-operative MRI included T1w
sequence (TE = 2.3 ms, TR = 2500 ms, 176 slices, slice thickness = 1 mm, acquisi-
tion matrix = 512 � 496, in-plane resolution = 1.0 � 1.0 mm2) and FLAIR sequence
(TE = 333 ms, TR = 6000 ms, 176 slices, slice thickness = 1 mm, acquisition
matrix = 256 � 224, in-plane resolution = 1.0 � 1.0 mm2) acquired on a 1.5T MRI
scanner with a 12-channel head coil.

The iUS images were acquired using the Sonowand Invite neuronavigation system.
In most cases, the 12FLA-L linear probe with a frequency range of 6 to 12 MHz and a
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footprint of 48 � 13 mm2 was used. For smaller tumors, the 12FLA flat linear array
probe with a frequency range of 6 to 12 MHz and a footprint of 32 � 11 mm2 was used.
The resolution of reconstructed 3D volume varied from 0.14 � 0.14 � 0.14 mm3 to
0.24 � 0.24 � 0.24 mm3 depending on the probe types and imaging depth.

2.2 MRI Pre-processing

First, we corrected non-uniformity to remove field bias from the MRI image. After the
bias removal, we obtained the masks of grey matter (GM), white matter (WM) and
cerebrospinal fluid (CSF) from the T1w image. After that, we cropped the T1w image
and its masks to match with the location and size of iUS image. Then we resampled the
cropped image and masks into 0.2 � 0.2 � 0.2 mm3 voxel resolution. Because the
intensity distribution of iUS image was well matched with the GM and CSF mask from
the MRI image, we used the inversed WM mask instead of using the summation of GM
and CSF mask. The small hole of the inversed mask was removed using flood-fill
algorithm with connectivity parameter 4 per each z-slice. The output mask was used to
calculate the structural skeleton of MRI image.

2.3 iUS Pre-processing

We resampled the iUS image using the cropped and resampled T1w image as refer-
ence. As the voxel resolution of reference image was 0.2 � 0.2 � 0.2 mm3, the iUS
image resampled to the same resolution. The order of axis in iUS image was matched
with the reference image. Then, the resampled iUS image was blurred with 0.5 mm full
width at half maximum (FWHM) Gaussian kernel and filtered with 3 � 3 � 3 median
kernel under voxel coordinate space. A binary mask image was obtained by applying
threshold to the filtered image and was dilated by the ball shaped structure elements
with voxel radius 15. The dilated mask was used for calculating the skeleton. We used
a semi-automatic intensity-based segmentation algorithm to compute the binary masks
for both MRI and iUS. The masks were structurally enhanced using preprocessing steps
such as full with half maximum smoothing and morphological operations, which was
performed with typical hyperparameters.

2.4 Structural Skeleton

After the refinement of the binary masks, the Euclidean skeletons were calculated for
both masks [9, 10]. For details, we inverted the masks and computed the Euclidean
distance map. The ridges of the distance map were computed by watershed algorithm.
The final skeletons of each masks were obtained by thresholding the gradient of the
ridges.
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2.5 Registration Using Deformation Fields

We applied the Demon’s algorithm for non-linear registration [11]. This algorithm
performed over the entire space of displacement field. At first, a spatial transformation
field was initialized. Then, we iterated the following steps until the error converged:

(1) Given field s, compute a correspondence update field u by minimizing the error
E which can be defined as following Eq. (1).

E uð Þ ¼ F�M � sþ uð Þj jj j2 þ ri
rx

� �
uj jj j2 ð1Þ

(2) Let c as s + u.
(3) Use diffusion-like regularization by conducting the Gaussian smoothing to the

accumulated transformation field c
(4) Substitute s with the filtered c.

As mentioned above, the variable s accounts for the given spatial transformation
field and u for the corresponding update field. The variable F accounts for the fixed iUS
image, M for the moving MRI image, ri for the noise on the image intensity and rx for
a spatial uncertainty on the correspondences.

2.6 Mean Target Registration Error

We measured the Euclidean distances between the MRI landmarks after the registration
and the corresponding iUS landmarks to calculate the target registration errors (TREs).
All landmarks were averaged per each case.

3 Results

3.1 Crop and Resampling

Figure 1 shows the results images after cropping and resampling. Figure 1(a) and
(b) represent the T1w image and the iUS image respectively. Both images were well
aligned to each other so that they could be used for the following processes.

3.2 Estimated Skeleton

Cropped and resampled MRI and iUS images were used to calculate their structural
skeletons. Figure 2 shows the skeletons obtained from the MRI and iUS images.
Figure 2(a) shows the MRI image and its skeleton, and Fig. 2(b) shows the iUS image
and its skeleton.

3.3 Skeleton Registration Using Displacement Fields

Figure 3 shows the results of the registration using the Demon’s deformation algo-
rithm. Figure 3(a) shows the original skeleton of the MRI image. Figure 3(b) and
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(c) represents the deformation fields along x-axis, top-to-bottom axis in this image, and
y-axis, left-to-right axis in this image respectively. The deformation field along z-axis
was also calculated but it was not shown in this figure for better visualization. Figure 3
(d) is the skeleton of the MRI image after the registration to iUS image. We compared
these results with the original iUS image and its skeleton (Fig. 4). The skeleton of the
iUS image was shown as the structural line with red color on both Fig. 4(a) and (b).
The structural line with green color on Fig. 4(a) represents the skeleton of MRI image
before the registration and the same line on Fig. 4(b) represents the skeleton after the
registration.

Fig. 1. The MRI image and iUS image obtained after crop and resampling of case 1. (a) is the
MRI image and (b) is the iUS image.

Fig. 2. The MRI image and iUS image of case 1 with their structural skeleton. (a) The structural
skeleton of the MRI was indicated with green line and (b) the structural skeleton of the iUS was
indicated with red line. (Color figure online)
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3.4 Image Registration Using Estimated Fields

As we calculated the deformation fields at each location on every axis, we could obtain
the final registered MRI image (Fig. 5). Figure 5(a) shows the original MRI image
overlapped with the iUS image. The MRI image was visualized with the green color
and the iUS image was visualized with red color. Figure 5(b) shows the registered MRI
image overlapped with the iUS image.

3.5 Landmark Evaluation

The Euclidean distances between two corresponding landmarks were measured. Then,
the mTREs of all cases were measured to evaluate the results (Table 1).

Fig. 3. The results of the registration using the Demon’s deformation algorithm. (a) is the
original skeleton of MRI. (b) and (c) shows the displacement field estimated after the registration
on the x-axis and the y-axis respectively. (d) is the skeleton of MRI after the MRI-iUS
registration.

Fig. 4. The demonstration of the registration using skeletons overlapped on the same iUS image
of case 1. (a) shows the skeleton of original MRI with red line and the skeleton of iUS image with
green line. (b) shows the skeleton of registered MRI with red line and the skeleton of iUS image
with green line. (Color figure online)
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Fig. 5. The demonstration of the registration. (a) The MRI image before the registration was
shown as green and the original iUS image was shown as red. (b) The MRI image after the
registration was shown as green and the original iUS was shown as red. (Color figure online)

Table 1. The mean target registration error for the all 22 cases.

Case Mean target before-registration
error (mm)

Mean target after-registration
error (mm)

1 1.8196 3.1779
2 5.6755 5.8900
3 9.5772 9.6980

4 2.9859 3.9038
5 12.0191 11.7075

6 3.2696 2.4846
7 1.8190 3.3739
8 2.6344 3.3612

12 19.6793 17.9112
13 4.5716 3.9380

14 3.0322 3.3116
15 3.2115 5.0273
16 3.3909 3.3728

17 6.3939 7.7679
18 3.5604 3.5396

19 3.2805 4.0459
21 4.5463 3.5659
23 7.1108 5.9944

24 1.1011 1.7430
25 10.0601 11.6948
26 2.8339 2.1951

27 5.7560 5.5233
Mean ± SD 5.38 ± 4.27 5.60 ± 3.94
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Abstract. We describe an algorithm and its implementation details for
automatic image-based registration of intra-operative ultrasound to MRI
for brain-shift correction during neurosurgery. It is evaluated on a public
database of 22 surgeries for retrospective evaluation, with a particular
focus on choosing the appropriate transformation model and designing
the most meaningful evaluation strategy. The method succeeds in a fully
automatic fashion in all cases, with an average landmark registration
error for the rigid model of 1.75 mm.

1 Introduction

For brain tumor resection, navigated surgery is an established approach, allow-
ing for pre-operative MRI images and planned structures to be available during
surgery, registered to various intra-operative tools by means of an external track-
ing system. However, the accuracy of such systems is often affected by changing
soft tissue throughout the course of surgery. Intra-operative 3D freehand ultra-
sound, tracked with the same localizer than the other surgical tools, allows for
updated information about the resection site during all stages of surgery. Unfor-
tunately, only surgeons who are also expert users of medical ultrasound embrace
this approach currently. For it to be more widely used and applicable, more
automatic handling of the intra-operative ultrasound is crucial. In particular,
automatic image-based registration of the 3D ultrasound data to pre-operative
MRI is a first important prerequisite. While a number of such algorithms have
been presented in the past, an automatic thorough evaluation remains challeng-
ing. In that context, a new public database of ultrasound and MRI volumes
acquired during glioma surgery [1] was made available, which includes multiple
sets of anatomical landmark points to allow for Ground Truth matching. In the
following, we present the results of our image-based registration algorithm on
this data. The method is based on the multi-modal similarity metric denoted
linear correlation of linear combinations, or LC2 [2] and has recently been used
in a first live evaluation during surgery [3]. Other popular approaches for image-
based registration utilize gradient orientations [4], or self-similarity [5].
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2 Method

In summary, the registration algorithm is based on optimizing a specific
ultrasound-tailored multi-modal similarity metric denoted LC2 on 3D patches of
the MRI and ultrasound volumes. A non-linear optimization algorithm changes
the values of a parametric transformation model to maximize it. While the LC2

formulation is invariant with respect to modality-specific differences in appear-
ance, it should be restricted to volume areas whose structures match when regis-
tered. Therefore it is advisable to remove the bright stripe on the skin surface of
the ultrasound volumes, since it is missing in MRI. This would be trivial to do
before ultrasound volume compounding; since the available data only has recon-
structed volumes, a slightly more complex approach is necessary. The ultrasound
volumes can have any orientation with respect to how the voxels are arranged
in memory. Therefore we traverse the volumes along all axis both forward and
reverse, and sum over occurrences of black, followed by intensities above a thresh-
old for at least 1.5 mm. From the six directions, we choose the one with the most
such occurrences and delete those skin sections with a 4 mm thickness. This cuts
sufficient surface if the angle to the volume axis is oblique, and slightly more
than necessary if it aligns with it.

The registration is implemented in the proprietary ImFusion SDK with full
OpenGL-based GPU acceleration. The ultrasound volume is assigned as fixed
volume, resampled to 0.5 mm (half the MRI voxel size), and properly zero-
masked. The chosen similarity metric patch-size is 73 voxels, as optimized in
prior work. Two non-linear optimizers successively operate on the parameters of
a rigid pose from the initialization as provided by the navigation system. The
first is a global DIRECT (DIviding RECTangles) sub-division method [6] search-
ing on translation only, followed by a local BOBYQA (Bound Optimization BY
Quadratic Approximation) algorithm [7] on all six parameters. Optionally, the
local optimizer then executes another search on full affine parameters in order to
accomodate non-uniform scaling and shearing of the data, or optimizes any other
parametric transformation model. As an alternative to that, a dense-deformable
Demons algorithm can create local forces based on the LC2 patch values, iter-
atively updating and smoothing those forces until convergence. The average
computation time is ≈ 20 s on a laptop with a NVIDIA GTX 1050 mobile GPU
for the global and local rigid models, with an extra 10 s for the Demons algo-
rithm if used. A dedicated workstation GPU is typically around 3–4 times faster,
allowing for almost instant results during surgery after the ultrasound volumes
have been acquired.

3 Evaluation

Table 1 shows our results, put alongside the best rigid and affine transformation
that can be derived from the Ground Truth landmarks. In most of the cases,
the error after rigid image-based registration is within a millimeter of the small-
est rigid transformation that can be fit to the landmarks. The remaining ones
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Table 1. Registration results in terms of residual landmark errors in mm.

