
Scheduling Architectures for Scientific
Workflows in the Cloud

Johannes Erbel(B), Fabian Korte, and Jens Grabowski

University of Goettingen, Institute of Computer Science, Goettingen, Germany
{johannes.erbel,fkorte,grabowski}@cs.uni-goettingen.de

Abstract. Scientific workflows describe a sequence of tasks that
together form a scientific experiment. When workflows are computa-
tion or data intensive, distributed systems are used. Especially, cloud
computing has gained a lot of attention due to its flexible and scalable
nature. However, most approaches set up a preconfigured computation
clusters or schedule tasks to existing resources. In this paper, we propose
the utilization of cloud runtime models and couple them with scientific
workflows to create the required architecture of a workflow task at run-
time. Hereby, we schedule the architecture state required by a workflow
task in order to reduce the overall amount of data transfer and resources
needed. Thus, we present an approach that does not schedule tasks to
be executed on resources, but schedule architectures to be deployed at
runtime for the execution of workflows.

Keywords: Workflow · Models at runtime · Cloud computing · OCCI

1 Introduction

For an easy and repeatable execution of experiments, scientists utilize work-
flows to model their experiments as a sequence of data processing tasks [3].
Hereby, the individual tasks are commonly scheduled for execution on a clus-
ter of preconfigured computing resources which are for example provided by a
cloud service. Cloud computing however, allows to provision compute, storage,
and network resources on demand [9]. Combined, these resources serve as infras-
tructure for arbitrary applications to be deployed. Thus, cloud computing allows
to dynamically deploy individual architectures for workflow tasks requiring spe-
cific application and infrastructure configurations. Meanwhile, a few workflow
languages exist that annotate workflow models with architectural requirements.
Even though some approaches dynamically deploy these required architectures
at runtime [15], no runtime reflection is provided. Therefore, it is difficult to
make use of runtime information and tune the workflow accordingly.

In this paper, we propose an approach that combines the benefits of design
time and runtime models to dynamically schedule architectures in the cloud for

We thank the Simulationswissenschaftliches Zentrum Clausthal-Goettingen (SWZ)
for financial support.

c© Springer Nature Switzerland AG 2018
F. Khendek and R. Gotzhein (Eds.): SAM 2018, LNCS 11150, pp. 20–28, 2018.
https://doi.org/10.1007/978-3-030-01042-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01042-3_2&domain=pdf


Scheduling Architectures for Scientific Workflows in the Cloud 21

the execution of workflows. While, the design time model describes the order of
workflow tasks and their architectural requirements, the runtime model reflects
the state of the workflow and the running architecture. Based on these models,
we propose a simulation procedure to derive optimized cloud architectures for
successive tasks to reduce the amount of resources and data that has to be
transferred.

The remainder of this paper is structured as follows. Section 2 provides an
overview of basic concepts and related work. Section 3 summarizes problems to
be solved in order to dynamically schedule cloud architectures for workflows.
Section 4 presents the proposed approach and its different components, whereby
the current state of the implementation is discussed in Sect. 5. Finally, Sect. 6
provides a summary and outlook into future work.

2 Background and Related Work

Workflows are typically expressed as Directed Acyclic Graph (DAG) or as
Directed Acyclic Graph (DCG), if loops are supported [3]. Hereby, nodes rep-
resent tasks, whereas links describe either a control or dataflow between them.
As workflows can be compute and data intensive, distributed architectures like
grids and clouds are commonly utilized by workflow systems like Pegasus [4] and
Taverna [17]. Hereby, the dynamic capabilities of such systems are often not uti-
lized as tasks are scheduled on a preconfigured cluster of computing resources.
However, cloud computing is a service that allows to rent virtualized resources
on demand [9]. To provide a uniform access to such a service standards like the
Open Cloud Computing Interface (OCCI) [12] and the Topology and Orches-
tration Specification for Cloud Applications (TOSCA) [11] emerged for which
corresponding metamodels have been developed [10,11]. This trend led to mod-
els at runtime approaches [5,6] which deploy a modeled architecture and keep it
in sync with the cloud.

