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Abstract. The detection of network attacks on computer systems remains an
attractive but challenging research scope. As network attackers keep changing
their methods of attack execution to evade the deployed intrusion-detection
systems (IDS), machine learning (ML) algorithms have been introduced to boost
the performance of the IDS. The incorporation of a single parallel hidden layer
feed-forward neural network to the Fast Learning Network (FLN) architecture
gave rise to the improved Extreme Learning Machine (ELM). The input weights
and hidden layer biases are randomly generated. In this paper, the particle swan
optimization algorithm (PSO) was used to obtain an optimal set of initial
parameters for Reduce Kernel FLN (RK-FLN), thus, creating an optimal
RKFLN classifier named PSO-RKELM. The derived model was rigorously
compared to four models, including basic ELM, basic FLN, Reduce Ker-
nel ELM (RK-ELM), and RK-FLN. The approach was tested on the KDD
Cup99 intrusion detection dataset and the results proved the proposed PSO-
RKFLN as an accurate, reliable, and effective classification algorithm.
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1 Introduction

Both network security and computer security systems collectively make up cyberse-
curity systems. Each of the security systems basically has an antivirus software, a
firewall, and an IDS. The IDSs is involved in the discovery, determination, and
identification of unauthorized access, usage, alteration, destruction, or duplication of an
information system [1]. The security of these systems can be violated through external
(from an outsider) and internal attacks (from an insider). Until now, much efforts are
devoted to studies on the improvement of network and information security systems,
and several studies exist on IDS and its taxonomy [1–4]. Machine learning has recently
gained much interest from different fields such as control, communication, robotics,
and several engineering fields. In this study, a machine learning approach was deployed
to address the issues of intrusion detection in computer systems. It is a challenging task
to automate ID processes, as has earlier been ascertained by Sommer and Paxson who
applied ML techniques to ID systems and outlined the challenges of automating
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network attack detection processes [5]. The specific approaches of using ML tech-
niques for network intrusion detection and their and challenges have been previously
outlined [6]. Some of the major problems of the current network ID systems such as
high rates of false-positive alarms, false negative or missed detections, as well as data
overload (a situation where the network operator is overloaded with information,
making it difficult to monitor data) have been discussed [6].

Several ML algorithms have been used to detect anomalies in the behavior of ID
systems. This is achieved by training the ML algorithms with the normal network
traffic patterns, making them capable of determining traffic patterns that differ from the
normal pattern [5]. Although some ML techniques can effectively detect certain forms
of attack, no single method has been developed that can be universally applied to detect
multiple types of attack. Intrusion detection systems can be generally divided into two
system (anomaly and misuse) based on their mode of detection [6]. The anomaly-based
detection system flags any abnormal network behavior as an intrusion, but the misuse-
based detection system relies on the signature of established previous attacks to detect
new intrusions. Several anomaly-based detection systems have been developed based
on different ML techniques [6, 9, 11]. For instance, several studies have used single
learning techniques like neural networks, support vector machines, and genetic algo-
rithms to design ID systems [5]. Other systems such as the hybrid or ensemble systems
are designed by combining different ML techniques [10, 11]. These techniques are
particularly developed as classifiers for the classification or recognition of the status of
an incoming Internet access (normal access or an intrusion). One of the significant
algorithms of machine learning is the ELM first proposed by Huang. The ELM has
been widely investigated and applied severally [12]. Several ID systems have been
proposed based on the use of ELM as the core algorithm [6, 13, 14]. Furthermore, there
is a heavy influx of network traffic data through the ID system which needs to be
processed [7]. This study, therefore, focuses on the development of a scalable method
that can improve the effectiveness of network ID systems in the detection of different
classes of network attack.