Case Landmarks Image-based

Before Rigid Affine Rigid Affine Demons

1 1.82 1.21 1.07 1.72 1.55 2.03

2 5.68 1.37 1.10 2.53 2.54 2.54

3 9.58 0.88 0.76 1.33 1.37 1.22

4 2.99 1.11 0.98 1.65 2.27 1.72

5 12.02 1.16 0.93 1.50 1.76 1.92

6 3.27 1.14 0.81 1.67 1.65 1.66

7 1.82 1.37 1.21 1.57 2.29 1.63

8 2.63 1.37 1.06 1.94 1.92 1.99

12 19.68 1.01 0.92 1.06 1.09 1.07

13 4.57 1.03 0.95 3.74 3.07 3.02

14 3.03 1.03 1.00 1.20 1.12 1.20

15 3.21 1.48 1.28 1.91 1.83 1.89

16 3.39 1.09 0.90 1.24 1.30 1.34

17 6.39 1.30 1.02 1.71 1.35 1.64

18 3.56 0.85 0.76 1.24 1.42 1.59

19 3.28 0.97 0.81 2.12 2.69 2.85

21 4.55 0.95 0.74 1.87 1.67 1.84

23 7.01 0.99 0.70 1.89 1.47 1.85

24 1.10 0.83 0.74 1.12 1.01 1.10

25 10.06 1.32 0.87 2.78 2.55 2.12

26 2.83 1.18 0.98 1.36 1.24 1.48

27 5.76 1.18 1.05 1.44 1.70 2.22

Mean 5.37 1.13 0.94 1.75 1.77 1.81

were visually inspected and all but one deemed well registered too; only case 13
exhibits an apparent slight rotation with respect to the Ground Truth (while
still improving on the original landmark error before registration).

A more thorough accuracy evaluation is complicated by the fact that the
landmarks themselves only have a limited accuracy. The residual errors denoted
in the left columns of Table 1 are contributed to by two factors, namely (1)
the localization error of experts selecting the point correspondences, and (2)
the misfit of the rigid and affine transformation models on the given data. The
average landmark error of ≈1 mm would hence be an upper bound for the
localization error given a perfect rigid or affine registration. Most likely though,
such a transformation model is not entirely sufficent even on the pre-resection
data at hand due to tissue deformations, and possibly tracking and calibration
errors.
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To investigate further, we are using the hypothesis that both the landmark
errors as well as the LC2 similarity metric reveal the accuracy of the regis-
tration down to a certain scale. If they both improve (in a reciprocal way of
course, since we are comparing error values to a similarity metric), the chosen
transformation model most likely improved the alignment. Table 2 shows the
LC2 similarity measure values for the same transformation models as shown in
the error table, with one addition: We use a parametric deformation similar to
radial basis functions (RBF), where an inverse distance formulation is used to
interpolate between the landmark locations in the most smooth possible way.
Hence, the landmark error here is forced to zero up to a numerical epsilon due
to the distance field inversion. However, as can be seen in the RBF column in the
table, the LC2 value for this model is slightly worse than the affine fit. This sug-
gests that here, the deformation might be overfit to the point correspondences

Table 2. LC2 similarity metric on all data for the different transformation models.

Case Landmarks Image-based

Before Rigid Affine RBF Rigid Affine Demons

1 0.157 0.174 0.179 0.174 0.183 0.192 0.196

2 0.145 0.179 0.174 0.194 0.195 0.195 0.215

3 0.167 0.239 0.246 0.233 0.245 0.268 0.276

4 0.169 0.188 0.191 0.194 0.196 0.230 0.222

5 0.182 0.248 0.255 0.246 0.265 0.297 0.317

6 0.164 0.184 0.187 0.184 0.200 0.216 0.213

7 0.138 0.144 0.150 0.145 0.147 0.166 0.168

8 0.203 0.231 0.239 0.233 0.247 0.273 0.291

12 0.149 0.269 0.276 0.266 0.271 0.296 0.309

13 0.174 0.190 0.203 0.192 0.227 0.229 0.245

14 0.162 0.230 0.235 0.227 0.240 0.242 0.258

15 0.163 0.184 0.189 0.187 0.194 0.194 0.221

16 0.191 0.245 0.245 0.253 0.253 0.271 0.285

17 0.177 0.247 0.255 0.253 0.258 0.282 0.289

18 0.186 0.229 0.221 0.235 0.258 0.273 0.279

19 0.195 0.232 0.230 0.227 0.240 0.265 0.270

21 0.149 0.175 0.178 0.173 0.201 0.207 0.225

23 0.172 0.240 0.252 0.260 0.252 0.264 0.278

24 0.192 0.204 0.208 0.202 0.209 0.215 0.205

25 0.136 0.173 0.199 0.177 0.170 0.179 0.187

26 0.217 0.276 0.298 0.278 0.287 0.308 0.312

27 0.153 0.198 0.199 0.203 0.203 0.242 0.227

Mean 0.170 0.213 0.218 0.215 0.225 0.241 0.250
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including their localization errors as opposed to actual structural deformations.
It is also illustrated by the example in Fig. 1(b). Apart from that, the similarity
consistently increases from the initial transformation, over rigid, to affine. Like-
wise, it increases for the image-based rigid and affine model with the highest
improvement on the dense demons model. Most notably, the similarity improve-
ments are each significantly higher than the corresponding change in landmark
errors in Table 1, again suggesting a better alignment towards the right columns.

In terms of a statistical analysis, in Table 1 the only columns that are not
significantly different are the various image-based transformation models (three
right-most columns, Rigid/Affine/Demons), i.e. the landmark errors are all in
the same order of magnitude. In Table 2, columns 2–4 (landmarks rigid vs. RBF),
3–4 (landmarks affine vs. RBF) and 3–5 (landmarks affine vs. image-based rigid)
are insignificantly different. A paired Wilcoxon test with a p-value threshold of
0.01 was used. All other results are significantly different, hence it is obvious
that registering landmarks only versus using our image-based method produces
different results, each favoring their metric.

Fig. 1. Registration on case 1, (a) rigid with our method, (b) RBF on landmarks,
(c) Demons with our method.

4 Conclusion

We have presented an algorithm for fully automatic registration of pre-resection
ultrasound to pre-operative MRI volumes during brain surgery, which improves
the registration for all 22 cases. For the majority of cases, the used transformation
models yield landmark errors only slightly worse than the best landmark fit (in
the order of magnitude of the localization errors). Since it is also known that the
fiducial registration errors (here on the provided landmarks) cannot be used to
reliably predict the error of a clinical target such as the tumor center [8], further
validation should be performed on Ground Truth segmentations of the actual
tumor mass, e.g. by computing Dice overlap values.
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It will certainly also be quite interesting to locally compare regions where the
LC2 similarity metric causes a systematic shift away from the true alignment,
because the local linearity assumptions are violated by the complex underlying
imaging physics. Such occurrences could be improved upon with Deep Learning
techniques, either by (1) learning a weighting of how reliable the similarity metric
is, or (2) directly learning a more non-linear version of the similarity metric that
is also taking more image content than its own patch into account.

Regarding the transformation model, it is apparent that the pre-resection
data is mostly but not entirely rigid; here, a custom parametric model could
be developed, for example using parameter reduction techniques on all available
landmarks, also taking the position of the ultrasound probe into account where
compression is strongest. To eventually achieve higher clinical impact, techniques
should be developed to also continuously register ultrasound volumes during
and after resection and always visualize information from the pre-operative plan
accordingly. Besides a more elaborate transformation model, this will also require
to exclude the resection site from registration, since it only has been changed in
one of the images.
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Abstract. Precise tracking of intra-operative tissue shift is important
for accurate resection of brain tumor. Alignment of pre-interventional
magnetic resonance imaging (MRI) to intra-operative ultrasound (iUS) is
required to access tissue shift and enable guided surgery. However, accu-
rate and robust image registration needed to relate pre-interventional
MRI to iUS images is difficult due to the very different nature of image
intensity between modalities. Here we present a framework that can
perform non-rigid MRI-ultrasound registration using 3D convolutional
neural network (CNN). The framework is composed of three compo-
nents: feature extractor, deformation field generator and spatial sam-
pler. Our automatic registration framework adopts unsupervised learning
approach, allows accurate end-to-end deformable MRI-ultrasound reg-
istration. Our proposed method avoids the downfall of intensity-based
methods by considering both image intensity and gradient. It achieves
competitive registration accuracy on RESECT dataset. In addition, our
method takes only about one second to register each image pair, enabling
applications such as real time registration.

Keywords: MRI-ultrasound registration · 3D CNN · Deep learning

1 Introduction

Radiological imaging is commonly used for diagnosis, treatment and scientific
research. Different modalities of techniques are often used concordantly in prac-
tice because they complement with each other. MRI measures the relaxation
times of the 1H nuclei, it can provide visualization for the overall structure and
anatomy, while iUS measures the changes in acoustic impedance, it is relative
inexpensive and allows for intra-operative detection.

Image registration refers to the spatial alignment of images into the same
coordinate system. It can greatly facilitate a wide range of medical applications
from diagnosis to therapy. As far as brain tumor resection is concerned, accurate
registration can provide the boundary of brain tumor and corresponding tissue
shift. Many algorithms and software toolkits have been developed for image
registration [1,5]. However, most current methods focus on registration within
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modality and are based on intensity values. These intensity-based registration
methods may fail in inter-modality registration tasks, such as MRI-iUS image
registration. This is due to the different underlying principles of imaging tech-
niques and striking difference in field of views. Inter-modality image registration
poses special challenges and robust and accurate methods are still desired.

In recent years, deep convolutional neural networks (CNNs) have achieved
great success in the field of computer vision. Inspired by the biological struc-
ture of visual cortex, CNNs are artificial neural networks with multiple hidden
convolutional layers between the input and output layers. They have non-linear
property and are capable of extracting higher level representative features. CNNs
have been applied into a wide range of fields and achieved state-of-the-art per-
formance on tasks such as image recognition, instance detection, and seman-
tic segmentation. In this paper, we propose a novel learning-based framework
for MRI-iUS image registration. It is composed of three parts: feature extrac-
tor, deformation field generator and spatial sampler. Our automatic registration
framework allows accurate and fast MRI-ultrasound registration.

2 Related Work

2.1 Intensity-Based Approaches for Registration

To date, a lot of traditional intensity-based methods have been reported for
medical image registration [1,5]. These methods usually include the following
steps. First, a transformation model is selected to deform the moving image and
spatially align the intensity between fixed image and deformed moving image.
The choice of transformation model depends on the complexity of deformations
required. For example, simple transformation such as rigid, affine and B-spline
transformation are enough to recover underlying rigid deformations. In more
complicated cases, more flexible non-parametric transformation models are used
to recover complex deformations.

Second, a similarity metric is defined to how well two images are matched
after transformation. The selection of the similarity metric, also called the cost
function, depends on the intrinsic properties of images to be registered and defor-
mation complexity. Commonly used metrics include sum of squared distances,
normalized cross-correlation (NCC), mutual information (MI) and others.

Finally, iterative optimization method is applied to update the transforma-
tion parameters to minimize the cost function. Traditional medical image reg-
istration methods have achieved acceptable result in many registration tasks.
But there are two downfalls for these methods. First, most of methods focus on
aligning image intensity, which may fail in inter-modality image registration. For
example, MRI and iUS image have strikingly different fields of view, which is
due to different nature in imaging principles. In addition, minimizing cost func-
tion by iterative optimization is slow, which may hinder application of image
registration.
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2.2 Learning-Based Approaches for Registration

Several studies have exploited learning-based approaches for image registration
[6,8]. Recently, CNNs have been applied to many computer vision tasks, includ-
ing image registration. Deep CNNs contain many hidden layers so that they
can non-linearly transform input data and extract higher level features, thus
by training it can learn to determine the optimal decision boundary in the
high-dimensional feature space. Wu et al. [8] utilize convolutional stacked auto-
encoder to select deep feature representations in image patches, then estimate
the deformation pathway. Miao et al. [6] use convolutional neural network to
predict a transformation matrix, which is then used to perform rigid registra-
tion. In this paper, we follow these ideas and propose an end-to-end model for
deformable image registration in an unsupervised learning way.

