
Ferhat Khendek
Reinhard Gotzhein (Eds.)

 123

LN
CS

 1
11

50

10th International Conference, SAM 2018
Copenhagen, Denmark, October 15–16, 2018
Proceedings

System Analysis
and Modeling
Languages, Methods,
and Tools for Systems Engineering

Lecture Notes in Computer Science 11150

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Ferhat Khendek • Reinhard Gotzhein (Eds.)

System Analysis
and Modeling
Languages, Methods,
and Tools for Systems Engineering

10th International Conference, SAM 2018
Copenhagen, Denmark, October 15–16, 2018
Proceedings

123

Editors
Ferhat Khendek
Concordia University
Montreal, QC
Canada

Reinhard Gotzhein
University of Kaiserslautern
Kaiserslautern
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-01041-6 ISBN 978-3-030-01042-3 (eBook)
https://doi.org/10.1007/978-3-030-01042-3

Library of Congress Control Number: 2018955148

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The System Analysis and Modeling (SAM) Conference provides an open arena for
participants from academia and industry to present and discuss the most recent inno-
vations, trends, experiences, and concerns in modeling, specification, and analysis of
distributed, communication, and real-time systems using the Specification and
Description Language (SDL) and Message Sequence Charts (MSC) notations from the
International Telecommunication Union (ITU-T), as well as related system design
languages such as UML, ASN.1, TTCN-3, SysML, and the User Requirements
Notation (URN). This 10th SAM conference (http://sdl-forum.org/Events/SAM2018/)
was held in Copenhagen, Denmark, October 15–16, 2018. It was collocated with the
ACM/IEEE 21st International Conference on Model-Driven Engineering Languages
and Systems (MODELS 2018).

This year’s edition of SAM was under the theme “Languages, Methods, and Tools
for Systems Engineering,” including languages and methods standardized by the
ITU-T, and domain-specific languages. This volume contains the papers presented at
SAM 2018. In total, 14 high-quality papers were selected from 24 submissions, for a
selection rate of 58%. Each paper was reviewed by at least three Programme Com-
mittee members and discussed during the online Programme Committee meeting. The
selected papers cover a wide spectrum of topics related to system design languages and
system modeling and engineering, grouped into five technical sessions. The first ses-
sion is devoted to modeling for the cloud, the papers in the second session discuss
notations and their semantics, while papers in the third session propose methods for the
modeling and analysis of performance, safety, and realizability. Papers in session four
are related to the requirement modeling notations while the last session was on col-
laborative modeling. In addition to the selected papers, the program of SAM 2018
included two inspiring keynotes by Dr. Azimeh Sefidcon (Ericsson, Sweden) and
Professor Juergen Dingel (Queen’s University, Canada).

http://sdl-forum.org/Events/SAM2018/

SDL Forum Society

The SDL Forum Society is a not-for-profit organization that, in addition to running the
System Analysis and Modeling (SAM) Conference series of events (once every two
years), also:

• Runs the System Design Languages Forum (SDL Forum) series, every two years
between SAM conference years

• Is a body recognized by ITU-T as co-developing system design languages in the
Z.100 series (SDL), Z.120 series (MSC), Z.150 series (URN), and other language
standards

• Promotes the ITU-T System Design Languages

For more information on the SDL Forum Society, see http://www.sdl-forum.org.

August 2018 Ferhat Khendek
Reinhard Gotzhein

VI Preface

http://www.sdl-forum.org

Organization

Program Co-chairs

Ferhat Khendek (Secretary,
SDL Forum Society)

Concordia University, Canada

Reinhard Gotzhein
(Chairman, SDL Forum
Society)

University of Kaiserslautern, Germany

Publicity Chair

Mohamed Aymen Saeid Concordia University, Canada

Program Committee

Shaukat Ali Simula Research Laboratory, Norway
Daniel Amyot University of Ottawa, Canada
Ludovic Apvrille Telecom ParisTech - Sophia-Antipolis, France
Tibor Csöndes Ericsson, Hungary
Juergen Dingel Queen’s University, Canada
Joachim Fischer Humboldt University Berlin, Germany
Emmanuel Gaudin PragmaDev, France
Abdelouahed Gherbi Université du Québec, Canada
Jens Grabowski University of Göttingen, Germany
Wahab Hamou-Lhadj Concordia University, Canada
Jameleddine Hassine KFUPM, Saudi Arabia
Øystein Haugen SINTEF, Norway
Steffen Herbold University of Göttingen, Germany
Gábor Kovács Budapest University of Technology and Economics,

Hungary
Alexander Kraas T-Systems, Germany
Finn Kristofferson Cinderella, Denmark
Zoltan Micskei Budapest University of Technology and Economics,

Hungary
Birger Møller-Pedersen University of Oslo, Norway
Gunter Mussbacher McGill University, Canada
Ileana Ober University of Toulouse, France
Iulian Ober University of Toulouse, France
Rick Reed TSE, UK
Houari Sahraoui Université de Montréal, Canada

Edel Sherratt University of Wales Aberystwyth, UK
Maria Toeroe Ericsson, Canada
Tao Yue Simula Research Laboratory, Norway

Additional Reviewers

E. Batot
H. Lu
P. Makedonski
D. Weber
T. Weigert
M. Zhang

VIII Organization

Acknowledgements

The SAM conference was made possible by the dedicated work and contributions of
many people and organizations. We thank the authors of submitted papers, the keynote
speakers, the members of the Programme Committee, and the members of the SDL
Forum Society Board.

Furthermore, we thank the MODELS Organizing Committee for the effective
support during the preparation and smooth realization of the SAM conference.

The submission and review process was run with EasyChair.org; and we thank the
people behind the EasyChair conference system. We thank Springer for once again
publishing the conference proceedings in their LNCS series.

Contents

Modeling Data Protection Vulnerabilities of Cloud Systems
Using Risk Patterns . 1

Alexander Palm, Zoltán Ádám Mann, and Andreas Metzger

Scheduling Architectures for Scientific Workflows in the Cloud 20
Johannes Erbel, Fabian Korte, and Jens Grabowski

CREST - A DSL for Reactive Cyber-Physical Systems 29
Stefan Klikovits, Alban Linard, and Didier Buchs

On the Ontological Expressiveness of the High-Level Constraint
Language for Product Line Specification . 46

Angela Villota, Raúl Mazo, and Camille Salinesi

Distributed Computing on Distributed Memory. 67
Andreas Prinz

Pattern Libraries Guiding the Model-Based Reuse of Automotive Solutions . . . 85
Maged Khalil

Enabling Performance Modeling for the Masses: Initial Experiences 105
Abel Gómez, Connie U. Smith, Amy Spellmann, and Jordi Cabot

Realizability of Service Specifications . 127
Mohammad F. Al-hammouri and Gregor von Bochmann

An Arithmetic Semantics for GRL Goal Models with Function Generation. . . 144
Yuxuan Fan, Amal Ahmed Anda, and Daniel Amyot

Textual User Requirements Notation . 163
Ruchika Kumar and Gunter Mussbacher

A Comparative Analysis of ITU-MSC-Based Requirements Specification
Approaches Used in the Automotive Industry . 183

Kevin Keller, Jennifer Brings, Marian Daun, and Thorsten Weyer

Towards Online Collaborative Multi-view Modelling. 202
Nirmal Kanagasabai, Omar Alam, and Jörg Kienzle

Collaborative Software Design and Modeling in Open Source Systems 219
Omar Badreddin, Wahab Hamou-Lhadj, Vahdat Abdelzad,
Rahad Khandoker, and Maged Elassar

The Impact of Integrating Agile Software Development and Model-Driven
Development: A Comparative Case Study . 229

Hessa Alfraihi, Kevin Lano, Shekoufeh Kolahdouz-Rahimi,
Mohammadreza Sharbaf, and Howard Haughton

Author Index . 247

XII Contents

Modeling Data Protection Vulnerabilities
of Cloud Systems Using Risk Patterns

Alexander Palm(B), Zoltán Ádám Mann, and Andreas Metzger

paluno – The Ruhr Institute for Software Technology,
University of Duisburg-Essen, Essen, Germany

{alexander.palm,zoltan.mann,andreas.metzger}@paluno.uni-due.de

Abstract. Ensuring the protection of sensitive data is important for
the adoption of cloud services. Cloud systems are becoming increasingly
complex and dynamic, leading to various potential scenarios for attack-
ers to get access to sensitive data. To handle such data protection risks,
the concept of risk patterns was introduced previously. A risk pattern
models a structural fragment of cloud systems that should not appear in
the running system because it would lead to high data protection risks.
At deployment and at run time, graph pattern matching and dynamic re-
configuration methods can be used to ensure that the run-time model of
the cloud system contains no instance of the risk patterns. The previous
work left it open, however, how and to what extent real data protection
vulnerabilities can be modeled in the form of risk patterns. Therefore,
this paper focuses on the design of risk patterns based on vulnerabilities
described in the literature. Based on an analysis of 87 papers, we deter-
mined 45 risk patterns. Our findings (i) demonstrate that risk patterns
can indeed capture many of the vulnerabilities described in the cloud
literature, (ii) give insight into the typical structure of risk patterns, and
(iii) show the limits of the applicability of the risk pattern approach.

Keywords: Cloud computing · Data protection · Privacy
Run-time model · Risk pattern

1 Introduction

Cloud computing is increasingly popular, thanks to the benefits it brings to both
providers and users of cloud services. However, outsourcing sensitive data to the
cloud puts the data at a risk, which many users of cloud services are not ready
to accept [16].

Data protection in the cloud is hard because cloud systems are increas-
ingly complex and dynamic. They consist of many different physical and virtual
machines, as well as various applications and their software components, all of
which interact and may dynamically reconfigure during run time [1,9,15,30].
In addition, a multitude of stakeholders may be involved, such as service con-
sumers, cloud providers, data subjects, data controllers, and actual end users.
c© Springer Nature Switzerland AG 2018
F. Khendek and R. Gotzhein (Eds.): SAM 2018, LNCS 11150, pp. 1–19, 2018.
https://doi.org/10.1007/978-3-030-01042-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01042-3_1&domain=pdf

2 A. Palm et al.

Due to such complex interactions, a cloud system may expose vulnerabilities that
enable attackers to gain access to sensitive data stored in the cloud. Moreover,
since the attributes and interactions of the cloud entities continuously change,
data protection vulnerabilities may arise during operation. By data protection
vulnerability, we mean the possibility of unauthorized access to sensitive data.
This is not the same as a system vulnerability (e.g., if a vulnerable system neither
stores nor has access to sensitive data, then there is no data protection vulner-
ability), but system vulnerabilities may lead to data protection vulnerabilities
which put sensitive data at risk.

To identify and mitigate data protection risks in complex and dynamic cloud
systems, we have introduced the concept of risk patterns in our earlier work [26].
That approach was based on two types of artefacts:

– A model of the – current or planned – configuration of the cloud system,
including infrastructure elements, middleware, applications, data, and the
involved actors;

– A set of risk patterns, which describe cloud configurations that would cause
too high risks of data protection violation and hence must be avoided.

For modeling the configuration of the cloud system, a meta-model was pro-
posed [17]. When a cloud system is to be deployed, the system designer creates
the model of the planned configuration as an instance of the meta-model. When
the configuration changes during the deployment process or later during the
operation of the system, the model is updated accordingly, so that it always
reflects the current state of the cloud system and can be used as a run-time
model.

Risk patterns are expressed in a domain-specific language based on the same
meta-model as the cloud model. Risk patterns model fragments of a cloud system
by specifying the presence or absence of certain entities, attributes, or relations.
Risk patterns capture forbidden fragments of a cloud system model that would
exhibit overly high data protection risks. During deployment and at run time, the
model of the cloud system is checked for the existence of fragments corresponding
to risk patterns. If an instance of a risk pattern is found in the cloud model, a
potential data protection vulnerability is identified, which may be mitigated with
appropriate changes of the deployment or by run-time adaptation.

Our previous work [17,26] evaluated the risk pattern approach using two
example risk patterns. The evaluation showed that, if the relevant data pro-
tection vulnerabilities are captured in the form of risk patterns, then these risk
patterns can indeed be used to detect and mitigate the data protection risks dur-
ing deployment and at run time. The prerequisite is a catalog of risk patterns
capturing the relevant data protection vulnerabilities. Our previous work did
not address in detail how risk patterns can be devised, leaving several questions
open:

– Is it feasible to model a broad range of real data protection vulnerabilities in
the form of risk patterns?

Modeling Data Protection Vulnerabilities using Risk Patterns 3

– What is the typical size and structure of risk patterns? (This is important as
it impacts the applicability of graph pattern matching algorithms in terms of
their computational complexity (which in turn is not part of this paper))

– For which kinds of data protection vulnerabilities is the risk pattern approach
appropriate?

Assets

Infrastructure

Applications
Data

Actors
access

Middleware
own

trust

Fig. 1. Abstract view of the meta-model for cloud models [17]

This paper seeks to answer these questions by gaining experience with mod-
eling risk patterns. Specifically, we review 87 papers from the cloud security
literature (which were collected in a previous survey [3]) and identify the ones
that describe relevant vulnerabilities in sufficient detail. Then, we devise risk
patterns for the vulnerabilities described in these papers. This results in a total
of 45 risk patterns.

Our findings show that most of the vulnerabilities that were described in suf-
ficient detail in the respective papers could indeed be captured by appropriate
risk patterns, thus demonstrating the general applicability of the risk pattern
approach. All identified risk patterns share the same high-level structure and
consist of 6 to 10 entities. This suggests that graph pattern matching can indeed
be efficiently used to find risk patterns in cloud models. Also some limitations
of the risk pattern approach are uncovered, relating to both the types of vul-
nerabilities that can be captured (e.g., vulnerabilities resulting from human and
social aspects are not appropriate) and the underlying cloud meta-model (a very
fine-grained meta-model can lead to a proliferation of many similar risk patterns
to capture essentially the same vulnerability).

The remainder of this paper is organized as follows. In Sect. 2 we review
the meta-model underlying the risk pattern approach. Section 3 then gives an
overview of the methodology used to define the risk patterns and Sect. 4 presents
the structure of risk patterns. In Sect. 5 we describe the risk patterns that we
derived from the literature. Section 6 summarizes the lessons learned during the
process, while Sect. 7 describes related work and Sect. 8 concludes the paper.

2 Cloud Meta-Model

In this section we briefly review the previously proposed meta-model [17]. The
model of the cloud system, which plays a central role in the risk pattern app-
roach, is an instance of this meta-model. Further, the risk patterns also reference
entities, attributes, and relations from this meta-model.

4 A. Palm et al.

The meta-model consists of the packages Actors and Assets (see Fig. 1). The
Actors package defines the different data-specific roles (e.g., data subject, data
controller) and cloud-specific roles (e.g., infrastructure provider) that a natural
or legal person can have, and a trust relationship that can exist between different
actors. An actor can also access and/or own assets, e.g. an actor can access a
virtual machine.

VM

PM

DC

IaaS cloud

*

1

*

1

*
1

Private IaaS interface

Public IaaS interface* 0..1

* 0..1

Infrastructure

0..1

1

Infrastructure element

Node

Link

Switch RouterStorage

2

*

Fig. 2. Infrastructure sub-model of the meta-model for cloud models [17]

The Assets package is further divided into the sub-packages Data, Applica-
tions, Middleware and Infrastructure. The elements necessary to model the data
that has to be protected are given by the data sub-package. The main element
within this sub-package is the data object. Data can be stored in form of a stored
data set or exchanged between different application components via a data flow
element. The application sub-package comprises the elements needed to model
software elements, like applications with different application components and
connectors between them. Middleware elements, like web servers, application
servers and database management systems are available in the middleware sub-
package. The elements needed to model the infrastructure of a cloud system,
like virtual machines (VMs), physical machines (PMs) and data centers (DCs)
are given by the infrastructure sub-package. As an example, Fig. 2 shows the
contents of the infrastructure sub-package. The full meta-model is shown in the
Appendix.

3 Methodology

In this section we describe the methodology that we used to derive a catalog of
risk patterns.

Modeling Data Protection Vulnerabilities using Risk Patterns 5

Ardagna et. al [3]
(Cloud security survey)

Category 1:
Vulnerabilities, Threats

and Attacks
(23 papers)

Category 2:
Cloud Security

(81 papers)

21 identified papers

66 identified papers

Removal of papers that do
not touch the aspects

‘confidentiality’ and/or
‘privacy’

9 identified papers

Removal of secondary
literature

8 identified papers 2 identified papers

Removal of papers
without sufficient level of

detail concerning the
description of the
underlying cloud

architecture

10 identified papers

Fig. 3. Overview of the literature analysis

The starting point was a survey about cloud security [3]. From the cate-
gories defined in that survey paper, we focused on the categories ‘vulnerabilities,
threats and attacks’ and ‘cloud security’, and analyzed all papers in those cate-
gories which mentioned the aspects confidentiality or privacy. In the publications
of the first category, different attacks on cloud systems are described. Nearly all
papers of this category (21 out of 23) touch the aspects confidentiality or privacy.
Publications of the second category focus on security solutions and do not men-
tion confidentiality or privacy to the extent the publications of the first category
do (66 of 81 papers were considered relevant).

In the next step, we removed the secondary literature from the first cate-
gory, leaving 9 out of 21 papers of this category. We analyzed all remaining
papers for their level of detail concerning the description of an attack on or a
vulnerability of a cloud system and the underlying cloud architecture. Only two
papers of the category ‘cloud security’ described the underlying problem of the
security solution in sufficient detail, so 64 papers were removed. In the category
‘vulnerabilities, threats and attacks’, 8 out of 9 papers were detailed enough.

6 A. Palm et al.

Table 1. Overview of relevant literature

Publication Category No. of risk patterns

Somorovsky et al. [29] Control Interfaces 12

Aviram et al. [4] Side Channel

Godfrey and Zulkernine [11] Side Channel

Green [12] Side Channel

Okamura and Oyama [19] Side Channel

Ristenpart et al. [22] Side Channel

Zhang et al. [32] Side Channel

Rocha and Correia [23] Privilege Exploitation

Sedayao et al. [27] Privilege Exploitation

Bernsmed et al. [5] Service Mistrust 2

In the end, 10 papers remained that served as a basis for the modeling of risk
patterns. An overview of these publications is given in Table 1 and an overview
of the literature analysis is given in Fig. 3.

After the analysis of the literature, we derived risk patterns based on the
relevant excerpts of cloud architectures described in the selected publications.
The modeling of a risk pattern was done in three steps:

1. Analysis and description of the attack
2. Identification of the underlying system vulnerability
3. Identification of the relevant paths within the meta-model

After the analysis and description of the attack, the main goal was to iden-
tify the specific system vulnerability exploited by the attack. This includes the
identification of elements of the meta-model suitable to model this vulnerability
and in particular its attack point. After this, the sensitive data that should be
protected are modeled and in the third step the relevant paths connecting the
sensitive data with the attack point are identified.

4 Structure of Risk Patterns

A risk pattern is a sub-structure of a cloud system configuration, which threatens
the protection of sensitive data and therefore has to be avoided [26]. A risk
pattern can typically be divided into three parts (see Fig. 4):

– Part (a) represents the personal data that need to be protected. These data
are always modeled by the same elements of the data package: a data record
which is part of a stored data set, and an actor who is the data subject that
the data belong to.

Modeling Data Protection Vulnerabilities using Risk Patterns 7

– Part (b) represents the attack point of the system vulnerability: the point of
the configuration through which an attacker gets access to the system. This
part of the risk pattern depends on the type of the modeled attack.

Fig. 4. An example risk pattern, structured into three parts

– Part (c) contains two connections between part (a) and part (b). One con-
nection is between the sensitive data and the attack point, the other one
between the actors. The possibilities for the first connection are determined
by the underlying meta-model and depend on the ‘distance’ (within the meta-
model) between parts (a) and (b). The second connection is always a mis-
trust relation between the data subject and the attacker. (Note: A dashed
line implies that the according relation must not exist, whereas a solid line
implies that the according relation must exist)

The attributes of the entities also play an important role. Sometimes vulnera-
bilities only differ in some attributes.

8 A. Palm et al.

5 The Devised Risk Patterns

In this section we present how we modeled different types of vulnerabilities from
the literature by different categories of risk patterns. The categorization is based
on the different attack points of the risk patterns. Overall the risk pattern catalog
includes 45 risk patterns in four categories. For reasons of space we include here
only some examples. The full risk pattern catalog is available under https://
zenodo.org/record/1324125#.W2A2mrhCREY.

5.1 Category: Control Interfaces

The first category of our catalog comprises risk patterns modeling attacks on
control interfaces. Control interfaces are interfaces which give users the oppor-
tunity of maintaining their resources. The maintenance of resources includes
the instantiation, starting and shut-down of virtual machines. Although such
interfaces are protected with measures like authorization and signatures, still
vulnerabilities exist. To provide the underlying basics for the definition of the
risk patterns of this category, we first introduce an attack scenario targeting a
vulnerability of a control interface, before we then describe the risk patterns
derived from this scenario.

Underlying Attacks. The attack scenarios which serve as a baseline for the
definition of the risk patterns of this category are described in [29]. To provide
the possibility of maintaining resources, Amazon Web Services (AWS) provides
mainly two interfaces: a SOAP interface and a Web interface.

The SOAP interface is based on the Simple Object Access Protocol (SOAP)
which uses an X.509 certificate for the identification of the user and an XML-
based signature to enable authentication and prove the integrity of a message.
Furthermore the SOAP messages themselves are based on XML. The authors
of [29] proved that SOAP is vulnerable to so-called signature wrapping attacks.
To perform a signature wrapping attack on SOAP, the attacker has to inter-
cept a SOAP message exchanged between the user and the interface. Then the
attacker can add an additional message body to the intercepted message and
reuse the signature. This enables the attacker to perform arbitrary operations
on the SOAP interface, because only the body referenced in the signature is
verified for integrity, but the additional body is interpreted.

The Web interface enables an attacker to perform a so-called script injection
attack on the cloud interface. As this attack is also founded in the underly-
ing protocol (HTTP), the derived risk patterns are analogous to those of the
aforementioned attack. Based on these attack scenarios, the usage of SOAP and
HTTP can be considered as a data protection vulnerability of a cloud system
and therefore is modeled as a risk pattern.

Risk Pattern Definition. The attack point of the risk patterns of this category
is shown in Fig. 5 (Note: this is an excerpt of the corresponding risk pattern

https://zenodo.org/record/1324125#.W2A2mrhCREY
https://zenodo.org/record/1324125#.W2A2mrhCREY

Modeling Data Protection Vulnerabilities using Risk Patterns 9

shown in Fig. 4). The interface is modeled as a ‘Public IaaS Interface’ entity
from the Infrastructure package of the meta-model. The IaaS user accessing the
interface may behave as the attacker of the attack scenario described above, thus
gaining unauthorized access to sensitive data. The protocol of the interface can
be identified by the attribute ‘protocol’, which is ‘SOAP’ in Fig. 5.

Fig. 5. Excerpt of a risk pattern of the category ‘control interfaces’

The meta-model allows multiple possibilities for connecting the ‘Public IaaS
Interface’ of Fig. 5 with the sensitive ‘Data Record’, i.e., multiple possibilities for
the attacker to actually access sensitive data, depending on the specific cloud
configuration. The risk pattern shown previously in Fig. 4 is one possibility,
in which the access takes place through a chain of a virtual machine (VM),
an application component, and a database management system (DBMS). The
meta-model allows five further possibilities, described by the following chains of
assets:

– VM → application component → local database
– VM → application server → application component → local database
– VM → DBMS
– VM → application server → DBMS
– VM → application server → application component → DBMS

These risk patterns capture different cloud configurations that exhibit a similar
data protection vulnerability.

5.2 Category: Side Channels

The second category of our catalog includes risk patterns modeling side chan-
nel attacks. Side channels are based on a shared resource (e.g. CPU cache)
which enables data leakage or is misused for communication between two vir-
tual machines that are co-located on the same physical machine but belong to
different users.

Underlying Attacks. Side channels can have two consequences: they can be
misused for communication between otherwise isolated VMs [19,22] or for data
leak [11,12,22,32]. Side channels always rely on multi-tenancy, which means that
a physical machine is shared among different users.

10 A. Palm et al.

How such co-location can be accomplished in Amazon EC2 is described in
[22]. An attacker can instantiate lots of VMs of the same instance type and inside
the same availability zone as the victim’s VM. Doing this, there is a high prob-
ability that one of the instantiated VMs is on the same physical machine as the
victim’s one. The probability can even be increased if the instantiation process
is launched right after the victim’s instance is re-instantiated, because following
Amazon EC2’s VM placement strategy, physical machines with free capacity are
filled first before new physical machines are started. After co-location is achieved,
the way is cleared for one of the following attacks or techniques.

Fig. 6. Excerpt of an abstract risk pattern of the category ‘side channels’

In [19] a technique called CCCV for the use of the CPU load as a side channel
is described. The technique is possible if virtual CPUs (VCPUs) of different VMs
share the same physical CPU. Assuming a spyware was injected into the victim’s
VM, the CPU load can be manipulated, so that data can be transfered adhering
to the protocol described in [19]. This protocol is based on the fact that a high
CPU load of one VM affects the performance of co-located VMs, and can thus
be observed by them. A different attack where CPU load is misused as a side
channel for communication is also described in [22].

The Prime+Trigger+Probe (PTP) technique uses a shared cache as side
channel [11,22]. As its name implies, PTP comprises three phases. Within the
‘prime’ phase, the attacker fills all lines of the shared cache and measures the
time needed to read each of these lines. In the following ‘trigger’ phase, the
attacker hands over the control of the shared cache to the victim’s VM. The
victim’s VM then may change some lines of the cache and hand over control back
to the attacker’s VM. The change of cache lines results in cache misses when
the attacker probes the cache during the ‘probe’ phase. This technique can be
used to communicate between the two VMs [22] when a change of the cache is
interpreted as the sending of a ‘1’ and no change of the cache is interpreted as
a ‘0’. Furthermore, this technique can be used to extract sensitive data such as
private keys [12], because the attacker can possibly determine which operations
were carried out by the victim’s VM based on the changes of the access times
of different cache lines and also based on which cache lines have been changed.
A slightly different technique is described in [32] and a scenario stating possible
consequences of such an attack is described in [4].

Modeling Data Protection Vulnerabilities using Risk Patterns 11

Risk Pattern Definition. As side-channel attacks always rely on a shared
resource used by two co-located VMs and only differ in the type of resource used
and in nuances of hardware settings, we introduced abstract risk patterns which
can be made concrete through attributes of the concerned elements depend-
ing on the specific vulnerability that should be exploited. The attack point of
the abstract risk patterns (and therefore also of all concrete risk patterns of
this category) comprises two VMs being hosted on the same physical machine
(see Fig. 6). The actor accessing one of the VMs (and thus serving as attacker)
is not trusted by the data subject. Attributes used to concretize abstract risk
patterns include ‘hypervisor’ to specify a certain hypervisor and ‘cpu-scheduling’
to specify a certain kind of CPU scheduler.

Fig. 7. Excerpt of a risk pattern of the category ‘privilege exploitation’

5.3 Category: Privilege Exploitation

The third category of our catalog comprises risk patterns modeling privilege
exploitation attacks. In privilege exploitation attacks, an administrator abuses
their privileges to get access to sensitive data [23,27].

Underlying Attacks. Administrators of cloud systems normally have no rights
to log on to client VMs. However, an administrator with root privileges can gen-
erate memory dumps of client VMs for troubleshooting. The administrator can
also misuse this opportunity to extract private data (e.g., cryptographic keys)
from such memory dumps [23]. Although data might be stored encrypted on
permanent storage, the administrator can get access to the cleartext if the mem-
ory dump is generated at the right moment (i.e. when data are decrypted for
processing). Because private keys are often stored as ASN.1-objects, an attacker
just needs to search for typical byte sequences of ASN.1-objects within the mem-
ory dump. This attack becomes more difficult if secure hardware is used that
prevents the memory from being dumped. In this case, an attacker may trigger
a VM relocation first, and perform the attack when the VM is relocated on a
physical machine which is not using this kind of hardware. A similar kind of
attack is also possible on storage devices [27].

12 A. Palm et al.

Risk Pattern Definition. The attack point of the risk patterns of this category
is shown in Fig. 7. As all attacks of this category are based on an administrator
abusing their privileges to access sensitive data, this situation is modeled in
the risk patterns of this category. More specifically, an untrusted IaaS operator
managing the physical machine on which the VM with the personal data of the
data subject is hosted is accessing these data.

5.4 Category: Service Mistrust

The fourth category of our catalog comprises risk patters modeling the problem
of mistrust within service compositions. Because service compositions consist of
different services which are composed in a hierarchical fashion and belong to
different providers, a data subject may not trust – and may not even know –
some of the involved providers. An untrusted provider getting access to sensitive
data constitutes a data protection risk.

Fig. 8. Excerpt of a risk pattern of the category ‘service mistrust’

Underlying Attacks. Bernsmed et al. [5] consider a scenario where a service
provider might access personal data processed by its service. In service compo-
sitions, the situation of trust becomes more complex. Although there may be a
chain-of-trust between the participating providers of a service compositions, a
data subject whose data is processed by the composed service, does not neces-
sarily trust all of the involved providers. The situation becomes even worse if the
data subject does not even have knowledge about the participating providers.
Therefore this situation is a data protection vulnerability and can be modeled
as a risk pattern.

Risk Pattern Definition. The attack point of the risk patterns of this category
is shown in Fig. 8. The situation is modeled by a SaaS (Software as a Service)
operator that is responsible for the operation of an application component –
which represents a service in a possibly larger composition of services – and
therefore can access sensitive data processed by this application component.

6 Lessons Learned

Through the modeling of real data protection vulnerabilities in the form of risk
patterns, we have gained insight into both the applicability of the risk pattern
approach and the characteristics of typical risk patterns.

Modeling Data Protection Vulnerabilities using Risk Patterns 13

6.1 Applicability of the Risk Pattern Approach

Since we managed to represent several real data protection vulnerabilities in a
natural way in the form of risk patterns, we can state that the risk pattern app-
roach is appropriate for modeling data protection vulnerabilities. In particular,
quite complex attack scenarios spanning multiple cloud layers could be modeled,
and also very different kinds of attacks.

That said, it is important to note that the attacks described in several papers
could not be reasonably modeled in the form of risk patterns. In some cases,
this was due to a lack of detail about the vulnerabilities in the respective papers
(cf. Fig. 3), because those papers focused primarily on describing data protection
techniques against some classes of attacks, rather than describing specific vul-
nerabilities in detail. However, there were also cases where the non-applicability
of the risk pattern approach had other reasons, and these reasons shed some
light on the limits of the applicability of the approach:

– Some vulnerabilities are not technical, but stem from human or organiza-
tional factors, e.g., lack of security training for personnel (e.g. the vulner-
ability described in [7] lies is the careless behaviour of users not cleaning
their Amazone Machines Images of passwords before making them available
for others). In contrast, risk patterns are appropriate for capturing forbidden
socio-technical configurations that are at least partly technical in the way
they expose data.

– Several papers focus on attacks and not on vulnerabilities, e.g., describing
several ways an attacker could exploit some basic vulnerability. Risk patterns
are not meant to capture specific attacks, but rather configurations that lead
to high risks of successful attacks (therefore the risk patterns stemming from
different side-channel attacks (cf. Sect. 5.2) only slightly differ.). Thus, the
use of risk patterns is more proactive than, for instance, intrusion detection
techniques [28].

– Several papers focus on system vulnerabilities which do not necessarily
imply data breach (e.g. attacks compromising the availability of resources,
cf. [6,13]). Although risk patterns could in principle also be used to model
such system vulnerabilities, our focus was on data protection vulnerabilities,
thus rendering some attacks irrelevant.

– Some papers describe vulnerabilities that are not cloud-related. While risk
patterns could in principle also be used in other contexts, the currently
used meta-model is cloud-specific, hence we only considered cloud-related
vulnerabilities. However, we decided to differentiate between cloud-related
side-channel attacks and the more general virtual machine escape (cf. [21]).
The latter was not cloud-related for us and therefore excluded.

– Some papers describe unlikely attacks, i.e., attacks that work only under
strong assumptions about the possibilities of the attacker. Risk patterns are
supposed to be created in the course of risk assessment, covering the configu-
rations that are considered to be too risky – not necessarily all configurations
that might allow some attack under unlikely conditions. This also applies to
some of the configurations we modeled in this paper.

14 A. Palm et al.

The applicability of the approach is also strongly related to how cloud con-
figurations can be modeled by using the types from the meta-model described
in [17]. The experience with using the meta-model has shown that it is indeed
a solid basis for modeling complex cloud configurations. In particular, the pos-
sibility of the meta-model to combine different hardware and software entities,
data, and actors in a single model has proven invaluable, since all risk patterns
span several of these categories. Some small extensions to the meta-model were
also necessary, e.g., some new attributes and relationships between certain assets
and actors had to be introduced (e.g. to model the direct access of an IaaS user
to a virtual machine or a DBMS running directly on a virtual machine). This is
normal; project-specific tailoring of the meta-model was also envisaged in [17].

6.2 Characteristics of Risk Patterns

As shown in Sect. 4, risk patterns have a common structure. All risk patterns
that we devised follow this same structure. From a graph-theoretic point of view,
a risk pattern defines a path from an attacker to the sensitive data (the path
through which the attacker may be able to access the data), plus an additional
path between the same two vertices encoding that the data belong to a data
subject who does not trust the attacker. This means that instead of a general
graph pattern matching problem as suggested in [26], only subgraphs of very
limited structure (cycle graphs) must be searched for in the cloud model, which
may require significantly less computation.

For assessing the computational implications, it is also an important finding
that the risk patterns are quite small: all the devised risk patterns consist of 6
to 10 entities, with exactly two connections per entity.

Another aspect is the number of risk patterns. In particular, a single system
vulnerability leads to multiple risk patterns: if an asset is compromised from
which there are k different kinds of paths to the sensitive data, then potentially
k risk patterns are needed to capture all possible data protection vulnerabilities
stemming from the same system vulnerability (and it is possible to use different
data protection mechanisms to protect each of those paths). It is important to
note that the number k of different kinds of paths from an asset to the data
depends on the meta-model and especially the possible connections between the
different entities of it. With the meta-model used in this work, k ≤ 6. Moreover,
for some system vulnerabilities, indeed 6 different risk patterns were needed; for
some other system vulnerabilities, a lower number of risk patterns was sufficient.
If the meta-model were refined with further types and relationships, this could
lead to higher values of k and thus to a proliferation of similar risk patterns (i.e.
they only differ in the possible paths between the compromised asset and the
sensitive data). Therefore, the level of detail of the meta-model constitutes an
important trade-off between the accuracy of modeling cloud configurations and
the effort for modeling the risk patterns.

Modeling Data Protection Vulnerabilities using Risk Patterns 15

7 Related Work

We discuss the work most relevant to ours along two aspects: (1) data protection
risks of cloud services and (2) model-based approaches for cloud security and
privacy.

7.1 Data Protection Risks of Cloud Services

Risk management covers the process of describing, detecting and mitigating
risks. So far, only few frameworks for risk management of services have been
presented [18].

Djemame et al. [8] propose a risk assessment framework for cloud computing
which is designed to help cloud users and cloud providers assess risks during
service deployment and operation. This approach focuses on the relationship
between service providers and services. However, they do not state how risks
may be monitored during operations. This is where risk patterns can help by
specifying what cloud configurations to look for during operations to determine
risky situations.

Meszaros and Buchalcevova [18] present a framework for online service risk
management. They consider similar assets to ours and present a risk and threat
model as basis. They focus on risk assessment and mitigation and propose tech-
niques for risk monitoring. Our approach can be considered complementary to
their work as our risk patterns capture specific configurations of cloud services
and systems that would lead to high data protection risks.

Several authors have analyzed specific data protection risks in the context
of cloud computing and services. Paquette et al. [20] analyzed the risks of cloud
computing, focusing on the context of governmental use of cloud computing.
Fernandes et al. [10] surveyed security issues in cloud computing as a potential
source for data protection risks. These insights provide an important source of
input for our approach as they help defining and specifying risk patterns by
taking important data protection concerns into account. Our approach can be
seen as a vehicle for capturing and utilizing this kind of knowledge.

7.2 Model-Based Approaches for Cloud Security and Privacy

Apvrille and Roudier introduced Attack Graphs based on the SysML-Sec frame-
work [2]. Similar to risk patterns, also attack graphs are visual representations
of security threats. However, attack graphs are used to model malicious attacks
on – especially embedded – systems, whereas risk patterns encode cloud config-
urations that can potentially lead to data protection issues. That is, an attack
graph models all the details of an attack, including the tools used and activ-
ities performed by an attacker, whereas a risk pattern models only the cloud
configuration that could potentially be exploited, thereby enabling more gen-
eral preventive measures. Attack graphs were applied to model a single attack,
whereas we compiled a catalog of 45 risk patterns.

16 A. Palm et al.

Watson and Little [31] introduced an approach to reason about the deploy-
ment of a distributed system and its impact on security. They state that not all
deployment problems can be solved during design time, so run-time reasoning is
needed. In contrast to our risk patterns, their approach requires the assignment
of security levels to all assets, which can be difficult in some settings. In fact, risk
patterns could help here: the number of risk patterns in which a given asset type
appears may be used as an indication of the security requirements of that asset.
Beyond the types of entities considered in that paper, we also explicitly consider
actors. As shown in our paper, actors are important for accurately determining
data protection concerns.

Similarly to our approach, the work of Schmieders et al. also applied model-
based adaptive methods to data protection in the cloud [24,25]. That work,
however, is limited to one specific type of privacy goals: geo-location constraints.
Our work, in contrast, addresses data protection goals in a much broader sense.

Kritikos and Massonet proposed a domain-specific modeling language for
modeling security aspects in cloud computing [14]. This includes security con-
trols, security properties, security metrics, and security capabilities. In contrast,
our work focuses on modeling the typical assets of cloud systems and their rela-
tionships, which are the possible attack surfaces and make up the configurations
that may lead to data protection violations.

8 Conclusions and Future Work

In this paper, a catalog of risk patterns was elaborated on the basis of vul-
nerabilities described in the literature. The results demonstrate that our previ-
ously proposed risk pattern approach [26] in combination with the meta-model
described in [17] is capable of modeling typical data protection vulnerabilities.
The present work also sheds light on the limits of the applicability of the risk
pattern approach and the typical characteristics of risk patterns.

Several directions for future work remain. First, the syntax and semantics
of the language of risk patterns should be defined formally. The catalog of risk
patterns elaborated in this work is an important input for the formal definition
of the language, as it shows the different constructs that must be supported.
Second, the process of devising risk patterns should be formalized based on the
experience reported here, and then validated by using it to create further risk
patterns. Third, an efficient algorithm should be devised and implemented to
search for risk patterns in the cloud model, using the gained insights about the
structure and size of risk patterns. Fourth, it should be investigated how the
expressive power of the language could be increased by introducing wildcards or
other mechanisms to compactly represent families of related risk patterns.

Acknowledgments. This work was partially supported by the European Union’s
Horizon 2020 research and innovation programme under grant 731678 (RestAssured).

Modeling Data Protection Vulnerabilities using Risk Patterns 17

A Appendix

The following picture shows the underlying meta-model (without the packages
‘Goals & Metrics’ and ‘Mechanisms’):

18 A. Palm et al.

References

1. Ahvar, E., Ahvar, S., Mann, Z.Á., Crespi, N., Garcia-Alfaro, J., Glitho, R.:
CACEV: a cost and carbon emission-efficient virtual machine placement method
for green distributed clouds. In: IEEE International Conference on Services Com-
puting (SCC), pp. 275–282. IEEE (2016)

2. Apvrille, L., Roudier, Y.: SysML-sec attack graphs: compact representations for
complex attacks. In: Mauw, S., Kordy, B., Jajodia, S. (eds.) GraMSec 2015. LNCS,
vol. 9390, pp. 35–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29968-6 3

3. Ardagna, C.A., Asal, R., Damiani, E., Vu, Q.H.: From security to assurance in the
cloud: a survey. ACM Comput. Surv. 48(1), 2:1–2:50 (2015)

4. Aviram, A., Hu, S., Ford, B., Gummadi, R.: Determinating timing channels in com-
pute clouds. In: Proceedings of the 2nd ACM Cloud Computing Security Workshop,
CCSW 2010, Chicago, IL, USA, pp. 103–108, 8 Oct 2010

5. Bernsmed, K., Jaatun, M.G., Meland, P.H., Undheim, A.: Thunder in the clouds:
security challenges and solutions for federated clouds. In: IEEE 4th Interna-
tional Conference on Cloud Computing Technology and Science (CloudCom),
pp. 113–120. IEEE (2012)

6. Booth, G., Soknacki, A., Somayaji, A.: Cloud security: attacks and current
defenses. In: 8th Annual Symposium on Information Assurance (ASIA’13),
pp. 56–62 (2013)

7. Bugiel, S., Nürnberger, S., Pöppelmann, T., Sadeghi, A.R., Schneider, T.: Ama-
zonia: when elasticity snaps back. In: Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS 2011, Chicago, Illinois, USA,
pp. 389–400, 17–21 Oct 2011

8. Djemame, K., Armstrong, D., Guitart, J., Macias, M.: A risk assessment framework
for cloud computing. IEEE Trans. Cloud Comput. 4(3), 265–278 (2016)

9. Elrotub, M., Gherbi, A.: Virtual machine classification-based approach to enhanced
workload balancing for cloud computing applications. Procedia Comput. Sci. 130,
683–688 (2018)

10. Fernandes, D.A.B., Soares, L.F.B., Gomes, J.V.P., Freire, M.M., Inácio, P.R.M.:
Security issues in cloud environments: a survey. Int. J. Inf. Sec. 13(2), 113–170
(2014)

11. Godfrey, M., Zulkernine, M.: A server-side solution to cache-based side-channel
attacks in the cloud. In: IEEE Sixth International Conference on Cloud Computing
(Cloud), pp. 163–170. IEEE (2013)

12. Green, M.: The threat in the cloud. IEEE Secur. Priv. 11(1), 86–89 (2013)
13. Jensen, M., Schwenk, J., Gruschka, N., Iacono, L.L.: On technical security issues in

cloud computing. In: IEEE International Conference on Cloud Computing, Cloud
2009, Bangalore, India, pp. 109–116, 21–25 Sept 2009

14. Kritikos, K., Massonet, P.: An integrated meta-model for cloud application security
modelling. Procedia Comput. Sci. 97, 84–93 (2016)

15. Mann, Z.Á.: Multicore-aware virtual machine placement in cloud data centers.
IEEE Trans. Comput. 65(11), 3357–3369 (2016)

16. Mann, Z.A., Metzger, A.: Optimized cloud deployment of multi-tenant software
considering data protection concerns. In: Proceedings of the 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, pp. 609–618.
IEEE Press (2017)

https://doi.org/10.1007/978-3-319-29968-6_3
https://doi.org/10.1007/978-3-319-29968-6_3

Modeling Data Protection Vulnerabilities using Risk Patterns 19

17. Mann, Z.A., Metzger, A., Schoenen, S.: Towards a run-time model for data pro-
tection in the cloud. In: Modellierung 2018, pp. 71–86. Gesellschaft für Informatik
e.V. (2018)

18. Meszaros, J., Buchalcevova, A.: Introducing OSSF: a framework for online service
cybersecurity risk management. Comput. Secur. 65, 300–313 (2017)

19. Okamura, K., Oyama, Y.: Load-based covert channels between Xen virtual
machines. In: Proceedings of the 2010 ACM Symposium on Applied Computing,
pp. 173–180. ACM (2010)

20. Paquette, S., Jaeger, P.T., Wilson, S.C.: Identifying the security risks associated
with governmental use of cloud computing. Gov. Inf. Q. 27(3), 245–253 (2010)

21. Pearce, M., Zeadally, S., Hunt, R.: Virtualization: issues, security threats, and
solutions. ACM Comput. Surv. (CSUR) 45(2), 17 (2013)

22. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Proceedings of the
16th ACM Conference on Computer and Communications Security, pp. 199–212.
ACM (2009)

23. Rocha, F., Correia, M.: Lucy in the sky without diamonds: stealing confidential
data in the cloud. In: IEEE/IFIP 41st International Conference on Dependable
Systems and Networks Workshops (DSN-W), pp. 129–134. IEEE (2011)

24. Schmieders, E., Metzger, A., Pohl, K.: Architectural runtime models for privacy
checks of cloud applications. In: Proceedings of the Seventh International Workshop
on Principles of Engineering Service-Oriented and Cloud Systems, pp. 17–23 (2015)

25. Schmieders, E., Metzger, A., Pohl, K.: Runtime model-based privacy checks of big
data cloud services. In: International Conference on Service-Oriented Computing,
pp. 71–86 (2015)

26. Schoenen, S., Mann, Z.Á., Metzger, A.: Using risk patterns to identify violations of
data protection policies in cloud systems. In: 13th International Workshop on Engi-
neering Service-Oriented Applications and Cloud Services (WESOACS) (2017)

27. Sedayao, J., Su, S., Ma, X., Jiang, M., Miao, K.: A simple technique for securing
data at rest stored in a computing cloud. In: Jaatun, M.G., Zhao, G., Rong, C.
(eds.) CloudCom 2009. LNCS, vol. 5931, pp. 553–558. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10665-1 51

28. Shameli-Sendi, A., Cheriet, M., Hamou-Lhadj, A.: Taxonomy of intrusion risk
assessment and response system. Comput. Secur. 45, 1–16 (2014)

29. Somorovsky, J., Heiderich, M., Jensen, M., Schwenk, J., Gruschka, N., Iacono, L.L.:
All your clouds are belong to us: security analysis of cloud management interfaces.
In: Proceedings of the 3rd ACM Cloud Computing Security Workshop (CCSW
2011), pp. 3–14 (2011)

30. Toeroe, M., Pawar, N., Khendek, F.: Managing application level elasticity and
availability. In: 10th International Conference on Network and Service Manage-
ment, pp. 348–351 (2014)

31. Watson, P., Little, M.: Multi-level security for deploying distributed applications
on clouds, devices and things. In: IEEE 6th International Conference on Cloud
Computing Technology and Science, pp. 380–385 (2014)

32. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. In: Proceedings of the 2012 ACM Conference on
Computer and Communications Security, pp. 305–316. ACM (2012)

https://doi.org/10.1007/978-3-642-10665-1_51

Scheduling Architectures for Scientific
Workflows in the Cloud

Johannes Erbel(B), Fabian Korte, and Jens Grabowski

University of Goettingen, Institute of Computer Science, Goettingen, Germany
{johannes.erbel,fkorte,grabowski}@cs.uni-goettingen.de

Abstract. Scientific workflows describe a sequence of tasks that
together form a scientific experiment. When workflows are computa-
tion or data intensive, distributed systems are used. Especially, cloud
computing has gained a lot of attention due to its flexible and scalable
nature. However, most approaches set up a preconfigured computation
clusters or schedule tasks to existing resources. In this paper, we propose
the utilization of cloud runtime models and couple them with scientific
workflows to create the required architecture of a workflow task at run-
time. Hereby, we schedule the architecture state required by a workflow
task in order to reduce the overall amount of data transfer and resources
needed. Thus, we present an approach that does not schedule tasks to
be executed on resources, but schedule architectures to be deployed at
runtime for the execution of workflows.

Keywords: Workflow · Models at runtime · Cloud computing · OCCI

1 Introduction

For an easy and repeatable execution of experiments, scientists utilize work-
flows to model their experiments as a sequence of data processing tasks [3].
Hereby, the individual tasks are commonly scheduled for execution on a clus-
ter of preconfigured computing resources which are for example provided by a
cloud service. Cloud computing however, allows to provision compute, storage,
and network resources on demand [9]. Combined, these resources serve as infras-
tructure for arbitrary applications to be deployed. Thus, cloud computing allows
to dynamically deploy individual architectures for workflow tasks requiring spe-
cific application and infrastructure configurations. Meanwhile, a few workflow
languages exist that annotate workflow models with architectural requirements.
Even though some approaches dynamically deploy these required architectures
at runtime [15], no runtime reflection is provided. Therefore, it is difficult to
make use of runtime information and tune the workflow accordingly.

In this paper, we propose an approach that combines the benefits of design
time and runtime models to dynamically schedule architectures in the cloud for

We thank the Simulationswissenschaftliches Zentrum Clausthal-Goettingen (SWZ)
for financial support.

c© Springer Nature Switzerland AG 2018
F. Khendek and R. Gotzhein (Eds.): SAM 2018, LNCS 11150, pp. 20–28, 2018.
https://doi.org/10.1007/978-3-030-01042-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01042-3_2&domain=pdf

Scheduling Architectures for Scientific Workflows in the Cloud 21

the execution of workflows. While, the design time model describes the order of
workflow tasks and their architectural requirements, the runtime model reflects
the state of the workflow and the running architecture. Based on these models,
we propose a simulation procedure to derive optimized cloud architectures for
successive tasks to reduce the amount of resources and data that has to be
transferred.

The remainder of this paper is structured as follows. Section 2 provides an
overview of basic concepts and related work. Section 3 summarizes problems to
be solved in order to dynamically schedule cloud architectures for workflows.
Section 4 presents the proposed approach and its different components, whereby
the current state of the implementation is discussed in Sect. 5. Finally, Sect. 6
provides a summary and outlook into future work.

2 Background and Related Work

Workflows are typically expressed as Directed Acyclic Graph (DAG) or as
Directed Acyclic Graph (DCG), if loops are supported [3]. Hereby, nodes rep-
resent tasks, whereas links describe either a control or dataflow between them.
As workflows can be compute and data intensive, distributed architectures like
grids and clouds are commonly utilized by workflow systems like Pegasus [4] and
Taverna [17]. Hereby, the dynamic capabilities of such systems are often not uti-
lized as tasks are scheduled on a preconfigured cluster of computing resources.
However, cloud computing is a service that allows to rent virtualized resources
on demand [9]. To provide a uniform access to such a service standards like the
Open Cloud Computing Interface (OCCI) [12] and the Topology and Orches-
tration Specification for Cloud Applications (TOSCA) [11] emerged for which
corresponding metamodels have been developed [10,11]. This trend led to mod-
els at runtime approaches [5,6] which deploy a modeled architecture and keep it
in sync with the cloud.

Recent approaches make use of these matured cloud orchestration techniques
to directly couple cloud architectures with workflow tasks. Qasha et al. [15]
extend the TOSCA standard to support workflows. Hereby, they couple tasks
to cloud resources and ensure the workflows reproducibility by using contain-
ers. Even though, they deploy the containers at runtime their approach is not
model-driven and only considers a design time representation. Another approach
by Beni et al. [2] presents a middleware which monitors the running workflow
over metamodel reflections. In addition to the generation of a workflow deploy-
ment plan, they gather runtime information to optimize the infrastructure for
the workflow for future executions. However, their reflection of a running work-
flow does not conform to any cloud standard. Furthermore, it only considers
the running cloud infrastructure and does not reflect deployed components and
applications. Finally, Flowbster a workflow system presented by Kacsuk et al. [7],
deploys scaling architectures for the execution of workflows. Nonetheless, the
approach is not model-driven, does not conform to any cloud standard, and
directly deploys the architecture for the whole workflow.

22 J. Erbel et al.

3 Problem Statement

The related work shows that there is a need for architecture aware workflows.
However, most approaches only consider design time representations. Thus, the
runtime state of a workflow and its underlying architecture can not be reflected
preventing its architecture awareness. Furthermore, there is no process that
merges cloud architectures taking the requirements of parallel executing and
successive tasks into account. Therefore, current approaches require an explicit
modelling of how a workflow is executed on an infrastructure making a modular
design impossible. Finally, it has to be calculated when the deployment process
for a task’s architecture has to be triggered. However, no approach exists that
combines the execution time of a task with the time needed to reconfigure a
cloud architecture. Summed up, we identified the following problems:

– P1: Only design time models are used to execute workflows in the cloud.
– P2: Approaches are needed to merge cloud architectures for workflow tasks.
– P3: There is no connection between task execution and deployment times.

4 Approach

To ensure the reproducibility of the workflow while managing its underlying
architecture at runtime, a design time as well as a runtime model is required.
While the design time model provides a static representation of the workflow
and its required architecture, as depicted in Fig. 1, the runtime model is used
to reflect the actual state of the workflow and the cloud. Based on the design
time information, the architecture scheduler assembles cloud architecture models
required in different time steps by the workflow and checks their viability over
a simulation approach. These models are then passed to a models at runtime
engine which synchronizes the described architecture with the cloud. As soon as
the architecture for a task is available the corresponding task is executed. Thus,
the architecture serves as extra dependency for the task execution in addition
to the input data. To loosely couple the architecture scheduler with the task
execution engine, their communication is handled only over the runtime model.
In the following the workflow runtime model and architecture scheduler concept
are presented in more detail.

Fig. 1. Components to schedule architectures for workflow tasks

Scheduling Architectures for Scientific Workflows in the Cloud 23

4.1 Workflow Runtime Model

To schedule cloud architectures for workflows, we propose the utilization of a
design time as well as a runtime model. While the design time model is capa-
ble of storing all the information about the workflow and its architecture, the
runtime model is used to reflect the actual state of the cloud and the workflow.
To represent both views, we utilize OCCI, a cloud standard by the Open Grid
Forum (OGF), which defines a uniform interface to manage cloud resources.
OCCI defines an extensible datamodel for which Merle et al. [10] created a
metamodel that got further enhanced in [18]. In addition to a classification and
identification mechanism, OCCI defines three core base types: Entity, Resource,
and Link, shown in Fig. 2. These core base types can be specialized to create
new types which in general form OCCI extensions. Additionally, OCCI Mixins
can be part of an extension which allow to dynamically add capabilities to spe-
cialized core types at runtime. In order to describe a task’s cloud architecture
the infrastructure [13], platform [14], and placement extension [8] can be used.
These extensions define elements to describe how an Application consisting of
multiple Components is deployed on a set of Virtual Machines (VMs) and how
these machines are interconnected. On top of these extensions, we propose the
extension shown in Fig. 2. This extension allows to model workflows running on
top of architectures modeled with OCCI. Thus, already existing OCCI models
can be used as underlying architecture for a sequence of tasks to be executed,
as well as other extensions defined for OCCI.

The Task element represents a single workflow task and inherits from the
Resource type. This element gives information about a task’s current state
and provides actions to start and stop its execution. Each Task is linked over
an ExecutionLink to an executable Component which may be part of a larger
Application. Hereby, the execution of the Task itself is triggered over the start
action every Component has to implement besides other lifecycle operations. As

Fig. 2. OCCI workflow extension

24 J. Erbel et al.

the task execution order is predetermined, each Task can be directly reflected
in the runtime model, whereas the architecture lying beneath the Component
to be executed can be created at runtime. Thus, a loose coupling between the
architecture and the workflow is provided. Additionally, this allows to update
a workflow during its execution by adapting the task sequence or architecture
requirements in the design time model. As a consequence, only the task sequence
in the runtime model has to be updated as a task’s architecture is extracted from
the design time model shortly before it’s execution.

To model a sequence of tasks, each Task can be linked over a TaskDependency
to its successor. While ControlflowLinks only represent a simple control flow,
DataLinks describe a control and dataflow. Because of that, a DataLink stores
information about the source and target location of a file to be transferred which
represents the in and output data of a Task. In addition to the workflow entities,
we define three canal Mixins, a NetworkCanal, a StorageCanal, a LocalCanal.
Using these, we can specify what kind of communication canal is used to transfer
the data between two tasks. For example, the flow of data between two VMs using
a network (NetworkCanal) or a storage (StorageCanal) or the flow of data
within a VM (LocalCanal). Additionally, we specify the RemoteDataSource
Mixin which is attached to a DataLink if the data is not directly located on the
device hosting the executable Component.

4.2 Architecture Scheduler

The goal of the architecture scheduler is to compose an architecture model fitting
the runtime needs of the workflow. The resulting model is then deployed over
a models at runtime engine which compares the runtime state of the cloud to
the desired state and performs required requests accordingly. To assemble such
cloud architectures for different points in time, several questions need to be
answered: What is required by the current and following tasks? Where can a
task’s application be deployed most efficiently? When does the new architecture
configuration needs to be triggered?

The architecture requirement for each task is contained within the design
time model. However, we adjust this static composition at runtime in order to
combine architecture requirements of multiple tasks. This way a task’s archi-
tecture can be defined more modular and nested workflows can be supported.
To investigate possible configurations, we combine architectures of tasks which
are executed in parallel based on their required workload and similarity. Hereby,
we aim at utilizing each provisioned resource as much as possible to reduce the
overall amount of resources required for the execution of the workflow.

In a next step, we elaborate how the assembled architecture can be combined
with the running one. Hereby, we aim at reducing the amount of data that
has to be transferred between successive tasks. Therefore, we fuse the merged
architecture requirements with the information of the runtime model in order to
deploy a task’s application next to its input data. To check the viability of the
resulting architecture model we perform a simulation which allows to evaluate
performance metrics without an actual deployment.

Scheduling Architectures for Scientific Workflows in the Cloud 25

Fig. 3. Architecture Scheduler Example

To trigger the deployment of a new configuration, the task’s execution time
and the time to deploy the configuration is required. Therefore, we can estimate a
task’s execution time, e.g., based on the amount of input data [16]. Additionally,
we can profile the required provisioning or deployment time of each element in a
workflow’s architecture. For example, we observe how long it takes to provision
a VM, and the time to deploy an application on top of it. Using this information,
we then estimate how long the execution of a complete deployment plan takes.
Combined with the task’s execution time we can then calculate when to deploy
the new architecture or adapt the existing one.

An example of the described process is shown in Fig. 3. Here, task A is
currently running, whereas B, C are followup tasks. Based on the architecture
requirements of B and C, the scheduler assembles a suitable architecture for the
following step. For example, the second virtual machine of task B is merged with
the one of task C, as we historically recorded a low workload for both. Next the
architecture proposal is simulated in the runtime environment context. Assume,
task A and B both require a similar component and the data produced by A
is required by B and stored locally. Thus, we reuse the machine that executed
task A for B as no machine has to be started and no data has to be trans-
ferred. Finally, the reconfiguration process is triggered based on the estimated
deployment time and the time for task A to be finished. In a next step, when
A is finished, the storage and components not required anymore are deleted by
removing them from the runtime model.

5 Current Status

As the proposed approach is work in progress, we discuss how the issues described
in Sect. 3 are tackled. Therefore, we explain how the proposed approach is going
to be implemented and validated.

P1: Only design time models are used to execute workflows in the cloud. To
provide a runtime representation of a workflow, we propose an OCCI extension
which allows to manage and reflect the workflow execution and the architec-
ture over a standardized interface. To implement the proposed OCCI extension,
we use the OCCIware tool chain [18]. This tool chain provides a graphical and
textual editor to design OCCI extensions. Furthermore, it allows to automati-
cally generate an implementation for an OCCI interface supporting the designed

26 J. Erbel et al.

extension. Then we deploy the interface implementation of the workflow exten-
sion on an OCCIware runtime server which also supports the infrastructure [13],
platform [14], and placement extension [8]. This runtime server is directly con-
nected to the cloud system on which the workflow is executed and the task spe-
cific architectures are deployed. Hereby, the server directly maintains an OCCI
runtime model reflecting the state of the workflow and the cloud. To proof the
concept of the workflow extension, we are going to develop a set of compute and
data intensive workflows. Moreover, these workflows will be designed in such
a manner that they require a sequence of complex infrastructure and applica-
tion configurations for their execution. Finally, we plan to test the execution of
these workflows on a private cloud using a prototypical implementation of the
proposed approach.

P2: Approaches are needed to merge cloud architectures for workflow tasks. To
lower the workflow execution time, we strive to reuse parts of a running archi-
tecture to reduce the amount of resources and the amount of data that has to
be transferred. First, we identify resources that have enough capacity to handle
components of parallel executing tasks. For this purpose, we are going to inves-
tigate suitable scheduling approaches to assign tasks to resources. It should be
noted that software configurations of different applications may interfere with
each other. Thus, every application has to be completely separated from each
other. Therefor, either containerized virtualization or separated runtime environ-
ments can be used. Secondly, we fuse the resulting architecture with the runtime
model to place a component next to its data. Finally, we validate the resulting
configuration by deriving performance measurements using the OCCI simulation
extension [1]. To actually deploy the simulated model, we utilize the OCCI com-
pliant models at runtime engine presented in a former work [5]. To investigate
the benefits and drawbacks of combining architectures of successive and paral-
lel tasks, we plan to execute workflows with and without the proposed merging
approach. Hereby, we will measure and compare the execution time required by
each workflow, as well as the amount of provisioned resources and data that had
to be transferred.

P3: There is no connection between task execution and deployment times. To
reduce the time between the execution of two successive tasks, it has to be
calculated when the reconfiguration of the cloud architecture has to be trig-
gered. Therefore, we combine estimates about a task’s execution time with the
time required to deploy or reconfigure components within the cloud architec-
ture. Therefore, we combine existing approaches that estimate a task’s execu-
tion time [16] with historical data about the deployment and provisioning time
of each single element in the cloud architecture. Thus, the architecture required
for the execution of each task is deployed as soon as the previous task finishes.
In order to evaluate the estimated time to trigger a cloud reconfiguration, we
are going to measure the amount of time a workflow is idle because of a task
which is waiting for its architecture to be deployed.

Scheduling Architectures for Scientific Workflows in the Cloud 27

6 Summary and Outlook

In this position paper, we propose an approach that dynamically schedules cloud
architecture states for the execution of workflow tasks using runtime models in
order to reduce the overall amount of data transfer and resources needed. Hereby,
we identified that in addition to a design time a runtime model is required to
manage and reflect the state of the workflow and its underlying architecture. In
the future, we will concentrate on implementing the OCCI workflow extension.
Thereafter, we focus on the deployment time for cloud architectures and fuse
them with the execution time of workflow tasks. Then we test multiple schedul-
ing approaches to combine architecture models and elaborate how the resulting
model can be fused with the runtime model. Finally, we are going to assemble
these components into the proposed approach and proof the concept based on a
set of compute and data intensive workflows.

References

1. Ahmed-Nacer, M., Gaaloul, W., Tata, S.: Occi-compliant cloud configuration sim-
ulation. In: 2017 IEEE International Conference on Edge Computing (EDGE), pp.
73–81 (June 2017)

2. Beni, E.H., Lagaisse, B., Joosen, W.: Adaptive and reflective middleware for the
cloudification of simulation & optimization workflows. In: Proceedings of the 16th
Workshop on Adaptive and Reflective Middleware, ARM ’17, pp. 2:1–2:6. ACM
(2017)

3. Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-science: an
overview of workflow system features and capabilities. Futur. Gener. Comput. Syst.
25(5), 528–540 (2009)

4. Deelman, E., et al.: Pegasus: a framework for mapping complex scientific workflows
onto distributed systems. Sci. Program. J. 13(3), 219–237 (2005)

5. Erbel, J., Korte, F., Grabowski, J.: Comparison and runtime adaptation of cloud
application topologies based on occi. In: Proceedings of the 8th International Con-
ference on Cloud Computing and Services Science, CLOSER, vol. 1, pp. 517–525.
INSTICC, SciTePress (2018)

6. Ferry, N., Chauvel, F., Song, H., Rossini, A., Lushpenko, M., Solberg, A.: Cloudmf:
Model-driven management of multi-cloud applications. ACM Trans. Internet Tech-
nol. 18(2), 16:1–16:24 (2018)

7. Kacsuk, P., Kovács, J., Farkas, Z.: The flowbster cloud-oriented workflow system
to process large scientific data sets. J. Grid Comput. 16(1), 55–83 (2018)

8. Korte, F., Challita, S., Zalila, F., Merle, P., Grabowski, J.: Model-driven config-
uration management of cloud applications with occi. In: Proceedings of the 8th
International Conference on Cloud Computing and Services Science, CLOSER,
vol. 1, pp. 100–111. INSTICC, SciTePress (2018)

9. Mell, P., Grance, T.: The NIST Definition of Cloud Computing (2011)
10. Merle, P., Barais, O., Parpaillon, J., Plouzeau, N., Tata, S.: A precise metamodel

for open cloud computing interface. In: 2015 IEEE 8th International Conference
on Cloud Computing, pp. 852–859 (June 2015)

11. OASIS: Topology and Orchestration Specification for Cloud Applications (2013).
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html. Accessed 27
July 2018

http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html

28 J. Erbel et al.

12. OGF: Open Cloud Computing Interface - Core (2016). https://www.ogf.org/
documents/GFD.221.pdf. Accessed 27 July 2018

13. OGF: Open Cloud Computing Interface - Infrastructure (2016). https://www.ogf.
org/documents/GFD.224.pdf. Accessed 27 July 2018

14. OGF: Open Cloud Computing Interface - Platform (2016). https://www.ogf.org/
documents/GFD.227.pdf. Accessed 27 July 2018

15. Qasha, R., Cala, J., Watson, P.: Dynamic deployment of scientific workflows in the
cloud using container virtualization. In: 2016 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), pp. 269–276 (Dec 2016)

16. da Silva, R.F., et al.: Toward fine-grained online task characteristics estimation in
scientific workflows. In: Proceedings of the 8th Workshop on Workflows in Support
of Large-Scale Science, WORKS ’13, pp. 58–67. ACM (2013)

17. Wolstencroft, K., et al.: The taverna workflow suite: designing and executing work-
flows of web services on the desktop, web or in the cloud. Nucl. Acids Res. 41(W1),
W557–W561 (2013)

18. Zalila, F., Challita, S., Merle, P.: A model-driven tool chain for OCCI. In: Panetto,
H. (ed.) OTM 2017. LNCS, vol. 10573, pp. 389–409. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69462-7 26

https://www.ogf.org/documents/GFD.221.pdf
https://www.ogf.org/documents/GFD.221.pdf
https://www.ogf.org/documents/GFD.224.pdf
https://www.ogf.org/documents/GFD.224.pdf
https://www.ogf.org/documents/GFD.227.pdf
https://www.ogf.org/documents/GFD.227.pdf
https://doi.org/10.1007/978-3-319-69462-7_26

CREST - A DSL for Reactive
Cyber-Physical Systems

Stefan Klikovits(B), Alban Linard, and Didier Buchs

Software Modeling and Verification (SMV) Group,
Faculty of Science University of Geneva, Geneva, Switzerland
{Stefan.Klikovits,Alban.Linard,Didier.Buchs}@unige.ch

Abstract. This article presents CREST, a novel domain-specific lan-
guage for the modelling of cyber-physical systems. CREST is designed for
the simple and clear modelling, simulation and verification of small-scale
systems such as home and office automation, smart gardening systems
and similar. The language is designed to model the flow of resources
throughout the system. It features synchronous system evolution and
reactive behaviour. CREST’s formal semantics allow real-valued time
advances and the modelling of timed system evolution. The continuous
time concept permits the precise simulation of future system behaviour
by automatically calculating next transition times. We present CREST
in a practical manner, and elaborate on the Python-based DSL imple-
mentation and simulator.

1 Introduction

Cyber-physical systems (CPS) are combinations of software components, that
perform computation, and hardware interfaces, such as sensors and actuators,
which connect the system to the physical world. Enabled by inexpensive hard-
ware, applications such as home and building automation, or more generally the
Internet-of-Things (IoT), are recent and popular manifestations of CPS which
offer the possibility to digitally control large parts of our lives. This recent pro-
liferation requires more trust in CPS’ correctness.

Classical CPS domains such as aviation and transport, heavy industry as
well as large-scale and complex systems using dedicated formalisms, languages
and tools to control, simulate and verify their systems. While these solutions are
commonly used by financially potent institutions, creators of small and custom
systems often lack the knowledge and resources to use such tools. The goal of
our project is to give these people the means to easily model and check their
CPS.

This project is supported by: FNRS STRATOS: Strategy based Term Rewriting
for Analysis and Testing Of Software, the Hasler Foundation, 1604 CPS-Move, and
COST IC1404: MPM4CPS

c© Springer Nature Switzerland AG 2018
F. Khendek and R. Gotzhein (Eds.): SAM 2018, LNCS 11150, pp. 29–45, 2018.
https://doi.org/10.1007/978-3-030-01042-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01042-3_3&domain=pdf

30 S. Klikovits et al.

In this article we present the Continuous REactive SysTems (CREST) lan-
guage. CREST is a domain-specific language (DSL) created for the modelling
of small-scale CPS such as home, office and building automation, automated
gardening systems and similar. The language particularly emphasises the simple
representation of three CPS aspects: 1. the continuous flow of physical resources
(e.g. light, heat, electricity) and data signals (e.g. on/off switches, control com-
mands) within a system; 2. the state-based behaviour of CPS components; and
3. the evolution of a system over time.

CREST’s strictly hierarchical system view encourages composition and
system-of-systems designs. The formal language semantics guarantee a syn-
chronous representation and evolution of the model, while still preserving
dynamic behaviour. It features arbitrary time granularity, as opposed to fixed
time steps, and hence avoids the need for ticks commonly used in other lan-
guages. CREST is implemented as an internal DSL in Python,1 which means
that it uses Python’s execution environment and language as a foundation.

The rest of the paper is structured as follows: Sect. 2 provides related work
and the reasoning behind the choice of designing a new DSL, instead of using
existing solutions. Sect. 3 introduces the CREST language, its graphical syntax
and semantics. Sect. 4 outlines the CREST’s Python-based implementation, the
interactive modelling environment and simulation capabilities. Sect. 5 concludes
and discusses future work.

2 Motivation and Related Works

Over the years, a large number of formalisms, languages and tools have been
developed to aid the modelling and verification of systems. Even though each
one of them has its own, clear strengths, oftentimes the choice of one is not
trivial and requires trade-offs. In order to find the most appropriate candidate
for the modelling and simulation of CPS such as the ones described above, we
performed a requirements analysis, collecting the properties of the target systems
and comparing them to the available solutions.

