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Abstract. We explore the use of deep learning for breast mass segmen-
tation in mammograms. By integrating the merits of residual learning
and probabilistic graphical modelling with standard U-Net, we propose a
new deep network, Conditional Residual U-Net (CRU-Net), to improve
the U-Net segmentation performance. Benefiting from the advantage of
probabilistic graphical modelling in the pixel-level labelling, and the
structure insights of a deep residual network in the feature extrac-
tion, the CRU-Net provides excellent mass segmentation performance.
Evaluations based on INbreast and DDSM-BCRP datasets demonstrate
that the CRU-Net achieves the best mass segmentation performance
compared to the state-of-art methodologies. Moreover, neither tedious
pre-processing nor post-processing techniques are not required in our
algorithm.
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1 Introduction

Breast cancer is the most frequently diagnosed cancer among women across
the globe. Among all types of breast abnormalities, breast masses are the most
common but also the most challenging to detect and segment, due to variations
in their size and shape and low signal-to-noise ratio [6]. An irregular or spiculated
margin is the most important feature in indicating a cancer. The more irregular
the shape of a mass, the more likely the lesion is malignant [12]. Oliver et al.
demonstrated in their review paper that mass segmentation provides detailed
morphological features with precise outlines of masses, and plays a crucial role
in a subsequent cancerous classification task [12].

The main roadblock faced by mass segmentation algorithms is the insuf-
ficient volume of contour delineated data, which directly leads to inadequate
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accuracy [4]. The U-Net [13], as a Convolutional Neural Network (CNN) based
segmentation algorithm, is shown to perform well with limited training data by
interlacing multi-resolution information. However, the CNN segmentation algo-
rithms including the U-Net are limited by the weak consistency of predicted
pixel labels over homogeneous regions. To improve the labelling consistency and
completeness, probabilistic graphical models [5] have been applied for mass seg-
mentation, including Structured Support Vector Machine (SSVM) [7] and Con-
ditional Random Field (CRF) [6] as a post-processing technique. To train the
CRF integrated network in an end-to-end way, the CRF with the mean-field
inference is realised as a recurrent neural network [14]. This is applied on mass
segmentation [15], and achieved the state-of-art mass segmentation performance.
Another limitation of CNN segmentation algorithms is that as the depth of the
CNNs increase for better performing deep features, they may suffer from the
gradient vanishing and exploding problems, which are likely to hinder the con-
vergence [8]. Deep residual learning is shown to address this issue by mapping
layers with residuals explicitly instead of mapping the deep network directly [8].

In this work, the CRU-Net is proposed to precisely segment breast
masses with small-sample-sized mammographic datasets. Our main contribu-
tions include: (1) the first neural network based segmentation algorithm that
considers both pixel-level labelling consistency and efficient training via inte-
grating the U-Net with CRF and deep residual learning; (2) the first deep learn-
ing mass segmentation algorithm, which does not require any pre-processing or
post-processing techniques; (3) the CRU-Net achieves the best mass segmen-
tation performance on the two most commonly used mammographic datasets
when compared to other related methodologies.

2 Methodology

The proposed algorithm CRU-Net is schematically shown in Fig. 1. The inputs
are mammogram regions of interest (ROIs) that contain masses and the outputs

Fig. 1. Proposed CRU-Net Structure
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are the predicted binary images. In this section, a detailed description of applied
methods is introduced: our U-Net with residual learning, followed by the pixel-
level labelling with graphical inference.

2.1 U-Net with Residual Learning

The U-Net is shown to perform well with a limited volume of training data
for segmentation problems in medical imaging [13], which suits our situation.
However, the gradient vanishing and explosion problem, which hinders the con-
vergence, is not considered in the U-Net. We integrate residual learning into
the U-Net to precisely segment breast masses over a small sample size training
data. Assuming x : Ω → R (Ω represents the image lattice) as an ROI and
y : Ω → {0, 1} as the corresponding binary labelling image (0 denotes back-
ground pixels and 1 for the mass pixels), the training set can be represented by
D = {(x(n),y(n))}n∈{1,...,N}.