2.3 Spatial Transformer Network (STN)

Jaderberg et al. [4] proposed the spatial transformer network, which enables the
learning of spatial transformation. STN is a fully differentiable module so that
it can be inserted into existing convolutional neural networks, giving CNNs the
ability to spatially transform feature maps. STN takes transformation param-
eters as input, then it generates a sampling grid according to the parameters.
The sampling grid is used to spatially transform image by bilinear interpolation.
By training with supervision, STN is capable to learn a dynamic mechanism
to actively spatially transform an image by producing an appropriate trans-
formation for each input voxel, including scaling, cropping, rotations, as well
as non-rigid deformations. de Vos et al. [7] applied STN to handwritten digit
registration, but it requires large amount of data for training.

3 Methodology

3.1 Problem Statement

In image registration, the moving image IM , is deformed to match the corre-
sponding image IF called the fixed image. Thus, the deformed image Ĩ can be
expressed as

Ĩ = IM (x + u(x)) (1)

where x denotes a three-dimensional coordinate and u represents the deformation
field. In this work, we attempt to predict the optimal deformation field u(x) to
register MRI to corresponding iUS image.



Deformable MRI-US Registration Using 3D CNN 155

3.2 Registration Framework

Our registration framework is composed of three components: feature extrac-
tor, deformation field generator and spatial sampler. The overall workflow is
illustrated in Fig. 1:

Fig. 1. Framework overview

For feature extractor, two fully convolutional neural networks are used to
extract higher level representative features from MRI and iUS images respec-
tively. Each network contains three convolutional layers with 16 kernels sized
3×3×3, coupled with batch normalization and exponential linear units for acti-
vation. The extracted features are concatenated and fed into the deformation
field generator.

The deformation field generator takes features extracted from both MRI and
iUS images as input, and it produces a deformation field as output. The structure
of deformation field generator is inspired by FlowNet [2], which is original used to
estimate optic flow. It is composed of a contracting part and an expanding part.
The contracting part includes three convolutional layers and a downsampling
layer, which is used to capture context and deep level features. The expanding
part is consisted of a upsampling layer and three convolutional layers, which is
used to restore details and produce a deformation field the same size as the input
image. Skip connections are also incorporated to integrate both high-level and
low-level features. All layers contain 16 filters sized 3 × 3 × 3, and are coupled
with batch normalization and exponential linear units for activation, except for
the last layer which use linear activation. The resulting deformation field is fed
into the spatial sampler (Fig. 2).

Finally, a spatial sampler is used to apply the deformation field to regular
spatial grid, resulting in the sampling grid. The MRI image is resampled by
bilinear interpolation. And the deformed MRI image is aligned to the iUS image
to calculate the similarity. The loss is backpropagated into the network and
update the parameters. The training process is unsupervised as it does not need
expert-labeled landmark data.
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Fig. 2. Detailed structures of feature extractor and deformation field generator. Note
that the size and number of channels of each feature map are shown on the top and
bottom of figure respectively.

3.3 Similarity Metric

We evaluate the registration quality by considering both the image intensity and
gradient. Many conventional intensity-based methods are not appropriate for this
inter-modality registration task, because MRI and iUS images have very different
nature in intensity values. To tackle this, we assume that the US intensity value
ui = IM (x + u(x)) for voxel i is either correlated with the corresponding MRI
intensity value or with the MRI image gradient magnitude gi = |∇pi|. As sug-
gested by Fuerst et al. [3] that, ultrasound intensity values may describe different
properties of internal fluids and tissues as well as represent tissue interfaces or
gradients. Thus, we define the loss function as:

∑

x∈φ

(IF (x) − (αpi + βgi + γ))2 (2)

in which α, β and γ are learnt parameters during training. We assume that the
network will automatically find the optimal parameter to make the deformed
MRI image best fit with the iUS image.

4 Experiments

4.1 Dataset

We use the publicly available RESECT dataset [9] for training and validation.
The dataset provides pre-operative T1w and T2-FLAIR MRI and iUS images
from 23 patients. It also provides expert-labeled homologous anatomical land-
marks, defined on all image modalities. All data were acquired for routine clinical
care at St Olavs University Hospital, after patients gave their informed consent.
The imaging data are available in both MINC and NIFTI formats.
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4.2 Preprocessing

We use T1w MRI scans and before resection intra-operative US images for train-
ing and validation, which account for 22 image pairs. We split 18 cases for
training phase and 4 cases for validation phase. We downsample all images to
150 × 150 × 150 to reduce memory usage and suppress speckle noise. In order to
augment the training data, we applied random flipping, rotation, cropping, as
well as random gaussian noise to the images.

4.3 Result

In order to evaluate the performance of our method, we applied the trained
model on validation dataset and calculated the mean target registration errors
(mTREs) between the predicted landmark positions on the iUS images and
ground truth. The evaluation results in training phase and validation phase are
listed as follows (Table 1):

Table 1. Evaluation result

Phase mTREs (mm) Std. (mm) Process time per image (sec)

Training 4.73 2.71 2.66

Validation 3.91 0.53 1.21

4.4 Implementation Details

To implement the algorithm, we use Tensorflow framework and a NVIDIA
Tesla M40 GPU accelerator. We use stochastic gradient descent optimizer with
momentum 0.9, and set initial learning rate to 0.001. We also set the number of
epoch for training 20 and batch size to 3 for training.

5 Conclusion

In this paper, we present a framework that can perform non-rigid MRI-ultrasound
registration using 3D convolutional neural network. This framework is composed
of feature extractor, deformation field generator and spatial sampler. Our fully
automatic registration framework adopts a learning-based approach and it avoids
the downfall of intensity-based methods by considering both image intensity
and gradient. In addition, our method only takes one second to register each
image pair. Moreover, our method is unsupervised, without the requirement for
expert-curated landmarks for training. The evaluation result on RESECT dataset
demonstrated that our proposed method achieves competitive registration accu-
racy, and it can be applied to other cross-modality image registration tasks. In
the future, we will explore more possibilities of optimizing network structure and
penalizing shadow regions as suggested by Fuerst et al. [3].
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Abstract. We present accurate results for multi-modal fusion of intra-
operative 3D ultrasound and magnetic resonance imaging (MRI) using
the publicly available and robust discrete registration approach deeds.
After pre-processing the scans to have isotropic voxel sizes of 0.5 mm and
a common coordinate system, we run both linear and deformable regis-
tration using the self-similarity context metric. We use default parame-
ters that have previously been applied for multi-atlas fusion demonstrat-
ing the generalisation of the approach. Transformed landmark locations
are obtained by either directly applying the nonlinear warp or fitting a
rigid transform with six parameters. The two approaches yield average
target registration errors of 1.88 mm and 1.67 mm respectively on the
22 training scans of the CuRIOUS challenge. Optimising the regular-
isation weight can further improve this to 1.62 mm (within 0.5 mm of
the theoretical lower bound). Our findings demonstrate that in contrast
to classification and segmentation tasks, multimodal registration can be
appropriately handled without designing domain-specific algorithms and
without any expert supervision.

1 Introduction and Related Work

Fusion of multimodal medical data is one of the most important application
of image registration. In radiotherapy the registration of a computed tomog-
raphy (CT) scan for dose-planning and an MRI for tumour and organs-at-risk
delineation have to be aligned in a nonlinear fashion. In ultrasound guided neu-
rosurgery an intra-operative 3D ultrasound (3DUS) has to be registered to a pre-
treatment MRI to guide the surgeon during tumour resection. The correction of
challenge on brainshift in intra-operative ultrasound (CuRIOUS) addresses the
latter and provides a large training dataset of 22 clinical multimodal cases of 3T
MRI T1w and T2 FLAIR scans as well as 3DUS after craniotomy but before dura
opening with expert-labeled homologous anatomical landmarks as presented and
described in detail in [1]. The main challenges that were discussed in previous
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work revolve around a suitable way to define modality-invariant similarity met-
rics and fast and robust algorithm for finding the transform that optimises this
measure. Popular choices of metrics for MRI-US registration include gradient-
based correlation metrics [2], self-similarity descriptors [3] or advanced mutual
information variants [4]. Secondly, a suitable optimisation framework has to be
adapted to enable optimal performance on the given dataset. In this submission,
we argue that excellent results can be achieved by employing off-the-shelf and
publicly available algorithms that have been optimised for general medical image
registration tasks, such as atlas-based segmentation propagation of abdominal
CT, without any further domain specific adaption. In the next section, we will
describe the employed method that is based on self-similarity context (SSC)
descriptors [3] and the discrete optimisation framework deeds [5] that performed
best in two MICCAI segmentation challenges Beyond the Cranial Vault (BVC)
in 2015 [6] and Multimodal Whole-Heart Segmentation (MM-WHS) in 2017 [7]
with the exact same default parameters and a subsequent label fusion step.

2 Method

Quantised self-similarity context descriptors (SSC) [3] are used to define
a similarity metric. Instead of relying on direct intensity comparisons across
scans, SSC aims to extract modality-invariant neighbourhood representations
separately within each scan based on local self-similarities (normalised patch-
distances). It naturally deals well with multi-modal alignment problems, enables
contrast invariance, which is particularly beneficial for MRI scans, and focuses
the alignment on image edges of the ultrasound.

The dense displacement sampling registration short deeds [5] is a discrete
optimisation algorithm that aims to avoid local minima in the cost function. It
is therefore in particular suitable for challenging image appearance often seen in
intra-operative ultrasound. A dense displacement sampling covers a large range
of potential displacements (capture range) and the combinatorial optimisation
based on dynamic programming ensures plausible first-order B-spline transfor-
mations without unrealistic deformations on a specified control-point grid. A
diffusion regularisation is used between edges that connect neighbouring dis-
placement nodes and this graph is simplified to contain no loops (a minimum-
spanning-tree) to simplify the optimisation. A symmetry constraint on the non-
linear transform further increases the smoothness of deformations.

3 Implementation

We used c3d, which is a general purpose medical image processing command-
line tool and can be found at http://www.itksnap.org/pmwiki/pmwiki.php?
n=Downloads.C3D to resample the provided nifti files of 3DUS and T2 FLAIR

http://www.itksnap.org/pmwiki/pmwiki.php?n=Downloads.C3D
http://www.itksnap.org/pmwiki/pmwiki.php?n=Downloads.C3D
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into a common reference frame and to isotropic voxel sizes of 0.5 mm3. The
command used for the MRI FLAIR and 3DUS data respectively therefore was:
c3d *folder*/Case1-US-before.nii.gz *folder*/Case1-FLAIR.nii.gz

-reslice-identity -resample-mm 0.5x0.5x0.5mm -o Case1-MRI_in_US.nii.gz

c3d *folder*/Case1-US-before.nii.gz -resample-mm 0.5x0.5x0.5mm -o Case1-US.nii.gz

We then used both linear and deformable parts of the deeds framework
as downloaded from https://github.com/mattiaspaul/deedsBCV/ with default
settings. These include an linear pre-registration that performs a block-
matching on four scale levels and estimates a rigid transformation using:
linearBCV -F Case1-US.nii.gz -M Case1-MRI_in_US.nii.gz -R 1 -O affine1

In order to be able to apply the estimated linear and nonlinear trans-
formations to manual landmark positions, the algorithm requires segmen-
tation masks. In our case, these will represent landmarks as 3D spheres.
After generating two text files with a custom python implementation1.
The landmark segmentations can be easily generated using c3d as follows:
python landmarks_split_txt.py --inputtag *folder*/Case1-MRI-beforeUS.tag --savetxt Case1_lm

c3d Case1-MRI_in_US.nii.gz -scale 0 -landmarks-to-spheres Case1_lm_mri.txt 1

-o Case1-MRI-landmarks.nii.gz

The transformation matrix is fed into the deformable part of deeds using the fol-
lowing (default) parameters: number of displacement steps lmax = [8, 7, 6, 5, 4],
quantisation/stride q = [5, 4, 3, 2, 1], and B-spline grid spacings of [8, 7, 6, 5, 4]
voxels. A default weighting of α = 1.6 between the SSC-similarity and the diffu-
sion regularisation in deeds was used. An example command to run a registration
is as follows:
deedsBCV -F Case1-MRI_in_US.nii.gz -M Case1-US.nii.gz -O Case1-deeds

-S Case1-US-landmarks.nii.gz -A affine1_matrix.txt

The computation times are approx. 5 s for linear alignment and 20 s for
deformable registration on a mobile dual-core CPU based on the efficient
OpenMP implementation.