Recent approaches make use of these matured cloud orchestration techniques
to directly couple cloud architectures with workflow tasks. Qasha et al. [15]
extend the TOSCA standard to support workflows. Hereby, they couple tasks
to cloud resources and ensure the workflows reproducibility by using contain-
ers. Even though, they deploy the containers at runtime their approach is not
model-driven and only considers a design time representation. Another approach
by Beni et al. [2] presents a middleware which monitors the running workflow
over metamodel reflections. In addition to the generation of a workflow deploy-
ment plan, they gather runtime information to optimize the infrastructure for
the workflow for future executions. However, their reflection of a running work-
flow does not conform to any cloud standard. Furthermore, it only considers
the running cloud infrastructure and does not reflect deployed components and
applications. Finally, Flowbster a workflow system presented by Kacsuk et al. [7],
deploys scaling architectures for the execution of workflows. Nonetheless, the
approach is not model-driven, does not conform to any cloud standard, and
directly deploys the architecture for the whole workflow.



22 J. Erbel et al.

3 Problem Statement

The related work shows that there is a need for architecture aware workflows.
However, most approaches only consider design time representations. Thus, the
runtime state of a workflow and its underlying architecture can not be reflected
preventing its architecture awareness. Furthermore, there is no process that
merges cloud architectures taking the requirements of parallel executing and
successive tasks into account. Therefore, current approaches require an explicit
modelling of how a workflow is executed on an infrastructure making a modular
design impossible. Finally, it has to be calculated when the deployment process
for a task’s architecture has to be triggered. However, no approach exists that
combines the execution time of a task with the time needed to reconfigure a
cloud architecture. Summed up, we identified the following problems:

– P1: Only design time models are used to execute workflows in the cloud.
– P2: Approaches are needed to merge cloud architectures for workflow tasks.
– P3: There is no connection between task execution and deployment times.

4 Approach

To ensure the reproducibility of the workflow while managing its underlying
architecture at runtime, a design time as well as a runtime model is required.
While the design time model provides a static representation of the workflow
and its required architecture, as depicted in Fig. 1, the runtime model is used
to reflect the actual state of the workflow and the cloud. Based on the design
time information, the architecture scheduler assembles cloud architecture models
required in different time steps by the workflow and checks their viability over
a simulation approach. These models are then passed to a models at runtime
engine which synchronizes the described architecture with the cloud. As soon as
the architecture for a task is available the corresponding task is executed. Thus,
the architecture serves as extra dependency for the task execution in addition
to the input data. To loosely couple the architecture scheduler with the task
execution engine, their communication is handled only over the runtime model.
In the following the workflow runtime model and architecture scheduler concept
are presented in more detail.

Fig. 1. Components to schedule architectures for workflow tasks



Scheduling Architectures for Scientific Workflows in the Cloud 23

4.1 Workflow Runtime Model

To schedule cloud architectures for workflows, we propose the utilization of a
design time as well as a runtime model. While the design time model is capa-
ble of storing all the information about the workflow and its architecture, the
runtime model is used to reflect the actual state of the cloud and the workflow.
To represent both views, we utilize OCCI, a cloud standard by the Open Grid
Forum (OGF), which defines a uniform interface to manage cloud resources.
OCCI defines an extensible datamodel for which Merle et al. [10] created a
metamodel that got further enhanced in [18]. In addition to a classification and
identification mechanism, OCCI defines three core base types: Entity, Resource,
and Link, shown in Fig. 2. These core base types can be specialized to create
new types which in general form OCCI extensions. Additionally, OCCI Mixins
can be part of an extension which allow to dynamically add capabilities to spe-
cialized core types at runtime. In order to describe a task’s cloud architecture
the infrastructure [13], platform [14], and placement extension [8] can be used.
These extensions define elements to describe how an Application consisting of
multiple Components is deployed on a set of Virtual Machines (VMs) and how
these machines are interconnected. On top of these extensions, we propose the
extension shown in Fig. 2. This extension allows to model workflows running on
top of architectures modeled with OCCI. Thus, already existing OCCI models
can be used as underlying architecture for a sequence of tasks to be executed,
as well as other extensions defined for OCCI.