For this evaluation we assumed three different case studies that should be
modelled. The first one, a smart home system includes solar panels, a battery
and an standard electricity mains for power supply, a water boiler, shower and
various home appliances (e.g. IoT vacuum cleaner, TV, dishwasher). Next, an
office system that features automated light and temperature regulation based on
presence sensors, environmental sensors and work schedules. The third system
is an automated gardening systems that uses a relay to control growing lamps
and a water pump to automatically grow plants inside a home. Measurements
are performed using light, temperature and soil moisture sensors.

Such systems require a modelling language/tool that is capable of represent-
ing the flow of physical influences (e.g. light, water, electricity) between compo-
nents, additional to expressing the component’s state and evolution over time.

1 https://www.python.org/.

https://www.python.org/

CREST - A DSL for Reactive Cyber-Physical Systems 31

Next to structural considerations, an analysis of the systems’ behaviour was per-
formed. This exploration led to the discovery of six key aspects that should be
supported by the chosen language/tool:

1. Locality. Despite the exchange of data and resources, system components
usually have states and data that should remain local. As an example we
can think of a lamp. Its state, life-time and power consumption are local
attributes, independent of other components. Interaction occurs through a
well-defined interface, i.e. the power plug and switch.

2. Continuous Time. Most CPS deal in some way with timing aspects. Plants
require a certain amount of light per day, water consumption is measured per
minute, etc. Ideally, the chosen formalism will allow arbitrary (real-valued)
time steps so that all points in time can be analysed (not just the ones that
coincide with ticks). The time concept has to support continuous influences
between components (e.g. a pump filling a water tank).

3. Synchronism. While some changes happen over time, most effects are imme-
diate. For example, a room is (virtually) immediately illuminated by a lamp.
The actual time delay is negligible for our target applications. Even for energy
saving lamps, whose luminosity increases over time, the transition to the on-
state and dissipation of light starts immediately. The synchronism concept
requires that as soon as a value changes, the entire system is synchronised
and checked for possible changed influences between components.

4. Reactivity. The goal of CPS is to model components and systems that react to
changes in their environment. When the sun sets, a home automation system
should adapt and provide another light source.

5. Parallelism and Concurrency. While synchronism and reactivity prescribe
each individual subsystem’s behaviour, CPSs consists of many components
acting in parallel. A tripped fuse shut down all electrical appliances at the
same time.

6. Non-determinism. When it comes to real-world applications the evolution of
a system is not always predictable. For example, the communication between
wireless components can temporarily fail. It should be possible to model these
scenarios.

This list served as a reference guide for the search of a suitable language.
Additionally to the above properties we took properties such as simplicity,
expressiveness and availability of formal semantics into account. Lastly, we are
interested in the usability and suitability for our target domain, i.e. how it allows
the expression of the data types and concepts required by our systems, as well
as the complexity of the created solutions. The rest of this section presents the
tools and languages that were evaluated before choosing to develop CREST.

2.1 Evaluation of Existing Tools and Languages

The modelling of software systems has been dominated by languages such as
UML 2 and SysML [19]. Despite their versatility in the software world, their

32 S. Klikovits et al.

support for physical systems is rather limited. They lack important embedded
systems concepts such as real-time behaviour and timing constraints. Exten-
sions, such as the MARTE UML profile [18] aim to provide those missing fea-
tures, at the cost of added complexity. MARTE for example provides a very
complex web of languages, which makes the modelling of simple systems (e.g.
home automation) complicated and time consuming. UML also entails an often-
criticised architectural focus, which is necessary for efficient CPS modelling.

Architecture Description Languages (ADLs) such as AADL [9] are designed
to overcome this problem by modelling systems using architectural component
and connector views. However, in most cases they focus on pure architectural
concepts and do not support behavioural concepts. CREST in contrast aims to
merge the behavioural and architectural side. Extensions to ADLs have been
proposed to overcome this shortcoming. AADL’s Behavioural Annex [11] and
MontiArcAutomaton (MAA) [22] extend the capabilities of AADL and Mon-
tiArc [12], respectively, and allow modelling of CPS using automata. While these
extension do add the missing behavioural features, AADL’s extension lacks a for-
mal basis and MAA only supports the time-synchronous or cycle-based (tick)
evolution and lacks support of clocks and similar time concepts. Further, MAA
uses MontiArc’s asynchronous message passing system and hence contradicts
our synchronism requirement.

Hardware Description Languages (HDLs) such as VHDL [1] and Verilog [23]
have been successfully used to model System-on-Chip designs and embedded
systems from a functionality level down to the Transaction-Level Modeling and
Register-Transfer Level. The C++-based and IEEE standardised SystemC [3]
language is a valuable addition to the HDL domain. All three languages offer
design as modules, events and message passing between ports, and allow for
the storage of data. Aptly named, HDLs mostly target low-level systems and
provide built-in support for embedded concepts (e.g. mutex, semaphores, four-
valued logic) and measure time in sub-second granularity (e.g. picosecond). Most
tooling and verification support only focuses on the generation and verification
of TLM and RTL level designs, which is too low-level for our purposes. Another
caveat is, that the language’s semantics are not formally defined.

The Specification and Description Language (SDL) [10] is a strong candidate
for the modelling of the systems such as ours. It provides hierarchical composition
of entities (called agents) and behaviour using extended finite state machines. Its
design is reactive, agents can perform their processing upon input signal receipt.
Timing constraints can be modelled using timers that also trigger a signal upon
expiration. SDL’s rigorous formal basis is a compelling advantage that allows
formal verification (e.g. [24]) and tool-independent simulation. SDL’s weak point
with respect to our requirements, is that all SDL signals are asynchronous. This
goes against our view of CPS, where influences and signals are synchronous.

The family of synchronous languages, such as Lustre [13] or Esterel [2], is
commonly employed in the field of reactive systems. A synchronous module
waits for input signals acts upon them instantaneously and produces output sig-
nals. It is assumed that the reaction (i.e. computation) of a module is infinitely

CREST - A DSL for Reactive Cyber-Physical Systems 33

fast and hence no time passes during execution. One caveat however is, clas-
sical synchronous systems do no have a notion of time. In order to introduce
this concept an external clock has to be defined as signal input. Recently as a
Lustre-based extension, Zélus [4] overcomes this limitation by adding support
for ordinary differential equations that model continuous behaviour. However,
just as Lustre, Zélus’ suffers from a steep learning curve and difficult syntax.

The CPS in our case studies consist in several components with state-based
behaviour, where the component behaviour can change as time passes. This
definition is close to the hybrid automata (HA) formalism [21]. HA contain a
finite state automaton and model continuous evolution via variables that evolve
according to ordinary differential equations (ODE). Transitions are executed
according to state invariants and transition conditions. The popularity of HA
and hybrid systems (HS) resulted in the development of many languages and
tools, such as Simulink/Stateflow [7], HyVisual [5], Modelica, etc. Simulink is
the de-facto industry standard of CPS modelling. It is possible to hierarchically
design nonlinear, dynamic systems, using different time concepts (e.g. nonlin-
ear, discrete, continuous). Stateflow adds a reactive finite state machine con-
cept to Simulink. Neither Simulink nor Stateflow have formal semantics defined,
although proposals exist (e.g. [14]). HyVisual is based on Ptolemy II [20] and
allows the definition of hybrid systems with causal influences. It has, contrary to
Simulink, a formal operational semantics that can be leveraged for simulation.
However, HyVisual’s only features a graphical syntax that can become complex
to interact with.

A thorough study of HS tools and languages is given in [6] where Carloni et al.
use two well-known case studies for their evaluation. The authors also compare
tools for the verification of HS, which is a complex task in general where many
properties are undecidable [15]. The drawback of HS is their complexity and
required familiarity with the formalism. HS however, serve as a possible transpi-
lation target of CREST models so they are used for verification and validation.

The knowledge gathered from these evaluations led us to the conclusion that
the modelling of small CPS cannot conveniently be done by using the previ-
ous formalisms. The analysed languages and tools either target other domains
(UML, HDL, ADL) or lack vital concepts (e.g. time in MontiArcAutomaton).
The most promising candidates, the hybrid systems applications either lack for-
mal semantics for verification purposes (Simulink, Modelica) or lack usability
(e.g. HyVisual’s graphical modelling environment, as pointed out in [6]). A sub-
set of evaluation results is compared in Table 1.

3 CREST Language

The decision to develop CREST is based on the recognition that none of the eval-
uated candidates fills the need of a formal language meeting our requirements.
CREST is the result of combining the most useful concepts of other systems
languages, adapted to increase simplicity and usability. This section introduces

34 S. Klikovits et al.

Table 1. Evaluation of a selection of candidates for modelling of small-scale CPS.
Symbol meaning: � (Yes), ✗ (No), ∼ (to a certain extent), ? (not fully known)

CREST’s graphical syntax and outlines its semantics. For spatial reasons we can-
not provide the formal definition and semantics, but refer the interested reader
to the detailed technical report [17].

We will use the concrete example of a growing lamp to introduce the indi-
vidual CREST concepts. Our growing lamp is a device that is used for growing
plants indoors. When turned on, it consumes electricity and produces light.
There is also a function where the lamp converts electricity into heat. This fea-
ture is controlled by an additional switch.

3.1 CREST Syntax

CREST’s graphical syntax, called CREST diagram, was developed to facilitate
the legibility of architecture and behaviour within the system. Figure 1 displays
the complete CREST diagram of the growing lamp.

In CREST, each component clearly defines its scope. Visually this is repre-
sented by a black border, showing the scope’s limits. The component’s commu-
nication interface is drawn on the edge of this scope, while the internal structure
and behaviour are placed on the inside.

System Structure. CREST enforces the view that all CPS are defined as
hierarchical compositions. This concept is by expressed by defining components
(“entities”) in a nested tree-structure. A CREST system contains one, sole
root entity. This entity can define arbitrarily many subentities, which can also

CREST - A DSL for Reactive Cyber-Physical Systems 35

Fig. 1. A growing lamp entity with subentities

contain children, etc. The growing lamp for example, consists of two separate
modules, one for light (LightElement), one for heating (HeatElement). Both
are embedded within the GrowLamp entity.

The strict hierarchy concept asserts a simplified, localised view on an entity
level. Each entity encapsulates its internal structure and allows us to treat it as
a black box. This black box view facilitates composition, as the entity’s parent
can treat it as coherent instance, disregarding the inside.

The black box view is completed by the definition of an entity’s communica-
tion interface, which consists of input and output ports. Ports are
required for the modelling of the flow of resources through the system.

CREST specifies a third kind of port: locals . This port type is not part
of the interface, but rather serves as internal storage of data. In the example
we see on-time and on-count as internal ports. All three types of port are
associated with a particular resource.

In CREST, resources are value types consisting of a value domain and a
unit (formally Domain × Unit). The growing lamp specifies units such as Watt
or Lumen. Domains are sets of values, e.g. the natural numbers N, rationals R

or a set of discrete values such as {on, off} (for Switch in the example). Next to
resources, each port specifies a value from its resource as its current value.

Entity Behaviour. CREST uses finite state machines (FSMs) to specify
behaviour. Each entity defines a set of states and guarded transitions between

36 S. Klikovits et al.

them. Transitions relate source states with target states and the names of transi-

tion guards (e.g.). The transition guard implementations are func-
tions that take an entity’s set of port value bindings bind (and previous port
bindings pre) as parameters and returns a Boolean (True, False) value indicat-
ing whether the transition is enabled or not. Note that CREST does not provide
a syntax for the definition of guard functions. Instead, the formal syntax pre-
scribes the function signature and leaves the implementation of a guard language
under-specified for flexibility.2 Mathematically, the behaviour of on-guard could
be specified using the following formula:

on-guard(bind , pre)

{
False if bind(electricity) < 100Watt
True if bind(electricity) � 100Watt

Formally bind and pre are defined as functions that applied onto a port return
the port’s value.

Note, that the concept of previous values is required for two reasons: First,
it can be used to discover and analyse ports’ value changes (i.e. bind(port) �=
pre(port)). Second, in certain situations it can be used to resolve algebraic loops,
which otherwise could not be supported in CREST. The concept of supporting
previous values is present as pre operator in other languages such as Modelica,
Lustre and Esterel. In CREST’s implementation pre is automatically managed
for the user and in certain cases automatically used when necessary.

Resource Flow. Resource transfers between ports can be modelled using
updates (). Updates are defined using a state, a target port and an update
function name. If the automaton is in the specified state, the update function
(identified by its name) is executed, modelling continuous changes. The function
itself returns the target port’s new value binding. Self-evidently the returned
value has to be in the domain of the target port. Conceptually, updates are
continuously executed so that the system’s ports always hold the latest val-
ues. Practically, CREST’s simulator asserts that the evaluations are performed
when necessary, as explained below. The growing lamp defines several updates,
such as update on time, update light electricity (both in GrowLamp) or
heat output (in HeatElement). Updates enforce CREST’s synchronism prin-
ciple. Provided the automaton is in the update’s matching state, the contin-
uous evaluation of update functions guarantees that the target port’s value is
the result of the update function execution, without delay or explicit message
passing.

Similar to transition guards, the update functions’ syntax is under-specified
but constrained by a required signature. Update functions are executed with the
current and previous port bindings bind and pre and additionally have access
to another parameter δt. It is a value of the system’s time-base T and holds

2 Section 4 shows how Python is used as a host language for implementing transition
guards and other parts of CREST.

CREST - A DSL for Reactive Cyber-Physical Systems 37

the information about the amount of time that has passed since entering the
associated FSM state. Hence, update functions can be used to model continuous
behaviour and value updates. In the growing lamp’s example the time-base is
rational (i.e. T = R). As an example we provide the mathematical definition
of update on time, which continuously accumulates the amount of time the
automaton spent in time on:

update on time(bind, pre, δt) = pre(on-time) + δt

In CPS, resources are often continuously transferred from one port to
another, independent of entity state or the time that has passed. In the example
above, the growing lamp’s heatswitch port value is transferred to the HeatEle-
ment’s switch input, disregarding whether the lamp is on or off. In order to
avoid the specification of the same update function for every state in the sys-
tem, CREST offers influences () as a syntactic shortcut. Influences relate
a source-port to a target-port and an update function name. The behaviour of
influences is similar to updates, with the difference that only the source’s value
is considered for calculation of the target port value. Neither δt nor any other
port values are considered for the calculation. In the growing lamp the influence
fahrenheit to celsius is defined as follows:

fahrenheit to celsius(bind, pre, δt) = (bind(room-temperature) − 32) ∗ 5/9

Lastly, a third type of resource flow is offered by CREST: actions ().
Actions define update functions that are executed during the triggering of tran-
sitions. Similar to influences, actions are not allowed to access the δt parameter
of the related update functions. The growing lamp scenario defines one action
(increment count) that is executed when the transition from Off to On is trig-
gered. It is used to count the number of times the lamp has been switched on.

3.2 CREST Semantics

Note that for spatial reasons this section only contains a short description of the
semantics. The full, formal semantics that are based on SOS rules are provided
in the technical report on CREST’s formalisation [17].

CREST’s semantics allow two basic ways of interaction with the system:
Setting of the root entity’s input values and advancing time. After either one of
these is performed, the system might be in an “unstable” state. The term unsta-
ble refers to a system where, due to the interaction a transition might become
enabled or an influence or update target port value outdated. To correct this
situation, the system has to be stabilised. Stabilisation is therefore the process
of bringing a system into a state where all influences and updates have been
executed, and no transitions are enabled.

In the following, we describe the stabilisation process after changing port
values and advancing time. Figure 2 shows a diagram that is inspired by call-
multigraphs [16]. Instead of procedure calls however, the arrows represent the
triggering of other semantic procedures.

38 S. Klikovits et al.

Fig. 2. An informal, schematic diagram of the semantic (sub-)processes for the
set-values and advance time actions. Arcs represent the triggering of sub-procedures.
Arc annotations represent conditional sub-procedure calls

Setting Values. As stated, any external modification of input port values
requires a subsequent stabilisation. This means that all value modifications
have to be relayed to dependant ports through updates and influences. In the
GrowLamp example, a modification of the electricity value has to be propa-
gated to the corresponding inputs of the light and heat modules’ input ports.
These modules will in turn modify their respective output port values, which
will then trigger further propagation. We see that a simple value change has to
be recursively propagated throughout the entire entity hierarchy, starting at the
root entity, whose inputs have been modified.

In an entity it is possible that influence and updates are “chained”, meaning
that one modifier (influence, update or subentity) changes a port which is then
read by another modifier to modify a different port. Such dependencies have to
be taken into account when performing stabilisation to avoid delayed or erro-
neous value propagation. Therefore, the entity will sort the modifiers so that
modifiers which read one port, in the sorting appear after a modifier writing to
that port. The modifiers are then executed in this order, based on their type. If
the modifier is an influence or update, the specified function is executed. If it is
a subentity whose input bindings changed, the stabilisation is performed inside
that subentity. As a result of the sorting, the subentity’s inputs will have neces-
sarily already received their updated values (provided there are any). The test-
ing for changed input values, and recalculation only upon their change, enforces
the reactivity principle that we specified as a requirement. Note, that circular
dependencies are not allowed within CREST systems. If there are any interde-
pendencies between values, they cannot refer to the current time period and
instead have to be expressed using a port’s pre value to break circularity. This
solution is used extensively in other languages, see Simulink’s Unit Delay blocks
and Modelica’s pre operator.

CREST - A DSL for Reactive Cyber-Physical Systems 39

After triggering all influences and updates, one of the enabled FSM transi-
tions is executed, provided there is one. CREST does not prescribe a selection
procedure in case of multiple enabled transitions, meaning that non-determinism
may occur. If a transition was enabled and executed (including the corresponding
actions), another stabilisation is started to execute all updates that are related
to the new FSM state. This stabilisation phase will, again, look for enabled
transitions and trigger one if applicable.

The stabilisation process operates recursively. That means that if an entity
triggers a subentity stabilisation, the subentity’s modifiers are executed in order
and any transitions within that subentity are triggered (followed by stabilisa-
tions) until no transitions are enabled. Only then, the control is returned back
to the parent entity to continue. If there are several subentities that are inde-
pendent (i.e. don’t have dependencies between their inputs and outputs), they
can be safely executed in parallel, as a result of the locality principle.

Note that no time passes between the update of port values and the end of
the stabilisation process, whereas some other languages (e.g. Simulink) introduce
a small time delay at every modification. CREST’s synchronism can be found
in languages such as Esterel. CREST differs from Esterel however, in that the
entire system is stabilised instead of just the affected subset.

Advancing Time. The prior part of this section states that updates allow the
modification of a system over time using a δt parameter. In fact, the semantics of
advancing of time triggers the same stabilisation process as set-values, except
that while set-values uses a δt = 0, advance specifies a δt � 0 as parameter.
Further, all subentities perform the updates, independent of whether their input
values change. This asserts that the update functions are executed correctly (i.e.
according to the time parameter).

There is one particularity of time advances that has to be considered though:
CREST implements eager transition triggering. This means that a transition has
to be fired as soon as it is enabled. When advancing time however, it can occur
that the advance routine is called with a δt that is bigger than the minimum
time required to enable a transition. CREST implements a continuous time
concept, that does not foresee “ticks” as system synchronisation points at which
transition guards are evaluated. In order not to “miss” the precise moment when
a transition becomes enabled, CREST makes use of a function that attempts to
calculate the precise amount of time ntt that has to pass until any transition
will be enabled. ntt is in the range [0, . . . ,∞), where 0 states that a transition
is currently enabled (and that the system is not stabilised) and ∞ means that
no transition can become enabled by just advancing time. Note, that the next-
transition-time function depends on the implementation of updates, influences
and guards and involves complex tasks such as the creation of inverse functions
or the expression of the functions as sets of constraints. We will further discuss
this function in the next section, with the Python implementation of CREST.

40 S. Klikovits et al.

The information of the next transition time ntt creates two possible scenarios:

1. ntt � δt (i.e. the time we plan to advance). CREST advances δt and the sta-
bilisation task will execute updates and transitions until reaching a fixpoint.

2. ntt < δt. CREST divides the advance into two steps: First, advance ntt,
advances until a transition is enabled. Updates and transitions are trig-
gered, followed by stabilisation. Next, CREST recurses on the remainder
(advance(δt − ntt)).

CREST’s time semantics allow the simulation and verification based on real-
valued clocks with arbitrary time advances. This is essential for the precise sim-
ulation of cyber-physical systems without the need for an artificial base-clock.
The time-based enabling of transitions extends the language and adds a con-
tinuous behaviour to the otherwise purely reactive system. Other synchronous
languages such as Lustre need external clocks to provide timing signals.

4 CREST Implementation and Simulation

While the graphical view is convenient for analysis and discussion of a system,
the creation of larger systems is more efficient when using textual represen-
tations. We therefore implemented CREST as an internal DSL in the Python
language. The concept of using a general purpose programming language as host
for another DSL is famously used by SystemC, which is implemented in C++.

We chose Python as a target language for three reasons:

1. Distribution and package installation allow easy installation and extension.
It also comes pre-installed on various operating systems.

2. It is easy to learn, flexible, has many useful libraries, and a large community.
3. Python’s internals let us alter class instantiations and hide CREST specifics

from users, while still enabling the use of the default execution engine.

4.1 PyCREST Implementation

PyCREST is developed as a set of Python libraries. This means the function-
ality can be imported and used in any standard Python program. PyCREST is
developed to make use of Project Jupyter3 notebooks as an interactive devel-
opment and execution environment. Since PyCREST also features integrated
plotting utilities, it is possible to create PyCREST systems and visualise them
as CREST diagrams. In the following we provide a small excerpt that showcases
the use of PyCREST and the definition of an entity, as displayed in Listing 3.
A more complete example is provided online as an introduction to CREST4.

Entities are defined as a regular Python class that inherits from PyCREST’s
Entity. PyCREST further provides a class for each model concept (Input,
State, Update, etc.) as well as additional decorators (e.g. @influence, @transition).
3 https://jupyter.org/.
4 https://mybinder.org/v2/gh/stklik/CREST/sam-demo/.

https://jupyter.org/
https://mybinder.org/v2/gh/stklik/CREST/sam-demo/

CREST - A DSL for Reactive Cyber-Physical Systems 41

Entity ports, transitions and updates are defined as class attributes or decorated
methods as shown in the example. PyCREST also supports many other classic
Python concepts such as constructors, sub-classing, etc.

4.2 Simulation

The previous section briefly outlines the use of next-transition-time calculation.
The calculation of the exact time of system changes is vital for the correct
simulation of CREST systems, as CREST does not rely on artificial base clocks
to identify the points for recalculation of data. Instead PyCREST’s simulator
uses Microsoft Research’ Z3 [8] theorem prover to create a set of constraints that
represents the transition’s guard and searches for the minimal δt that will solve
the constraints. CREST also searches all influences and updates (“modifiers”)
that either directly or indirectly modify the transition guard, and translates
them to Z3 constraints. The creation of constraints is based on transpilation of
the modifiers’ source code. After the translation, Z3 is instructed to find the
minimum value of δt that will enable a transition. The process is repeated for
all outgoing transitions of the individual entities’ current states. Finding the
minimum of these results yields the next transition time.

Fig. 3. The PyCREST definition of the LightElement entity

Z3 turned out to be powerful and efficient enough for most of the CPS that
we defined. However, this strong dependency also imposes limitations. Z3 can
quickly find solutions to most linear constraint sets. However, some systems
define non-linear constraints. An example is the ThreeMasses problem [6], where
three masses are placed on a surface. One of the masses has an initial velocity
and bumps into the second one, which in turn bumps into the third one, shortly

42 S. Klikovits et al.

after. The third mass falls off the edge of a surface and accelerates towards the
ground, off which it keeps bouncing, thus repeatedly switching from upwards
to downwards motion. The difficulty lies in the consideration of acceleration,
velocity and position of the masses in two dimensions, as well as the repeated
reduction thereof using a restitution factor.

In the presence of non-linear constraints, Z3 can only provides a solution to
the constraint set, but cannot guarantee that it is optimized (i.e. minimal or
maximal) δt value. We found, however, that the simulation is precise enough
for our purposes. The ThreeMasses system is implemented in PyCREST as a
benchmark,5 displaying the capabilities of the simulator. In general, the mod-
elling of CREST systems with non-linear constraints is discouraged until an
alternative constraint solver, that adds non-linear optimisation capabilities is
introduced. Further, at the time of writing, PyCREST has no special treatment
of zero-crossings. In fact, all changes in behaviour, including zero crossings, are
executed as usual. Zeno behaviour is discouraged and usually leads to exceptions
thrown by the Python interpreter. PyCREST catches this exception and informs
the user, but does not put in place any recovery procedures.

4.3 Function Approximation

It is evident that not all functions can be translated to Z3 constraints. In fact,
only a subset of Python, consisting of variable assignments, unary and binary
operators, and conditional statements and expressions is currently supported.
Loops, recursions and function calls are not allowed in CREST.

Instead, such functions can be defined through execution traces and then
interpolated. The domains of interpolation, splines and function fitting have
been extensively studied in mathematical fields, and there exist many tools
and libraries for the creation of interpolations and splines. CREST uses Python
libraries such as SciPy and NumPy6 for these purposes.

CREST distinguishes between influence and update approximation. Influ-
ences only depend on one particular port and are assumed to be linear in the
form A ∗ source-val + B, where A and B are the parameters to be found. The
function can be piecewise defined, e.g. as step function or as shown in Fig. 4.

The approximation of update functions is more complex, as updates can
calculate a port’s new value based on all of its entity’s ports’ current and previous
bindings additionally to the δt time parameter. Despite the increased number of
parameters, CREST tries to extract a δt-linear spline from the data provided.
This is achieved by first creating an approximation of the multidimensional data
and then selecting the slice of data that represents the current port values, as
visualised by the dark slice of the multidimensional surface in Fig. 5.

5 https://mybinder.org/v2/gh/stklik/CREST/sam-demo.
6 https://scipy.org/ http://www.numpy.org/.

https://mybinder.org/v2/gh/stklik/CREST/sam-demo
https://scipy.org/
http://www.numpy.org/

CREST - A DSL for Reactive Cyber-Physical Systems 43

Fig. 4. Piecewise interpolation Fig. 5. Multi-variable interpolation

4.4 Verification

CREST’s simulation revolves around the change of a root entity’s input ports
(i.e. external input), the advance of time (i.e. internal state changes) and output
produced by these system changes. Verification on the other hand requires the
creation of the state space of the CREST system’s evolution and analysis of
execution traces. Due to the unbounded number of values of real-valued clocks,
state spaces of timed systems are unbounded or even infinitely large. A full
discussion of CREST’s verification exceeds the scope of this paper. CREST’s
approach however is closely related to hybrid systems verification [6].

5 Conclusion and Future Works

This article introduces CREST, a domain-specific language for the definition of
continuous reactive systems. CREST’s target domain is the modelling of cyber-
physical systems’ architecture and continuous timely behaviour. The design,
syntax and semantics serve the six core concepts locality, continuous time
and behaviour, synchronism, reactivity, parallelism and concurrency and non-
determinism. CREST achieves this by evading the base-clock concept, while still
preserving synchronism and choosing synchronisation points based on system
behaviour. This trait permits continuous value changes, arbitrarily fine time
advances and convenient modelling on largely different time scales within the
same model. It also allows for the efficient simulation of behaviour and time.
CREST ensures a hierarchical structure that facilitates composition. The lan-
guage supports concurrency and parallelism, as they are a omnipresent in both
software and physical worlds. The automaton-based behaviour of CREST enti-
ties enables to easily capture the non-determinism and complexity of CPS.

44 S. Klikovits et al.

While CREST shows promising results, we see several areas of improvement:

– Currently the calculation of the next transition time has rudimentary sup-
port for one type of interpolation and approximation. We aim to extend our
research into different algorithms to provide better results.

– We are studying the automatic generation of controllers from CREST models.
– We are developing a property language that allows non-expert users to define

queries in a language that part of their systems. This facilitates removes the
need to know language such as LTL or CTL temporal logics.

References

1. Ashenden, P.J.: The Designer’s Guide to VHDL, 3rd edn. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA (2008)

2. Berry, G., Gonthier, G.: The Esterel synchronous programming language: design,
semantics, implementation. Sci. Comput. Program. 19, 87–152 (1992)

3. Black, D.C., Donovan, J., Bunton, B., Keist, A.: SystemC: From the Ground Up.
Springer, New York Inc, Secaucus, NJ, USA (2010)

4. Bourke, T., Pouzet, M.: Zélus: a synchronous language with ODEs. In: 16th Inter-
national Conference on Hybrid Systems: Computation and Control (2013)

5. Brooks, C., Cataldo, A., Lee, E.A., Liu, J., Liu, X., Neuendorffer, S., Zheng, H.:
Hyvisual: a hybrid system visual modeler. Technical Report UCB/ERL M05/24,
EECS Department, University of California, Berkeley (2005)

6. Carloni, L.P., Passerone, R., Pinto, A., Angiovanni-Vincentelli, A.L.: Languages
and tools for hybrid systems design. Found. Trends Electron. Des. Autom. 1, 1–
193 (2006)

7. Colgren, R.: Basic Matlab, Simulink And Stateflow. AIAA (American Institute of
Aeronautics & Ast (2006)

8. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Proceedings 14th Inter-
national Conference Tools and Algorithms f.t. Construction and Analysis of Sys-
tems (2008)

9. Feiler, P., Gluch, D., Hudak, J.: The architecture analysis & design language
(AADL): an introduction. Technical Report CMU/SEI-2006-TN-011, Software
Engineering Institute, Carnegie Mellon University (2006)

10. Fischer, J., Holz, E., Löwis, M., Prinz, A.: SDL-2000: a language with a formal
semantics. in: Rigorous Object-Oriented Methods 2000 (2000)

11. Franca, R.B., Bodeveix, J.P., Filali, M., Rolland, J.F., Chemouil, D., Thomas, D.:
The AADL behaviour annex – experiments and roadmap. In: 12th IEEE Interna-
tional Conference on Engineering Complex Computer Systems (2007)

12. Haber, A., Ringert, J.O., Rumpe, B.: Montiarc - architectural modeling of inter-
active distributed and cyber-physical systems (2014)

13. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow
programming language LUSTRE. In: Proceedings of the IEEE (1991)

14. Hamon, G., Rushby, J.: An operational semantics for stateflow. In: Wermelinger,
M., Margaria-Steffen, T. (eds.) FASE 2004. LNCS, vol. 2984, pp. 229–243. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24721-0 17

15. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

https://doi.org/10.1007/978-3-540-24721-0_17

CREST - A DSL for Reactive Cyber-Physical Systems 45

16. Khedker, U.P., Sanyal, A., Sathe, B.: Data Flow Analysis - Theory and Practice.
CRC Press (2009). http://www.crcpress.com/product/isbn/9780849328800

17. Klikovits, S., Linard, A., Buchs, D.: CREST formalization. Technical report, Soft-
ware Modeling and Verification Group, University of Geneva (2018). https://doi.
org/10.5281/zenodo.1284561

18. Object Management Group: UML Profile for MARTE: Modeling and Analysis of
Real-Time Embedded Systems (OMG MARTE) Version 1.1 (2011). https://www.
omg.org/spec/MARTE/1.1/PDF, OMG Document Number: formal-2011-06-02

19. Object Management Group: OMG Systems Modeling Language (OMG SysML)
Version 1.5 (2017). https://www.omg.org/spec/SysML/1.5/PDF, OMG Document
Number: formal-2017-05-01

20. Ptolemaeus, C. (ed.): System Design, Modeling, and Simulation using Ptolemy II.
Ptolemy.org (2014)

21. Raskin, J.: An introduction to hybrid automata. In: Hristu-Varsakelis D., Levine
W.S. (eds.) Handbook of Networked and Embedded Control Systems (2005)

22. Ringert, J.O., Rumpe, B., Wortmann, A.: Architecture and Behavior Modeling of
Cyber-Physical Systems with MontiArcAutomaton (2015)

23. Thomas, D., Moorby, P.: The Verilog Hardware Description Language. The Ver-
ilog Hardware Description Language. Kluwer Academic Publishers, San Francisco
(1996)

24. Vlaovič, B., Vreže, A., Brezočnik, Z., Kapus, T.: Verification of an SDL Specifica-
tion — a Case Study. Elektrotehnǐski vestnik (Electrotechnical Review) (2005)

http://www.crcpress.com/product/isbn/9780849328800
https://doi.org/10.5281/zenodo.1284561
https://doi.org/10.5281/zenodo.1284561
https://www.omg.org/spec/MARTE/1.1/PDF
https://www.omg.org/spec/MARTE/1.1/PDF
https://www.omg.org/spec/SysML/1.5/PDF

On the Ontological Expressiveness of the
High-Level Constraint Language for

Product Line Specification

Angela Villota1,2(B) , Raúl Mazo1,3 , and Camille Salinesi1

1 Université Paris 1 Panthéon Sorbonne, 75013 Paris, France
angela-patricia.villota-gomez@etu.univ-paris1.fr,

{raul.mazo,camille.salinesi}@univ-paris1.fr
2 Universidad Icesi, Calle 18 No. 122–135, Cali, Colombia

3 Universidad EAFIT, GIDITIC, Medelĺın, Colombia

Abstract. The High-Level Constraint Language (HLCL) consolidates
the constraints scattered in several product line notations in an abstract
and technologically independent language. Previous research has demon-
strated that HLCL is suitable to represent most product line constraints
from a practical point of view. However, the question about to what
extent the HLCL is able to represent product line variability is still open.
In this study, we refer to the ontological expressiveness theory to answer
this question and to evaluate how well HLCL can represent the state
of affairs for which it is proposed. Therefore, this evaluation considers
HLCL’s ontological expressiveness regarding its completeness and clar-
ity. Our results show that (1) HLCL closely represents the concepts in
the ontological framework. However, some variability concepts should be
integrated for obtaining a 100% level of completeness. (2) HLCL’s high
level of abstraction impacts its clarity. The discussion of the research pre-
sented in this paper opens the perspectives to build a constraint-based
language for product line engineering.

Keywords: Product line engineering · Constraint language
Ontological analysis

1 Introduction

The High-Level Constraint Language (HLCL) is an abstract constraint-based
language that was developed for representing product line variability [8]. Prod-
uct line variability relates to the common and optional characteristics of products
in a product line and is the key cross-cutting concern in product line engineer-
ing. HLCL can be used (1) as a specification language to create Product Line
Models (PLMs); or (2) as an intermediate representation of other product line
notations [17,23]. HLCL is intended to provide a unified view of many product
line languages because it gathers the constraints that are met in many product
line notations, i.e., feature-based notations [17,23]; variation point notations;
c© Springer Nature Switzerland AG 2018
F. Khendek and R. Gotzhein (Eds.): SAM 2018, LNCS 11150, pp. 46–66, 2018.
https://doi.org/10.1007/978-3-030-01042-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01042-3_4&domain=pdf
http://orcid.org/0000-0003-4398-4241
http://orcid.org/0000-0003-0629-1542
http://orcid.org/0000-0002-1957-0519

On the Ontological Expressiveness of the High-Level Constraint Language 47

Dopler models [17]; and goal-oriented notations [18,25], among others. Addi-
tionally, variability models represented in HLCL have been used to perform
different tasks in product lines such as configuration [8], specification [17,23],
analysis & verification [22], and simulation [16]. In this sense, it is right to state
that HLCL is a reflection of the state of the art of constraint programming in
product line engineering because it gathers the variability relations in several
product line languages and has been used in different stages of the develop-
ment of product lines. However, there is still an unanswered question: Is HLCL
expressive enough to encompass any product line model? This study addresses
this challenge by evaluating HLCL’s completeness and clarity from the perspec-
tive of the expressiveness in the context of ontological analysis. The theory of
ontological expressiveness is based on the observation that models of informa-
tion systems are essentially models of real-world systems. We build our study
on the theory of ontological expressiveness introduced by Wand and Weber [27]
and revised/extended by other authors [6,9] because it provides a well-founded
evaluation framework. Additionally, the theory of ontological expressiveness has
already been used to evaluate the expressiveness of conceptual modeling lan-
guages such as the entity-relation model [26]; UML [5], the i� language [11];
and BPMN [20]. In the product line context, theoretical analysis of variability
modeling languages concerning their ability to represent variability in real-world
domain models has been considered in Reinhartz-Berger et al. [21] and Asadi
et al. [1]. More particularly, Asadi et al. [1] proposed a theoretical framework
for variability and applied their framework evaluating the expressiveness of Fea-
ture Models (FM) and the Orthogonal Variability Model (OVM) [1]. Our study
uses the proposals of Asadi et al. to evaluate the HLCL’s ontological expressive-
ness. Four criteria were precisely measured to evaluate ontological expressiveness
through completion and clarity: (1) degree of deficit, (2) degree of excess, (3)
degree of redundancy, and (4) degree of overlap [20]. The results of the evalu-
ation are twofold: on the one hand, HLCL closely represents the general prin-
ciples of variability defined in the reference model. However, some variability
concepts should be integrated for obtaining a 100% level of completeness. On
the other hand, the metrics related to clarity show that ontological clarity is
affected by HLCL’s high level of abstraction. We compared our results regarding
completeness with the ones presented by Asadi et al. From this comparison, and
considering that HLCL consolidates the constraints scattered in several product
line languages, we concluded that the gap in the HLCL’s completeness reflects
a gap in the state of the art of the product line languages. This gap moves
our research towards a discussion of what changes should be considered to pro-
vide the product line community with a constraint-based language for product
line engineering. The remainder of this paper is organized in the following way.
Section 2 presents the HLCL while Sect. 3 describes the background concepts
related to the theory of ontological expressiveness. Section 4 outlines the design
and execution of the ontological analysis. Section 5 presents the discussion and
some challenges for variability languages. Finally, Sects. 6 and 7 present related
work and conclusions.

48 A. Villota et al.

2 The High-Level Constraint Language

The High-Level Constraint Language (HLCL) is an abstract constraint-based
language where constraints are presented as primary concepts. The idea of a con-
straint language that consolidates product line notations is not a novelty. In their
work, Djebbi and Salinesi [8] exposed the need for a product line language char-
acterized for being concise but comprehensive in scope and abstract enough for
representing different notations. The constraint programming paradigm [24] was
the first choice candidate to propose HLCL for many reasons. First, most prod-
uct line notations emphasize the specification of constraints to define acceptable
configurations (e.g., requires, excludes in FODA models [12]). Second, several
product line languages have been transformed into constraint programs to per-
form tasks such as analysis, verification, configuration, testing, and simulation
among others [3]. Third, written in a common language, constraints from differ-
ent PLMs can be integrated into a unique program and solved in an integrated
way. Finally, PLMs expressed as constraint programs can be directly executed
and analyzed by off-the-shelf solvers.

The first formalization of HLCL was presented by Salinesi et al. in [23] then
it was further developed by Mazo et al. in [17]. These works switched the focus of
PLMs specification from the concepts of feature, variation points or dependen-
cies to the concept of constraints that apply to variables. This constraint-based
approach enabled product line designers to enhance variability descriptions with
complex constraints (i.e., encourages, discourages [14]) that cannot be specified
with the constructs offered by current languages. Many publications demonstrate
that HLCL is able to represent most of the product line notations such as feature-
based, variation point-based, decision-based, goal-based and UML related nota-
tions [17,23]. This ability for representing several product line languages sup-
ports the claim that HLCL is an image of the state of the art of the product line
modeling languages.

HLCL is a solver agnostic language. Thus, HLCL can be used as an inter-
mediate representation of other product line notations in a solver-independent
way. Once represented in HLCL, product line constraints can be compiled in
any solver’s language. This feature is exploited within the VariaMos software
tool [16]. Currently, VariaMos supports the specification of product line models
using notations such as FODA [12], REFAS [18], among others.

The core constructs of HLCL are variables, domains, values, and con-
straints as presented in Table 1. Variables in HLCL have a domain, and at
a given moment in time, a value. Variables represent elements in a model
(e.g., features, requirements, design fragments, components, or any other reused
artifact). The domain of variables can be Boolean, integer, interval, enumera-
tion or string. To indicate that an element can be either included or excluded
in a product can be done by representing such element as a variable with a
Boolean domain. Constraints are used to specify variability relations in product
lines; Table 2 presents a summary of the variability relations supported by the
HLCL. There are four types of constraints in HLCL: Boolean, arithmetic, global
and reified. Boolean and arithmetic constraints are expressions using Boolean

On the Ontological Expressiveness of the High-Level Constraint Language 49

Table 1. Core constructs of the high-level constraint language.

Construct Definition

Variable Represent product line elements. A variable has a domain, and it is
paired with a value at a given time

Domain The domain of variables can be Boolean, integer, interval, enumeration
or string

Values Represent the elements in the domains

Constraint Constraints are relations over a set of variables C(x1, x2, . . . , xn) pro-
ducing sets of values {v1, v2, . . . , vn} where vi is assigned to each variable
xi

(∧,∨,¬,⇒, etc.) and arithmetic (+,−,×,÷, etc.) operators. Global constraints
are applied on a set of variables at a time using well-known predicates such as
all different, all equal, abs value, among others. A reified constraint is a
constraint whose truth value can be captured with a Boolean variable, which can
itself be part of another constraint. Reified constraints make possible to reason
on the realization of constraints.

Table 2. Variability relations supported by HLCL.

Notation Variability relations Publications

Feature
based

Optional, mandatory, requires, exclusion, alterna-
tive/XOR decomposition, OR relation, group cardinality,
feature cardinality, attribute, complex constraints

[17,23]

Variation
point based

Dependency decomposition: All of, optional, manda-
tory, requires, exclusion, alternative/XOR, OR relation,
group cardinality, individual cardinality, attribute, com-
plex constraints

[17,23]

Dopler/
decision

Root/visibility condition, requires/decision effects/
inclusion conditions, validity condition, asset dependen-
cies, group cardinality, complex constraints

[15,17]

Goals Elements of constraints, operators allowing the inten-
tional definition of a constraint (e.g., using a function
or an arithmetic expression)

[18,25]

UML Optional, mandatory, requires, group cardinality [17]

3 Ontological Expressiveness in Modeling Languages

The ontological expressiveness theory is a framework to analyze the expressive-
ness of conceptual modeling languages [27]. This theory is based on the obser-
vation that conceptual models of information systems are, essentially, models of

50 A. Villota et al.

real-world systems. The evaluation of a conceptual modeling language requires
a mapping of the language’s constructs with respect to a foundational ontology
[9,27]. In conceptual modeling, a foundational ontology is understood as a for-
mally and philosophically well-founded model of categories that can be used to
articulate conceptualizations in specific engineering models [11]. The mapping
between ontological constructs and language constructs should focus on two sets:
the set of ontological constructs and the set of language constructs, as presented
in Fig. 1. This mapping, considers two steps: the representation mapping and the
interpretation mapping [27]. On the one hand, representation mapping serves to
determine whether and how an ontological construct is represented using the lan-
guage constructs. On the other hand, interpretation mapping describes whether
and how a language construct stands for a real-world construct. To conclude
about the expressiveness of the examined language, it is decisive to determine
the presence or absence of any of the four observable defects in conceptual mod-
eling languages: construct deficit, construct excess, construct redundancy and
construct overload.

Fig. 1. Defects in a conceptual modeling language, taken from [27].

Figure 1 shows the defects in conceptual modeling languages. If a language has
construct deficit, then the language is ontologically incomplete. The ontological
clarity of the language is undermined If a language has either construct excess,
construct redundancy, or construct overload. The presence or absence of these
defects can be measured with the metrics of potential ontological deficiencies
proposed by Recker et al. [20] and described in Sect. 4.

3.1 Ontology for Variability Modeling Languages

Three criteria were taken into account to select an ontology for evaluating
the HLCL. The first criterion is the type of the language to be analyzed. As
suggested by Guizzardi et al. in [9], the type of the language (i.e., domain-
independent, domain-specific) is the most important criterion for selecting the
reference model in an ontological analysis. Domain-independent languages are
compared to domain-independent foundational ontologies such as BWW [27] or
UFO [10]. Instead, domain-specific languages should be compared using domain-
specific ontologies. HLCL has a duality with respect to this first criterion given
that variability languages should be domain-independent but also have particu-
lar characteristics regarding variability. Therefore, the selected ontology should

On the Ontological Expressiveness of the High-Level Constraint Language 51

include domain-independent constructs along with variability related constructs.
Thus, the second criterion is the ability to represent different variability relations.
To the best of our knowledge, there exist two ontologies with concepts from
a domain-independent ontology (BWW) that also include variability concepts:
Reinhartz-Berger et al. [21] and Asadi et al. [1]. However, Reinhartz-Berger et
al.’s variability is oriented to the behavior of the system, and the variability con-
cepts in Asadi et al. are of general purpose. The third criterion is the use of the
ontology in similar studies. To the best of our knowledge, the ontology of Asadi
et al. is the only one used to evaluate ontological expressiveness in variability
languages (i.e., FODA and OVM). For the aforementioned reasons, we chose the
ontology proposed by Asadi et al. for the ontological analysis of the HLCL.

3.2 Ontology

Asadi et al.’s ontology groups concepts into variability sources and variability
patterns. A variability source is an element in which variability may happen.
The concepts considered as variability sources correspond to things, properties,
lawful state space, lawful event space, and history in the BWW ontology [27].
Table 3 presents the concepts and their definitions. In this table, we included the
definition of concepts state, state law, and event because they are relevant for the
understanding and mapping of the lawful state space and lawful event space. Also,
the definitions of lawful state space and lawful event space are highlighted in the
table to denote that the next highlighted rows contain concepts and definitions
subjacent to each concept.

A variability pattern represents the different types of variability that can be
observed in different products in a particular product line. Variability patterns
are derived from a series of similarity classes regarding the variability sources.
Here we describe the variability patterns included in the ontology (Table 3), a
more detailed description is available in [1]. First, we introduce the definitions
of similarity and equivalence, and then we explain the four variability patterns.
Let S = {s1, s2, . . . , sm} be a set of elements belonging to a product P1 and
T = {t1, t2, . . . , tn} be a set of elements in product P2.

Definition 1. Equivalence. S is equivalent to T (S ≡ T) iff there is a mapping
between S and T .

Definition 2. Similarity. S is similar to T with respect to an equivalence subset
p, denoted as S ∼=p T , iff there exists S′, T ′ such as S′ ⊂ S and T ′ ⊂ T , then
S′ ≡ T ′. In other words, the concept of similarity refers to elements that are
common to products in a product line.

Full Similarity One-Side. Two products are full similarly one-side when they
satisfy the similarity relation and an equivalence can be established w.r.t. subsets
of S or T . Let S′, T ′ be two subsets, S′ ⊂ S and T ′ ⊂ T , then either S′ ≡ T or
T ′ ≡ S.

Partial Similarity. Two products are similar when they satisfy the similarity
relation.

52 A. Villota et al.

Dissimilarity. Two products are completely dissimilar if no similarity relation
can be established.

Ordering. Variability regarding ordering appears when two products S, T have
a similarity relation but they are dissimilar with respect to an ordering relation.
Thus, there exists the ordered sets S′, T ′ such as S′ ⊂ S and T ′ ⊂ T and S′ ≡ T ′

but S′ and T ′ are dissimilar with respect to their order.

Table 3. Summary of the ontology [1]

noitinfieDstpecnoC

V
a
ri

a
b
il
it
y

so
u
rc

e
S
tr

u
ct

u
re

Things A thing is an elementary unit. The real-world is made up of
things. A composite thing may be made up of other things
(composite or primitive).

Properties Things possess properties. A property is modeled via a func-
tion that maps the thing to some value.

Lawful state
space

The lawful state space is the set of states of a thing that
comply with the state laws of the thing.

State The state of a thing is the vector of values for all attribute
functions of a thing.

State law A state law restricts the values of the properties of a thing
to a subset that is deemed lawful because of natural laws or
human laws. A law is considered a property.

P
ro

ce
ss

Lawful event
space

The lawful event space is the set of all events in a thing that
are lawful

Event An event is a change in state of a thing.
History It is the chronologically-ordered states that a thing traverses

in time.

V
a
ri

a
b
il
it
y

p
a
tt

er
n Full similarity

one-side
Two products S, T are full similarly one-side when they sat-
isfy the similarity relation, and an equivalence relation can be
established w.r.t. subsets of S or T.

Partial similarity Two products are similar when they satisfy the similarity re-
lation.

Dissimilarity Occurs when no similarity relation can be established.
Ordering variability Occurs when two products differ by an order relation.

4 Ontological Analysis of the Expressiveness of HLCL

As a first step in the evaluation of the HLCL expressiveness, we established the
specific goal, questions, and associated metrics to answer the research questions
by using the Goal-Question-Metric (GQM) approach [2]. The refinement of the
stated questions relies on the analysis of three hypotheses (each one with null
and alternative forms) related to the defined metrics, as synthesized in Table 4.
The metrics in this experiment are the four measures of potential ontological
deficiencies proposed by Recker et al. [20]: the degree of deficit, the degree of
excess, the degree of redundancy, and the degree of overload.

On the Ontological Expressiveness of the High-Level Constraint Language 53

Goal. Evaluate the HLCL with respect to its completeness and clarity from the
point of view of the expressiveness in the context of an ontological analysis.

Q1. Does HLCL map all the constructs in the ontological model? With this ques-
tion, we will determine the completeness or incompleteness (construct deficit) of
the HLCL using the degree of deficit. DoD = #not mapped ontological constructs

#ontological constructs

Q2. Are there any HLCL constructs that cannot be mapped into ontological
constructs? This question is related to determine if the HLCL has construct
excess using the degree of excess. (DoE = #notmappedlanguageconstructs

#languageconstructs)

Q3. Is the mapping a one-to-one relation? With this question, we can deter-
mine if the HLCL has construct redundancy and construct overload using the
degree of redundancy and degree of overload (DoR, DoO). Thus, together with
Q2, Q3 leads to conclude about the clarity of the language. DoR and DoO
are calculated as follow: DoR = #lang.const.mappingthesameont.const.

#languageconstructs , DoO =
#lang.const.mappingmanyont.const.

#languageconstructs

Table 4. Hypotheses

Question Null hypothesis Alternative hypothesis

Q1 H10: All ontological constructs were
mapped to HLCL constructs

H11: One or more ont. construct
cannot be mapped to HLCL con-
structs

H10 : DoD = 0% H11 : DoD > 0%

Q2 H20: All the HLCL constructs were
mapped

H21: One or more HLCL const. can-
not be mapped to ont. constructs

H20 : DoE = 0% H21 : DoE > 0%

Q3 H30: The map is one-to-one H31: The map is NOT one-to-one

H30 : DoR = 0% ∧ DoO = 0% H31 : DoR > 0% ∨ DoO > 0%

4.1 Mapping HLCL Constructs to Ontological Constructs

The mapping between the language constructs in Table 1 and the ontological
constructs in Table 3 was performed in two steps. First, we performed a rep-
resentation mapping to determine whether and how ontological constructs are
represented via a language construct. Then, we performed the interpretation
mapping to determine whether and how a grammatical construct stands for a
real-world construct and answer the research questions. Table 6 presents a sum-
mary of this mapping. Also, we illustrate the representation mapping using a
small example of a hypothetical case of a Movement Control System (MCS) of
a car. This example is a simplified extract of the model in [23]. First, we present
the description of the example and give some examples of valid products. Then,
we present the specification of the MCS using HLCL (Table 5) and the products
as solutions of the constraint program in Table 7.

54 A. Villota et al.

Example. A Movement Control System (MCS) assists drivers to park, helping
them to detect obstacles and controlling the speed and correct the trajectory.
The MCS can be composed of a processor, an internal memory slot, some sensors,
and some feedback devices. Sensors are used to measure the speed and position
of a car through speed sensors and position sensors. An MCS may contain a
speed sensor and zero to two position sensors. Feedback can be visual, audio
or vibration, and a single product can have at most two kinds of feedback. To
compute the location of a car, the MCS uses the processor that can have one to
seven cores. The size of the internal memory can have one of the values in the set
{2 GB, 4 GB, 8 GB, 16 GB, 32 GB}. Additionally, the size of the memory depends
on the number of cores in a processor, the pair 〈cores; internal memory〉 can
have the following values 〈0;0〉, 〈1;2〉, 〈2;4〉, 〈3;8〉, 〈4;16〉, 〈5;32〉.

Table 5 contains the variables and constraints used to represent the MCS
product line using HLCL. The resulting constraint satisfaction problem has 839
solutions or representations of valid products. Each solution is a set of pairs
variable, value (xi, vi). In a solution, a pair (xi, vi) where vi is equal to one
represents the inclusion of the component associated with variable xi in the
product. The MCS example includes non-Boolean variables for those cases when
additional information related to components should be considered, as in the
case of the cores of a processor and the size of the memory. Thus, this additional

Table 5. HLCL specification for the running example

Variables and domains

[MCS, SpeedSensor, PosSensor, PosSensor1, PosSensor2, Processor,

Feedback, Visual, Audio, Vibration, Memory] ∈ {0, 1} ∧ Size ∈
{0, 2, 4, 8, 16, 32} ∧ Cores ∈ {0..7}
Constraints

C1 : (MCS ⇒ SpeedSensor ≥ 0) ∧ (SpeedSensor ⇒ MCS),

C2 : (MCS ⇒ Processor ≥ 0) ∧ (Processor ⇒ MCS),

C3 : (MCS ⇒ Memory ≥ 0) ∧ (Memory ⇒ MCS),

C4 : (MCS ⇒ PosSensor ≥ 0) ∧ (PosSensor ⇒ MCS),

C5 : (MCS ⇒ Feedback ≥ 0) ∧ (Feedback ⇒ MCS),

C6 : PosSensor ⇒ (0 ≤ PosSensor1 + PosSensor2 ≤ 2),

C7 : Feedback ⇒ (1 ≤ Visual + Audio+ Vibration ≤ 2),

C8 : Relation (Core, Size) [(0,0), (1,2), (2,4), (3,8), (4,16), (5,32)],

C9 : Memory ⇔ (Size > 0), C10 : Processor ⇔ (Cores > 0),

C11 : PosSensor1 ⇒ PosSensor, C12 : PosSensor2 ⇒ PosSensor,

C13 : Audio ⇒ Feedback, C14 : Visual ⇒ Feedback, C15 : Vibration ⇒ Feedback,

Examples of products

P1 :{SpeedSensor, Processor, Feedback, Audio, Memory, Cores=1, Size=2}
P2 : {PosSensor, PosSensor1, PosSensor2}

On the Ontological Expressiveness of the High-Level Constraint Language 55

information is represented using integer variables with domains ranging in the
set of values presented in the description of the MCS. The domains of Cores
and Size contain a zero to represent those products with no processor, nor
memory. Products in Table 5 do not contain the variables assigned to zero in the
corresponding solution (components not selected). For instance, in product P2,
the components Processor, Feedback, Audio, Cores were selected, the rest
of the components are no part of the product.

4.2 Representation Mapping

Mapping the Sources of Variability. Things and properties were mapped
to variables in HLCL. The ontological model defines things as elementary units
that have properties. Those properties represent a particular characteristic of a
thing. In HLCL, elements in a product line (e.g., feature, requirement, design
fragment, component or any other reusable artifact) are represented by variables
associated with Boolean domains. The information related to structural elements
(things) are the attributes. These attributes are represented using variables
with domains of different types, regarding the possible values of the attribute
(attributes, values [3]). In our example, each component in the MCS is mapped
to Boolean variables ranging in {0, 1} and the attribute Size representing the size
of the internal memory is mapped to a variable with domain {0, 2, 4, 8, 16, 32}.
For each attribute, a constraint in the form element ⇔ (attribute > 0) should be
introduced. Therefore, when an element is selected, all its attributes are entailed
and vice versa (e.g., C4 and C7 in Table 5).

In the ontological model, the lawful state space is an ontological con-
struct defining the set of states of a thing complying with the state laws of the
thing. First, we map the state of a thing representing the possible values of its
attributes. In HLCL, the domain of a variable represents the set of possible
values for such variable. Thus, we map the state of a thing to the set containing
the domains of the variable(s) used for representing a thing and its attributes.
Second, we map a state law that is a rule that restricts the values of the
attributes of a thing. In HLCL, constraints are expressions that represent rules
restricting the domains of variables. Hence, the state laws are mapped to the
constraints over the variables representing the state of a particular thing. Finally,
we conclude that the lawful state space can be mapped to the set of values
(in the domain) agreeing with the constraints in the model. For instance, con-
sider the attribute core in the example in Table 5 its domain (state) is defined
as the integers in the interval [0, 7]. However, considering C8 and the domain of
the attribute Size, the lawful state space for Core is the set {0, 1, 2, 3, 4}.

The lawful event space is the set of all events in a thing that are lawful
(with respect to the state laws). In this mapping, we consider that (1) an event
is defined as a change in the state of a thing that can be internal or external, (2)
states were mapped to HLCL domains in previous mappings. Thus, events are
mapped to constraints because they are the HLCL constructs that continually
produce changes in the domain of variables. More particularly, the mapping
considers constraints that trigger other constraints like C6 in the example in

56 A. Villota et al.

Table 5. In C6, the selection of a position sensor (PosSensor = 1) triggers
another constraint that will change the domain of variables PosSensor1 and
PosSensor2. Now, considering that the lawful state space is represented by sets
of values satisfying the constraints, we map the lawful event space to the
constraints in the HLCL model. Note that for this mapping we treat constraints
not just as the rules in the domain of a system but also as in the computational
model of the Concurrent Constraints Programming [24] where constraints reside
in a store and act as agents consulting the values in the domains and modifying
the domains to preserve consistency.

The mapping determined a lack of representation for the ontological construct
history. Asadi et al. ontology defines history as the chronologically-ordered
states that a thing traverses in time. In HLCL as in other constraint languages
based in CCP [24] there exist two moments: first, when the problem is specified
and all the possible values in the domain of a variable are defined; second, when
the solver determines which values satisfy all the constraints in the problem.
Then, a value associated with a variable does not change in time. Therefore,
HLCL does not have constructs to specify the sequence of changes in the values
assigned to variables.

Table 6. Representation mapping between ontological constructs and HLCL con-
structs.

elanoitaR-gnippaMstpecnoC

V
a
ri

a
b
il
it
y

so
u
rc

e
S
tr

u
ct

u
re

Things Boolean Variables - Elements in a product line (e.g., feature,
requirement, design fragment, component or any other reusable
artifact) are represented by variables associated with Boolean
domains.

Properties Variables - The information related to things (e.g., attribute)
are represented using variables with domains ranging in the pos-
sible values of the attribute. An element is linked to its attributes
by a constraint in the form element ⇔ (attribute > 0).

Lawful state
space

Values (in the domain) that respect the constraints in the
model.

State Domains of variables representing attributes. This mapping
considers that the state is the set of values for an attribute.

State law Constraints - State laws as the rule that restricts the values of
the attributes of a thing are mapped to the constraints over the
variables representing the attributes of a particular thing.

P
ro

ce
ss

Lawful event
space

Constraints over the variables to representing the state of a
thing.

Event Constraints - Considering that event are changes in the state
of a thing and states were mapped to domains, events are
mapped to constraints that trigger other constraints and pro-
duces changes in the domains of elements and attributes.

History No HLCL construct can map this ontological construct.

On the Ontological Expressiveness of the High-Level Constraint Language 57

Mapping the Variability Patterns. The variability patterns are observable
characteristics of the products in a product line. In this mapping, we show how
the constraints in the HLCL can be used to specify variability relations that
generate products where the variability patterns are observable. This mapping
included constraints representing variability in previous publications [17,23] and
listed in Table 2. To illustrate this mapping, we use a subset of the 831 valid
products in the MCS example (Table 7). Additionally, particular instances of
constraints mapping variability patterns are described in Table 8.

Table 7. Examples of valid products in the Movement Control System (MCS) product
line.

P1 : {SpeedSensor, Processor, Feedback, Audio, Memory, Cores = 1, Size = 2 }
P2 : {PosSensor, PosSensor1, PosSensor2}
P3 : {SpeedSensor, Feedback, Audio, Vibration, Memory, Processor, Cores = 2,

Size = 4}
P4 : {SpeedSensor, Processor, Memory, Cores = 1, Size = 2}
P5 : {SpeedSensor, Feedback, Audio, Vibration, Visual, Memory, Processor, Cores

= 2, Size = 4}

Table 8. Constraints mapping variability patterns.

Variability pattern Constraint HLCL constructs Semantics

Full similarity one-
side

(1) C ⇒ P Constraints with
Boolean domains,
and logical opera-
tors

If P is selected then C
may be selected, but if
C is present, then P is
present too

(2) C ≤ P Constraints with
integer domains,
arithmetic opera-
tors

Partial similarity (1) P ⇔ C1 ∨ · · · ∨ Cn Constraints with
Boolean domains,
and logical opera-
tors

If P is selected then
one or more Ci are
selected

(2) (C1 ⇒ P) ∧ · · · ∧
(Cn ⇒ P) ∧ P ≥ 1 ⇒
C1+· · ·+Cn ≥ m ∧ P ≥
1 ⇒ C1 + · · · + Cn ≤ n

Constraints with
integer domains,
and Boolean, arith-
metic operators

If P is selected then at
least m and at most n
Ci are selected

Dissimilarity (C1 ⇒ P) ∧ . . . ∧
(Cn ⇒ P) ∧ P ≥ 1 ⇒
C1+ · · ·+Cn ≥ 1 ∧ P ≥
1 ⇒ C1 + · · · + Cn ≤ 1

Constraints with
integer domains,
and logical, arith-
metic operators

If P is selected then,
one or zero Ci are also
selected

Ordering variability No HLCL construct can map this ontological construct

58 A. Villota et al.

Full Similarity One-Side. This pattern can be mapped to constraints in HLCL
used for representing optional relations [12]. Within an optional relation, it is
possible to find products including an element, or not. Then, the use of optional
relations causes the inclusion of two or more products with the full similarity
one-side property in the set of solutions. For example, consider products P1 and
P3 in Table 7. Optional relations can be represented with boolean and integer
constraints. For instance, in the MCS example, C1 to C5 are optional relations.
Other examples of constraints used to represent optional relations in HLCL tare
in Table 8.

Partial Similarity. This pattern can be mapped to constraints in HLCL used
for representing variability relations that produce products sharing common ele-
ments. The most common variability relations with this characteristic are OR-
relations [12], and group cardinality 〈m,n〉 relations [7]. For instance consider
C7, that represents a group cardinality 〈0, 2〉. This constraint produces valid
products such as P1, P3 and P5 exhibiting partial similarity. Table 8 shows how
to represent OR and group cardinality in HLCL.

Dissimilarity. This pattern can be mapped to constraints in HLCL used for
representing variability relations such as alternative (XOR) [12], or group car-
dinality 〈1, 1〉 [7]. These relations produce products without common elements.
For instance, products P2 and P4 do not have common elements. Table 8 shows
how to represent alternative and group cardinality 〈1, 1〉 in HLCL.

Ordering This variability pattern cannot be mapped in HLCL because there are
no constraints to determine the order of the selection of values for variables. In
addition, under the concurrent constraint programming model, it is not possible
to establish an ordering for the application of constraints [24].

4.3 Results

To answer the research questions, we performed an interpretation mapping to
determine whether and how a grammatical construct stands for a real-world
construct. Accordingly, Table 9 presents the interpretation mapping. Rows in
Table 9 represent the HLCL constructs, and columns represent the ontological
constructs. A bullet is depicted when the HLCL construct in the row maps the
ontological construct in the column.

Q1: Does HLCL Map all the Constructs in the Ontological Model?
Both the representation and interpretation mapping showed a construct deficit
for representing the ontological constructs: history and ordering (highlighted
columns in Table 9). Moreover, HLCL does not support the design of product
line models where explicit consideration is given to sequence and order in the
product line. Accordingly, we expect that HLCL users will encounter difficulties
in meeting the potential need for explicit represent constraints such as: “element
E1 must be selected before E2”, or “start reconfiguration after five time units”.
Regarding the results of Asadi et al. in [1], a similar deficiency was also found
to exist in FMs and OVM. Consequently, neither HLCL, FMs nor OVM can
represent history and ordering.

On the Ontological Expressiveness of the High-Level Constraint Language 59

Q2: Are There any HLCL Constructs that Cannot be Mapped into
Ontological Constructs? All constructs in HLCL were mapped to the ele-
ments in the ontology proposed by Asadi et al. [1]. Hence, HLCL does not
present construct excess.

Q3: Is the Set of Mapped Constructs a One-to-One Relation? The map-
ping of ontological constructs to language constructs is not one-to-one. Table 9
shows that it is not possible to have a one-to-one mapping considering the differ-
ence in the number of constructs (HLCL has four constructs, the ontology has
nine constructs). In consequence, the absence of a one-to-one mapping causes two
defects: (1) there is one ontological construct mapping to more than one HLCL
constructs (construct redundancy), and (2) there are HLCL constructs mapped
to different ontological constructs (construct overload). These two defects are
also observable in Table 9. First, columns in Table 9 serve to identify which onto-
logical constructs are mapped to more than one HLCL construct. Thus, columns
with more than one bullet are instances of construct redundancy. In the table,
one instance of construct redundancy is observable, the mapping (lawful state
space → domains, values). Second, rows in Table 9 are used to find which HLCL
constructs are mapped to more than one ontological construct. Therefore, rows
with more than one bullet are instances of construct overload. As seen in the
table, two of the four HLCL constructs are involved in more than one mapping:
variables and constraints.

Table 9. Interpretation mapping between ontological constructs and HLCL constructs.

Constructs
Ontology

Variability Sources Variability Patterns

T
h
in

g
s

P
ro

p
er

ti
es

L
aw

fu
l

st
a
te

sp
a
ce

L
aw

fu
l
ev

en
t

sp
a
ce

H
is

to
ry

F
u
ll

si
m

il
a
ri

ty
o
n
e-

si
d
e

P
a
rt

ia
l

si
m

i-
la

ri
ty

D
is

si
m

il
a
ri

ty

O
rd

er
in

g
va

ri
a
b
il
it
y

H
L
C

L

Variables • •
Domains •
Values •
Constraints • • • •

Ontological Completeness and Clarity. The Recker et al. Degree of Deficit
(DoD), is the measure usually used to conclude about the level of ontological
completeness in a conceptual modeling language. Under this idea, the lower the
DoD, the higher level of ontological completeness. HLCL exhibits a 22% of degree
of deficit. Therefore, HLCL completeness level is 78%. We interpret this result
as HLCL closely represents the general principles of variability under the Asadi
et al. ontological framework. To evaluate the ontological clarity of HLCL, we

60 A. Villota et al.

calculate the Degrees of Excess (DoE), Redundancy (DoR) and Overlap (DoO).
HLCL exhibits a low degree of excess (DoE 0%), and medium degrees of redun-
dancy and overload (DoR, DoO 50%). On the one hand, a low DoE is a desirable
situation as it prevents user confusion due to the need to ascribe meaning to con-
structs that do not appear to have real-world meaning. On the other hand, the
levels of redundancy and overload indicate that HLCL might be unclear and will
produce potentially ambiguous representations of real-world domains.

5 Analysis and Discussion

The analysis of the results obtained in this evaluation of the HLCL under the
theory of ontological expressiveness contributes to taking forward the discussion
of HLCL’s expressiveness. The results of the evaluation should be analyzed from
two different perspectives: completeness and clarity. HLCL presents a medium
level of clarity due to its levels of redundancy and overload. This redundancy
and overload levels depend on the number of constructs in HLCL and espe-
cially in the repeated use of constraints for mapping variability patterns. The
constraint construct is a generic construct that represents a set of expressions.
The mapping presented in Sect. 4.2 includes particular instances of constraints
to explicitly demonstrate how HLCL constructs represent variability patterns
in the ontology. To enhance the clarity of HLCL, we propose to extend the set
of HLCL constructs to include constraint expressions mapping frequently used
variability relations. These new constructs would be considered syntactic sugar
as they can be removed without any effect on the expressive power of HLCL.

Ontological incompleteness arises because it is not possible to map any HLCL
construct with the ontological constructs related to time: history and ordering.
A similar observation was reported by Asadi et al. after analyzing FMs and
OVMs [1]. In their study, Asadi et al. concluded that both languages lack vari-
ability completeness as they do not have any construct for representing order.
This conclusion is not surprising given that the formalisms associated with these
variability languages (e.g., first-order logic and concurrent constraint program-
ming [3]) does not model time. Indeed, the lack of expressiveness concerning the
notion of time is not inherent only to these three languages. To the best of our
knowledge, there is no product line notation including constructs for modeling
time in product lines. Therefore, the gap in the HLCL’s expressiveness demon-
strated in this study, reflects a gap in the state of the art of the product line
notations. Consequently, we consider that the inclusion of time as a native con-
cept in variability languages should be considered as a challenge in the design
of variability languages.

The notion of time in computational models represents the sequence of
changes in the state of a system. Time can be used in product line notations
to specify variability in process or behavior and also variation between prod-
uct releases. To address these, notations require sophisticated elements able to
represent temporal constraints aiming to (1) enhance variability, (2) schedule
changes, and (3) sequence constraints. Temporal constraints enhance variability

On the Ontological Expressiveness of the High-Level Constraint Language 61

languages by allowing to represent preferences regarding the time of activation
of an element in a product line including constraints such as “element A is acti-
vated before/after the activation of element B”, “in the next time unit, element
A is activated”, or “element A is activated after three units of time”. These
temporal and scheduling constraints are particularly relevant to Dynamic Soft-
ware Product Lines (DSPLs). The goal of the DSPL is to build systems that
dynamically adapts itself to fluctuations in user needs, environmental condi-
tions, and resource constraints at runtime. In this context, temporal constraints
might be useful for including rules to schedule reconfigurations (adaptations).
The inclusion of temporal constraints might enable the use of constraints such as:
“the reconfiguration starts at time x”, “the reconfiguration occurs during event
E”, “a reconfiguration will occur eventually”. Sequence constraints are useful to
perform staged configuration where it is necessary to produce a series of inter-
mediate configurations compelling to a collection of requirements. For instance,
Burdek et al. in [4] include temporal constraints to perform staged configura-
tion to determine an order relation between configuration stages. In their work,
Burdek et al. include time constraints in a feature-based notation.