After applying the combined transformations to the 3D landmark spheres,
their spatial (voxel) coordinates are extracted by calculating the centre of mass
in python using2 and the following command, which stores them in a text file
and can directly calculate the mTRE when provided with the target landmarks:
python landmarks_centre_mass.py --inputnii Case1-MRI-landmarks.nii.gz

--movingnii Case1-deeds_deformed_seg.nii.gz --savetxt Case1-results

In the next sections the results are presented both visually and numerically and
their implications are discussed.

4 Results and Discussion

All experiments were run with same settings on the 22 training scans of the
challenge and evaluated using all manual landmarks as provided by the organ-
isers. The algorithms are fully automatic and require no manual initialisation.
1 https://gist.github.com/mattiaspaul/56a49fa792ef6f143e56699a06067712.
2 https://gist.github.com/mattiaspaul/f4183f525b1cbc65e71ad23298d6436e.

https://github.com/mattiaspaul/deedsBCV/
https://gist.github.com/mattiaspaul/56a49fa792ef6f143e56699a06067712
https://gist.github.com/mattiaspaul/f4183f525b1cbc65e71ad23298d6436e
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Table 1. Numerical results of accuracy of multimodal registration evaluated with man-
ual landmarks in mm using the deeds algorithm in three different settings. First, only
the linear part is considered, which yields an mTRE of 1.88± 0.53 mm. Second, a non-
linear transform is estimated in addition, yielding a slightly higher error of 1.92± 0.60
mm. But when finally fitting another rigid transform to the nonlinear result, the best
mTRE of 1.67± 0.54 mm is reached.

Case #1 #2 #3 #4 #5 #6 #7 #8 #12 #13 #14 stddev

Before 1.86 5.75 9.63 2.98 12.20 3.34 1.88 2.65 19.76 4.71 3.03 4.29

Linear 1.88 2.38 1.29 1.31 1.87 1.86 1.58 2.66 1.43 3.47 1.33 0.53

Nonlinear 2.60 2.58 2.29 1.35 2.12 2.30 1.63 2.95 1.21 1.70 1.91 0.60

NL+fit 1.45 2.21 2.00 1.20 1.64 1.89 1.46 3.22 1.14 1.18 1.18 0.54

Case #15 #16 #17 #18 #19 #21 #23 #24 #25 #26 #27 avg

Before 3.37 3.41 6.41 3.66 3.16 4.46 7.05 1.13 10.10 2.93 5.86 5.42

Linear 2.32 1.41 1.78 1.23 2.12 1.90 1.59 1.57 3.21 1.60 1.58 1.88

Nonlinear 1.97 1.73 2.20 1.27 2.29 1.50 1.33 2.54 1.29 1.23 2.30 1.92

NL+fit 1.89 1.50 1.78 1.03 2.05 1.30 1.21 2.69 1.45 1.31 1.86 1.67

We confirmed that the original error (before registration) was approx. 5.4 mm
as mentioned in [1]. The numerical results are presented in Table 1 and using
distribution plots in Fig. 2. A clear advantage over the initial error can be seen
from 5.42 mm to 1.88 mm when using a linear transform only. We were also inter-
ested in exploring whether the nonlinear part of the registration may provide
a better alignment despite the fact that the ultrasound images were acquired

Fig. 1. Visual example of US-MRI registration for #3 of the training dataset. The top
row shows a colour overlay (US in jet) on top of the original MRI. The bottom row
demonstrates a clearly improved alignment when applying the automatically estimated
linear transform to the MRI scan.
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Fig. 2. Cumulative distribution of landmark errors sorted in ascending order. All vari-
ants of the automated multimodal discrete registration decrease the landmark error
and improve image alignment.

before opening the dura. This is not directly the case as the result slightly dete-
riorate to 1.92 mm on average. However, when fitting again a rigid transform to
the nonlinearly displaced landmark correspondences a mTRE of 1.67 mm. The
fitting has been carried out using the technique described in [8]. This indicates
that the more flexible deformable registration can improve the match of certain
landmarks, but is also less robust in areas of limited contrast. Therefore, the
following restriction to a rigid transform, which reduces the influence of outliers,
improves the overall outcome.

We further noted that aligning MRI to ultrasound is slightly more accurate
than in reverse order. Since, the nonlinear part of deeds is already symmetric
this discrepancy could be alleviated by using the approach of [9]. Furthermore,
the regularisation parameter could be further optimised from α = 1.6 to α = 0.4
yielding a modest improvement to 1.62 mm mTRE. A visual example of the
registration and multi-modal fusion outcome is shown in Fig. 1.

5 Conclusion and Outlook

In summary, we have demonstrated that the general purpose, publicly available,
discrete registration toolbox deeds provides excellent accuracies of 1.62 mm for
a challenging ultrasound to MRI brain registration. The method relies on no
training data, but potentially the widely applicable self-similarity descriptors
could be replaced by a learning-based approach that relies on known correspon-
dences in training cf. [10] or [11]. However, the impact will probably be more
pronounced when considering scans with more brain-shift.

A further interesting research direction would be to only learn the spatial
layout used for self-similarity distance computations by means of deformable
convolutions. These have been successfully applied to registration and segmen-
tation tasks with few labelled datasets [12]. Moreover, the computation time
of the algorithm could be drastically reduced (to subsecond runtimes) by per-
forming the similarity and regularisation calculations on a GPU, which we have
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already demonstrated for parts of the algorithm in [13] and we intend to complete
this for the whole algorithm in the near future.

Acknowledgements. We would like to thank the CuRIOUS 2018 organisers for pro-
viding this new multimodal dataset to the public.
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Abstract. Intraoperative brain deformation reduces the effectiveness of using
preoperative images for intraoperative surgical guidance. We propose an algo-
rithm for deformable registration of intraoperative ultrasound (US) and preop-
erative magnetic resonance (MR) images in the context of brain tumor
resection. From each image voxel, a set of multi-scale and multi-orientation
Gabor attributes is extracted from which optimal components are selected to
establish a distinctive morphological signature of the anatomical and geometric
context of its surroundings. To match the attributes across image pairs, we
assign higher weights – higher mutual-saliency values - to those voxels more
likely to establish reliable correspondences across images. The correlation
coefficient is used as the similarity measure to evaluate effectiveness of the
algorithm for multi-modal registration. Free-form deformation and discrete
optimization are chosen as the deformation model and optimization strategy,
respectively. Experiments demonstrate our methodology on registering preop-
erative T2-FLAIR MR to intraoperative US in 22 clinical cases. Using manually
labelled corresponding landmarks between preoperative MR and intraoperative
US images, we show that the mean target registration error decreases from an
initial value of 5.37 ± 4.27 mm to 3.35 ± 1.19 mm after registration.
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1 Introduction

Brain shift combined with registration and tracking errors reduces the accuracy of
image-guided neurosurgery based on neuronavigation systems [1–3]. Intraoperative
ultrasound, being a real-time imaging modality, has the potential to enable the surgeon
to accurately localize the instrument trajectories in the operative field and thus facilitate
accurate resection to promote better surgical outcomes. However, registration of
intraoperative US with preoperative MR images is a challenging problem due to the
different information captured by each image modality. We present a deformable MR-
US registration algorithm that uses attribute matching and mutual-saliency weighting
and apply it to image-guided neurosurgery.

2 Methods

A registration framework usually consists of three parts: (1) the similarity measure,
which defines the criterion to align the two images; (2) the deformation model, which
defines the mechanism to transform one image to the other; and (3) the optimization
strategy, which is used to determine the best parameters of the deformation model. An
open question is how to define the similarity measure for MR-US registration. A de-
formable registration algorithm known as DRAMMS [4] has shown promise in
defining similarity based on optimal Gabor attributes modulated by quantified matching
reliabilities. It shows potential in handling large deformations and missing corre-
spondences [5]. However, the original DRAMMS defines similarity by the Sum of
Squared Differences (SSD) of attributes which limits its application in MR-US multi-
modal registration. We propose the Correlation Coefficient (CC) of attributes to better
adapt to MR-US multi-modal registration.

2.1 Problem Formulation

In the original DRAMMS formulation, given two images I1 : X1 7!R and I2 : X2 7!R in
3D image domainsXi ði ¼ 1; 2Þ �R

3, we seek a transformation T that maps every voxel
u 2 X1 to its correspondence T ðuÞ 2 X2, by minimizing an overall cost function E Tð Þ,

minT E Tð Þ ¼
Z
u2X1

ms u; T uð Þð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Mutual�Saliency

: sim AH
1 uð Þ;AH

2 T uð Þð Þ� �
du|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

AttributeMatching

þ kR Tð Þ ð1Þ

where AH
1 uð Þ i ¼ 1; 2ð Þ is the optimal attribute vector that reflects the geometric and

anatomical contexts around voxel u, and d is its dimension. The term ms u; T uð Þð Þ is a
continuously-valued mutual-saliency weight between two voxels u 2 X1 and TðuÞ 2
X2. This way, registration is driving by reliably matched voxel pairs which are not
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necessarily less deformed voxels. The term R Tð Þ is a smoothness/regularization term
usually corresponding to the Laplacian operator, or the bending energy, of the defor-
mation field T , whereas k is a parameter that controls the extent of smoothness. The
proposed framework is sketched in Fig. 1.

2.2 Attribute Matching

The aim of attribute matching is to extract and select optimal attributes that reflect the
geometric and anatomic contexts of each voxel. It consists of two parts: attribute
extraction and attribute selection.

Attribute Extraction. A set of multi-scale and multi-orientation Gabor attributes is
extracted at each voxel by convolving the images with a set of Gabor filter banks. The
parameter settings developed by [6] were adopted: the number of scales, M, is set to 4
and the number of orientations, N, is set to 6, the highest frequency is set at 0.4 Hz and
the lowest frequency at 0.05 Hz. Figure 2 shows an example of multi-scale and multi-
orientation Gabor attributes extracted from (a) intraoperative US and (b) preoperative
MR images. After attribute extraction, each voxel u ¼ x; y; zð Þ is characterized by a
Gabor attribute vector ~A1 uð Þ with dimension D ¼ M � N � 4.

Attribute Selection. The aim is to select components of attributes to increase the
reliability of matching between two images. An expectation-maximization
(EM) framework is used. Given the full-length attributes, the E-step finds spatially-
scattered (and hence spatially representative) voxel pairs with not just high similarity
but more importantly, reliably high similarity. Then on the selected voxel pairs, M-step
uses the iterative forward inclusion and backward elimination (iFIBE) feature selection
algorithm to find a subset of attribute components that maximize the similarity and
matching reliability (defined as mutual-saliency). A major difference from [4] is that the
similarity sim p; qð Þ between a pair of voxels p 2 X1; q 2 X2ð Þ is defined based on the
correlation coefficient of their attribute vectors:

sim ~A1 pð Þ; ~A2 qð Þ� � ¼ CC ~A1 pð Þ; ~A2 qð Þ� � 2 0; 1½ � ð2Þ

where higher correlation coefficient between to attribute vectors indicates higher
similarity.

Fig. 1. Non-rigid deformation framework.
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2.3 Mutual-Saliency Map to Modulate Registration

We assign a continuously-valued weight to each voxel, based on the capability of each
voxel to establish reliable correspondences across images. This idea is formulated in
Eq. (3) and in the associated Fig. 3. Mutual-saliency value, ms u; T uð Þð Þ; is calculated
by dividing the mean similarity between u and all voxels in the core neighborhood
(CN) of T uð Þ, with the mean similarity between u and all voxels in the peripheral
neighborhood (PN) of T uð Þ.

(a) (b)

High freq.

Mid freq.

Low freq.

Orientation π/4 Orientation π/2 Orientation π Orientation π/4 Orientation π/2 Orientation π

Fig. 2. Multi-scale and multi-orientation Gabor attributes extracted from (a) intraoperative US
image and (b) preoperative MR images.