The Task element represents a single workflow task and inherits from the
Resource type. This element gives information about a task’s current state
and provides actions to start and stop its execution. Each Task is linked over
an ExecutionLink to an executable Component which may be part of a larger
Application. Hereby, the execution of the Task itself is triggered over the start
action every Component has to implement besides other lifecycle operations. As

Fig. 2. OCCI workflow extension



24 J. Erbel et al.

the task execution order is predetermined, each Task can be directly reflected
in the runtime model, whereas the architecture lying beneath the Component
to be executed can be created at runtime. Thus, a loose coupling between the
architecture and the workflow is provided. Additionally, this allows to update
a workflow during its execution by adapting the task sequence or architecture
requirements in the design time model. As a consequence, only the task sequence
in the runtime model has to be updated as a task’s architecture is extracted from
the design time model shortly before it’s execution.

To model a sequence of tasks, each Task can be linked over a TaskDependency
to its successor. While ControlflowLinks only represent a simple control flow,
DataLinks describe a control and dataflow. Because of that, a DataLink stores
information about the source and target location of a file to be transferred which
represents the in and output data of a Task. In addition to the workflow entities,
we define three canal Mixins, a NetworkCanal, a StorageCanal, a LocalCanal.
Using these, we can specify what kind of communication canal is used to transfer
the data between two tasks. For example, the flow of data between two VMs using
a network (NetworkCanal) or a storage (StorageCanal) or the flow of data
within a VM (LocalCanal). Additionally, we specify the RemoteDataSource
Mixin which is attached to a DataLink if the data is not directly located on the
device hosting the executable Component.

4.2 Architecture Scheduler

The goal of the architecture scheduler is to compose an architecture model fitting
the runtime needs of the workflow. The resulting model is then deployed over
a models at runtime engine which compares the runtime state of the cloud to
the desired state and performs required requests accordingly. To assemble such
cloud architectures for different points in time, several questions need to be
answered: What is required by the current and following tasks? Where can a
task’s application be deployed most efficiently? When does the new architecture
configuration needs to be triggered?

The architecture requirement for each task is contained within the design
time model. However, we adjust this static composition at runtime in order to
combine architecture requirements of multiple tasks. This way a task’s archi-
tecture can be defined more modular and nested workflows can be supported.
To investigate possible configurations, we combine architectures of tasks which
are executed in parallel based on their required workload and similarity. Hereby,
we aim at utilizing each provisioned resource as much as possible to reduce the
overall amount of resources required for the execution of the workflow.

In a next step, we elaborate how the assembled architecture can be combined
with the running one. Hereby, we aim at reducing the amount of data that
has to be transferred between successive tasks. Therefore, we fuse the merged
architecture requirements with the information of the runtime model in order to
deploy a task’s application next to its input data. To check the viability of the
resulting architecture model we perform a simulation which allows to evaluate
performance metrics without an actual deployment.



Scheduling Architectures for Scientific Workflows in the Cloud 25

Fig. 3. Architecture Scheduler Example

To trigger the deployment of a new configuration, the task’s execution time
and the time to deploy the configuration is required. Therefore, we can estimate a
task’s execution time, e.g., based on the amount of input data [16]. Additionally,
we can profile the required provisioning or deployment time of each element in a
workflow’s architecture. For example, we observe how long it takes to provision
a VM, and the time to deploy an application on top of it. Using this information,
we then estimate how long the execution of a complete deployment plan takes.
Combined with the task’s execution time we can then calculate when to deploy
the new architecture or adapt the existing one.

An example of the described process is shown in Fig. 3. Here, task A is
currently running, whereas B, C are followup tasks. Based on the architecture
requirements of B and C, the scheduler assembles a suitable architecture for the
following step. For example, the second virtual machine of task B is merged with
the one of task C, as we historically recorded a low workload for both. Next the
architecture proposal is simulated in the runtime environment context. Assume,
task A and B both require a similar component and the data produced by A
is required by B and stored locally. Thus, we reuse the machine that executed
task A for B as no machine has to be started and no data has to be trans-
ferred. Finally, the reconfiguration process is triggered based on the estimated
deployment time and the time for task A to be finished. In a next step, when
A is finished, the storage and components not required anymore are deleted by
removing them from the runtime model.