5.1 Towards a Product Line Engineering Constraint Language:
PLEC

This section introduces the Product Line Engineering Constraint Language
(PLEC), a domain specific language for product line specification. This lan-
guage aims to overcome the limitations of HLCL previously discussed. PLEC
is a CP-based language that can be used (1) as an intermediate representation
of other product line notations and (2) as a specification language to create
PLMs. Therefore, in the design of PLEC, we separate the concerns regarding
the representation of PLMs as constraint programs from the concerns regarding
the specification of PLMs. To this end, PLEC provides a collection of constructs
based on variability relations to specify PLMs. At the same time, the semantics
of the models specified in PLEC are represented using constraint programs in
HLCL. Table 10 presents an extract of the PLEC syntax. The complete syntax
and semantics are out of the scope of this paper. This paper focuses on report-
ing the results of the evaluation of HLCL and on highlighting the strengths and
weaknesses of this language to justify its evolution.

As presented in Table 10, PLEC includes the constructs to represent
〈PL constraints〉 and 〈time constraints〉. On the one hand, 〈PL constraints〉
provide the user with variability specific constructs with the objective of improv-
ing the clarity of the language. To provide the semantics of these constructs we
use the transformation rules proposed in previous works [17,18,23,25]. As an
example, the specification of the MCS using PLEC is presented in Table 11. On
the other hand, 〈time constraints〉 provide the user with time constructs, such
as always, next, eventually, until, and unless-next inspired by Linear Tem-
poral Logic (LTL) [19]. These new constructs enable the user to use expressions
such as ”eventually A is selected”, “unless A is selected next B is selected”
to represent temporal relations between constraints in PLMs.

62 A. Villota et al.

Table 10. Extract of the syntax of PLEC.

〈model〉 ::= 〈identifier〉 〈variable〉+ 〈constraints〉+
〈variable〉 ::= {‘instantiable’ ‘[’ 〈int〉 ‘,’ 〈int〉‘]’}∗

〈type〉 〈identifier〉 ‘values:’ 〈values〉
〈values〉 ::= 〈interval〉 | 〈enumeration〉
〈constraints〉 ::= 〈PL constraints〉 | 〈time constraints〉
〈PL constraints〉 ::= 〈structural〉 | 〈hierarchical〉 | 〈traversal〉 | 〈refinement〉

| 〈rule〉
〈time constraints〉 ::= always〈PL constraint〉 | next〈PL constraint〉 |

eventually〈PL constraint〉 |
〈PL constraint〉 until〈PL constraint〉 |
unless 〈PL constraint〉 next〈PL constraint〉

Table 11. The MCS product line specified using PLEC.

model MCS

boolean SpeedSensor, Processor, Feedback, Visual, Audio, Vibration, Memory

instantiable [0,2] boolean PosSensor

integer Cores values: 0..7

integer Size values: [0,2,4,8,16,32]

C1 : structural: MCS variants:[SpeedSensor,PosSensor,Processor,Memory,Feedback]

C2 : SpeedSensor is optional

C3 : PosSensor is optional

C4: Processor is optional

C5: Memory is optional

C6: Feedback is optional

C7: attributes: [Size] of Memory

C8: attributes: [Cores] of Processor

C9: structural: Feedback variants: [Visual,Audio,Vibration] card:[1,2]

C10: vars: (Cores,Memory) variants: [(1,2),(2,4), (3,8),(4,16), (5,32)]

5.2 Threats to Validity

To discuss the limitations of our study, we elaborate the threats to validity of our
work and the strategies used to minimize their effects [13]. The validity of our
results may be affected by the selection of the ontology and the mapping between
the language and the ontology. To mitigate the bias in selecting the ontology,
we first performed a literature review searching for foundational ontologies con-
taining domain-independent and variability-related constructs. Next, we studied
the concepts in the selected ontologies as well as the purpose and application of
the ontology. As a result, we selected the Asadi’s et al. ontology. Though this

On the Ontological Expressiveness of the High-Level Constraint Language 63

ontology may not be complete as it contains a subset of the constructs from
BWW [27], we agree with Asadi et al. that the variability patterns describe
the possible cases of variability in a product line [1]. Moreover, we believe that
we will obtain similar results evaluating the HLCL expressiveness using other
foundational ontologies along with Asadi et al.’s variability patterns. In this con-
clusion we considered that the results regarding HLCL’s completeness are the
product of the difficulties of HLCL to represent ontological constructs related
to the sequence of events and temporal constraints. In the case of the HLCL’s
clarity, overlapping and overload will be present as long as the generic construct
constraints is used to map all variability constructs in the ontology.

To decrease the threats regarding the mapping between the language and
the ontology the analysis was conducted in three steps. First, one researcher
separately mapped the HLCL constructs against ontological constructs to create
a first mapping draft. Second, two researchers met to discuss and define a second
draft. Third, all the researchers discussed and produced a third version of the
mapping. By reaching a consensus at the end of this process, we procured to
increase the reliability and validity of the mapping.

6 Related Work

Many works have applied the theory of ontological expressiveness to evaluate
conceptual modeling languages such as the entity-relation model [26]; UML [5];
the i� language [11]; and BPMN [20] to mention a few. In the domain of prod-
uct lines, there are two well-known works [1,21] using the theory of ontological
expressiveness both using the BWW ontology [27] as a basis and extending it
to accomplish their purposes. First, Reinhartz-Berger et al. [21] included a set
of constructs to analyze process variability and later to determine variability in
terms of software behavior. This framework was used to perform a feasibility
analysis. Second, Asadi et al. [1] included a collection of variability patterns
aiming to provide a framework for evaluating the ontological expressiveness of
variability modeling languages. In their work, Asadi et al. use their framework
to evaluate two variability languages: FMs and OVM. Our work applies the the-
ory of ontological expressiveness to provide a theoretical analysis of HLCL as
a variability modeling language in order to determine its ability to represent
variability in real-world domain models. To the best of our knowledge, there is
no evaluation of the expressiveness of a language that abstracts product line
constraints as HLCL does. In addition, this paper considers the results of Asadi
et al. to conclude about the state of the variability languages and the challenges
that future research should consider.

7 Conclusions and Future Work

This paper presents the design, conduction, and results of an evaluation of the
expressiveness of the HLCL as a conceptual modeling language under the light
of the ontological expressiveness theory. The results of the evaluation were ana-
lyzed from two perspectives: ontological completeness and ontological clarity.

64 A. Villota et al.

Firstly, the results showed that HLCL has a high level of completeness (78%).
However, some variability concepts should be integrated for obtaining a 100%
level of completeness. More precisely, we consider that the inclusion of temporal
constraints will make HLCL complete. These temporal constraints can be used
with the purpose of (1) enhancing variability, (2) scheduling changes, and (3)
introducing events as sequence constraints. Secondly, from the metrics related
to clarity, we can conclude that HLCL is a concise language without excess
(0%). Nevertheless, it seems that HLCL’s high level of abstraction impacts its
clarity because there exist significant levels of redundancy and overload (50%).
Therefore, potential users may face difficulties to use the constraints for speci-
fying variability in PLMs. To solve this issue, we propose to include variability
relations as constructs of the language. Additionally, we compared our results
regarding completeness with the ones presented by Asadi et al. in their onto-
logical analysis of FMs and OVMs [1]. The analysis of our results along with
this comparison let us conclude that the gap in the HLCL’s expressiveness is
also a gap in the state of the art of the product line notations. Our results
point to new challenges in future research for product line specification and
new directions on our objective to provide a constraint-based language for the
product lines domain. In future work, we will answer the questions risen by the
results of this study. Is it appropriate to pursue the development of a generic
constraint-based language’ or should we better separate the constraint program-
ming concerns from the product lines concerns? We are more inclined to continue
our work in the second direction, where we aim to develop PLEC, a constraint-
based domain specific language for product line specification. In the design of
PLEC, we separated the concerns regarding the specification of product lines
from the formalization of product line models. With these concerns separated,
PLEC can still be used (1) as an intermediate representation of other product
line notations using the several transformation rules in literature [17,18,23,25];
and (2) as a specification language to create more expressive PLMs with a col-
lection of product line constraints that will include time constraints to overcome
the limitations of HLCL.

References

1. Asadi, M., Gasevic, D., Wand, Y., Hatala, M.: Deriving variability patterns in
software product lines by ontological considerations. In: Atzeni, P., Cheung, D.,
Ram, S. (eds.) ER 2012. LNCS, vol. 7532, pp. 397–408. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34002-4 31

2. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach. In:
Encyclopedia of Software Engineering. Wiley, New York (1994)

3. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: a literature review. Inf. Syst. 35(6), 615–636 (2010). https://doi.
org/10.1016/j.is.2010.01.001

4. Bürdek, J., Lity, S., Lochau, M., Berens, M., Goltz, U., Schürr, A.: Staged config-
uration of dynamic software product lines with complex binding time constraints.
In: Proceedings of the Eighth International Workshop on Variability Modelling of

https://doi.org/10.1007/978-3-642-34002-4_31
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1016/j.is.2010.01.001

On the Ontological Expressiveness of the High-Level Constraint Language 65

Software-Intensive Systems - VaMoS 2014, pp. 1–8. ACM Press, New York (2013).
https://doi.org/10.1145/2556624.2556627

5. Burton-Jones, A., Meso, P.: The effects of decomposition quality and multiple
forms of information on novices’ understanding of a domain from a conceptual
model. J. Assoc. Inf. Syst. 9(12), 1 (2008)

6. Burton-Jones, A., Wand, Y., Weber, R.: Guidelines for empirical evaluations of
conceptual modeling grammars. J. Assoc. Inf. Syst. 10(6), 495–532 (2009). https://
doi.org/10.17705/1jais.00201

7. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature
models and their specialization. Softw. Process. Improv. Pract. 10(1), 7–29 (2005).
https://doi.org/10.1002/spip.213

8. Djebbi, O., Salinesi, C.: Towards an automatic PL requirements configuration
through constraints reasoning. In: Second International Workshop on Variability
Modelling of Software-Intensive Systems (VaMoS), pp. 17–23 (2008)

9. Guizzardi, G.: Ontology-based evaluation and design of visual conceptual modeling
languages. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J.
(eds.) Domain Engineering, pp. 317–347. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-36654-3 13

10. Guizzardi, G., Falbo, R., Guizzardi, R.: Grounding software domain ontologies
in the unified foundational ontology (UFO): the case of the ODE software process
ontology. In: Memorias de la XI Conferencia Iberoamericana de Software Engineer-
ing (CIbSE 2008), Recife, Pernambuco, Brasil, 13–17 February 2008, pp. 127–140
(2008)

11. Guizzardi, R., Franch, X., Guizzardi, G.: Applying a foundational ontology to
analyze means-end links in the i� framework. In: 2012 Sixth International Confer-
ence on Research Challenges in Information Science (RCIS), pp. 1–11. IEEE, May
2012.https://doi.org/10.1109/RCIS.2012.6240425

12. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain
analysis (FODA) Feasibility study. Technical Report Software Engineering Insti-
tute, Carnegie Mellon University (1990)

13. Kitchenham, B., et al.: Preliminary guidelines for empirical research in software
engineering. IEEE Trans. Softw. Eng. 28(8), 721–734 (2002). https://doi.org/10.
1109/TSE.2002.1027796

14. Martinez, J., Ziadi, T., Mazo, R., Bissyande, T.F., Klein, J., Traon, Y.L.: Fea-
ture relations graphs: a visualisation paradigm for feature constraints in software
product lines. In: Second IEEE Working Conference on Software Visualization,
September 2014, pp. 50–59. IEEE (2014). https://doi.org/10.1109/VISSOFT.2014.
18

15. Mazo, R., Grünbacher, P., Heider, W., Rabiser, R., Salinesi, C., Diaz, D.: Using
constraint programming to verify DOPLER variability models. In: Proceedings of
the 5th Workshop on Variability Modeling of Software-Intensive Systems - VaMoS
2011, pp. 97–103. ACM Press, New York (2011). https://doi.org/10.1145/1944892.
1944904

16. Mazo, R., Muñoz-Fernández, J.C., Rincón, L., Salinesi, C., Tamura, G.: VariaMos:
an extensible tool for engineering (dynamic) product lines. In: Proceedings of the
19th International Conference on Software Product Line - SPLC 2015. pp. 374–379.
ACM Press, New York (2015). https://doi.org/10.1145/2791060.2791103

17. Mazo, R., Salinesi, C., Diaz, D., Djebbi, O., Lora-Michiels, A.: Constraints: the
heart of domain and application engineering in the product lines engineering strat-
egy. Int. J. Inf. Syst. Model. Des. 3(2), 33–68 (2012). https://doi.org/10.4018/
jismd.2012040102

https://doi.org/10.1145/2556624.2556627
https://doi.org/10.17705/1jais.00201
https://doi.org/10.17705/1jais.00201
https://doi.org/10.1002/spip.213
https://doi.org/10.1007/978-3-642-36654-3_13
https://doi.org/10.1007/978-3-642-36654-3_13
https://doi.org/10.1109/RCIS.2012.6240425
https://doi.org/10.1109/TSE.2002.1027796
https://doi.org/10.1109/TSE.2002.1027796
https://doi.org/10.1109/VISSOFT.2014.18
https://doi.org/10.1109/VISSOFT.2014.18
https://doi.org/10.1145/1944892.1944904
https://doi.org/10.1145/1944892.1944904
https://doi.org/10.1145/2791060.2791103
https://doi.org/10.4018/jismd.2012040102
https://doi.org/10.4018/jismd.2012040102

66 A. Villota et al.

18. Muñoz-Fernández, J.C., Tamura, G., Raicu, I., Mazo, R., Salinesi, C.: REFAS: a
PLE approach for simulation of self-adaptive systems requirements. In: Proceedings
of the 19th International Conference on Software Product Line - SPLC 2015, pp.
121–125. ACM Press, New York (2015). https://doi.org/10.1145/2791060.2791102

19. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (SFCS 1977), September 1977, pp. 46–57. IEEE,
Washington, DC, USA (1977). https://doi.org/10.1109/SFCS.1977.32

20. Recker, J., Rosemann, M., Indulska, M., Green, P.: Business process modeling a
comparative analysis. J. Assoc. Inf. Syst. 10(4), 1 (2009)

21. Reinhartz-Berger, I., Sturm, A., Wand, Y.: External variability of software: clas-
sification and ontological foundations. In: Jeusfeld, M., Delcambre, L., Ling, T.-
W. (eds.) ER 2011. LNCS, vol. 6998, pp. 275–289. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24606-7 21

22. Salinesi, C., Mazo, R.: Defects in product line models and how to identify them. In:
Software Product Line - Advanced Topics, chap. 5, p. 50. InTech (2012). https://
doi.org/10.5772/35662

23. Salinesi, C., Mazo, R., Djebbi, O., Diaz, D., Lora-Michiels, A.: Constraints: the
core of product line engineering. In: Fifth International Conference on Research
Challenges in Information Science (RCIS), pp. 1–10 (2011). https://doi.org/10.
1109/RCIS.2011.6006825

24. Saraswat, V.A., Rinard, M.: Concurrent constraint programming. In: Proceedings
of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages - POPL 1990, pp. 232–245. ACM Press, New York (1990). https://doi.
org/10.1145/96709.96733

25. Sawyer, P., Mazo, R., Diaz, D., Salinesi, C., Hughes, D.: Using constraint program-
ming to manage configurations in self-adaptive systems. Computer 45(10), 56–63
(2012). https://doi.org/10.1109/MC.2012.286

26. Shanks, G., Moody, D., Nuredini, J., Tobin, D., Weber, R.: Representing classes
of things and properties in general in conceptual modelling. J. Database Manag.
21(2), 1–25 (2010). https://doi.org/10.4018/jdm.2010040101

27. Wand, Y., Weber, R.: On the ontological expressiveness of information systems
analysis and design grammars. Inf. Syst. J. 3(4), 217–237 (1993). https://doi.org/
10.1111/j.1365-2575.1993.tb00127.x

https://doi.org/10.1145/2791060.2791102
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-642-24606-7_21
https://doi.org/10.5772/35662
https://doi.org/10.5772/35662
https://doi.org/10.1109/RCIS.2011.6006825
https://doi.org/10.1109/RCIS.2011.6006825
https://doi.org/10.1145/96709.96733
https://doi.org/10.1145/96709.96733
https://doi.org/10.1109/MC.2012.286
https://doi.org/10.4018/jdm.2010040101
https://doi.org/10.1111/j.1365-2575.1993.tb00127.x
https://doi.org/10.1111/j.1365-2575.1993.tb00127.x

Distributed Computing on Distributed
Memory

Andreas Prinz(B)

Department of ICT, University of Agder, Agder, Norway
andreas.prinz@uia.no

Abstract. Distributed computation is formalized in several description
languages for computation, as e.g. Unified Modeling Language (UML),
Specification and Description Language (SDL), and Concurrent Abstract
State Machines (CASM). All these languages focus on the distribution of
computation, which is somewhat the same as concurrent computation.
In addition, there is also the aspect of distribution of state, which is often
neglected. Distribution of state is most commonly represented by com-
munication between active agents. This paper argues that it is desirable
to abstract from the communication and to consider abstract distributed
state. This includes semantic handling of conflict resolution, e.g. in con-
nection with data replication. The need for abstract distribution of state
is discussed and a novel semantics for concurrency based on an abstract
distributed state is presented. This semantics uses runs over so-called
multistates, and hides the internal communication for replica handling.
This way, distributed computation is described over an abstract memory
model.

1 Introduction

There are several ways to formalize sequential computation. Abstract State
Machines (ASMs) [5] faithfully model such computations as proven with the
sequential ASM thesis [10] showing that every sequential algorithm is captured
by sequential ASMs. A similar result for (synchronous) parallel algorithms is
reported in [6].

For concurrent systems a similar result is achieved with concurrent ASMs
(CASM) in [3]. It improves over earlier work of partially ordered runs in [9]
and generalizes the notion of sequential consistency as defined in [13]. CASMs
define a concurrent algorithm as a family of agents interacting using the following
concurrency postulate, thus defining concurrent ASM runs.

A concurrent process or algorithm is given by a finite set A of pairs
(a, alg(a)) of agents a, which are equipped each with a (sequential) algo-
rithm alg(a) to execute. In a concurrent A-run started in some initial state
S0, each interaction state Sn (n ≥ 0) where some agents (say those of some
finite set An of agents) interact with each other yields a next state Sn+1

c© Springer Nature Switzerland AG 2018
F. Khendek and R. Gotzhein (Eds.): SAM 2018, LNCS 11150, pp. 67–84, 2018.
https://doi.org/10.1007/978-3-030-01042-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01042-3_5&domain=pdf

68 A. Prinz

by the moves of all agents a ∈ An which happen to simultaneously com-
plete the execution of their current alg(a)-step they had started in some
preceding state Sj (j ≤ n depending on a).

But what about distributed computation? Distributed computation refers to
sequential agents that are distributed in space. They have their own computation
capability, such that computation is distributed. In order to work together, they
need some sharing of data, i.e. some joint state. There are two main ways to
handle state.

The first way to handle distributed state is called local state. It means there is
no shared state at all, and each agent has its own local state. A joint computation
is achieved using message exchange. The Specification and Description Language
(SDL) [12] is an example of this approach.

In local state, each memory location is only accessible by one agent. When
agents need to share data, this is done using signal exchange. All currently
existing distributed systems use at their core local state with signal exchange.
For example, a distributed database will have local data at several nodes, where
the data is synchronized using signal exchange. In local state, access to shared
data is done by sending and receiving signals.

This way, access primitives for shared data are send and receive, while local
data is accessed with read and write. However, local state is a low-level concept,
and often algorithms want to speak about shared data directly.

The second, more high-level way to handle distributed state is called global
state, meaning that the state is in principle accessible for all agents with different
agents having different views on the state in terms of visibility. This approach
is prominently used in CASM.

Typically, high-level global state is implemented using some lower-level pro-
tocols based on local state and signal exchange. These protocols translate data
access by read and write into data access by send and receive1. In global state,
the access primitives for the agents are read and write for all types of data, local
and shared.

We call the handling that is done to manage the global state for memory
model. It includes the translation of memory access into signal exchange. For
the user, the memory model implementation details are not of concern, but the
properties of the memory model are essential.

In this paper, we consider two main types of memory models: centralized and
distributed. In the centralized case, there is conceptually only one copy of the
data, which is used to answer all read and write requests. In the distributed case,
there are several copies of the data for use in read and write requests.

Typically, centralized state is consistent in the sense that all agents have the
same view on the data. The consistency in the distributed case is dependent on
the used protocol. In fact, this area is the main focus of this paper, because we
will see that all specification methods favour a centralized memory model.

1 As communicating ASMs [4] show, it is also possible to implement local state on top
of global state.

Distributed Computing on Distributed Memory 69

Partially ordered runs from [9] use a strong form of centralized state, where
concurrent runs are only valid when they can be sequentialized. Sequential con-
sistency [13] has a weaker promise and only insist on sequential order for each
agent and causality, i.e. a value v read needs a previous write of v. CASM is
again more general than sequential consistency. There are several more models
of consistency, but in this paper, the main focus is on inconsistency.

Known distributed algorithms (see e.g. [2,24,25]) are normally described
based on local state or global centralized state. Does this mean that this covers
all distributed computation, even inconsistent ones?

We already noted that all distributed state is message-based on a low level.
On an even lower level, real hardware lives in the realm of physics and can
be considered on a conceptual global centralized state (see also [3]). This indi-
cates, that on low level CASM runs as defined in [3,4] capture all distributed
computation. So the answer to the question is “Yes” on a low abstraction level.

However, modern web applications often provide a higher-level distributed
state. This distributed state is not always well defined, since local copies are
allowed to differ, as already observed in [22]. This may lead to inconsistent
views and lost updates. On this higher level, the answer to the question is “No”.

Inconsistency may occur in case of data replication. CASM illustrates such
behaviour using an independent read - independent write (IRIW) algorithm A
[3] with four agents a1, . . . , a4 as follows.

a1 : x := 1
a2 : y := 1
a3 : Read(x);Read(y)
a4 : Read(y);Read(x)
initially x = y = 0

There is no sequentially consistent run (see [13]) where (1) each agent stops
after having finished its program and (2) eventually a3 reads x = 1, y = 0 and
a4 reads x = 0, y = 1. To see this, lets assume that a3 reads x = 1 and y = 0.
Looking at a4, it can Read(y) before or after a3 does its Read(y). If a4 reads y
after a3, then it will also read its x after a3 reads its x. This implies that it must
read x = 1. If, alternatively, a4 reads y earlier or at the same time as a3, then it
will read the value y = 0.

However, if x and y are replicated with two copies each, and an update by the
programs a1 or a2 first affects only a single copy, while the update propagation
to the other copy can happen later, such a behaviour will indeed be enabled.

This example can even be simplified using just two (or even one) agents with
an own read - own write (OROW) algorithm as follows.

a1 : x := 1;Read(x)
a2 : x := 2;Read(x)
initially x = 0

With sequential consistency, it is impossible to achieve x = 0 in any of the
reads. Furthermore, it is impossible that a1 reads 2 and a2 reads 1. This is

70 A. Prinz

because for a1 reading 2, x := 2 has to be before x := 1, while for a2 reading 1,
it has to be the other way around. Both of them are not possible together.

Still, if x is replicated with two copies, and only one of them is used for
writing and the other one for reading, it is possible to have x = 0. In the same
style, a1 can read 2 and a2 can read 1 when a1 writes to the first copy and reads
from the second, while a2 writes to the second copy and reads from the first.

These examples show that the properties of the memory model are essential in
the analysis of distributed algorithms. Please remember that the memory model
is the protocol used to implement global state. Then the algorithm behaviour is
dependent on two parts:

1. the algorithms of the agents (distribution of computation), and
2. the memory model used (distribution of state).

With these two parts it is possible to check whether the resulting behaviour
of the algorithm is acceptable. Here, the memory model can be thought of as
a parameter of the distributed semantics. In real situations, it would amount
to the configuration of the database storing the values. Different memory mod-
els (configurations) might lead to different behaviours. We will call concurrent
algorithms on top of a memory model as distributed algorithms in this paper.

This paper is dedicated to understanding distributed algorithms that are
based on distribution of state. We will (1) provide evidence of the need to con-
sider distributed state and (2) define distributed runs over distributed state.

We will first shortly recap local state and global centralized state in Sects. 2
and 3. Then we will look into examples of global distributed state in Sect. 4
showing that distributed state is real. In Sect. 5, we introduce distributed runs
over distributed state, and compare them with global centralized state in Sect. 6.
Finally, we conclude in Sect. 7.

2 Local State

In this section, we shortly introduce local state. The idea behind local state is
that the state is local to the agents and data sharing happens with message
exchange. We assume that the reader is familiar with local state and we use
SDL and process calculi as examples.

2.1 SDL

Specification and Description Language (SDL) [12] is an ITU standardized lan-
guage that was developed for the specification of telecommunication protocols
and systems. Later, it was also used for distributed systems in general. The
main entity in SDL is an agent (process, block, or system), which is an active
entity having local state. This local state is not visible to other agents. In order to
work together, agents can send messages between each other thereby exchanging
information.

SDL also introduces derived concepts of remote procedure calls, remote vari-
ables, and some form of shared data within the agent hierarchies, which are
based on signal exchange.

Distributed Computing on Distributed Memory 71

2.2 Process Calculi

Process calculi [16] provide an abstraction for distributed computation. They
feature sequential processes with the possibility to send and receive messages.
The processing power of the processes is often very limited and the local state
is often not modelled directly.

The main component of a system description is its signal exchange, i.e. which
messages are sent and received. CCS [15] and CSP [11] are examples of such
languages. Based on their strong mathematical foundation, they have been used
to define the semantics of higher level languages like SDL.

2.3 Summary

Local state uses communication to provide shared state. This is general, but
for some algorithms too low abstraction level. Therefore, often more high-level
concepts are also provided.

3 Global Centralized State

In this section, we discuss global centralized state, which behaves as if there was
just one copy of each shared memory location for write and read. Conflicts in
access are solved in some way. This model is related to the ACID properties as
known from databases.

First, we recap the ACID properties, and then we look at how global cen-
tralized state manifests for Abstract State Machines (ASM) and UML.

3.1 ACID

ACID is a set of properties that many distributed database systems adhere to.
Basically, it is an extension of the sequential world into the distributed world.
The underlying idea is to create distributed database systems in a way as if
the reality was not distributed. ACID stands for the four properties Atomicity,
Consistency, Isolation, and Durability.

The constituent operations of an atomic transaction either occur all, or none.
Consistency is a property of the database states, saying that each database state
must fulfill all rules for the state. The isolation property means that interme-
diate results are not visible. Durability ensures that changes made by finished
transactions will become available.

3.2 Concurrent Abstract State Machines

Concurrent Abstract State Machines (CASM) are given by a finite set of agents
a ∈ A with an associated (sequential) ASM alg(a) each, composed in the usual
way using the following constructs (see [5] for more details).

72 A. Prinz

assignment f(t1, . . . , tarf
) := t0 (with terms ti built over Σ),

parallel composition r1 r2,
sequential composition r1 ; r2,
branching IF ϕ THEN r+ ELSE r−,
forall FORALL x WITH ϕ(x) DO r(x),
choice CHOOSE x WITH ϕ(x) IN r(x), and
let LET x = t IN r(x).

The ASMs are defined over a global signature Σ of function symbols f , each
with an arity arf . Functions that are used by several agents are called shared, and
functions that are updated are called dynamic. In this paper, we are interested
in such dynamic, shared functions.

From the signature Σ, we can define a global state S with partial functions
fS of arity arf over some fixed base set B. We call a function symbol f and
its arguments vi ∈ B a location—often simply written as f(v1, . . . , varf

)—, and
valS(f, (v1, . . . , varf

)) = fS(valS(v1), . . . , valS(varf
)) the value at this location

in state S. For formal reasons, the partial function f is completed such that all
handling is done on total functions with the special value undef ∈ B.

In each state, alg(a) defines an update set for agent a (see again [5] for more
details). A next state is defined from the current state by applying a clash-free
update set, thus ensuring that the state is always well-defined.

This general prerequisite is preserved in concurrent ASM runs [3]. Here the
successor state of a (global) state Si is obtained by applying a clash-free update
set Δ that results from the union of update sets Δa for some subset of agents,
a ∈ A′ ⊆ A, each of which was built in some state Sj(a) with j(a) ≤ i.

3.3 UML

The Unified Modeling Language (UML) [20] does not speak a lot about dis-
tributed computation. UML features objects that are connected. There are also
objects containing objects, and this would lead to the cases we discuss here.

Data in UML is stored with structural features. They have a semantics of just
one value each time (see [20]): “Within an execution scope, the StructuralFea-
ture has a separate and independent value or collection of values for its owning
Classifier and for each Classifier that inherits it.” Access to the value is given by
a StructuralFeatureAction, which includes read and write. There is no indication
of concurrency in this context.

However, in the UML standard [20] there is a concurrency property of type
CallConcurrencyKind associated with each behavioural feature. It would be nat-
ural to think of structural feature actions as behavioural features, thus using a
similar concurrency handling as for them as well. There are three possible values
for CallConcurrencyKind and [20] includes the following table.

The first two values relate to sequentialized access in order to resolve con-
flicts. This is in essence global centralized state: only one access at a time. The
responsibility for sequential access can be at the caller (‘sequential’) or at the
callee (‘guarded’).

Distributed Computing on Distributed Memory 73

Sequential No concurrency management mechanism is associated with the Behav-
ioralFeature and, therefore, concurrency conflicts may occur. Instances
that invoke a BehavioralFeature need to coordinate so that only one
invocation to a target on any BehavioralFeature occurs at once

Guarded Multiple invocations of a BehavioralFeature that overlap in time may
occur to one instance, but only one is allowed to commence. The others
are blocked until the performance of the currently executing Behav-
ioralFeature is complete. It is the responsibility of the system designer
to ensure that deadlocks do not occur due to simultaneous blocking

Concurrent Multiple invocations of a BehavioralFeature that overlap in time may
occur to one instance and all of them may proceed concurrently

For the value ‘concurrent’, the general understanding of users is that the
object is responsible for integrity, but that this is done without enforcing sequen-
tiality. This makes sense when the server object has full control over all its sub-
objects, because then the critical part is the behaviour of the clients. However,
when the server object itself is distributed, the situation is different, and integrity
might be a problem.

In the specification of foundational UML (fUML) [21] and Action Language
for Foundational UML (Alf) [19], CallConcurrencyKind is not mentioned. How-
ever, as in UML itself, access to a structural feature is defined as reading or
writing its current value - with the understanding that there is just one such
value. This does not allow for replicas of the value.

The fUML semantics is loose and only specifies the essential sequentiality
constraints needed in each implementation, thus allowing maximal concurrency.
Concrete implementations may add more sequentiality. Even in the maximal
concurrent case, state is considered global as each location has just one place
of storage. We can conclude that UML has not considered distributed state and
the specification is mostly written from the client point of view. However, the
description of the value ‘concurrent’ would also allow other (inconsistent) ways
of handling. Then UML would need a mechanism to describe the different levels
of inconsistency, as we do in Sect. 5.

3.4 Summary

Global centralized state provides an abstract access to shared state. Distributed
databases fall into this category, because they intend to provide a user expe-
rience of a global centralized state, even though there might be an underlying
distribution of storage nodes. ACID provides a nice characterization of this idea.

If distributed state is consistent and works for the user as if it was centralized,
then there is no point in looking at the distributed copies from the user point of
view. However, when the distribution influences the execution of the algorithm,
then it is important to be aware of it, as we will see in the next section.

74 A. Prinz

4 Global Distributed State

Centralized state comes at a cost. A lot of communication is needed in order
to make a distributed set of locations appear as one, which conflicts with the
general desire of availability of the state. Therefore, the non-centralized BASE
properties are considered. The relation between ACID and BASE is captured
in the CAP theorem. In this section we look first at BASE and CAP and show
then how inconsistent (non-centralized) distributed runs appear in the noSQL
database system Cassandra, in Java and in Blockchain.

4.1 BASE and CAP

Massively distributed databases as in Internet distribution services have high
rates of changes which leads to problems to ensure the ACID properties. These
services often rely on the BASE properties, which is an abbreviation for Basically
Available, Soft state, and Eventual consistency.

The main focus of BASE is basic availability, i.e. it is possible to access the
database whenever needed. It is not guaranteed that the access leads to the
latest value, but there will be an answer. This leads naturally to a soft state,
which means the state is changing even during times without input.

The previous two properties can lead to inconsistency. In order to save the
situation, eventual consistency provides consistency in the limit. Once the system
does not get more data, it will stabilize in a consistent state. As the system is
continuously active, this situation only arises for parts of the state.

The CAP theorem (Brewer’s theorem) claims that there is a larger design
space for distributed computation than given by ACID and BASE, and that
ACID alone is too restricted to capture all distributed computation.

In its simplest formulation the CAP theorem states that it is impossible for
a distributed computer system to simultaneously fulfill all three of the following
requirements [7].

Consistency: All users/nodes see the same data at the same time.
Availability: It is guaranteed that every request receives a response.
Partition tolerance: The system continues to operate despite partitioning.

In this paper, partitions relate to distribution of state. Partitions are a normal
situation in distributed computations due to smaller and larger network failures.
Even a connected network might have too long latency and be considered dis-
connected. For distributed state, ACID amounts to a focus on consistency, while
BASE focuses on availability with a spectrum of possibilities in between.

4.2 Cassandra

In the noSQL database system Cassandra [1,23] data is replicated using a fixed
replication factor onto several nodes that are used for data storage and relate to
physical machines. The nodes do also have behaviour, as they are responsible

Distributed Computing on Distributed Memory 75

for data consistency. Agents communicate with Cassandra via their home node
using requests and responses. Internally, the home node communicates with the
other nodes in the system, but this is invisible to the agent. In Cassandra, nodes
are grouped into clusters and data centres, which is not important here.

Cassandra relies on totally ordered timestamps to disambiguate different
values v in different replicas of a function f . From two different values, the
one with the later timestamp is used. Conceptually, timestamps are based on
a global clock that always advances2. Cassandra assumes that timestamps fulfil
the following requirements.

1. All timestamps are different from each other. When there are equal time-
stamps, Cassandra uses lexical sorting of the values in order to determine the
last timestamp.

2. Timestamps respect read/write causality. In other words, it is impossible to
read a value from the future, i.e. all received timestamps are in the past. In
the presence of clock drift, this means that the clock drift between nodes is
less than their communication delay.

Cassandra allows to adapt the level of consistency using so-called read and
write policies. Essentially, a policy tells how many replicas one needs to contact
in order to read or write a value. In practice, all replicas are contacted for each
request, and the policy tells how many replies one needs. When reading, the
receiver takes the value with the latest timestamp of all incoming values.

In this paper, we consider the following Cassandra policies.

ONE It is enough with one received answer.
QUORUM We need answers from more than half of the replicas.
LOCAL QUORUM QUORUM on the local data center.
ALL We need answers from all replicas.

Using policy ONE for reading and writing gives us all the behaviour described in
the introduction for IRIW and OROW. With the policy LOCAL QUORUM, the
inconsistencies in OROW disappear and with ALL, also IRIW is consistent. This
way, choosing the policy amounts to choosing the consistency level of Cassandra.

4.3 Java Memory Model

The Java memory model [8] describes how Java programs interact with memory
(see also [14]). More specifically, it details the interaction of Java threads on
shared memory. The basic idea of the Java memory model is that each thread in
itself follows a sequential model, and that all events that the individual thread
cannot observe can happen in whatever order, i.e. reordering of code is allowed
as long as it does not invalidate the sequential case.

Of course, as soon as threads are put together in concurrent runs, also events
in other threads may become observable, and thus strange runs are possible.

2 In reality, a global clock means perfect clock synchronization, which is impossible.

76 A. Prinz

When looking at IRIW, the order of reading x and y in a3 and a4 is not relevant
for the sequential case. Thus, also the inconsistent case given in the introduction
is possible with the Java memory model.

In Java, the inconsistency can be blamed conceptually to the existence of
several cached copies of the memory location, which essentially brings us to
distributed state. IRIW can be fixed in Java making variables x and y volatile,
which disables local cache copies and brings us back to consistent runs.

In the case of OROW, the written value of x can already be observed in the
Read(x) in the sequential case. This way, OROW will be consistent as is with
respect to the Java memory model.

The important point here is that the semantics of Java is given with two
parts: one detailing the processing, and one detailing the memory management.
The memory management itself is dependent on flags in the code detailing which
consistency level to apply (volatile = sequentially consistent).

4.4 Blockchain

Blockchain [18] implements a distributed protocol for bookkeeping with a grow-
ing linked list of records (blocks). Each block contains a sequence of records and
a pointer to the previous block. For the electronic currency bitcoin [17], records
are coin transactions.

For this article it is not important how the details of blockchain work, in
particular the security part of the protocol. For us the distributed algorithm
used is relevant.

In blockchain, several agents have to agree on the sequence of transactions.
The general idea is that the agents collect records and translate them into blocks.
The sequence of blocks then implies the sequence of records.

Each agent collects the records it can find and wraps them into a next block.
As the agents run concurrently, there are several possible situations.

1. The agent finishes the work first and sends out the result. Then this new
block is the starting point for the next block.

2. The agent finds a new block before finishing its own work. In this case, it
drops its own work and starts with a next block. It will drop all its pending
records that are already in the new block and include the remaining ones in
the next block.

3. The agent finishes the work after another agent, but does not realize this
due to the distributed nature of the system. This way, there can be several
“current” blocks available in the network. These conflicts are solved by length
of the chain. As long as there are two chains with the same number of blocks,
the situation is undecided. If one of the chains gets a new block, it is the one
to continue with. In this case, all the records missing in the longest protocol
are collected and put into the next block.

This protocol is very dynamic and does not guarantee inclusion of records
even when they appear in a block. The dynamic nature of the protocol allows

Distributed Computing on Distributed Memory 77

large parts of the network to be disconnected and that may change the picture
when they get accessible again. In principle, this can happen quite late from
the current point of time, which means that consistency and durability (and
therefore ACID) are spoiled.

4.5 Summary

We see that there is a considerable design space of distributed algorithms which
are not consistent in terms of state, i.e. they are not ACID. This is triggered by
the CAP theorem, which claims that one has to reduce consistency in order to
keep availability.

This need is met with concrete implementations of noSQL databases that
provide eventual consistency instead of strong consistency (e.g. Cassandra). Java
was faced with a similar challenge to explain the behaviour of its concurrent code
and came up with a distributed memory model.

Blockchain comes from a completely different area of algorithms, but it is
still based on the idea of global state that different agents view differently. This
way Blockchain provides some kind of BASE.

This means that when we talk about distributed computations, we have to
take into account algorithms that work on top of inconsistent state. This incon-
sistent state typically arises out of the existence of several distributed copies of
the same location, which are not (yet) synchronized. This is true for Cassandra,
for Java and for Blockchain. In the remainder of the paper we will focus on
Cassandra, because it has most options to adapt the state handling.

5 Semantics with Multistates

As we have seen, the formal models of distribution either support local mem-
ory with signal exchange or they are based on global centralized memory. It is
possible to describe local based on centralized or the other way around.

The distributed memory model as described in Sect. 4 can be captured by
detailed low-level description of the corresponding memory model (MM), see
Fig. 1. Such a specification has been written to ensure that the translation is
possible. It defines one system for the memory model and one for the algorithm,
and connects them using signal exchange. Whenever the algorithm wants to read
some data, it sends a read request to the memory model, and receives a message
with the value read. In the same way, for each write it will send a write request
and receive a confirmation of the write.

This means the original algorithms of the agents are changed by inserting
signal send and receive actions for each read and write request, as shown in
Fig. 1. The left-hand side of Fig. 1 will execute alg(a) over global centralized
memory locations, while the right-hand side will execute the adapted alg(a)
over global distributed memory as given by the memory model.

However, when we want to analyze the algorithm of the agents, we need
to dig down into the details of the memory model. This is not what we want.

78 A. Prinz

Fig. 1. Defining distributed algorithms over Cassandra

Instead, we would like to have an abstract description of the underlying memory
model, i.e. how distributed copies of locations are handled. This is depicted in
Fig. 2.

Fig. 2. Defining distributed algorithms with memory management

Such an abstract, high-level description will be provided in this section. For
the sake of presentation, CASM is used as base method, but a similar approach
would be possible in other languages.

CASM can model distribution of state in terms of the underlying commu-
nication, but not on the level of memory management. Therefore, we define a
high-level description of memory management with multistates as a formaliza-
tion of distributed state and distributed runs on top of multistates.

5.1 Multistates

We extend the definition of CASM such that it includes the memory model as
shown in Fig. 2. The intention is to provide the behaviour of the right-hand side
of Fig. 1 with several configuration options similar to Cassandra. One natural
configuration option is of course global centralized memory.

This is done by defining a conceptual global state with several replicas that
are handled in the underlying abstract memory model. The agents only configure
the memory model, specifying it descriptively. This way, the semantics of the
distributed algorithm is parametrized with the memory model.

First, we define a distributed global state by introducing multiple values per
shared location.

Distributed Computing on Distributed Memory 79

Definition 1 (multivalue). A multivalue M is a multiset that contains pairs
(v1, t1), . . . , (vx, tx). The vi are values from B, with undef as a possible value.
The ti are abstract integer timestamps, where larger means later.

We write time(p) and value(p) to access the timestamp and value of a pair
p, respectively.

Definition 2 (multistate). A multistate S is a mapping of all shared loca-
tions3 to multivalues, similar to CASM states. The size of the multiset valS(�)
is constant for the location � and reflects the number of replicas maintained by
the memory model for �, denoted replicas(�).

5.2 Policies

A policy is a way to select subsets of multivalues. They are used to provide
different memory models. In this paper, we consider only three basic policies as
already described in Sect. 4.2.

policyOne(M) = {M ′ ⊆ M • |M ′| ≥ 1}
policyQuorum(M) = {M ′ ⊆ M • 2 ∗ |M ′| > |M |}
policyAll(M) = {M}

Each policy provides a set of allowed subsets of the multivalue M . The policies
are totally ordered with respect to the multivalue sets they provide.

All ⊆ Quorum ⊆ One.

Policies are used for reading and writing of locations. A read access to location
� corresponds to the value of one of the elements in the multivalue associated
with �. From a possible subset of the multivalue according to the policy, we find
the latest element, and extract the value of it.

Read(�, policyread) =
CHOOSE values ∈ policyread(valS(�)) IN value(max≤time

(values))

Similarly, a write access to � with new value val replaces some elements in
the multivalue given by the policy by the same number of elements with the new
value val and the timestamp now.

Write(�, policywrite) =
CHOOSE values ∈ policywrite(valS(�)) IN

valS(�) := valS(�) \ values � 〈(val, now)|values|〉

3 The non-shared locations are not relevant here.

80 A. Prinz

5.3 Multistate ASM Semantics

Now we use multistates and policies to define distributed ASM runs similar to
CASM runs.

Definition 3 (distributed run). A distributed ASM (DASM) is given by a
finite set of agents a ∈ A with an associated sequential ASM alg(a) each (see
also [3]), and a number of replicas as well as a read and a write policy for each
location.

A distributed run of A is a sequence of multistates together with a sequence
A0, A1, . . . of subsets of A such that each state Sn+1 is obtained from Sn by apply-
ing to it the updates computed by the agents a ∈ An by using the Write routine
with the corresponding policy as defined above. Each of the agents started its cur-
rent (internal) step by reading its input and shared locations in some preceding
state Sj depending on a, using the Read as defined above with the corresponding
policy. The updates of all agents in the same step have to be consistent.

The initial multistate of a DASM run is based on the corresponding initial
state of a CASM run. Instead of a value v for location �, we use the multiset
〈vreplicas(�)〉.

Given a multistate S, the read policy rp defines a multistate Srp that can
be selected by agent a, and the rule of alg(a) defines an update set Δ, which
according to the write policy defines a new successor multistate S′. As the read-
and write policies permit several states to be selected and different ways to
update the multistate assigned to a location �, there are several possible successor
multistates. All of these possibilities form valid multistate runs.

The ordering of the policies extends to the valid runs, i.e.

runs(All) ⊆ runs(Quorum) ⊆ runs(One).

We add a background activity related to the soft state update of Cassandra
to propagate all updates to all replicas of a location � as follows. This activity
provides the eventual consistency and helps to finally make the states consistent.

Propagate=
CHOOSE � ∈ Locations IN

CHOOSE val1, val2 ∈ valS(�) WITH time(val1) > time(val2) IN
valS(�) := valS(�) \ {val2} � {val1}

With this definition of (distributed) multistate runs of a DASM A we achieve
the following properties.

1. The multistate runs of the DASM {(a, alg(a)}a∈A define the behaviour of the
agents. The memory model is a parameter for the semantics given by different
policies and replication factors.

2. Using a replication factor of 1 in DASM runs brings us back to CASM runs
(independent of the policy).

3. In general, DASM runs allow more behaviour than CASM runs.

Distributed Computing on Distributed Memory 81

For the last point, let us look again into the IRIW example from the intro-
duction with two replicas for both x and y.

We start with an initial multistate {x
→ 〈(0, 0), (0, 0)〉, y
→ 〈(0, 0), (0, 0)〉}
When we consider a read- and write-policy One, then a1 and a2 can make a
joint step leading to the multistate {x
→ 〈(0, 0), (1, 1)〉, y
→ 〈(0, 0), (1, 1)〉}. This
allows the value read by a3 to be x = 1 and y = 0, while still the value read by
a4 can be x = 0 and y = 1. This DASM run is not possible with CASM.

However, when the write policy is All, then all replicas will always have the
same values, which is the same as if there was just one replica. This is of course
possible with CASM, see the second item above. Finally, read- and write policies
of Quorum are the same as All in case of two replicas.

Looking into OROW with three replicas, the initial multivalue for x is 〈 (0,0),
(0,0), (0,0) 〉. When we use policies ONE, then a1 and a2 can make a step each
leading to the new multivalue 〈(0, 0), (1, 1), (2, 2)〉. After that, any combination
of values read is possible.

When using a write policy of ALL, then again only the same results as with
CASM runs are possible.

6 Centralized State and Multistate

In this section we want to see in which sense global centralized state is a special
case of global distributed state (multistate). This means we compare distributed
runs of the system in Fig. 2 with CASM runs of the system to the left in Fig. 1.
More precisely, we want to see which read and write policies lead to CASM runs.

In order to compare CASM runs with distributed runs, we need to compare
CASM states with multistates, i.e. single replicas with multiple replicas. We
define an abstraction function from multistates to CASM states as a point-wise
abstraction from multivalues to values based on a read policy rp as follows.

abstract(M, rp) = value(min≤time
({max≤time

(values) | values ∈ rp(M)}))

First, we select all possible sets of values given by the policy (values ∈ rp(M))
and find the latest element in each of these sets (max≤time

). Then we select the
earliest element from all these latest elements (min≤time

) and extract its value.
This reduces the multivalue to just one value, but which value is used by CASM?
As CASM favours consistency, it uses the latest value available, thus for a match
with CASM, the abstraction function has to provide the latest element in M .

Lets look at an example to make the definition more understandable. Let
M = 〈 (0,1), (1,2), (2,3) 〉. We use the policy One, which gives policyOne(M) = {〈
(0,1) 〉, 〈 (1,2) 〉, 〈 (2,3) 〉, 〈 (0,1), (1,2) 〉, 〈 (0,1), (2,3) 〉, 〈 (1,2), (2,3) 〉, 〈 (0,1),
(1,2), (2,3) 〉 }. The latest elements of these multisets are (0,1), (1,2), (2,3), (1,2),
(2,3), (2,3), and (2,3). The earliest element of them is of course (0, 1), which gives
us the result value of 0.

We can also use the policy Quorum, which gives policyQuorum(M) = {〈 (0,1),
(1,2) 〉, 〈 (0,1), (2,3) 〉, 〈 (1,2), (2,3) 〉, 〈 (0,1), (1,2), (2,3) 〉}. The latest elements
of the multisets are now (1, 2), (2, 3), (2, 3), and (2, 3). The earliest element of
them is (1, 2), which gives us the result value of 1.

82 A. Prinz

Using the policy All, we have policyAll(M) = {〈 (0,1), (1,2), (2,3) 〉}, which
has the only latest element (2, 3) and gives the final result value of 2.

Using the defined abstraction function abstract we can translate multistate
runs into CASM runs by replacing the multistates with their abstractions. The
moves of the agents stay the same. We will call the property that all abstracted
multistate runs of a system coincide with CASM runs for centralized.

Definition 4 (centralized). A DASM with agents a ∈ A and ASMs alg(a) is
called centralized iff all its abstracted runs using the function abstract are valid
CASM runs of the CASM with the same agents a ∈ A and the same alg(a).

We have already seen that a write policy of All leads to centralized runs.
The following result is a generalization of this observation.

Proposition 1. Let {(a, alg(a))}a∈A be a DASM.

– If the write policy is All, then the DASM is centralized (independent of the
used read policy).

– If the read policy is All, then the DASM is centralized (independent of the
used write policy).

– If the write policy is Quorum and the read-policy is Quorum, then the
DASM is centralized.

Proof. First, we observe that the abstraction of the initial states always leads
to a valid CASM state, as they only include one value. This way, the abstracted
initial state of the DASM matches an initial state of the CASM.

If the write policy is All, then in each write for a location �, all values
in the multivalue valS(�) are replaced by the new value. This means that for
each location � in each state only the latest value is stored with multiplicity
replicas(�). That again means that the abstract function provides exactly this
value, making the first statement obvious.

If the read policy is All, then only the latest value from the complete multi-
value is selected in the abstract function. As any write policy writes a new value
at least once, the latest value for any location � will be present as the latest
value in valS(�). Therefore, exactly this latest value is provided by the abstract
function making also the second statement obvious.

If the write policy is Quorum, then for each location � the multiplicity of
the latest value in valS(�) is at least � replicas�+1

2 . Consequently, in the abstract
function with read policy Quorum, each set will contain at least once this value
and use it for the maximum. Then again, the minimum is taken from a set with
just one element. This means that in every multistate for each location �, valS(�)
is abstracted to the corresponding value for � in the CASM state, which makes
the run centralized. �

7 Conclusion

In this paper, we have looked into different views on distributed computation,
in particular with respect to distributed state. A low-level way of describing

Distributed Computing on Distributed Memory 83

distribution of state is local state with message exchange. On top of that, one
can define global centralized (ACID) state. There are real cases (Cassandra, Java
MM) that go beyond ACID, and a more general formulation of state can use a
memory model as a parameter to the run.

We extended the notion of distributed run with distribution of state based
on the ideas of the distributed database system Cassandra. This way, distribu-
tion is given by a distribution of computation (agents having their threads of
computation) and distribution of state (multistates).

Distributed runs are parametrized with a memory model given by a repli-
cation factor and a read and a write policy, such that a user can specify the
expectations towards the memory management system for her algorithm. This
way, the runs abstract from the underlying message exchange.

These multistate runs are more general than CASM runs, and can capture
also runs over modern distributed database management systems or over the
Java memory model. Using specific policies, it is possible to restrict the available
runs to CASM runs.

Future work would include formal descriptions of the concepts ‘availability’
and ‘eventual consistency’.

Acknowledgements. This work benefited from many discussions with Egon Börger
and Klaus-Dieter Schewe. In particular, the modelling of Cassandra in CASM is joint
work with them. I am grateful for the helpful comments of the anonymous reviewers.

References

1. Apache Software Foundation: Apache Cassandra 2.0—Documentation. http://
cassandra.apache.org/ (2016)

2. Best, E.: Semantics of Sequential and Parallel Programs. Prentice Hall, Upper
Saddle River (1996)

3. Börger, E., Schewe, K.D.: Concurrent abstract state machines. Acta Inf. 53(5),
469–492 (2016)

4. Börger, E., Schewe, K.D.: Communication in abstract state machines. J. Univ.
Comp. Sci. 23(2), 129–145 (2017)

5. Börger, E., Stärk, R.F.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer (2003)

6. Ferrarotti, F., Schewe, K.D., Tec, L., Wang, Q.: A new thesis concerning synchro-
nised parallel computing—simplified parallel ASM thesis. Theor. Comp. Sci. 649,
25–53 (2016)

7. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33(2), 51–59 (2002). https://
doi.org/10.1145/564585.564601

8. Gosling, J., Joy, B., Steele, G.L., Bracha, G., Buckley, A.: The Java Language
Specification, Java SE 8 Edition. Addison-Wesley Professional, 1st edn. (2014)

9. Gurevich, Y.: Evolving algebras 1993: lipari guide. In: Börger, E. (ed.) Specification
and Validation Methods. Oxford University Press (1995)

10. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM Trans. Comp. Logic 1(1), 77–111 (2000)

http://cassandra.apache.org/
http://cassandra.apache.org/
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601

84 A. Prinz

11. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978). https://doi.org/10.1145/359576.359585

12. ITU: Z.100 series, specification and description language SDL. Technical Report,
International Telecommunication Union (2011)

13. Lamport, L., Lynch, N.: Distributed computing: models and methods. In: Hand-
book of Theoretical Computer Science, pp. 1157–1199. Elsevier (1990)

14. Manson, J., Pugh, W., Adve, S.V.: The java memory model. SIGPLAN Not. 40(1),
378–391 (2005). https://doi.org/10.1145/1047659.1040336

15. Milner, R.: A Calculus of Communicating Systems. Springer, New York (1982)
16. Mironov, A.M.: Theory of processes CoRR abs/1009.2259 (2010)
17. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.org/

bitcoin.pdf
18. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin

and Cryptocurrency Technologies: A Comprehensive Introduction. Princeton
University Press, Princeton (2016)

19. Object Management Group (OMG): Action Language for Foundational UML (Alf),
Version 1.1. OMG Document Number formal, 04 July 2017 (2017). http://www.
omg.org/spec/ALF/1.1/

20. Object Management Group (OMG): OMGR© Unified Modeling LanguageR© (OMG
UMLR©), Version 2.5.1. OMG Document Number formal, 05 December 2017.
http://www.omg.org/spec/UML/2.5.1

21. Object Management Group (OMG): Semantics of a Foundational Subset for Exe-
cutable UML Models (fUML), Version 1.3. OMG Document Number formal, 02
July 2017. http://www.omg.org/spec/FUML/1.3

22. Prinz, A., Sherratt, E.: Distributed ASM - pitfalls and solutions. In: Aı̈t-Ameur,
Y., Schewe, K.D. (eds.) Abstract State Machines, Alloy, B, TLA, VDM and Z
- Proceedings of the 4th International Conference (ABZ 2014). Lecture Notes in
Computer Science, vol. 8477, pp. 210–215. Springer, Heidelberg (2014)

23. Rabl, T., Sadoghi, M., Jacobsen, H.A., Gómez-Villamor, S., Muntés-Mulero, V.,
Mankowskii, S.: Solving big data challenges for enterprise application performance
management. PVLDB 5(12), 1724–1735 (2012)

24. Tanenbaum, A.S., Van Steen, M.: Distributed Systems. Prentice-Hall (2007)
25. Winskel, G., Nielsen, M.: Models for concurrency. In: Abramsky, S., Gabbay, D.,

Maibaum, T.S.E. (eds.) Handbook of Logic and the Foundations of Computer
Science: Semantic Modelling, vol. 4, pp. 1–148. Oxford University Press (1995)

https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/1047659.1040336
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://www.omg.org/spec/ALF/1.1/
http://www.omg.org/spec/ALF/1.1/
http://www.omg.org/spec/UML/2.5.1
http://www.omg.org/spec/FUML/1.3

Pattern Libraries Guiding the Model-Based
Reuse of Automotive Solutions

Maged Khalil(&)

Continental Teves AG & Co. oHG – Chassis & Safety
Division/Systems & Technology, Guerickestr. 7,

60488 Frankfurt am Main, Germany
maged.khalil@continental-corporation.com

Abstract. The reuse of proven solutions (e.g., Safety Mechanisms or archi-
tecture designs) for safety-critical applications is considered a good practice for
increasing confidence in the system design and cutting development cost and
time, and is widely-spread in practice. However, reuse in safety-critical appli-
cations is mostly ad-hoc, with lack of process maturity or adequate tool support.
Moreover, it is difficult to assess the quality or completeness of a reuse process,
if there is no “definition of done”. In previously published works, we defined a
structured “Pattern Library “approach for the reuse of Safety Mechanisms (fault
avoidance/error detection and handling) in the automotive domain, elaborating a
prototypical tool implementation for the Pattern User role. This paper expands
this definition and elaborates the usage workflow of the Pattern Library
approach for the Pattern Developer role, demonstrating how the approach can be
used to guide reuse, but also – via a summary of multiple evaluations – identify
tool gaps and help guide and prioritize tool extension and selection.

Keywords: Reuse � Design patterns � Safety � Safety Mechanisms
Model-based tool requirements � System design

1 Introduction

1.1 Background

In practice, the reuse of architectural designs, development artifacts and entire code
sequences is widely-spread, especially in well-understood domains. This trend holds
true for the development of safety-critical products, with well-established architectural
measures and Safety Mechanisms in wide reuse, as is reusing the corresponding safety-
cases aiming to document and prove the fulfillment of the underlying safety goals.
A Safety Mechanism is defined by the ISO26262 International Automotive Safety
Standard [1]. as a “technical solution implemented by E/E functions or elements, or by
other technologies (mechanical etc.), to detect faults or control failures in order to
achieve or maintain a safe state”. Safety Mechanisms are concrete instances of a
category of implementation-independent solution descriptions targeting safety. The
solutions used in a “Safety Mechanism” are in fact not limited to safety but may also be
useful for all manner of dependability or RAMSS – Reliability, Availability, Main-
tainability, Safety and Security – issues. Wu und Kelly described a very similar

© Springer Nature Switzerland AG 2018
F. Khendek and R. Gotzhein (Eds.): SAM 2018, LNCS 11150, pp. 85–104, 2018.
https://doi.org/10.1007/978-3-030-01042-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01042-3_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01042-3_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01042-3_6&domain=pdf

grouping of architectural designs or “Tactics” in [3]. and proceeded to describe a
design pattern and template for capturing them. Tactics capture the abstract principles
or primitives of a design pattern.

The primary aim of the approach presented here is make Safety Mechanism reuse
within an organization better (more systematic, repeatable, effective) by approaching
Safety Mechanisms as if they were Design Patterns. We understand that Safety
Mechanisms are strictly not design patterns, and are not aiming at capturing a new kind
of Design Pattern. We wish to use the structure provided by the design pattern template
and general rigor of defining a design pattern to improve solution component capturing
for reuse in a practical setting.

Wu and Kelly used a graphical notation of safety cases to capture the rationale
attribute of their tactics template. We will be using the same notation in our example.
A safety case is “a documented body of evidence that provides a convincing and valid
argument that a system is adequately safe for a given application in a given environ-
ment”, where an argument is “a connected series of claims intended to establish an
overall claim.” A safety case should communicate a clear, comprehensive and defen-
sible argument that a system is acceptably safe to operate in a particular context [2].

The use of patterns in safety-critical software development in conjunction with
model-based development techniques is documented and well suited for these needs,
for instance [5]. Patterns of safety cases for well-known problems have been suggested
in academic literature as well, e.g., for using COTS (Commercial-Off-The-Shelf)
Components [43]. The reuse of safety-cases – and Safety Mechanisms in general – is
mostly ad-hoc, with the practitioners focusing on the central artifact – a piece of code,
an algorithm or a design model – and forgetting that this does not tell the entire story
needed for proper reuse. Loss of critical knowledge and traceability, lack of consis-
tency and/or process maturity and inappropriate artifact reuse being the most widely
spread and cited drawbacks [4].

1.2 Motivation

Yet be it the design pattern or the development artifact, the single item does not tell the
entire story. For example, to correctly deploy homogenous redundancy, shown in
Fig. 1, many other aspects have to be covered:

• one has to define the requirements the pattern fulfills,
• refine the requirements and draw up a specification,
• detail a (logical) component architecture,
• optimize a deployment strategy that guarantees the duplicate components will not

run on the same hardware resource,
• and finally, show how the usage of this Safety Mechanism contributes to System

Safety, i.e., the safety case.

Doing this in a structured, repeatable and assessable manner is a further problem.
To begin with, it is difficult to assess the quality or completeness of a reuse process, if
there is no “definition of done”. Providing this structure was our first step. But merely
defining yet another design pattern attribute catalog is not the answer to the challenges

86 M. Khalil

surrounding the reuse of Safety Mechanisms in practice. The new definition needs to be
a part of a more holistic approach, leveraging model-based capabilities to provide tool-
supported reuse automation in a Systems Engineering context, e.g., as provided by the
Systems Engineering Lifecycle Processes standard ISO15288 [30]. While Safety
Mechanisms are not limited to software only, the development of complex Systems has
become a software-intensive endeavor in and of itself. Thus to achieve our goals, our
approach leverages a combination of software engineering paradigms; chief among
them Model-Driven Engineering (MDE) [41] – treating models as first class citizens,
component-based software engineering (CBSE) [42], and reuse repositories as pre-
sented in [36, 43].

The next aspect we focused on was the usability and adequacy of the modeling
approach for the task at hand. The author has considerable hands-on industrial expe-
rience, and has observed first-hand, as well as received plenty of anecdotal evidence to
the pervasiveness of the golden hammer syndrome, in industry as well as academia.
Practitioners who are long accustomed to a tool or programming language will often
see problems and solutions through the prism of their tool of choice, in this case
blurring the lines between what is generally describable, and what is describable in
their tool/language of choice. There is a noted tendency to bend the language or tool
and contort it to address the problem at hand, and view the resultant solution in
satisfactory light. Case in point; one only has to observe the sheer number of UML
profiles in literature, used to cover every possible activity and purpose, regardless of
whether UML is the right tool for the job. In essence, the limits of the tool’s expres-
siveness become the limits of knowledge documented – and eventually perceived – by
the user, creating a vicious circle.

We aim to break that circle, in a three-pronged approach.

• First and foremost, we do not wish to limit ourselves to, nor do we indeed have any
preference for, any particular modeling language, framework, or development
environment. We do, however, encourage the use of domain-adequate context-rich
models, as these will – as our results have demonstrated – allow the capturing of
more information. Our approach’s basis is the capturing of solutions (with all
information) in the exact artifacts which will be (re)used.

Fig. 1. Homogenous duplex (hardware) redundancy pattern [12]

Pattern Libraries Guiding the Model-Based Reuse 87

• Secondly, we encourage practitioners to ask not which reuse aspects they can cover
using their tools, but rather which aspects need to be captured by their tools. We
want practitioners to look beyond the limitations of their tools and onto the actual
scope of the problem at hand. This is the immediate localized impact of the
approach.

• Finally, we wish to embolden and empower practitioners to cast a skeptical eye on
their development tools; asking themselves whether they are indeed covering all the
necessary information for their desired product quality, and hence whether they
have the right tools. This is the generalized long-term impact of the approach.

These 3 points form the basis of the approach presented in this paper. We focus on
capturing all the necessary information we have to capture for the reuse, as defined by
the pattern catalog; instead of focusing on the aspects we can capture using one tool-
chain or another.

1.3 Previous Work

The reuse of Safety Mechanisms can be made both simpler and more robust through the
encapsulation of all information into a consistent structured package, which can then be
stored as a library element, along with the corresponding safety case to support it, as we
demonstrated in previously published works [11]. In them we defined a structured
approach for the reuse of Safety Mechanisms (fault avoidance/error detection and
handling) in the automotive domain, capturing them in a “pattern library”, based on
Design Pattern literature. This library uses a simplified description of Safety Mecha-
nisms, covering established solution algorithms and architectural measures/constraints
in a seamless model-based approach with corresponding tool support.

The classical approach to capturing Design Pattern - as found in literature - focuses
on capturing useful solutions in a generic fashion (via structured prose and diagrams),
which is understandable across organization or even domain boundaries. In contrast,
our approach focuses on the in situ capturing of the information necessary for the reuse
within the artifacts actually used during development used within an organization. The
approach provides guidance for the reuse in practice, based on a meta-model covering
both development artifacts and safety case elements, which can be instantiated into any
existing development environment. At the foundation of the approach, an attribute
catalogue was defined, identifying the aspects of a safety mechanism that have to be
captured for the reuse to be successful. The structure and usage of this reusable library
element concept in a seamless model-based development tool is the focus of another
previous publication [12]. The use-cases given here are discussed in detail in [33].

1.4 Contribution

In this work, we expand on previous definitions of the Safety Mechanism pattern
attribute catalogue and corresponding Pattern Library approach. We will give previ-
ously unpublished detailed descriptions of how a Pattern Developer can use the
approach in practice to capture Safety Mechanisms. We demonstrate the primary
benefits of the pattern library approach for solution reuse via a primary instantiation in

88 M. Khalil

a domain-independent research CASE tool (AutoFOCUS3 – AF3). Deeply rooted in
the user-centric nature of Design Patterns, our contribution can be summarized as:

1. An expanded definition of the usage workflow of the Pattern Library approach for
the Pattern Developer role – capturing Safety Mechanisms for reuse.

2. With the Safety Mechanism Pattern Library at its heart; a systematic, repeatable and
assessable approach – for reusing Safety Mechanisms, which can be instantiated
into any development environment.

We also provide a summary of use-case demonstrators (published in detail in [33])
showing: the feasibility of the reuse approach in multiple frameworks; a generalization
of the approach for application to the systematization of the reuse of technical solutions
(in the automotive domain) – demonstrating the general usefulness of the Pattern
Library approach – beyond Safety Mechanisms; and finally demonstrations of the
usefulness of the approach not only for improving direct reuse, but also as a gauge of
the adequacy of the employed development environment/tool suite for the reuse, as
well as its usefulness of the approach as a guide for tool extensions/selection.

The structure of this paper is as follows. Section 2 details our approach and gives
expanded definitions and details of the usage workflow for the Pattern Developer role.
We discuss related work in Sect. 3 before concluding this paper in Sect. 4 with
observations and lessons learned from applying our approach.

2 Design Pattern Based Approach

The reuse of safety-critical automotive solutions is wide-spread, but is marred, how-
ever, by several problems [12]:

• Safety-cases in the automotive domain are not well integrated into architectural
models and as such

• they do not provide comprehensible and reproducible argumentation
• nor any evidence for the correctness of the used arguments.
• Most safety analyses (STAMP, FMEA, FTA, etc.) have to be performed at system

level, yet the components/measures/Safety Mechanisms themselves need to be
reused locally/independently,

• and are not tied in any structured manner to other elements needed to provide the
relevant context.

2.1 Pattern Library Approach

Using a simplified description of Safety Mechanisms s according to the most common
subtypes (avoidance/detection/handling) we define a pattern library covering known
solution algorithms and architectural measures/constraints in a seamless holistic model-
based approach with corresponding tool support. The pattern library comprises the
minimum set of elements needed for correct reuse, i.e. the requirement the pattern
covers, the specification of how one plans to implement it and the architecture
elements/measures/constraints required as well as the supporting safety case template,

Pattern Libraries Guiding the Model-Based Reuse 89

based on the established structure notation known as GSN [17], and may include
deployment or scheduling strategies, which would then be integrated into existing
development environments. This enables an early analysis of hazards and risks, as well
as the frontloading of many design aspects, which is recommended by most safety
standards. Subsequently, fault types can be matched both to probable hazards, but more
importantly to the problem categories they fall into or are most similar to, from a
system architecture design viewpoint. Combining this with known architectural con-
straints and patterns for solving them, we can thus reason about which types of
architectural patterns are relevant for the system under analysis. The fault types, along
with their requirements, are bundled with solution arguments, comprising components,
their (sub-)architectures, deployment plans and schedules, and other relevant infor-
mation, into pattern libraries, which are rounded up by the corresponding safety-case
templates (or skeletons) to provide argumentation for achieving the goals.

Underlying the approach is the consistent use of patterns as a user-centric aide to
practitioners: from the categorization of hazard types, over the abstract modeling of the
respective safety concepts, and down to their implementation in the system architecture
description, with a focus on providing argument chains in a seamless model-based
environment.

To structure the capturing of the Safety Mechanisms, we defined an attribute cat-
alogue, shown in the next table (Table 1). The selection of attributes is based on an
extensive literature survey of Design Pattern attribute catalogues, but most influenced
by the works of the Gang of Four [31], Kelly [4], Douglas [20] and Armoush [29].

Table 1. Safety mechanism attribute catalogue [12].

Attribute Meaning

Name Name of the Safety Mechanism
Intent Immediate purpose of the Safety Mechanism
Motivation Rationale behind using the Safety Mechanism
Applicability Situation and conditions to which the Safety Mechanism can be applied, as

well as counterexamples
Structure Representation of the elements of a pattern and their relationship

(preferably in graphical form)
Participants Complementary to the Structure attribute; provides a description of each of

the Safety Mechanism pattern elements, including potential instantiation
information

Collaborations Shows how the pattern’s various elements (e.g., sources of contextual
information, argument structure, requirements, logical components)
collaborate to achieve the stated goal of the pattern. Moreover, this
attribute focuses on capturing any links between the pattern elements that
could not be captured clearly and explicitly or were not the focus of the
Structure attribute, e.g., dynamic behavior

Consequences Captures information pertaining to the instantiation and deployment of the
pattern, as well as to the impact it may have on the system

(continued)

90 M. Khalil

2.2 Safety Mechanism Pattern Library

The attribute catalogue is the first step towards a systematic capturing of Safety
Mechanisms for reuse. We identified the types of development artifacts most likely to
contain the information required for each attribute and then proceeded to provide a
guide for instantiating the approach into various development environments. The
approach provides guidance for the reuse in practice, based on a meta-model covering
both development artifacts and safety case elements, which can be instantiated into any
existing development environment.

At its essence, the approach can be divided into 5 simple steps for the practitioner:

1. Identify the information necessary for a systematic reuse of the solution in practice,
and structure this information into an attribute catalogue. E.g., name, applicability,
implications.

2. Identify the types of development artifacts that should/could contain the necessary
information. E.g., textual requirements, state charts, graphical safety cases, code…

3. Define a data-model (linking all the development artifacts, capturing the informa-
tion necessary for reuse – as defined in the attribute catalogue), and use it to set up a
“library” mechanism capturing the reusable solution and all its related artifacts.