Fig. 3. The idea of mutual-saliency measure: (a) The matching between a pair of voxels u and
T(u) is unique if they are similar to each other and not to anything else in the neighborhood.
A delta function in the similarity map indicates a unique matching, and hence high mutual-
saliency value. (b) Mutual-saliency function measures the uniqueness of the matching between a
voxel pair in a neighborhood. Different colors represent different layers of neighborhoods.
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ms u; T uð Þð Þ ¼ MEANv2CN T uð Þð Þ sim A1 uð Þ;A2 vð Þð Þ½ �
MEANv2PN T uð Þð Þ sim A1 uð Þ;A2 vð Þð Þ½ � ð3Þ

where sim (∙, ∙) is the attribute-based similarity between two voxels (Eq. 2). The radius
of each neighborhood is adaptive to the scale in which Gabor attributes are extracted.
For a typical isotropic 3D brain image, the radius of core, transitional and peripheral
neighborhood are 2, 5, 8 voxels, respectively [4].

2.4 Deformation Model and Optimization Strategy

The diffeomorphic FFD [7, 8] is chosen because of its flexibility to handle a smooth
and diffeomorphic deformation field. We have chosen discrete optimization, a state-of-
the-art optimization strategy known for computational efficiency and robustness
regarding local optima [9, 10].

3 Results

Preoperative T2-FLAIR MR and intraoperative predurotomy US images were acquired
from 22 patients with low-grade gliomas. A set of 15 to 16 homologous landmarks
were identified across images (pre-operative MRI vs. US before resection) and used to

Fig. 4. Preoperative MR to intraoperative US registration. (a) preoperative T2-FLAIR MR and
(b) intraoperative US images. Superimposed preoperative MR to intraoperative US (c) before
registration and (d) after non-linear correction. Arrows indicate (c) the misalignment between the
tumor boundaries in the different modalities and (d) the alignment after registration.
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validate the deformable registration algorithm [11]. The Transforms Module (General
Registration Brain) in 3D Slicer was used to determine an initial rigid transformation
between each pair of images before applying our method. Figure 4 shows an example
of one pair of preoperative T2-FLAIR and intraoperative US images and their align-
ment before and after deformable registration. Table 1 presents the mean target reg-
istration error (mTRE) in mm and for each clinical case, before and after deformable
registration.

4 Conclusions

The proposed registration algorithm reduces the mean target registration error from an
initial value of 5.37 ± 4.27 mm to 3.35 ± 1.19 mm for 22 clinical cases. Our future
work includes: (i) further comparison of different similarity measures in MR-US reg-
istration, (ii) exploring different linear registration methods to initialize deformable

Table 1. Details of inter-modality landmarks for each clinical case. The number of landmarks
and the mean initial Euclidean distances between landmark pairs are shown, and the range (min–
max) of the distances is shown in parenthesis after the mean value. The last column shows the
results after registration.

Case Number of landmarks Before registration (mm) After registration (mm)

1 15 1.82 (0.56–3.84) 1.58 (0.53–3.07)
2 15 5.68 (3.43–8.99) 3.89 (2.05–4.33)
3 15 9.58 (8.57–10.34) 4.92 (1.37–5.01)
4 15 2.99 (1.61–4.55) 2.36 (1.55–3.48)
5 15 12.02 (10.08–14.18) 4.02 (1.92–5.45)
6 15 3.27 (2.27–4.26) 1.51 (0.96–3.21)
7 15 1.82 (0.22–3.63) 1.48 (0.20–3.57)
8 15 2.63 (1.00–4.15) 2.03 (0.83–3.94)
12 16 19.68 (18.53–21.30) 5.59 (1.24–6.47)
13 15 4.57 (2.73–7.52) 3.94 (1.29–4.83)
14 15 3.03 (1.99–4.43) 2.98 (1.99–4.06)
15 15 3.21 (1.15–5.90) 2.65(1.37–5.85)
16 15 3.39 (1.68–4.47) 3.28 (1.68–4.37)
17 16 6.39 (4.46–7.83) 4.78 (3.90–6.05)
18 16 3.56 (1.44–5.47) 3.25 (1.41–4.73)
19 15 3.28 (1.30–5.42) 3.07 (1.22–4.80)
21 15 4.55 (3.44–6.17) 4.51 (2.93–5.29)
23 15 7.01 (5.26–8.26) 4.67 (3.10–5.82)
24 16 1.10 (0.45–2.04) 1.10 (0.37–2.09)
25 15 10.06 (7.10–15.12) 5.55 (2.98–7.04)
26 16 2.83 (1.60–4.40) 1.93 (1.04–3.37)
27 16 5.76 (4.84–7.14) 4.58 (0.98–6.12)
Mean ± Std 5.37 ± 4.27 3.35 ± 1.39
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registration, (iii) using blurring and gradient information to reduce the negative
influence of speckles in the ultrasound image and (iv) investigating the potential to
combine landmark-based to voxel-wise registration.
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Abstract. This paper describes the application of an established block-
matching based registration approach to the CuRIOUS 2018 MICCAI
registration challenge. Different variations of this method are compared
to demonstrate possible results of a fully automatic and general app-
roach. The results can be used as a reference, for example when eval-
uating the performance of methods that are specifically developed for
ultrasound to MRI registration.

Keywords: Brain shift · Fully automatic · MRI · iUS
Symmetric registration · Block-matching

1 Introduction

Update of pre-surgical images and surgery plans to improve the accuracy of
displayed information is an active field of research. Intra-operative ultrasound
(iUS) is an accessible imaging technique that can be used to acquire data of
the brain during a surgery. With these intra-operative images, the brain shift
can be estimated via image registration. For the CuRIOUS 2018 MICCAI chal-
lenge, we suggest a method which uses a symmetric block-matching approach
to fully automatically align the pre-operative MRI with the iUS image. This is
an established method whose benefits were shown in different applications [2,3].
The results can then be compared to more specialized approaches in this field.

2 Methods

It has been shown that asymmetric registration algorithms can impair the evalu-
ation of biomarkers, e.g. brain atrophy [9] and should thus be used with caution.
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Direct comparison of an asymmetric and symmetric block-matching framework
showed further advantages like improved capture range, higher accuracy and
robustness of the symmetric approach [5]. The symmetric registration algorithm
used in this comparison is published as part of the NiftyReg open source software
package (version 1.5.58) [6] and is applied on this registration challenge (Fig. 1).

Fig. 1. Overview of the symmetric registration approach. In every registration step
the iUS image is warped into the MRI space and vice versa. Block-matching is then
performed in the respective domain to update the transformation with the established
correspondences. The transformations are averaged to ensure inverse consistency.

2.1 Block-Matching Based Global Registration

The block-Matching method for registration iteratively establishes point corre-
spondences between reference image and the warped floating image and then
determines the transformation parameters by least trimmed squares (LTS)
regression [7]. The LTS regression only considers 50% of inlier values.

For the block-matching, both images are divided into uniform blocks of 4
voxel edge length. The 25% of blocks with the highest variance of intensity
values are used and the rest is discarded. Each of these reference image blocks is
compared to all floating image blocks that overlap with at least one voxel (this
results in a search space with 7 voxel edge length). The matching block for each
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reference block is determined as the one with maximum absolute normalized
cross correlation (NCC) according to

NCC =
1
N

∑

x∈br

[br(x) − μbr ] [bf (x) − μbf ]
σbr σbf

, (1)

with the blocks in reference (bf ) and warped image (br), the mean μ and standard
deviation σ within a block, and the number of voxel in a block N . To increase
the robustness and decrease computation time, only a fraction of all blocks are
matched.

2.2 Symmetric Registration Extension

The block matching step provides two sets of point-wise correspondences between
the images: from image I to J {CI→J} and vice versa {CJ→I}. The second step
is the update of transformation parameters via LTS regression. At every itera-
tion i + 1 and for both correspondences, the composition of the block-matching
correspondence and the previous transformation T (i) determines the new trans-
formation by LTS:

T (i+1) = LTS[C ◦ T (i)]. (2)

To ensure inverse consistency (i.e. TI→J ≡ T−1
J→I) at each update, the directional

transformation matrices of the LTS regression are averaged according to [1]:

T
(i+1)
I→J = expm

⎛
⎜⎜⎝

logm
(
LTS

[
T

(i)
I→J ◦ CI→J

])
+ logm

(
LTS

[
T

(i)
J→I ◦ CJ→I

]−1
)

2

⎞
⎟⎟⎠ (3)

T
(i+1)
J→I = expm

⎛
⎜⎜⎝

logm
(
LTS

[
T

(i)
J→I ◦ CJ→I

])
+ logm

(
LTS

[
T

(i)
I→J ◦ CI→J

]−1
)

2

⎞
⎟⎟⎠ , (4)

where expm and logm are the exponential and logarithmic matrix operators,
respectively.

2.3 Experiments

The NiftyReg software is based on the NIfTI-1.1 file format so that the MINC
files of the RESECT database [8] have to be converted first. We used the MINC
tools provided by the McConnell Brain Imaging Centre, Montreal Neurological
Institute at McGill University [4] for the conversion. The initial alignment of
iUS and MRI images (based on tracking of the iUS probe) are derived from the
header information. This alignment is the baseline and the corresponding results
are referenced to as initial. Masks derived from thresholding the iUS image at an
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intensity value of 0 (i.e. masking out the background) and dilating the result by
10 voxels are used for all registrations. Then the described block-matching based
registration is applied with a 2 level pyramidal approach. On the first level, 10
iterations are computed, on the finer level only 5. The symmetric approach is
evaluated once with the T1-weighted MRI (symm-T1) and once with the FLAIR
MRI (symm-FLAIR). These approaches are compared to the four asymmetric
approaches: with the iUS image as reference and the T1-MRI as floating image
(asymm-US-T1) and vice-versa (asymm-T1-US) as well as with the iUS image as
reference and the FLAIR-MRI as floating image (asymm-US-FLAIR) and vice-
versa (asymm-FLAIR-US). These 6 approaches are each computed with a rigid
and affine transformation. Furthermore the affine transformation that minimizes
the target registration error (TRE) is included in the comparison as an optimal
result (affine oracle).

3 Results

For all described approaches, the average of all case specific mean TREs is com-
puted as an overall measure of registration accuracy. The results are summa-
rized in Table 1. It can be seen that the symmetric approach using the FLAIR
data, symm-FLAIR, as well as the asymmetric approach asymm-T1-US fail and
increase the TRE. The best approaches are asymm-US-FLAIR, asymm-US-T1
and symm-T1. The asymm-US-FLAIR approach shows the best results reducing
the initial average TRE of 5.37 mm to 3.77 mm and 2.90 mm with rigid and affine
registration respectively, improving 20 and 18 out of the 22 cases. For asymm-
US-T1 the TRE is reduced to 4.34 mm and 3.78 mm, improving 15 and 17 out
of the 22 cases with rigid and affine registration, respectively. The symm-T1
approach shows good results with an average TRE of 3.84 mm, on par with the
asymm-US-T1 affine. This symmetric approach improved the TRE for 18 of 22
cases.

Table 1. Average mean TRE in mm and 95% confidence interval for all tested
approaches.

Initial Rigid Affine Affine oracle

asymm-US-T1 5.37 [3.48, 7.27] 4.34 [2.71, 5.96] 3.78 [2.36, 5.19] 0.95 [0.88, 1.02]

asymm-T1-US 8.49 [6.41, 10.57] 16.15 [10.95, 21.36]

symm-T1 3.84 [2.10, 5.57] 5.41 [4.48, 6.34]

asymm-US-FLAIR 3.77 [1.91, 5.64] 2.90 [1.31, 4.49]

asymm-FLAIR-US 8.84 [6.49, 11.18] 16.52 [11.52, 21.52]

symm-FLAIR 8.75 [6.48, 11.02] 13.50 [9.05, 17.96]

In a few cases, the initial alignment has rather large TREs which are not
fully recovered by the approaches although the optimal computed transformation
shows that an affine transformation is able to reduce the TRE to values similar to
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Fig. 2. Boxplots showing TRE results for best-, median- and worst-case subjects of
initial, asymm-US-FLAIR rigid, asymm-US-FLAIR affine, and affine oracle (from left
to right within each group).