5 Current Status

As the proposed approach is work in progress, we discuss how the issues described
in Sect. 3 are tackled. Therefore, we explain how the proposed approach is going
to be implemented and validated.

P1: Only design time models are used to execute workflows in the cloud. To
provide a runtime representation of a workflow, we propose an OCCI extension
which allows to manage and reflect the workflow execution and the architec-
ture over a standardized interface. To implement the proposed OCCI extension,
we use the OCCIware tool chain [18]. This tool chain provides a graphical and
textual editor to design OCCI extensions. Furthermore, it allows to automati-
cally generate an implementation for an OCCI interface supporting the designed



26 J. Erbel et al.

extension. Then we deploy the interface implementation of the workflow exten-
sion on an OCCIware runtime server which also supports the infrastructure [13],
platform [14], and placement extension [8]. This runtime server is directly con-
nected to the cloud system on which the workflow is executed and the task spe-
cific architectures are deployed. Hereby, the server directly maintains an OCCI
runtime model reflecting the state of the workflow and the cloud. To proof the
concept of the workflow extension, we are going to develop a set of compute and
data intensive workflows. Moreover, these workflows will be designed in such
a manner that they require a sequence of complex infrastructure and applica-
tion configurations for their execution. Finally, we plan to test the execution of
these workflows on a private cloud using a prototypical implementation of the
proposed approach.

P2: Approaches are needed to merge cloud architectures for workflow tasks. To
lower the workflow execution time, we strive to reuse parts of a running archi-
tecture to reduce the amount of resources and the amount of data that has to
be transferred. First, we identify resources that have enough capacity to handle
components of parallel executing tasks. For this purpose, we are going to inves-
tigate suitable scheduling approaches to assign tasks to resources. It should be
noted that software configurations of different applications may interfere with
each other. Thus, every application has to be completely separated from each
other. Therefor, either containerized virtualization or separated runtime environ-
ments can be used. Secondly, we fuse the resulting architecture with the runtime
model to place a component next to its data. Finally, we validate the resulting
configuration by deriving performance measurements using the OCCI simulation
extension [1]. To actually deploy the simulated model, we utilize the OCCI com-
pliant models at runtime engine presented in a former work [5]. To investigate
the benefits and drawbacks of combining architectures of successive and paral-
lel tasks, we plan to execute workflows with and without the proposed merging
approach. Hereby, we will measure and compare the execution time required by
each workflow, as well as the amount of provisioned resources and data that had
to be transferred.

P3: There is no connection between task execution and deployment times. To
reduce the time between the execution of two successive tasks, it has to be
calculated when the reconfiguration of the cloud architecture has to be trig-
gered. Therefore, we combine estimates about a task’s execution time with the
time required to deploy or reconfigure components within the cloud architec-
ture. Therefore, we combine existing approaches that estimate a task’s execu-
tion time [16] with historical data about the deployment and provisioning time
of each single element in the cloud architecture. Thus, the architecture required
for the execution of each task is deployed as soon as the previous task finishes.
In order to evaluate the estimated time to trigger a cloud reconfiguration, we
are going to measure the amount of time a workflow is idle because of a task
which is waiting for its architecture to be deployed.



Scheduling Architectures for Scientific Workflows in the Cloud 27

6 Summary and Outlook

In this position paper, we propose an approach that dynamically schedules cloud
architecture states for the execution of workflow tasks using runtime models in
order to reduce the overall amount of data transfer and resources needed. Hereby,
we identified that in addition to a design time a runtime model is required to
manage and reflect the state of the workflow and its underlying architecture. In
the future, we will concentrate on implementing the OCCI workflow extension.
Thereafter, we focus on the deployment time for cloud architectures and fuse
them with the execution time of workflow tasks. Then we test multiple schedul-
ing approaches to combine architecture models and elaborate how the resulting
model can be fused with the runtime model. Finally, we are going to assemble
these components into the proposed approach and proof the concept based on a
set of compute and data intensive workflows.