4. Evaluate whether and to what degree the development environment/tool suite used
by the practitioner can actually capture the necessary information.

5. Extend the development environment/tool suite as necessary, using the gaps
identified in the evaluation step to both guide and prioritize the tool extension.

Applying this to the Safety Mechanism reuse problem, we used a simplified
description of Safety Mechanisms according to the most common subtypes
(avoidance/detection/handling) to define a pattern library covering known solution
algorithms and architectural measures/constraints in a seamless holistic model-based
approach with corresponding tool support. The pattern library comprises the minimum
set of elements needed for correct reuse, i.e. the requirement the pattern covers, the

Table 1. (continued)

Attribute Meaning

Implementation Describes the implementation and should include its possible failure
modes or dysfunctional behavior as well as any constraints or possible
pitfalls

Implications This characteristic covers the impact of applying the pattern on the non-
functional aspects of the system. This may include traits such as reliability,
modifiability, cost, and execution time

Usage
classification

Categorizes the Safety Mechanisms according to their usage (fault
avoidance/error detection and handling)

Example Exemplary (preferably graphical) representations of the Safety
Mechanisms are especially useful if the previous attributes were not
captured graphically, or are very complex. Otherwise optional

Related
patterns

Provides a listing of Safety Mechanism related to the pattern being
documented. This may, for instance, include patterns that are derived from
this pattern

Pattern Libraries Guiding the Model-Based Reuse 91

specification of how one plans to implement it and the architecture
elements/measures/constraints required as well as the supporting safety case template,
based on the established structure notation known as GSN [17], and may include
deployment or scheduling strategies, which would then be integrated into existing
development environments. This enables an early analysis of hazards and risks, which
is recommended by many safety standards. Subsequently, fault types can be matched
both to probable hazards, but more importantly to the problem categories they fall into
or are most similar to, from a system architecture design viewpoint. Combining this
with known architectural constraints and patterns for solving them, we can thus reason
about which types of architectural patterns are relevant for the system under analysis.
The fault types, along with their requirements, are bundled with solution arguments,
comprising components, their (sub-) architectures, deployment plans and schedules,
into pattern libraries, which are rounded up by the corresponding safety-case templates
to provide argumentation for achieving the goals.

Underlying the approach is the consistent use of patterns as a user-centric aide to
practitioners: from the categorization of hazard types, over the abstract modeling of the
respective safety concepts, and down to their implementation in the system architecture
description, while providing argument chains in a seamless model-based environment.

Figure 2 gives a sketch of a generic library element comprising development
artifact categories. The left part of the schematic gives possible development artifact
elements– requirements, specification, and implementation description – of the reusable
pattern, while the right part shows the corresponding argumentation artifacts

Fig. 2. Generic safety mechanism pattern library element [12]

92 M. Khalil

comprising a safety case skeleton – shown exploded for clarity – with connections to
the relevant development artifact categories. The argumentation artifacts based on a
graphical safety argumentation notation, in this case the Goal Structuring Notation
(GSN) introduced in [2, 17]. Both sides together comprise the pattern library element,
the building blocks of which are the four artifact categories requirements, specification,
implementation and argumentation.

While the left part of the schematic, comprising the various development artifacts
necessary for reuse, as well as the right side safety case description, can entirely
originate in one seamless tool – as will be shown in our first use case in Sect. 3 – this is
not necessary. As long as the artifacts’ relations are well-defined, the development
artifacts may reside in multiple tools or repositories and be in varying formats; the
binding element is the safety case shown on the right hand side, which gives the story
and rationale behind the reusable pattern, supported in-tool by the pattern library
mechanism. This specific aspect is particularly important for the practical reuse in a
safety-critical development context, where each practitioner may have their own dis-
parate tool landscape. This forms a cornerstone of our approach. Depending on the
development environment used, the relation between artifact categories will differ
according to the definitions provided for how the different category views (if available)
interact. The pattern library mechanism can then be in general terms interpreted as a
weaving model, which binds the pattern elements together and allows their reuse.
Additional mechanisms for the instantiation, also depending on the development
environment, may be necessary. More details about the approach, the attribute cata-
logue, and the structure of this reusable library element concept in a seamless model-
based development tool are provided in [12]. The use-cases whose results are sum-
marized in Sect. 4 are discussed in detail in [33].

2.3 Instantiation in AutoFOCUS3

Introduction to AutoFOCUS3
AutoFOCUS3 (AF3) is a research computer-aided software engineering (CASE) tool,
which allows modeling and validating concurrent, reactive, distributed, timed systems
on the basis of formal semantics [7]. Most importantly, AF3 provides a graphical user
interface that facilitates the modeling of embedded systems in different layers of
abstraction while supporting different views on the system model, including the
requirements-, component- and platform- view essential for the description of complex
systems. This support for views enables applying paradigms such as “separation-of-
concerns” – different views for different stake-holders/concerns – as well as “divide-
and-conquer” – different hierarchy layers allowing the decomposition of engineering
problems to facilitate solution, as championed by the IEEE 42010 standard [8].

Introducing the Pattern Library Approach to AF3
An early attempt at reusing architectural patterns in AF3 was presented in [9]. In it, the
authors demonstrated how Homogenous Duplex Redundancy (HDR), and Triple
Modular Redundancy (TMR) could be integrated as patterns into AF3. Before this

Pattern Libraries Guiding the Model-Based Reuse 93

work, AF3 had no pattern capability. The approach was successful in demonstrating
that design patterns for embedded-system Safety Mechanisms can be supported in AF3
and that they are useful. Practitioners who experimented with the feature gave positive
feedback and voiced their interest in having the functionality expanded.
Using the Attribute Catalogue and evaluation scoring system introduced in the previous
sections, the quality of the existing Safety Mechanism capturing in AF3 was evaluated,
resulting in a sobering score of 42%. The shortcomings, described in detail in [33],
were mostly due to the domain-independent nature and limitations of the tool itself,
which had not been developed for our purpose.

Using the individual evaluation scores for each attribute to identify gaps in the tool
as well as to guide and prioritize the extension of AF3, the tool suite was expanded in
two steps. The first, presented in [10], added safety case expression capability to AF3.
The second expansion, driven by the author and presented in [11], instantiated our
Safety Mechanism Pattern Library approach, developing the detailed workflow
description in this paper.

The practical applicability, along with an initial usage description – for the pattern
User role – and description of the implementation (with screenshots), were presented in
[12]. Detailed definitions of the data-model elements and relations shown in Fig. 3,
were also given.

Safety Mechanism Pattern Developer
A comprehensive analysis of all the Safety Mechanisms found in our literature survey
(approx. 40), led us to identify three archetypes of structures for capturing and
instantiating Safety Mechanisms in AF3, detailed in [12]. To save a new Safety
Mechanism, the Developer has to decide which of these archetypes best fits their need.

Fig. 3. AF3 extended pattern library element data model [32]

94 M. Khalil

The Developer is aided in this task by a wizard, shown in Fig. 5, which also assures
that library elements cannot be created without the mandatory information.

But first, Fig. 4 shows the steps a developer has to undertake to document a new
Safety Mechanism Pattern in AF3, some of which are optional. The steps are explained
in more detail next.

1. Create Safety Requirement

By designating a requirement as safety-relevant, a corresponding Safety Case is
automatically created.

2. Capture Safety Requirement

The Safety Requirement now has to be filled in with all relevant information. This is
done using MIRA – the Model-Based Integrated Requirements Specification and
Analysis Tool in AF3, which also allows to check requirements for consistency and
completeness, as well as defining general maturity levels for requirements.

3. Capture Safety Specifications

Next, the Developer can specify the behavior of the Safety Mechanism formally, e.g.,
using tables or state automata. This allows for a formal verification of the implemented
Safety Mechanism, as well as the automated generation of test-cases, which can then be
used to check the system architecture specification against the requirements in a con-
tinuous manner.

4. Capture Logical Components and Architecture

The Developer can now begin with the actual implementation of the Safety Mechanism
Pattern, by defining logical components and their relations in the Logical Architecture

Fig. 4. Workflow steps for safety mechanism pattern developer role in AF3

Pattern Libraries Guiding the Model-Based Reuse 95

view in AF3. Referring to the description of AF3 provided in [7], this includes many
aspects – such as typed directed ports – allowing for a detailed and precise docu-
mentation of the pattern implementation.

If the pattern is implemented entirely in software and has no hardware aspects, the
Developer can skip to Step 7, otherwise we proceed to the next step.

5. Capture Technical Components and Architecture

Next, any hardware related implementation aspects are captured using the Technical
Architecture view in AF3. This allows the addition of hardware resources, such as
computation nodes and communication busses, as well as specifying the properties of
these nodes, such as power consumption, memory capacity.

6. Capture Deployment Rules

AF3 allows a precise definition of deployment rules to govern the allocation of logical
components to computational resources (nodes). Furthermore, it is possible to use the
Design Space Exploration capability of AF3 to generate deployments and schedules
optimized to fulfill multiple criteria, such as worst case execution time, memory
constraints, bus loads or power consumption, but also safety constraints, such as ASIL-
decomposition and random hardware failure probabilities, as seen in [34].

Fig. 5. AF3 Safety mechanism pattern developer wizard interface [32]

96 M. Khalil

7. Complete Safety Case Links

In order to make use of the integrated argumentation capability in AF3, the Developer
has to build the safety case – arguing the use and functionality of the Safety Mechanism
Pattern he is developing – and link all its elements to the corresponding development
artifacts in the other AF3 views (Requirements and Specification – Logical Architec-
ture – Technical Architecture – Deployment).

8. Complete missing/additional Pattern Information

Finally, the wizard guides the Developer to provide additional pattern information,
such as the pattern classification.

Throughout this process, the Developer is guided by the wizard, whose interface
can be seen in Fig. 5, which makes sure that all mandatory information, necessary for
the correct documentation of the Safety Mechanism Pattern attributes, is provided into
the library element. The new Safety Mechanism Pattern can now be saved as an
element of the pattern library, where it is accessible to other AF3 pattern Users.

As seen in the evaluations in [33] and the summary in Sect. 4, although the
approach brought significant improvements to AF3’s capability of capturing Safety
Mechanism Patterns for reuse, some of the required pattern attributes are still never-
theless not satisfactorily captured in AF3’s artifacts – especially implications and
consequences. We appended the library mechanism with the capability to add some
short textual information to enhance the documentation qualities of these attributes.
This is meant as a stop-gap until AF3 capabilities improve enough to allow capturing
the information solely in modeling artifacts. These shortcomings factored into our
evaluations.

3 Related Work

A recent survey of patterns in safety-critical development provided in [19] demon-
strates that patterns tend to focus on clear target types of problems; engineering step
(requirements, design, implementation, …), category (argumentation pattern,
safety/security pattern, design pattern – like redundancy, …), as well as abstraction
(e.g. software, hardware, …), and used these to organize the results. This is useful, yet
somewhat too narrow or isolated an approach for an effective reuse of technical
solutions in practice. This is because be it an architecture description or the software or
hardware development artifact, the single item does not tell the entire story, as dis-
cussed in Sect. 1. A holistic Systems Engineering approach is needed.

The survey also observed wide-spread use of model-based techniques, with dif-
ferent modeling methods and languages used in accordance with the needs of safety
engineers (mostly graphical notations like UML/SysML and GSN), but also textual
patterns.

Combining the power of model-based techniques with the design pattern approach
seems a logical step. In fact, Douglass himself documented his first patterns for real-time
embedded systems using UML [20]. The examples are abundant – using UML to capture

Pattern Libraries Guiding the Model-Based Reuse 97

hardware design process patterns [21] or software product line patterns [22]; or using
models to capture hardware design patterns [23] – yet the fact remains, that the focus was
on leveraging the capabilities of model-based techniques for the documentation of the
patterns, rather than capturing them for direct reuse in a practical setting.

The Assured Reliability and Resilience Level (ARRL) approach, presented in [24],
provides a push in that direction, by leveraging Quality of Service (QoS) paradigms,
arguing against Safety Integrity Levels (SIL) and seeking to supplant them with
ARRLs. This is meant to transform components into a compositional framework,
where “ARRL level components carry a contract and the evidence that they will meet
this contract given a specific set of fault conditions”. While the notion has its charm,
there are several limitations to this approach: it assumes that the information is
available in the models or components it is applying ARRL to, which is often not the
case; it assumes that a transformation of the information, contracts and guarantees is
possible into ARRL, without loss of information. In practical settings, this is not a
trivial assumption, as each company will have its own artifacts; and finally, it requires
the adoption of a new framework, which will undoubtedly meet very high resistance
from industry, as well as substantial and not entirely drawback-free changes to existing
and established safety standards and practices. Our approach works inside the practi-
tioners’ tools.

Denney and Pai [25] offer automation support for the generation of (partial) safety
cases, by considering three inter-related tables – namely one each for hazards, system
requirements, and functional requirements – as idealizations of the safety analysis and
development processes. The argument structures are then automatically populated by
predefined mappings from the tables. The approach is useful for structuring require-
ments and argumentation, is for the most part formalized, and has functioning tool
support [26]. The approach does not, however, directly link design architectures or
product artifacts in its function; or address patterns; or how the aspects needed for reuse
are covered; nor does it show how the method may work in other fields.

Armengaud [27] proposed a conceptually similar approach for automating the
assembly of safety cases. His approach is based on linking ISO 26262 activities and
work products – for instance, design and test artifacts evidence – by means of infor-
mation models. However, the approach does not address how these models structure
the safety case argument; nor does he address the reuse of patterns or safety mecha-
nisms in safety.

Hawkins et al. present a very pragmatic approach – quite similar to ours – in [28], based
on the automatic generation of assurance cases from design artifacts. The approach uses
model weaving to link various elements relevant for arguing the safety of architecture
design and product information fromAADL [35] with a meta-model of GSN, to generate a
safety case argument structure. A main advantage of the approach is that the weaving
models are bidirectional; allowing the generation of updated argument structures to match
changes in product information, but also allowing the reflection of changes in the argument
structure back to the product and architecture design. This facilitates the co-evolution of
architecture design and product information with the assurance case. The approach targets
development environments using (or based on) AADL, which is not widely adopted in the
automotive domain; and it does not address implementation artifacts or issues. Further-
more, the approach does not address patterns or reuse exactly, but is focused on the

98 M. Khalil

generation of assurance cases. The approach can, however, be used to support safety
patterns, by adapting it to maintain the co-evolution of the system design and product
information side with the argumentation side of a safety pattern library element. In that
capacity it is most useful when applied to abstract high-level patterns. For concrete solu-
tions such as Safety Mechanisms, our focus, it would be much simpler and more precise to
directly link the assurance case elements to the design and implementation artifacts sup-
porting them. In that scope, the model-weaving approach mentioned above would be too
general in its current form, and on the other hand, attempts to make it more precise would
probably be over-kill and counter-productive. Its strengths simply lie elsewhere.

More closely related are the works of Hauge [37] and Hamid [36]. Hauge intro-
duces a pattern language for safety design – called Safe Control Systems (SaCS) - with
which he proceeds to capture known approaches towards a safe system design. These
include both product-based as well as process-based safety concepts enabling a safe-
design. Hauge’s selection of what a “safety concept design” is builds on the work of
Habli and Kelly in [39], in which they introduce safety case patterns for generic safety
concepts – i.e., repeatable argument patterns – using GSN. The SaCS language pro-
vides good coverage of safety concept design, as demonstrated in the analysis given in
[37], and expanded on in [38]. Hamid introduces a holistic approach for model
repository-centric reuse of solutions for complex applications. His approach provides a
methodology and tool-support for developing model repositories, supporting two cat-
egories of users: ‘‘reuse’’ producers and ‘‘reuse’’ consumers, and is demonstrated via a
preliminary prototype that captures security and dependability pattern models. Hamid
builds on his previous work in [40], in which he introduces so-called “SEMCO
(System and software Engineering with Multi-Concerns support)”, which is an inte-
grated repository of modeling artifacts aiming at enabling the co-evolution of models
covering various engineering concerns, e.g., safety, security.

Hauge’s work targets basic “patterns” in safety concepts, such as “Hazard Anal-
ysis”, “Risk Analysis”, and “Establish System Safety Requirements” and how to
combine them into composite “Safety Requirements” patterns. Our work focuses on the
practical reuse of the category of technical solutions collected under the term “safety
mechanisms”, as well as the generalization of the concept for other types of model-
based reuse. While Hamid’s work offers a holistic and precise approach to building
modeling repositories. Its reliance on model transformations, while supporting a more
precise definition of his holistic model repositories, can be somewhat cumbersome and
inflexible to a practitioner, and this reason made us opt for the relative flexibility of
model-weaving. More importantly, both Hauge and Hamid have come up with their
own modeling languages and tools. Similar to the ARRL and related approaches
presented here, this assumes that practitioners are willing, or even capable, of com-
pletely abandoning their domain/industry-established tools in favor of an academic
suite with little to no commercial support. In contrast our approach provides a blue-
print for practitioners to tailor and instantiate it into their own tool suites for their own
exact purposes, while enabling them to evaluate the adequacy of those tools for their
individual purposes and providing a guide for eventual tool extensions/replacements.

Pattern Libraries Guiding the Model-Based Reuse 99

4 Conclusions and Lessons Learned

The design of functional-safety systems is largely driven by best practices – like the use
of fault monitors, safe states, or redundant paths. These best practices can often be
presented in form of patterns – both to describe a possible solution but also to docu-
ment an argumentation about their contribution to a safety case. Our approach provides
for a library of such patterns, allowing the identification and reuse of suitable measures
and their corresponding components along with their safety cases. It also guides
practitioners into a systematic capturing – in the Pattern Developer role – and reuse of
technical solutions such as Safety Mechanisms – in the Pattern User role.

4.1 Discipline vs. Design Freedom – the Pattern Library in Practice

Expanding the number of Safety Mechanisms considered in previous works to all
found in literature, we evaluated approx. 40 and implemented 7 in the AF3 Case-Study,
finding none that could not readily be captured using our approach, thus demonstrating
that our Safety Mechanism attribute catalogue and Pattern Library approach apply to all
categories of Safety Mechanisms.

Our observations with practitioners who tried out the tool led us to increase the
rigor and discipline enforced by the tool itself, to both guide and reign in abuses by the
users, who – without guidance – were inevitably attracted to “short-cuts”, focusing on
their central artifact of interest and trying to forego the onerous task of filling in all the
other necessary information.

While the wizard shown in Sect. 2.3 has certainly increased this discipline, we feel
that a certain sensitization, speaking to the mindset of the practitioners, is necessary and
cannot be achieved by tool constraints alone, which when raised beyond a certain
threshold led the practitioners to label the tool “unusable” and abandon it altogether.

4.2 Case Study Evaluation Results

This section gives a short summary of results presented in detail in [33]. We carried out
case-studies instantiating the approach into 3 development environments: AF3, intro-
duced in this paper – a domain-independent CASE tool; the SAFE Modeling Frame-
work, described in [13, 14], an automotive safety-critical application software
architecture description framework; and finally a generalization and instantiation of the
approach into the COREPA Framework at Continental – a globally leading automotive
Tier 1 supplier. COREPA is a library of reusable – functional and technical – solution
components with a focus on automated driving and advanced driver assistance system
applications, used to develop and tailor complex system designs as well as guide future
component roadmaps. The results of the first evaluations of COREPA were used to
guide tool expansions, introducing formal design space-exploration (DSE) capability
[15]. The DSE was used to enable the synthesis of deployments from logical (platform-
independent) system models to technical (platform-specific) system architecture
models, including multi-criteria optimization. This enables a correct-by-design gener-
ation of preliminary architecture concepts for complex vehicle function application
bundles for various customers with disparate and occasionally conflicting design

100 M. Khalil

constraints – and all at the push of a button. The capabilities were further extended to
enable the synthesization of the technical architecture by optimized selection from a
library of technical component models, as described in [16].

Using these case studies, we demonstrated the following benefits from using the
approach:

• A guided capturing of reusable solutions. As an immediate benefit of the approach,
practitioners no longer have to wonder if they have captured all the necessary
information nor approach the problem in an ad-hoc fashion. Pre-defining the
attributes necessary to capture a reusable solution guarantees that practitioners
know which information needs to be captured.

• A gauge of if and how well the necessary information is being captured in the
current tool-suite. Pre-defining the attributes necessary to capture the reusable
solution also means that practitioners will no longer be limited by the current
capabilities of their tools, or the way they currently use them, but will look into
adapting and expanding their tool-suite to better suite this goal, as they now have a
gauge to test against. This is a more abstract, longer-term benefit.

• An aide for selecting better tools. Knowing exactly which information needs to be
captured means that practitioners can look beyond the limitations of their current
tools, and onto adopting such tools as truly fit their needs. This is the most abstract,
long-term benefit of the approach.

Our observations while evaluating the second and third case studies confirm an
earlier hypothesis: the more detail-rich and context-adequate or domain-specific a
modeling/tool framework, the higher the number of attributes one can capture in its
models and the better the quality and degree of attribute capturing, thus increasing the
quality of the final product. This hypothesis is supported by our observations while
evaluating the second and third case studies. The shortcomings exposed by the first
evaluation reflect limitations due to the domain-independent nature of AF3, with many
of the missing features being very specific to tools specifically developed for safety-
critical automotive embedded systems development.

We interpret the results of the case-studies as a validation of the approach’s pre-
mise, based on predefining the information targeted for capture in the model-based
development environment in a structured systematic approach – independently of the
environment itself.

Importantly – and contrary to related work, our approach features an explicit
model-based representation of the reusable solutions within the practical context of
their usage and the problems they solve, which can be instantiated into any model-
based development environment. This has several advantages, including (1) a better
characterization of the problem space addressed by the pattern – better than the textual
description otherwise used in pattern templates, (2) a more natural representation of the
transformations embodied in the application of the pattern, and (3) a better handle on
the selection, rationale and application of the patterns [18]. Our approach is not limited
to one type or category of artifact, but targets the capturing of all information necessary
for successful system design reuse.

Finally, and most importantly, the COREPA case study demonstrates how the
underlying concept of our approach can generically be applied to a model-based reuse-

Pattern Libraries Guiding the Model-Based Reuse 101

in-practice problem in general, guiding both the systematic reuse as well as the cor-
responding tool development in a large-scale industrial setting with demonstrated
positive impact.

Acknowledgement. The initial specification of this approach stems from and was carried out in
the integrated development environment for the ITEA2 SAFE project and the EUROSTARS
SAFE-E project, with proof-of-concept implementation in the research CASE tool AUTO-
FOCUS3 (AF3). AF3 is the result of the hard work of many researchers and employees of the
Software and Systems Engineering Department at the fortiss Institute in Munich, Germany.

References

1. International Standards Organization, ISO 26262 Standard, Road Vehicles Functional Safety
(2011). www.iso.org

2. Kelly, T., Weaver, R.: The goal structuring notation. A safety argument notation. In:
Proceedings DSN 2004 Workshop on Assurance Cases (2004)

3. Wu, W., Kelly, T.: Safety tactics for software architecture design. In: Proceedings of the 28th
Annual International Computer Software and Applications Conference, (COMPSAC 2004),
vol. 1, pp. 368–375. IEEE Computer Society, Washington, DC, USA (2004)

4. Kelly, T.P., McDermid, J.A.: Safety case construction and reuse using patterns. In: 16th
International Conference on Computer Safety, Reliability and Security (SAFECOMP 1997)
(1997)

5. Wagner, S., Schatz, B., Puchner, S., Kock, P.: A case study on safety cases in the automotive
domain: modules, patterns, and models. In: Proceedings International Symposium on
Software Reliability Engineering (ISSRE 2010), IEEE Computer Society (2010)

6. Khalil, M.: Pattern-based methods for model-based safety-critical software architecture
design. In: ZeMoSS 2013 Workshop at the SE 2013 in Aachen, Germany (2013)

7. AutoFOCUS 3, research CASE tool, af3.fortiss.org, fortiss (2018)
8. ISO/IEC/IEEE 42010: Systems and software engineering—Architecture description (2011).

www.iso.org
9. Carlan, C.: Implementierung unterschiedlicher Redundanzkonzepte zur automatischen

Generierung entsprechender logischer Strukturen für ein sicheres Verhalten gemischt-
kritischer Systeme im CASE-Tool AutoFocus3. Bachelor Thesis (German). Technische
Universität München. Faculty of Informatics. Chair of Software and Systems Engineering
(2012). http://download.fortiss.org/public/carlan/BA_Carmen_Carlan.pdf

10. Voss, S., Schatz, B., Khalil, M., Carlan, C.: A step towards Modular Certification using
integrated model-based Safety Cases. VeriSure (2013)

11. Khalil, M., Schatz, B., Voss, S.: A pattern-based approach towards modular safety analysis
and argumentation. In: Embedded Real Time Software and Systems Conference
(ERTS2014) – Toulouse, France (2014)

12. Khalil, M., Prieto, A., Hölzl, F.: A pattern-based approach towards the guided reuse of safety
mechanisms in the automotive domain. In: Ortmeier, F., Rauzy, A. (eds.) IMBSA 2014.
LNCS, vol. 8822, pp. 137–151. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12214-4_11

13. The ITEA2 SAFE Project/The EUROSTARS SAFE-E Project. www.safe-project.eu
14. The SAFE Consortium. Deliverable D3.5c “SAFE Meta-Model: System, SW, HW reference

meta-model definition. www.safe-project.eu ITEA2 (2014)

102 M. Khalil

http://www.iso.org
http://www.iso.org
http://download.fortiss.org/public/carlan/BA_Carmen_Carlan.pdf
http://dx.doi.org/10.1007/978-3-319-12214-4_11
http://dx.doi.org/10.1007/978-3-319-12214-4_11
http://www.safe-project.eu
http://www.safe-project.eu

15. Eder, J., Zverlov, S., Voss, S., Khalil, M., Ipatiov, A.: Bringing DSE to life: exploring the
design space of an industrial automotive use case. In: 2017 ACM/IEEE 20th International
Conference on Model Driven Engineering Languages and Systems (MODELS) (2017).
https://doi.org/10.1109/MODELS.2017.36

16. Eder, J., Zverlov, S., Voss, S., Ipatiov, A., Khalil, M.: From deployment to platform
exploration: automatic synthesis of distributed automotive hardware architectures. In: 2018
ACM/IEEE 21st International Conference on Model Driven Engineering Languages and
Systems (MODELS). Accepted (2018)

17. Kelly, T., Habli, I., et al.: Origin Consulting (York) Limited, on behalf of the Contributors.
Goal Structuring Notation (GSN). GSN COMMUNITY STANDARD VERSION 1,
November 2011

18. Mili, H., El-Boussaidi, G.: Representing and applying design patterns: what is the problem?
In: Briand, L., Williams, C. (eds.) MODELS 2005. LNCS, vol. 3713, pp. 186–200. Springer,
Heidelberg (2005). https://doi.org/10.1007/11557432_14

19. Gleirscher, M., Kugele, S.: A study of safety patterns: first results (2016). https://doi.org/10.
13140/rg.2.2.23347.22562

20. Douglass, B.P.: Doing Hard Time: Developing Real-Time System with UML, Objects,
Frameworks, and Pattern. Addison-Wesley, New York (1999)

21. Damaševicius, R., Štuikys, V.: Application of UML for hardware design based on design
process model. In: ASP-DAC ’04: Proceedings of the 2004 Asia and South Pacific Design
Automation Conference, pp. 244–249. IEEE Press, Piscataway, NJ, USA (2004)

22. Rincon, F., Moya, F., Barba, J., Lopez, J.C.: Model reuse through hardware design patterns.
In: DATE ’05: Proceedings of the conference on Design, Automation and Test in Europe,
pp. 324–329. IEEE Computer Society, Washington, DC, USA (2005)

23. Gomaa, H., Hussein, M.: Model-based software design and adaptation. In: Proceedings of
the 2007 International Workshop on Software Engineering for Adaptive and Self-Managing
Systems, p. 7. IEEE Computer Society (2007)

24. Verhulst, E., Sputh, B.H.C.: ARRL: a criterion for composable safety and systems
engineering. In: Workshop SASSUR (Next Generation of System Assurance Approaches for
Safety-Critical Systems) of the 32nd International Conference on Computer Safety,
Reliability and Security SAFECOMP (2013)

25. Denney, E., Pai, G.: A lightweight methodology for safety case assembly. In: Ortmeier, F.,
Daniel, P. (eds.) SAFECOMP 2012. LNCS, vol. 7612, pp. 1–12. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33678-2_1

26. Denney, E., Pai, G., Pohl, J.: Advocate: an assurance case automation toolset. In:
Proceedings of Workshop SASSUR (Next Generation of System Assurance Approaches for
Safety-Critical Systems) of the 31st International Conference on Computer Safety,
Reliability and Security SAFECOMP, pp 8–21 (2012)

27. Armengaud, E.: Automated safety case compilation for product-based argumentation. In:
Embedded Real Time Software and Systems Conference (ERTS 2014), Toulouse, France
(2014)

28. Hawkins, R., Habli, I., Kolovos, D., Paige, R., Kelly, T.: Weaving an assurance case from
design: a model-based approach. In: 16th IEEE International Symposium on High Assurance
Systems Engineering – HASE2015. Florida (2015)

29. Armoush, A.: Design Patterns for Safety-Critical Embedded Systems. Ph.D. Thesis, RWTH-
Aachen (2010)

30. ISO/IEC/IEEE 15288: Systems and software engineering – System life cycle processes
Standard. https://www.iso.org (2015)

31. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Boston, MA, USA (1994)

Pattern Libraries Guiding the Model-Based Reuse 103

http://dx.doi.org/10.1109/MODELS.2017.36
http://dx.doi.org/10.1007/11557432_14
http://dx.doi.org/10.13140/rg.2.2.23347.22562
http://dx.doi.org/10.13140/rg.2.2.23347.22562
http://dx.doi.org/10.1007/978-3-642-33678-2_1
https://www.iso.org

32. Prieto Rodriguez, A.A.: Exploration of a pattern-based approach for the reuse of safety
mechanisms in embedded systems. Master’s Thesis. Technische Universität München.
Faculty of Informatics. Chair of Software and Systems Engineering (2014)

33. Khalil, M.: Design patterns to the rescue: guided model-based reuse for automotive
solutions. In: 2018. 25th Pattern Languages of Programming Conference. PLoP2018.
Portland. Oregon, USA. In review

34. Zverlov, S., Khalil, M., Chaudhary, M.: Pareto-efficient deployment synthesis for safety-
critical applications. In: Embedded Real Time Software and Systems Conference (ERTS
2016), Toulouse, France (2016)

35. AADL. Architecture Analysis and Design Language. SAE International Standard AS-5506
Ver. 2.1. 2102 (2018). www.aadl.info

36. Hamid, B.: A model-driven approach for developing a model repository: methodology and
tool support. Future Gen. Comput. Syst. 68, 473–490 (2017). ISSN 0167-739X

37. Hauge, A., Stølen, K.: An analytic evaluation of the SaCS pattern language—Including
explanations of major design choices. In: Patterns, pp. 79–88 (2014)

38. Hauge, A.A.: SaCS: a method and a pattern language for the development of conceptual
safety designs. Doctoral Dissertation. Series of dissertations submitted to the Faculty of
Mathematics and Natural Sciences, University of Oslo. No. 1568. ISSN 1501-7710 (2014)

39. Habli, I., Kelly, T.: Process and product certification arguments – getting the balance right.
SIGBED Rev. 3(4), 1–8 (2006)

40. Hamid, B.: SEMCO Project, System and software Engineering for embedded systems
applications with Multi- COncerns support, http://www.semcomdt.org

41. Schmidt, D.: Model-driven engineering. IEEE Comput. 39(2), 41–47 (2006)
42. Crnkovic, I., Chaudron, M.R.V., Larsson, S.: Component-based development process and

component lifecycle. In: Proceedings of the International Conference on Software
Engineering Advances, ICSEA 2006, p. 44. IEEE Computer Society (2006)

43. Frakes, W., Kang, K.: Software reuse research: status and future. IEEE Trans. Softw. Eng.
31(7), 529–536 (2005)

104 M. Khalil

http://www.aadl.info
http://www.semcomdt.org

Enabling Performance Modeling for the
Masses: Initial Experiences

Abel Gómez1(B) , Connie U. Smith2, Amy Spellmann2, and Jordi Cabot1,3

1 Internet Interdisciplinary Institute (IN3),
Universitat Oberta de Catalunya (UOC), Barcelona, Spain

agomezlla@uoc.edu, jordi.cabot@icrea.cat
2 L&S Computer Technology, Inc, Austin, USA

{cusmith,amy}@spe-ed.com
3 ICREA, Barcelona, Spain

Abstract. Performance problems such as sluggish response time or
low throughput are especially annoying, frustrating and noticeable to
users. Fixing performance problems after they occur results in unplanned
expenses and time. Our vision is an MDE-intensive software development
paradigm for complex systems in which software designers can evaluate
performance early in development, when the analysis can have the great-
est impact. We seek to empower designers to do the analysis themselves
by automating the creation of performance models out of standard design
models. Such performance models can be automatically solved, provid-
ing results meaningful to them. In our vision, this automation can be
enabled by using model-to-model transformations: First, designers cre-
ate UML design models embellished with the Modeling and Analysis of
Real Time and Embedded systems (MARTE) design specifications; and
secondly, such models are transformed to automatically solvable perfor-
mance models by using QVT. This paper reports on our first experiences
when implementing these two initial activities.

Keywords: Experience · Performance engineering · UML · MARTE ·
QVT

1 Introduction

Poor performance of cyber-physical systems (CPS) is exemplified by: (i) notice-
ably sluggish response time that becomes frustrating and unacceptable to users;
(ii) low throughput that, in the worst case, cannot keep pace with the arrival
and processing of new information; (iii) jitter such as flickering of displays, pix-
elation, irregular unpredictable responses, pauses while the system catches up,
etc.; (iv) lack of response to user inputs because the system is busy with the
previous request; or (v) timeouts and error messages.

Performance problems are obvious to users, and especially annoying and
frustrating. Performance has become a competitive edge. The consequences of

c© Springer Nature Switzerland AG 2018
F. Khendek and R. Gotzhein (Eds.): SAM 2018, LNCS 11150, pp. 105–126, 2018.
https://doi.org/10.1007/978-3-030-01042-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01042-3_7&domain=pdf
http://orcid.org/0000-0003-1344-8472
http://orcid.org/0000-0003-2418-2489

106 A. Gómez et al.

poor performance range from complaints or rejection of new products to a system
failure that, in the worse case, may involve loss of life [18]. Social media and online
product reviews expose these performance problems in a way not previously
possible, so product failures are much more visible. Extreme cases raise the
potential of a business failure.

However, more often than not, performance problems are tackled after they
occur, resulting in unplanned expense and time for refactoring. Instead, we advo-
cate for a Model-driven Engineering (MDE) [15] approach to CPS systems devel-
opment in which stakeholders evaluate the performance of systems early in devel-
opment when the analysis can have the greatest impact [34]. We seek to move
system performance analysis from an isolated set of tools, that require experts
to do laborious manual transfers of data among design and analysis tools, to an
integrated framework in which independent tools share information automati-
cally and seamlessly [32].

Our vision is a framework which takes advantage of 1 Model Interchange
Formats (MIF), which are a common representation for data required by
performance modeling tools. The MIFs we use were originally proposed in
1995 [35,37] and have been broadened in scope over the years to incorporate
performance-determining factors found in most performance modeling tools and
techniques [19,33]. Using a MIF, tools in the framework may exchange models by
implementing an import/export mechanism and need not be adapted to interact
with every other tool in the framework. In fact, tools need not know of the exis-
tence of other tools thus facilitating the addition of new tools in the framework.
This framework exploits model-to-model (M2M) transformations from design
models to a MIF and thus provides an automated capability for analyzing the
performance of CPS architectures and designs, enabling stakeholders to obtain
decision support information – quickly and economically – during the early stages
of development.

Our envisioned framework is 2 design-driven rather than measurement-
driven. Measurement-driven approaches use metrics of performance behavior and
find ways to reduce resource usage to improve performance. On the contrary,
our design-driven approach ties the performance metrics to the aspects of the
design that cause excessive demands, so it is also possible to change the way the
software implements functions. This often leads to more dramatic improvements
than those achievable solely with measurement-driven approaches. The design-
driven approach also leads to the resource-usage-reduction improvements so a
combination of both types of improvements are attainable.

Finally, we envision an approach exploiting 3 design specifications as
the source for the performance models, as opposed to performance specifications
(see Sect. 4 for a description, and Sect. 8 for a comparison with similar previous
approaches). Developing performance modeling annotations to designs – such
as those in the Modeling and Analysis of Real Time and Embedded Systems /
Performance Analysis Model (MARTE/PAM) [25] – requires expertise in per-
formance engineering, and we seek to enable system designers to evaluate the
performance of their designs without requiring performance-modeling experts.

Enabling Performance Modeling for the Masses 107

System designers – software architects, designers, modelers, developers, etc. –
are the masses to whom our approach is targeted1. We do not envision elimi-
nating performance specialists altogether: experts should be used when system
designers find high performance risk or serious problems requiring performance
expertise, when successful project completion is vital, and other high-profile con-
cerns exist. This makes effective use of scarce performance-expertise resources.

This paper reports on our experience on implementing the first version of the
design to MIF transformation for our MDE-based performance modeling frame-
work supporting our vision to bring performance assessment closer to system
designers. The starting point of this experience is the Implementation of a Pro-
totype UML to S-PMIF+ model-to-model transformation (UML to S-PMIF+)
project. This UML to S-PMIF+ transformation is a core element of our approach
and key to study the feasibility of the approach. This L&S Computer Technology
project, supported by the MDE experts at the Universitat Oberta de Catalunya,
aims at implementing the transformation to generate performance models – that
can be automatically verified – from design models. As the title of the project
specifies, design models are specified using UML [27], which are enriched with
design modeling stereotypes from the Modeling and Analysis of Real-time Embed-
ded Systems (MARTE) [25] standard. These design models are transformed
to the Software Performance Model Interchange Format+ (S-PMIF+) [33]. S-
PMIF+ is an XML-based, MOF-compliant interchange format that can be fed
into performance engineering analysis tools such as RTES/Analyzer [20].

The rest of the paper is structured as follows. Section 2 introduces a clas-
sical – i.e., not automated – performance analysis process, which serves as the
basis to our automated proposal presented in Sect. 3. Section 4 presents our app-
roach to model performance by using UML and MARTE, and Sect. 5 presents
how such UML/MARTE models can be transformed to an automatically solv-
able performance model by using the QVT transformation language. Section 6
exemplifies how the concepts introduced in the two previous Sections are put in
practice. Section 7 discusses our findings and lessons learned during this experi-
ence. Section 8 discusses related work and Sect. 9 presents our conclusions.

2 Software Performance Engineering in a Nutshell

Software Performance Engineering (SPE) [34] is a systematic, quantitative app-
roach to the cost-effective development of software systems to meet performance
requirements. Presented more than 25 years ago, it is a clear example of a classi-
cal and well established performance analysis process. The SPE process focuses
on the system’s use cases and the scenarios that describe them. From a develop-
ment perspective, use cases and their scenarios provide a means of understanding
and documenting the system’s requirements, architecture, and design. From a
performance perspective, use cases allow the identification of workloads that are
significant from a performance point of view, that is, the collections of requests
1 From this point on, we will use the generic term system designers to refer to any

stakeholder taking advantage of our approach.

108 A. Gómez et al.

Select key
performance

scenarios

Establish
performance
requirements

Construct
performance

models

Specify
resource

requirements

[performance
acceptable]

Modify/create
scenarios

Identify
critical

use cases

Solve
performance

models

Modify
product
concept

[infeasible][feasible]

Revise
performance
requirements

Fig. 1. SPE process (adapted from [34])

made by the users of the system. Traditionally, SPE processes have been con-
ducted by performance analysts – assisted by software architects or developers –
who use existing functional models of the system as their starting point. Figure 1
describes typical steps in a simplified SPE process from the modeling point of
view:

1. A performance analyst identifies the critical use cases, which are those that
are important to the operation of the system, or to responsiveness as seen by
the user.

2. The analyst selects the key performance scenarios – i.e., UML Sequence
Diagrams in design models. The key performance scenarios are those that
are executed frequently, or those that are critical to the perceived performance
of the system.

3. The analyst establishes the performance requirements, i.e., identifies and
defines the performance requirements – expressed in terms of response time,
throughput, or resource usage – and workload intensities for each scenario
selected in step 2.

4. The performance analyst constructs the performance models by translat-
ing the sequence diagrams of the key performance scenarios into execution
graphs [34].

5. The analyst specifies the resource requirements, i.e., the amount of service
that is required from key devices in the execution environment. This is typ-
ically done in two separate steps: first, by specifying the software resource
requirements, i.e., the computational needs that are meaningful from a soft-
ware perspective; and secondly, by mapping those software resource require-
ments onto the computer resource requirements. Software resource require-
ments can be extracted from the functional description of the system (e.g.,
from UML Class Ciagrams), while computer resource requirements depend
on the environment in which the software executes (e.g., typically specified
in UML Deployment Diagrams and other documentation).

6. Finally, the analyst solves the performance models. Solving the execution
graph characterizes the resource requirements of the proposed software in
isolation. If this solution indicates that there are no problems, the analyst
proceeds to solve the system execution model. If the model solution indicates
that there are problems, there are two alternatives:(i) revise performance

Enabling Performance Modeling for the Masses 109

requirements, modifying them to reflect this new reality – in this case, all
stakeholders should decide if the new requirements are acceptable – or, (ii)
modify the product concept, looking for feasible, cost-effective alternatives for
satisfying this use case instance. This latter option may require modifying
existing scenarios or creating new ones – again, involving other stakeholders
such as software architects or developers.

These steps describe the SPE process for one phase of the development cycle,
and the steps repeat throughout the development process. At each phase, the
analyst refines the performance models based on increased knowledge of details
in the design.

Despite many successes applying the SPE methods, there are key barriers
to its widespread adoption and use: (i) it requires considerable experience and
knowledge of performance modeling and there is a small pool of these experts;
(ii) it is time consuming to manually develop performance models of a large,
complex system; and (iii) a substantial amount of time is required to keep per-
formance models in sync with evolving design models.

3 Towards Automated Software Performance
Engineering

As mentioned above, a traditional SPE process is a labor-intensive approach
requiring considerable expertise and effort: performance engineers work side by
side with system designers to understand their design, and then create perfor-
mance models of the design using a performance modeling tool, such as SPE-
ED [20]; when problems are detected, performance engineers recommend solu-
tions to system designers who do a refactoring in order to improve performance.
Clearly, automating the production of performance models would make early
design assessment viable and enable system designers to conduct many of their
own analyses without requiring extensive performance expertise.

Fortunately, as electronic systems have become more and more complex
and software intensive [36], new engineering practices have been introduced to
advance productivity and quality of these cyber-physical systems [16]. Model-
Driven Engineering (MDE) [15] is a powerful development paradigm based on
software models which enables automation, and promises many potential ben-
efits such as increased productivity, portability, maintainability, and interoper-
ability [10].

Although SPE relies on some design models, it does not exploit all their
potential. Thus, our vision for SPE is a MDE-intensive software development
paradigm based on MDA standards such as UML [27], MARTE [25], QVT [23]
and MOF [24]. In this paradigm, automatic model transformation plays a key
role in the development process, allowing system designers to evaluate the perfor-
mance of systems early in development, when the analysis can have the greatest
impact. Thus, we seek to empower system designers to do the analysis them-
selves by automating the creation of performance models, invoking the model

110 A. Gómez et al.

Generate
Code

Define key
performance

scenarios

Define
performance
requirements

Transform to
performance

models

Modify
product
concept

[performance
acceptable]

[infeasible][feasible]

Revise
performance
requirements

Identify
critical

use cases

Solve
performance

models

Fig. 2. An automated SPE process

solver, and getting the analysis results in a format meaningful to them. This
quantifies the performance of system design options and identifies performance
risks.

Achieving such empowerment, however, presents two important challenges:

C1 — We need to provide system designers with model specifications which
allow them to express performance-determining design elements such as com-
munication, constrained resources, etc. in their design models

C2 — We need to provide system designers with automatic tools able to trans-
form system design models into analyzable performance models.

Thus, resolving these challenges accomplishes the objective of providing per-
formance predictions without the performance expertise previously required.

Informally, our proposed renovated process can be seen as an evolution of SPE
in which we introduce automation as shown in Fig. 22. An important aspect to
be noted (Fig. 2) with respect to a classical SPE process (Fig. 1) is that the main
actors involved are now system designers as opposed to performance engineers.
Our process consists of the following Activities:

1. As in traditional SPE, a performance assessment process starts by identifying
the critical use cases.

2. System designers define the key performance scenarios. As opposed to Fig. 1,
in which the key performance scenarios were selected by performance engi-
neers from design models, here system designers use UML modeling tools to
directly create them as we will describe later in Sect. 4.

3. System designers define performance requirements directly in the design
models. This can be done by enriching the UML functional models with
non-functional properties, using MARTE stereotypes, as we also describe in
Sect. 4. Here, performance requirements are thus part of system models, and
not a separate artifact as in traditional SPE.

4. Design models are transformed to performance models. As opposed to tradi-
tional SPE, where performance models were manually created by performance
engineers, here performance models are automatically generated by executing
a model-to-model transformation specified in QVT, as we outline in Sect. 5.

2 We have indicated with a gray background the activities that are different from those
in Fig. 1.

Enabling Performance Modeling for the Masses 111

5. From here on, the process is similar to traditional SPE: performance models
are solved, and after obtaining the analysis results three possibilities arise: (i)
the results are acceptable; (ii) the results are unacceptable but the perfor-
mance requirements are infeasible; and (iii) the results are unacceptable but
the performance requirements are feasible. In the first and the second case the
process continues as in traditional SPE. In the third case, system designers
may modify the product concept (i.e., the models) and regenerate/reevaluate
the performance models without intermediate steps.

6. Finally, as in any MDE process, system designers may automatically generate
the application code for the system models. This latter step is out of the scope
of this paper.

4 Defining Performance Scenarios and Requirements
with UML/MARTE

In Sect. 2 we informally introduced some of the different UML diagrams that are
useful from the SPE point of view. However, since traditional SPE design models
do not need to be machine readable, no specific design rules are enforced in that
approach. Our approach aims to achieve automation, and thus, it advocates for
– and enforces – the use of four different UML diagrams to specify design models
including performance characteristics.

An important aspect of UML is that customization is possible by using pro-
files. Modeling and Analysis of Real-time Embedded Systems (MARTE) [25] is an
OMG standard defining foundations for model-based descriptions and analysis
of real time and embedded systems. To facilitate its adoption, MARTE has been
defined as a UML profile.

We advocate for the use of MARTE to include performance information
and requirements in design models. Thus, system designers can make use of
tools they are familiar with, without requiring performance engineers to man-
ually create performance models. Although the use of MARTE stereotypes to
enable the generation of performance models is not novel (see Sect. 8), the use
of design specifications in favor of performance modeling annotations is. Thus,
we propose the use of design modeling annotations – such as those from the
Generic Resource Modeling (GRM), Software Resource Modeling (SRM), Hard-
ware Resource Modeling (HRM) or Allocation modeling (Alloc) MARTE [25]
subprofiles – as opposed to performance modeling annotations – such as those
from the Generic Quantitative Analysis Modeling (GQAM), Performance Anal-
ysis Modeling (PAM) or Schedulability Analysis Modeling (SAM) MARTE sub-
profiles.

Below we specify the UML diagrams to be used in our automated approach
and their purpose, which are later exemplified in the case study in Sect. 6.

Structural View – Deployment Diagrams (DD) specify elements defin-
ing the execution architecture of systems. In our modeling approach, DDs
specify hardware elements of the system, i.e., those capable of providing any
kind of processing service.

112 A. Gómez et al.

Structural View – Class Diagrams (CD) specify the main logical entities
participating in a system. In our modeling approach, CDs are used to define
software elements of the system, as well as other communication and synchro-
nization entities.
Examples of MARTE stereotypes that can be applied on class diagrams are
those applicable to Operations, such as MARTE::MARTE Foundations::GRM::
Acquire and MARTE::MARTE Foundations::GRM::Release. Such stereotypes
can be used to specify that the stereotyped operations acquire or release a
mutex, respectively.

Structural View – Composite Structure Diagrams (CSD) allow model-
ing the internal structure of a given Classifier. In our modeling approach CSDs
are used to represent how the specific instances participating in a system –
modeled as Properties – relate to each other from a static point of view.
Such participants instantiate the classifiers representing either hardware or
software elements (specified in a DD or a CD respectively). CSDs specify
resources and their allocations for performance analysis. Typical stereotypes
used in CSDs are (non exhaustive): MARTE::MARTE DesignModel::SRM:-
:SW Concurrency::SwSchedulableResource, to annotate software elements
generating a workload, and which execute concurrently with other software
elements; MARTE::MARTE DesignModel::HRM::HwLogical::HwComputing:-
:HwComputingResource, to annotate active hardware execution resources
such as CPUs or FPGAs; MARTE::MARTE Foundations::Alloc::Allocate,
typically applied on Abstractions3 between software resources and hard-
ware resources; or MARTE::MARTE Foundations::Alloc::Allocated, typi-
cally applied to software and hardware elements related by an Allocated
Abstraction.

Behavioral View – Sequence Diagrams (SD) allow describing precise
inter-process communication by specifying execution traces. In our proposal,
Lifelines in a SD represent elements declared in a CSD. SDs are the main
means to specify key performance scenarios in our modeling approach. SDs
typically also include fine grained resource usage information by using the
MARTE::MARTE Foundations::GRM::ResourceUsage stereotype. This stereo-
type may be applied to a Message or to an ExecutionSpecification to indicate
that a given operation effectively requires the usage of the resource repre-
sented by the Lifeline – either receiving the Message or covered by the Exe-
cutionSpecification, respectively – for a specific amount of time.

5 Automatic Transformation to Performance Models

With the aim of automating the transformation of software design models into
performance models, we have implemented a transformation in a M2M transfor-
mation language. As Sect. 4 describes, the source models to be transformed are
UML design models enriched with MARTE annotations.
3 Allocate can only be applied to Abstractions, which are a specific kind of UML
Dependency.

Enabling Performance Modeling for the Masses 113

We have chosen the Software Performance Model Interchange Format+ (S-
PMIF+) as the target representation for our performance models. S-PMIF+ is
a Model Interchange Format (MIF) to exchange Real-Time and Embedded Sys-
tems (RTES) and Internet of Things (IoT) performance models among modeling
tools proposed by Smith et al. [33]. S-PMIF+ is an extension of the S-PMIF,
which is MOF-compliant since 2010 [22].

We have chosen MOF 2.0 Query/View/Transformation (QVT) [23], and
specifically its Operational language (QVTo)4, to encode the transformation rules
between UML/MARTE and S-PMIF+. While a plethora of other existing trans-
formation languages could have been chosen to implement this project, we chose
QVTo for the following reasons:

Consistency — Almost all the languages in this work are OMG standards
(UML [27], MARTE [25], MOF [24]). Using QVT allows us to stay inside the
OMG stack.

Standardization — QVT has a normative document describing the semantics
of the language, alleviating any future vendor lock-in problem.

Availability — Eclipse provides an interpreter of this language. Eclipse is
the ideal platform to implement this transformation, since it provides (open
source) tools to cover all the modeling steps of our proposed process.

Adequacy to the problem — The transformation from UML to S-PMIF+
involves sequence diagrams, where ordering is an important property. Manag-
ing ordering with declarative languages is hard, thus an imperative language
such as QVTo provides a better control of the transformation logic (however,
at the expense of abstraction).

Table 1 shows the subset of the transformation rules of the UML to S-PMIF+
transformation that are relevant for the case study presented in Sect. 6. The first
column indicates the UML elements (see [27]) involved in the rule; the second
column the MARTE stereotypes (see [25]) that have to be applied so that the
rule matches; and the third column indicates the S-PMIF+ element (see [22,33]
for a full reference) that should be generated.

The UML to S-PMIF+ transformation follows a top-down approach. Start-
ing from the UML top-level element – i.e., the Interaction corresponding to
the SD – traverses the containment tree processing the contained elements. In
this navigation, one of the most relevant properties of Interaction is fragment,
which contains – in the order they occur – all the events happening in the Inter-
action. Simplifying, once an interesting event – i.e., an event that should be
transformed – is found, the corresponding transformation rule is applied.

Listing 1 shows the QVT mappings implementing the rule specified in
the fourth row of Table 1. Rule executionSpecification2Node (lines 1–
4) is a mapping that is called when an ExecutionSpecification contained
within an Interaction is found. This mapping is indeed a disjunction of

4 In fact, the QVT specification defines three transformation languages: Core, Oper-
ational and Relations, being the main difference among them their declarative or
imperative nature.

114 A. Gómez et al.

Table 1. High-level transformation mappings

three other mappings: executionSpecification2BasicNode (lines 18–29),
executionSpecification2ReplyNode (not shown) and executionSpecifi-
cation2NoReplyNode (not shown). A disjunction indicates that only the
first mapping whose when clause holds will be executed. As it can be
observed, executionSpecification2BasicNode inherits from the abstract map-
ping executionSpecification2abstractNode (lines 6–16). This abstract map-
ping cannot be executed by itself (in fact, SPMIF::Node is an abstract class,
which prevents its execution), but can specify transformation actions that can
be reused and extended by other mappings (such as the executionSpecifica-
tion2Node disjoint mappings). In this case, the abstract mapping is executed
before the instruction in line 28, and triggers the execution of the mappings
between lines 9–14 for the events returned by the helper events(). This helper
is declared in the context of ExecutionSpecification so that it can be used as
shown in line 8. It returns the list of events that occurr in the Lifeline covered
by the ExecutionSpecification while it is active. As it can be observed, we rely on
the order of the events to determine whether an event occurrs during the execu-
tion. Lines 34–36 show an interesting feature of QVTo: the possibility to specify
assertions. This is a specially useful feature as we will discuss in Sect. 7. Finally,
the when clause between lines 20–27 specifies that the mapping will only be exe-
cuted when the Lifeline covered by the ExecutionSpecification does not receive

Enabling Performance Modeling for the Masses 115

neither synchronous nor asynchronous messages while the ExecutionSpecification
is active.

This Listing is only a small demonstration of what our M2M transformation
– of nearly 2000 lines of code (LOC) – looks like. In Sect. 7 we provide more
information about its characteristics and numbers.

6 An Illustrative Case Study: Cyber Physical Systems
Analysis

We illustrate our approach by analyzing an existing data acquisition system (Sen-
sorNet) and predicting its performance when encryption is added. Encryption is
critical to ensure that data is securely transferred from servers to a data store in
the cloud. We chose this case study to show how both security and performance
can be analyzed before implementation.

Our SensoreNet case study involves both hardware and software elements as
shown in Fig. 3. Figure 3a shows the DD with the processors used in execution:

Listing 1. Excerpt of the UML/MARTE to S-PMIF+ QVTo transformation

1 mapping UML::ExecutionSpecification::executionSpecification2Node() : SPMIF::ProcessingNode
2 disjuncts UML::ExecutionSpecification::executionSpecification2BasicNode,
3 UML::ExecutionSpecification::executionSpecification2ReplyNode,
4 UML::ExecutionSpecification::executionSpecification2NoReplyNode;
5

6 abstract mapping UML::ExecutionSpecification::executionSpecification2abstractNode() : SPMIF::
Node {

7 var index : Index = new Index();
8 self.events()->forEach(s) {
9 serviceReq += s[UML::ExecutionSpecification]

10 .map executionSpecification2ServiceSpec(index);
11 serviceReq += s[UML::MessageOccurrenceSpecification]
12 .map messageOccurrenceSpecification2PassiveService(index);
13 serviceReq += s[UML::MessageOccurrenceSpecification]
14 .map messageOccurrenceSpecification2ActiveService(index);
15 }
16 }
17

18 mapping UML::ExecutionSpecification::executionSpecification2BasicNode() : SPMIF::BasicNode
19 inherits UML::ExecutionSpecification::executionSpecification2abstractNode
20 when { -- Generate Basic Node when the Lifeline does not receive neither sync nor async

messages
21 self.events()[UML::MessageOccurrenceSpecification].message[--> Select messages that:
22 receiveEvent.covered() = self.covered() --> Are received by this Lifeline
23 and receiveEvent.covered() <> sendEvent.covered() --> Are not self-messages
24 and (messageSort = UML::MessageSort::synchCall
25 or messageSort = UML::MessageSort::asynchCall) --> Are sync or async messages
26]->isEmpty()
27 }{
28 name := self.name;
29 }
30

31 helper UML::ExecutionSpecification::events() : OrderedSet(UML::InteractionFragment) {
32 var start : Integer = self.covered().events()->indexOf(self.start);
33 var finish : Integer = self.covered().events()->indexOf(self.finish);
34 assert fatal (start < finish)
35 with log (’Malformed input model in ExecutionSpecification "{1}": its "start" event

({2}) appears after its finish ent ({3}).’._format(self, self.start, self.finish
));

36 return self.covered().events()->subOrderedSet(start, finish);
37 }

116 A. Gómez et al.

Servers are hardware elements, with computing and communication capabilities,
that read information from simple hardware Sensors – 2700 in our case study –
and send this information via a communication media to the cloud (represented
by CloudData). Figure 3b depicts the software elements in a CD: Analytics reads
information from a Sensor5, later processes it by using the Advanced Encryp-
tion Standard (AES) and Filter software artifacts; and finally sends it to a
CloudTable. Additionally, Analytics makes use of a LatencyTimer, which tracks
the beginning and the end of this process.

Figure 4 shows the actual instances of these hardware and software ele-
ments of our SensorNet case study in a CSD: cloudData, server and
sensors are instances of the Nodes specified in Fig. 3a; while filter, aes,
analytics, sensor and latencyTimer are instances of the Classes speci-
fied in Fig. 3b. As it can be observed, we used MARTE stereotypes to
specify additional data that is needed to build the performance model6:
SwSchedulableResource specifies workload in analytics by using the VSL [25]
expression closed(population=10, extDelay=(500,ms)), i.e., 10 requests in
an interval of 500ms; HwComputingResource designates the processors for the
Servers, i.e., 80 instances; DeviceResource represents a server that does not
model contention delays (a so-called delay server in the performance model);
and the TimingResource designates the latency timer. The Allocate shows how
processes are allocated to the processors: cloudTable is hosted on cloudData;
filter, aes and analytics tasks are executed on a server ; and the software repre-
sentation of sensors lie on hardware sensors.

Finally, we modeled two scenarios: the first adds security/encryption using
basic sensors, where the encryption and filtering happen on the servers; and
the second evaluates replacing the basic sensors with smart sensors, capable of
doing the encryption on the sensor itself. In both cases, we use the CloudTable
database for storing data.

(a) (b)

Fig. 3. Deployment diagram (a) and class diagram (b)

5 Sensor here represents the software element used to access hardware Sensors.
6 We obtained processing times and data/network transfer bytes specified in Figs. 4

and 5 from the analysis of benchmark data.

Enabling Performance Modeling for the Masses 117

Fig. 4. Composite structure diagram

The sequence diagram for the first scenario is shown in Fig. 5: analytics reads
a frame of captured data from a specific basic sensor, starts the latencyTimer,
encrypts7 the frame, and inserts it into the cloudTable. Then, it filters the data,
does a lookup from the cloudTable to get recent activity discovered by the sen-
sor, decrypts it, and makes predictions of future behavior. Results are finally
encrypted and inserted into the cloudTable, and the latencyTimer is stopped.
The figure shows the MARTE annotations for the execution time required for
some – not all for readability purposes – steps.

We do not show the sequence diagrams for the second scenario (i.e., using
the smart sensors) for the sake of conciseness. In summary, this second sequence
diagram lacks the encryption and filter steps, and has a lower value in the spec-
ification for the data rate. All the other structure diagrams remain unchanged.

Once the scenarios are modeled, our prototype is able to transform them to
the corresponding S-PMIF+ specifications by applying the rules introduced in
Sect. 5. Figure 6 shows the resulting S-PMIF+ model for the first scenario. A
Performance Scenario – with its corresponding Execution Graph – is generated
for the analytics property, which was stereotyped as SwSchedulableResource.
Additionally, a Basic Node is generated from the ExecutionSpecification sending
the insert message to cloudTable. This message, in turn, generates an Active
Service which executes on the CloudData Server with a service time of 1.0 ·10−6

(seconds). All the other elements are generated according to the transformation
rules listed in Table 1.

The S-PMIF+ models are sent to the RTES/Analyzer solver. RTES/Analyzer
is the tool allowing the developer to study the performance of the modeled system
with different parameter settings for the data rate, number of processors, time
for encryption, and time for CloudTable processing.

7 We based the encryption and decryption on an open source version of the Advanced
Encryption Standard (AES) [8].

118 A. Gómez et al.

Fig. 5. Sequence diagram

From our experiments using RTES/Analyzer, we obtained that the first sce-
nario using the basic sensors requires 80 CPUs to meet the performance require-
ment (for the 2700 sensors of the case study); while the second scenario using
smart sensors requires only 50 CPUs. Additional valuable information from the
RTES/Analyzer model shows that we need more processors in the cloud to speed
up the insert and lookup tasks. For the case study, we used a single instance in
the cloud. There are many other options for both platforms and designs that
can be explored with the model, such as: (i) reducing the time required for
encryption by tuning the algorithm to the application; (ii) using asynchronous
cloudTable inserts; (iii) using a pipeline architecture; or (iv) using cloud vs.

Enabling Performance Modeling for the Masses 119

Fig. 6. Generated S-PMIF+ model

on-premises storage. In any case, the evaluation process is the same: the design
model is revised, transformed and solved.

7 Discussion

This section reports on the some of the lessons learned during the realization
of this work, mainly linked to the realization of the technology transfer project
between L&S Computer Technology and the Universitat Oberta de Catalunya.

While the specific goal of the project was to “simply” write a transformation
between UML/MARTE and S-PMIF+ (i.e., implementing Activity 4 of Sect. 3),
we quickly realized that clearly defining the inputs and outputs of such a trans-
formation indeed impacted the whole process. This led us to redraw the initial
scope of the transformation, having a wider vision of the project, and coming
out with a set of modeling guidelines (which in turn support Activities 2–3
in Sect. 3) that, together with the transformation itself, make up the core of
the framework. A transformation project is, in the end, a software development
project (where the software is the transformation) and, as such, it is not without
similar challenges.

In the following, we provide some facts about this project, and reflect about
the decisions taken and the experience we gained. We believe this could be useful
to other teams developing projects involving industry-level transformations. This
is the first take-away for anybody starting a transformation project.

Project size and effort — The project lasted for 2 months and was lead by two
main technical contacts, one with nearly 30 years of experience in performance

120 A. Gómez et al.

engineering, and the other with more than 13 years of experience in MDE and
OMG standards.

The set of conceptual correspondences between UML/MARTE and S-PMIF
were identified in a several-months previous study, and were provided in an
Excel sheet at the start of the project. Including attributes, the spreadsheets
documented up to 200 correspondences, including 40 MARTE stereotypes with
their corresponding S-PMIF+ counterparts.

To complete the transformation code itself, the project required 8 meetings
and over 150 emails exchanged; and the final deliverable included a 118-pages
report.

Barrier to entry: the modeling languages — While UML and MARTE
indeed allow stakeholders to provide the design specifications without having to
learn complex performance modeling languages, there is still a lot to do to lower
the barrier to entry.

Especially regarding MARTE, although there exists a reference book [31],
there are very few online documents providing systematic modeling guidelines
and we had to rely on online tutorials [9,21] to determine the right recommen-
dations for users of our approach. We based our specifications on the design
methods of Selic et al. [31] because they are a big step forward on how to spec-
ify typical design characteristics, particularly those that impact performance
such as communication, synchronization, etc. This work provides performance
feedback on the desirability of design options. This and other work that pro-
vides design-assessment feedback makes UML/MARTE more attractive going
forward. If another, more promising MDE design language emerges it should be
straightforward to adapt our approach to transform it to our MIFs to provide
performance predictions.

As a consequence of the scarce documentation available, 34 pages out of the
118 of the report mentioned above were dedicated to explain our recommended
use of UML and MARTE to support Activities 2–3 of our approach. This is
necessary to resolve some of the language ambiguities (e.g., regarding the spec-
ification of VSL expressions8).

Our thoughts on using QVTo — Although imperative transformation lan-
guages do not have an especially good reputation, in this special case QVTo
was a very good choice for our project thanks to the following features of the
language:

– Its imperative character facilitated the processing of ordered elements
(required for the transformation of sequence diagrams) in a very natural way.

– Its logging facilities and support for assertions are specially useful to control
ill-formed models produced by the tools (more on this below).

– It has explicit support to organize transformations in libraries which helps
when developing complex transformations and facilitates reusability.

8 See http://issues.omg.org/issues/MARTE12-4.

http://issues.omg.org/issues/MARTE12-4

Enabling Performance Modeling for the Masses 121

– Helpers can be used to add new operations to meta-elements dynamically,
without changing the metamodels (similar to the concept of extension func-
tions in Kotlin [14] and other languages). Again, this simplifies the writing of
complex transformations.

– QVTo allows the definition of intermediate classes, which only live within the
transformation execution scope. This is very useful to reify VSL expressions –
Strings – in their corresponding in-memory complex datatypes (the so-called
NFP types [25]).

We have been pleasantly surprised with QVTo, especially after previous bad
experiences with its declarative counterpart. QVTo is definitely an option to be
considered when choosing the transformation language for your project, partic-
ularly if you require some of the complex requirements above.

Repetitive Transformation code — The transformation was spread out in 4
files for a total of 2027 lines of code (LOC) excluding empty lines. These LOC
were distributed as follows:

– 243 LOC dedicated to check the presence/absence of MARTE stereotypes (58
helpers were written to deal with MARTE stereotypes);

– 272 LOC (in 30 helpers) devoted to string manipulations;
– 448 LOC to deal with VSL expressions and NFP types (21 helpers to deal

with them);
– 305 LOC in UML helpers (47 helpers to deal with UML elements);
– 759 LOC for the actual implementation of the transformation mappings;

As you see, more than 60% of the transformation code dealt with auxiliary
tasks. This must be taken into account when estimating the effort required to
implement transformations. Too often we based that estimation on the analysis
of the mappings forgetting that this will be only a small part of the total LOC.

Nevertheless, this repetitive code could be simplified by importing external
libraries (a clear example would be a QVTo library for String manipulation).
These ready-made libraries do not exist at this time, but we believe it is in the
best interest of the community to develop and share them.

Limitations of the modeling tools — Within the Eclipse ecosystem, Papyrus
is the most popular tool for UML modeling. Still, it also has known limitations
when it comes to SDs and this had a negative impact on our project. Ordering
of events is crucial in SDs (see Sect. 5), however Papyrus is not always able to
maintain it correctly in the underlying model as soon as the user moves messages
around. Papyrus models get corrupt very easily, and ExecutionSpecifications –
among other primitives – lose their start and finish events easily. Garbage ele-
ments are also commonly left around.

Limitations of this approach — The design specifications follow the methods
in [31] for specifying communication, synchronization and other coordination,
resource constraints, etc. using the rules in Sect. 5. These guidelines must be
followed for the resulting performance model to represent the intended behavior

122 A. Gómez et al.

of the system. Likewise, the performance models only contain features that are
expressed in the design models; developers should be aware that early predictions
tend to be optimistic, and only represent details that have been specified in the
design models. This follows the SPE method of adding features as the software
evolves: early models may not represent all aspects of performance (best-case
models); details are added as the software specifications evolve to get a more
precise prediction of performance.

All the previous facts and issues, beyond delaying the project, also forced
us to write additional sanity check code to ensure the correctness of the input
models before actually transforming them.

On the positive side, the interpreter of QVTo provided all the expected facil-
ities of a modern IDE: content-assist, line-by-line debugging, and watch expres-
sions, which helped us in detecting the above issues.

8 Related Work

The assessment of non-functional requirements, such as performance, of software
systems is a well-established discipline in the software engineering field [1,4,7,34];
however, different formalisms, techniques, and levels of automation have been
achieved.

Other design-based approaches can also be found in the literature. Perfor-
mance by Unified Model Analysis (PUMA) is a framework for transforming
data from a UML-based software design to performance tools [28,39]. It uses
the Core Scenario Model (CSM) as the intermediate representation. CSM was
originally based on the UML profile for Schedulability, Performance, and Time
(SPTP) [26] and later adapted to MARTE/PAM both of which closely corre-
spond to the information requirements of the Layered Queueing Model (LQN)
tool. This simplifies the M2M transformations, but because the MARTE/PAM
input specifications so closely resemble the performance model itself, it requires
performance expertise to create those specifications. Our work uses MIFs that
were originally proposed for a model interchange paradigm in 1995 [35,37]. They
have been updated and generalized [19,33] to include performance modeling fea-
tures found in a variety of performance modeling tools and techniques that have
proven to be useful over the years, including those in LQN. Another key differ-
ence is that we do not require the performance-specific annotations in MARTE/-
PAM; we use the MARTE design specifications provided by developers instead.
Nevertheless, these approaches are similar in concept, and useful insights on the
challenges of developing transformations are also described in [38].

Palladio [2] is an example that also uses MDE techniques. Its simulation tool
is implemented using the same technologies as the prototype presented in this
work (e.g., Eclipse, Eclipse Modeling Framework, etc.). Unlike our proposal,
Palladio provides a domain specific modeling language, the so-called Palladio
Component Model (PCM), to specify component-based software architectures.
Nevertheless, it is worth mentioning that PCM resembles UML in some parts
(e.g., component, activity and deployment diagrams).

Enabling Performance Modeling for the Masses 123

Kounev et al. [17] propose a model-based approach to designing self-aware
IT systems using the Descartes Modeling Language (DML). DML is a domain-
specific architecture-level language that allows specifying adaptation points to
reconfigure the application architecture at runtime. The Descartes approach is
fully automated, it is also based on Eclipse, and enables on-line performance pre-
dictions and model-based adaptation. DML has been applied to several industrial
case studies [13].