Fig. 3. Spaghetti-plot showing the mean TRE for every case with the initial position
and the asymm-US-FLAIR approach with both rigid and affine registration. Blue lines
indicate an decrease of the mean TRE by the rigid registration approach, red lines an
increase. (Color figure online)
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the other cases. Figure 2 visualizes the TRE distribution for 4 approaches (init,
symm-T1 rig, symm-T1 aff, and opt) with 3 cases each: the best, the median
and the worst case (determined by average mean TRE). Comparing the affine
and the rigid approach, the affine increases the TRE on average and especially
for cases with lower initial TRE. On the other hand, the TRE of the worst cases
is reduced most by the affine approach. This can be seen in Fig. 3 where each
line represents the mean TRE of an individual case. Most lines decrease from
initial value to the rigid result before increasing to the affine result while the
three cases with initial highest TRE decrease with the affine approach.

4 Discussion

We have demonstrated that a fully automated standard registration approach
can reduce the average mean TRE of the given data set from 5.37 mm to 2.90 mm
(using the asymmetric approach with the iUS image as reference and the FLAIR
MRI image as floating image). One other asymmetric approach and a symmet-
ric approach achieved acceptable results while the other considered approaches
could not improve the registration accuracy. The given data set includes one
outlier case with a very high initial TRE, which is not improved much in most
approaches. Excluding this case yields even better results with 2.15 mm average
mean TRE for asymm-US-FLAIR affine. These results require no user interac-
tion and rely mostly on default parameters. Comparing the results to an opti-
mal transformation based on matching the given landmark correspondences, it
becomes clear that results could be improved further. Changes of, for example
the similarity measure or pre-processing steps could be adapted for this regis-
tration problem. Furthermore the combination of the information of both MRI
images into a multi-spectral registration approach could improve the results.
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Abstract. During brain tumor resection procedures, 3D ultrasound
(US) can be used to assess brain shift, as intra-operative MRI is chal-
lenging due to immobilization issues, and may require sedation. Brain
shift can cause uncertainty in the localization of resected tumor margins
and deviate the registered pre-operative MRI surgical plan. Hence, 3D
US can be used to compensate for the deformation. The objective of this
study is to propose an approach to automatically register the patient’s
MRI to intra-operative 3D US using a deformable registration approach
based on a weighted adaptation of the locally linear correlation metric
for US-MRI fusion, adapting both hyper-echoic and hypo-echoic regions
within the cortex. Evaluation was performed on a cohort of 23 patients,
where 3D US and MRI were acquired on the same day. The proposed
approach demonstrates a statistically significant improvement of internal
landmark localization made by expert radiologists, with a mean target
registration error (mTRE) of 4.6±3.4mm, compared to an initial mTRE
of 5.3± 4.2mm, demonstrating the clinical benefit of this tool to correct
for brain shift using 3D ultrasound.

1 Introduction

One of the key challenges facing brain resection surgeries and accurate locali-
sation of the structure of interest during epilepsy surgery is the estimation of
the soft tissue deformation (known as brain shift) that can occur due to brain
swelling, craniotomy, tumor mass effects or surgical resection. Brain shift can
lead to nonlinear deformation of the anatomy and cause the planned structures
of interest to significantly shift during surgery, either directly over or around the
tumor. In order to predict soft organ deformation, recent studies have resorted
to multichannel anatomical and fractional anisotropy algorithms [1] as well as
to non-linear finite element modelling [2]. These studies have however only been
tested on adult populations and heavily rely on using interventional MRI to
survey this effect during surgery. The use of commercially available stereotactic
optical tracking systems also has limitations with respect to surface-based regis-
tration [3] and precise tip localization of the subdural electrodes inside the brain
c© Springer Nature Switzerland AG 2018
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tissue with visually assessing the penetration near the sylvian fissure. Ultra-
sonography may circumvent these limitations by implementing methods which
allow metallic tool tip tracking using sensor responses [4] and inferring shape
morphology based on transcranial US imaging of soft tissue for registration pur-
poses. Hence, the problems of reliable fiducialess image-based registration, non-
rigid brain shift due to craniotomy or resection, and accurate tool tracking in
deep sub-cortical structures during neurosurgery in children remain unsolved,
and could potentially be alleviated with ultrasonography.

The use of high-order structural priors have also been attempted to maintain
anatomical warping coherency due to the presence of multiple local minima.
These methods were applied in scenarios using baseline registration near the
occipital lobe where standard stereotactic methods fail due to lacking salient
topological features on the cranial surface, and to potential brain shift com-
pensation caused by tumor resection, craniotomy or fluid drainage in patients
undergoing surgery by using texture features for automatic alignment [5].

In this paper, we present a novel method to correct for intra-operative brain
shift from 3D US images. Multi-modal images of the same patient are automati-
cally registered from patient’s MRI to intra-operative 3D US using a deformable
registration approach based on a weighted adaptation of the locally linear corre-
lation metric for US-MRI fusion, computing weights for the hypoechoic area and
the hyperechoic area. Results are compared with ground truth manual identifica-
tion of landmarks on MRI and 3DUS images, demonstrating the clinical potential
in neurosurgery to quantify displacement of internal brain tissue. The contribu-
tion is the introduction of a novel optimization scheme based on a dynamic
weighting factor in the fusion process, handling hyper and hypo-echoic regions
within the cortical regions with a multimodal similarity metric [6].

2 Brain Shift Compensation Method

The first step of the brain shift compensation method is an initialization pro-
cedure, where the patient’s MRI is globally positioned to the patient’s 3D US
image. This is followed by a rigid and non-rigid registration step, using a locally
linear correlation metric with dynamic weighted technique to account for varying
level of echogenicity in the cortex.

Initialization. The orientation of the US images is first corrected by rotat-
ing the volume to match the orientation observed on the MRI volume. This is
performed from a PCA on the extracted inferior skull region, to identify the
principal orientation vectors of the head. Then, the brain in 3D US is extracted
with the method and its center position and size are calculated. Based on those
measurements, a scaling and a translation are applied to the MRI atlases before
the registration.

Multimodal MRI/3D US Registration. Multimodal registration between
3DUS and MRI images is performed with a locally linear correlation metric
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(LC2) by [6] which correlates MRI intensities and gradients with US intensities.
This fusion step is achieved in a patch-based approach of US voxels compared
to intensity and gradient magnitude information extracted from the MRI using
the relationship:

f(xi) = αpi + βgi + γ (1)

with xi as the voxel intensity in I3DUS , Tdef the deformation field, pi =
p(Tdef (xi)) and gi = |∇pi| are the intensity and gradient magnitude at the
corresponding voxel in the moving image. We define the values c = {α, β, γ} for
all voxels xi determined with a 3D region Ωi of m voxels. This cubic region of
size 7 × 7× 7 (m = 343) surrounding xi is used to minimize (f(xi)−I3DUS(xi))
on Ωi with a LMS minimization process of c as shown below:

c = (MT M)−1MT U (2)

where M =

⎛
⎜⎝

p1 g1 1
...

...
...

pm gm 1

⎞
⎟⎠ ,U =

⎛
⎜⎝

I3DUS(x1)
...

I3DUS(xm)

⎞
⎟⎠ (3)

with I3DUS(x{1,...,m}) as the US voxels in Ωi, with p{1,...,m} and g{1,...,m} the
intensities and gradients of the corresponding MR voxels. The closeness mea-
surement obtained locally is then estimated on Ωi with:

Θ2
i (u, f) = 1 −

∑
Ωi

|I3DUS(xi) − f(xi)|2
m · V ar(I3DUS(xi)|xi ∈ Ωi)

(4)

where f(xi) is as defined in Eq.(1) with c = {α, β, γ}, previously determined for
Ωi by Eq. (2). Here, V ar(I3DUS(xi)|xi ∈ Ωi) is the variance of the US intensities
over Ωi.

The general measurement Θ2 includes a pondered summation in Eq. (4) of
all points xi, using as weights the standard-deviation of US voxel intensities.
Furthermore, to simplify the computational complexity and focus only on rel-
evant voxels belonging to the cortical areas in the MRI and US, we constrain
the matching of voxel within a pre-segmented mask of the brain region, which
excludes any background intensities from the similarity measure. Consequently,
only the US intensities xi corresponding to moving voxels within the MRI affects
the brain shift compensation.

The non-rigid deformation field Tdef is controlled by a cubic 5×5×5 B-Spline
interpolation grid, distributed in a uniform fashion within the fan-shape region
of the I3DUS . The optimization of the registration (i.e. maximization of Θ2) is
performed using a bound optimization by quadratic approximations, as it avoids
the analytic form of the Θ2 derivative, but rather performs an approximation
during the minimization process.

The registration includes a rigid step with LC2 and non-rigid step with LC2+
P where P is a pixel weighting term. P is a term created specifically to describe
brain regions in US by making use of the hypoechoic area (fluid cavities) and
the hyperechoic area (ex. choroid plexus). Since only the US voxels included in
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the MRI label are analyzed, P is only added at the non-rigid registration step
when the MRI labels are already roughly aligned to the US image:

P =
C1

∑N
i=1 εimax(IL − I(vi), 0) + (1 − εi)max(I(vi) − IH , 0) + C2

N
(5)

where εi = 1 when vi is in the hypoechoic area and εi = 0 when vi is in the
hyperechoic area, C1, C2 are coefficients adjusted to the intensities and N is the
number of voxels in the MRI volume. Moreover, P is adjusted to penalize smaller
labels (which statistically have higher P ) Padj(Vk) = P ( Vk

VM
)

1
4 where Vk is the

active label volume and Vm the mean label volume.
This term is added only at the non-rigid step because it is highly specific to

the internal areas in US such as the lateral ventricles which were roughly aligned
to the US ventricles. In cerebral ultrasound, the most hypoechoic and the most
hyperechoic regions correspond to the lateral ventricles fluid cavities and the
choroid plexus, respectively. The two areas are each defined by a threshold and
constrained within a region of interest centered at the middle of the brain. Con-
sidering the whole volume, the hyperechoic area is constrained to the posterior
part representing 60% of the volume and the hypoechoic to the anterior part
(60% of the volume) or the superior part (25% of the volume).

Optimization Strategy. The optimization of the registration process was per-
formed using BOBYQA from [7] as proposed in [6], which does not require the
metric’s derivatives. Registration is repeated N = 100 and a selection of the top
ranking (n = 4) exemplars is performed based on the resulting similarity metric.

3 Results

In this study, a subset of 22 cases out of 23 adult patients with low-grade
gliomas (Grade II) were included, with 3D US and T1 weighted MRI acquired
for all patients during the same day. Ultrasound images were acquired with a
linear probe (6–12 MHz) with a 48× 13 mm footprint and reconstructed in 3D
using the optically tracked positions of the ultrasound probe, while the MRI was
acquired with both 1.5 T and 3T Siemens MR scanners, with 12 and 20 chan-
nel head coils respectively, an image resolution of 256× 256, and pixel size of
1.0× 1.0× 1.0 mm. Markers were used for baseline image-to-patient registration
after head immobilization on the operating table. A detailed description of the
dataset is provided in [8].

The accuracy was assessed using expert manual landmark identification on
US and MRI. The correlation between the ground truth locations and the auto-
matically registered landmarks was r = 0.921. The results were compared to
registrations accomplished with the original LC2 metric and the STAPLE [9]
method in order to non-rigidly register the MRI to the 3D US reconstructed
volume. Table 1 summarizes the results with the mean target registration error
(mTRE), before and after brain shift correction. The results demonstrate a sta-
tistically significant improvement from the initial registration using the proposed
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Table 1. Comparison in accuracy and execution time of the registration methods from
3D US, based on target registration errors (TRE).

Methods Initial mTRE (mm) Final mTRE (mm) Time (sec)

Original LC2 [6] 5.3± 4.2 7.4± 5.2 87± 11

STAPLE [9] 5.3± 4.2 8.7± 6.0 434± 38

Proposed method 5.3± 4.2 4.6± 3.4 103± 12

Fig. 1. Sample results of MRI/3DUS registration on case #12.

method based on a paired T-test (p = 0.005 for mTRE measures). On the other
hand, there were no statistically significant improvement before and after reg-
istration using either LC2 or STAPLE. Figure 1 illustrates an example of the
registration results of the MRI and 3DUS.