2 Overview of Fast Learning Network

In the past few decades, the demand for even the high performing single hidden layer
Feedforward Neural Network (FNN) has waned due to some application challenges [4].
To solve these issues, Guang Bin Huang proposed the Extreme Learning Machine
(ELM) [3] whose major function is the transformation of a single hidden layer FNN
into a linear least square solving a problem; it then, calculates the output weights
through the Moore–Penrose (MP) generalized inverse. There are several advantages of
ELM, first, it avoids repeated calculation of iteration, has a fast learning speed; cannot
be trapped at the local minimum, ensure output weights uniqueness, has a simplified
network framework, presents a better generalization ability and regression accuracy.
Several scholars have successfully implemented the ELM learning algorithm and
theory [5, 6] in pattern classification, function approximation [7–9], system identifi-
cation and so on [10, 12]. The other issue is the handling of information incorporation
in the ELM when multiple varying data sources are available [15]. Therefore, the
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kernel-based ELM (KELM) has been proposed by comparing the modeling process
between SVM and ELM [16]. The results show that KELM performs better and is more
robust compared to the basic ELM [15] in solving non-separable linearly samples.
The KELM also performed better than ELM, KELM in solving regression prediction
tasks. It achieved a comparative or better performance with a faster learning speed and
easier implementation in several applications, including 2-D profiles reconstruction,
hyperspectral remote sensing image classification [17, 18], activity recognition, and
diagnosis of diseases [19, 20]. KELM has also been used for online prediction of
hydraulic pumps features, location of damage spot in aerospace, and behavior identi-
fication [21, 22]. However, [15] the training of KELM is an unstable process; the
learning parameters must be manually adjusted; and it utilizes randomly generated
hidden node parameters. The adjustment of the learning parameters requires human
input, and could influence the classification performance. Its kernel function parameters
also need a careful selection process to achieve an optimal solution. There are many
works that provide optimization methods based on KELM parameters. The meta-
heuristics have been suggested for tackling the problems of parameter setting in
KELM. Some of the suggested metaheuristics are genetic algorithm (GA) [18], and
AdaBoost framework [23]. [24] used adaptive artificial bee colony (AABC) algorithm
for parameter optimization and selection of KELM features. The features were eval-
uated based on Parkinson’s disease dataset. In [25], the authors proposed the chaotic
moth-flame optimization (CMFO) strategy to optimize KELM parameters. Also, an
active operators particle swam optimization algorithm (APSO) was proposed in [15] for
obtaining an optimal initial set of KELM parameters. The evaluated model (APSO-
KELM) based on standard genetic datasets show the APSO-KELM to have a higher
classification performance compared to the current ELM and KELM. However, the
results of this work show KELM to have a better accuracy compared to ELM, showing
the need to introduce the kernel function. In other words, the optimize kernel parameter
results showed no fluctuation and an increasing coverage with iteration. Meanwhile,
there are some issues with ELM such as the need for additional hidden neurons in some
regression applications compared to the conventional neural network (NN) learning
algorithms. This may cause the trained ELM to require more reaction time when
presented with new test samples. Furthermore, any increase in the number of hidden
layer neurons also results to an exponential increase in the number of thresholds and
weights of random initialization. These values may not be the optimized parameters
[26, 27]. In 2013, Li et al. suggested a novel ELM-based artificial neural network for
fast learning network (FLN) [13]. FLN is a double parallel FNN made up of a single
layer FNN and a single hidden layer FNN. The received information at the input layer
is transmitted to the hidden and output layers (first, the message gets to the neurons of
the hidden layer before being transmitted to the output layer). Therefore, the FLN can
perform nonlinear approximation like other general NN. Contrarily, the information is
directly transferred from the input layer to the output layer, giving the FLN the ability
to establish the linear relationship between the input and the output. Hence, the FLN
can handle linear problems with a high accuracy, and can also infinitely approximate
nonlinear systems. FLN can also solve the issue associated with the conventional NN
which does not demand iterative calculation. This work start with Sect. 2 provides the
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introduction. Section 3 explain the data set KDD details. Section 4 provides overview
of the methodology. Section 5 provides the experiments and analysis of the results.

3 Overview of the Methodology

3.1 Fast Learning Network

The FLN was presented by [37] as a novel variant of the ELM [38]. It is structured as a
combination of two NNs, the first one as an SLFNN and the second an MLFNN.
The FLN depends on three layers, namely, input, hidden, and output layers. The FLN
structure is shown in Fig. 1,

The equations of deriving the output of the FLN based on the provided matrices
and vectors and they are presented in the following equations.

yj ¼ f ðwoixj þ cþ
Xm

k¼1
woh
k g ðwin

k xj þ bkÞÞ ð1Þ

Where

• woi ¼ woi
1 ;w

oi
2 ; . . .::;w

oi
i

� �
is the weight vector connecting the output nodes and

input nodes.
• win

k ¼ win
k1;w

in
k2; . . .. . .;w

in
km

� �
is weight vector connecting the input nodes and

hidden node
• woh

k ¼ woh
1k;w

oh
2k. . .. . .::;w

oh
ik

� �
is weight vector connecting the output nodes and

hidden node, a more compact representation is given as follows

The matrix W ¼ Woi Woh c
� �

can be called output weights, and G is the
hidden layer output matrix of FLN, the ith row of G is the ith hidden neuron’s output
vector with respect to inputs x1:x2. . .:xN . To solve the model, the minimum norm least-
squares solution of the linear system can be written as follows: A more compact
representation is given as follows:

Fig. 1. Structure of FLN
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In order to resolve the model, a Moore Penrose based equation is given as follows.
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An algorithm that explains the learning of the FLN is presented in the flowchart
depicted in Fig. 2. The algorithm starts by random initialization of the weights between
the input and hidden layers and the biases of the hidden layer. Then, the G matrix is
determined depending on the input-hidden matrix. This matrix represents the output
matrix of the hidden layer. Next, the input-output matrix woi and woh are determined
based on the Moore–Penrose equations. As a result, a complete FLN model is
formulated

3.2 Kernel Fast Learning Network

A kernel function in machine learning is a measurement of the closeness between input
sample data defined over a feature denoted as K(x,x0Þ [39]. In a recent study, [16]
suggested that the hidden layer of an SLFN does not need to be formulated as a nodes
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of single layer; instead, a mechanisms of feature mapping can be a wide range used to
replace the hidden layer.

This approach has been exemplified in this work as previously reported by [16] to
convert an FLN model to a kernel-based model. By recalling the output of Eq. (3),
replacing the output weight W with the output weight based on the Moore–Penrose
generalized inverse ŵ as Eq. (8), and replacing H with Eq. (4), we can obtain Eq. (13)
as follows:

W^ ¼ Y^HTðH HTÞ�L

Y ¼ f Y^HT H HT
� ��1
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� �
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Fig. 2. Flowchart of the FLN learning model
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Y ¼ f f Yð Þ�1 XTXþGTGþ ITI
� ��1

XTXþGTGþ ITI
� �� �

ð11Þ

Moreover, through the addition of a small positive quantity (i.e., the stability factor)
1=k to the diagonal of HTH, thus yielding a more “stable” solution, we can represent Y
as [16] follows:

Y ¼ f f Yð Þ�1 k1 x:x0ð Þ þ k2 x:x0ð Þ þ k3 x:x0ð Þ þ 1=kð Þ�1 k1 x:x0ð Þ þ k2 x:x0ð Þ þ k3 x:x0ð Þð Þ
� �

ð12Þ

Generally, the selection of the output neurons’ active function f �ð Þ is often linear,
such that f xð Þ ¼ x. Then, Eq. (12) can be written as follows:

Y ¼ Y k1 x:x0ð Þ þ k2 x:x0ð Þ þ k3 x:x0ð Þ þ 1=kð Þ�1 k1 x:x0ð Þ þ k2 x:x0ð Þ þ k3 x:x0ð Þð Þ ð13Þ

Substituting in the location of k1,k2,k3 three kernels, and in the location of k a
regularization factor, we obtain a MKFLN model. The power of this model is with
using 3 kernels for performing the separation which is expected to outperform the
classical one kernel ELM variant. However, there are two problems to be addressed.
The first one is the computational concern when using kernels calculation, especially if
the size of the dataset is huge. The second one is the criticality of selection suitable
kernels for classification due to the sensitivity of the performance to the kernel type.
Therefore, a framework for to make the developed MKFLN feasible for practical
applications is designed.

However, the kernel-based learning methods usually uilize a large memory system
for learning dilemmas with large data sets and are therefore modified to reduced kernel
extreme learning machine (RKELM) (Deng et al. 2013). A modification to RKFLN
called reduced kernel FLN has also been proposed. The kernel-based and basic ELMs
have shown superior generalization and better scalability for multiclass problems with
superior generalization, and considerable scalability for multiclass classification
problems with much lower training times than those of SVMs [16]. These issues create
the ELM an appealing learning paradigm for applied in large-scale problems, such as
the IDSs.

Nevertheless, kernels are utilized in learning approaches, particularly those with
potentially large amounts of memory for ML problems, with huge datasets such as IDS,
which requires the collection of wide data in traffic network. To treat this issue,
RKELM takes Huang’s kernel-based ELM and, instead of computing k(x,x) over the
entire input data, computes kð~x; xÞ, where ~x is a randomly chosen subset of the input
data. [40] adapted the method of reduced kernel by selecting a small random subset
~X ¼ fxig~ni¼1 from the original data points X = xigni¼1

�
with ~n � n and using k(x,~xÞ in

place of k(,X,X) to cut the problem size and computing time. As mentioned previously,
FLN is better than ELM; to address this issue, RKELM is swapped out for RKFLN.
Hence, RKFLN is expected to be better than RKELM. An assumption supposes that
multiplying each kernel in RKFLN by a weight provides better results.
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3.3 Particle Swarm Optimization