These and other approaches differ in that they transform to one specific tool
rather than to a MIF. E.g., both PCM and DML transform to Queueing Petri
Nets (QPN) to solve their models using the QPME tool; while our prototype
transforms our UML/MARTE models to S-PMIF+, which serves as a pivot
language for different formalisms and tools.

On the other hand, these tools still require an expert in the use of that perfor-
mance analysis tool: e.g., Palladio and DML require learning a new performance
model specification language. While this is not a problem for performance mod-
eling experts, it is a barrier to system developers who wish to evaluate their own
design with minimal extra work. It is also noteworthy that the contents of these
meta-models (PCM and DML) were considered and incorporated when possible
in the development of the MIFs used in our approach.

The DICE framework [6] is an MDE-based solution using UML specifically
designed to focus on the specific challenges of quality-assurance for data-intensive
applications using big data technologies. Its DICE Simulation component [3] is
also built using Eclipse Papyrus, and is able to transform annotated UML models
to both performance and reliability models to stochastic Petri nets using QVTo.
The main difference with respect to the work presented here is that, in order
to fully support the specificities of data-intensive applications, DICE provides
its own profile – the so-called DICE Profile. This profile provides performance
modeling annotations – as opposed to the design specifications of our approach
– which extend and reuse constructs from the GQAM, PAM and SAM MARTE
subprofiles, as well as from the DAM [4] profile.

Process mining techniques are a clear example of measurement-based
approaches (as described earlier) and several tools are available (e.g., [5,11,12,29,
30]). These approaches try to bridge the gap between the resulting performance
metrics and the design itself, however, this is still a challenging task requiring sig-
nificant expertise. Our approach is design-based, and uses M2M transformations
to bridge such a gap by automatically generating performance models from UML
diagrams, which are compliant with the standard OMG MARTE [25] profile.

9 Conclusions

This experience has proved the viability of automating SPE processes based on
MDE techniques and MIFs. The heart of this automated approach, the trans-
formation from UML/MARTE, shows that a renovated SPE process can be
based on the models produced by system designers without requiring extensive
knowledge and experience in performance engineering. By automating the trans-
formation of software designs to performance models, we eliminate the need for

124 A. Gómez et al.

laborious and error-prone manual translation of software design information into
performance models, and the effort in keeping the design and performance mod-
els in sync throughout development and operation. The results are also presented
in a format that can be easily evaluated by system designers. Automation and
usability are key if system designers are to use the technology.

The prototypes we created demonstrated that the end-to-end process is
clearly viable even if we learned a few hard lessons along the way. We devel-
oped screens that make the transformation of designs to performance models,
automated solution of experiments, and the conversion of tool output into a
results format that is easy to comprehend, highlights potential problems, allows
evaluation of tradeoff in design parameters, and allows user customization of
results and formats.

The focus of this effort was on performance analysis of CPS systems; however,
as further work, we plan to plug in other tools to support additional types of
design analysis, such as safety, reliability/availability, fault tolerance and others.

References

1. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: a survey. IEEE Trans. Softw. Eng. 30(5), 295–
310 (2004)

2. Becker, S., Koziolek, H., Reussner, R.: The palladio component model for model-
driven performance prediction. J. Syst. Softw. 82(1), 3–22 (2009)

3. Bernardi, S., et al.: A systematic approach for performance assessment using pro-
cess mining. Empir. Softw. Eng. (2018). https://doi.org/10.1007/s10664-018-9606-
9

4. Bernardi, S., Merseguer, J., Petriu, D.C.: Dependability modeling and analysis of
software systems specified with UML. ACM Comput. Surv. 45(1), 1–48 (2012)

5. Celonis PI (2011). https://www.celonis.com. Accessed June 2018
6. Consortium, D.: Getting started with DICE: developing data-intensive cloud appli-

cations with iterative quality enhancements (2018). http://www.dice-h2020.eu/
getting-started/. Accessed June 2018

7. Cortellessa, V., Marco, A.D., Inverardi, P.: Model-Based Software Performance
Analysis, 1st edn. Springer Publishing Company, Incorporated (2011)

8. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer-Verlag New York Inc.,
Secaucus (2002)

9. Demathieu, S.: MARTE tutorial: An OMG UML profile to develop Real-
Time and Embedded systems. http://www.uml-sysml.org/documentation/marte-
tutorial-713-ko/at download/file. Accessed June 2018

10. Di Ruscio, D., Paige, R.F., Pierantonio, A.: Guest editorial to the special issue on
success stories in model driven engineering. Sci. Comput. Program. 89(PB), 69–70
(2014). https://doi.org/10.1016/j.scico.2013.12.006

11. Diwan, A., Hauswirth, M., Mytkowicz, T., Sweeney, P.F.: TraceAnalyzer: a system
for processing performance traces. Softw. Pract. Exp. 41(3), 267–282 (2011)

12. Günther, C.W., Rozinat, A.: Disco: discover your processes. BPM (Demos) 940,
40–44 (2012)

13. Huber, N., Brosig, F., Spinner, S., Kounev, S., Bähr, M.: Model-based self-aware
performance and resource management using the descartes modeling language.
IEEE Trans. Softw. Eng. 43(5), 432–452 (2017)

https://doi.org/10.1007/s10664-018-9606-9
https://doi.org/10.1007/s10664-018-9606-9
https://www.celonis.com
http://www.dice-h2020.eu/getting-started/
http://www.dice-h2020.eu/getting-started/
http://www.uml-sysml.org/documentation/marte-tutorial-713-ko/at_download/file
http://www.uml-sysml.org/documentation/marte-tutorial-713-ko/at_download/file
https://doi.org/10.1016/j.scico.2013.12.006

Enabling Performance Modeling for the Masses 125

14. JetBrains: Extensions-Kotlin Programming Language. https://kotlinlang.org/
docs/reference/extensions.html. Accessed June 2018

15. Kent, S.: Model driven engineering. In: Proceedings of the Third International Con-
ference on Integrated Formal Methods, IFM 2002. pp. 286–298. Springer-Verlag,
London, UK (2002)

16. Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyberphysical
systems: a survey. IEEE Syst. J. 9(2), 350–365 (2015)

17. Kounev, S., Huber, N., Brosig, F., Zhu, X.: A model-based approach to designing
self-aware IT systems and infrastructures. IEEE Comput. 49(7), 53–61 (2016).
https://doi.org/10.1109/MC.2016.198

18. Leveson, N.G.: Safeware-System Safety and Computers: A Guide to Preventing
Accidents and Losses Caused by Technology. Addison-Wesley (1995)

19. Lladó, C.M., Smith, C.U.: PMIF+: extensions to broaden the scope of supported
models. In: Balsamo, M.S., Knottenbelt, W.J., Marin, A. (eds.) EPEW 2013.
LNCS, vol. 8168, pp. 134–148. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40725-3 11

20. L&S Computer Technology Inc: SPE-ED+. http://spe-ed.com/. Accessed June
2018

21. Medina, J.: The UML profile for MARTE: modelling predictable real-time sys-
tems with UML. http://www.artist-embedded.org/docs/Events/2011/Models for
SA/01-MARTE-SAM-Julio Medina.pdf. Aaccessed June 2018

22. Moreno, G.A., Smith, C.U.: Performance analysis of real-time component archi-
tectures: an enhanced model interchange approach. Perform. Eval. 67(8), 612–633
(2010). Special Issue on Software and Performance

23. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification,
Version 1.3. http://www.omg.org/spec/QVT/1.3/

24. OMG: Meta Object Facility (MOF), Version 2.5.1. http://www.omg.org/spec/
MOF/2.5.1/

25. OMG: Modeling and Analysis of Real-time Embedded Systems (MARTE), Version
1.1. http://www.omg.org/spec/MARTE/1.1/

26. OMG: UML Profile for Schedulability, Performance, & Time (SPTP), Version 1.1.
http://www.omg.org/spec/SPTP/1.1/

27. OMG: Unified Modeling Language (UML), Version 2.5. http://www.omg.org/
spec/UML/2.5/

28. Petriu, D.B., Woodside, M.: An intermediate metamodel with scenarios and
resources for generating performance models from uml designs. Softw. Syst. Model.
6(2), 163–184 (2007). https://doi.org/10.1007/s10270-006-0026-8

29. ProM Tools (2017). http://www.promtools.org/doku.php. Accessed June 2018
30. QPR Process Analyzer (2011). https://www.qpr.com. Accessed June 2018
31. Selic, B., Gérard, S.: Modeling and Analysis of Real-Time and Embedded Systems

with UML and MARTE: Developing Cyber-Physical Systems, 1st edn. Morgan
Kaufmann Publishers Inc., San Francisco (2013)

32. Smith, C.U., Lladó, C.M., Puigjaner, R.: Model interchange format specifications
for experiments, output and results. Comput. J. 54(5), 674–690 (2011). https://
doi.org/10.1093/comjnl/bxq065

33. Smith, C.U., Lladó, C.M.: SPE for the internet of things and other real-time embed-
ded systems. In: Proceedings of the 8th ACM/SPEC on International Conference
on Performance Engineering Companion, pp. 227–232. ACM, New York 2017).
https://doi.org/10.1145/3053600.3053652

https://kotlinlang.org/docs/reference/extensions.html
https://kotlinlang.org/docs/reference/extensions.html
https://doi.org/10.1109/MC.2016.198
https://doi.org/10.1007/978-3-642-40725-3_11
https://doi.org/10.1007/978-3-642-40725-3_11
http://spe-ed.com/
http://www.artist-embedded.org/docs/Events/2011/Models_for_SA/01-MARTE-SAM-Julio_Medina.pdf
http://www.artist-embedded.org/docs/Events/2011/Models_for_SA/01-MARTE-SAM-Julio_Medina.pdf
http://www.omg.org/spec/QVT/1.3/
http://www.omg.org/spec/MOF/2.5.1/
http://www.omg.org/spec/MOF/2.5.1/
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/SPTP/1.1/
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/
https://doi.org/10.1007/s10270-006-0026-8
http://www.promtools.org/doku.php
https://www.qpr.com
https://doi.org/10.1093/comjnl/bxq065
https://doi.org/10.1093/comjnl/bxq065
https://doi.org/10.1145/3053600.3053652

126 A. Gómez et al.

34. Smith, C.U., Williams, L.G.: Performance Solutions: A Practical Guide to Creat-
ing Responsive, Scalable Software. Addison Wesley Longman Publishing Co., Inc.
(2002)

35. Smith, C., Williams, L.: A performance model interchange format. J. Syst. Softw.
49(1), 63–80 (1999). https://doi.org/10.1016/S0164-1212(99)00067-9

36. Wallin, P., Johnsson, S., Axelsson, J.: Issues related to development of E/E product
line architectures in heavy vehicles. In: 42nd Hawaii International Conference on
System Sciences (2009)

37. Williams, L.G., Smith, C.U.: Information requirements for software performance
engineering. In: Beilner, H., Bause, F. (eds.) TOOLS 1995. LNCS, vol. 977, pp.
86–101. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0024309

38. Woodside, M., Petriu, D.C., Merseguer, J., Petriu, D.B., Alhaj, M.: Transformation
challenges: from software models to performance models. Softw. Syst. Model. 13(4),
1529–1552 (2014). https://doi.org/10.1007/s10270-013-0385-x

39. Woodside, M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T., Merseguer, J.: Perfor-
mance by unified model analysis (PUMA). In: Proceedings of the 5th International
Workshop on Software and Performance, WOSP 2005. pp. 1–12. ACM, New York
(2005). https://doi.org/10.1145/1071021.1071022

https://doi.org/10.1016/S0164-1212(99)00067-9
https://doi.org/10.1007/BFb0024309
https://doi.org/10.1007/s10270-013-0385-x
https://doi.org/10.1145/1071021.1071022

Realizability of Service Specifications

Mohammad F. Al-hammouri(B) and Gregor von Bochmann

School of Electrical Engineering and Computer Science (EECS),
University of Ottawa, Ottawa, ON, Canada
{m.alhammouri,bochmann}@uottawa.ca

Abstract. This paper considers a global requirements model in the
form of partially ordered actions of UML collaborations, or a high-level
MSC (UML interaction sequences), and then studies the derivation of
a distributed design model which may include coordination messages
exchanged between the different system components. Different problems
for the direct realization (without coordination messages) of a design
model for special cases of alternatives followed by strict or weak sequence
are discussed and solutions provided. Then the case of a weak while loop
is considered. While previous work proposes the addition of sequence
numbers in the involved messages, we show that in most cases such
sequence numbers are not required. We consider message FIFO transmis-
sion or without order, and identify two potential problems: loop termi-
nation race, and message overtaking. A proposition is given which states
under which conditions the directly realized distributed design model
does not have these problems and therefore does not need additional
sequence numbers. Another proposition provides certain modifications
(including the addition of sequence numbers) that can be applied to the
design model when these problems are present, and such that the result-
ing design model conforms to the requirements. These results can be
viewed as an improvement of the previous work in [1] by minimizing the
number of additional sequence numbers that must be included in the
messages of a weak while loop collaboration.

Keywords: Direct realizability
Deriving a distributed implementation · Distributed applications
Partial order specifications · Distributed design models
Weak sequencing

1 Introduction

In this paper, we are concerned of the transformation from a global require-
ments model, which describe the behavior of a distributed system in an abstract
manner by defining the local actions to be performed by the different system
components, to a distributed design model, which defines the behavior of each
system component separately, including its local actions plus the exchange of
coordination messages which are necessary to assure that the actions of the dif-
ferent components are performed in the required order. This problem is often
c© Springer Nature Switzerland AG 2018
F. Khendek and R. Gotzhein (Eds.): SAM 2018, LNCS 11150, pp. 127–143, 2018.
https://doi.org/10.1007/978-3-030-01042-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01042-3_8&domain=pdf

128 M. F. Al-hammouri and G. von Bochmann

called realizability of service specifications where the service specification is the
global requirements model and the specification is said to be directly realizable
if a design model can be constructed without any coordination messages. Many
difficulties are associated with the realizability of service specifications like non-
local choice [2], non-deterministic choice [3], and race conditions [4]. Most of the
work in this area uses Message Sequence Charts (MSC) [5] or UML interaction
sequences [6] as a modeling paradigm for the global requirements model. We
have proposed to use the concept of collaborations for defining the requirements
model [6–9]. A collaboration identifies a certain number of system components
that play certain roles in the collaboration and defines a global behavior to be
performed by these roles. The behavior is defined in terms of actions to be per-
formed by the roles, and a partial order that defines constraints on the order in
which these actions may be performed. Normally, the behavior of a collabora-
tion is defined in terms of sub-collaborations that are performed in a specified
order. The ordering relationships are strict or weak sequential order, alterna-
tives, concurrency and looping behavior. This formalism is similar to HMSC [10]
and UML [11].

In [1], an algorithm is proposed to derive a distributed design model from
a global requirements model with a behavior defined by sub-collaborations in
sequential, alternative, concurrent or looping composition. As in [12,13], the
algorithm may introduce coordination messages for strict sequencing. It also
deals with weak sequencing and introduces a choice indication (cim) message if
one of the roles does not participate in all alternatives of a choice, and introduces
sequence numbers in all the messages in the body of a loop with weak sequencing
between the repetitions. The algorithm assumes that each component has a
message pool where received messages are stored until they are consumed in the
order required by the component.

In this paper we investigate this problem in more detail. The main contribu-
tions are as follows:

– We show that in many cases the cim message is not required.
– We discuss the reception of coordinating messages if an alternative with dif-

ferent sets of terminating roles is followed in strict sequence by another sub-
collaboration; a case which was not covered in [1].

– We discuss in detail under which conditions sequence numbers in the messages
of a weak while loop are required for coordination. In particular, we have a
proposition which states under which condition a weak while loop is directly
realizable (without sequence numbers nor additional coordination messages);
we distinguish between networks message delivery with and without FIFO
order; and we point out that, in general, not all messages need sequence
numbers when the loop is not directly realizable.

– We show that the distributed design model for a weak while loop may be
constructed such that for certain components the direct realization approach
can be taken, while the approaches of [1] or of [14] may be used independently
for the other components. The approach of [1] assumes that the message pool
has an interface that allows to wait for a message with a specific sequence

Realizability of Service Specifications 129

number. If such a function is not available, as for instance in typical program-
ming languages interfaces, the approach of [14] (which is more complex) can
be used.

– We discuss in detail the functions that the interface of the message pool of a
component should provide for the different behavior composition rules.

The paper is organized as follows: In Sect. 2, we present the concept of col-
laboration which is used for the modeling the behavior of systems. The order of
execution of actions is defined in terms of partial orders. We first give an intu-
itive explanation and some simple examples, then we discuss the formalization of
these concepts following Pratt [15] and complement this formal model with the
concept of roles which represent the different system components. We also define
what it means that a more detailed behavior model (e.g. a distributed design
model) conforms to a more abstract requirement model. In Sect. 3, we discuss
the some issues related to the realizability of a global requirements model, give
a short literature review, discuss two issues related to alternatives, and propose
an interface for the message reception pool. Then in Sect. 4, we discuss in detail
the derivation of a distributed design model for a weak while loop behavior.
Section 5 is the conclusion.

2 Definitions and Notations

2.1 The Concept of Collaboration

As mentioned above, a collaboration is a collection of actions that are performed
by a distributed system. In the requirements model, a certain number of roles
are identified, and each action is performed by one of these roles such that
their execution satisfies a given partial order. Figure 1(a) shows the example of
a collaboration X using a graphical notation borrowed from [9]. Collaboration
X has three roles, x, y, and z, and includes 6 actions, ai (i = 1, 2, ... 6). The
partial order for the execution of these actions is shown in Fig. 1(b), where
ai → aj means that the execution of action ai is performed before the execution
of action aj .

For the composition of two collaborations A and B in strict sequence, written
“A ;s B”, any action of B may only executed when all actions of A have com-
pleted. Therefore it is important to identify the initial actions (those for which
there are no earlier actions in the partial order) and the final actions (those for
which there are no later actions in the partial order). As discussed in [13], for
ensuring strict sequencing between A and B, it is sufficient to ensure that all
initial actions of B start after all final actions of A have completed. Figure 1(c)
shows a more abstract view of collaboration X showing only the initial and final
actions of the collaboration. The order of execution of the actions of collaboration
X is also be presented in Fig. 1(d) using the notation proposed in [8] (adapted
from Activity Diagrams). Here the Ai (i = 1, 2, ... 6) are sub-collaborations, and
each Ai contains a single action, namely ai.

130 M. F. Al-hammouri and G. von Bochmann

Figure 2 shows two other compositions of collaborations. Figure 2(a) shows
a collaboration including two decision points: the possible execution orders are
C0 ;s C1 ;s C3, C0 ;s C2 ;s C3, and C0 ;s C2 ;s C4 ;s C3, where the Ci are arbitrary
sub-collaborations. Figure 2(b) shows a weak while loop where sub-collaboration
C2 is performed after zero, one or more executions of sub-collaboration C1. The
sequencing between successive executions of C1 and the final execution of C2 are
weak sequences, which means that sequencing is only enforced locally by each
role, but not globally.

x

a1

a1

a2

a3
a4

a5

a6

a1

a3

a6

a2 a4

a3 a5

a6

y z x y z

A1

A2 A4

A5A3

A6

x

m1

y z

a1

a4
m2

m3

a2

a3

sy: m1 rx: m1

sz: m2

sz: m3

ry: m2

rx: m3

a6

a5

(a) (b) (c)

(d) (e)

Fig. 1. (a) Example of a collaboration X. (b) The partial order for the execution of the
actions of X. (c) An abstract view of the collaboration X, showing only initial and final
actions. (d) Another representation for the order of actions executions (adapted from
Activity Diagrams). (e) Distributed implementation for collaboration X using MSC
notation

2.2 Behavior of Collaborations: A Formalization

As pointed out by Lamport [16], partial order is a natural concept for describing
the execution of distributed systems. Pratt [15] proposed to use labelled partially
ordered set (lposet) [17] for this purpose. A (strict) lposet, also called pomset
(partially ordered multi-set) is a tuple (E,

∑
, <, l), where E is a set of events,∑

is a set of action labels, < ⊆ E×E is a irreflexive, asymmetric, and transitive
order on E (where “e1 < e2” means that event e2 is after event e1, or e1 → e2
and l is a labeling function l : E → ∑

.
The behavior of the collaboration X shown in Fig. 1(a) can be modelled by

a lposet (E,
∑

, <, l), where E = {ei| i = 1, 2, ... 6},
∑

= {ai| i = 1, 2, ... 6}, <
is as shown in Fig. 1(b), and l(ei) = ai for | i = 1, 2, ... 6. Note that the events
in the figure are labelled with the action labels, not with the event names.

Realizability of Service Specifications 131

C1 C2

C0

C4

C3

C1

C2
;w

;w

(a) (b)

;s;s

;s

;s

Fig. 2. (a) An example of a composition of collaborations including two decision points.
(b) Weak while loop

The collaboration X shown above is a special case of a requirements model
which has a behavior defined by a single pomset. However, in general, the behav-
ior of a collaboration consists of several pomsets. Gischler [18] uses the term
“process” to designate a behavioral model, such as a collaboration, and the
term “behavior” for the set of pomsets that are allowed for the execution by
that model. The following rules are defined for the behavior of process (or col-
laboration) compositions (see for instance [18]):

The strict sequence of two processes C1 and C2, written C1; s C2, has
the following behavior: the set of all strict concatenations of one pomset in
the behavior of C1 with one pomset in the behavior of C2 (where the strict
combination of two pomsets P1 and P2 means that all events of P2 are after all
events of P1.

The concurrent execution of two processes C1 and C2, written C1|| C2, has
the following behavior: the set of all concurrent combinations of one pomset in
the behavior of C1 with one pomset in the behavior of C2 (where the concurrent
combinations of two pomsets P1 and P2 is the pomset that contains the union of
events and actions, and no order dependencies between the events of P1 and P2.

A choice between two alternative processes C1 and C2, written C1 + C2,
has the following behavior: it is the union of the pomsets in the behavior C1 and
the behavior of C2.

For an arbitrary number of repetitions of a process C, the Kleene star oper-
ator is defined as usual. The behavior of C∗s is defined to be strict sequence of
zero, one or more repetitions of C in strict sequence.

As an example, the behavior of the collaboration shown in Fig. 2(a) can
be defined by the expression C0 ;s (C1 + C2 ;s (C4 + 1));s C3, where 1 repre-
sents the pomset with an empty set of events. We note that the literature on
pomsets usually only considers strict sequencing, which makes abstraction of
system components and roles. These concepts are necessary for the derivation
of a distributed system design model, and for the definition of weak sequencing

132 M. F. Al-hammouri and G. von Bochmann

(which was first introduced for MSCs). Therefore we introduce the concept of a
collaboration-pomset, which is an extension of a pomset as follows:

Definition 1 (Collaboration-Pomset). A collaboration-pomset is a tuple
(E,

∑
, <, l,R, ρ), where (E,

∑
, <, l) is a pomset, R is a set of roles, and ρ is a

mapping ρ : E → R. ρ assigns a role to each event.

Definition 2 (Collaboration-Behavior). A collaboration-behavior is a set
of collaboration-pomsets which have a common set of roles R.

We consider in the following mainly collaborations that have a behavior (i,e,
a collaboration-behavior) which can be defined by regular expressions, such as
discussed above, or by diagrams, such as shown in Figs. 1 and 2.

Definition 3 (Weak Sequence). The weak sequence of two collaborations C1

and C2, written C1;w C2, has the following behavior: the set of all weak concate-
nations of one collaboration-pomset in the behavior of C1 with one collaboration-
pomset in the behavior of C2 (where the weak concatenation of two collaboration-
pomsets P1 and P2 means that, for any role r, all events of P2 that are assigned
to the role r are after all events of P1 that are assigned to r.

Note: It was shown in [19] that associativity does not always hold for multiple
strict and weak sequencing.

Like the Kleene operator for strict sequencing C∗s (mentioned above), we
also define arbitrary, multiple weak sequencing using the notation C∗w . We
consider in Sect. 4 the distributed design model for a weak while loop, as shown
in Fig. 2(b), which is defined by the expression “C ∗w

1 ;w C2”.

2.3 Comparing Two Behavior Models

We use the same modeling concepts for requirement models and distributed
system design models, namely collaborations (as defined in Sect. 2.2). In this
subsection we ask the question: Does a given design model C2 conform to a
given requirement model C1? The conformance relation should be defined such
that if C2 conforms to C1, then any implementation that conforms to C2 will
also conform to C1.

We assume that a design model C2 conforming to a more abstract model
C1 should include all events of C1 associated with the same actions and roles
as in C1, but it may contain additional events that are introduced during the
refinement process. We also assume that the partial order defined by C1 should
be realized by C2, but the order of C2 may be stronger. Therefore we provide
the following definitions.

Definition 4 (Conformance of Pomsets). Given two collaboration-pomsets
P1 and P2, we say that P2 conforms to P1 if the events of P2 include the events
of P1, the order of P2 is a refinement of the order of P1 and the restriction of
the labelling and role mapping functions of P2, restricted to the events of P1, are
equal to the functions of P1.

Realizability of Service Specifications 133

Definition 5 (Conformance of Collaborations). Given two collaborations
C1 and C2, we say that C2 conforms to C1 if for each collaboration-pomset P
in the behavior of C2, there is a collaboration-pomset in the behavior of C1 to
which P conforms.

3 Deriving Conforming Distributed Design Models

3.1 Basic Ideas

Since the early work in this area [13,20], the following basic ideas were pro-
posed for the derivation of a distributed design model from a global requirements
model:

1. The distributed design consists of processes for each role. The processes per-
formed by different roles communicate through the exchange of messages.

2. The process of a given role r is obtained from the global requirements collab-
oration by projecting its behavior onto role r, that is, by deleting all events
that are associated with other roles r′ �= r.

3. If an order should be introduced between two actions a1 → a2 associated with
different roles r1 and r2, respectively, one should introduce a coordination
message (called “flow message” in [1]) to be sent by r1 after the execution of
a1, and to be received by r2 before the execution of a2.

4. Each role has a reception pool where received messages are stored until their
consumption is requested by the local behavior. We distinguish the following
cases:
(a) A single input queue which receives the messages from all other roles.
(b) For each other role, messages are transmitted in FIFO order and stored

in the pool in separate FIFO queues.
(c) A simple pool of messages which can be requested for consumption in any

order (for instance [20]).

If we apply these principles to the global requirements model of Fig. 1(a) and
(b), we obtain the distributed design model of Fig. 1(e), which is shown in the
form of a MSC. The messages in this design are introduced according to point
(3) above. For the message sending and receiving actions, we use the notation
“sx : m1” and “ry : m2”, respectively, where x and y are the roles to which the
message is sent, and the role from where the message was received, and m1 and
m2 represent the types of the message involved.

It is important to note, that the messages m2 and m3 may lead to a race
condition at reception by role z, that is, m3 may arrive before m2, although it is
expected to arrive afterwards. A reception pool of type (b) or (c) (see above) is
introduced in order to deal with such race conditions. If such a pool is used by
role z, then it may consume these two messages in the order it expects, that is,
first m2 then m3. (If m3 arrives before m2, it will be stored in the pool; z will
wait for m2; and then it will request the consumption of m3). We note that a
reception pool type (a) will lead to a deadlock if m3 arrives before m2. Therefore,
this type of pool should be avoided.

134 M. F. Al-hammouri and G. von Bochmann

One says that a global requirements model is realizable if a conforming dis-
tributed design model can be found. We call basic implementation the design
model obtained by the basic approach above without any additional coordination
message (using point (3)). We say that the requirements model is directly real-
izable if the basic implementation with reception pool conforms to the global
requirements. We note that in the case that the global requirements are given
in the form of the simple MSC without alternatives, the specification is directly
realizable since it contains already all messages required for enforcing the order
of the distributed actions (for instance, if we take Fig. 1(e) as the global require-
ments model).

3.2 Review of Work on Realizability

Realizability of global specifications has been extensively studied by many
authors. Different formalisms have been used for defining the global specification,
while for the definition of the local behavior of each role normally state machine
models were used. The conditions for the realizability of High-level MSC (HMSC
for short) have been proposed in [21], for Message Sequence Graph (MSG for
short) in [22], and for Compositional MSCs in [20]. Some authors have discussed
the pathologies in HMSCs that prevent their realization like non-local choice
[2,10].

Global specifications in the form of a set of MSC are considered in [23]. This
is related to the problem of implied scenarios. This work is extended in [22] by
studying the realizability of MSC-graphs under FIFO communication. In both
papers, the specification is realizable if there exist concurrent automata which
implement the set of MSCs. Two types of realizability are considered: weak
realizability (where the distributed design may deadlock) and safe realizability
where no additional deadlock is introduced. In both cases, the behavior for each
role is modelled by a finite state machine and communication is through FIFO
queues.

In [20], they formally study under which conditions the global specification
(compositional MSC) is directly realizable, they prove that the absence of non-
deterministic, race and non-local choice lead to sound choice which is directly
realizable. Different composition operators (i.e., weak and strong sequence, alter-
native and parallel) between sub-collaborations are studied in [7,8], and how they
affect realizability.

In many cases the specifications are not directly realizable, however, they
are realizable by including additional coordination messages or parameter in
the implementation. Additional data is added to the messages to achieve safe
realizability for MSC specifications [24]. In [25], they consider the realizability of
local-choice HMSCs and proof that the implementation strongly conforms to the
specification using messages parameters. The authors of [7,8] report when strong
and weak sequence need coordination messages to achieve realizability, and [1]
introduces the cim message for the realization of alternatives. In [1,14], race
conditions in weak while loops are studied and an additional message parameter
is introduced for obtaining realizability.

Realizability of Service Specifications 135

3.3 Alternatives with Different Terminating Roles

For enforcing a weak sequence between two collaborations C1 ;w C2, no coordi-
nation messages are required in the distributed design model since the ordering
defined by weak sequence is a local order only. This is different for the strict
sequence C1 ;s C2 which defines globally that all actions of C2 must be after all
actions of C1. This can be ensured by introducing coordination messages from
all roles performing a final action of C1 (called terminating roles of C1) to all
roles performing an initial action of C2 (called initiating roles of C2) [1,12].

In the case of a collaboration with alternatives C1 and C2, followed in strict
sequence by another collaboration C3, the situation is in general more complex,
as shown by the example of Fig. 3. This case is not mentioned in [13], and it is
excluded from the discussion in [1,12], If the alternatives have different sets of
terminating roles, the initiating roles of C3 have to wait for two alternative sets
of coordinating messages. In the example of Fig. 3, the choice between the two
alternatives is made by role y (local choice), and role w has to consume, before
the action e6 in collaboration C3, either two coordination messages from roles x
and z, or another message from role z (we assume that all coordination messages
can be distinguished by their type).

e1

e2

e4

e6

e3

e5

(x) (y) (z) (w)

C3

C2

C1

Fig. 3. Alternatives with different terminating roles

3.4 Interface Provided by the Reception Pool

The reception pool should provide an interface to the local behavior at the given
role which allows to specify which messages are candidate for consumption. For
avoiding the race condition in the behavior of Fig. 1(e), the local behavior at role
z would request the consumption of message m2, and then of message m3. In

136 M. F. Al-hammouri and G. von Bochmann

the case of the local behavior of role z in the alternative of Fig. 3, the first action
in both alternatives would be the reception of a message. The local behavior
would request the consumption of one of these messages and would be informed
which message was received. We note that we assume that the messages can all
be distinguished by their type (and/or by the sending role). We call such an
interface a basic pool interface. It can be constructed using the basic Internet
socket interface for communication with a single partner. Such an interface is for
instance provided by the BPEL programming environment, which is often used
for the distributed implementation of Web Service Applications.

We note, however, that this basic interface is not natural for handling strict
order between two collaborations. In this case, an initiating role of the second
collaboration would start with requesting the consumption of a set of messages,
namely all messages to be received from the terminating roles of the first col-
laboration. The situation becomes even more complex for strict sequence after
alternatives with different sets of terminating roles, as discussed above. In this
case, the initiating role after the alternative would naturally request two or more
alternative sets of messages to be consumed. In the example of Fig. 3, the behav-
ior of role w for sub-collaboration C3 would start with requesting either the set of
messages {rx : m1, rz : m2} or {rz : m3}. Such an interface is unfortunately not
provided for BPEL programming. Also the interface function which allows for
requesting the consumption of a certain message type with a parameter that has
a given integer value (which is useful for handling weak while loops, as discussed
in the next section), is not available with BPEL.

3.5 A Role Does Not Participate in all Alternatives

In the case of choice between several alternatives, as shown in Fig. 4, where one
of the alternatives does not participate in all roles, i.e., alternative A doesn’t
participate in z, [1] suggested the introduction of a choice indication message
cim to indicate the choice to those roles that do not participate in the alternative.
Without such a coordination message the role z in Fig. 4 would not know when
to start the initial action of collaboration C3 when this alternative is chosen. We
note that problem was not mentioned in [20].

Here we would also like to point out that this cim message is not required if
the subsequent collaboration follows in strict sequence, and in the case of weak
sequence only if the role in question has an initiating role in the subsequent
collaboration. If in Fig. 4 the m6 message would go in the opposite direction
(and role z would not be initiating), role z could simply request the pool for the
consumption of m5 or m6.

4 Weak While Loop

We consider in this section a requirements model including a weak while loop
as shown in Fig. 2(b). We assume that the decision of repeating collaboration
C1 or finishing with C2 is a local choice. In the example of Fig. 5, this is done

Realizability of Service Specifications 137

x y z

e1 e2
e3 e4

e5 e6

e7 e8
e10

A

B

e11e12
e14

e9

C1

;w

e13

m1

m2

m3

m4

m7

m5

α

m6

;w

C2

C3

Fig. 4. An example where role z does not participate in all alternatives (α is part of
the design model where cim must be received)

by role x. We call this role the initiator of the loop. The other roles are called
dependent roles. It is important to note that the first event of a dependent
role in C1 or in C2 is always the reception of a message (since otherwise the role
would be initiating, and the choice would not be local). We also assume that all
collaboration-pomsets of C1 and C2 involve the same set of roles.

It has been pointed out in the literature that a race may occur for a dependent
role between the reception of the first messages of C1 and C2. For instance in
Fig. 5, if the transmission of m2 during the last repetition of C1 is delayed for
some reason, the role z may receive m5 before the last message m2. We call such
a race a termination race of the loop.

Another problem that may occur is the following: If a given type of message of
C1 is not transmitted over a FIFO channel from the sending role to the receiving
role, then it may happen that the message instance of the nth repetition of
C1 is overtaken by the instance of the next repetition. If the message has no
parameters, then there is no problem, but otherwise the parameter values would
arrive out of order. We call this problem message overtaking. For instance,
we note that message type m8 in Fig. 5 may have message overtaking in the case
that C1 is repeated twice and the transmission of the first message m8 is very
slow.

Proposition 1. A weak while loop with local choice is directly realizable if it
does not contain any termination race nor message overtaking.

Proof. The absence of termination race means: For any dependent role r that
receives the first messages m1 and m2 in C1 and C2, respectively, it can never
happen that the message m2 is received by r while m1 still in transit. Also, the
absence of message overtaking means: For any dependent role r and any message

138 M. F. Al-hammouri and G. von Bochmann

x
* m1

y z v

m3
m2m4

m5 m6
m7

Fig. 5. An example of a weak while loop where role x is the loop initiator

type m received within C1, it can never happen that a message of type m is
overtaken by another instance of that type belonging to the next repetition of C1.
There is no need for any coordination messages since the messages are consumed
in the right order. Therefore the weak while loop is directly realizable. �

In the following we discuss under what conditions there are no such problems
and how a given role can be implemented in the distributed design model in the
case that there are problems.

4.1 Checking the Requirements Model for Problems

We analyse in this subsection the requirements model and give some propositions
that ensure the absence of termination race and message overtaking.

Proposition 2 (Absence of termination race). A dependent role r of a
weak while loop has no termination race if one of the following conditions is
satisfied:

(a) The reception of the first message m by r in C1 is before that last event in
C1 of the initiator.

(b) The first messages received by r in C1 and C2 are sent by the same role r′,
and the communication is over a FIFO channel. Note that it is assumed here
that role r′ has no termination race.

Proof. For (a): If the first message m in C1 to be received by r is in transit, then
it must have been sent and not yet received. Since the reception is before the
last event in C1 of the initiator, the initiator must be involved in the execution
of C1 when a message m is in transit. Therefore there can never be the first
message received by r in C2 in transit at the same time. Therefore there cannot
be a race.

For (b): Since we assume that the sending role r′ has no termination race,
the first messages in C1 will be sent before the first message in C2. Because they
are sent over a FIFO channel, they will also be received in this order. �

Realizability of Service Specifications 139

Proposition 3 (Absence of message overtaking). For the reception of a
message type m by a role r during the repetitions of C1, there is no danger of
message overtaking, if one of the following conditions is satisfied:

(a) The reception of the message is before the last event in C1 of the initiator.
(b) The message is received over a FIFO channel from the sending role.
(c) The receiving role is the initiator of the loop.

Proof. The proof for (a) is similar to the previous proposition. Point (b) is
evident. Point (c) follows from the fact that the initiator waits for receiving all
messages related to one repetition of C1 before it starts another repetition. �

4.2 Deriving a Distributed Design Model for a Weak While Loop

To get a conforming distributed design model in the case of a termination race, it
was suggested in the literature to include in the first messages received by a role
in C1 and in C2 a sequence parameter which indicates the number of repetitions
of C1, and accept the first message of C2 only if it contains the right sequence
number. This approach was also used in [1], however, for all roles and with
sequence parameters in all messages. This, by the way, also solves the message
overtaking problem.

In this section we discuss how a conforming design model can be constructed
by introducing a minimum number of sequence parameters in messages.

As pointed out by Proposition 1, the basic implementation provides a con-
forming design model if there are no problems of termination race nor message
overtaking. We propose to construct a conforming design model by starting out
with the basic implementation, and then performing modifications to the behav-
ior of those roles that have any of these problems.

For a role r that has termination race (TR), one of the following modifications
can be used:

– Modification-TR-1:
(a) A sequence parameter is introduced into the first message receive in C2.
(b) The behavior has a local variable N which is initialized to 0 before the

while loop starts. Each time the first message of C1 is received, N is
incremented.

(c) In the request to the message pool for consuming the first message of C1

or C2, a condition is added to the consumption of the first message of C2,
namely that the parameter value is equal to N.

(d) This assumes that the behavior of the sending role also has a modification
introducing a local variable N (which is incremented) and sending the
value of N as message parameter.

This modification-TR-1 corresponds to what is proposed in [1]. It presents the
difficulty that a message pool providing a suitable interface must be used. To
avoid this difficulty, the following modification was proposed in [14].

140 M. F. Al-hammouri and G. von Bochmann

– Modification-TR-2: Points (a), (b) and (d) as above. Instead of (c), we
have the following:

• A request is given to the message pool to consume the first message of
C1 or of C2. If the first message in C2 is received, the message is stored
in a buffer and its parameter is stored in a second local variable M. If
(M = N), the behavior of C2 starts using the first message in the buffer.
Otherwise the local behavior of C1 is performed. Then the process goes
back to the beginning of the loop and waits again for an instance of first
message for C1 or C2,

For a role r that has message overtaking(MO) for a message type m, the
following modifications can be used:

– Modification-MO-1: Points (b) and (d) as in Modification-TR 1. Instead
of (a) and (c), we have the following:

• A sequence parameter is introduced into the message type that has the
problem of overtaking.

• In the request for consumption to the message pool of message m, a
condition is added to the consumption, namely that the parameter value
is equal to N.

• Modification-MO-2: Ensure that the message m is received through a FIFO
channel.

Modification-MO-1 has the disadvantage that an additional message param-
eter must be introduced and the message pool needs to support consumption
requests with parameter conditions. It is often much easier to ensure FIFO deliv-
ery between the sending and receiving roles.

Proposition 4 (Conforming design model). Given a requirements model
R and a distributed design model D. D conforms to R if the following condition
is satisfied: D is obtained from the basic implementation of R by applying the
following modifications:

(a) For each responding role that has a termination race according to R, apply
Modification-TR-1 or Modification-TR-2.

(b) For each reception by some depending role of some message with the prob-
lem of message overtaking according to R, apply Modification-MO-1 or
Modification-MO-2.

Proof. We have to show that the following conditions are satisfied:

(a) Collaboration C1 is executed by all roles the same number of times.
(b) During the N th execution of C1 by a given role r, each message m consumed

by r was sent by the sending role r′ during its N th execution of C1.

Realizability of Service Specifications 141

Condition (b) follows from point (b) of the Proposition. It is straightforward
to prove that the Modification-MO-1 or Modification-MO-2 assures that there is
no message overtaking in the design model. For proving Condition (a), we have
to prove that if Modification-TR-1 or Modification-TR-2 are introduced for a
role r, this ensures that C2 is executed by r only after C1 has been executed N
times, where N is the number of time that the loop initiator executed C1.

For this purpose, we group the roles into role-sets RS(i) (i = 0, 1, 2, ...). The
initiator is in RS(0) and any dependent role that receives the first message of
C2 from a role in RS(i) is in RS(i+1). Now we do the proof by induction over
i. Suppose that the roles in RS(i) execute C1 the same number of times N as
the initiator, then any role in RS(i+1) receives the first message of C2 with
the parameter N. It is easy to see that Modification-TR-1 or Modification-TR-2
ensure that the role will also executed C1 N times before it executes C2. When
it executes C2 and sends an initial message to another role, then this message
will also include the parameter N. We conclude that all first messages of C2

will include the same parameter value and therefore all roles will execute C1 the
same number of times. �

5 Conclusion

We consider the derivation of a distributed design model from a global require-
ments model which identifies the different actions to be performed by the differ-
ent system components and a partial order that determines the order in which
these actions may be performed. The distributed design model defines for each
component the local actions to be performed and their order. We call basic imple-
mentation a design model obtained by projection of the requirements model onto
each component. If this design model conforms to the requirements, we say that
the requirements are directly realizable. However, in most cases additional coor-
dination messages or parameters must be introduced to coordinate the order of
actions at different components. We study special cases of alternatives followed
by strict or weak sequence. We show that the choice indication message cim,
introduced in [1] is not required in many cases.

We also study the implementation of the weak while loop, which may have
the problems of termination race and message overtaking. We show under which
conditions these problems are absent, and the loop is directly realizable. For
the other cases, we show how a conforming design model can be obtained by
introducing minimal changes to the basic implementation. Overall, this is an
important improvement over what is proposed in [1].

This work is important in the context of distributed system design where the
designers and developers should consider these problems and know how to solve
them. This work is also important for the construction of tools that generate
code for distributed applications in order to generate code without design flaws.

In the near future, we plan to use the formal partial order description to prove
the conformance of the derived design model and to implement the derivation
algorithm in a tool environment.

142 M. F. Al-hammouri and G. von Bochmann

References

1. von Bochmann, G.: Deriving component designs from global requirements. In:
CEUR Workshop Proceedings, vol. 503, pp. 55–69 (2008)

2. Ben-Abdallah, H., Leue, S.: Syntactic detection of process divergence and non-
local choice in message sequence charts. In: Brinksma, E. (ed.) TACAS 1997.
LNCS, vol. 1217, pp. 259–274. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0035393

3. Mooij, A.J., Goga, N., Romijn, J.M.T.: Non-local choice and beyond: intricacies of
MSC choice nodes. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 273–288.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31984-9 21

4. Alur, R., Holzmann, G.J., Peled, D.: An analyzer for message sequence charts. In:
Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 35–48. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61042-1 37

5. ITU-TS, Recommendation Z.120 (02/11), Message Sequence Chart (MSC). ITU,
Geneva. Technical report (2011)

6. Castejón, H.N., Bræk, R.: Formalizing collaboration goal sequences for service
choreography. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.)
FORTE 2006. LNCS, vol. 4229, pp. 275–291. Springer, Heidelberg (2006). https://
doi.org/10.1007/11888116 21

7. Castejon, H.N., Braek, R., von Bochmann, G.: Realizability of collaboration-based
service specifications. In: Proceedings - Asia-Pacific Software Engineering Confer-
ence, APSEC, pp. 73–80 (2007)

8. Castejón, H.N., von Bochmann, G., Bræk, R.: On the realizability of collaborative
services. Softw. Syst. Model. 12(3), 597–617 (2013)

9. Israr, T., von Bochmann, G.: Performance modeling of distributed collaboration
services. In: ICPE 2011-Proceedings of the 2nd Joint WOSP/SIPEW International
Conference on Performance Engineering, January 2011, pp. 475–480 (2011)

10. Hélouët, L.: Some pathological message sequence charts, and how to detect them.
In: Reed, R., Reed, J. (eds.) SDL 2001. LNCS, vol. 2078, pp. 348–364. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-48213-X 22

11. Object Managment Group: UML 2.5.1 specification. Technical report (2017)
12. Khendek, F., von Bochmann, G., Kant, C.: New results on deriving protocol speci-

fications from service specifications. In: Proceedings of the ACM SIGCOMM 1989,
pp. 136–145 (1989)

13. Gotzhein, R., von Bochmann, G.: Deriving protocol specifications from service
specifications including parameters. ACM Trans. Comput. Syst. 8(4), 255–283
(1990)

14. Mustafa, N.M.F., von Bochmann, G.: Transforming dynamic behavior specifica-
tions from activity diagrams to BPEL. In: Proceedings of the 6th IEEE Inter-
national Symposium on Service-Oriented System Engineering, SOSE 2011, pp.
305–311 (2011)

15. Pratt, V.: Modeling concurrency with partial orders. Int. J. Parallel Program.
15(1), 33–71 (1986)

16. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

17. Katoen, J.P., Lambert, L.: Pomsets for message sequence charts. In: Proceeding of
First Workshop SDL and MSC (SAM 1998), pp. 197–208 (1998)

18. Gischer, J.L.: The equational theory of pomsets. Theor. Comput. Sci. 61(2–3),
199–224 (1988)

https://doi.org/10.1007/BFb0035393
https://doi.org/10.1007/BFb0035393
https://doi.org/10.1007/978-3-540-31984-9_21
https://doi.org/10.1007/3-540-61042-1_37
https://doi.org/10.1007/11888116_21
https://doi.org/10.1007/11888116_21
https://doi.org/10.1007/3-540-48213-X_22

Realizability of Service Specifications 143

19. von Bochmann, G.: Associativity between weak and strict sequencing. In: Amyot,
D., Fonseca i Casas, P., Mussbacher, G. (eds.) SAM 2014. LNCS, vol. 8769, pp.
96–109. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11743-0 7

20. Mooij, A., Romijn, J., Wesselink, W.: Realizability criteria for compositional MSC.
In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 248–262.
Springer, Heidelberg (2006). https://doi.org/10.1007/11784180 20

21. Hélouët, L., Jard, C.: Conditions for synthesis of communicating automata from
HMSCs. In: Proceedings of 5th International Workshop on Formal Methods for
Industrial Critical Systems, March 2000

22. Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC
graphs. Theor. Comput. Sci. 331(1), 97–114 (2005)

23. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. IEEE
Trans. Softw. Eng. 29(7), 623–633 (2003)

24. Baudru, N., Morin, R.: Safe implementability of regular message sequence chart
specifications. In: ACIS 4th International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD
2003) (2003)

25. Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-state high-level MSCs:
model-checking and realizability. J. Comput. Syst. Sci. 72(4), 617–647 (2006)

https://doi.org/10.1007/978-3-319-11743-0_7
https://doi.org/10.1007/11784180_20

An Arithmetic Semantics for GRL Goal
Models with Function Generation

Yuxuan Fan, Amal Ahmed Anda, and Daniel Amyot(B)

EECS University of Ottawa, Ottawa, ON K1N 6N5, Canada
{yfan035,aanda027,damyot}@uottawa.ca

Abstract. Goal models are used to support early requirements engi-
neering activities by capturing system and stakeholder objectives and
their links, and by enabling what-if and trade-off analysis in a decision-
making context. They are also increasingly used in system monitoring
and self-adaptation contexts. Yet, automatically converting goal mod-
els to code for supporting analysis and adaptation activities remains
an issue. This paper presents a new arithmetic semantics for the stan-
dard Goal-oriented Requirement Language (GRL), supported by a trans-
formation to functions in multiple programming languages. Such code
allows for quantitative GRL model evaluations to be performed outside of
modeling tools, including in running systems. The transformation makes
use of a Python-based intermediate representation (SymPy), with func-
tion generation in Java, JavaScript, C, C++, Python, R, and Matlab.
The semantics and transformation, implemented in the jUCMNav plug-
in for Eclipse, entirely cover GRL, including goals, indicators, actors, and
any combination of links.

Keywords: GRL model · Self-adaptation · Mathematical analysis

1 Introduction

Goal modeling is a requirements engineering activity that targets the under-
standing and specification of the goals of systems and their stakeholders, the
various means of achieving these goals, and other types of relationships between
these elements. Goal models support functional and non-functional aspects
of systems and enable what-if analysis as well as an evaluation of trade-offs
between the often conflicting goals of different stakeholders. There exist many
goal modeling languages [13], including i*, Tropos, KAOS, as well as ITU-T’s
Goal-oriented Requirement Language (GRL), part of the User Requirements
Notation (URN) standard [2,14]. Goal model analysis can be used not only at
design time [1,12], but also at runtime in systems that exhibit some context
monitoring or self-adaptation functionalities [27].

In emerging adaptive systems, systems of systems, as well as socio-cyber-
physical systems (SCPSs), including autonomous vehicles, smart homes, and
smart cities, goal-based reasoning often needs to be performed by the systems
c© Springer Nature Switzerland AG 2018
F. Khendek and R. Gotzhein (Eds.): SAM 2018, LNCS 11150, pp. 144–162, 2018.
https://doi.org/10.1007/978-3-030-01042-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01042-3_9&domain=pdf
http://orcid.org/0000-0003-2414-1791

An Arithmetic Semantics for GRL Goal Models with Function Generation 145

themselves, outside goal modeling environments. Such runtime reasoning can
help manage the complexity and uncertainty of the development and execution
processes of these kinds of systems [4,6]. Some SCPSs may also need to adapt
dynamically to reach an optimal symbiosis with their users and contexts. Man-
aging goal models at runtime is an increasingly popular solution for conducting
trade-off analysis and selecting the best adaptation strategy using data mon-
itored in real time [6]. In this context, how to transform a goal model into a
representation that can be evaluated at runtime by systems becomes an impor-
tant issue.

Transforming goal models into executable functions could also be useful
in modeling environments that support simulations. For example, the Systems
Modeling Language (SysML) [20] could embed such functions in its models in
order to simulate adaptive systems. This is also in line with the recent request
for proposal for SysML v2 [19], which is looking to integrate goal concepts.

As runtime adaptation is based on a quantitative evaluation of monitored
data contributing to goals of different stakeholders, the source modeling language
must support a representation of stakeholders and their goals, some means of
representing quantitative data and their corresponding satisfaction level, as well
as automated mechanisms for quantitative evaluation. GRL is the only standard-
ized language that meets these requirements. GRL helps capturing stakeholders
(roles, organizations, systems, etc., collectively named actors), their intentions
(goals, softgoals, tasks, and resources), their relationships (AND/OR decomposi-
tion, positive/negative contributions, and dependencies), and indicators to mea-
sure intention satisfaction based on external evidence. In GRL, goals and other
intentional elements can also be partially satisfied. A GRL indicator assesses
a current observable data value in a given unit against target, threshold, and
worst value parameters, and outputs a satisfaction level that can be propagated
to goals, softgoals, tasks and resources in the rest of the model. Indicators can be
used (1) at design time via GRL evaluation strategies or external data sources
(database, web server, Excel sheet, etc.) and (2) at runtime using monitoring
sensors and real-time data [21]. GRL hence supports quantitative and qualitative
trade-off and what-if analyses usable at design time but also at runtime in an
adaptation context [13,21]. Although GRL has been previously used to model
context-aware systems [25], no transformation from GRL to code executable by
systems currently exists to support run-time adaptation.

This paper proposes a new arithmetic semantics for GRL and a method for
transforming entire GRL models into mathematical functions. Seven target pro-
gramming languages (Java, JavaScript, C, C++, Python, R, and Matlab) are
currently supported for efficient and effective model evaluations in different con-
texts, including running systems but also other modeling environments that sup-
port simulations (e.g., with SysML [20]). The transformation is implemented in
the jUCMNav modeling environment [3] and exploits an intermediate arithmetic
representation in the SymPy language [23]. The rest of this paper is organized
as follows. Section 2 highlights related work, including modeling approaches but
also tools used in our own approach. Section 3 explains the methodology and

146 Y. Fan et al.

the proposed tool-supported transformation. Section 4 provides an illustrative
example. Finally, Sect. 5 discusses conclusions, including limitations and future
work.

2 Related Work

2.1 Existing Approaches

To support design selection processes through simulation and runtime adapta-
tion, some approaches attempted to transform goal models and/or feature mod-
els into mathematical functions. Ramirez and Cheng [22] proposed the Athena
approach, which uses the KAOS [24] and Relax [26] goal languages to monitor
environmental conditions and determine whether requirements are violated or
not. In order to monitor the surrounding environment, Athena generates fuzzy
functions automatically for softgoals while using templates that return Boolean
values for functional goals. The values of the generated functions are propagated
to calculate the overall satisfaction level and determine whether goals are vio-
lated. However, the approach does not cover contribution relationships or the
relative importance of goals to actors in the analysis process. In addition, lim-
iting the satisfaction of goals to Boolean values is at times perceived as too
restrictive for run-time adaptation [8].

Nguyen et al. [17] proposed the Constrained Goal Model (CGM) approach,
which formalizes and expands conventional goal model concepts with condi-
tions and numerical variables in order to automate reasoning. Preconditions
are assigned to goals and other elements. Numerical variables are used as con-
straints and parameters (e.g., cost and performance) of the multi-objective func-
tion used to reason upon goals. Although the conditions were shown to speed
up the reasoning process, they also limit the flexibility of the process in dealing
with unknown situations. Moreover, the reasoning process: (1) does not repre-
sent goal-based reasoning that propagates satisfaction levels using indicators,
goals, and their relationships, and (2) is based on the values and constraints
that are assigned by users for each model element, including penalties, rewards,
attributes, and preconditions. Such assignment is not simple for large and com-
plex systems.

Similarly, in order to support adaptive and complex systems in their evo-
lution, Chatzikonstantinou and Kontogiannis [8] presented a framework that is
based on a conditional goal model to express extra information about system
goals and their dependencies, as well as to automate the reasoning process. They
presented the ReqRV approach, which is an adaptive requirement-based view
that aims to verify systems while running. In order to decide whether require-
ments are fulfilled or not, conditions that include domain assumptions as well
as current satisfaction values are assigned to each requirement. A fuzzy app-
roach is used to monitor the environment and determine, based on quantitative
weights, whether the related goals are violated. Although the proposed method
can monitor its environment and verify its requirements, it is unable to deal
with unknown situations at runtime because of the predetermined conditions.

An Arithmetic Semantics for GRL Goal Models with Function Generation 147

The approach also does not support trade-off analysis or the selection of best-
suited adaptations among alternatives. Moreover, assigning valid conditions to
each goal is, again, not simple for large and complex models.

Because of the difficulty of conducting goal-based reasoning of a large goal
model to select a suitable solution at design time, Chitra et al. [9,10] use a
multi-objective optimization based on the satisfaction levels of goals in a model.
They identify the quantitative weights of the leaf goals automatically without
the analyst’s intervention. Next, these weights are propagated to calculate the
satisfaction level of the top goal. The satisfaction level of each goal is used as an
argument of the main multi-objective function to select the solution that maxi-
mizes the satisfaction level of the model’s goals. The score and the weight of the
leaf goals are the constraints of this function. However, this function could gener-
ate unfeasible solutions caused by invalid combinations of alternatives. Moreover,
functional goals, relationships between goals, indicators and importance values
of model elements are not involved in the analysis.

Mathematical functions are also generated from goal models in contexts other
than adaptive systems. For example, in order to support software product lines
(SPL) and product reuse, Noorian et al. [18] consider goals, softgoals, and fea-
tures in building feature models and selecting a product using an optimization
model. Conventional feature models can indicate whether a product configu-
ration is valid or not, but the introduction of goals in such models can help
determine which valid configurations are satisfying softgoals better than others.
The required goals and softgoals of the new product are selected by a user and
an objective function is then built by summing up the impact of each feature
on the selected softgoals and goals. Three types of constraints (features, goals,
and their integration) are used as rules with the proposed utility function to
eliminate invalid configurations. Yet, only part of the goal model is involved in
the optimization model and the utility function does not represent goal-based
reasoning in which the softgoals, the goals and their relationships are involved.

As shown above, although goal and feature models have been transformed
into mathematical functions to deal with the complexity and scalability of large
models, their reasoning processes have often been: (1) incomplete (i.e., using only
part of the goal model), (2) imprecise (i.e., using qualitative values, or using a
mix of numerical and Boolean values for softgoals and goals, respectively), and
(3) not truly goal-based (e.g., using only conditions and utility functions).

2.2 Existing Tools

In order to translate GRL models into arithmetic functions in different program-
ing languages, we exploited two existing tools: jUCMNav and SymPy.

jUCMNav is a free, Eclipse-based graphical editor and analysis tool for
URN and GRL models [3]. jUCMNav supports the bottom-up evaluation of
GRL strategies (i.e., initial values associated with some of the goals/indicators)
using different quantitative, qualitative, and hybrid algorithms [1]. jUCMNav
also offers an extensible architecture where model transformations are imple-
mented as plug-ins. Such a transformation was previously defined for exporting

148 Y. Fan et al.

a constraint-based representation of GRL models [16], enabling tools to solve
models instead of just propagating satisfaction values to higher-level goals and
to actors. However, a constraint-based approach is often much too computation-
ally expensive for usage by running systems in an adaptation context.

SymPy is a free, lightweight Python library for symbolic mathematics [23].
This library is used to symbolically simplify mathematical expressions, and it
includes code printers that convert SymPy expressions into target languages such
as Java, JavaScript, and C. SymPy is used here as the the target language for
our transformation from GRL, and then code printers (existing ones, as well as
new ones) enable efficient and maintainable code generation to multiple target
programming languages.

3 Methodology

This section describes the arithmetic semantics of GRL and a transformation
to SymPy expressions. The latter are themselves transformed into executable
functions in different programming languages.

3.1 Overview

Goal models can be developed to describe how systems should adapt to their
environment. Once a model is developed and validated (e.g., through the tech-
niques described by Horkoff et al. [13]), it needs to be transformed into a format
executable by running systems and/or by simulation engines. Figure 1 illustrates
the main steps involved in transforming a model in standard GRL into arith-
metic functions in multiple programming languages. A new jUCMNav plug-in
first traverses the GRL model and generates a SymPy file conforming to the pro-
posed arithmetic semantics for GRL. This intermediate representation exploits
the SymPy Python library to symbolically simplify the generated functions (e.g.,
by computing the results of sub-expressions involving constants). Then, a new
Python script we produced invokes existing or new SymPy code printers to gen-
erate mathematical expressions in target programming languages, as separate
files.

Fig. 1. The flow of entire transformation process

An Arithmetic Semantics for GRL Goal Models with Function Generation 149

Three contributions can be observed here: a new arithmetic semantics for
standard GRL, a transformation from GRL to SymPy mathematical functions,
and the provision or extension of code generators from SymPy to seven target
programming languages. These contributions are described in the subsections.

3.2 Arithmetic Semantics for Standard GRL

There are three main categories of concepts in GRL:

1. Intentional elements, including goals, softgoals, tasks, resources, and indi-
cators. Intentional elements have a satisfaction value v computed at runtime
based on a selected GRL strategy or on external inputs. They also have an
importance value representing their weight in the computation of the satisfac-
tion of their containing actor, if any. An indicator additionally includes four
parameters (current value, target value, threshold value, and worst value)
used to transform an external input (current value) into a satisfaction value.

2. Intentional links, including AND/OR decomposition links, (weighted) con-
tribution links, and dependency links.

3. Actors, which also have a satisfaction value, as well as an importance value
used in the computation of the satisfaction of the entire model.

Figures 2, 3, 4 and 5 show the different types of links between source intentional
elements (S) and destination intentional elements (Dx).

Fig. 2. AND-decomposition link Fig. 3. OR-decomposition link

Fig. 4. Contribution link Fig. 5. Dependency link

The quantitative satisfaction value of a leaf intentional element is provided
as explicit input in a strategy. For the other intentional elements, the satisfac-
tion value of the source (v(S)) is a function of the destination (v(Dx)) of its
intentional links. Satisfaction is evaluated over [0...100].

150 Y. Fan et al.

1. For the AND-decomposition (Fig. 2), the minimum is propagated.

v(S) = Min(v(D1), v(D2), ..., v(Dn)) (1)

2. For OR-decomposition (Fig. 3), the maximum is propagated.

v(S) = Max(v(D1), v(D2), ..., v(Dn)) (2)

3. For contribution links (Fig. 4), NMx represents the quantitative contribu-
tion/weight (over [−100..100]) of destination intentional element Dx to the
source intentional element S. A truncated weighted sum is propagated. Note
that in GRL, contributions are additive and convey contributions to the sat-
isfaction of the target intentional element, not probabilities or confidence
levels.

v(S) = Max(0,Min(100,
∑n

x=1(v(Dx) × NMx)
100

)) (3)

4. For dependency links (Fig. 5), the current element’s satisfaction (defaulted
to 0) is truncated to the minimum satisfaction of its dependees.

v(S) = Min(v(S), v(D1), v(D2), ..., v(Dn)) (4)

In GRL, an intentional element can have decomposition (one type), contribution,
and dependency links simultaneously. In such cases, first the satisfaction from
decomposition links is computed, then the contribution satisfactions are added,
and finally the dependency links are used to truncate the result (as specified in
the URN standard [14]). For example, the arithmetic interpretation of Fig. 6 is:

v(Sdecomp) = Min(v(D1), v(D2)) (5)

v(Scontrib) = Max(0,Min(100,
25 × v(D3) + 100 × v(Sdecomp)

100
)) (6)

v(S) = Min(v(Scontrib), v(D4)) (7)

Fig. 6. Multiple types of link Fig. 7. Indicator

Figure 7 shows an indicator element I that can also be linked to other
intentional elements (except that an indicator cannot be decomposed or receive
contributions). The satisfaction value of an indicator is computed by comparing
its current value against it target, threshold, and worst values. The threshold

An Arithmetic Semantics for GRL Goal Models with Function Generation 151

value is always between the target and worst values, and the target, threshold,
and worst values cannot be equal. The satisfaction is: 100 if the current value
reaches the target value (or does better), 50 if it equals the threshold value, and
0 if it reaches the worst value (or is even worse). Linear interpolations are used
in the other cases.

In this context, when the target value of an indicator is higher than its worst
value, the satisfaction value of this indicator (where C represents the current
value, T is the target value, TH is the threshold, and W is the worst value)
becomes:

v(I) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

100 if C ≥ T

0 if C ≤ W

Abs(C−TH
T−TH) × 50 + 50 if TH ≤ C < T

−Abs(C−TH
W−TH) × 50 + 50 if W < C < TH

(8)

When its target value is inferior to the worst value (which happens, for example,
when an indicator represents a wait time where the smaller the current value,
the better), the satisfaction value of the indicator becomes:

v(I) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

100 if C ≤ T

0 if C ≥ W

Abs(C−TH
TH−T) × 50 + 50 if T < C ≤ TH

−Abs(C−TH
TH−W) × 50 + 50 if TH < C < W

(9)

Finally, the satisfaction of a GRL actor depends of the satisfaction of its
contained intentional elements with non-null importance values (the latter being
specified over [0..100]). A weighted average is used if the sum of the weights
is greater than 100, otherwise a weighted sum is used. Figure 8 illustrates an
actor A containing n intentional elements Ex with importance weights Wx. The
arithmetic semantics of an actor is:

v(A) = Max(0,Min(100,
∑n

x=1(v(Ex) × Wx)
Max(100,

∑n
x=1(Wx))

)) (10)

If none of the top-level (root) intentional elements of an actor has a strictly
positive weight, then these top-level elements are considered to be weighted
equally, with the weights summing up to 100.

Actors themselves can also be weighted in order for the satisfaction of the
entire GRL model to be computed. The satisfaction of the model has a semantics
similar to that of an actor (a weighted sum or average). In Fig. 9, Ax is one of
n actors in a GRL model and AWx is the weight of actor Ax. The quantitative
evaluation value of a GRL Model is:

v(Model) = Max(0,Min(100,
∑n

x=1(v(Ax) × AWx)
Max(100,

∑n
x=1(AWx))

)) (11)

152 Y. Fan et al.

Fig. 8. Actor containing intentional
elements with importance weights

Fig. 9. Actors with importance weights
in a model

Additional semantic rules for GRL models include:

1. If there is no actor present in the model, then a default actor containing all
intentional elements and that has an importance weight of 100 is assumed to
exist.

2. If there are actors but they have no weight, then these actors are considered
to be weighted equally, with the weights summing up to 100.

This arithmetic semantics for GRL enables the generation of executable mathe-
matical functions for any valid GRL model.

3.3 SymPy Code Generation

In order to transform a GRL model to a mathematical function according to
our new arithmetic semantics, we developed a new export plug-in for jUCMNav.
As systems and simulations are implemented using many different languages,
it quickly becomes impractical to define one transformation for each target lan-
guage. One way to reduce this complexity is to use an intermediate representation
supporting mathematical functions for which there are transformations to com-
mon programming languages already existing. Then, only one transformation
from GRL to that intermediate language would be needed.

We selected SymPy [23] as the intermediate representation (see Sect. 2.2).
SymPy is an open-source Python-compatible language and library that already
comes with a variety of code printers (generators). In addition, it symbolically
simplifies functions, which leads to improved performance during evaluations.
The SymPy export plug-in is freely available online [11]. It supports the entire
semantics discussed in the previous section. It currently generates one global

An Arithmetic Semantics for GRL Goal Models with Function Generation 153

function for the entire GRL model (which composes all functions from its actors
and other elements). However, the export also generates individual mathematical
functions for the model’s non-leaf intentional elements and actors, for future use
(e.g., to support the implementation of only one part of a large model, or to
enable testing parts separately).

3.4 Transformation to Programming Languages

SymPy mathematical expressions can be transformed to many target languages.
We selected common implementation languages (Java, JavaScript, Python, C,
and C++) as well as simulation languages (R and Matlab), some of which can
be used embedded in other modeling languages (e.g., SysML).

We had to extend existing code printers to support generic Max() and Min()
functions, heavily used in our semantics. We also (surprisingly) had to add a
simple Java code printer as none was available. The Java code printer generates
a model class with one static method corresponding to the global model function.
We also had to fix a few small bugs discovered in the Matlab code printer.

For convenience, mathematical functions in different target languages are
exported in different files with the appropriate extensions (e.g., Java mathe-
matical functions in .java files). We created a Python module library named
MathTo, which can be imported into SymPy files. This MathTo module enables
the selection of target languages to export and the generation of corresponding
files.

The module and a test suite that covers all GRL model elements and their
transformation to the seven target languages are available online [11].

4 Illustrative Example

To illustrate our function generation, we use a simplified GRL model of a hybrid
car’s engine system described in [20] and its related user goals. This example
was selected because the conflicts between its goals (e.g., comfortable driving for
the user, and acceleration for the system) require the software to control and
manage the engine’s overall performance [15].

Figure 10 shows the concerns of the System and its User (with short names,
for simplicity). The overall goal of the system is Drive, decomposed into two
sub-goals: Acceleration and Control. These two goals can be realized by two pairs
of tasks. The acceleration goal can be satisfied by the engine(s), which may
be electric, fuel-based, or a combination of the two. The control goal aims to
regulate the car’s speed, managing the distance between the car and surrounding
objects. User concerns are represented by softgoals (i.e., Comfortable driving and
Reduce the cost). The system monitors its environment using sensors, modeled as
indicators, to measure Distance and car Vibration. These sensors identify problem
symptoms using target, threshold, and worst value parameters (see Table 1).
Calculating the overall model satisfaction is performed to decide whether to
change the task selection in the system. If yes, the system selects the combination

154 Y. Fan et al.

Fig. 10. GRL model of a simple hybrid car system example.

of tasks that satisfies the driving goal while maximizing driving comfort and
minimizing costs, depending on observed environmental conditions.

Table 1. Indicator parameter values

Indicator Target Threshold Worst Unit

Distance 25 10 5 Meter

Vibration 0 10 20 Hertz

To transform the GRL model of the simplified hybrid car’s engine into math-
ematical functions, we invoked the new SymPy export mechanism in jUCMNav.
A file named AdaptiveCar.py was generated automatically. Based on Rule 11, the
global mathematical function of the model is:

v(AdaptiveCar) =
(v(User) × 40 + v(System) × 60)

100
(12)

where (from Rules 3 and 10 applied to the User actor):

v(User) = (Max(0.0,Min(100.0, (50 × Fuel engine + −25×
Electric engine)/100.0)) ∗ 100.0 + Max(0.0,Min(100.0, (50×
v(V ibration) + 50 × Electric engine + −25 × Fuel engine)/100.0))
× 100.0)/100

(13)

An Arithmetic Semantics for GRL Goal Models with Function Generation 155

and (from Rule 9 because the target value of the Vibration indicator is less than
its worst value):

v(V ibration) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

100 if C ≤ 0

0 if C ≥ 20

Abs(C−10
10−0) × 50 + 50 if 0 < C ≤ 10

−Abs(C−10
10−20) × 50 + 50 if 10 < C < 20

(14)

and where (from Rules 2, 3, and 4 applied to the System actor):

v(System) = v(Drive)
=Min(Max(Max(0.0,Min(100.0, (100 ∗ v(Distance))/100)),
Manage speed),Max(0.0,Min(100.0, (−50 × Manage speed+
Max(Fuel engine,Electric engine) × 100.0)/100.0))))

(15)
and finally (from rule 8 because the target value of the Distance indicator is
higher than its worst value):

v(Distance) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

100 if C ≥ 25

0 if C ≤ 5

Abs(C−10
25−10) × 50 + 50 if 10 ≤ C < 25

−Abs(C−10
5−10) × 50 + 50 if 5 < C < 10

(16)

The Python/SymPy code in Listing 1 was generated by jUCMNav for the model.
Note that the tool renames the variables to avoid clashes. It also embeds trans-
lation code that can be used to invoke language-specific SymPy code printers.
When operations on known constants are involved (e.g., T −TH in Rule 8), then
the precomputed result is directly exported by jUCMNav, for efficiency.