4 Conclusion

In this paper, we presented an automatic method to perform intra-operative
brain shift correction from 3D ultrasound in tumor resection patients. This
allows for an automatic correction of registration discrepancies caused by the
opening of the dura. Compared to other well established multi-modal registra-
tion techniques, the localization of internal landmarks yielded a high correlation
with manual identification and indicate statistically significant improvement of
the alignment between both modalities. Our main contribution is the introduc-
tion of a weighting factor in the modality simulation metric which enables to
cope with varying hyper and hypo-echogenicity within the cortex. Future work
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would include adding a feature learning approach and an extensive validation
with additional subjects, both with higher variability in internal deformations,
and investigate the use of convolutional neural networks.
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Abstract. No reliable biomarkers for early detection of pancreatic can-
cer are known to date but morphological signatures from non-invasive
imaging might be able to close this gap. In this paper, we present a
convolutional neural network-based survival model trained directly from
computed tomography (CT) images. 159 CT images with associated sur-
vival data, and 3D segmentations of organ and tumor were provided by
the Pancreatic Cancer Survival Prediction MICCAI grand challenge. A
simple, yet novel, approach was used to convert CT slices into RGB-
channel images in order to utilize pre-training of the model’s convolu-
tional layers. The proposed model achieves a concordance index of 0.85,
indicating a relationship between high-level features in CT imaging and
disease progression. The ultimate hope is that these promising results
translate to more personalized treatment decisions and better cancer
care for patients.

Keywords: Deep learning · Radiomics · Survival analysis

1 Introduction

Pancreatic ductal adenocarcinoma (PDAC), commonly referred to as “pancreatic
cancer” is the most common neoplasm of the pancreas, affecting approximately
55,000 patients in the US each year. It is also one of the most deadly human
cancers and is the 4th leading cause of cancer death in both men and women.
The incidence of pancreas cancer has nearly doubled in the last 30 years [10].
Advances in understanding the genomic basis of the disease have not yet trans-
lated into more effective treatments, since most patients present with advanced
disease, incurable by surgery. However, emerging evidence demonstrates that cer-
tain uncommon genomic subtypes are more amenable to targeted chemotherapy,
such as those with a BRCA signature or with microsatellite instability [6,8]. A
better understanding of the precursor lesions to invasive PDAC also has promise
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to allow advanced diagnostic techniques for early detection [1]. Understand-
ing how the morphology of PDAC reflects the underlying genomic alterations,
and how the precursor lesions progress to invasive carcinoma, remain important
research objectives. The use of computational analysis to explore subtle mor-
phology clues can provide significant insights into these important issues. Recent
advances in deep learning-based survival analysis on histology have paved the
way for a robust and direct analysis of medical images in relation to prognosis [9].
Here we offer a similar approach, however for the first time, using 3D radiology
to model PDAC prognosis in a novel way.

2 Methods

2.1 Survival Modeling

In most cases, classification or classical regression cannot be used to predict
disease prognosis. Survival data suffers what is known as right-censoring where
the natural time to event, time to death for example, may be unknown. This can
be due to multiple external factors such as a study ending before some deaths
have occurred, or a subject dying of a non-disease-related cause. However, time
duration until censoring is still useful information which can be included in a
survival model. The standard way to model a dataset with right-censored samples
is using a Cox proportional hazard model (CPH), as described in Eq. (1) where
λ(t|x) describes the risk of instantaneous death (hazard) occurring at time t
as a function of covariates x, their associated weights β, and a baseline hazard
function λo(t).

λ(t|x) = λo(t)λβ(x) = λo(t)exp(
n∑

i=1

βixi) (1)

As illustrated by Eq. (2), the CPH regression is performed by tuning β to
optimize the Cox partial likelihood which is a product of the probability at each
event time Ti that death has occurred to subject i, given the set of subjects
�(Ti) still at risk. Ei indicates if the event has occurred (censored or not) and
the likelihood product is defined over the set of patients with uncensored events
(Ei = 1).

L(β) =
∏

i:Ei=1

exp(βixi)∑
j∈�(Ti)

exp(βixi)
(2)

CPH modeling is, however, constrained to linear data and fails when assessing
non-linear data such as medical images, which are complex and require a more
robust model. In this paper, we construct a survival model which combines a
deep convolutional neural network (CNN) and CPH to predict hazard by directly
using CT image slice data as covariates. Network weights θ replace β in the CPH
model, similar to an approach first described by Farragi [3].
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2.2 Network Architecture and Optimization

The CNN architecture used is a replication of AlexNet [7] with some modifica-
tion. The model is pre-trained on ImageNet data [2] and then has its terminal
linear layers customized to predict hazard, similar to CPH. The fully connected
layers are replaced with four untrained fully connected layers containing 4096,
1000, 256, and 1 node(s), respectively. This is visualized in Fig. 1. The final node
is analogous to λβ(x) where weights θ from the 256-layer produce a risk λθ(x)
to be optimized by the negative log partial likelihood of Eq. (2) as described in
Eq. (3).

L(θ) = −
∑

(λθ(xi) − log
∑

j∈�(Ti)

exp(λθ(xj)) (3)

2.3 Experiment

Data dataset used in this study was curated by the MICCAI 2018 Computa-
tional Precision Medicine Organizing Committee and was publicly made avail-
able through the Pancreatic Cancer Survival Prediction Challenge. The dataset
features 159 patients who underwent Pancreas resection at Memorial Sloan Ket-
tering Cancer Center. All patients received contrast enhanced pancreas com-
puted tomography (CT) scans with the organ and tumor manually segmented.

Pre-processing. The CT patient images were all of transaxial size 512× 512,
with varying number of slices, voxel sizes, and slice thicknesses. All images were
thus first resampled to equal voxel size (incl. slice thickness), using nearest inter-
polation, and then cropped to equal transaxial matrix size of 512× 512. Finally,
in order to take advantage of the robustness of a pre-trained network, the patient
images were again resampled to a transaxial matrix size of 224× 224. We gen-
erated 224× 224 RGB-channel *.png images from the CT data slices to match

Fig. 1. The model features five convolution layers with maxpooling applied on the first
two layers. The output is a single number which functions as an estimation of hazard.



190 H. Muhammad et al.

the format of ImageNet, the dataset used for pre-training. The red, blue, and
green channels contained a slice of the entire segmented organ, the associated
slice of segmented tumor, and a blank matrix of ones respectively. Such an image
was generated for each slice of each CT scan, resulting in 4900 images ready for
model training. Figure 2 illustrates this process.

Fig. 2. A 3-channel RGB *.png image is produced from for slice from the CT volume
data. The segmented organ is used in the red channel, the segmented tumor in the
green channel, and a blank matrix in the blue channel. These RGB images are then
used for model training. (Color figure online)

Radiomic Features. Binary tumor masks were created for all images, with
value 1 for all nonbackground voxels (≥1000 HU), and 0 for background.
Radiomics features were extracted for the tumor data, both for the whole 3D
volume, and slice by slice in 2D, using the Pyradiomics package [4]. A total of
70 features were used, based on first order statistics, shape, and textures based
on the gray level co-occurrence matrix, and gray level size zone matrix.

Model Training. Each slice in a CT image is treated as an independent training
example, and the subject’s time to event and event indicator are associated with
all slices from the patient’s CT image. A training epoch is defined by inputting
all converted slices, radiomic features, and survival information from all scans
into the model once, each producing a float value representing hazard. While
training radiomic image features are concatenated to the first linear layer of
the CNN. All hazards for each converted slice in a given scan are averaged
to represent a subject’s overall hazard. Training epochs are repeated until loss
convergence is reached. Stochastic gradient descent with Nesterov momentum
is used to minimize L(θ) with a learning rate of 1e−3, decreasing one order of
magnitude every 20 epochs. In early phases of training, when the hazard output
is too large, the exp(λθ(xj)) term in the loss function becomes too large, causing
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an exploding gradient. Using a weight decay of 1e−2 and gradient clipping helps
stabilize the model and allows it to continue training toward convergence.

To assess model performance during training, concordance index (c-index), as
described by Harrell [5], is measured at every epoch. The c-index is a commonly
used metric to measure survival model’s performance in ordering time to death.
A c-index of 0.5 indicates a random model while a c-index approaching 1.0
describes a perfect model.

3 Results and Discussion

Figure 3 (top) shows loss decreasing as the model is trained over 50 epochs.
This convergence indicates that the model is learning appropriately. In the same

Fig. 3. (Top) loss decreases over training epochs and converges at epoch 50. (Bottom)
C-Index increases over training epochs and tapers at 0.85
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figure (bottom) c-index can be seen increasing and converging to 0.85 as loss
decreases, showing the model improving over epochs. Performance tapers at
around 50 epochs.

4 Conclusion

This study shows that a deep CNN survival model can be trained directly on
CT image data and perform well. Further work is needed to understand which
regions of the CT image correlate most strongly with survival.
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Abstract. Pancreatic cancer resulted in 411,600 deaths globally in 2015.
Pancreatic ductal adenocarcinoma (PDAC) is the most common type
of pancreatic cancer and it is highly lethal. Survival for patients with
PDAC is dismal due to its aggressive nature, thus the development of
novel and reliable prognostic model for early detection and therapy is
much desired. Here we proposed a prognostic framework for prediction
of overall survival of PDAC patients based on predictors derived from
pancreas CT scans and patient clinical variables. Our framework includes
three parts: feature extraction, feature selection and survival prediction.
First, 2436 radiomics features were extracted from CT scans and were
combined with the clinical variables, and a Cox model was fitted to each
covariate individually to select the most predictive features. The optimal
cut-off was determined by cross-validation. Finally, gradient boosting
with component-wise Cox’s proportional hazards model was utilized to
predict the overall survival of patients. Our framework achieves excellent
performance on MICCAI 2018 Pancreatic Cancer Survival Prediction
Challenge dataset, achieving mean concordance index of 0.7016 using
five-fold cross-validation.

Keywords: Pancreatic cancer · Survival analysis · Prognostic model

1 Introduction

It is estimated that in the United States there are more than 50,000 new cases of
pancreatic cancer occur each year, which accounts for about 3% of all cancers in
the US and about 7% of all cancer deaths [6]. Pancreatic ductal adenocarcinoma
(PDAC) is the most common type of pancreatic cancer, making up more than
80% of cases. It originates in cells lining small tubes in the pancreas called
ducts, which transport juices containing important digestive enzymes into the
small intestine [1]. Despite substantial research efforts and gradual diagnostic
and therapeutic improvements, pancreatic ductal adenocarcinoma is still highly
lethal with five-year survival rate just around 5–7% and one-year survival is
achieved in less than 20% of cases, reflecting the aggressive metastatic spread of
PDAC and the lack of effective and reliable biomarkers for early diagnosis [2].
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Therefore, there is an important need for development of novel and effective
strategies for PDAC early detection and therapy.

Molecular techniques and imaging techniques have been developed for the
diagnose and prognosis. Recent studies have utilized deep and targeted genomic
analysis techniques to study pancreatic cancer [7]. These molecular techniques
have been successful in characterizing gene-expression signatures in cancer cell
and the molecular landscape of PDAC. But molecular techniques may not be
able to sufficiently capture the heterogeneous nature of PDAC in vivo. While
imaging techniques, especially computed tomography (CT) scan accompanied by
three-dimensional (3D) reconstruction, are widely used for preoperative staging
of PDAC [8,9]. Imaging techniques can provide quantitative phenotypic features
to reveal the characteristics of tumors. Other clinical variables can also serve as
reliable prognostic biomarkers. For example, CA19-9 levels evaluation is recom-
mended to correctly stage PDAC, assess the response to therapy [3].

Prognostic models for the prediction of overall survival of PDAC is of vital
importance because it can serve to predict the biological aggressiveness of this
cancer and evaluate the patient outcome. Survival analysis, originated from clin-
ical research, establishes a connection between covariates and the time of an
event. It differs from traditional regression by the fact that parts of the training
data can only be partially observed due to patient’s dropout and study’s limited
time. By fitting the survival function and hazard function using covariates in a
regression models, we can predict the prognosis of patients.