The U-Net comprises of a contractive downsampling and expansive upsam-
pling path with skip connections between the two parts, which makes use of
standard convolutional layers. The output of mth layer with input x(n) at pixel
(i, j) is formulated as follows:

y
(n,m)
i,j = hks({xsi+δi,sj+δj}0≤δi,δj≤k) (1)

where k represents for kernel size, s for stride or maxpooling factor, and hks is
the layer operator including convolution, maxpooling and the ReLU activation
function.

Then we integrate the residual learning into the U-Net, which solves the
applied U-Net network mapping H(x) with:

F(x) := H(x) − W ∗ x (2)

thus casting the original mapping into F(x) + W ∗ x, where W is a convolution
kernel and linearly projects x to match F(x)’s dimensions as Fig. 1. As the U-Net
layers resize the image, residuals are linearly projected either with 1 × 1 kernel
convolutional layer along with maxpooling or upsampling and 2 × 2 convolution
to match dimensions. The detailed residual connections of layer 2 and layer 6 are
described in Fig. 2. These layers are shown as examples as all residual layers have
analogous structure. In the final stage, a 1 × 1 convolutional layer with softmax
activation creates a pixel-wise probabilistic map of two classes (background and
masses). The residual U-Net loss energy for each output during training is defined
with categorical cross-entropy. Mathematically,

f = −
∑

i,j

log P
(
y
(n)
i,j | x(n);θ

)
(3)

where P is the residual U-Net output probability distribution at position (i, j)
given the input ROI x(n) and parameters θ.
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Fig. 2. Residual Learning illustration for layer2 and layer6. Other layers are equivalent
to this example but with different parameters.

Note that the standard U-Net is designed for images of size 572 × 572. Here
we modify the standard U-Net to adapt mammographic ROIs (40 × 40) with
zero-padding for downsampling and upsampling. Residual short-cut additions
are calculated in each layer. After that, feature maps are concatenated as: layer
1 with layer 7, layer 2 with layer 6, layer 3 with layer 5 as shown in Fig. 1. Both
original ROIs and U-Net Outputs are then fed into the graphical inference layer.

2.2 Graphical Inference

Graphical models are recently applied on mammograms for mass segmentation.
Among them, CRF incorporates the label consistency with similar pixels and
provide sharp boundary and fine-grained segmentation. Mean field iterations
are applied as the inference method to realise the CRF as a stack of RNN layers
[14,15]. The cost function for CRF (g) can be defined as follows:

g = A(x(n)) − exp
( ∑

i,j∈V

P
(
y
(n)
i,j ) +

∑

p,q∈E

φ(y(n)
p , y(n)

q | x(n))
)

(4)

where A is the partition function, P is the unary function which is calculated
on the residual U-Net output, and φ is the pair-wise potential function which
is defined with the label compatibility μ(y(n)

p , y
(n)
q ) for position p and q [14],

Gaussian kernels k1
G, k2

G and corresponding weights ω
(1)
G , ω

(2)
G [10] as φ(y(n)

p , y
(n)
q |

x(n)) = μ(y(n)
p , y

(n)
q )

(
ω
(1)
G k

(1)
G (x(n)) + ω

(2)
G k

(2)
G (x(n))

)
[6,15].

Finally, by integrating (3) and (4) the total loss energy in the CRU-Net for
each input x(n) is defined as:

� = (1 − λ)f + λ · g(f,x(n)) (5)

where λ ∈ [0, 1] is a trade-off factor, which is empirically chosen as 0.67. And
the whole CRU-Net is trained by backpropagation.
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3 Experiments

3.1 Datasets

The proposed method is evaluated on two publicly available datasets INbreast
[11] and DDSM-BCRP [9]. INBreast is a full-field digital mammographic dataset
(70µm pixel resolution), which is annotated by a specialist with lesion type
and detailed contours for each mass. 116 accurately annotated masses are con-
tained with mass size ranging from 15 mm2 to 3689 mm2. The DDSM-BCRP
[9] database is selected from the Digital Database for Screening Mammogra-
phy (DDSM) database, which contains digitized film screen mammograms (43.5
microns resolution) with corresponding pixel-wise ground truth provided by
radiologists.