Listing 1. Python/SymPy code generated in AdaptiveCar.py

from MathTo import ∗
from sympy import ∗
import sys

I n i t i a l i z e the v a r i a b l e s
Reduce the cosT=Symbol (’ Reduce the cosT ’)
Comfortable dr iv inG=Symbol (’ Comfortable dr iv inG ’)
DrivE=Symbol (’ DrivE ’)
ControL=Symbol (’ ControL ’)
Acce le rat ioN=Symbol (’ Acce l e rat ioN ’)
Fuel enginE=Symbol (’ Fuel enginE ’)
E l e c t r i c eng i nE=Symbol (’ E l e c t r i c eng i nE ’)

156 Y. Fan et al.

Manage distancE=Symbol (’ Manage distancE ’)
Manage speeD=Symbol (’ Manage speeD ’)
VibratioN=Symbol (’ VibratioN ’)
DistancE=Symbol (’ DistancE ’)

Functions f o r i n t e n t i o n a l e lements
Reduce the cosT=Max(0 . 0 ,Min (100 . 0 , (50∗ Fuel enginE+−25∗

El e c t r i c eng i nE) /100 .0))

Comfortable dr iv inG=Max(0 . 0 ,Min (100 . 0 ,
(50∗ Piecewi se (
(100 , VibratioN <=0.0) ,
(abs ((VibratioN −10.0) /10 . 0) ∗50+50 ,(0.0<VibratioN) &(

VibratioN <=10.0)) ,
(−abs ((VibratioN −10.0) / −10.0) ∗50+50 ,(10.0<VibratioN)&(

VibratioN <20.0)) ,
(0 , True))

+ 50∗ El e c t r i c eng i nE+−25∗Fuel enginE) /100 .0))

DrivE=Min(Max(0 . 0 ,Min (100 . 0 , (−50∗Manage speeD+Max(
Fuel enginE , E l e c t r i c eng i nE) ∗100 .0) /100 .0)) ,Max(Max(0 . 0 ,

Min (100 . 0 , (100∗ Piecewi se (
(100 , DistancE >=25.0) ,
(abs ((DistancE −10.0) /15 . 0) ∗50+50 ,(10.0<=DistancE)& (

DistancE <25.0)) ,
(−abs ((DistancE −10.0) /−5.0) ∗50+50 ,(5.0<DistancE)&(

DistancE <10.0)) ,
(0 , True))) /100 .0)) ,

Manage speeD))

ControL=Max(Max(0 . 0 ,Min (100 . 0 , (100∗ Piecewi se (
(100 , DistancE >=25.0) ,
(abs ((DistancE −10.0) /15 . 0) ∗50+50 ,(10.0<=DistancE)&(

DistancE <25.0)) ,
(−abs ((DistancE −10.0) /−5.0) ∗50+50 ,(5.0<DistancE)&(

DistancE <10.0)) ,
(0 , True))) /100 .0)) ,

Manage speeD)

Acce le rat ioN=Max(0 . 0 ,Min(100.0 ,(−50∗ Manage speeD+ Max(
Fuel enginE , E l e c t r i c eng i nE) ∗100 .0) /100 .0))

Manage distancE=Max(0 . 0 ,Min (100 . 0 , (100∗ Piecewi se (
(100 , DistancE >=25.0) ,
(abs ((DistancE −10.0) /15 . 0) ∗50+50 ,(10.0<=DistancE)&(

DistancE <25.0)) ,
(−abs ((DistancE −10.0) /−5.0) ∗50+50 ,(5.0<DistancE)&(

DistancE <10.0)) ,
(0 , True))) /100 .0))

An Arithmetic Semantics for GRL Goal Models with Function Generation 157

Functions f o r ac t o r s
SysteM=(Min(Max(0 . 0 ,Min(100.0 ,(−50∗ Manage speeD+Max(

Fuel enginE , E l e c t r i c eng i nE) ∗100 .0) /100 .0)) ,Max(Max
(0 . 0 ,Min (100 . 0 , (100∗ Piecewi se (

(100 , DistancE >=25.0) ,
(abs ((DistancE −10.0) /15 . 0) ∗50+50 ,(10.0<=DistancE)&(

DistancE <25.0)) ,
(−abs ((DistancE −10.0) /−5.0) ∗50+50 ,(5.0<DistancE)&(

DistancE <10.0)) ,
(0 , True))) /100 .0)) ,

Manage speeD)) ∗100 .0) /100

UseR=(Max(0 . 0 ,Min (100 . 0 , (50∗ Fuel enginE+−25∗El e c t r i c eng i nE
) /100 .0)) ∗100.0+Max(0 . 0 ,Min (100 . 0 , (50∗ Piecewi se (

(100 , VibratioN <=0.0) ,
(abs ((VibratioN −10.0) /10 . 0) ∗50+50 ,(0.0<VibratioN)&(

VibratioN <=10.0)) ,
(−abs ((VibratioN −10.0) / −10.0) ∗50+50 ,(10.0<VibratioN)&(

VibratioN <20.0)) ,
(0 , True))

+50∗ El e c t r i c eng i nE+−25∗Fuel enginE) /100 .0)) ∗100 .0) /100

Function f o r the Model
AdaptivecaR=((Min(Max(0 . 0 ,Min(100.0 ,(−50∗ Manage speeD+
Max(Fuel enginE , E l e c t r i c eng i nE) ∗100 .0) /100 .0)) ,
Max(Max(0 . 0 ,Min (100 . 0 , (100∗ Piecewi se (

(100 , DistancE >=25.0) ,
(abs ((DistancE −10.0) /15 . 0) ∗50+50 ,(10.0<=DistancE)&(

DistancE <25.0)) ,
(−abs ((DistancE −10.0) /−5.0) ∗50+50 ,(5.0<DistancE)&(

DistancE <10.0)) ,
(0 , True))) /100 .0)) , Manage speeD)) ∗100 .0) /100∗60+(Max

(0 . 0 ,Min (100 . 0 , (50∗ Fuel enginE+−25∗
El e c t r i c eng i nE) /100 .0)) ∗100.0+Max(0 . 0 ,Min (100 . 0 , (50∗
Piecewi se (

(100 , VibratioN <=0.0) ,
(abs ((VibratioN −10.0) /10 . 0) ∗50+50 ,(0.0<VibratioN)&(

VibratioN <=10.0)) ,
(−abs ((VibratioN −10.0) / −10.0) ∗50+50 ,(10.0<VibratioN)&(

VibratioN <20.0)) ,
(0 , True))+50∗ El e c t r i c eng i nE+−25∗

Fuel enginE) /100 .0)) ∗100 .0) /100∗40) /100

Code to t r a n s l a t e the func t i on o f the model from SymPy
in to s e v e r a l programming languages . The model name i s
used as the name of the genera ted f i l e s , wi th d i f f e r e n t
e x t en s i on s .

modelName = ’ AdaptivecaR ’
L i s t =[’ Manage speeD ’ , ’ VibratioN ’ , ’ E l e c t r i c eng i nE ’ , ’

DistancE ’ , ’ Fuel enginE ’] # Variab l e l i s t

158 Y. Fan et al.

LANG = ’ ’
l angL i s t = [’ python ’ , ’ c ’ , ’ c++’ , ’ java ’ , ” j a v a s c r i p t ” , ’ matlab ’

, ’ r ’]
def a l l P r i n t () :

for j in l a ngL i s t :
LANG = s t r (j)
Trans late (’ ((Min(Max(0 . 0 ,Min(100.0 ,(−50∗

Manage speeD+Max(Fuel enginE , E l e c t r i c eng i nE)
∗100 .0) /100 .0)) ,Max(Max(0 . 0 ,Min (100 .0 , (100∗
Piecewi se ((100 , DistancE >=25.0) , (abs ((DistancE
−10.0) /15 . 0) ∗50+50 ,(10.0<=DistancE)&(DistancE
<25.0)) ,(−abs ((DistancE −10.0) /−5.0)
∗50+50 ,(5.0<DistancE)&(DistancE <10.0)) , (0 , True)
)) /100 .0)) , Manage speeD)) ∗100 .0) /100∗60+(Max
(0 . 0 ,Min (100 . 0 , (50∗ Fuel enginE+−25∗
El e c t r i c eng i nE) /100 .0)) ∗100.0+Max(0 . 0 ,Min
(100 . 0 , (50∗ Piecewi se ((100 , VibratioN <=0.0) , (abs (
(VibratioN −10.0) /10 . 0) ∗50+50 ,(0.0<VibratioN)&(

VibratioN <=10.0)) ,(−abs ((VibratioN −10.0)
/ −10.0) ∗50+50 ,(10.0<VibratioN)&(VibratioN <20.0)
) , (0 , True))+50∗ El e c t r i c eng i nE+−25∗Fuel enginE)
/100 .0)) ∗100 .0) /100∗40) /100 ’ ,modelName , Li s t ,
LANG)

i f (l en (sys . argv)==1) :
a l l P r i n t ()

else :
Print the code f o r the s p e c i f i e d t a r g e t language . Not

shown here .

By executing the AdaptiveCar.py file using Python (and specifying the tar-
get language), the function can be translated to Java, JavaScript, Python, C,
C++, R, or Matlab. As an example, Listing 2 shows the code generated for Java
(AdaptiveCar.java). Note that only the leaf intentional elements from the GRL
model are left as method parameters (Manage Speed, Vibration, Electric Engine,
Fuel Engine, and Distance); this is the information that must be provided upon
invocation. Note also that SymPy symbolically simplified constant expressions.
For example, the 40/100 and 60/100 of equation 12 and kept as is in the SymPy
code were converted in Java to 0.4 and 0.6, respectively. Listing 3 shows a second
example of generated code, this time for C++ (AdaptiveCar.cpp), where there
are some small rounding differences in the real numbers due to the symbolic
processing done by SymPy.

An Arithmetic Semantics for GRL Goal Models with Function Generation 159

Listing 2. Java mathematical function in AdaptiveCar.java

public class Model{
public double AdaptivecaR (double Manage speeD , double

VibratioN , double Elec t r i c eng inE , double DistancE ,
double Fuel enginE) {
double expr = 0.4∗Math .max(0 , Math . min (100 . 0 ,

−0.25∗ El e c t r i c eng i nE + 0.5∗ Fuel enginE)) +
0.4∗Math .max(0 , Math . min (100 . 0 , 0 .5∗ El e c t r i c eng i nE

− 0 .25∗ Fuel enginE + 0.5∗
((VibratioN <= 0 . 0) ? (100 .0)
: ((VibratioN <= 10.0 && VibratioN > 0) ?
(50 . 0∗Math . abs (0 . 1∗ VibratioN − 1 . 0) + 50 .0)
: ((VibratioN > 10 .0 && VibratioN < 20 . 0) ?

(−50.0∗Math . abs (0 . 1∗ VibratioN − 1 . 0) + 50 .0)
: (0)))))) +

0 .6∗Math .max(0 , Math . min (100 . 0 , Math . min(−0.5∗
Manage speeD + 1.0∗Max(E l e c t r i c eng inE ,
Fuel enginE) , Math .max(Manage speeD , 1 .0∗

((DistancE >= 25 .0) ? (100 .0)
: ((DistancE >= 10 . 0) ?

(50 . 0∗Math . abs (0 .0666666666666667∗ DistancE −
0.666666666666667) + 50 .0)

: ((DistancE > 5 . 0) ?
(−50.0∗Math . abs (0 . 2∗ DistancE − 2 . 0) + 50 .0)
: (0))))

)))) ;
return expr ;
}

}

Listing 3. C++ mathematical function in AdaptiveCar.cpp

#include <iostream>
using namespace std ;

double AdaptivecaR (double Manage speeD , double VibratioN ,
double Elec t r i c eng inE , double DistancE , double
Fuel enginE) {
double expr = 0.4∗ std : : max(0 , std : : min (100 . 0 , −0.25∗

El e c t r i c eng i nE + 0.5∗ Fuel enginE)) + 0.4∗ std : : max
(0 , std : : min (100 . 0 , 0 .5∗ El e c t r i c eng i nE − 0 .25∗
Fuel enginE + 0 . 5 ∗ ((VibratioN <= 0 . 0) ? (

100 .0)
: ((VibratioN <= 10.0 && VibratioN > 0) ? (

50 .0∗ std : : f abs (0 . 1∗ VibratioN − 1 . 0) + 50 .0)
: ((VibratioN > 10 .0 && VibratioN < 20 . 0) ? (

160 Y. Fan et al.

−50.0∗ std : : f abs (0 . 1∗ VibratioN − 1 . 0) + 50 .0)
: (

0)
))))) + 0 .6∗ std : : max(0 , std : : min (100 . 0 , s td : : min(−0.5∗

Manage speeD + 1.0∗Max(E l e c t r i c eng inE , Fuel enginE
) , std : : max(Manage speeD , 1 . 0 ∗ ((DistancE >= 25 . 0) ?
(

100 .0)
: ((DistancE >= 10 . 0) ? (

50 .0∗ std : : f abs (0 .066666666666666666∗ DistancE −
0.66666666666666663) + 50 .0)

: ((DistancE > 5 . 0) ? (
−50.0∗ std : : f abs (0 . 2∗ DistancE − 2 . 0) + 50 .0)

: (
0)

))))))) ;
return expr ;

}

5 Conclusions and Future Work

This paper provides a new arithmetic semantics for GRL together with a tool-
supported transformation from GRL models to compact mathematical functions
in multiple programming languages. This enables GRL models to be analyzed
quantitatively outside goal modeling tools. These generated functions can be
embedded in (1) system implementations, to support adaptive systems in moni-
toring context changes and selecting the most suitable adaptation; and (2) other
models (e.g., in SysML) supporting simulations. SymPy was used as an inter-
mediate representation to simplify the support of multiple target programming
languages (seven of which are currently generated), and to provide symbolic
simplifications improving the performance of the generated functions.

The approach currently does not generate code for GRL strategies, which
would initialize some value parameters when invoking the functions. Transform-
ing them could be useful when the possible system adaptations are predefined.

Other potentially useful extensions of this work include the generation of
functions for feature models, which are combined to GRL models in jUCMNav.
Transformations to optimization languages (e.g., CPLEX) could also enable GRL
models to be solved for optimal solutions rather than simply propagate initial
values to compute model satisfaction. A transformation to spreadsheets such
as Microsoft Excel could even be considered, to support model analytics and
visualization.

Changes to the arithmetic semantics could be investigated as well. For exam-
ple, the simple weighted sum/average for model satisfaction used in rule 11 could
be changed in favor of more sophisticated multi-criteria decision analysis func-
tions, for example the distance-based TOPSIS [7], recently used for GRL [5].

An Arithmetic Semantics for GRL Goal Models with Function Generation 161

Acknowledgment. A. Anda thanks the Libyan Ministry of Education for its financial
support. This work was also supported by D. Amyot’s Discovery Grant from NSERC.

References

1. Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.: Eval-
uating goal models within the goal-oriented requirement language. Int. J. Intel.
Syst. 25(8), 841–877 (2010)

2. Amyot, D., Mussbacher, G.: User requirements notation: the first ten years, the
next ten years. JSW 6(5), 747–768 (2011)

3. Amyot, D., et al.: Towards advanced goal model analysis with jUCMNav. In: Cas-
tano, S., Vassiliadis, P., Lakshmanan, L.V., Lee, M.L. (eds.) ER 2012. LNCS,
vol. 7518, pp. 201–210. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33999-8 25

4. Anda, A.A., Amyot, D.: Self-adaptation driven by SysML and goal models: a lit-
erature review. Syst. Eng. (2018), (submitted)

5. Baslyman, M., Amyot, D.: A distance-based GRL approach to goal model refine-
ment and alternative selection. In: 2017 IEEE 25th International Requirements
Engineering Conference Workshops (REW), pp. 16–20. IEEE (2017)

6. Bocanegra, J., Pavlich-Mariscal, J., Carrillo-Ramos, A.: On the role of model-
driven engineering in adaptive systems. In: Computing Conference (CCC), 2016
IEEE 11th Colombian, pp. 1–8. IEEE (2016)

7. Ceballos, B., Lamata, M.T., Pelta, D.A.: A comparative analysis of multi-criteria
decision-making methods. Prog. AI 5(4), 315–322 (2016). https://doi.org/10.1007/
s13748-016-0093-1

8. Chatzikonstantinou, G., Kontogiannis, K.: Run-time requirements verification for
reconfigurable systems. Inf. Softw. Technol. 75, 105–121 (2016)

9. Chitra, Subramanian, M., Krishna, A., Kaur, A.: Optimal goal programming of
softgoals in goal-oriented requirements engineering. In: PACIS 2016 Proceedings,
p. 202. AISEL (2016)

10. Chitra, S., Krishna, A., Kaur, A.: Optimal reasoning of goals in the i* framework.
In: Asia-Pacific Software Engineering Conference, APSEC, pp. 346–353 (2015)

11. Fan, Y.: GRLToMath plugin for jUCMNav (2018). https://github.com/
AAmberFan/GRLToMath

12. Horkoff, J., Aydemir, F.B., Cardoso, E., Li, T., Maté, A., Paja, E., Salnitri, M.,
Piras, L., Mylopoulos, J., Giorgini, P.: Goal-oriented requirements engineering: an
extended systematic mapping study. Requir. Eng., Sep 2017. https://doi.org/10.
1007/s00766-017-0280-z

13. Horkoff, J., Yu, E.: Comparison and evaluation of goal-oriented satisfaction analysis
techniques. Requir. Eng. 18(3), 199–222 (2013). https://doi.org/10.1007/s00766-
011-0143-y

14. International Telecommunication Union: Recommendation Z.151 (10/12) User
Requirements Notation (URN)—Language definition (2012). https://www.itu.int/
rec/T-REC-Z.151/en

15. Ito, Y., Tomura, S., Moriya, K.: Vibration-reducing motor control for hybrid vehi-
cles. R&D Rev. Toyota CRDL 40(2), 37–43 (2005)

16. Luo, H., Amyot, D.: Towards a declarative, constraint-oriented semantics with a
generic evaluation algorithm for GRL. In: 5th International i* Workshop (iStar
2011). CEUR-WS, vol. 766, pp. 26–31 (2011)

https://doi.org/10.1007/978-3-642-33999-8_25
https://doi.org/10.1007/978-3-642-33999-8_25
https://doi.org/10.1007/s13748-016-0093-1
https://doi.org/10.1007/s13748-016-0093-1
https://github.com/AAmberFan/GRLToMath
https://github.com/AAmberFan/GRLToMath
https://doi.org/10.1007/s00766-017-0280-z
https://doi.org/10.1007/s00766-017-0280-z
https://doi.org/10.1007/s00766-011-0143-y
https://doi.org/10.1007/s00766-011-0143-y
https://www.itu.int/rec/T-REC-Z.151/en
https://www.itu.int/rec/T-REC-Z.151/en

162 Y. Fan et al.

17. Nguyen, C.M., Sebastiani, R., Giorgini, P., Mylopoulos, J.: Multi-objective reason-
ing with constrained goal models. Requir. Eng. 23(2), 189–225 (2018)

18. Noorian, M., Bagheri, E., Du, W.: Toward automated qualitycentric product line
configuration using intentional variability. J. Softw. Evoluti. Process 29(9), e1870
(2017)

19. Object Management Group: Systems Modeling Language (SysML) v2 Request For
Proposal (RFP). OMG Document Number: ad/17-12-02 (2017). http://www.omg.
org/cgi-bin/doc.cgi?ad/2017-12-2

20. Object Management Group: Systems Modeling Language (SysML). Version 1.5.
OMG Document Number: formal-17-05-01. (2017). https://www.omg.org/spec/
SysML/1.5/

21. Pourshahid, A., Johari, I., Richards, G., Amyot, D., Akhigbe, O.S.: A goal-oriented,
business intelligence-supported decision-making methodology. Decis. Anal. 1, 9
(2014)

22. Ramirez, A.J., Cheng, B.H.C.: Automatic derivation of utility functions for moni-
toring software requirements. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS
2011. LNCS, vol. 6981, pp. 501–516. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-24485-8 37

23. SymPy Development Team: SymPy (2018). http://www.sympy.org/
24. Van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-

els to Software, vol. 10. Wiley, Chichester, UK (2009)
25. Vrbaski, M., Mussbacher, G., Petriu, D., Amyot, D.: Goal models as run-time

entities in context-aware systems. In: Proceedings of the 7th Workshop on
Models@Run.Time, pp. 3–8. MRT 2012. ACM (2012). https://doi.org/10.1145/
2422518.2422520

26. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.M.: RELAX: a
language to address uncertainty in self-adaptive systems requirement. Requir. Eng.
15(2), 177–196 (2010)

27. Yang, Z., Li, Z., Jin, Z., Chen, Y.: A systematic literature review of requirements
modeling and analysis for self-adaptive systems. In: Salinesi, C., van de Weerd, I.
(eds.) REFSQ 2014. LNCS, vol. 8396, pp. 55–71. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-05843-6 5

http://www.omg.org/cgi-bin/doc.cgi?ad/2017-12-2
http://www.omg.org/cgi-bin/doc.cgi?ad/2017-12-2
https://www.omg.org/spec/SysML/1.5/
https://www.omg.org/spec/SysML/1.5/
https://doi.org/10.1007/978-3-642-24485-8_37
https://doi.org/10.1007/978-3-642-24485-8_37
http://www.sympy.org/
https://doi.org/10.1145/2422518.2422520
https://doi.org/10.1145/2422518.2422520
https://doi.org/10.1007/978-3-319-05843-6_5
https://doi.org/10.1007/978-3-319-05843-6_5

Textual User Requirements Notation

Ruchika Kumar and Gunter Mussbacher(&)

Department of Electrical and Computer Engineering, McGill University,
Montréal, Canada

ruchika.kumar@mail.mcgill.ca,

gunter.mussbacher@mcgill.ca

Abstract. The User Requirements Notation (URN) is a requirements engi-
neering standard published by the International Telecommunication Union that
combines goal and scenario modeling in support of the elicitation, specification,
analysis, and validation of requirements. The URN standard focuses on a
graphical notation. This paper introduces a textual notation for URN called
TURN (Textual User Requirements Notation). The main objective of TURN is
to support the modeling of very large URN specifications where thousands of
separate goal graphs or scenarios become unwieldy to navigate. In addition, the
entering of large specifications in graphical tools has proven tedious, as the
modeler must be concerned with layout issues that are unrelated to the infor-
mation that is attempted to be modeled. In general, TURN offers an alternative
input medium for URN specifications which aims to be easier, faster, and more
scalable. Xtext is the defacto standard for the specification of textual metamodel-
based software languages. To validate the feasibility of TURN, it is specified as
an Xtext grammar, resulting in a metamodel tailored to TURN and covering a
large subset of URN. The differences between the URN standard and TURN are
elaborated, a multi-phased model-to-model transformation from TURN to URN
is described, and conformance to URN is demonstrated with a rather exhaustive
set of test cases for TURN specifications and their transformations.

Keywords: Textual User Requirements Notation � Goal modeling
Goal-oriented Requirement Language � Scenario modeling � Use Case Maps
Textual syntax � Language specification � Xtext
Model-to-model transformation

1 Introduction

The User Requirements Notation (URN) [2] is a lightweight graphical language for
modeling and analyzing requirements in the form of goals and scenarios. Currently,
URN supports only a concrete graphical syntax supported by the jUCMNav tool [13],
which has some advantages as it is easier to grasp and requires less mental effort [16].
We propose the Textual URN (TURN) to take advantage of the many benefits of a
textual language. For example, it may promote usability, productivity, and scalability
of URN models. The entering of large specifications in graphical tools has proven
tedious, as the modeler must be concerned with layout issues that are unrelated to the
information that is attempted to be modeled. Other advantages of textual notation

© Springer Nature Switzerland AG 2018
F. Khendek and R. Gotzhein (Eds.): SAM 2018, LNCS 11150, pp. 163–182, 2018.
https://doi.org/10.1007/978-3-030-01042-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01042-3_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01042-3_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01042-3_10&domain=pdf

include fast editing style, usage of error markers, providing auto-completion, and quick
fixes. Furthermore, they can easily be integrated into existing tools such as diff/merge
or information interchange through e-mail, or blogs. Textual languages may also
improve the analyzability and modifiability of a model [6], may have a shorter learning
curve [15], and may have efficient consistency checking [11].

Xtext (eclipse.org/Xtext) is the defacto standard for the specification of textual
metamodel-based software languages. Xtext automatically generates a text editor,
parser, and metamodel from an Xtext grammar specification. Typically, the same
abstract syntax (defined by a metamodel) is used for different concrete representations.
However, experience has shown that it is not so straightforward to add a textual syntax
to an existing graphical language [1]. Therefore, we define a separate metamodel for
TURN, one that is automatically generated from the Xtext grammar, and a multi-phase
model-to-model transformation from TURN to URN to demonstrate conformance with
the URN standard.

The contributions of the paper are as follows: (i) the definition of an Xtext-based
textual syntax for URN that covers most of its concepts and informs an effort at ITU to
standardize a textual syntax for URN, (ii) a tailored metamodel for TURN, generated
from the Xtext grammar for TURN and using the notion of Path which does not
explicitly exist in the URN metamodel, (iii) a transformation from TURN to URN to
demonstrate conformance to URN, and (iv) a rather exhaustive set of test cases that
validates TURN specifications and their transformation to URN.

The remainder of this paper presents background on the User Requirements
Notation in Sect. 2, focusing on its graphical syntax. Section 3 discusses the differ-
ences between the Textual URN and URN with the help of concrete examples and
highlights those parts of the TURN metamodel that differ the most from the URN
metamodel. Section 4 explains a multi-phased transformation from TURN to URN
including a rather exhaustive set of test cases to validate the feasibility of TURN and
demonstrate conformance to URN. Section 5 briefly summarizes related work, while
Sect. 6 concludes the paper and states future work.

2 Background on User Requirements Notation

The User Requirements Notation (URN) [2] is a graphical language intended for the
elicitation, analysis, specification, and validation of requirements. It combines two
complementary notations: the Goal-oriented Requirement Language (GRL) [7] for
modeling goal-oriented and intentional concepts including non-functional require-
ments; and Use Case Maps (UCMs) [7] for functional and operational requirements. It
is the first and currently only standard which explicitly addresses goals (with GRL) in
addition to scenarios (with UCMs) in a graphical way in one unified language. The
International Telecommunication Union standardizes URN in the Z.15x series [7].

URN models are used to specify and analyze various types of reactive systems,
business processes, and goals of organizations, and telecommunications standards. It
provides insight at the requirements level that enables designers to reason about feature
interactions and trade-offs early in the design process.

164 R. Kumar and G. Mussbacher

2.1 GRL Notation

A GRL goal model shows the high-level business goals and non-functional require-
ments of interest to a stakeholder and the alternative solutions that can accomplish
these goals and high-level requirements. A stakeholder of a system is represented as an
Actor (, e.g., “Telecom Provider” in Fig. 1). An actor holds the intentions, i.e., the
actor wants goals to be achieved, tasks to be performed, resources to be available, and
softgoals to be satisfied. Various intentional elements (softgoal, goal, task, and
resource) capture the mentioned concerns. Objectives and qualities are modeled with
softgoals and goals. A Softgoal (, e.g. “High Reliability”) is used to represent
objectives that have no definite measure of satisfaction, whereas a Goal (, e.g.,
“Voice Connection Be Setup”) is used when the objective is clear and quantifiable.
Softgoals are typically related to non-functional requirements, whereas goals are related
to functional requirements and measurable non-functional requirements. A Task (,
e.g., “Make Voice Connection Over Wireless”) is a proposed solution that achieves a
goal or satisfies a softgoal. A goal model may also document facts or Beliefs (, e.g.,
“Wireless is less reliable than Internet”) to capture the rationale. Softgoals, goals, and
tasks may require Resources (, e.g., “Logging Equipment”) to be achieved or com-
pleted. Key Performance Indicators (KPIs) (e.g., “Failure Rate for Voice Connection
Over Internet”) allow real-life measured values to be integrated into the analysis of a
goal model, hence improving the accuracy of the analysis.

Element links connect various elements in a goal model using structural and
intentional relationships. Decomposition links (, e.g., between “Voice Connection
Be Setup” and “Make Voice Connection Over Wireless”) allow an element to be
decomposed into sub-elements. GRL supports AND, XOR, and IOR decompositions.
A Dependency link (, e.g., between “Failure Rate for Voice Connection Over
Internet” and “Logging Equipment”) is used to model dependency of one element on

Fig. 1. Excerpt of GRL model [7]

Textual User Requirements Notation 165

another element, typically across actor boundaries. Impacts of one element on another
are represented using a Contribution link (!, e.g., between “Make Voice Connection
Over Internet” and “High Reliability”). Contributions can be qualitative (e.g., + or –)
or quantitative (integer value between 100 and –100).

2.2 UCM Notation

A Use Case Map (UCM) models causal relationships involving concurrency and partial
ordering of steps in a scenario. A UCM links causes to effects and abstracts from the
details of component interactions that are generally expressed as message sequences.
Moreover, UCMs provide their users with the ability to dynamically refine capabilities
for variations of scenarios and structures, and they allow incremental development and
integration of complex scenarios. A UCM can also be transformed into sequence
diagrams/MSCs, performance models, and test cases.

In UCMs, a Scenario is used to partially describe a system usage that is defined as a
set of partially-ordered responsibilities performed by the system to transform inputs to
outputs while satisfying preconditions and postconditions. UCM Responsibilities

Fig. 2. Examples of UCMs [7]

166 R. Kumar and G. Mussbacher

(x, e.g., “forwardSignal” in Simple Connection UCM in Fig. 2) are activities that
represent something to be performed (operation, action, task, function, etc.), i.e., the
steps in a scenario. A responsibility can also be associated or allocated to a component.
A Component (, e.g., “Originating User”) can represent software entities like objects,
processes, databases etc. as well as non-software entities like actors and hardware.
A Start Point (, e.g., “request”) captures pre-conditions and triggering events while an
End Point (, e.g., “busy”) captures resulting events and post-conditions. Scenarios
progress along paths from start points to end points that can also support responsi-
bilities, alternatives (OR-fork), and concurrent behavior (AND-fork) and may also join
(OR-join and AND-join). An OR-join indicates overlapping of scenarios that share
common paths while an AND-join synchronizes two or more paths that must have been
traversed for the scenario to progress. An alternative branch is guided by a Condition
(e.g., “[!busy]” in Terminating Features UCM) that needs to be true for the guarded
path to be followed.

A Stub is a container for sub-maps or plugin maps. Any map can be a plugin with
its start points and end points connected to identifiable input and output segments of a
stub. This binding relationship ensures that the paths flow from parent maps to plugin
maps, and back to parent maps. Two variants of stubs exist – a Static Stub (, e.g.,
“Originating” in Simple Connection UCM) that can contain only one plugin map and a
Dynamic Stub (, e.g., “OrigFeatures” in Originating Features UCM) that can contain
more than one plugin map with pre-conditions used to choose the correct map(s) for
run-time traversal. In UCM, waiting can be done using Waiting Places and Timers (,
e.g., “getPIN” in Teen Line UCM). The waiting period ends when there is an event
received by the waiting place or the timer from the environment or another scenario.
A timer also has a timeout path (, e.g., the path from the timer to the “deny”
responsibility) that can be followed when it does not receive a trigger in time.

For traceability reasons, URN allows typed links to be defined between model
elements. Typically, GRL model elements such as actors and tasks are connected to
UCM model elements such as components and responsibility or stubs with URN links
(, e.g., actor “Telecom Provider” in Fig. 1 is linked to components “OriginatingA-
gent” and “TerminatingAgent” in Fig. 2). Outgoing URN links are indicated by a
triangle pointing to the right, while incoming URN links are indicated by a triangle
pointing to the left.

3 Differences Between TURN and URN

Study Group 17 of the International Telecommunication Union is currently tasked to
define a textual syntax for the URN standard. The TURN specification introduced in
this paper resembles the current status of the textual syntax for GRL and the long form
syntax of UCM. Study Group 17 is also exploring a short form syntax for UCM, which
omits most keywords for UCM model elements (e.g., start and stub) in favor of
more terse symbols. In general, the TURN specification strikes a balance between
supporting as many language features of URN as possible and the usability, conve-
nience, and expediency of the textual syntax. Therefore, not all URN concepts are
supported and hence, a model based on a TURN specification cannot specify

Textual User Requirements Notation 167

everything that can be specified with URN. A URN model, on the other hand, can
specify everything that can be specified with TURN. The main differences between
TURN and URN are highlighted in this section, first for GRL and then for UCM, with
the help of concrete examples.

TURN uses a different approach to uniquely identify its model elements compared
to URN. In URN, unique numerical identifiers are assigned automatically, which is
impractical for TURN. Therefore, TURN allows the specification of short and long
unique names. For example, the goal’s short name in line 02 of Listing 1 is Voi-
ceConn, while its long name is Voice Connection Be Setup. The short name
makes it easier to reference a model element from different parts of the TURN spec-
ification, e.g., the task MakeVoiceOverInternet references VoiceConn in line
08. Ideally, short names are optional and long names may also be used to reference
model elements (and this is the currently proposed approach in Study Group 17).
However, the current Xtext implementation of the TURN grammar always requires the
short name and allows optional long names, because the Xtext’s built-in ID feature
used for short names does not allow spaces.

3.1 Overview of Differences Between TGRL and GRL

In general, the Textual GRL (TGRL) matches GRL to a large degree as illustrated in
Fig. 3. All GRL concepts are supported by TGRL, but there are minor differences
related to (i) containment structure, (ii) indicators, and (iii) the dual modeling of
qualitative and quantitative values.

Fig. 3. Overview of main differences for GRL

168 R. Kumar and G. Mussbacher

3.2 Containment Structure

The containment structure in TGRL is more restrictive, but results in a well-nested
textual specification that is easier to comprehend and maintain. In GRL, intentional
elements and element links may be specified outside an actor, while in TGRL each
intentional element is contained in an actor and each element link is contained in the
source intentional element of the link as shown below. For example in Listing 1, the
actor TelP in lines 01–14 contains all intentional elements and the task
MakeVoiceOverInternet in lines 05–09 contains all three elements links origi-
nating from it in a TGRL model that correspond to excerpts of the GRL model
introduced in Fig. 1.

3.3 Indicators

An indicator in TGRL is identified by the type attribute of intentional element, just like
all other intentional elements in GRL, instead of being a subclass of intentional element
as is the case for the jUCMNav [13] implementation of GRL. jUCMNav differs from
the URN standard in the handling of indicators, because an indicator is not a subclass
of intentional element in the URN standard. Instead, they are both subclasses of
GRLContainableElement. Since the inheritance structure is flattened in TURN, we
opted to treat an indicator just like all other intentional elements. This allows for a more
uniform handling of all intentional elements compared to the URN standard. For
example in Listing 1, the indicator VCFRate in lines 10–13 is treated exactly the same
way as the other intentional elements, except that the optional unit attribute is only
allowed for indicators. This is a small trade-off which could have been addressed by
making indicator a subclass of intentional element, but we opted for a more concise
TURN grammar plus a simple validation check instead.

Textual User Requirements Notation 169

3.4 Dual Modeling of Qualitative and Quantitative Values

It does not make sense to specify qualitative and quantitative values in TGRL at the
same time (e.g.,), as this only
conveys redundant information. TGRL hence allows either qualitative or quantitative
importance/contribution values to be specified but not both at the same time for the
same model element. In GRL, it is possible to specify both and the enforcement of
consistency rules for qualitative and quantitative values is the responsibility of URN
tools, which is avoided with TGRL.

3.5 Overview of Differences Between TUCM and UCM

The Textual UCM (TUCM), on the other hand, exhibits significant differences to UCM
as depicted in Fig. 4. Some differences are due to the fact that specific concepts are not
supported by TUCM. Empty points are used to control the shape of a path in UCM, and
are hence not required in a textual notation. Component types and performance
specifications are not supported because they are rarely used (as observed from per-
sonal experience with UCM over the last two decades), while scenario definitions are
left for future work1. All other concepts are covered by TUCM with minor differences
related to (i) parent components and (ii) the specification of element containment in
components, while major differences relate to (iii) component and responsibility def-
initions and (iv) the notion of path, which does not exist explicitly in the UCM
metamodel but plays a crucial role in the TUCM metamodel.

Fig. 4. Overview of main differences for UCM

1 A textual syntax for scenario definitions has already been defined that closely matches the URN
standard. However, the textual syntax for scenario definitions has not yet been tested thoroughly
enough to be included in this paper.

170 R. Kumar and G. Mussbacher

The general form of a TUCM model is shown in Listing 2, using the -> notation to
separate path nodes. For example in line 02, a start point (start) s is followed by a
responsibility (X) r and then an end point (end) e. In line 03, all of these path nodes
are contained in the component (team) C.

3.6 Parent Components

A parent component is a placeholder on a plugin map that is replaced by a component
of the parent map according to component bindings specified by the stub using the
plugin map. UCM uses the context attribute of a component to indicate a parent
component, while TUCM uses the additional value “parent” in the component kind
enumeration of a component. This allows a more consistent treatment of all compo-
nents, i.e., the team keyword in line 03 of the example in Listing 2 is simply replaced
by the parent keyword, if a parent component is to be modeled (see line 03 in Listing
3). This is possible, because the component kind is not used for a parent component,
i.e., in UCM either the context attribute or the component kind enumeration is used but
not both at the same time.

3.7 Specification of Element Containment in Components

Furthermore, TUCM allows the notation (see line 03 in Listing 3) as a shortcut.
Instead of enumerating all contained path nodes, only the first and last path node have
to be specified. This alternative specification of element containment in components is
not supported by UCM.

3.8 Component and Responsibility Definitions

In TUCM, component and responsibility definitions are not specified directly as is the
case in UCM but indirectly based on the short name and long name of a component and
responsibility, respectively. Two components or responsibilities with the same short
name (e.g., rA in lines 02 and 03 of the example in Listing 4) always refer to the same
definition. In addition, two components or responsibilities with a different short name
(e.g., rB_1 and rB_2 in lines 02 and 03) refer to the same definition, if their long

Textual User Requirements Notation 171

names are the same (e.g., Beta in lines 02 and 03). This approach keeps the speci-
fication short and concise, if component references and responsibility references do not
need to be differentiated. This is the case for rA, because all references are contained in
component C1 (see line 04). However, if there is a need to differentiate references, then
this is also possible, as is shown with rB_1 and rB_2, which are contained in
components C1 and C2, respectively (see lines 04 and 05).

3.9 Notion of Path

The most important difference is that the TUCM metamodel is structured around the
notion of path, which does not exist in the UCM metamodel. To motivate this
approach, the Terminating Call Screening (TCS) map from Fig. 2 is modeled with
TUCM (see Listing 5) with one start point, one responsibility, one OR-fork and its two
branches with one condition and one end point each. A node where a path splits into
several branches is described by nesting its branches inside the node as shown below
for the OR-fork (or). This results in three paths (the one from start point to the OR-fork
and the two nested branches inside the OR-fork).

Consider an extension of the TCS map in Listing 5, by introducing a logging
service that, if enabled, logs calls before also ending in success. This requires the
addition of the logCall responsibility and an OR-join (see line 03 in Listing 6).
A node where several paths join is described by one path defining the join node and the
other path(s) referencing this join node as shown in Listing 6.

172 R. Kumar and G. Mussbacher

In this example, the first branch defines the OR-join (join) j (see line 03 in
Listing 6) while the second branch references j (see line 04 in Listing 6) as indicated
by the semi-colon (;), resulting in one additional path. This approach is used for all
branching nodes (i.e., OR-forks, AND-forks, and stubs) and all nodes that join bran-
ches (i.e., OR-joins, AND-joins, and stubs).

In summary, instead of a UCM map containing path nodes and their node con-
nections, a TUCM map consists of paths which in turn consist of path body nodes,
regular ends, and referenced ends. Whereas node connections connect source and target
path nodes with each other in UCM, a path contains an ordered list of path body nodes
in TUCM. A path represents a segment of a UCM map. Segments correspond to the
path body nodes of a UCM map that lie between branching and join nodes. A branch is
typically treated as a separate path body in TUCM. This is done because a textual
representation requires a tree-based format, and hence the graph-based representation
of a UCM map is broken down into individually specifiable segments in TUCM. This
difference is further illustrated in Fig. 5.

The UCM map in Fig. 5 contains the following seven segments when modeled with
TUCM: (i) from start point to OR-fork, (ii) from OR-fork to AND-fork via “swipe
card”, (iii) from OR-fork to OR-join via “insert card”, (iv) from AND-fork to stub via
“enter PIN”, (v) from AND-fork to stub via “enter captcha”, (vi) from stub to end point
via out-path 1, and (vii) from stub to AND-join via out-path 2. The last node in a
segment may either be a regular end, i.e., the actual definition of a node, or a referenced
end, i.e., a reference to an already specified path body node.

The concept of a Path as shown in Fig. 6 and all other concepts mentioned in this
paragraph except for UCM path nodes do not exist in the UCM metamodel. A Path
contains a StartPoint and a PathBody where a PathBody contains a set of PathBody-
Nodes, which cover all supported URN path nodes. In addition, a PathBody can have a
RegularEnd, a ReferencedEnd, or a ReferencedStub. A RegularEnd denotes the end of

Fig. 5. Key difference between UCM and TUCM – paths

Textual User Requirements Notation 173

a path segment, which can either be an EndPoint or a node where new branches start
(i.e., an OrFork, AndFork, or Stub). A ReferencedEnd and ReferencedStub denote the
end of a path that ends at a path node defined in a different path (OrJoin, AndJoin,
RespRef, FailurePoint, and Stub, respectively).

RespRef, FailurePoint, or EndPoint may be referenced as a shortcut notation,
because TUCM does not require OR-joins to be specified that are implied by the
structure of the UCM model as explained in Fig. 7. Instead, the transformation from
TURN to URN ensures that the representation of a TUCM model with implicit OR-
joins shown at the bottom of Fig. 7 is properly translated into a valid UCM model with
explicit preceding OR-joins shown at the top.

Fig. 6. Xtext metamodel for TUCM path

Fig. 7. Key difference between UCM and TUCM – implicit OR-joins

174 R. Kumar and G. Mussbacher

As a consequence of the path-based TUCM metamodel, the metamodel elements
for OR-forks, AND-forks, and stubs also reflect the notion of path, i.e., these elements
contain explicit path bodies to capture their outgoing branches and out-paths.

In addition as another shortcut notation, OR-forks, AND-forks, and stubs may
define the continuation of one or more branches, i.e., a connecting path body. This
situation is depicted by a branch or several branches continuing after the closing curly
brackets of OR-forks, AND-forks, or stubs as shown in the example in Listing 7, hence
simplifying the earlier specification.

The branches that end with a semi-colon are joined by an implicit OR-join (AND-
join in case of an AND-fork) before the connecting path body (i.e., in
line 06 in Listing 7) resulting in the same URN model as shown in Fig. 2. Implicit OR-
joins and AND-joins simplify the specification of well-nested OR-forks and AND-
forks, respectively. Just like URN, TURN allows arbitrary combinations of OR-forks,
OR-joins, AND-forks, and AND-joins that do not need to be well-nested, but these
forks and joins then usually need to be specified explicitly. For a Stub, out-paths that
end with a semi-colon are joined implicitly with an OR-join before the Stub’s con-
necting path body.

4 Multi-phased Transformation from TURN to URN

To validate the feasibility of the proposed TURN specification, TURN is implemented
with Xtext, the defacto standard for metamodel-based definitions of textual languages.
Furthermore, a TURN specification is transformed into a URN model to demonstrate
conformance to URN. The TURN-URN transformation unfolds in three phases (see
Fig. 8).

Phase 0. The input of this phase is a TURN model specified with the Xtext editor
automatically generated from the Xtext grammar for TURN. It makes use of the Eclipse
Modeling Framework (EMF) to save the TURN model in an XMI file conforming to
the TURN metamodel, also automatically generated by Xtext from the TURN
grammar.

Textual User Requirements Notation 175

Phase 1. The input of this phase is the TURN model in XMI form produced by
Phase 0. It involves the execution of transformation rules using the Atlas Transfor-
mation Language (ATL; eclipse.org/atl) tool and produces an intermediate URN file as
the result of the ATL transformation. This decision is made to address specific dif-
ferences between the TURN and URN metamodels and the intricacies involved in the
transformation of TUCM to UCM.

Phase 2. The input of this phase is the intermediate URN file produced by Phase 1.
This phase is implemented with Java and leverages the features provided by the EMF
framework. The output of Phase 2 is a valid URN file which can be loaded using the
graphical jUCMNav tool, the most comprehensive URN tool available. The imple-
mentation involves (i) binding of elements including connects to components,
(ii) creating OR-joins that are implicit in the TURN model, and (iii) handling asyn-
chronous connects with a timer. All these cases are handled in Phase 2, because the
ATL transformation mixes matched rules (executed once for each instance of a specific
type in non-deterministic order) and called rules (executed upon explicit call from other
rule). Consequently, not all required target elements may be available when needed in
these three specific cases. Hence, we decided to handle them in Phase 2 after the ATL
transformation.

Binding elements including connects to components. This is needed when the
TURN model contains components with connects or with “from” and “to” attributes,
i.e., a component contains all elements between the “from” node and the “to” node. For
example, see Fig. 9 where the Agent contains a connect between the end point and the
timer getPIN and all elements from startPoint to failPoint. After Phase 2,
all elements are properly bound to their respective components.

Fig. 8. Transformation phases

176 R. Kumar and G. Mussbacher

Creating implicit OR-joins. Implicit OR-joins are present in a TURN model when
end points, failure points, or responsibilities are referred by several elements. If this is
the case, an OR-join is inserted before the node and bound to the same component as
the node. Since, the jUCMNav tool is flexible enough to allow more than one pre-
decessor for these nodes, we decided to take advantage of it and create OR-joins in
Phase 2. For example, see Fig. 10 where notify is the end point of two branches.

Fig. 9. Teen Line (TL) map after Phase 1 (top) and after Phase 2 (bottom)

Fig. 10. Simple connection (SC) map after Phase 1 (left) and after Phase 2 (right)

Textual User Requirements Notation 177

Handling asynchronous connects with timer. The transformation in Phase 1 only
adds an empty point with an invisible tag identifying the timer to the UCM. The empty
point is then connected to the timer with a proper connect in Phase 2 (see Fig. 11).

The TURN specification and the transformation to URN are tested with a set of
rather exhaustive test cases2. More than 400 test cases cover all URN model elements,
including (i) the combinations of all 12 UCM path nodes, (ii) the UCM component,
(iii) the combinations of 6 types of GRL nodes and 3 types of GRL links as permitted
by the constraints of URN, and (iv) various validation rules such as number of branches
for an AND-fork and unique names. Furthermore, the running example from Figs. 1

Fig. 11. Map with asynchronous connect after Phase 1 (left) and after Phase 2 (right)

Table 1. Sample of responsibility test cases

2 The complete set of test cases and the TURN grammar are available at http://www.ece.mcgill.ca/
*gmussb1/TURN.

178 R. Kumar and G. Mussbacher

http://www.ece.mcgill.ca/%7egmussb1/TURN
http://www.ece.mcgill.ca/%7egmussb1/TURN

and 2 are also used as a test and cover additionally concerns, URN links, and metadata
as well GRL strategies, evaluations, and contribution contexts.

Representative of all test cases, a few test cases for responsibilities are shown in
Table 1. The complete suite of test cases for responsibility include tests where a
responsibility is followed by each of the possible path body nodes, regular ends, and
referenced ends. Other tests vary all optional elements a responsibility may have in
TURN. The tests for other model elements follow a similar pattern and are augmented
by tests for validation checks.

5 Related Work

There exist various solutions to define concrete syntaxes ofDSLs.One of themost popular
approaches is HUTN [18], specified as a standard by OMG. It defines a generic concrete
syntax, which aims to conform to human-usability criteria. It requires a parser generator
and the grammar is automatically generated.Anobvious advantage of this approach is that
any model can be represented in textual notation at a very low cost. However, HUTN
imposes very strict constraints on the notation and is a bit verbose. Users cannot provide
their own syntax customizations. We used Xtext to define a custom concrete syntax for
URN,where the concrete syntax forGRL is somewhat similar toHUTNbutUCMfollows
a very different approach to define amore compact concrete syntax.Other tools that can be
used to define a custom concrete syntax are TCS [12] which uses specifications provided
by users to automatically generate editors and tools for model-to-text and text-to-model
transformations; and TEF (www2.informatik.hu-berlin.de/sam/meta-tools/tef) which
allows definingmultiple syntactic constructs for the samemetamodel element but requires
the user to specify both the grammar andmetamodel, which is redundant. AnXtext-based
specification, on the other hand, combines the specification of the grammar and meta-
model in one single unified representation.

Several languages support textual and graphical syntaxes including the Specification
and Description Language (SDL) [8], Message Sequence Charts (MSC) [10], and the
Testing and Test Control Notation (TTCN-3) [9], all also standardized by ITU. Two
TTCN-3 tools also use an Xtext-based grammar, i.e., T-Rex [22] and T3Q [20]. An
effort to create an Xtext-based textual syntax for GRL [1] discusses the challenges faced
during the creation of the textual syntax and the conflicts between the reuse of the
existing metamodel and the usability of the textual syntax. TURN builds on the lessons
learned for GRL. The experience for UCM with TURN is similar to the experience with
GRL [1], even more pronounced as the differences of the TUCM metamodel compared
to the UCM metamodel are much greater than the differences of the TGRL metamodel
compared to the GRL metamodel. A commercial tool, UniqueSoft’s Test Architect tool
[21], also features a textual notation for UCMs, but does not cover goal models.

Another popular example of a textual language is Umple [5] that integrates the
concepts of UML with programming languages such as Java and PHP. Umple models
are written using human-readable text seamlessly integrated with algorithmic code and
can also be visualized with the UML notation. This model-is-the-code approach helps
developers maintain and evolve the code as the system matures. Umple uses its own
metamodel and grammar.

Textual User Requirements Notation 179

http://www2.informatik.hu-berlin.de/sam/meta-tools/tef

There are several tools other than ATL that offer model-to-model transformations.
One of the popular implementations is QVT [17], a standard defined by OMG that
supports bidirectional transformations. There are two extensions for QVT called QVTd
(Declarative) and QVTo (Operational/Procedural). ATL, being a declarative and
imperative hybrid, is more expressive with the ability to express any kind of trans-
formations. ATL also executes faster than QVT in most of the cases. Another popular
language for model-to-model transformation is ETL [14], which is built on top of a
common expression language (EOL) [15]. ETL can transform many inputs to many
output models, and can query/modify both source and target models. Other languages
include JTL (Janus Transformation Language) [3], a bidirectional model transformation
language specifically designed to support non-bijective transformations and change
propagation; Kermeta [4], that borrows concepts from languages such as MOF, OCL,
QVT, and BasicMTL [23], and is easier to learn due to its java-like syntax; and
AToMPM (atompm.github.io), a web based modeling environment which provides
model transformations based on T-Core [19], a minimal collection of model trans-
formation operators.

6 Conclusions and Future Work

The Textual User Requirements Notation (TURN) is a textual syntax for the User
Requirements Notation published by the International Telecommunication Union. In
this paper, TURN is defined as an Xtext grammar, from which an editor and the TURN
metamodel are automatically generated. This effort contributes to the standardization of
a textual syntax for URN, currently considered by ITU. The differences of the TURN
and URN metamodels are discussed. Most notably, TURN uses the notion of Path,
which does not explicitly exist in URN. Conformance to URN is demonstrated by a
multi-phased model-to-model transformation and a rather exhaustive set of more than
400 test cases. As a textual language, TURN addresses scalability issues for very large
URN models consisting of thousands of goal and scenario models. Furthermore, layout
issues do not need to be considered compared to URN and TURN specifications can be
edited quickly, supported by error markers and auto-completion.

In future work, we will endeavour to implement the UCM concepts currently not
supported by the Xtext implementation of TURN, i.e., scenario definitions. We will
also investigate collaborative modeling with TURN, which is less complex for textual
notations compared to graphical notations. From anecdotal experience, we have seen
that the textual syntax is well understood after a certain adjustment period for those
users familiar with the graphical syntax. It seems to be the case that users initially
construct the graphical model from the textual syntax but rely on the graphical model
less and less over time. However, the usability and learnability of the proposed textual
notation needs to be evaluated more thoroughly with empirical studies.

Acknowledgement. We are indebted to Thomas Weigert for his insightful comments on the
advantages and disadvantages of the textual syntax for Use Case Maps.

180 R. Kumar and G. Mussbacher

References

1. Abdelzad, V., Amyot, D., Lethbridge, Timothy C.: Adding a textual syntax to an existing
graphical modeling language: experience report with GRL. In: Fischer, J., Scheidgen, M.,
Schieferdecker, I., Reed, R. (eds.) SDL 2015. LNCS, vol. 9369, pp. 159–174. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24912-4_12

2. Amyot, D., Mussbacher, G.: User requirements notation: the first ten years, the next ten
years. J. Softw. (JSW) 6(5), 747–768 (2011). http://www.jsoftware.us/vol6/jsw0605-1.pdf

3. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: JTL: a bidirectional and change
propagating transformation language. In: Malloy, B., Staab, S., van den Brand, M. (eds.)
SLE 2010. LNCS, vol. 6563, pp. 183–202. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19440-5_11

4. Fleurey, F., Drey, Z., Vojtisek, D., Faucher, C., Mahé, V.: Kermeta Language, Reference
Manual. IRISA (2006). http://www.kermeta.org/docs/KerMeta-Manual.pdf

5. Forward, A., et al.: Model-driven rapid prototyping with Umple. Softw. Pract. Exper. 42(7),
781–797 (2012)

6. Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: Text-based modeling. In:
4th International Workshop on Software Language Engineering (2007)

7. ITU: Recommendation Z.151 (10/12), User Requirements Notation (URN) – Language
definition (2012). http://www.itu.int/rec/T-REC-Z.151/en

8. ITU: Recommendation Z.100 (04/16), Specification and Description Language – Overview
of SDL-2010 (2016). http://www.itu.int/rec/T-REC-Z.100-201604-I/en

9. ITU: Recommendation Z.161 (10/17), Testing and Test Control Notation Version 3: TTCN-
3 Core Language (2017). http://www.itu.int/rec/T-REC-Z.161-201710-I/en

10. ITU: Recommendation Z.120 (02/11), Message Sequence Chart (MSC) (2011). http://www.
itu.int/rec/T-REC-Z.120-201102-I/en

11. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng.
Methodol. (TOSEM) 11(2), 256–290 (2002)

12. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual concrete
syntaxes in model engineering. In: GPCE 2006, pp. 249–254. ACM Press (2006)

13. jUCMNav, version 7.0. University of Ottawa. http://jucmnav.softwareengineering.ca/
jucmnav

14. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon transformation language. In:
Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp. 46–60.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69927-9_4

15. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon object language (EOL). In: Rensink,
A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142. Springer,
Heidelberg (2006). https://doi.org/10.1007/11787044_11

16. Kosslyn, S.M., Pomerantz, J.R.: Imagery, propositions, and the form of internal represen-
tations. Cogn. Psychol. 9(1), 52–76 (1977)

17. Kurtev, I.: State of the art of QVT: a model transformation language standard. In: Schürr, A.,
Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 377–393. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89020-1_26

18. OMG: UML Human-Usable Textual Notation (HUTN). Version 1.0, formal/2004-08-01
(2004). http://www.omg.org/spec/HUTN/1.0/

19. Syriani, E., Vangheluwe, H., LaShomb, B.: T-Core: a framework for custom-built
transformation engines. Softw. Syst. Model. 14(3), 1215–1243 (2015)

20. T3Tools, University of Göttingen. https://t3tools.informatik.uni-goettingen.de/trac

Textual User Requirements Notation 181

http://dx.doi.org/10.1007/978-3-319-24912-4_12
http://www.jsoftware.us/vol6/jsw0605-1.pdf
http://dx.doi.org/10.1007/978-3-642-19440-5_11
http://dx.doi.org/10.1007/978-3-642-19440-5_11
http://www.kermeta.org/docs/KerMeta-Manual.pdf
http://www.itu.int/rec/T-REC-Z.151/en
http://www.itu.int/rec/T-REC-Z.100-201604-I/en
http://www.itu.int/rec/T-REC-Z.161-201710-I/en
http://www.itu.int/rec/T-REC-Z.120-201102-I/en
http://www.itu.int/rec/T-REC-Z.120-201102-I/en
http://jucmnav.softwareengineering.ca/jucmnav
http://jucmnav.softwareengineering.ca/jucmnav
http://dx.doi.org/10.1007/978-3-540-69927-9_4
http://dx.doi.org/10.1007/11787044_11
http://dx.doi.org/10.1007/978-3-540-89020-1_26
http://www.omg.org/spec/HUTN/1.0/
https://t3tools.informatik.uni-goettingen.de/trac

21. Test Architect, UniqueSoft. https://www.uniquesoft.com/automated-test-case-generation.php
22. T-Rex – the TTCN-3 Refactoring and Metrics Tool, University of Göttingen. https://www.

trex.informatik.uni-goettingen.de/trac
23. Vojtisek, D.: BasicMTL realization guide. Inside the Carroll Research Program and part of

the MOTOR project. Technical Report (2004). http://modelware.inria.fr/article.php3?id_
article=45

182 R. Kumar and G. Mussbacher

https://www.uniquesoft.com/automated-test-case-generation.php
https://www.trex.informatik.uni-goettingen.de/trac
https://www.trex.informatik.uni-goettingen.de/trac
http://modelware.inria.fr/article.php3%3fid_article%3d45
http://modelware.inria.fr/article.php3%3fid_article%3d45

A Comparative Analysis of ITU-MSC-Based
Requirements Specification Approaches Used

in the Automotive Industry

Kevin Keller(&), Jennifer Brings, Marian Daun, and Thorsten Weyer

University of Duisburg Essen, paluno -The Ruhr Institute for Software
Technology, Essen, Germany

{kevin.keller,jennifer.brings,marian.daun,

thorsten.weyer}@paluno.uni-due.de

Abstract. Message sequence charts (MSC) and MSC-like languages play a
pivotal role in requirements engineering. Particularly, when it comes to model-
based requirements engineering, MSCs are used, e.g., to document scenarios,
but also, specifically in the automotive domain, for specifying interaction
sequences and the interaction-based behavior of such reactive systems. As the
use of natural language requirements is still widespread, there exist various
approaches to create MSC-specifications from natural language requirements. In
this paper, we report on a comparative analysis to investigate different
approaches for MSC-specification generation. To do so, we applied three
approaches to an industrial case example from the automotive domain. Our
results show that the different approaches lead to correct yet different MSC-
specifications that exhibit different characteristics and are thus suited for dif-
ferent requirements engineering purposes.

Keywords: Message sequence charts � Goal-oriented requirement language
Use case maps � Comparative analysis � Requirements engineering

1 Introduction

Message sequence charts (MSC) are commonly used during model-based requirements
engineering. MSCs and MSC-like languages are particularly used in the automotive
industry [1]. Among others MSC-specifications are generated as part of scenario-based
requirements engineering approaches [2, 3], but also to specify the necessary
interaction-based behavior of embedded systems. However, in most development
projects, requirements are still documented using natural language [4] for various
reasons such as ensuring understandability by stakeholders not familiar with modeling
notations or to comply with rules of certification agencies. Even as model-based
development is becoming more popular, sometimes rules and regulations still demand
the use of natural language requirements [5]. Therefore, the need exists to cope with
both, natural language requirements and model-based specifications. Hence, MSC-

© Springer Nature Switzerland AG 2018
F. Khendek and R. Gotzhein (Eds.): SAM 2018, LNCS 11150, pp. 183–201, 2018.
https://doi.org/10.1007/978-3-030-01042-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01042-3_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01042-3_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01042-3_11&domain=pdf

specifications are created on the basis of existing natural language requirements [6]. For
this purpose, different approaches are used in the automotive industry to systematically
derive MSC-based requirements specifications from natural language requirements
specifying the necessary interaction-based behavior of the system under study.

This paper contributes a comparative analysis of three different approaches used in
the automotive industry for creating MSC-based requirements specifications out of
natural language requirements. To give insights into the strength and weaknesses of the
three approaches, this paper reports experiences from their application in the context of
an adaptive electronic light control from the automotive domain.

This paper is structured according to widely recognized guidelines from [7]. Sec-
tion 2 gives insight into related approaches and details the three approaches under
investigation and the modeling languages used within these approaches. Section 3
elaborates on the study design and Sect. 4 presents results from the application of the
three approaches to the case example. Section 5 discusses the findings and draws
conclusions. Finally, Sect. 6 concludes the paper.

2 Related Work

This section gives an overview on the related work for the generation of model-based
scenario specifications from natural language requirements, the approaches under
investigation, and the concrete modeling languages used in our investigation.

2.1 Related Studies

There exist many goal and scenario based approaches [8–10]. Goal and scenario based
requirements engineering is an important area, because the coupling of goals and
scenarios supports elicitation, validation, and negotiation of requirements [11, 12].
Using goals and scenarios helps requirement engineers to better understand the needs
of stakeholders [13]. Another positive aspect of goals and scenarios is the refinement of
non-functional requirements through goals. Non-functional requirements are difficult to
describe at the beginning and only become more precise when they are refined. This
can lead to the detection of different interests of stakeholders as well [14].

In practice natural language is the main presentation form for requirement docu-
ments [4]. In such documents the intended behavior of the system is written as a
sequence of sentences. Kof developed an approach to translate natural language sce-
narios into executable models using message sequence charts (MSC). The approach
was further extended in [15] with heuristics for the analysis of requirements. This
allows finding inconsistencies and omissions in the natural language specifications. In
[16], an approach is presented, which generates event-based scenarios from natural
language requirements. The event-based scenarios are used for deriving test cases of
the system. Sindre and Opdahl [17] discusses the use of misuse cases as scenarios for
detecting and defining security critical requirements in requirements specifications.

In [8], an approach for modeling goals and dependent scenarios is described for an
information system. This approach applies the User Requirements Notation (URN).

184 K. Keller et al.

Goals are used to document all requirements. The scenarios are created based on the
task elements in the goal model. Miga et al. [18] define a method for deriving MSC
from Use Case Maps (UCM).

2.2 Modelling Languages

We used modeling languages defined and standardized by the International Telecom-
munication Union. This decision was made (a) to avoid gaps between the used lan-
guages, which might result in misinterpretation of the findings and (b) because industry
partners emphasize the use of standardized languages and the ITU languages have
already been found appropriate in previous work [19].

In recommendation Z.151 the ITU URN defines the goal modeling language Goal-
oriented Requirement Language (GRL) and the scenario language (UCM) [20].
However, UCM are seldomly used for scenario specifications in the development of
embedded systems, as sequence chart like diagrams are preferred by industry. One
standardized approach to sequence chart like diagrams are MSC as defined by the ITU
in its recommendation Z.120 [21], which are also commonly used for scenario spec-
ifications [22]. Investigations among industry partners in German joint research pro-
jects showed that industry partners prefer MSCs over UML sequence diagrams or
LSCs. This is mainly due industries preference of standards and due to the structuring
elements ITU MSCs provide that allow specifying a complete requirements specifi-
cation (in contrast to rather unrelated descriptions of single scenarios). In previous
work we have shown that MSCs are a good language to foster manual validation of
industrial specifications [23, 24].

Goal-oriented Requirement Language. GRL [20] is a modeling language for doc-
umenting goals, soft goals, tasks, resources and relationships among them; allowing,
among others, to document conflicts between different goals. Goals, softgoals, tasks
and resources can, furthermore, be assigned to different actors which also enables
documenting dependencies between actors with respect to the fulfillment of goals.

Use Case Maps. UCM [20] is a modeling language for documenting scenarios in a
way that focuses on causal relationships among responsibilities. In particular, a UCM
depicts scenario paths along components (i.e. it is defined which components are
involved and where their responsibilities for task executions are).

Message Sequence Charts. MSC [21] define scenarios by documenting the exchange
of information between instances. To this end, recommendation Z.120 defines two
types of diagrams: basic MSC (bMSC) and high-level MSC (hMSC). While bMSCs
define the exchange of messages, hMSCs can be used to define an execution order for
bMSCs including alternatives and loops.

2.3 Approaches Under Investigation

The three different approaches all use the same natural language requirements speci-
fication as input and result in a MSC-based requirements specification. However, the

A Comparative Analysis of ITU-MSC-Based Requirements 185

three approaches make use of different intermediate models (using different modeling
languages; see Sect. 2.2) created for the purpose of deriving the MSC-based require-
ments specification. Figure 1 illustrates the three approaches and their relations.
Approach A (NL-MSC) creates a MSC-specification directly from the natural language
requirements. Approach B (NL-GRL-MSC) first creates a GRL-goal model from the
natural language requirements and then a MSC-specification from the goal model
(without consulting the natural language requirements again). Approach C (NL-GRL-
UCM-MSC) adds another intermediate step to approach B. UCMs are created based on
the goal model and then the MSC-specification is created based on the UCMs.

Approach A (NL-MSC). Approach A describes the ad-hoc creation of an MSC-based
requirements specification from natural language requirements without any interme-
diate steps as is commonly done in practice [25, 26]. Using this approach requirements
engineers tasked with creating MSC-based requirements specifications receive little to
no guidance on how to create the MSC-based requirements specification and mostly
rely on their intuition and experiences. This approach is meant to be a benchmark to
evaluate if structured approaches to the generation of MSC-based requirements spec-
ifications lead to better results.

Approach B (NL-GRL-MSC). Approach B describes the creation of an MSC-based
requirements specification based on a goal model as is suggested in goal- and scenario-
based requirements engineering [27–29]. For each natural language requirement at least
one goal is defined. All goals are structured according to their relationships and each
goal is assigned to an actor (entity responsible for the fulfilment of the goal). The goal
model is further refined until each goal is assigned a task that describes how it is
fulfilled. The MSC-specification is then created based on these tasks. For each task a

Textual Requirements

Use Case Maps

Goal ModelsTextual Requirements

Textual Requirements

basic Message
Sequence Charts

basic Message
Sequence Charts

basic Message
Sequence Charts

high-Level Message
Sequence Charts

high-Level Message
Sequence Charts

high-Level Message
Sequence ChartsGoal Models

Approach A (NL-MSC)

Approach C (NL-GRL-UCM-MSC)

Approach B (NL-GRL-MSC)

Fig. 1. Procedures of the approaches

186 K. Keller et al.

bMSC is defined that describes the execution of the tasks. Subsequently one or more
hMSC are defined that structure the created bMSCs according to the goal model.

Approach C (NL-GRL-UCM-MSC). Approach C describes the creation of an MSC-
based requirements specification based on an existing UCM-specification as has been
proposed in [18]. While the original approach is designed for automated creation of a
bMSC-specification, we conducted the approach manually. For each goal from the
GRL goal model at least one use case is identified that describes the fulfilment of the
goal. Actors from the goal model are represented by agents in the UCM-specification.
To create the MSC-specification, a bMSC instance is defined for each agent from the
UCM-specification and one action and message is defined for each responsibility from
the UCM-specification. Alternatives and loops in the UCM-specification are added to
the MSC-specification accordingly using inline expressions. Subsequently, the MSC-
specification is structured using a hMSC. As the original approach described in [18]
does not explicitly address the creation of a hMSC, we adapted the approach. As each
UCM was transformed into one bMSC. The hMSC was created according to the final
and initial states in UCMs. If the final state of one UCM is identical to the initial state
of another UCM. A flow line was added between the MSC references pointing at the
respective bMSCs.

3 Study Design

Section 3 introduces the study design, starting with the research questions in Sect. 3.1.
Subsequently, Sect. 3.2 discusses data collection and validity procedures taken. Sec-
tion 3.3 gives insight into the procedure conducted to create the MSC-specifications
using the three approaches and Sect. 3.4 discusses the case and subject selection.

3.1 Research Questions

Despite the increasing popularity of model-based engineering approaches [30] natural
language requirements are still common in many development projects [4]. To use the
advantages of model-based scenario specifications, such specifications are created
based on natural language requirements which are often also needed, among others, as
legally binding documents. In this paper, we report on a comparative study from the
automotive domain to investigate how to create a model-based scenario specification
from natural language requirements.

For each of the three approaches from Sect. 2.3, we want first to determine whether
the approach is generally feasible and whether the application of the approach results in
a valid MSC-specification. Furthermore, we want to determine benefits and short-
comings of different proposed approaches and resulting from the comparison of these,
we want to answer the question, which approach is suited best for which purpose of
MSC-based requirements specification generation. Therefore, we compare the three
resulting MSC-specifications using the SEQUAL framework [31] as reference.

A Comparative Analysis of ITU-MSC-Based Requirements 187

Particularly, we investigate semantical and syntactical quality to investigate the cor-
rectness of the specifications. We define:

RQ1: Does approach A/B/C lead to a syntactical and semantical correct MSC-
specification?

To compare the suitability of the approaches for different purposes we investigate
the empirical quality of the three resulting MSC-specifications, leading to the research
question:

RQ2: What are the differences w.r.t. the specifications empirical quality of the MSC-
specifications generated using the three different approaches.

3.2 Data Collection, Analysis and Validity Procedures

All models have been developed using MS Visio. A Visio Plugin was used that
provides shapes of the modeling languages used and provides basic syntactical checks
which help prevent syntactical errors. The tool has been developed in the context of
research projects to foster the continuous model-based engineering of embedded sys-
tems. More information on the Visio Plugin can be found in [32]. For RQ1, we
investigated syntactical quality, to determine if the specifications are free of syntactical
errors; and semantical quality, to ensure that the specifications have no defects and are
complete with respect to the natural language requirements. Each specification was
checked for syntactical errors by different experts independently. For RQ 2, we
examined the specifications’ empirical quality, to determine if the specifications are
easily readable. For determining readability we adapted the structural metrics proposed
by [33] originally intended to measure readability of process models. The non-
measurable parts of investigation were supported by industry experts to lower threats to
generalizability of findings. However, there remain threats to validity, which we discuss
in Sect. 4.3.