References

1. Ahmed-Nacer, M., Gaaloul, W., Tata, S.: Occi-compliant cloud configuration sim-
ulation. In: 2017 IEEE International Conference on Edge Computing (EDGE), pp.
73–81 (June 2017)

2. Beni, E.H., Lagaisse, B., Joosen, W.: Adaptive and reflective middleware for the
cloudification of simulation & optimization workflows. In: Proceedings of the 16th
Workshop on Adaptive and Reflective Middleware, ARM ’17, pp. 2:1–2:6. ACM
(2017)

3. Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-science: an
overview of workflow system features and capabilities. Futur. Gener. Comput. Syst.
25(5), 528–540 (2009)

4. Deelman, E., et al.: Pegasus: a framework for mapping complex scientific workflows
onto distributed systems. Sci. Program. J. 13(3), 219–237 (2005)

5. Erbel, J., Korte, F., Grabowski, J.: Comparison and runtime adaptation of cloud
application topologies based on occi. In: Proceedings of the 8th International Con-
ference on Cloud Computing and Services Science, CLOSER, vol. 1, pp. 517–525.
INSTICC, SciTePress (2018)

6. Ferry, N., Chauvel, F., Song, H., Rossini, A., Lushpenko, M., Solberg, A.: Cloudmf:
Model-driven management of multi-cloud applications. ACM Trans. Internet Tech-
nol. 18(2), 16:1–16:24 (2018)

7. Kacsuk, P., Kovács, J., Farkas, Z.: The flowbster cloud-oriented workflow system
to process large scientific data sets. J. Grid Comput. 16(1), 55–83 (2018)

8. Korte, F., Challita, S., Zalila, F., Merle, P., Grabowski, J.: Model-driven config-
uration management of cloud applications with occi. In: Proceedings of the 8th
International Conference on Cloud Computing and Services Science, CLOSER,
vol. 1, pp. 100–111. INSTICC, SciTePress (2018)

9. Mell, P., Grance, T.: The NIST Definition of Cloud Computing (2011)
10. Merle, P., Barais, O., Parpaillon, J., Plouzeau, N., Tata, S.: A precise metamodel

for open cloud computing interface. In: 2015 IEEE 8th International Conference
on Cloud Computing, pp. 852–859 (June 2015)

11. OASIS: Topology and Orchestration Specification for Cloud Applications (2013).
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html. Accessed 27
July 2018

http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html


28 J. Erbel et al.

12. OGF: Open Cloud Computing Interface - Core (2016). https://www.ogf.org/
documents/GFD.221.pdf. Accessed 27 July 2018

13. OGF: Open Cloud Computing Interface - Infrastructure (2016). https://www.ogf.
org/documents/GFD.224.pdf. Accessed 27 July 2018

14. OGF: Open Cloud Computing Interface - Platform (2016). https://www.ogf.org/
documents/GFD.227.pdf. Accessed 27 July 2018

15. Qasha, R., Cala, J., Watson, P.: Dynamic deployment of scientific workflows in the
cloud using container virtualization. In: 2016 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), pp. 269–276 (Dec 2016)

16. da Silva, R.F., et al.: Toward fine-grained online task characteristics estimation in
scientific workflows. In: Proceedings of the 8th Workshop on Workflows in Support
of Large-Scale Science, WORKS ’13, pp. 58–67. ACM (2013)

17. Wolstencroft, K., et al.: The taverna workflow suite: designing and executing work-
flows of web services on the desktop, web or in the cloud. Nucl. Acids Res. 41(W1),
W557–W561 (2013)

18. Zalila, F., Challita, S., Merle, P.: A model-driven tool chain for OCCI. In: Panetto,
H. (ed.) OTM 2017. LNCS, vol. 10573, pp. 389–409. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69462-7 26

https://www.ogf.org/documents/GFD.221.pdf
https://www.ogf.org/documents/GFD.221.pdf
https://www.ogf.org/documents/GFD.224.pdf
https://www.ogf.org/documents/GFD.224.pdf
https://www.ogf.org/documents/GFD.227.pdf
https://www.ogf.org/documents/GFD.227.pdf
https://doi.org/10.1007/978-3-319-69462-7_26

	Scheduling Architectures for Scientific Workflows in the Cloud
	1 Introduction
	2 Background and Related Work
	3 Problem Statement
	4 Approach
	4.1 Workflow Runtime Model
	4.2 Architecture Scheduler

	5 Current Status
	6 Summary and Outlook
	References