In this paper, we developed a prognostic model to predict overall survival
based on predictors derived from contrast-enhanced pancreas CT scans and
patient’s clinical variables.

2 Method

2.1 Image Acquisition

The image dataset used in paper comes from the MICCAI 2018 computational
precision medicine challenge, which focuses on the quantitative assessment of
pancreas cancer. This dataset consists of a consecutive series of 212 patients
undergoing pancreas resection at Memorial Sloan Kettering Cancer Center with
clinical variables and high-quality annotated CT imaging. In which 159 portal
venous phase CT images of the pancreas parenchyma and tumor in MetaIm-
age (MHD) format are provided as a “training set”. These images are fully
anonymized, with expert radiologist segmented tumors and liver parenchyma to
eliminate segmentation-related uncertainty. In addition to the image data, the
training set includes a data dictionary describing the clinical variables and a list
of the variables for each patient, including preoperative CA 19-9 and neoadjuvant
chemotherapy.

2.2 Data Processing

Since gray values of CT scans reflect absolute world values (HU) and should be
comparable between scanners, we don’t perform intensity normalization on the



Pancreatic Cancer Survival Prediction Using CT Scans 195

CT images. For the missing entries in preoperative CA 19-9, we fill the holes
with the median value.

2.3 Image Analysis

We extraction of radiomics features from medical imaging to serve as
events/covariates for survival analysis. For each CT scan, we extract features
in three categories: first order statistics, shape-based features and texture fea-
tures. In addition, we applied Laplacian of Gaussian and Wavelet filter to images,
then extract features based on the filtered image. Each feature is extract from
two kinds of region of interest (ROI), the first one is segmented tumor region
by experts; the another one is drawn to encompass all pancreas region based on
intensity values.

We also applied feature extraction on Wavelet filtered and Laplacian of Gaus-
sian filtered images in addition to the original images. The Wavelet filtering yields
8 decompositions per level, which include all possible combinations of applying
either a High or a Low pass filter in each of the three dimensions. The LoG filter
enhances the edge by emphasizing areas of gray level change. Sigma value in
LoG filter defines how coarse the emphasized texture should be. We extracted
features from LoG filtered images with sigma value equals 1.0, 2.0, 3.0, 4.0, 5.0
respectively.

In total, we extracted 2436 features from each CT image. The features were
extracted using custom code and Pyradiomics toolbox [4].

First Order Statistics. We extracted 19 features for first order statistics,
which are described as follows.

Basic Features. For basic first order statistics, we extract the maximum inten-
sity, minimum intensity, mean, median, 10th percentile, 90th percentile, standard
deviation, variance of intensity value in ROI.

Energy. Energy is a measure of the magnitude of voxel values in an image. A
larger values implies a greater sum of the squares of these values.

energy =
Np∑

i=1

(X(i))2 (1)

Total Energy. Total Energy is the value of Energy feature scaled by the volume
of the voxel.

total energy = Vvoxel

Np∑

i=1

(X(i) + c)2 (2)
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Entropy. Entropy specifies the uncertainty/randomness in the image values.
It measures the average amount of information required to encode the image
values.

entropy = −
Ng∑

i=1

p(i) log2
(
p(i) + ε

)
(3)

where ε is an arbitrarily small positive number.

Interquartile Range

interquartile range = P75 − P25 (4)

where P25 and P75 are the 25th and 75th percentile of the gray level array,
respectively.
Range

range = max(X) − min(X) (5)

Mean Absolute Deviation (MAD)

MAD =
1

Np

Np∑

i=1

|X(i) − X̄| (6)

Mean Absolute Deviation is the mean distance of all intensity values from the
Mean Value of the image array.

Robust Mean Absolute Deviation (rMAD)

rMAD =
1

N10−90

N10−90∑

i=1

|X10−90(i) − X̄10−90| (7)

Robust Mean Absolute Deviation is the mean distance of all intensity values
from the Mean Value calculated on the subset of image array with gray levels in
between, or equal to the 10th and 90th percentile.

Root Mean Squared (RMS)

RMS =

√√√√ 1
Np

Np∑

i=1

(X(i) + c)2 (8)

RMS is the square-root of the mean of all the squared intensity values. It is
another measure of the magnitude of the image values. This feature is volume-
confounded, a larger value of c increases the effect of volume-confounding.

Skewness

skewness =
μ3

σ3
=

1
Np

∑Np

i=1 (X(i) − X̄)3
(√

1
Np

∑Np

i=1 (X(i) − X̄)2
)3 (9)
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Skewness measures the asymmetry of the distribution of values about the Mean
value. Depending on where the tail is elongated and the mass of the distribution
is concentrated, this value can be positive or negative.

Kurtosis

kurtosis =
μ4

σ4
=

1
Np

∑Np

i=1 (X(i) − X̄)4
(

1
Np

∑Np

i=1 (X(i) − X̄)2
)2 (10)

Kurtosis is a measure of the ‘peakedness’ of the distribution of values in the image
ROI. A higher kurtosis implies that the mass of the distribution is concentrated
towards the tail(s) rather than towards the mean. A lower kurtosis implies the
reverse: that the mass of the distribution is concentrated towards a spike near
the Mean value.

Uniformity

uniformity =
Ng∑

i=1

p(i)2 (11)

Uniformity is a measure of the sum of the squares of each intensity value. This
is a measure of the homogeneity of the image array, where a greater uniformity
implies a greater homogeneity or a smaller range of discrete intensity values.

2.4 Shape Features

We extracted 14 features to characterize the shape of ROI, which are described
as follows.

Basic Features. For basic shape features, we extract volume, surface area,
surface area to volume ratio, maximum 3D diameter, maximum 2D diameter
for axial, coronal and sagittal plane respectively, major axis length, minor axis
length and least axis length in ROI.

Sphericity

sphericity =
3
√

36πV 2

A
(12)

Sphericity is a measure of the roundness of the shape of the tumor region relative
to a sphere. It is a dimensionless measure, independent of scale and orientation.
The value of 1 indicates a perfect sphere.

Spherical Disproportion

spherical disproportion =
A

4πR2
=

A
3
√

36πV 2
(13)

where R is the radius of a sphere with the same volume as the tumor, and equal

to 3

√
3V
4π .
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Elongation

elongation =

√
λminor

λmajor
(14)

where λmajor and λminor are the lengths of the largest and second largest principal
component axes.

Flatness

flatness =

√
λleast

λmajor
(15)

where λmajor and λleast are the lengths of the largest and smallest principal
component axes.

2.5 Texture Features

We also extracted texture features using the standard pipeline of Pyradiomics
toolbox, including 22 grey level co-occurrence matrix (GLCM) features, 16 gray
level run length matrix (GLRLM) features, 16 Grey level size zone matrix
(GLSZM) features, five neigbouring gray tone difference matrix (NGTDM)
features and 14 gray level dependence matrix (GLDM) Features. Due to the
page limitation we don’t present the full list here, it can be found at https://
pyradiomics.readthedocs.io/en/latest/features.html#module-radiomics.glcm

2.6 Survival Analysis

Feature Selection. Since the number of covariates is large relative to the
number of observations, we performed feature selection remove the redundant
or irrelevant features we extracted, as well as to reduce overfitting in model.
More specifically, we fit a Cox model to each variable individually and record
the c-index on the training set.

Next, we want to build a parsimonious model by excluding irrelevant features.
We use the top ranking features as described above. By experimenting with five-
fold cross-validation on the training set, we determined the number of features
to use.

Survival Prediction. In order to perform accurate and robust prediction of
the overall survival predication of patients’ survival, we utilize gradient boosting
with component-wise Cox’s proportional hazards model as base learner [5].

We denotes Di as the time from disease onset to death, and Ci as the
potential time for patient i, i = 1, · · · , n. Thus the observed survival time is
Ti = min{Di, Cj}, and the death indicator is given by δi = I(Di ≤ Ci). Let
Xi = (Xi1, · · · ,Xip)T be a p-dimensional covariate vector which contains all
features selected for the ith patient. We assume that, conditional on Xi, Di is
independently censored by Ci. Then the death hazard can be modeled as

λi(t|Xi) = lim
dt→0

1
dt

Pr(t ≤ Di < t + dt|Di ≥ t,Xi) = λ0(t) exp(XT
i β) (16)

https://pyradiomics.readthedocs.io/en/latest/features.html#module-radiomics.glcm
https://pyradiomics.readthedocs.io/en/latest/features.html#module-radiomics.glcm
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where λ0(t) denotes the baseline Coxs proportional hazards function. β =
(β1, · · · , βp) is the vector of parameters. The corresponding log-partial likeli-
hood is given by

(β) =
n∑

i=1

δi

[
XT

i β − log{
∑

�∈Ri

exp(XT
� β)}

]
(17)

The idea of gradient boosting is to pursue iterative steepest ascent of the
log likelihood function. At each step, given the current estimate of β, say β̂,
let η̂ = XT β̂. The algorithm computes the gradient of the log-partial likelihood
with respect to ηi, the ith component of η,

Ui =
δ

δηi
ln(η)|η=η̂ = δi −

n∑

�=1

δ�I(Ti ≥ T�) exp(η̂i)
n∑

k=1

I(Tk ≥ T�) exp(η̂k)
(18)

A component-wise algorithm can be implemented by restricting the search
direction to be component-wise. For example, fit component-wise model

β̃j = arg min
βj

1
n

n∑

i=1

(Ui − Xij β̃j)
2

(19)

for j = 1, · · · , p, compute

j∗ = arg min
1≤j≤p

1
n

n∑

i=1

(Ui − Xij β̃j)
2

(20)

and update β̂j∗ = β̂j∗ + vβ̃j∗ until stop criteria is reaches. Here v denotes the
learning rate. In our model, we set learning rate to 0.1 and number of boosting
stages to 100.

3 Result

Based on the methods described above, we performed feature extraction, fea-
ture selection and survival prediction. For feature extraction, we extracted 2438
features per case, including 2436 image features and 2 clinical covariates. For
feature selection, we fitted a Cox model to each variable individually and record
the c-index on the training set, and used five-fold cross-validation on the training
set to the number of features to use. In the end, we selected the following 16
features (Table 1):
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Table 1. Selected most predicative features

Feature Score

log-sigma-5-0-mm-3D glszm LargeAreaLowGrayLevelEmphasis tumor 0.577367

wavelet-LLH firstorder RootMeanSquared tumor 0.577107

log-sigma-5-0-mm-3D glcm Correlation tumor 0.574764

original shape Maximum2DDiameterColumn tumor 0.574503

log-sigma-3-0-mm-3D glszm ZoneEntropy tumor 0.573201

wavelet-LHH glszm GrayLevelNonUniformity tumor 0.568081

wavelet-LLH glszm GrayLevelNonUniformity tumor 0.567300

wavelet-HLH firstorder Skewness tumor 0.566519

log-sigma-5-0-mm-3D glcm Idmn tumor 0.565825

log-sigma-5-0-mm-3D glcm Imc2 tumor 0.564523

wavelet-LHL glszm GrayLevelNonUniformity tumor 0.564263

wavelet-HHL glszm LargeAreaHighGrayLevelEmphasis tumor 0.563569

original shape Maximum2DDiameterSlice tumor 0.563221

log-sigma-4-0-mm-3D glcm Correlation tumor 0.562787

log-sigma-5-0-mm-3D glcm Imc1 tumor 0.562354

wavelet-HHL gldm SmallDependenceLowGrayLevelEmphasis tumor 0.562267

Finally, we evaluate the performance of our model by predicting overall sur-
vival on training set based on predictors and calculated the concordance index.
The experiments were done in five-fold cross-validation. We achieves the mean
concordance index of 0.7016.

4 Discussion

In this paper, we developed a prognostic model to predict overall survival based
on predictors derived from contrast-enhanced pancreas CT scans and patient
clinical variables. We extracted radiomics features from CT scans, and fitted a
Cox model to each variable individually to select the most predictive features.
Finally, we use gradient boosting with component-wise Cox’s proportional haz-
ards model to predict the overall survival of patients. Our model achieves mean
concordance index of 0.7016 using five-fold validation on training set. In the
future, we will explore more possibilities of feature selection and survival predi-
cation methods to improve the performance of our model.
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