3.3 Procedure

Model creation started with the MSC-specification for approach A. The models created
in each approach were all created by the same person. Thereafter, the same person was
responsible for incorporating changes identified as necessary either by our industry
partner or by other researchers. First the natural language requirements specification
was read and anything unclear was discussed with the industry partner who created and
provided the natural language requirements specification. Afterwards an initial MSC-
specification was created according to approach A. This initial MSC-specification was
reviewed by the creator of the natural language requirements specification and his
colleagues. The MSC-specification was then revised and reviewed again. This revision
and review cycle was repeated until it was determined that the MSC-specification

188 K. Keller et al.

reflects the natural language requirements specification correctly and completely. This
way it was ensured that the MSC-specification does not only contain all aspects defined
in the natural language requirements specification but was also structured according to
industry needs.

After the MSC-specification from approach A was completed. An initial goal
model was created based on the natural language requirements specification. Like the
MSC-specification created from approach A, the goal model was reviewed and revised
until it was determined that it reflects the natural language requirements specification
correctly and completely. Based on this goal model an initial MSC-specification was
created according to approach B. Again, the MSC-specification was reviewed and
revised. This revision and review cycle continued until it was determined that the
MSC-specification reflects the natural language requirements specification.

After the MSC-specification from approach B was completed. An initial UCM was
created based on the goal model created in approach B. This UCM was reviewed and
revised until it was determined that it reflects the goal model correctly and completely.
Based on this UCM an initial MSC-specification was created according to approach C.
This MSC-specification was reviewed and revised until it was determined that the
MSC-specification reflects the natural language requirements specification.

3.4 Case and Subject Selection

The specification document used in the case study is a natural language specification of
an automotive system cluster provided by industry [34]. The automotive system cluster
consists of two subsystems the adaptive cruise control (ACC) and the adaptive exterior
lighting system (AELS), in this paper we focus on the AELS.

The AELS includes the control of the turn signal, the low beam headlights, the high
beam headlights and error handling in case of defective lamps and voltage problems.
The control of the turn signal includes activation and deactivation of the left and right
direction indicators based on the status of the pitman arm and the hazard warning light
switch. When both sides of the direction indicators are activated, the hazard warning
lights are activated and the blinking frequency is determined based on the status of the
ignition key. During the control of the low beam headlights, the state of the system can
be activated or deactivated based on the positions of the light rotary switch and the
daytime running light settings. The control of the low beam headlights also includes the
control of ambient light and cornering light, which depends on the position of the
pitman arm and the current vehicle speed.

Furthermore, the AELS includes the manual control of the high beam headlights as
well as the adaptation of the illumination range. With manual control of the high beam
headlights, the driver sets a specific illumination range and the system adjusts the
brightness. The manual high beam can be switched on or off via the horizontal posi-
tions of the pitman arm. On the other hand, the adaptive control of the high beam
headlights adjusts the illumination range based on the detection of preceding and
oncoming vehicles and their distances to the own vehicle, so that these vehicles cannot

A Comparative Analysis of ITU-MSC-Based Requirements 189

be blinded. The adaptive high beam headlights can be activated when the light rotary
switch is in the “auto” position and the pitman arm is pressed horizontally backwards.

4 Results

To illustrate our findings this section presents parts of the resulting MSC-specifications
(and for approach B and C also parts of the intermediate artifacts). To ensure com-
parability we present excerpts of GRL, UCM, and MSC models created during
application of the three different approaches, which relate to the following two natural
language requirements (from [34]). Complete specifications of all models from all three
approaches can be found at http://doi.org/10.5281/zenodo.1323516.

AL-43: Cornering light: If the low beam headlights are activated and direction
blinking is requested, the cornering light is activated, when the vehicle drives
slower than 10 km/h. 10 seconds after passing the corner (i.e. the direction blinking
is not active any more for 10 seconds), the cornering light is switched in a duration
of 1 second (gentle fade-out).
AL-139: With activated darkness switch (only armored vehicles) the cornering
light is not activated.

4.1 Application of Approach A (NL-MSC)

Figure 2 shows the part of the resulting MSC-specification for the two natural language
requirements that was created directly based on the natural language requirements. As
can be seen the scenario will be executed when the first condition Darkness Mode
Deactivated is fulfilled. Otherwise, the scenario terminates without further interactions.
After checking the condition, the AELS continues with specific checks and proceeds
based on which message it receives from the instance Turning Light to activate or
deactivate the cornering light. As this approach leads to a bMSC that captures AL-43
and AL139, the corresponding excerpt from the hMSCs shows only one single MSC
reference and is thus not shown here.

4.2 Application of Approach B (NL-GRL-MSC)

Figure 3 shows the part of GRL-model created based on the two natural language
requirements presented. The goals are derived from the natural language requirements
and the tasks were defined to fulfil the goals. The main softgoal Use Cornering Light
has been decomposed into one task Detection of Corner Exit and two goals concerning
when corner lighting can and cannot be activated. The task is then further decomposed
in two goals concerning the dimming of the cornering light. Finally, all goals are
decomposed into one or two tasks.

190 K. Keller et al.

http://doi.org/10.5281/zenodo.1323516

10
se

c

Body
Controller

Low
Beam HeadlightDarkness Switch

when
Darkness Mode

Deac�vated

ESP
Control Unit

Darkness Mode Deac�vated

opt

alt

Vehicle Speed

Check Vehicle
Speed

when
Vehicle Speed < 10km/h,

Normal Voltage

Turning Light

when
Direc�on Blinking Right

Ac�vated

Ac�vate Right
Cornering Light

Right Cornering Light
Ac�vated

Ac�vate Right
Cornering Light

when
Vehicle Speed < 10km/h,

Normal Voltage

when
Direc�on Blinking Le�

Ac�vated

Ac�vate Le�
Cornering Light

Le� Cornering Light
Ac�vated

Ac�vate Le�
Cornering Light

when
Direc�on Blinking Le� Deac�vated,
Direc�on Blinking Right Deac�vated

Deac�vate
Cornering Light

Cornering Light
Deac�vated

Deac�vate
Cornering Light

Check Voltage

 bMSC – Control Cornering Light

Fig. 2. MSC-specification excerpt created using approach A (NL-MSC)

Use Cornering Light

Cornering Light Should Be Ac�vated
Only When Low Beam And Direc�on

Indicators Ac�vated

Cornering Light Should Not Be Ac�vated
At Speeds Higher Than 10 Km/h

AND

Detec�on Of Corner Exit

A�er Ten Seconds The
Cornering Light Should Be

Dimmed

AND
One Second A�er Dimming,

The Cornering Light Should Be
Deac�vated

Dim Cornering Light Deac�vate Cornering Light
A�er Dimming Check Light Status Check Speed Disable Ac�va�on Of

Cornering Light

AND

Ac�vate Cornering
Light

AND

Fig. 3. GRL-model excerpt created using approach B (NL-GRL-MSC)

A Comparative Analysis of ITU-MSC-Based Requirements 191

Based on the GRL-model and in particular the tasks defined therein, the MSC-
specification is created. For each task one bMSC is created that documents the
interaction necessary to fulfill the task. Figure 4 shows the excerpt from the MSC-
specification created based on the excerpt from the GRL model shown in Fig. 3
without consultation of the original natural language requirements.

For every task in the GRL-model a bMSC is specified. For example, the task
Activate Cornering Light leads to the bMSC Activate Cornering Light, this bMSC
starts with a condition, which needs to be fulfilled to continue through the scenario.
After that, the bMSC Disable Cornering Light, which checks the possibility to activate
the cornering light, will be performed. After the creation of the bMSCs for every task,
the hMSC for the control of the cornering light is transformed into a structured form.
When a bMSC includes another bMSC and the referenced bMSC does not have to be
executed anymore, the referenced bMSC do not need to be modeled in the hMSC.

hMSC – Control Cornering Light

Check Light
Status

Ac�vate
Cornering

Light

Detec�on Of
Cornering Exit

bMSC – Check Light Status

Management Blinking Indicators Headlights

Status

Status

Check Statuses

Set Status

Darkness Switch

bMSC – Deac�vate Cornering Light
Headlights Electronic Stability Program

Status

Cornering Exit detected
when

Deac�vate Cornering Light

bMSC – Ac�vate Cornering Light

Management Blinking Indicators Headlights

Low Beam Ac�vated &&
Direc�on Indicators Ac�vated &&

Darkness Switch off

when

Disable
Cornering Light

Cornering Not Disabled
when

Ac�vate Cornering Light

Ac�vate Cornering Light

opt

bMSC – Detec�on Of Corner Exit
Headlights Electronic Stability Program

Detect End Of Corner

Status

Request Detec�on Of
Corner Exit

Cornering Exit Detected
when

1
Se

c

Dim
Cornering

Light

Deac�vate
Cornering

Light

loop

alt

bMSC – Check Speed
 Electronic Stability Program

Current Speed

alt

Headlights

Analyze Speed

Speed>=10km/h

Speed>10km/h

bMSC – Disable Cornering Light

Headlights Electronic Stability Program

Cornering Light
Not Disabled

Cornering Light Disabled

Speed>10km/h
when

Check Speed

alt

Current Speed

bMSC – Dim Cornering Light
Headlights Electronic Stability Program

Status

Cornering Exit Detected
when

Dimming Cornering Light

Fig. 4. MSC-specification excerpt created using approach B (NL-GRL-MSC)

192 K. Keller et al.

4.3 Application of Approach C (NL-GRL-UCM-MSC)

For approach C the GRL model created by approach B was reused as a basis for the
creation of a UCM-specification. Figure 5 shows the excerpt of the UCM created based
on the GRL model shown in Fig. 3 without repeated consultation of the original natural
language requirements. Three use cases were defined concerning the activation and
deactivation of the cornering light Activate Cornering Light, Deactivate Cornering
Light and Disable Activation of Cornering Light.

UCM –Deactivate Cornering Light

Headlights
Electronic Power Steering

[Cornering Light
Ac�vated] X

Detect End Of
Corner

X
Dim Cornering

Light

X
Deac�vate

Cornering Light X
Request Detec�on
Of Cornering Exit

1 Sec{
{Cornering Exit

Detected}

{else}

UCM –Disable Activation of Cornering Light

Headlights ESP

[Check Of
Cornering

Light
Detected]

X
Request

Current Speed X
Send Current

Speed

X
Analyze Speed

{

X
Disable Ac�va�on
Of Cornering Light

X
Enable Ac�va�on
Of Cornering Light

{Speed>10km/h}

{else}

[Cornering Light
Deac�vated]

[Cornering Light
Disabled]

[Cornering Light
Enabled]

UCM –Activate Cornering Light

Headlights

High Beam Module

Blinking Indicators

Management

X
Request Light

Status

X
Send High

Beam Status

X
Send Blinking

StatusX
Check Status

}

[Low Beam
Ac�vated]

{Low Beam Or
Direc�on Indicator

Deac�vated OR
Darkness Mode On}

{Low Beam And
Direc�on Indicators Ac�vated AND

Darkness Mode Off} X
Request Ac�va�on
Of Cornering Light

Disable
Cornering Light

}

X
Ac�vate

Cornering Light

{Cornering Light Disabled}

Darkness Switch

X
Send Darkness

Mode

[Cornering Light
Ac�vated]

[Cornering Light
Disabled]

[Cornering Light
Deac�vated]

Fig. 5. UCM-specification excerpt created using approach C (NL-GRL-UCM-MSC)

A Comparative Analysis of ITU-MSC-Based Requirements 193

Using approach C based on the UCM-specification the MSC-specification is cre-
ated using the approach for deriving MSC-specifications from UCM by Miga et al.
[18]. Figure 6 shows the excerpt from the MSC-specification created based on the
excerpt from the UCM model shown in Fig. 5 without consultation of the original
natural language requirements nor the GRL model. As can be seen three bMSC and one
hMSC are created based on the UCMs. The hMSC includes only two MSC references,
because the bMSC Disable Cornering Light is referenced in the bMSC Activate
Cornering Light. This is based on the UCM Activate Cornering Light, in which a stub
is referenced to the UCM Disable Cornering Light.

bMSC –Deac�vate Cornering Light
Headlights Electronic Stability Program

Detect End of Corner

Dim
Cornering Light

Deac�vate
Cornering Light

1
se

c

loop

alt

Cornering Exit Detected
when

Status

Request Detec�on Of
Corner Exit

Request Detec�on Of
Corner Exit

bMSC –Ac�vate Cornering Light

Management Blinking Indicators Headlights

Check Statuses

Low Beam Ac�vated &&
Direc�on Indicators Ac�vated &&

Darkness Mode off

when

Disable
Cornering Light

Cornering Not Disabled
when

Ac�vate Cornering Light

opt

opt

Request Light Status

Request Light Status

Status

Status

Ac�vate Cornering Light

Darkness Switch

Status

bMSC –Disable Cornering Light

Headlights
Electronic Stability

Program

Require Current Speed

Current Speed

Analyze Speed

Cornering Light
Not Disabled

Cornering Light Disabled

alt
Speed>10km/h

when

hMSC –Control Cornering Light

Ac�vate
Cornering

Light

Deac�vate
Cornering

Light

Fig. 6. MSC-specification excerpt created using approach C (NL-GRL-UCM-MSC)

194 K. Keller et al.

5 Discussion

5.1 Principle Findings

With respect to research question RQ1 it can be stated that all approaches resulted in a
valid MSC-specification. A closer investigation showed that all derived MSC-
specifications are consistent and complete, however at different levels of granularity. In
this case, completeness refers to the documentation of all relevant aspects of the natural
language requirements specification. Nevertheless, there have shown considerable
differences with respect to RQ2. The resulting MSC-specifications differ with respect to
their structural metrics. In particular. we identified differences with respect to (a) the
level of detail the MSC-specification describes, (b) the size of the resulting specifica-
tion, (c) the overall structuring of the hMSC, and (d) the documentation of alternatives.
The principle findings based on are briefly summarized in Table 1.

In the following, we discuss these findings in more detail.

Differences in the Level of Details. Compared to the other two approaches the MSC-
specification created using approach A (NL-MSC) is more solution oriented. Not only
is the system split into various subsystems (e.g., Adaptive High Beam Headlight,

Table 1. Principle findings

A (NL-MSC) B (NL-GRL-MSC) C (NL-GRL-UCM-
MSC)

Syntactical
quality

No syntactical
defects

No syntactical defects No syntactical defects

Semantical
quality

Complete and
no further defects

Complete and
no further defects

Complete and
no further defects

Empirical quality
Level of detail High, solution space Low, problem space High, problem space
Size Moderate number of

diagrams, large size
of single diagrams

High number of
diagrams, small size
of single diagrams

Low number of
diagrams, moderate
size of single
diagrams

Structure giving
elements

hMSC and
conditions

hMSC hMSC

Documentation
of alternatives

Related content and
alternatives are
scattered across
different bMSC,
connected only via
conditions

Related content is
divided across
bMSCs, but
connected by direct
flow lines in the
hMSC. Alternatives
are documented in
alternative bMSCs

Closely related
content is
documented in
approximately one
bMSC. Minor
alternatives are
documented in this
bMSC, major
alternatives in
alternative bMSCs

A Comparative Analysis of ITU-MSC-Based Requirements 195

Defect Detection, Instrument Cluster) but also context systems are split into subsystems
(e.g., Body Controller, Door Control Unit). Hence, the MSC-specification is used to
specify the solution space. In contrast, the specification created using approach B (NL-
GRL-MSC) features rather short bMSCs compared to those created using the other two
approaches and is rather solution-neutral, specifying the problem space. In particular,
the AELS is not considerably divided into its components and, thus, interaction
exchange between components is not covered. The specification created using
approach C (NL-GRL-UCM) heavily features actions as the approach by [18] requires
the definition of an action for each responsibility defined in the use case maps. Like
approach B it leads to problem space focused specification. However, the level of
details is rather high, i.e. it is differentiated between the components of the AELS and
the interactions they need to exchange to fulfill their purpose.

Differences in the Size of the Specifications. We found considerable differences in
the sizes of the resulting MSC-specifications. For approach A (NL-MSC) 52 diagrams
have been created, thereof 40 bMSC and 12 hMSC diagrams. Approach B (NL-GRL-
MSC) resulted in 66 diagrams from which 57 are bMSC and 9 hMSC diagrams.
Approach C (NL-GRL-UCM-MSC) resulted in the smallest number of diagrams: 42
diagrams in total, 32 bMSC and 10 hMSC diagrams.

Comparing these numbers, approach A resulted in 23.8% more diagrams than
approach C, and approach B in 57.1% more diagrams than in approach C. Considering
only bMSCs, approach A resulted in 25.0% more bMSC diagrams than approach C,
and approach B resulted in 78.1% more bMSC diagrams.

Regarding the size of the different diagrams, as can be seen by comparison of
Figs. 2, 4, and 6, the bMSCs created by approach B are considerably smaller than the
others.

Differences in the Structuring of the hMSC. As outlined in Sect. 5.1, approach A
(NL-MSC) resulted in a very detailed, solution-oriented MSC-specification. For
instance, variables are set in bMSCs that deal with the monitoring of user activity (i.e.
use of the pitman arm or the darkness switch), which is quite close to the actual
implementation of the AELS. These settings are then referred to in the bMSCs
describing the intended behavior of the AELS. Hence, in approach A conditions play
an important role for structuring the bMSCs. Another aspect is that approach A makes
less often use of structuring alternatives in the hMSC than in the bMSCs. This closely
related to the aforementioned finding: In the alternative sections, the current setting of
the predefined variables is requested and depending on the outcome different alterna-
tives are executed.

In contrast, the resulting MSC-specification from approach B (NL-GRL-MSC)
makes extensive use of hMSC for structuring. This is also reflected in the large number
of bMSCs created (see Sect. 5.2). The single bMSCs are extremely short and cover
only few messages (which is partly also due to the low level of details, i.e. there is no
definition of the detailed interaction taking place between components of the AELS like
in approach A. Approach C resulted in a strong hMSC structure linking to bMSCs of
moderate size.

196 K. Keller et al.

Differences in the Documentation of Alternatives. The aforementioned findings also
lead to considerable differences when it comes to documenting alternatives.
Approach A specifies very fine-grained behavior and therefore is a very close repre-
sentation of the natural language requirements (i.e. nearly all required functionalities
and qualities are documented and the system is defined on a very realistic level) this
impacts the documentation of alternatives. Alternatives are scattered across different
bMSC diagrams. Due to the extensive use of conditions (to separate monitoring and
control activities of the embedded control circuit) these bMSCs are often documented
in different branches of the hMSC, which makes it hard to comprehend the overall
behavior. In contrast, approaches B and C result in more problem-oriented MSC-
specifications, which look more like a typical scenario specified during requirements
engineering. However, due to use of numerous small bMSCs in approach B, one
scenario is also often divided across multiple diagrams. When it comes to alternatives,
approach B heavily relies on the hMSC, i.e. alternatives are documented in bMSCs that
follow an alternative path in the hMSC to the bMSCs, which document the original
scenario. This allows investigating the alternatives right on the level of the hMSC and
saves readers from having to look into the detailed specification of interactions.
However, alternatives with very small differences are also documented in separate
bMSCs. Approach C documents such small differences in the same bMSC thereby
increasing the readability of the overall MSC-specification.

5.2 Threats to Validity

As for all case studies our findings and particular possible conclusions are threatened in
their validity. We will briefly discuss the most severe threats remaining.

External Validity. The natural language requirements specification was provided by
one industry partner from the automotive domain. While it was not a real specification,
due to the need for protection of intellectual property, the specification was carefully
designed to be realistic. To ensure this, it was mainly taken from older original
specification documents and extended by some properties of newer systems. However,
the specification was not a real one. The specification was discussed by different
industry partners from different domains (i.e. automotive, avionics, industry automa-
tion) and used throughout a joint research project to evaluate different approaches.
Hence, we are confident that the case example and the findings from the case example
are transferable to the engineering of embedded systems. Nevertheless, we cannot rule
out that findings might not be generalizable, which we assume might be particularly
true for non-reactive systems, as specifications have been impacted by the idea of
control circuits.

Internal Validity. The MSC-specifications have been developed by the authors.
Hence, there might be different kinds of researcher bias. While we had no particular
interest in having one approach win (as none of these has been proposed by ourselves),
it cannot be ruled out that aspects of approaches might have been misunderstood or
misinterpreted. In addition, it cannot be ruled out that different modelers applying the
approaches come to different MSC-specifications. Furthermore, the resulting MSC-
specifications might not be suitable for industry applicability. To avoid this, the

A Comparative Analysis of ITU-MSC-Based Requirements 197

resulting specifications have been discussed with industry partners (particularly, with
the partner who provided the original requirements). In some cases, we corrected minor
aspects in the specifications based on these discussions to better reflect industrial
reality.

5.3 Inferences

The direct definition of an MSC-specification on the basis of a natural language
requirements document (Approach A) leads to a fine-grained specification of the
solution space. For instance, typical system startup routines have been considered
during modeling. In these routines measurements are monitored, errors detected, and
values measured. In the MSC-specification this has yielded in numerous setting con-
ditions, which were considered later on during system execution. Hence, the direct
definition of an MSC-specification can be considered very detailed and realistic, par-
ticularly, the specification of the solution space can benefit re-use of the created
specification during detailed design. However, closely related contents are distributed
across the MSC-specification and are not documented nearby, which is unfortunate
from a requirements engineering point of view. Furthermore, as this approach is largely
unguided, replicability of results might considerably depend on the modeler.

The definition of the MSC-specification using GRL goal models (Approach B) and
GRL goal models and use case maps (Approach C) yielded in a MSC-specification
defining the problem space as typically desired in requirements engineering. Com-
paring these two approaches, the use of use case maps obviously results in more effort
needed for creating the MSC-specification. However, this approach is also the most
structured and guided, which improves reproducibility and objectivity of produced
results. Also, the resulting MSC-specification was beneficial for requirements engi-
neering purposes: High level of detail, but at the same time acceptable complexity of
the specification (i.e. low number diagrams at a moderate size of each diagram).
Furthermore, closely related content is mostly documented within one bMSC.

Further findings were made through an investigation of syntactical, semantical and
empirical quality of the created MSC-specifications. To determine, whether the single
approaches are indeed favorable for the different purposes (i.e. approach A for the
connection between requirements engineering and detailed design, and approach B for
requirements analysis) an investigation of the pragmatic quality is also needed in future
work. Pragmatic quality investigates the effect of the model on the user and, therefore,
can be investigated using controlled experiments. We intend to use the MSC-
specification defined in this paper as input for the experiment materials.

6 Conclusion

MSC-specifications are a vital part of model-based requirements engineering. It is
important to understand how best to arrive at such a specification. This is particularly
the case, when creating a MSC-based requirements specification from existing natural
language requirements. To do so, several approaches exist to create a MSC-
specification based on requirements in more or less structured ways. In this paper,

198 K. Keller et al.

we reported on a comparative analysis that compared three MSC-specifications derived
by employing three different approaches. We derived the MSC-specification directly
from the requirements, by the use of GRL goal models as intermediate model, and by
the use of GRL goal models and use case maps as intermediate models. Evaluation of
the three MSC-specifications showed that semantical and syntactical quality is com-
parable: all three approaches lead to defectfree and complete (w.r.t. the natural lan-
guage requirements specification) MSC-specifications. However, we discovered
considerable differences in the empirical quality of the MSC-specifications. Specifi-
cations differ in the level of detail and their covering of problem and solution space as
well as in size and complexity. Also, the structure giving elements of the MSC-
specifications differ as does the way how closely related contents and alternatives are
documented. In consequence, the MSC-specifications derived by different approaches
seem to be better or worse suited for different purposes. Future work will focus on
conducting a controlled experiment to determine pragmatic quality, as this also impacts
the models’ supportiveness for specific purposes. Furthermore, it is of interest to also
investigate the process of creating MSC-specifications more closely, e.g., how long
does the creation take, how many iterations are needed, etc.

Acknowledgements. This research has been partly funded by the German Federal Ministry of
Education and Research under grants no. 01IS16043 V and 01IS15058C. We thank Frank
Houdek (Daimler) and our former colleague Felix Föcker (Aldi Süd) for their support during the
development of the MSC-specifications.

References

1. Weber, M., Weisbrod, J.: Requirements engineering in automotive development-experiences
and challenges. In: Proceedings of the IEEE Joint International Conference on Requirements
Engineering, pp. 331–340 (2002)

2. Sutcliffe, A.G., Maiden, N.A.M., Minocha, S., Manuel, D.: Supporting scenario-based
requirements engineering. IEEE Trans. Softw. Eng. 24, 1072–1088 (1998)

3. Zhu, H., Jin, L., Diaper, D., Bai, G.: Software requirements validation via task analysis.
J. Syst. Softw. 61, 145–169 (2002)

4. Kof, L.: From textual scenarios to message sequence charts: inclusion of condition
generation and actor extraction. In: 16th IEEE International Requirements Engineering
Conference, pp. 331–332 (2008)

5. Osborne, M., MacNish, C.K.: Processing natural language software requirement specifica-
tions. In: Proceedings of the Second International Conference on Requirements Engineering,
pp. 229–236 (1996)

6. Ali, A., Jawawi, D.N.A., Isa, M.A., Ibrahim, A.O.: Deriving behavioural models of
component-based software systems from requirements specifications. In: International
Conference on Computing, Control, Networking, Electronics and Embedded Systems
Engineering (ICCNEEE), pp. 260–265 (2015)

7. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. Wiley Publishing, Hoboken (2012)

8. Liu, L., Yu, E.: Designing information systems in social context: a goal and scenario
modelling approach. Inf. Syst. 29, 187–203 (2004)

A Comparative Analysis of ITU-MSC-Based Requirements 199

9. Kim, J., Kim, M., Yang, H., Park, S.: A method and tool support for variant requirements
analysis: goal and scenario based approach. In: 11th Asia-Pacific Software Engineering
Conference, pp. 168–175 (2004)

10. Kim, M., Park, S., Sugumaran, V., Yang, H.: Managing requirements conflicts in software
product lines: a goal and scenario based approach. Data Knowl. Eng. 61, 417–432 (2007)

11. Rolland, C., Grosz, G., Kla, R.: Experience with goal-scenario coupling in requirements
engineering. In: Proceedings IEEE International Symposium on Requirements Engineering
(Cat. No. PR00188), pp. 74–81 (1999)

12. Rolland, C., Salinesi, C.: Supporting requirements elicitation through goal/scenario
coupling. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual
Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 398–416. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02463-4_21

13. Pohl, K., Haumer, P.: Modelling contextual information about scenarios. In: Proceedings of
the Third International Workshop on Requirements Engineering: Foundations of Software
Quality REFSQ 1997, pp. 187–204 (1997)

14. Yu, E.S.K., Mylopoulos, J.: Why goal-oriented requirements engineering. In: Proceedings of
the 4th International Workshop on Requirements Engineering: Foundation for Software
Quality, REFSQ 1998, Pisa, Italy, 8–9 June 1998, pp. 15–22 (1998)

15. Kof, L.: Requirements Analysis: concept extraction and translation of textual specifications
to executable models. In: Horacek, H., Métais, E., Muñoz, R., Wolska, M. (eds.) NLDB
2009. LNCS, vol. 5723, pp. 79–90. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-12550-8_7

16. Cunning, S.J., Rozenbiit, J.W.: Test scenario generation from a structured requirements
specification. In: Presented at the Proceedings-ECBS, IEEE Conference and Workshop on
Engineering of Computer-Based Systems, pp. 166–172 (1999)

17. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases. Requir. Eng. 10,
34–44 (2005)

18. Miga, Andrew, Amyot, Daniel, Bordeleau, Francis, Cameron, Donald, Woodside, Murray:
Deriving Message Sequence Charts from Use Case Maps Scenario Specifications. In: Reed,
Rick, Reed, Jeanne (eds.) SDL 2001. LNCS, vol. 2078, pp. 268–287. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-48213-X_17

19. Sikora, E., Tenbergen, B., Pohl, K.: Industry needs and research directions in requirements
engineering for embedded systems. Requir. Eng. 17, 57–78 (2012)

20. International Telecommunication Union: Recommendation Z.151 (10/12), User Require-
ments Notation (URN) Language Definition

21. International Telecommunication Union: Recommendation Z.120 (02/11), Message
Sequence Chart (MSC)

22. Palshikar, G.K., Bhaduri, P.: Verification of scenario-based specifications using templates.
Electron. Notes Theor. Comput. Sci. 118, 37–55 (2005)

23. Daun, M., Weyer, T., Pohl, K.: Detecting and correcting outdated requirements in function-
centered engineering of embedded systems. In: Fricker, S.A., Schneider, K. (eds.) REFSQ
2015. LNCS, vol. 9013, pp. 65–80. Springer, Cham (2015). https://doi.org/10.1007/978-3-
319-16101-3_5

24. Daun, M., Brings, J., Weyer, T.: On the impact of the model-based representation of
inconsistencies to manual reviews. In: Mayr, H.C., Guizzardi, G., Ma, H., Pastor, O. (eds.)
ER 2017. LNCS, vol. 10650, pp. 466–473. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-69904-2_35

25. Tang, W., Ning, B., Xu, T., Zhao, L.: Scenario-based modeling and verification of system
requirement specification for the European Train Control System, pp. 759–770. Presented at
the, WIT Transactions on the Built Environment (2010)

200 K. Keller et al.

http://dx.doi.org/10.1007/978-3-642-02463-4_21
http://dx.doi.org/10.1007/978-3-642-12550-8_7
http://dx.doi.org/10.1007/978-3-642-12550-8_7
http://dx.doi.org/10.1007/3-540-48213-X_17
http://dx.doi.org/10.1007/978-3-319-16101-3_5
http://dx.doi.org/10.1007/978-3-319-16101-3_5
http://dx.doi.org/10.1007/978-3-319-69904-2_35
http://dx.doi.org/10.1007/978-3-319-69904-2_35

26. Kaindl, H.: A scenario-based approach for requirements engineering: experience in a
telecommunication software development project. Syst. Eng. 8, 197–210 (2005)

27. Rolland, C., Souveyet, C., Achour, C.B.: Guiding goal modeling using scenarios. IEEE
Trans. Softw. Eng. 24, 1055–1071 (1998)

28. Antón, Annie I., McCracken, W.Michael, Potts, Colin: Goal decomposition and scenario
analysis in business process reengineering. In: Wijers, Gerard, Brinkkemper, Sjaak,
Wasserman, Tony (eds.) CAiSE 1994. LNCS, vol. 811, pp. 94–104. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58113-8_164

29. Liu, L., Yu, E.: From requirements to architectural design using goals and scenarios. In:
Proceedings of the International Workshop from Software Requirements to Architectures
(STRAW), Toronto (2001)

30. Broy, M.: Seamless method- and model-based software and systems engineering. In: The
Future of Software Engineering (2010)

31. Krogstie, J., Sindre, G., Jørgensen, H.: Process models representing knowledge for action: a
revised quality framework. Eur. J. Inf. Syst. 15, 91–102 (2006)

32. Keller, K., Neubauer, A., Brings, J., Daun, M.: Tool-Support to foster model-based
requirements engineering for cyber-phsyical systems. In: Joint Proceedings of the
Workshops at Modellierung co-located with Modellierung , Braunschweig, Germany, 21
Feb 2018, pp. 47–56 (2018)

33. Sánchez-González, L., García, F., Mendling, J., Ruiz, F., Piattini, M.: Prediction of business
process model quality based on structural metrics. In: Parsons, J., Saeki, M., Shoval, P.,
Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 458–463. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16373-9_35

34. Houdek, F.: System Requirements Specification Automotive System Cluster (ELC and
ACC). Technical Report SyS-LH C34-223 (2013)

A Comparative Analysis of ITU-MSC-Based Requirements 201

http://dx.doi.org/10.1007/3-540-58113-8_164
http://dx.doi.org/10.1007/978-3-642-16373-9_35

Towards Online Collaborative Multi-view
Modelling

Nirmal Kanagasabai1(B), Omar Alam2, and Jörg Kienzle1

1 School of Computer Science, McGill University, Montreal, QC, Canada
nirmal.kanagasabai@mail.mcgill.ca, joerg.kienzle@mcgill.ca

2 Department of Computing and Information Systems, Trent University,
Oshawa, ON, Canada
omaralam@trentu.ca

Abstract. Increasingly, distributed software development teams rely on
online collaboration tools to work together in real time. Collaborative
textual editors are intuitive, since the position of the cursor and the
currently selected text, if any, tell other collaborators what part of the
text/code a developer is currently focusing on or editing. Model-Driven
Engineering (MDE) advocates using models as the primary development
artifacts, and to be most effective, the system is described at different
levels of abstraction from multiple points of view. This poses additional
challenges for online collaboration, as the current focus of the developer
and the scope of his changes are often less clear, in particular when the
modelling language(s) and views use graphics or have hierarchical or
other kinds of dependencies. This paper proposes two algorithms that
exploit the metamodels of the involved modelling languages to visualize
a collaborator’s change in a multi-view modelling environment. The first
algorithm determines the most concise way to highlight the elements that
are impacted by a change made by a remote developer in the current
views of the local developer. The second algorithm delays the deletion
of a model element as long as that element is still being referred to from
a different view, and notifies the impacted developers, offering them a
chance to collaboratively discuss the deletion or undo the deletion if
desired. The proposed algorithms are evaluated by applying them on the
Reusable Aspect Models (RAM) metamodel.

Keywords: MDE · Online collaboration · Multi-view modelling
Graphical user interface

1 Introduction

MDE advocates software development with models expressed in the right mod-
elling formalism that is suitable for the task at hand. Therefore, an MDE project
can involve modellers with a diverse set of expertise who collaborate with each
other to produce a complete and coherent system [9] using multiple views and
modelling notations. Furthermore, in a complex system, models can quickly grow
c© Springer Nature Switzerland AG 2018
F. Khendek and R. Gotzhein (Eds.): SAM 2018, LNCS 11150, pp. 202–218, 2018.
https://doi.org/10.1007/978-3-030-01042-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01042-3_12&domain=pdf

Towards Online Collaborative Multi-view Modelling 203

in size, deeming the efforts of a single modeller insufficient to maintain and evolve
the system. In such projects, collaboration is not an option but a necessity to
cope with the growing size of models. As in any collaborative project, modellers
need to receive updates about each others’ activities. In some cases, real-time
(online) updates are necessary, while in other cases, (offline) post-modification
updates are sufficient. Online and offline updates can reduce modelling time,
duplication of efforts, and inconsistencies between models. However, support
for collaboration in modelling tools is limited. Though some modelling environ-
ments e.g., GenMyModel [3], AtomPM [24], MetaEdit+ [13], Visual Paradigm
[5] provide complex collaboration capabilities, there is a lack of tools that allow
different modelling languages to support online collaboration.

There are different ways to support online collaboration. While on one hand
pessimistic, lock-based approaches guarantee that no editing conflicts or wasted
work occur among distributed collaborators, the efficiency of a local developer
can be drastically reduced due to locks being held by remote collaborators. Opti-
mistic approaches allow all collaborators to make changes as they please and are
far more streamlined, but work only when each local collaborator is sufficiently
aware of the current focus of the remote collaborators to avoid potential conflicts.
Modern collaborative textual editors like Google Docs and Microsoft Office are
based on optimistic collaboration rather than the pessimistic locking approach.
In these textual editors, the knowledge of the position of the cursor and/or the
currently selected text of the remote collaborators allow the local collaborator
to edit the text efficiently without inadvertently undoing the work of remote
collaborators.

In MDE, the current focus of a modeller and the scope of his changes are
often less clear, in particular when the modelling language(s) and views use
graphics or have hierarchical or other kinds of dependencies. This paper proposes
two algorithms that allow modellers to streamline online collaboration in multi-
view modelling environments. When a model element is changed (created or
modified) by a remote collaborator, our first algorithm finds the elements in the
current view of the local collaborator that are directly or indirectly impacted
by the remote change and highlights them. As a result, the local collaborator is
made aware of any relevant changes made by remote collaborators as they are
editing the model, and can hence keep track of their current focus. Our second
algorithm ensures that model element deletions made by one collaborator do not
irreversibly invalidate the work of other collaborators. In essence, the algorithm
marks the element as being deleted but effectively delays the deletion until the
element is not being referred to anymore from other views.

The remainder of the paper is structured as follows. Section 2 presents back-
ground information on collaborative modelling, online vs. offline collaboration, as
well as inter-model consistency in multi-view modelling environments. Section 3
describes the challenges that are present in online collaborative multi-view mod-
elling environments. Section 4 elucidates our algorithm that communicates the
current focus and intent of a collaborator to other online collaborators. Section 5
explains how we propose to handle highly disruptive deletion operations in a

204 N. Kanagasabai et al.

collaborative multi-view setting. Section 6 presents some technical details about
our prototype implementation in the context of the TouchCORE tool [22] and
presents an evaluation of the effectiveness of the two algorithms on the Reusable
Aspect Models (RAM) [15] multi-view modelling formalism. Section 7 discusses
the related work, and the last section draws some conclusions.

2 Background

2.1 Online vs. Offline Collaboration

Software development is no longer an individual endeavor. Developers work in
teams to collaboratively achieve their project goals. Recently, there have been
advances in collaboration tools in software development, such as version control
systems (e.g., Git), collaborative editors, and collaborative communication chan-
nels (e.g. Slack). Some of these tools focus on offline collaboration, e.g., Git. In
offline collaboration, developers do not receive real-time updates on each others’
activities. Usually, developers collaborate offline after they divide the respon-
sibilities and tasks among themselves. Developers work individually and then
merge their changes with the project. Typically, one or several members are
responsible for merging the changes and organizing the development branches.

Other tools focus on online collaboration, in which the local developer is
notified about changes made by remote collaborators in real-time. Collaborative
editing tools, e.g. GoogleDocs, Overleaf, or Microsoft Office, intuitively allow for
online collaboration by visualizing the positioning of the cursors of the remote
collaborators, or by highlighting the text that the remote collaborators have
selected or are editing. Other online collaboration tools allow for exchanging
messages between developers using a chatbox or sending a sound notification
when a collaborator does an activity.

Despite these advances, support for collaboration is limited in the context of
MDE. Most modelling tools are single-user and do not support offline or online
collaboration [12]. Recently, some modelling tools have emerged that support
collaboration. They are discussed in more detail in Sect. 7.

2.2 Pessimistic vs. Optimistic Concurrency Control

In online collaboration, several modellers may concurrently edit a model ele-
ment, potentially overriding each others’ changes or causing conflicts. Some form
of concurrency control is needed to either prevent or address conflicts. There are
in general two concurrency control strategies, pessimistic and optimistic. Pes-
simistic concurrency control serializes the model access, thereby permitting only
one modeller to have control over a model element at a given time. The pes-
simistic approach requires the modeller to request permission to edit a specific
model element in advance, typically by acquiring an explicit lock on the element.
As models tend to be hierarchical, this approach does not only lock the element
being edited, but also the entire containment tree rooted at this element. This

Towards Online Collaborative Multi-view Modelling 205

approach limits potential concurrency but prevents conflicts from occurring, and
hence its main advantage is data integrity.

While the pessimistic approach is useful in situations where there is com-
petition, the assumption in collaborative online modelling is that the different
collaborators cooperate to achieve a common goal. Each individual local col-
laborator is interested in building on the work done by the other remote col-
laborators as opposed to consciously or inadvertently negate their work. The
optimistic approach allows free concurrent access to model elements, and only
in case of conflicting updates, actions are required to restore the model to a
consistent state. Contemporary real-time collaborative editing tools like Google
Apps (Docs, Sheets, Slides, etc.) and Microsoft Office have chosen such an opti-
mistic approach since it allows for closer and more streamlined collaboration.
Collaborators are continuously updated about the editing positions and changes
made by remote collaborators, which helps them avoid conflicts. In the rare cases
where conflict occurs, typically the most recent update overrides the previous
one.

3 Online Collaborative Multi-view Modelling Challenges

3.1 Multi-view Collaboration and Running Example

The collaborative platform that this work focuses on is distributed, multi-user
and multi-view. Typically, real-time collaboration happens when more than one
user is connected online at a given time. From a user’s perspective, there is a
local user (himself) and one or more remote collaborators who are concurrently
editing the same model. The view that the local user is currently looking at is
the active view of that particular collaborator.

Multi-view, as the name states, allows users to work on distinct views of the
same model. The views can either be orthogonal (having no elements in common)
or complementary (presenting the same or overlapping sets of elements). In order
to allow the local collaborators to be aware of what the remote collaborators are
working on, any remote editing operations that are in progress, or changes made
on the underlying model in any of the views should be perceived by all the
collaborators. This can be a challenge since not all elements of the underlying
model are visualized in all the views.

Another challenging situation occurs when one of the collaborators decides
to delete a model element. That model element could still be currently used by
a remote collaborator, i.e., referred to by model elements in other views. This
can lead to inconsistencies. In a hierarchical modelling language, the deletion
of one model element can even lead to further deletions of the contained model
elements, which increases the potential for inconsistencies across views.

Figure 1 illustrates a multi-view modelling example where four collaborators
are working on a design model of a banking application. Collaborator C1 is
currently working in the structural view, which consists of a design class diagram.
Collaborators C2, C3 and C4 are working on three distinct message views, which
are sequence diagrams that specify the behaviour of three different operations

206 N. Kanagasabai et al.

of the design. We look at a specific case as to how C1’s current action impacts
other collaborators. Currently, C1 is changing the data type of the parameter
interestRate from int to double. The data type is currently being changed, i.e.,
C1 has selected the int text and started typing, or double-clicked on the int text
and is now choosing a new type from a popup menu. The model element has
therefore not been changed yet. Hence, for other collaborators, the type is still
visualized as int and not double.

Fig. 1. Collaborative software design modelling example (Color figure online)

3.2 Minimizing Editing Conflicts

Without concurrency control, it is possible that different developers concurrently
perform operations that are incompatible, unintentionally causing conflicts or
accidentally overriding changes made by others. A natural way of minimizing
the occurrence of such situations is to ensure that every collaborator is aware
of what the other collaborators are currently working on. While in text editors,
the location of the cursor provides a good indication of the current focus of a
collaborator, the situation is far more complex in MDE, where many modelling
notations are of graphical nature. Hierarchical modelling languages or modelling
approaches where systems are developed using multiple views complicate the
situation even further. While in single view approaches it would be possible to
highlight with different colours the changes made by remote collaborators as they
are being made, it is possible that in a multi-view approach, a model element
being edited by a remote collaborator in one view is not visualized in the view
that the local collaborator is currently looking at. Although the model element

Towards Online Collaborative Multi-view Modelling 207

that is being edited remotely is not visualized in the local view, the change could
have an effect on the task that the local collaborator is working on. For example,
in Fig. 1, C1 changes the type of the parameter interestRate from int to double.
In this case, collaborator C3 might want to adjust the actual value used in the
call of the calculateInterest operation, e.g., from 10 to 10.2.

Fig. 2. Excerpt of the RAM metamodel

3.3 Global vs. Local Undo Stack

Most editors provide a useful undo functionality that makes it possible to revert
the last performed editing action. Unfortunately, providing useful undo is chal-
lenging in an online collaborative setting. In online collaboration, when two
collaborators C1 and C2 work in real-time on the same model, the outcome of
any performed operation is immediately visible to both C1 and C2.

When a collaborator hits the undo button, he may want to revert back to
the last change carried out by him (in his view). It is also possible that he wants
to undo a change made by a remote collaborator that he disagrees with. To
support the first case, a local undo strategy must keep track of a local stack
of changes for each collaborator, and revert back to the most recent change in
that stack. To support the second case, a global undo strategy would keep one

208 N. Kanagasabai et al.

single global stack, and revert back to the most recent change performed by
any collaborator. Both strategies have their shortcomings. With local undo, C1

cannot undo a change made by a remote C2. With global undo, C1 might think
he will undo a previous change made by C2, but actually, a change made by
C3 that happened after the change of C2 (but possibly in a different view) is
undone. For example, in Fig. 1, if C1 deletes the operation calculateInterest
in the structural view, then C3 might want to undo the deletion because the
operation is called inside the behaviour of applyInterest. If local undo is used,
C3 cannot undo the deletion (only C1 could). If global undo is used, then C3

would only be able to undo the operation easily until some other collaborator
performs an editing operation, which, in a highly collaborative environment with
multiple concurrent modellers is bound to happen almost immediately.

4 Disseminating the Collaborator’s Focus

In order to allow the local developer to be aware of the current work focus of
his remote collaborators, we developed a Highlight Propagation Algorithm that
uses the metamodels of the modelling language(s) to identify the model ele-
ments in the current active view(s) of the local collaborator that are impacted
by the changes that are being carried out across views by remote collaborators.
After identifying them, these model elements are highlighted with the colour
assigned to the remote collaborator according to 3 different intensity levels,
namely, strong, medium and light depending on the degree of change impact.

For example, if ce is the element that is currently being edited by a remote
collaborator and ce is visualized in the current active view(s) of the local col-
laborator, then ce is highlighted in a strong shade of the colour assigned to the
remote collaborator. This is because the highlighted element is the element that
is being changed, and hence the change has the strongest possible impact. If the
active view does not visualize ce, but displays model elements that directly or
indirectly refer to ce, they are highlighted with medium intensity. The impact, in
this case, is relatively lower than the previous case. If neither ce nor any model
element referring directly or indirectly to ce is visualized in the current active
view(s), then the algorithm checks whether the current active view(s) display
any of the containers of ce, or model elements referring to the containers of ce
and highlights them with a light tint. The only situation in which the algorithm
will not find anything to highlight is when the current active view(s) are com-
pletely orthogonal to ce, i.e., any change to ce has no impact whatsoever on the
current focus of the local collaborator.

Our algorithm is based on the metamodel(s) of the modelling language(s)
and exploits the containment hierarchy information as well as the references
between model elements that are not within the same containment hierarchy.
The pseudocode of the Highlight Propagation algorithm that runs locally and
independently on the machine of each collaborator is given in Algorithm 1. It
uses the following definitions:

Towards Online Collaborative Multi-view Modelling 209

ce := The model element that is being edited by a remote collaborator
δ−
ce := Set of model elements that x has references to

activeV iew := Current active view of the local collaborator
GUIce,activeV iew := Set of GUI elements that represent ce in activeV iew
collabce := Remote collaborator who is currently editing the element ce

The algorithm takes as a parameter the model element ce that is being edited
remotely and by whom it is being edited. Lines 3 to 9 handle the case where the
element is directly visualized in the current active view. In that case, the element
itself is highlighted in strong shade, as well as any elements in the current active
view that refer directly to the element that is being edited in medium intensity.
Line 11 invokes the SearchAcrossViews function, which uses breadth-first-search
to follow incoming references to the element that is being edited until it finds an
element that directly or indirectly references the element that is being visualized
in the current active view and highlights it with medium intensity. Only if this
is unsuccessful, then lines 12 to 20 successively try to find elements that are
visualized in the current active view that either directly represent or refer to any
of the model elements that contain the element being edited.

4.1 Highlighting in the Motivating Example

In the example shown in Fig. 1, C1, assigned the colour blue, is currently changing
the type of the parameter interestRate of the calculateInterest operation of
the Account class from int to double in the class diagram view. Looking at the
metamodel in Fig. 2, it is the type property of interestRate, which is an instance
of the metaclass Parameter, that is being edited. Meanwhile, C2 is working on
the message view of the operation calculateInterest. The type of the parameter
interestRate is also visualized in this view, and is therefore highlighted by our
algorithm in strong blue to let C2 know that C1 is modifying the int type of
parameter interestRate directly. C3 is in the meantime working on the message
view of the operation applyInterest, which calls the operation calculateInterest,
passing 10 as a value to the interestRate parameter.

According to the metamodel, this parameter passing requires a Parameter-
ValueMapping, which in turn holds a reference to the interestRate parameter.
When our algorithm runs on the machine of C3, the number 10 will be highlighted
in medium blue, indicating a less strong potential impact of C1’s change. Finally,
C4 is working on the message view of the operation transfer. There is no direct
impact of C1’s change to this view – the interestRate parameter is not visual-
ized. Also, there is no element that indirectly references the interestRate param-
eter. Therefore, the algorithm looks up the containment hierarchy, and checks
whether the operation that contains the changed element, i.e., calculateInterest
(Parameter is contained by Operation in Fig. 2), is being directly or indirectly
visualized in the view of C4. As this is still not the case, the algorithm goes fur-
ther up the containment hierarchy and then checks whether the class Account is
visualized directly or indirectly in the active view. There are two lifelines, source
and destination, which both are of type Account, i.e., in the model, there is a

210 N. Kanagasabai et al.

Algorithm 1 Highlight Propagation
1: procedure HighlightPropagation(ce, collabce)

2: colourstrong, colourmedium, colourlight ← GetColoursOfCollaborator(collabce)

3: if GUIce,activeV iew �= ∅ then
4: Highlight(ce, colourstrong)

5: for each re ∈ δ−ce do
6: for each g ∈ GUIre,activeV iew do

7: Highlight(re, colourmedium)

8: end for

9: end for
10: else
11: if SearchAcrossViews(ce, colourmedium) then

12: curEl: ModelElement ← GetParent(ce)

13: while curEl �= RootElement do

14: if GUIcurEl,activeV iew �= ∅ then
15: Highlight(curEl, colourlight)
16: else if SearchAcrossViews(curEl, colourlight) then

17: return

18: end if
19: curEl ← GetParent(curEl)

20: end while
21: end if

22: end if

23: end procedure
24:
25: procedure SearchAcrossViews(me, colour)
26: Q: queue of model elements ← ∅
27: found: boolean ← false
28: Q.enqueue(me)

29: me.markAsVisited

30: while Q �= ∅ ∧ ¬found do
31: m = Q.dequeue()

32: for each re ∈ δ−m do
33: if ¬re.visited then

34: re.MarkAsVisited
35: if GUIre,activeV iew �= ∅ then
36: Highlight(re, colour)

37: found ← true
38: else

39: Q.Enqueue(re)
40: end if
41: end if

42: end for

43: end while
44: return found

45: end procedure

Towards Online Collaborative Multi-view Modelling 211

reference to the class Account. Therefore, the two lifelines are highlighted in light
blue, indicating that the impact of the change of C1 on the two lifelines is low.

5 Dealing with Model Element Deletion

In hierarchical and multi-view modelling environments, some model changes can
have a significant impact throughout the model. In particular, the deletion of
a model element can trigger a cascading delete because of containment rela-
tionships, or inter-view consistency rules. Cascading delete refers to the situ-
ation in which the deletion of a model element requires the deletion of other
related model elements. For example, deleting the Account class in Fig. 1 in
turn deletes the number and balance attributes that the class contains, as well
as the calculateInterest, withdraw and deposit operations.

Single-user environments typically provide an undo command to address the
case where a modeller has inadvertently caused a cascading delete. Unfortu-
nately, undo is not very user-friendly in a multi-user setting. As previously
explained in Sect. 3.3, neither a local undo stack nor a global undo stack can
resolve all situations in a satisfying way. To deal with cascading deletes, we
introduce the Delayed Deletion Algorithm outlined in Algorithm 2.

de := the element that is to be deleted
δ−
me := Set of model elements that contain a reference to me where removing

the reference would violate a lower-bound constraint
Cde := Set of elements that are directly or indirectly contained in de

The algorithm relies on a new boolean flag isDeleted that is introduced to all
the model elements, e.g., by adding it to the metamodel. If a model element de
is requested to be deleted, the algorithm checks whether de is being referenced
by any other model element. The same check is performed on every element me
that is directly or indirectly contained in the model element de. If no reference
is found, a standard deletion is performed on de and every me contained in de.
However, if even just a single reference is found, no model elements are deleted.
Instead, de and every me contained in de are simply marked as deleted by setting
the boolean attribute isDeleted. The model editor’s GUI should treat any model
element marked as deleted as though it was actually removed from the model,
e.g., by notifying the local collaborator about any now inconsistent references to
these model elements. If a collaborator does not agree with the deletion, the GUI
should offer the possibility to undelete the elements (by unsetting the isDeleted
flag.

6 Evaluation

6.1 Prototype Implementation

To evaluate our algorithms, we extended TouchCORE [22], a multi-touch enabled
tool for agile software design modelling, with collaboration capabilities. Cur-
rently, TouchCORE supports Feature and Goal Models, as well as Class, State

212 N. Kanagasabai et al.

Algorithm 2 Delayed Deletion
1: procedure DelayedDeletion(de)
2: if (δ−de �= ∅) then
3: DoDelayedDeletion(de)
4: else
5: for each (me ∈ Cde) do
6: if (δ−me �= ∅) then
7: DoDelayedDeletion(de)
8: return
9: end if

10: end for
11: Delete(de)
12: for each (me ∈ Cde) do
13: Delete(me)
14: end for
15: end if
16: end procedure
17:
18: procedure DoDelayedDeletion(de)
19: de.setBooleanIsDeleted
20: for each (me ∈ Cde) do
21: me.setBooleanIsDeleted
22: end for
23: end procedure

and Sequence Diagrams. For our Multi-View modelling experiments, we focus
on the three design views: Structural Views (that visualize class diagrams), Mes-
sage Views (that visualize sequence diagrams) and State Views (that visualize
state diagrams). The structure of these views is described in the Reusable Aspect
Models (RAM) metamodel [14].

To enable collaboration, TouchCORE was integrated with Connected Data
Objects (CDO), a distributed, shared model repository that persists models in
a database. Both CDO and TouchCORE are compatible with the Eclipse Mod-
elling Framework (EMF) [23]. In our prototype, each instance of TouchCORE
can establish a session to connect to the shared CDO model repository. All those
instances that are connected to the same repository and have loaded the same
model element collaborate with one another. Short CDO transactions are used
to manipulate the shared models, and EMF notifications are fired from the CDO
model repository to ensure that the local model changes whenever it has been
updated by a remote collaborator. Despite the fact that CDO offers explicit locks
that would make it possible to avoid conflicts or wasted efforts due to concurrent
modifications, we decided not to lock any model elements to streamline the col-
laboration in accordance with the current trends in collaborative environments
presented in Sect. 2. The highlighting and deletion algorithms mentioned above
were implemented in TouchCORE and are in the coming subsection evaluated
by applying them on the Reusable Aspect Models (RAM) metamodel.

Towards Online Collaborative Multi-view Modelling 213

6.2 Highlight Algorithm Evaluation

As discussed above, the main goal of highlighting model elements is to provide
the local collaborator with a sense of what the remote collaborators are currently
working on. Concretely, this means that our highlighting algorithm is effective if,
when seeing a highlighted model element, the local collaborator knows what the
remote collaborator is currently working on and whether or not it interacts with
his task. To answer this question, we evaluated how accurately a local user can
determine what model element a remote user is editing when a model element
is highlighted in his local view.

To this aim, we inspected the TouchCORE GUI for the structural view (class
diagram), message view (sequence diagram) and state view (state diagram) edi-
tors, and identified a set V of 51 model elements and model element properties
from the RAM metamodel (see Fig. 2) that are visualized in at least one of the
editors. We then ran our highlight propagation algorithm in reverse on those
elements. In other words, given a visualized, highlighted element eh ∈ V and a
highlighting intensity level – strong, medium or light, we determined the poten-
tial elements ec that could have been edited by the remote collaborator that
would cause this highlighting. If there is only one possible element that could
have caused the highlighting, then an experienced local collaborator will be able
to determine the remote collaborator’s focus. Only in cases where more than one
possible element can be the cause, the local collaborator cannot determine with
certainty what the remote collaborator is working on.

Evaluation Results. It is obvious that if eh is highlighted in strong colour,
the only model element that could have been edited remotely that would cause
such a highlighting is the element eh itself. Hence, the local collaborator knows
immediately and unambiguously what element is currently being modified and
by whom.

For an element eh to be highlighted in medium, it must directly or indirectly
refer to some other element. Out of the 51 elements in V, only 24 refer to other
elements in the metamodel. Out of these 24, 9 have only one direct outgoing
reference, and no indirect references. For these 9 elements, there is therefore a
unique model element or property that causes the highlighting. So in the end,
only 15 elements have more than one possible cause when being highlighted in
medium. They are listed in Table 11. 1 highlighted element has two potential
causes, 6 highlighted elements have four potential causes, 6 of them have six
potential causes and the remaining 2 have seven or more.

While this sounds like much, many of the potential causes are knowledge-
wise equivalent. A careful inspection of the list reveals that for 6 of them, the

1 The abbreviations used are ORT: Operation Return Type, TP: Type Parameter, IC:
Implementation Class, PaT: Parameter Type, AT: Attribute Type, Vis.: Visibility,
AE: Association End, RT: Reference Type, MS: Message Signature, RL: Enum Lit-
eral, PVM: Parameter Value Mapping, SM: State Machine, TET: Typed Element
Type, AS AsTo: Assignment Statement Assign To, CF: Combined Fragment, InCon:
Interaction Constraint, MR: Message Returns.

214 N. Kanagasabai et al.

multiple causing elements are close to equivalent considering that the goal is
to discover the editing focus of the remote collaborator. For example, when a
State is highlighted in medium there are two potential causes, namely that an
incoming or outgoing transition was modified in a different view, or that the
signature of the transition was modified. Both cases allow the local collaborator
to conclude that the remote collaborator is working on a transition related to
the state that was highlighted. The 6 cases that have 4 potential causes also
communicate equivalent knowledge to the local collaborator. For example, when
the attribute type (AT) is highlighted in medium, the remote collaborator must
be changing properties of the type definition, e.g., adding a new Enum Literal
to a user-defined Enum type. So in the end, out of 51 elements, 36, i.e., 70.58%,
are unambiguous. If knowledge-equivalence is taken into account, only the last
5 elements in Table 1 are actually ambiguous, which increases the unambiguity
to 90%.

Table 1. Sample elements highlighted in medium colour

eh Elements ec that could cause medium highlighting

State Transition, Transition signature

IC RL, Enum, Class, IC

AT Enum, Class, IC ← RL

GenericType Enum, Class, IC ← RL

RT Enum, Class, IC ← RL

ORT Enum, Class, IC ← RL

PaT Enum, Class, IC ← RL

MR AT, PaT ← Enum, Class, IC ← RL

AS value AT, PaT ← Enum, Class, IC ← RL

InCon AT, PaT ← Enum, Class, IC ← RL

PVM Parameter, PaT ← Enum, Class, IC ← RL

MS Operation Vis, ORT ← Enum, Class, IC ← RL

AS AsTo AE, AT ← Enum, Class, IC ← RL

Message Operation Vis, AE, AT, ORT ← Enum, Class, IC ← RL

Lifeline AE, PaT, AT ← Enum, Class, IC ← RL

We repeated the same analysis for the light highlighting. Among the 51
elements in V, only 20 contain other elements and hence could potentially be
highlighted in light. Out of the 20 cases, 10 of them had a unique cause, 2 of
them had three possible causes, 1 had five possible causes and 7 of them had
six or more possible causes. The 10 ambiguous cases are listed in Table 2. So in
the end, out of 51 elements, 41 cases, i.e. 80.39%, are unambiguous.

Towards Online Collaborative Multi-view Modelling 215

Table 2. Sample elements highlighted in light colour

eh Elements ec that could cause light highlighting

ORT Attribute, Operation, Parameter, TP, AE, RL

PaT Attribute, Operation, Parameter, TP, AE, RL

IC Attribute, Operation, Parameter, TP, AE, RL

TP Attribute, Operation, Parameter, TP, AE, RL

RT Attribute, Operation, Parameter, TP, AE, RL

Lifeline Attribute, Operation, Parameter, TP, AE, RL

CF Interaction Operand, Attribute, Operation, Parameter, TP, AE, RL

Message Temporary Property, PVM, VS

Transition Constraint, VS, Parameter

SM Transition, State, Substitution, Constraint, VS

6.3 Delayed Deletion Algorithm

To evaluate the Delayed Deletion algorithm, we prepared the list of model ele-
ments in the RAM metamodel that can be removed or deleted by a collaborator
and that could yield inconsistencies because of dangling cross-view references.
The idea was to count how many potential kinds of inconsistencies can a delete
operation on a model element cause. Column 1 in Table 3 lists the model ele-
ments that can be deleted by a collaborator in the structural, message and state
views of the TouchCORE tool. Column 2 lists the inter-view crossreferences that
could cause inconsistencies. The worst case occurs when a Class is deleted, as
7 potential inter-view references become inconsistent. For example, the type of
a parameter (PaT) could refer to a class that is being deleted. Additionally,
though, as per the RAM metamodel, Classifier, the supertype of Class, con-
tains Operations, Association Ends, Type Parameters and the Operations, which
in turn contains Parameters. Class also contains Attributes. Therefore, a delete
of a Class would remove all these contained elements as well. The total potential
kinds of dangling inter-view references when deleting a Class is therefore 25!

7 Related Work

To the best of our knowledge, no existing approach provides a highlighting
algorithm that can be applied on any multi-view modelling environment.
Furthermore, no approach proposes a solution for deleted elements in a multi-
view modelling environment.

Support for online collaboration is limited in multi-view modelling envi-
ronments [11]. Some of the modelling approaches that support real-time
collaboration are GenMyModel [3], AtomPM [24], Camel [8], MetaEdit+ [13],
Unicase [6], and GEMSjax [10]. With an exception of AToMPM, GenMyModel
and WebGME, the other tools focus on single-view workspaces [20]. Some of

216 N. Kanagasabai et al.

Table 3. Evaluation of Delayed Deletion Algorithm

Element Probable immediate inconsistencies

Classifier State View Specifies, TP Generic Type, AT, RT, PaT, ORT, TET

Association Message AsTo, AS AsTo, Structural Feature Value, TET

Attribute Message AsTo, AS AsTo, Structural Feature Value, TET

Operation Message, MV, Aspect MV, Transition, Parameter Value, PVM

Parameter Parameter Value, PVM, TET

Super Type Classifier

Literal Enum Literal Value

Message Message End

State SM, Transition

Transition State, Transition Substitution

these approaches use locking such as WebGME [17], which is a web-based collab-
orative modelling tool. The locked elements indicate which model elements the
collaborators are currently working on. However, it is not possible to identify who
is working on a model. Our highlighting algorithm does not require locking and
visualizes the current focus of the collaborators using personalized colours for
each collaborator. The closest approach to our work is Pounamu [25], a modelling
approach that that uses synthetic links between domain-specific languages and
highlights selected model elements with personalized colours. However, Pounamu
does not traverse the metamodels as we do, and does not consider the degree of
impact when colouring an element.

Even the tools for UML, which specifies many different kinds of diagrams,
have only limited support for multi-view collaboration [11]. Mougenot et al. [19]
use partial replication of the system specification and message exchanges to
propagate changes among the developers. Bruegge et. al. introduces a framework
that uses dedicated modelling artifacts to support collaboration [7]. Michaux
et al. [18] represent the state of the model as a sequence of operations that are
used to communicate change information between collaborators. All these UML-
based approaches do not support highlighting impacted elements as we do and
do not the mitigate impact of delayed elements.

Some technologies such as MagicDraw [4] and EMFStore [2] provide sup-
port for offline collaborative modelling using version control. The CDO Model
Repository [1] provides support for both online and offline collaborative mod-
elling. Rocco et al. provide an overview of these tools and discuss their potentials
and shortcomings [21]. However, their simplistic use of locking/conflict manage-
ment slows down productivity [16]. Our prototype implementation uses the CDO
Model Repository for online collaboration without using its pessimistic concur-
rency control capabilities.

Towards Online Collaborative Multi-view Modelling 217

8 Conclusion

This paper introduced two new algorithms that exploit the metamodels of a mod-
elling language to address important challenges in collaborative modelling. The
highlight propagation algorithm notifies all online collaborators when a change
is being made to the model, and by whom. If the actual element that is being
modified is not visible in the active view of the local collaborator, the model ele-
ment that is impacted by the change is highlighted, if any. The delayed deletion
algorithm addresses the problems of inconsistencies that could potentially arise
when a model element is deleted by a collaborator without using pessimistic
concurrency control techniques.

The two algorithms do not depend on specific language features. They can
operate on any modelling language(s) provided they have access to the meta-
model of the language(s). We evaluated the effectiveness of the highlighting
algorithm on the RAM metamodel, yielding a 100%, 70% and 80% success for
communicating the remote change in an unambiguous way for the elements high-
lighted in strong, medium and light colours respectively.

As future work, we plan to evaluate the effectiveness of our algorithms on
metamodels of other multi-view modelling approaches. Furthermore, we will
extend our work to multi-model collaborative environments, i.e., approaches in
which views are stored in separate models and hence cross-references between
views are expressed using more elaborate consistency constraints. Finally, we
will perform user studies on the effectiveness and most appropriate duration of
highlighting.

References

1. CDO Model Repository. http://www.eclipse.org/cdo/. Last Accessed 2018
2. EMFStore. http://www.eclipse.org/emfstore/. Last Accessed 2018
3. GenMyModel. https://www.genmymodel.com/. Last Accessed 2018
4. Magicdraw. https://www.nomagic.com/. Last Accessed 2018
5. Visual paradigm. https://www.visual-paradigm.com/. Last Accessed 2018
6. Bruegge, B., Creighton, O., Helming, J., Kgel, M.: Unicase an ecosystem for unified

software engineering. In: Research Tools, Workshop Distributed Software Develop-
ment - Methods and Tools for Risk Management, pp. 12–17 (2008)

7. Bruegge, B., Dutoit, A.H., Wolf, T.: Sysiphus: enabling informal collaboration in
global software development. In: CAiSE, pp. 139–148. IEEE Computer Society,
Washington, DC, USA (2006)

8. Cataldo, M., Shelton, C., Choi, Y., Huang, Y.Y., Ramesh, V., Saini, D., et al.:
Camel: a tool for collaborative distributed software design. In: ICGSE, pp. 83–92.
IEEE Computer Society, Washington, DC, USA (2009)

9. Combemale, B., DeAntoni, J., Baudry, B., France, R.B., Jézéquel, J.M., Gray, J.:
Globalizing modeling languages. Computer 47(6), 68–71 (2014)

10. Farwick, M., Agreiter, B., White, J., Forster, S., Lanzanasto, N., Breu, R.: A web-
based collaborative metamodeling environment with secure remote model access.
In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS,
vol. 6189, pp. 278–291. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13911-6 19

http://www.eclipse.org/cdo/
http://www.eclipse.org/emfstore/
https://www.genmymodel.com/
https://www.nomagic.com/
https://www.visual-paradigm.com/
https://doi.org/10.1007/978-3-642-13911-6_19
https://doi.org/10.1007/978-3-642-13911-6_19

218 N. Kanagasabai et al.

11. Franzago, M., Ruscio, D.D., Malavolta, I., Muccini, H.: Collaborative model-driven
software engineering: a classification framework and a research map. IEEE Trans.
Softw. Eng. 1–1 (2017)

12. Gray, J., Rumpe, B.: The evolution of model editors: browser- and cloud-based solu-
tions. Softw. Syst. Model. 15(2), 303–305 (2016). https://doi.org/10.1007/s10270-
016-0524-2

13. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+ A fully configurable multi-user and
multi-tool CASE and CAME environment. In: Constantopoulos, P., Mylopoulos,
J., Vassiliou, Y. (eds.) CAiSE 1996. LNCS, vol. 1080, pp. 1–21. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61292-0 1

14. Kienzle, J., Al Abed, W., Klein, J.: Aspect-oriented multi-view modeling. In: AOSD
2009, pp. 87–98. ACM Press (2009)

15. Klein, J., Kienzle, J.: Reusable aspect models. In: 11th Aspect-Oriented Modeling
Workshop, Nashville, TN, USA, Sept. 30, 2007 (2007)

16. Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E., Cuadrado,
J.S., et al.: A research roadmap towards achieving scalability in model driven
engineering. In: BigMDE Workshop, pp. 2:1–2:10. ACM, New York, NY, USA
(2013)

17. Maróti, M., Kecskés, T., Kereskényi, R., Broll, B., Völgyesi, P., Jurácz, L., et al.:
Next generation (meta)modeling: web- and cloud-based collaborative tool infras-
tructure. In: Proceedings of the 8th Workshop on Multi-Paradigm Modeling, pp.
41–60 (2014)

18. Michaux, J., Blanc, X., Shapiro, M., Sutra, P.: A semantically rich approach for col-
laborative model edition. In: Proceedings of the 2011 ACM Symposium on Applied
Computing, SAC 2011, pp. 1470–1475. ACM, New York, NY, USA (2011)

19. Mougenot, A., Blanc, X., Gervais, M.-P.: D-Praxis : a peer-to-peer collaborative
model editing framework. In: Senivongse, T., Oliveira, R. (eds.) DAIS 2009. LNCS,
vol. 5523, pp. 16–29. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02164-0 2

20. Popoola, S., Carver, J.C., Gray, J.G.: Modeling as a service: a survey of existing
tools. In: Tools for Model Driven Engineering (MDETools), a workshop held at
Model-Driven Engineering Languages and Systems (MODELS), Austin, TX (2017)

21. Rocco, J.D., Ruscio, D.D., Iovino, L., Pierantonio, A.: Collaborative repositories in
model-driven engineering [software technology]. IEEE Softw. 32(3), 28–34 (2015)

22. Schöttle, M., Thimmegowda, N., Alam, O., Kienzle, J., Mussbacher, G.: Feature
modelling and traceability for concern-driven software development with touchcore.
In: Companion Proceedings of the 14th International Conference on Modularity,
MODULARITY 2015, Fort Collins, CO, USA, Mar. 16–19, 2015, pp. 11–14 (2015)

23. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional (2009)

24. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Mierlo, S.V., Ergin, H.:
AToMPM: a web-based modeling environment. In: MODELS 2013 Demonstration,
pp. 21–25 (2013)

25. Zhu, N., Grundy, J., Hosking, J., Liu, N., Cao, S., Mehra, A.: Pounamu: a meta-tool
for exploratory domain-specific visual language tool development. J. Syst. Softw.
80(8), 1390–1407 (2007)

https://doi.org/10.1007/s10270-016-0524-2
https://doi.org/10.1007/s10270-016-0524-2
https://doi.org/10.1007/3-540-61292-0_1
https://doi.org/10.1007/978-3-642-02164-0_2
https://doi.org/10.1007/978-3-642-02164-0_2

Collaborative Software Design and Modeling
in Open Source Systems

Omar Badreddin1(&), Wahab Hamou-Lhadj2, Vahdat Abdelzad3,
Rahad Khandoker1, and Maged Elassar4

1 University of Texas, El Paso, TX, USA
obbadreddin@utep.edu, rahad.baten@yahoo.com

2 Concordia University, Montreal, QC, Canada
wahab.hamou-lhadj@concordia.ca
3 University of Ottawa, Ottawa, ON, Canada

vabde040@uottawa.ca
4 NASA Jet Propulsion Laboratory, Pasadena, CA, USA

maged.e.elaasar@jpl.nasa.gov

Abstract. The Open source ecosystem creates new pathways for participation
and collaboration from a broad and diverse community of developers. As a
software system grows, the need to capture its design, often through models,
becomes important in order to boost communication and collaboration. In this
paper, we report on a study that assesses the open source community’s adoption
of modeling as a way to capture design and enable collaboration among
development teams. The study includes a search of open source repositories to
identify modeling artifacts, a survey, a questionnaire, and a set of interviews
with open source contributors. Our findings show that there is a low number of
modeling artifacts that are included in open source project repositories. How-
ever, the survey, the questionnaire, and the interviews suggest that capturing
design in models is much more common than what can be inferred by searching
the repositories alone. These models are created through collaborations, but
often are not shared in the open source repositories. This is due to many factors
including the lack of incentives to share modeling artifacts beyond the imme-
diate circle of collaborators and limited collaboration support in modeling tools.