The PSO was first introduced by Li et al. [23] as a parallel evolutionary computation
technique which was insired by the social behavior of swarm. The performance of PSO
can be significantly affected by the selected tuning parameters (commonly called
exploration– exploitation tradeoff). Exploration is the ability of an algorithm to explore
all the segments of the search space in an effort to establish a good optimum, better
known as the global best. Exploitation on the other hand is the ability of an algorithm to
concentrate on its immediate environment and within the surrounding of a better
performing solution to effectively establish the optimum. Irrespective of the research
efforts in recent times, the selection of algorithmic parameters is still a great problem
[41]. In the PSO algorithm, the objective function is used for the evaluation of its
solutions, and to operate on the corresponding fitness values. The position of each
particle is kept (including its solution), and its velocity and fitness are also evaluated
[42]. The PSO algorithm has many practical applications [43–46]. The position and
velocity of each particle is modified to establish an best solution for each iteration using
the following relationship:

viðkþ 1Þ ¼ wvikþ c1r1ðxbest; local� xiÞþ c2r2ðxbest; globalÞ � xiÞ ð14Þ

xi kþ 1ð Þ ¼ xkþ v kþ 1ð Þ ð15Þ

Each particle’s velocity and position are denoted as the vectors vk ¼ vk1; . . .; vkdð Þ
and xi ¼ xi1; . . .; xidð Þ, respectively. In (14), x vectors is the best local and best global
positions; c1 and c2 represents the acceleration factors referred to as cognitive and
social parameters; r1 and r2 represents randomly selected number in the range of 0 and
1; k stands for the iteration index; and w is the inertia weight parameter [47]. xi of a
particle is updated using (15).

4 Experiments and Analysis

4.1 Implementing of Multi Kernel Based on Fast Learning Network

As it has been mentioned in the previous section, RKFLN has two problems to be
solved before we can apply it, the first one is the computational complexity of applying
three kernels at the same time, and the second one is the selection of the kernels and its
parameters. The initial one is solved through using reduced kernel approach, and the
other one is solved through preparing a set of kernels and selecting out of them. In
order to make the model more optimized, three weighting factors of using the kernels
are imported in the model a1,a2,a3 and k. The parameters a1,a2, and a3 are weighting
factors for the kernels k1,k2, and k3, the parameter k is the regularization parameter. The
new model after optimizing is written as

Y ¼ f ðY^ a�1K1 þ a�2K2 þ a�3K3 þ 1
k�

	 
�1

a�1K1 þ a�2K2 þ a�3K3
� �
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where the vector ða�1; a�2; a�3; k�Þ denotes the optimal parameters of the model, they have
the constraint

a�1 þ a�2 þ a�3 ¼ 1; a1; a2; a3 2 : 1 0½ �k� 2 0 1½ �

In order to determine convenient values for these weights that multiplying each
kernel in RKFLN. PSO will be used. Herein, k1,k2, and k3, are multiplied by the
weights a1,a2, and a3 respectively, the optimization goal is to find the best weights
values that give the highest testing accuracy over validation samples. Beside the
searching for the weights values, the optimization process will also look for the best
value for the regularization coefficient.

4.2 Experiments of Optimization Multi Kernel Fast Learning Network

This ssection describe our experimental also provide classification performanc results.
In order to evaluate the PSO-RKFLN developed model, this work cover teasting results
with the KDD Cup99 dataset. Optimize the RKFLN parameters to enhance the accu-
racy of IDS, we proposed several models such as RKFLN, RKELM, and PSO-RKELM
as bunchmarks. Figure 3 shown classification evaluation measures, and Table 1 shown
the comparestion results between the models.

For PSO parameters formulae such as c1 = c2 = 1.42, w = 0.75 and number of par-
ticles = 5. The KDD 99 training set with duplicates removed for the first set of sets
with a dataset consisting of 145,585 split into a training set of 72,792 training examples
and 72,792 testing samples. For this study we used all 41 attributes of the data.

Fig. 3. Evaluation measures of classification
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5 Summary

In this work, using Machine learning based on the intrusion-detection system, it’s
attractive for many researchers. This work provides model based on optimize of a multi
kernel of fast learning network. The derived model was rigorously compared to four
models, including basic ELM, basic FLN, Reduce Kernel ELM (RK-ELM), and RK-
FLN. The approach was tested on the KDD Cup99 intrusion detection dataset. The
accuracy of our model (PSO-RKFLN) is slightly higher than other models. For a future
work, we recommend checking this model with a different number of neurons to
measures and evaluate the complexity of the model.
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