Keywords: Model driven software development � Open source
Collaborative modeling � Empirical investigation

1 Introduction

Open source software (OSS) has demonstrated numerous successes in supporting large-
scale collaborative projects. OSS is unique in its support for collaborative development
because of its inert ability to attract and sustain a community of users and developers. It
is common for an OSS project to include hundreds, and sometimes thousands, of
developers contributing to the same project, often with high turnover rates.

However, many OSS projects are developed with little structure, heavily relying on
the vigilance of contributors and a few champions. Adoption of UML and other design
languages is particularly scarce [1, 6]. This lack of structured development means that

© Springer Nature Switzerland AG 2018
F. Khendek and R. Gotzhein (Eds.): SAM 2018, LNCS 11150, pp. 219–228, 2018.
https://doi.org/10.1007/978-3-030-01042-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01042-3_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01042-3_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01042-3_13&domain=pdf

OSS often accumulates significant technical debts and suffers from unnecessary and
avoidable code complexities [13]. This, in turn, obscures the knowledge embedded in
the algorithms and codes, limits reuse, and makes code prohibitively expensive to
maintain, upgrade, scale, or extend.

Investigations of open source modeling practices often focus on mining artifacts
from open source repositories [9]. These studies provide valuable insights into the
types and nature of modeling practices adopted in open source projects. However, such
studies are limited in their scope, as some artifacts are not published as part of the open
source project. In this paper, we conduct a study that not only investigates open source
repositories, but also includes extensive input from open source contributors. Specif-
ically, this study (1) searches repositories to identify modeling artifacts, (2) surveys
open source contributors, and (3) collects data from questionnaires and interviews to
gain further insights into the practice. This paper extends our previous work on sur-
veying software engineering practitioners [8] and investigating open source develop-
ment practices [1], including work on open source collaborative design [4].

The rest of the paper is organized as follows. Related work is presented in Sect. 2.
The study structure is presented in Sect. 3 where we present the survey, questionnaire
and interview design. In Sect. 4 we present the study results and analysis. Threats to
validity are discussed in Sect. 5 followed by a conclusion in Sect. 6.

2 Related Work

There are a few studies that focus on collaborative modeling in open source envi-
ronments. Sack et al. [7] described a methodological framework that combines
ethnography, text mining, and socio-technical network analysis and visualization to
understand OSS development in its totality. Ho-Quang et al. [3] analyzed open source
projects for evidence of modeling. While they found that modeling activities are rather
scarce in the open source artifacts, those who do adopt them report increased pro-
ductivity and code quality. Low adaption of modeling practices particularly in open
source projects has also been reported by other studies [1, 2]. Nakagawa presented a
case study that established the relationship between software architecture and code
quality in open source [11]. Gaar and Teiniker [12] analyzed model-based design
collaboration in open source, and demonstrated the potential for using social media
platforms to facilitate global model-based collaboration.

Many open source software systems grow organically with little upfront designs
[15]. Gregory et al. studied how open source software systems evolve over time [16].
Their study is unique, not only because their focus is the open source software evo-
lution, but also because their study scope is not limited to the open source artifacts
alone. They also studied how the open source community evolved along with the
software artifacts. In their study, they modeled software teams as collaborative social
network of developers.

220 O. Badreddin et al.

3 Study Design

Our study includes (1) investigation of open source artifacts, (2) a survey targeting
open source contributors and users, and (3) a questionnaire and interview study with
open source contributors and users. The aim of the study is to answer the following
research questions:

• RQ1. To what extent do open source developers collaborate on design and mod-
eling artifacts?

• RQ2. What is the nature of the model-based collaborations in open source
environments?

• RQ3. What are the key incentives and barriers for mode-based collaborations in
open source systems?

3.1 Subject Systems

The scope of this study includes 67 open source projects selected based on the fol-
lowing criteria. First, we sorted GitHub repositories based on project size and then
selected the first 50 most active projects based on GitHub ranking of project activities
[10]. Second, we selected 11 projects based on the following criteria. Using GitHub
advanced search, we identified projects written in C++, Java, JavaScript, Shell, C#, and
C. This increases the generality of our results and excludes domain-specific languages
that may not represent the general open source practices adequately. We excluded all
projects that were not active in the last five years. We excluded projects that did not
have at least three active contributors and were not cited in any scientific article on
Google Scholar. The citation criterion ensures minimum level of maturity of code and
excludes in-progress projects. The resulting set was sorted based on project size, and
then we selected the top 11 projects. We conveniently added a new system, the
Quantum Geographical Information System (QGIS) [5]. QGIS was included because it
is the premier geo-analysis tool that is developed by both open and closed source
developers. It has a global contributor and user base, with a significant interest from
private entities that often support professional developers’ contributions. This project
sample are identified to represent the general practices of large open source projects.
The first 50 projects are listed in [1]. Table 1 lists the additional 12 projects included in
this study.

The second set of projects are selected from a pool of projects that are known to
have some level of design and modeling activities. We conveniently selected five
repositories from a pool of 4,237 identified in [3] to be model-heavy repositories. These
4,237 repositories were selected by mining all GitHub repository artifacts and selecting
those that included significant number of UML and modeling elements. From this list,
we selected five projects that meet the following criteria, code size is greater than
150 K lines of code written predominantly in an object-oriented language and has
GitHub popularity start of at least 4. These repositories represent projects where the
team has shared designs and models as part of the open source artifacts. These five
repositories are listed in Table 2.

Collaborative Software Design and Modeling 221

3.2 Survey

The survey was conducted online [14]. We sent targeted requests to personal contacts
in a wide variety of organizations. We also asked for participation using a variety of
Internet forums. The survey consisted of 18 topics. Most of these involved several sub-
questions answered using 5-point Likert scales. Responses were in ranges such as
strongly disagree to strongly agree, or never to always.

The survey questions were broad in focus and included many questions related to
development and design practices and questions about platforms and technologies
used. The survey was divided into groups of questions as follows:

• Q1: What is or is not a model? Various options were presented ranging from class
diagrams, use cases, to source code. Our objective was to see if participants had a
preconceived notion about what they considered a model to be.

• Q2-5: How and when do you model, and using which notations? The objective of
these questions was to understand the state of the practice. These questions explore
how do the participants go about preforming their modeling and design activities,
including whether the participants use models during meeting, use a white board to
share and collaborate on the model, etc.

Table 1. Included open source projects

Num. Name Commits Code size Active contributors

1 Pykep 646 201,430 12
2 Rash 572 148,931 11
3 Epiviz 289 204,528 3
4 Seg3D 2,365 8,574 12
5 BioImageLab 6 15,337 2
6 Sead-virtual-archive 408 200,611 8
7 VEGL-Portal 13,33 72,213 5
8 BEACON Toolkit 101 156 3
9 Mule 61 1,249 2
10 Prov-scaffold 8 2,764 3
11 eo4vistrails 667 18,218 2
12 QGIS 44,029 1.2 m 244

Table 2. Sample of modeling repositories

Repository Commits Code
size

Primary programming lang. Analyzed
LoC

Active cont’rs

Count %

Marble 9,090 265,546 C++ 95,157 36 100
Oryx-editor 2,022 640,127 JavaScript, Java 543,704 85 1
101repo 2,312 183,083 PHP, JavaScript, Java, C# 154,437 84 25
Activiti 7,741 207,339 Java 192,812 93 151
Poi 9,157 450,906 Java 427,326 95 11

222 O. Badreddin et al.

• Q6: How do you approach a new task or feature with respect to requirements,
design, modeling, testing and documentation?

• Q7-10: What tools, methods and platforms do you use, and what type of software
do you develop?

• Q11-14: To what extent do you use modeling, and how good is it for various tasks.
• Q15-16: What are the principal difficulties you perceive with the model-centric and

code-centric approaches?
• Q17: An open-ended free form question for comments about the survey and/or

modeling in general.
• Q18: Demographics question with sub-questions about country of origin, education

level, and years of experience of the participant.

3.3 Questionnaires and Interviews

We requested short interviews with the survey respondents. When a respondent
declined the interview due to time limitation or difficulties in scheduling a suitable
time, we sent out a questionnaire. The questionnaire and the interview discussions were
moderated by the following questions:

• Q1: What kind of contributions do you make to <project name> (code, test, doc-
umentations, other)?

• Q2: What is the primary goal or motivation of your contributions (for instance: paid
effort, support research you do or someone else is doing, or support commercial-
izing or services)?

• Q3: How do you go about understanding the code base to make your contributions?
Do you refer to documentations, designs, or do you seek information directly from
other developers?

• Q4: Is there an overall design, architecture, or model that you refer to? How useful
is the design or architecture? Is it up to date? Do you collaborate using models with
other contributors? If yes, who do you collaborate with and what is the medium of
the collaboration? What are the factors that determines this collaboration scope?

• Q5: Are software design and modeling artifacts shared as part of the open source
project? and why?

• Q6: In your opinion, what is required to encourage more contributors to the project?
What are the key limiting factors?

• Q7: Do you consider <tool name> well designed, and the code is of high quality?

4 Results and Analysis

We have examined 62 projects’ code, commits, related documentations such as design
artifacts and coding standards. The online survey received 85 complete responses. We
have conducted six interviews, and collected questionnaire responses from five con-
tributors. Of the interviewed participants, five were paid professionals contributing to
the QGIS project. We shared preliminary results and analysis with two participants and
conducted two additional follow-up interviews.

Collaborative Software Design and Modeling 223

4.1 Evidence for Design and Modeling Artifacts

Investigation of the largest 50 open source projects suggests that modeling artifacts are
almost non-existent. Based on the number of files, only 0.03% were XML based.
Investigation of these resulting files showed that only 0.01% included XMI specific
tags. The examination of related documentations, such as development environment
setup guidelines, showed that none of these projects has model-based design
descriptions. For the other 12 subject projects (shown in Table 1), we found that they
contain negligible modeling artifacts. XML files that included XMI specific tags were
almost non-existent (less than 0.01%). Related documentations supported the finding
that models and design artifacts are not available.

4.2 Evidence for Design and Modeling Practices

Despite the fact that the examination of artifacts does not directly suggest that modeling
is practiced, our questionnaire and interview results suggest a broad set of design and
model-based collaborations.

Survey. Participants averaged 10 years of experience, with 50% having more than 5
years of experience, and about 28% having more than 12 years of experience. More
than one third of respondents are from the USA. Half of the respondents are from Asia
and the rest are from Europe and Africa. 52% of respondents indicated that they either
sometimes (42%) or often (10%) engage in design activities on whiteboards. Only 12%
indicate that they never use a design tool. Those who participate in design activities
reported using a design tool to capture design (78%), transcribe an existing design into
a digital format (71%), prototype (60%), brainstorm (45%), and generate some code
(72%). 95% of the responses showed interest in using a modeling tool for collabora-
tion. Of those, 60% ranked this capability as very important.

Questionnaire and Interviews. All contributors report code as their primary form of
contributions to the open source project. About 27% (3/7) contribute to the test code.
Comprehension activities were centered around reading code (95%). Related docu-
mentations were not a good source of information for 85% of participants. Interest-
ingly, 36% (4/11) of participants reported engaging in design and model-based
collaborations. Those four participants were contacted for follow-up interviewing and
we conducted two follow-up interviews. Participants in the interviews were contribu-
tors to the QGIS project. Both were professional software engineers compensated for
their code contributions. Both participants reported significant design deliberations
with other ‘key’ contributors. For example, one of the participants said: “we have
design documents that I share with my colleagues. We often discuss design decisions in
great length.” Those model-based deliberations are often performed offline using
personal and business emails. The primary goal of using design models is to plan work
packages and resource assignments.

Code quality is a major concern, but design and modeling approaches do not seem
to be the primary approach for improving code quality. This can be seen in this
passage: “.. we need to do much more code reviews, but we do not have the resources
for that. But it is in the plans… do not see how models can improve code quality. Our

224 O. Badreddin et al.

models are at a higher level, and we do not translate the models to code.” Furthermore,
there is little deviation from the design specifications and implementations. For
instance, we obtain this from one of the participants: “the code matches the design
pretty much.. at least for the core components. The corners [plug-ins developed by
open source contributors], it is very different.”

4.3 Characterization of Model-Based Collaborations

As discussed in Sect. 4.1, investigation of open source artifacts does not suggest any
significant levels of collaborations on models. In this section, we focus on analysis of
the survey and questionnaire/interview data.

Survey. Model-based collaborations on whiteboards and during meetings are the most
common venues for model-based collaborations. Of the 40% respondents who reported
to participate in collaborative modeling regularly, more than 85% perform these
activities on a whiteboard and 54% during meetings. Only 12% share results with close
circle of collaborators and none reported publishing results of model-based collabo-
ration along with open source project artifacts.

Questionnaire and Interviews. 36% of participants reported engaging in collabora-
tive design. None of the participants reported using a dedicated design or modeling
tool. There was no motivation to use a dedicated modeling or design tool. One said, for
example, “… we do not generate any code or tests from the models.” QGIS is the only
project where design deliberations (not the design models themselves) are made
publicly available in the form of meeting minutes.

Lack of mechanisms to enforce design specifications in the code seems to be a
major factor limiting incentives to share designs. When probed on reasons for not
sharing designs, one participants reported “.. I share the designs with three collabo-
rators. They know [the project code] and I can trust they will stick to the design
specifications. Why would I share designs if there is no way to enforce it?” Other
factors limiting incentives for sharing designs include relevance to other developers,
not being part of the build process, and the casual nature of the available designs, and
their change fluidity.

We identified two methods of collaborations, namely asynchronous and syn-
chronous collaborations. In asynchronous collaborations, models are stored in Micro-
soft Word documents and are shared by emails. Changes are often communicated by
chats or emails and are implemented in the model as needed. Multiple copies of the
models may exist with different contributors and there is no pressing need to ensure
model consistency. In synchronous collaborations, models are stored in the cloud,
though often not part of the open source project artifacts. Collaborations were limited to
only a few concerned developers. One participant expressed “.. the design specifica-
tions are in the cloud and open for anyone. But.. only a few key developers would [care
to / invest time to] contribute to the designs..” Design deliberations can often be
lengthy, and can occur over long periods of time.

Collaborative Software Design and Modeling 225

4.4 Analysis

Our analysis suggests that model-based collaborations in open source is rather limited.
When it is performed, it seems that modeling artifacts are only shared with close
collaborators and not shared as part of the open source project artifacts. We term this
collaboration style as Champions-only Collaboration. In this style, only a few main
contributors (or champions) collaborate on design artifacts. Design artifacts may be
made available online, but are typically not available for contributions from the broader
set of contributors or users. There is often no documentations or guidance on the
available designs. Champions collaborate offline on models and other design artifacts.
This explains, at least in part, why investigations of open source artifacts often suggest
little to no collaborative modeling. Participants in our study indicated lack of incentives
to share models beyond the immediate circle of collaborators.

5 Threats to Validity

The main threats to validity of our work are summarized below. We also outlined the
steps we have taken to help mitigate these threats.

5.1 Question Interpretation

The survey, the questionnaire, and interviews were conducted online. It is possible that
some participants may have misunderstood or misinterpreted the question wording. We
performed three activities to improve the clarity of the questions. First, we all questions
were independently reviewed by two independent researchers. Second, participants
often completed an optional feedback questions that included specific feedback on the
research instruments itself. Third, we conducted a pilot study to refine question
wording to minimize ambiguities.

5.2 Researcher Bias

The goal of the study is to uncover patterns of model-based collaboration. It is possible
that the questions or the interviews may have introduced a bias that may have influ-
enced the participants responses. A potential bias may have been introduced if the
questions may have influenced participants Reponses. It is also possible that partici-
pants may have opted not to participate if the questions were focused on model-based
collaboration. To reduce this bias, we selected neutral words whenever possible.
Moreover, we presented questions in random order whenever possible.

5.3 External Validity Threat

It is possible the subject repository selected for this study is not an adequate repre-
sentation for the overall practices in open source projects. To help mitigate this risk, we
reported our repository selection process and used objective measures to perform the
selection. The selection process included a small number of repositories for in-depth

226 O. Badreddin et al.

analysis, and a larger repository set that was subject for wholistic analysis. Never-
theless, the external validity threat still exists.

The external validity threat is also present due to the sample of participants in the
survey and questionnaire studies. To help minimize this threat, we approached par-
ticipants from a broad set of venues not limited to open source venues. The collected
demographics data reflects diversity in the sample.

6 Conclusion

We conducted a study to understand the nature of model-based collaboration in open
source projects. The study included an investigation and analysis of open source
artifacts, a survey, a questionnaire and interviews with open source developers. The
study included investigations of open source repositories and their artifacts.

The study suggests that model-based collaboration is practiced, but that model-
based collaboration artifacts are often not shared as part of the project artifacts. Model-
based collaborations are often conducted informally within a small circle of contrib-
utors or champions. Designs often do not contribute directly to code and there are little
incentives to share design and modeling artifacts beyond the immediate circle of
collaborators.

References

1. Badreddin, O., Lethbridge, T.C., Elassar, M.: Modeling practices in open source software.
In: Petrinja, E., Succi, G., El Ioini, N., Sillitti, A. (eds.) OSS 2013. IAICT, vol. 404,
pp. 127–139. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38928-3_9

2. Franco-Bedoya, O., Ameller, D., Costal, D., Franch, X.: Open source software ecosystems: a
systematic mapping. Inf. Softw. Technol. 91, 160–185 (2017)

3. Ho-Quang, T., Hebig, R., Robles, G., Chaudron, M.R.V., Fernandez, M.A.: Practices and
perceptions of UML use in open source projects. In: Proceedings of the 39th International
Conference on Software Engineering: Software Engineering in Practice Track, pp. 203–212.
IEEE Press (2017)

4. Badreddin, O.: Umple: a model-oriented programming language. In: Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering, vol. 2, pp. 337–338.
ACM (2010)

5. QGIS, D.T.: Quantum GIS geographic information system. Open source geospatial
Foundation project, 45 (2011). https://github.com/qgis/QGIS

6. Khandoker, R., Badreddin, O.: Professional coding and modeling practices (2017). https://
goo.gl/bQV9Ph

7. Sack, W., Détienne, F., Ducheneaut, N., Burkhardt, J.-M., Mahendran, D., Barcellini, F.:
A methodological framework for socio-cognitive analyses of collaborative design of open
source software. Comput. Support. Coop. Work (CSCW) 15(2), 229–250 (2006)

8. Lethbridge, T.C., Forward, A., Badreddin, O.: Problems and opportunities for model-centric
vs. code-centric development: a survey of software professionals. In: Proceedings of C2 M:
EEMDD (2010)

Collaborative Software Design and Modeling 227

http://dx.doi.org/10.1007/978-3-642-38928-3_9
https://github.com/qgis/QGIS
https://goo.gl/bQV9Ph
https://goo.gl/bQV9Ph

9. Beller, M., Bacchelli, A., Zaidman, A., Juergens, E.: Modern code reviews in open-source
projects: which problems do they fix? In: Proceedings of the 11th Working Conference on
Mining Software Repositories, pp. 202–211. ACM (2014)

10. GitHub Developer guide. Available: https://developer.github.com/v3/repos/statistics/
11. Nakagawa, E.Y., de Sousa, E.P.M., de Brito Murata, K., de Faria Andery, G., Morelli, L.B.,

Maldonado, J.C.: Software architecture relevance in open source software evolution: a case
study. In: 32nd Annual IEEE International Computer Software and Applications, 2008.
COMPSAC 2008, pp. 1234–1239. IEEE (2008)

12. Gaar, W., Teiniker, E.: Improving model-based collaboration by social media integration.
In: 2014 IEEE 27th Conference on Software Engineering Education and Training
(CSEE&T), pp. 158–162. IEEE (2014)

13. Alfayez, R., Chen, C., Behnamghader, P., Srisopha, K., Boehm, B.: An empirical study of
technical debt in open-source software systems. In: Madni, A.M., Boehm, B., Ghanem, R.G.,
Erwin, D., Wheaton, M.J. (eds.) Disciplinary Convergence in Systems Engineering Research,
pp. 113–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-62217-0_9

14. Badreddin, O., Khandoker, R.: Software modeling survey. https://docs.google.com/forms/d/
e/1FAIpQLSclPAi-49RXWwtPmbtSfzZBDm6ZBvBwZqhVlzHoybC4pRb1ZQ/viewform?
c=0&w=1&includes_info_params=true. Accessed July 2018

15. West, J., Gallagher, S.: Challenges of open innovation: the paradox of firm investment in
open-source software. R&d Manag. 36(3), 319–331 (2006)

16. Madey, G., Freeh, V., Tynan, R.: The open source software development phenomenon:
an analysis based on social network theory. In: AMCIS 2002 Proceedings (2002), p. 247

228 O. Badreddin et al.

https://developer.github.com/v3/repos/statistics/
http://dx.doi.org/10.1007/978-3-319-62217-0_9
https://docs.google.com/forms/d/e/1FAIpQLSclPAi-49RXWwtPmbtSfzZBDm6ZBvBwZqhVlzHoybC4pRb1ZQ/viewform%3fc%3d0%26w%3d1%26includes_info_params%3dtrue
https://docs.google.com/forms/d/e/1FAIpQLSclPAi-49RXWwtPmbtSfzZBDm6ZBvBwZqhVlzHoybC4pRb1ZQ/viewform%3fc%3d0%26w%3d1%26includes_info_params%3dtrue
https://docs.google.com/forms/d/e/1FAIpQLSclPAi-49RXWwtPmbtSfzZBDm6ZBvBwZqhVlzHoybC4pRb1ZQ/viewform%3fc%3d0%26w%3d1%26includes_info_params%3dtrue

The Impact of Integrating Agile Software
Development and Model-Driven

Development: A Comparative Case Study

Hessa Alfraihi1,3(B), Kevin Lano1, Shekoufeh Kolahdouz-Rahimi2,
Mohammadreza Sharbaf2, and Howard Haughton1

1 Department of Informatics, King’s College London, London, UK
{hessa.alfraihi,kevin.lano}@kcl.ac.uk

2 Department of Software Engineering, University of Isfahan, Isfahan, Iran
{sh.rahimi,m.sharbaf}@eng.ui.ac.ir

3 Department of Information Systems, Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia

Abstract. Agile and Model-Driven Development integration (Agile
MDD) is of significant interest to researchers who want to leverage the
best of both worlds. Currently, there is no clear evidence or proof for the
real impact of such integration. As a first step in this direction, this paper
reports an empirical investigation on the impact of integrating Agile and
Model-Driven Development on the quality of software systems. To this
end, we developed a financial application using Agile MDD, which is
further contrasted with three other independent versions of the same
application developed using different approaches: Agile method, MDD
method, and traditional (manually-coded) method, respectively. We also
compared the functionality of the systems and a variety of technical debt
metrics measuring the quality of the code and its design. Based on the
case study results, we have found that the use of Agile MDD shows some
improvements in the product quality and efficiency.

Keywords: Agile development · Model-driven development
Agile model-driven development integration · Case study
Financial applications

1 Introduction

Agile development processes evolved to overcome some of the perceived limi-
tations of the bureaucratic plan-driven approaches [8]. They attempt to be as
lightweight as possible in terms of the development process: their primary goal is
to deliver a system to the customer that meets his needs, in the shortest possible
time, taking account of changes in requirements. This is achieved by having short
iterations and developing software incrementally; coping with changes through
specific technical practices, and by focusing on customer involvement throughout
the development. A variety of agile processes exist that share the same values
c© Springer Nature Switzerland AG 2018
F. Khendek and R. Gotzhein (Eds.): SAM 2018, LNCS 11150, pp. 229–245, 2018.
https://doi.org/10.1007/978-3-030-01042-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01042-3_14&domain=pdf

230 H. Alfraihi et al.

and principles. The most widely used are Scrum [22] and Extreme Programming
(XP) [5].

Model-driven Development (MDD) is another software development app-
roach that has been gaining considerable attention during the last decade [3,17].
Unlike Agile development, MDD provides a capability for a high degree of rigour
and formalisation by proposing a paradigm shift from code level to model level.
The main aim of MDD is to separate the business logic from its implementation.
This allows the developers to focus on solving the problem instead of focusing
on its implementation. Particularly, MDD uses models as the primary artifact
of the software development and the implementation is generated automatically
(or semi-automatically) from the models. MDD promotes faster development
with fewer bugs (in principle) by automatic generation of code, easier commu-
nication among stakeholders by increasing abstraction in the design, improving
maintainability, and generating platform-independent solutions [15].

Agile and Model-driven Development integration (Agile MDD) is of signifi-
cant interest to researchers who want to utilise the best of both worlds. However,
not enough research has been carried out to investigate the impact of their inte-
gration [1,6]. More specifically, not much is known about the quality of software
developed using an Agile MDD approach. The aim of this paper is to assess
the impact of integrating Agile development and MDD through a case study.
To that end, a comparison between four independent developments of the same
application was performed, with the developments using different approaches:
Agile MDD, MDD, Agile, and non-Agile hand-coded development.

The remainder of this paper is structured as follows. After a brief discussion
of related work in Sect. 2 and our research methodology in Sect. 3, we describe
our Agile MDD process in Sect. 4. In Sect. 5, we report on the case study, while
the results are presented in Sect. 6. Section 7 discusses the results followed by
listing the limitations of this study. Finally, Sect. 8 discusses the conclusion of
the study and highlights areas for future work.

2 Related Work

In our previous work [2] we compare a UML to C code generator developed using
Agile MDD, to previously developed code generators (for UML to Java, C++,
and C#). These generators were developed using an Agile method with manual
coding in Java. The results show a 33% increase in the developer’s productivity
and a 4 times reduction in size (LOC) for Agile MDD. Likewise, Zhang and Patel
[27] compare some components developed using Agile MDD to other hand-coded
components developed using Agile method. They noticed a threefold increase in
productivity and higher quality in terms of reduced defects density. However,
they did not show clear metrics or explain how the comparison was performed.

To the best of our knowledge, there is no case study on Agile MDD that
compares the same software product in three ways, to one developed using MDD
without Agile, to another using Agile development without MDD, and to one
developed manually in a traditional way. This study should fill in this gap and
provide such comparison.

The Impact of Integrating Agile Software Development 231

3 Research Methodology

The high-level goal of our research is to evaluate the impact of integrating Agile
development and MDD. The research goal was refined into detailed proper-
ties, and specific measures for these properties were selected, according to the
Goal Question Metric (GQM) methodology [4]. The goal leads to the following
research questions:

RQ1: What is the impact of integrating Agile development and MDD on the
software product?

RQ2: What is the impact of integrating Agile development and MDD on the
software development process?

This research is conducted using the case study method [26]. We designed our
study to compare the Agile MDD approach with three different approaches:
MDD, Agile, and hand-coded approaches. In particular, the four applications
were all implementing the same problem and were completed entirely indepen-
dently using different development approaches by different developers:

1. A manually-coded version in C++, developed by a financial company.
2. An Agile MDD version, using UML-RSDS, developed by the second author.
3. An MDD approach, using ETL, developed by the fourth author.
4. An Agile approach, using Java, developed by the first author.

In order to answer the RQ1, the properties of quality, efficiency and maintain-
ability of the case study versions were compared. For quality and maintainability,
we use measures that are versions of the technical debt [16]. Technical debt is a
metaphor referring to immature artifacts in the software development that neg-
atively influence the software quality and maintainability in the long-run [23].
We have selected these technical measures because: (1) they have been used
frequently in the literature [10,16]; (2) they are related to the quality of the
software product that we intend to investigate, e.g., the complexity, coupling,
and design flaws. We have used different measures and metrics to quantitatively
compare all the applications by collecting the following data:

– EAS: Excessive application size. For MDD specifications a complexity mea-
sure can be defined, based on the total number of basic and composite expres-
sions in the specification. For programs, LOC can be used. The threshold for
a flaw to be present is a total complexity > 1000, or length > 500 LOC.

– ENR: Excessive number of rules (nrules > 10). This only applies to trans-
formation languages such as ETL.

– ENO: Excessive number of helpers/operations (nops > 10).
– EHS: Excessive helper/operation size (complexity > 100 or length > 50

LOC). To give a more detailed comparison, we also consider maximum
helper/operation size (MHS) within a program/specification.

– ERS: Excessive rule size (complexity > 100 or length greater than 50 LOC).
Maximum rule size MRS is also considered.

232 H. Alfraihi et al.

– EFO: Excessive fan-out of a rule/operation (>5 different rules/operations
called from one rule/operation). Maximum fan out MFO is also considered.

– CC: Cyclomatic complexity (of rule logic or of procedural code) (>10). Max-
imum CC MCC for any rule or code is considered.

– CBR Coupling between rules (number of rule/operation explicit or implicit
calling relations> nrules + nops, or any cyclic dependencies exist in the
rule/operation call graph).

– DC: Duplicate expressions/code (duplicate expressions or statements with
token count > 10).

For efficiency, we measure the total execution time on a sample dataset input
of 16 sectors and output of P(S = s) for all values of s ≤ 20 (Sect. 5). For
size/complexity measures, we assess model-centric and code-centric approaches
differently: in Agile MDD and MDD, the measures are applied at the specifica-
tion level, while in Agile and the original manually-coded approaches measures
are applied at the code level. EAS, ENR and ERS are omitted in both the
Agile and original applications as they are not applicable. In order to answer
the RQ2, we used qualitative measures through an opinion survey, in which the
developers were asked to report in a free-form format the main benefits they
perceived, along with the issues they faced in each approach.

4 Agile MDD Process Overview

In this section, we provide a brief overview of our Agile MDD approach. A more
detailed description can be found in [2]. The development process starts with the
Initialisation phase and finishes with the Deployment phase. After the initialisa-
tion phase, the development process follows an iterative cycle. This means that
the development process goes through repeated phases until the system meets the
customer’s needs. The iterative cycle encompasses the following phases: Require-
ments and Specifications, Development, Integration and Testing.

– Phase 0: Initialisation. The main objective of this phase is to capture the
initial information about the system such as its scope, size, environment con-
ditions and so on. At this stage, strong collaboration with the customer is
crucial to gather the required information. Furthermore, the initial require-
ments of the system are identified and prioritised, and the product backlog is
created.
Each iteration begins with an iteration planning activity to agree on the
work to be accomplished in the upcoming iteration (the iteration backlog).
The main process of an iteration involves three phases for each task in the
iteration backlog:

– Phase 1: Requirements Specification. The objective of this phase is to
analyse and refine the functional and non-functional requirements from the
iteration backlog. Also, any existing components that can be reused in the
current development or the potential for new components to be reused in the

The Impact of Integrating Agile Software Development 233

future should be identified where possible. Furthermore, the need for specific
metamodels and transformations should be identified at this stage.

– Phase 2: Development. The objective of this phase is to produce a com-
plete and precise technical specification of the system and to produce (auto-
matically or semi-automatically) an executable system that fulfils the func-
tional and non-functional requirements. The specification should be reviewed
and refactored continuously to ensure the best design of the system. Any
changes to the requirements should be applied to the modelling level, that
might imply changes to some products like models, metamodels, transforma-
tion, and updating new elements in the language.

– Phase 3: Integration and Testing. In this phase, the developed parts of
the system are integrated and tested.

– Phase 4: Deployment. When the release has been fully implemented and
has reached a stable version, it will then be deployed to the customer.

5 Case Study: Collateralized Debt Obligation (CDO)

The case study concerns the implementation of an application to calculate and
evaluate the risk of financial investments known as Collateralized Debt Obliga-
tions (CDOs) [9]. CDOs are composite investments whereby a portfolio of invest-
ments in different companies within different sectors is held as a single combined
investment. These companies are usually organised into disjoint groups repre-
senting sectors (e.g., insurance, entertainment, telecoms, etc), and there is the
possibility of infection of defaults between different companies within each sector
[7,9]. Risk analysis of a CDO involves calculating the probability P (S = s) of
the total credit loss s in the portfolio. In order to calculate the probability of the
financial loss, the following formulas are used from Hammarlid [9]: Theorems
1.1, 3.1 and Eqs. 1 and 2. These are listed below. The attribute k represents the
index of one sector out of K total sectors, while the attribute nk refers to the
number of companies in sector k that are subject to risk. The attribute pk rep-
resents the probability of a company defaulting in sector k while the attribute
Lk represents the loss amount which is lost as a result of each default. The
attribute qk refers to the probability of infection of a default that may occur
within sector k.

Theorem 1.1.

P (Nk = m) =
(
nk

m

)
(pmk (1 − pk)nk−m(1 − qk)m(nk−m)+

Σm−1
i=1

(
m

i

)
(pik(1 − pk)nk−i(1 − (1 − qk)i)m−i × (1 − qk)i(nk−m))

This equation gives the probability of m defaults in sector k. Conditioned on
an outbreak in a sector, the distribution of the number of defaults is:

234 H. Alfraihi et al.

Equation (1)

P (Nk = m|Nk > 0) = P (Nk = m)/(1 − (1 − pk)nk) (1)

and the probability of credit loss from sector k given an outbreak is:
Equation (2)

P (Sk = mLk) = P (Nk = m|Nk > 0) (2)

Theorem 3.1. The overall probability of loss s from the CDO is given recur-
sively by:

P (S = 0) = exp(−
K∑

k=1

µk) (3)

and

P (S = s) =
1
s

K∑
k=1

[s/Lk]∑
mk=1

µkmkLkP (Nk = mk|Nk > 0) × P (S = s − mkLk) (4)

The same mathematical specification was used for all the four versions of the
case study.

5.1 CDO Using Agile MDD Approach

The CDO application has been implemented using UML-Rigorous System
Design Support (UML-RSDS) [13]. UML-RSDS is based upon the use case,
class diagram, and Object Constraint Language (OCL) notations of UML. These
notations are used to write system specifications, and then a design expressed
using UML activities is automatically generated from the specifications. Finally,
executable code in many programming languages (Java, C++, and C#) can
be automatically synthesised from the design. The customer of this application
was a financial analyst working in a financial company. The customer’s main
requirement was to have a precise (but very computationally expensive) and
an approximate version of the total credit loss P(S = s) to overcome the lim-
itations of the current application used in the company (lacking efficiency and
accuracy). The CDO was developed using the aforementioned Agile MDD (Sect.
4) by one developer who had 10 years experience of UML-RSDS and had no
prior experience in financial applications.

The development process began by interviewing the customer to gather the
requirements. Both the functional and non-functional requirements were identi-
fied and prioritised. Afterwards, the product backlog was created (see Table 1).
Since, the financial domain was unfamiliar to the developer, a phase of back-
ground research was necessary to understand the problem and to clarify the
required computations. The development was organised into four iterations, each
of which resulted in the incremental development of the application. The user

The Impact of Integrating Agile Software Development 235

story US1 was further decomposed into US1.1: calculate probability of no con-
tagion and US1.2: calculate probability of contagion and were developed during
the first iteration. Both US5 and US6 (non-functional requirements) were con-
sidered while developing the corresponding functional requirements. Then US2
was performed in development iteration 2. During the development, a further
external requirement was introduced by the customer to handle the case of cross-
sector contagion (US7), and this was scheduled to be implemented in the third
iteration. Finally, US3 and US4 – which both involve manual coding – were
developed in the fourth iteration. The system specification (a class diagram and
a use case) of the Agile MDD application is presented in Fig. 1.

Table 1. CDO product backlog for Agile MDD approach

ID User story Type Priority

US1 As an investor, I want to compute the probability P(S
= s) of a total loss amount of {s} from individual and
infectious defaults within a CDO

FR 1

US2 As an investor, I want to calculate the risk probability
P(S >= s)

FR 2

US3 As an investor, I want to read the data from a CSV
file containing the sectors and companies information

FR 3

US4 As an investor, I want to receive the results in a file FR 4

US5 As an investor, I want to be able to receive the results
in a practical time (less than 30 s for each {s} for a
portfolio of 20 sectors and 100 companies)

NFR 1

US6 As an investor, I want the results to be accurate,
within 5% of the theoretical exact results

NFR 1

US7 As an investor, I want to handle the case of cross-
sector companies and cross-sector infection

FR 2

The specification of the user story US1 has the following postconditions
(rules):

CDO::
s : sectors => s.mu = 1 - ((1 - s.p)->pow(s.n))

CDO::
ps0 = -sectors.mu.sum->exp()

CDO::
Integer.subrange(0,20)->forAll(s | PS(s)->display())

The first constraint initialises the mu attribute value for each sector. The sec-
ond then initialises ps0 using these values. The third constraint calculates and

236 H. Alfraihi et al.

displays PS(s) for integer values s from 0 to 20. The operation PS(s) computes
the Poisson approximation of the loss function, and is itself decomposed into
computations of losses based on the possible combinations of failures in individ-
ual companies. P(k,m) is the probability of m defaults in sector k, PCond(k,m)
is the conditional probability of m defaults in sector k, given that there is at
least one default:

Fig. 1. The system specification for the CDO (Agile MDD application)

CDO::

query P(k : int, m : int) : double

pre: true

post:

result = StatFunc.comb(sectors[k].n,m) *

(sectors[k].nocontagion(m) + Integer.Sum(1,m - 1,i,sectors[k].contagion(i,m)))

CDO::

query PCond(k : int, m : int) : double

pre: true

post:

(m >= 1 =>

result = P(k,m) / (1 - ((1 - sectors[k].p)->pow(sectors[k].n)))) &

(m < 1 => result = 0)

These correspond to Theorem 1.1 and Eq. (1) above, respectively. For brevity,
we only presented part of the system’s specification, from which an executable
implementation was automatically generated. The system was a full business
success in the sense that it was delivered on time and it was more efficient than
the one being used by the company. Subsequently, the final product has been
successfully deployed to the customer.

5.2 CDO Using MDD Application Approach

The CDO case study was redeveloped using the same specification of [9], which
have been presented above. The developer used EMF/ECORE [25] to specify
the metamodels, and the transformation was implemented using the Epsilon

The Impact of Integrating Agile Software Development 237

Transformation Language (ETL) [12]. ETL is a hybrid model-to-model transfor-
mation language, that can transform many source to many target models. For
this case study, single source and target models were used (the metamodel is
presented in Fig. 2). This solution was developed by one developer who had 4
years experience of ETL and had no experience in financial applications.

Fig. 2. The metamodel for the CDO (MDD application)

5.3 CDO Using Agile Approach

The CDO application was redeveloped using the Scrum process. The applica-
tion was implemented in Java and the development process was organised in
three iterations (each one-week long). Some Scrum techniques were used such as
product backlog, sprint backlog, user stories, requirements prioritisation, sprint
planning, sprint review, and frequent customer involvement. The developer had
5 years experience of Java programming and had no experience in financial appli-
cations.

5.4 The Original CDO Application

The CDO application was previously developed in C++ and used in a financial
company. It was developed using a traditional code-centric approach (waterfall
development model). The developer had over 20 years experience in C++ pro-
gramming and was a financial analyst in that company. This original application
is used as a basis for evaluation and comparison.

6 Results

We began our analysis by considering whether the developers in the three new
case studies cover the full requirements (the original application was already
developed and being used in practice). Both Agile MDD and Agile approaches

238 H. Alfraihi et al.

delivered all the intended functionalities. However, the MDD development deliv-
ered an incomplete application, where some main functionalities such as calcu-
lating the total loss probability was missing. The main reason behind this failure
was the lack of understanding of the requirements, due to the lack of close inter-
action with the customer. A month later, the developer succeeded to deliver
a complete application after clarifying the requirements with the customer. To
ensure that all the applications behave similarly, we executed each application
on the same data test set of [9]. After the applications had been validated, we
compared the original CDO application with the three new versions developed
using Agile MDD, MDD, and Agile, with regard to the quantitative measures
of Sect. 3. For the Agile application, the measures have been computed using
the source code analyser PMD,1 whereas in the other applications, the measures
were computed manually as there is a lack of tool support that can identify
the technical debt in model-level artifacts (e.g. models, metamodels, and model
transformation) [10].

Table 2 presents the execution time and the size in LOC of the four applica-
tions. The efficiency is investigated by measuring the execution time for upload-
ing data input of 16 sectors and output of P(S ≤ 20), which involves computing
P (S = s) for each s from 0 to 20. The results show that Agile MDD application
had the best efficiency (23 ms), while the original manual-code application had
the slowest execution time with 231 ms. The Agile and MDD applications had
times of 39 and 123 ms, respectively. We also looked at P (S ≤ 50), however
the two non-MDD applications did not terminate in a reasonable time for this
test. The efficiency tests of Agile MDD, Agile and the manual-code applications
were carried out on a standard Windows 8.1 with Intel i7 with 3.40 GHz pro-
cessor, while the MDD test was carried out on Windows 7 PC using an Intel(R)
Core(TM) i7 with 3.6 GHz processor due to technical issues. With regard to
LOC, we measured the size by counting the number of lines of specifications in
case of model-centric applications, while in code-centric applications (i.e, Agile
and the original) we counted the number of lines of source code. Thus, the devel-
oper using Agile MDD produced only 94 LOC compared to 143, 196, and 129
for MDD, Agile, and the original applications, correspondingly.

Table 3 presents the values for each technical debt metric for the four appli-
cations. The metrics of EAS, ENR, and MRS were omitted in both Agile and the
original applications as they are not applicable for code-centric estimation. One
notable trend we can see is that Agile MDD has a clearly lower EAS or complex-
ity (182) than the MDD application (693), whereas they have the same number
of rules ENR. Regarding ENO, all the applications but Agile MDD exceeded the
threshold of 10 operations. The other measure maximum FO (MFO) appeared to
have the same value among all cases. While maximum RS (MRS) of the largest
rule size (in LOC) did not occur in Agile and the original cases, the measure had
a clear difference between Agile MDD (3) and MDD (18). Likewise, for maxi-
mum HS (MHS), the Agile MDD approach had the smallest value, whilst MDD
approaches were better than non-MDD, and Agile approaches were better than

1 https://pmd.github.io/.

https://pmd.github.io/

The Impact of Integrating Agile Software Development 239

Table 2. Execution time and LOC for each application

Agile MDD MDD Agile Original

Execution time of P(S
= s) for all s ≤ 20

23 ms 123 ms 39 ms 231 ms

Execution time of P(S
= s) for all s ≤ 50

93 ms 531 ms >15 min >15 min

Size(LOC) 94 143 196 129

non-Agile. When looking at the maximum CC (MCC), code-centric applications
had the highest value for CC (6) while the lowest value occurred for Agile MDD
with a value of 2. CBR is expressed as CBR1(CBR2) where CBR1 refers to the
total number of calling dependencies between rules/operations, and CBR2 is the
number of rules/operations which occur in cycles of calling dependencies. The
results show that Agile MDD had 11 dependencies between rules/operations and
MDD had 13 dependencies between rules/operations (and each approach had
two cyclic dependencies). On the other hand, dependencies between operations
were 7 and 11 in the Agile and the original applications, correspondingly, with
only one cyclic dependency in each case. To identify design flaws, we consider
if any bad smell occurs in the application, such as cyclic dependency, dupli-
cated code, or any other violation for the technical debt thresholds. As seen in
Table 3, Agile MDD had a lower number of design flaws, although there was not
much difference in the flaws density (design flaws/LOC) in the four cases. The
MDD applications had similar flaw density to the code-centric solutions, while
the Agile applications had lower flaw density than non-Agile applications.

To complement our above quantitative results, the developers were asked to
report in an opinion survey the main benefits and issues they perceived in each
approach. Starting with Agile MDD approach, development time was reduced
due to the direct feedback from the customer during development. In addition,
the developer recognised development effort reduction and faster response to
changes due to the small size and simplicity of the specification. With respect
to the MDD approach, the developer reported as an advantage reduced develop-
ment effort and high maintainability (related to system revision). On the other
side, he faced difficulties in understanding the problem domain at the beginning.
Finally, we asked the same question regarding Agile approach. The main benefit
perceived by the developer is that frequent costumer involvement assured the
application being built meets his needs. In addition, the iterative and incremen-
tal nature of the Agile development helped in organising the tasks. Although the
application size is small, the developer reported a low maintainability as an issue
during the development process. Opinion survey for the traditional code-centric
approach was not feasible.

240 H. Alfraihi et al.

Table 3. Technical debt metrics for each application (flaws underlined)

Agile MDD MDD Agile Original

EAS (complexity) 182 693 NA NA

ENR 4 4 NA NA

ENO 9 11 12 11

MHS 9 18 21 34

MRS 3 18 NA NA

MFO 3 3 3 3

MCC 2 3 6 6

CBR 11(2) 13(2) 7(1) 11(1)

DC 0 1 2 2

Design flaws 2 4 4 4

Flaws density 0.0213 0.0279 0.0204 0.031

7 Discussion

In this section, we will structure our discussion regarding the impact of inte-
grating Agile and MDD – in terms of the software quality and efficiency – in
three ways: Agile vs Non-Agile, MDD vs non-MDD, and Agile MDD vs MDD
approaches. In addition, other general insights about integrating Agile and MDD
will be discussed.

In terms of efficiency, the application developed using Agile MDD was the
fastest. However, the initial efficiency of the solution was too slow, as it took
over 2 min to perform the calculation of P(S = s) for all values of s ≤ 20. To
address this issue, the recursive operations and other operations with high usage
were given the stereotype � cached � to avoid unnecessary recomputation. This
stereotype means that the operations are implemented using the memoisation
technique of [18] to store previously-computed results. Likewise, after applying
the stereotype @cached to the operations in the ETL solution, the efficiency
improved significantly from 101 min to 123 ms. Although no caching has been
used in either the Agile or original application, they showed better efficiency
than the MDD application for P (S ≤ 20). The reason of the slowness of ETL
is probably that ETL is an interpreted language and hence, it takes longer time
to execute an application than UML-RSDS (Agile MDD case) which compiles
specifications to a 3GL.

With regard to the product quality, the Agile MDD application had con-
sistently better metrics. The simplest software metric is size (LOC). Smaller
size of specification/implementation usually corresponds to a higher quality and
reduced maintainability. The Agile MDD application was the smallest of the four
versions. The results also show that model-centric approaches have more con-
cise specification size (118.5 LOC in average) compared to non-MDD approaches
(162.5 LOC in average). Working at a higher level of abstraction in model-centric

The Impact of Integrating Agile Software Development 241

approaches plays an important role in the amount of specification the developers
need to write. Moreover, the Agile MDD application adopted “simple design” –
an Agile practice that encourages minimising the complexity of designs – and
this resulted in a smaller size of specification (in particular, the refactoring ‘Move
operation’ was applied to reduce code complexity). The imperative style of ETL
resulted instead in a substantially larger specification. Whilst UML-RSDS places
operations within classes (as in Fig. 1), the ETL operations are simply listed at
one level of scoping in a transformation text. Thus, instead of a sector opera-
tion using the self object to access sector data, in the ETL version a global
lookup for a sector identified by an index precedes any sector-specific function-
ality, resulting in larger and slower code. For example, the ETL version (written
in EOL) of PCond is:

operation PCond(k : Integer, m : Integer) : Real
{ var secK =

OUT!Sector.allInstances.selectOne(se|se.id == k);
if (m >= 1)
{ return P(k,m)/(1-((1-secK.p).pow(secK.n))); }
else { return 0; }

}

Regarding the EAS measure, it is interesting to note the significant dif-
ferences in values between the Agile MDD and MDD applications, although
UML-RSDS (Agile MDD case) and ETL (MDD case) have similar expression
languages based on OCL. Although none of the applications exceeded the thresh-
old of CC, Agile MDD exhibits the lowest maximum complexity in any operation
or rule. Lower complexity should correspond to higher quality and make it eas-
ier to understand the specification. Some characteristics of the Agile philosophy
support the assertion that programs developed using an Agile process have lower
complexity than software developed using non-Agile processes [11]. We can see
this is true for the Agile versus non-Agile approaches, although the MDD versus
non-MDD distinction for maximum CC is more evident. The adoption of simple
design and refactoring in the Agile MDD application resulted in lower complex-
ity and a well-designed system with a lower number of design flaws. Usually,
lower complexity tends to reduce the coupling of code or between objects: the
higher the complexity the more coupled the code is. Although it has been proved
that using refactoring contributes in improving code quality by reducing code
complexity and coupling [19], the Agile MDD application had more coupling
between rules/operations than the Agile application.

Tables 4, 5, and 6 present the average of the values of the metrics for
the pairs of approaches: Agile versus non-Agile approaches, MDD versus non-
MDD approaches, and Agile MDD versus MDD approaches, respectively. Agile
approaches therefore have better values than non-Agile approaches in 8 of the 9
measures while MDD approaches have better values than non-MDD approaches
in 7 of the 9 measures. Finally, Agile MDD approach have better values than
the MDD approach in all 9 measures.

242 H. Alfraihi et al.

Agile development relies on frequent interactions with the customer through-
out the development process, to share information and provide feedback on what
has been done and what to achieve in the next iteration of the development. This
Agile characteristic was a significant advantage in our case. Since the financial
case study involves highly-complex computations, collaboration with the cus-
tomer was necessary to ensure that the developer understand the requirements
precisely. As a result of lack of customer involvement in the MDD application,
the developer did not come to know that there are some missing requirements
until the application was delivered to the customer. On the other hand, frequent
validation by the customer minimised the risk of building wrong functionalities,
in both the Agile MDD and Agile applications. In the case of the original applica-
tion, the developer was a financial analyst developing a system for his company.
Another intrinsic value of Agile development is rapid response to change. For the
Agile MDD and Agile applications, we found that the fact that the developer
was working in short iterations (in both approaches) and at a higher abstraction
level and with concise specifications (in Agile MDD), also made it easier and
faster to respond to changes, compared to non-Agile approaches.

The impact of integrating Agile and MDD on productivity is also an impor-
tant factor to consider. One means to assess productivity is to measure the
effort put into development, in person days or hours. In this study, the effort
of development was not feasible to measure as the Agile MDD developer spent
an initial stage of background research familiarising with the domain concepts
and identifying the appropriate mathematical definitions to use. On the other
hand, both the MDD and Agile developers were provided with the required back-
ground material and a precise problem description and hence spent less time in
understanding the problem and started with the development process sooner.
The MDD approach was faster than the Agile approach – however incomplete
functionality was initially produced by the MDD approach, and the overall effort
in the two approaches are similar once the work needed to complete the MDD
version is taken into account.

Table 4. Agile versus non-Agile approaches

Effic. LOC ENO MHS MCC CBR DC Flaws Flaws/LOC

Agile 31 ms 145 10.5 15 4 9(1.5) 1 3 0.0207

Non-agile 177 ms 136 11 26 4.5 12(1.5) 1.5 4 0.0294

Table 5. MDD versus non-MDD approaches

Effic. LOC ENO MHS MCC CBR DC Flaws Flaws/LOC

MDD 73 ms 118.5 10 13.5 2.5 12(2) 0.5 3 0.0253

Non-MDD 135 ms 162.5 11.5 27.5 6 9(1) 2 4 0.0246

The Impact of Integrating Agile Software Development 243

Table 6. Agile MDD versus MDD approaches for CDO

Effic. LOC ENO MHS MCC CBR DC Flaws Flaws/LOC

Agile MDD 23 ms 94 9 9 2 11(2) 0 2 0.0213

MDD 123 ms 143 11 18 3 13(2) 1 4 0.0279

7.1 Outcome of Research Questions

Regarding the research question RQ1, we found that integrating Agile and MDD
has a clear potential in developing small-scale but highly intensive computa-
tional applications. There are several improvements visible in the Agile MDD
application, specifically in the quality and efficiency of the system (Table 3).
Furthermore, our Agile MDD approach specifies a complete application in a
single integrated model (class diagram plus use cases), which should facilitate
maintainability and responding to change. For RQ2, we believe that building
the system using iterative and incremental development helped the developer
understand the domain and the requirements better and hence made it more
likely that they will build the correct system. Moreover, continuous testing and
frequent interaction with the customer resulted in an early discovery of defects
or flaws and hence resulted in lower defects compared to the MDD application.
MDD approaches have potential benefits of reusability of functionality compared
to non-MDD approaches (e.g., the specification of a Sector could be reused from
this application in another financial context). By specification at a high level,
it is also simple to add a mechanism such as caching by adding a stereotype to
an operation. In manually-coded approaches the implementation of caching is
non-trivial.

7.2 Threats to Validity

The results of this study are particularly interesting as they resulted from a
close-to-industry case study context. However, like most empirical studies, this
study has some limitations. The first limitation related to the development team
size. Agile methods emphasise on communication, people, and team collabora-
tion. In this research, each of the four applications has been implemented by
one developer, and thus it might have a potential impact on the quality of the
application developed, and hence impact the evaluation of the case study. How-
ever, all developers participated in this study have a good experience working
in Agile and/or MDD. Also, other studies in literature show that Agile devel-
opment can be carried out successfully with solo-developer [20,21]. The second
limitation relates to the inevitable differences in languages used for MDD versus
non-MDD approaches as it was not possible to find developers who have approx-
imate experience in the same language. Nevertheless, our recent study [14] found
that UML-RSDS and ETL are rather similar in terms of fault density over large
case studies and thus the impact of this differences on the results should be min-
imum. Another limitation concerns the generalisation of the results. Although
the application used in this study is a real industrial application, implemented

244 H. Alfraihi et al.

according to real customer requirements, we cannot generalise the results to dif-
ferent application types or sizes without more experiments. A possible threat
stems from the method of measurement, which have been done partially with
tools (i.e. the PMD analyser) and partially manually. Staron et al. [24] have
shown that comparison of measures assessed by different tools is error prone.
However, the small size of the application made it possible to calculate the val-
ues of the measures manually by at least two of the authors. The last threat to
the validity is running the test case data on two different operating systems that
might affect the evaluation of the efficiency of the applications. Nevertheless,
the specification of the two operating systems is very similar and has almost
negligible impact on the results.

8 Conclusion

The aim of this paper was to provide a better understanding of how integrat-
ing Agile development processes and MDD could impact on the properties of the
developed software. We have compared the experiences of four different indepen-
dent development teams using different development methodologies. The results
show some indicators that Agile MDD has improved the efficiency and the qual-
ity. We believe that this study is an early step in understanding the impact of
integrating Agile development and MDD. Certainly, more research is required
to further investigate its benefits or disadvantages. To this end, we intend to
replicate this study using larger case studies with larger development teams
using the same transformation and programming languages. Moreover, more
measured properties such as productivity, time-to-market and comprehensibility
of the developed code/specification should also be measured in future studies.

References

1. Alfraihi, H., Lano, K.: The integration of agile development and model driven
development: a systematic literature review. In: Proceedings of the 5th Interna-
tional Conference on Model-Driven Engineering and Software Development, MOD-
ELSWARD (2017)

2. Alfraihi, H., Lano, K.: A process for integrating agile software development and
model-driven development. In: 3rd Flexible MDE Workshop (FlexMDE) Co-
located with ACM/IEEE 20th International Conference on Model Driven Engi-
neering Languages & Systems (MoDELS 2017), CEUR Workshop Proceedings,
Austin, TX, USA, pp. 412–417. CEUR-WS.org (2017)

3. Atkinson, C., Kuhne, T.: Model-driven development: a metamodeling foundation.
IEEE Softw. 20(5), 36–41 (2003)

4. Basili, V.R.: Software modeling and measurement: the goal/question/metric
paradigm. Technical report (1992)

5. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional, Boston (2000)

6. Burden, H., Hansson, S., Zhao, Y.: How MAD are we? empirical evidence for model-
driven agile development. In: Proceedings of XM 2014, 3rd Extreme Modeling
Workshop, Valencia, Spain, vol. 1239, pp. 2–11. CEUR (2014)

The Impact of Integrating Agile Software Development 245

7. Davis, M., Lo, V.: Infectious defaults. Quant. Financ. 1(4), 382–387 (2001)
8. Fowler, M.: The new methodology. Wuhan Univ. J. Nat. Sci. 6(1), 12–24 (2001).

Mar
9. Hammarlid, O.: Aggregating sectors in the infectious defaults model. Quan. Financ.

4(1), 64–69 (2004)
10. He, X., Avgeriou, P., Liang, P., Li, Z.: Technical debt in MDE: a case study on

GMF/EMF-based projects. In: Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems, pp. 162–172.
ACM (2016)

11. Knippers, D.: Agile software development and maintainability. In: 15th Twente
Student Conference (2011)

12. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon transformation language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp.
46–60. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69927-9 4

13. Lano, K.: Agile Model-Based Development Using UML-RSDS. CRC Press, Boca
Raton (2017)

14. Lano, K., Rahimi, S.K., Sharbaf, M., Alfraihi, H.: Technical debt in model trans-
formation specifications. In: Theory and Practice of Model Transformations (2018)

15. MacDonald, A., Russell, D., Atchison, B.: Model-driven development within a
legacy system: an industry experience report. In: Proceedings of 2005 Australian
Software Engineering Conference, pp. 14–22. IEEE (2005)

16. Marinescu, R.: Assessing technical debt by identifying design flaws in software
systems. IBM J. Res. Dev. 56(5), 9:1–9:13 (2012)

17. Mellor, S.J., Clark, T., Futagami, T.: Model-driven development: guest editors’
introduction. IEEE Softw. 20(5), 14–18 (2003)

18. Michie, D.: Memo functions and machine learning. Nature 218(5136), 19 (1968)
19. Moser, R., Abrahamsson, P., Pedrycz, W., Sillitti, A., Succi, G.: A case study on

the impact of refactoring on quality and productivity in an agile team. In: Meyer,
B., Nawrocki, J.R., Walter, B. (eds.) CEE-SET 2007. LNCS, vol. 5082, pp. 252–
266. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85279-7 20

20. Nyström, A.: Agile solo-defining and evaluating an agile software development
process for a single software developer (2011)

21. Pagotto, T., Fabri, J.A., Lerario, A., Gonçalves, J.A.: Scrum solo: software pro-
cess for individual development. In: 2016 11th Iberian Conference on Information
Systems and Technologies (CISTI), pp. 1–6. IEEE (2016)

22. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall,
Agile Software Development (2002)

23. Seaman, C., Guo, Y.: Measuring and monitoring technical debt. In: Advances in
Computers, vol. 82, pp. 25–46. Elsevier, UK (2011)

24. Staron, M., Durisic, D., Rana, R.: Improving measurement certainty by using cal-
ibration to find systematic measurement error—a case of lines-of-code measure.
In: Madeyski, L., Śmia�lek, M., Hnatkowska, B., Huzar, Z. (eds.) Software Engi-
neering: Challenges and Solutions. AISC, vol. 504, pp. 119–132. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-43606-7 9

25. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling
Framework, 2nd edn. Pearson Education, London (2008)

26. Yin, R.K.: Case study research: design and methods. SAGE 2003(181), 15 (2003)
27. Zhang, Y., Patel, S.: Agile model-driven development in practice. IEEE Softw.

28(2), 84–91 (2011)

https://doi.org/10.1007/978-3-540-69927-9_4
https://doi.org/10.1007/978-3-540-85279-7_20
https://doi.org/10.1007/978-3-319-43606-7_9

Author Index

Abdelzad, Vahdat 219
Alam, Omar 202
Alfraihi, Hessa 229
Al-hammouri, Mohammad F. 127
Amyot, Daniel 144
Anda, Amal Ahmed 144

Badreddin, Omar 219
Bochmann, Gregor von 127
Brings, Jennifer 183
Buchs, Didier 29

Cabot, Jordi 105

Daun, Marian 183

Elassar, Maged 219
Erbel, Johannes 20

Fan, Yuxuan 144

Gómez, Abel 105
Grabowski, Jens 20

Hamou-Lhadj, Wahab 219
Haughton, Howard 229

Kanagasabai, Nirmal 202
Keller, Kevin 183

Khalil, Maged 85
Khandoker, Rahad 219
Kienzle, Jörg 202
Klikovits, Stefan 29
Kolahdouz-Rahimi, Shekoufeh 229
Korte, Fabian 20
Kumar, Ruchika 163

Lano, Kevin 229
Linard, Alban 29

Mann, Zoltán Ádám 1
Mazo, Raúl 46
Metzger, Andreas 1
Mussbacher, Gunter 163

Palm, Alexander 1
Prinz, Andreas 67

Salinesi, Camille 46
Sharbaf, Mohammadreza 229
Smith, Connie U. 105
Spellmann, Amy 105

Villota, Angela 46

Weyer, Thorsten 183

	Preface
	SDL Forum Society

	Organization
	Acknowledgements
	Contents
	Modeling Data Protection Vulnerabilities of Cloud Systems Using Risk Patterns
	1 Introduction
	2 Cloud Meta-Model
	3 Methodology
	4 Structure of Risk Patterns
	5 The Devised Risk Patterns
	5.1 Category: Control Interfaces
	5.2 Category: Side Channels
	5.3 Category: Privilege Exploitation
	5.4 Category: Service Mistrust

	6 Lessons Learned
	6.1 Applicability of the Risk Pattern Approach
	6.2 Characteristics of Risk Patterns

	7 Related Work
	7.1 Data Protection Risks of Cloud Services
	7.2 Model-Based Approaches for Cloud Security and Privacy

	8 Conclusions and Future Work
	A Appendix
	References

	Scheduling Architectures for Scientific Workflows in the Cloud
	1 Introduction
	2 Background and Related Work
	3 Problem Statement
	4 Approach
	4.1 Workflow Runtime Model
	4.2 Architecture Scheduler

	5 Current Status
	6 Summary and Outlook
	References

	CREST - A DSL for Reactive Cyber-Physical Systems
	1 Introduction
	2 Motivation and Related Works
	2.1 Evaluation of Existing Tools and Languages

	3 CREST Language
	3.1 CREST Syntax
	3.2 CREST Semantics

	4 CREST Implementation and Simulation
	4.1 PyCREST Implementation
	4.2 Simulation
	4.3 Function Approximation
	4.4 Verification

	5 Conclusion and Future Works
	References

	On the Ontological Expressiveness of the High-Level Constraint Language for Product Line Specification
	1 Introduction
	2 The High-Level Constraint Language
	3 Ontological Expressiveness in Modeling Languages
	3.1 Ontology for Variability Modeling Languages
	3.2 Ontology

	4 Ontological Analysis of the Expressiveness of HLCL
	4.1 Mapping HLCL Constructs to Ontological Constructs
	4.2 Representation Mapping
	4.3 Results

	5 Analysis and Discussion
	5.1 Towards a Product Line Engineering Constraint Language: PLEC
	5.2 Threats to Validity

	6 Related Work
	7 Conclusions and Future Work
	References

	Distributed Computing on Distributed Memory
	1 Introduction
	2 Local State
	2.1 SDL
	2.2 Process Calculi
	2.3 Summary

	3 Global Centralized State
	3.1 ACID
	3.2 Concurrent Abstract State Machines
	3.3 UML
	3.4 Summary

	4 Global Distributed State
	4.1 BASE and CAP
	4.2 Cassandra
	4.3 Java Memory Model
	4.4 Blockchain
	4.5 Summary

	5 Semantics with Multistates
	5.1 Multistates
	5.2 Policies
	5.3 Multistate ASM Semantics

	6 Centralized State and Multistate
	7 Conclusion
	References

	Pattern Libraries Guiding the Model-Based Reuse of Automotive Solutions
	Abstract
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Previous Work
	1.4 Contribution

	2 Design Pattern Based Approach
	2.1 Pattern Library Approach
	2.2 Safety Mechanism Pattern Library
	2.3 Instantiation in AutoFOCUS3

	3 Related Work
	4 Conclusions and Lessons Learned
	4.1 Discipline vs. Design Freedom – the Pattern Library in Practice
	4.2 Case Study Evaluation Results

	Acknowledgement
	References

	Enabling Performance Modeling for the Masses: Initial Experiences
	1 Introduction
	2 Software Performance Engineering in a Nutshell
	3 Towards Automated Software Performance Engineering
	4 Defining Performance Scenarios and Requirements with UML/MARTE
	5 Automatic Transformation to Performance Models
	6 An Illustrative Case Study: Cyber Physical Systems Analysis
	7 Discussion
	8 Related Work
	9 Conclusions
	References

	Realizability of Service Specifications
	1 Introduction
	2 Definitions and Notations
	2.1 The Concept of Collaboration
	2.2 Behavior of Collaborations: A Formalization
	2.3 Comparing Two Behavior Models

	3 Deriving Conforming Distributed Design Models
	3.1 Basic Ideas
	3.2 Review of Work on Realizability
	3.3 Alternatives with Different Terminating Roles
	3.4 Interface Provided by the Reception Pool
	3.5 A Role Does Not Participate in all Alternatives

	4 Weak While Loop
	4.1 Checking the Requirements Model for Problems
	4.2 Deriving a Distributed Design Model for a Weak While Loop

	5 Conclusion
	References

	An Arithmetic Semantics for GRL Goal Models with Function Generation
	1 Introduction
	2 Related Work
	2.1 Existing Approaches
	2.2 Existing Tools

	3 Methodology
	3.1 Overview
	3.2 Arithmetic Semantics for Standard GRL
	3.3 SymPy Code Generation
	3.4 Transformation to Programming Languages

	4 Illustrative Example
	5 Conclusions and Future Work
	References

	Textual User Requirements Notation
	Abstract
	1 Introduction
	2 Background on User Requirements Notation
	2.1 GRL Notation
	2.2 UCM Notation

	3 Differences Between TURN and URN
	3.1 Overview of Differences Between TGRL and GRL
	3.2 Containment Structure
	3.3 Indicators
	3.4 Dual Modeling of Qualitative and Quantitative Values
	3.5 Overview of Differences Between TUCM and UCM
	3.6 Parent Components
	3.7 Specification of Element Containment in Components
	3.8 Component and Responsibility Definitions
	3.9 Notion of Path

	4 Multi-phased Transformation from TURN to URN
	5 Related Work
	6 Conclusions and Future Work
	Acknowledgement
	References

	A Comparative Analysis of ITU-MSC-Based Requirements Specification Approaches Used in the Automotive Industry
	Abstract
	1 Introduction
	2 Related Work
	2.1 Related Studies
	2.2 Modelling Languages
	2.3 Approaches Under Investigation

	3 Study Design
	3.1 Research Questions
	3.2 Data Collection, Analysis and Validity Procedures
	3.3 Procedure
	3.4 Case and Subject Selection

	4 Results
	4.1 Application of Approach A (NL-MSC)
	4.2 Application of Approach B (NL-GRL-MSC)
	4.3 Application of Approach C (NL-GRL-UCM-MSC)

	5 Discussion
	5.1 Principle Findings
	5.2 Threats to Validity
	5.3 Inferences

	6 Conclusion
	Acknowledgements
	References

	Towards Online Collaborative Multi-view Modelling
	1 Introduction
	2 Background
	2.1 Online vs. Offline Collaboration
	2.2 Pessimistic vs. Optimistic Concurrency Control

	3 Online Collaborative Multi-view Modelling Challenges
	3.1 Multi-view Collaboration and Running Example
	3.2 Minimizing Editing Conflicts
	3.3 Global vs. Local Undo Stack

	4 Disseminating the Collaborator's Focus
	4.1 Highlighting in the Motivating Example

	5 Dealing with Model Element Deletion
	6 Evaluation
	6.1 Prototype Implementation
	6.2 Highlight Algorithm Evaluation
	6.3 Delayed Deletion Algorithm

	7 Related Work
	8 Conclusion
	References

	Collaborative Software Design and Modeling in Open Source Systems
	Abstract
	1 Introduction
	2 Related Work
	3 Study Design
	3.1 Subject Systems
	3.2 Survey
	3.3 Questionnaires and Interviews

	4 Results and Analysis
	4.1 Evidence for Design and Modeling Artifacts
	4.2 Evidence for Design and Modeling Practices
	4.3 Characterization of Model-Based Collaborations
	4.4 Analysis

	5 Threats to Validity
	5.1 Question Interpretation
	5.2 Researcher Bias
	5.3 External Validity Threat

	6 Conclusion
	References

	The Impact of Integrating Agile Software Development and Model-Driven Development: A Comparative Case Study
	1 Introduction
	2 Related Work
	3 Research Methodology
	4 Agile MDD Process Overview
	5 Case Study: Collateralized Debt Obligation (CDO)
	5.1 CDO Using Agile MDD Approach
	5.2 CDO Using MDD Application Approach
	5.3 CDO Using Agile Approach
	5.4 The Original CDO Application

	6 Results
	7 Discussion
	7.1 Outcome of Research Questions
	7.2 Threats to Validity

	8 Conclusion
	References

	Author Index