To compare the proposed methods with other related algorithms, we use the
same dataset division and ROIs extraction as [6,7,15], in which ROIs are manu-
ally located and extracted with rectangular bounding boxes and then resized into
40 × 40 pixels using bicubic interpolation [6]. In work [6,7,15], extracted ROIs
are pre-processed with the Ball and Bruce technique [1], which our algorithms
do not require. The INbreast dataset is divided into 58 training and 58 test
ROIs; The DDSM-BCRP is divided into 87 training and 87 test ROIs [6]. The
training data is augmented by horizontal flip, vertical flip, and both horizontal
and vertical flip.

3.2 Experiment Configurations

In this paper, each component of the CRU-Net is experimented, including λ =
0, 1, 0.67 and the CRU-Net without residual learning (CRU-Net, No R). In the
CRU-Net, convolutions are first computed with kernel size 3× 3, which are then
followed by a skip to compute the residual as shown in Fig. 1. The feature maps
in each downsampling layer are of size 16, 32, 64, and 128 respectively, while
the ROIs spatial dimensions are 40 × 40, 20 × 20, 10 × 10 and 5 × 5. To avoid
over-fitting, dropout layers are involved with 50% dropout rate. The resolution
of two datasets are different, with the DDSM’s much higher than the INbreast’s.
To address this, the convolutional kernel size for DDSM is chosen as 7 × 7 by
experimental grid search. All other hyper parameters are identical. The whole
CRU-Net is optimized by the Stochastic Gradient Descent algorithm with the
Adam update rule.

3.3 Performance and Discussion

All state-of-art methods and the CRU-Net’ performances are shown in the
Table 1, where [15] are reproduced, results of [2,3,6,7] are from their papers.
Table 1 shows that our proposed algorithm performs better than other published
algorithms on both data sets. In INbreast, the best Dice Index (DI) 93.66% is
obtained with CRU-Net, No R (λ = 0.67) and a similar DI 93.32% is achieved by
its residual learning; while in DDSM-BCRP, all state-of-art algorithm performs
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similarly and the best DI 91.43% is obtained by CRU-Net (λ = 0). The CRU-Net
performs worse on DDSM-BCRP than INbreast, which is because of its worse
data quality. To better understand the dice coefficients distribution in test sets,

Table 1. Mass segmentation performance (DI, %) of the CRU-Net and several state-
of-art methods on test sets. λ is the trade off loss factor as (5).

Methodology INbreast DDSM-BCRP Residual Preprocess Postprocess

Cardoso et al. [3] 88 - - - -

Beller et al. [2] - 70 - - -

Dhungel et al. [7] 88 87 × � �
Dhungel et al. [6] 90 90 × � �
Zhu et al. [15] 89.36± 0.37 90.62± 0.16 × � ×
U-Net 92.99± 0.23 90.08± 0.62 × × ×
CRU-Net (λ = 0) 92.72± 0.09 91.43± 0.02 � × ×
CRU-Net (λ = 1) 92.60± 0.24 91.41± 0.02 � × ×
CRU-Net, No R (λ = 0.67) 93.66± 0.10 91.14± 0.09 × × ×
CRU-Net (λ = 0.67) 93.32± 0.12 90.95± 0.26 � × ×

Fig. 3. Test Dice Coefficients Distribution of INbreast Dataset. The first row shows the
distribution of INbreast dataset and the second row shows DDSM’s. The left figures
depict the histogram of test dice coefficients and the rights show the sampled cumulative
distribution.
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Fig. 3 shows the histogram of dice coefficients and sampled cumulative distribu-
tion of two datasets. In those figures we can observe that the CRU-Net achieves
a higher proportion of cases with DI > 95%. In addition, all algorithms follow
a similar distribution, but Zhu’s algorithm has a bigger tail than others on the
INbreast data. To visually compare the performances, example contours from
the CRU-Net (λ = 0.67) and Zhu’s algorithms are shown in Fig. 4. It depicts
that while achieving a similar DI value to Zhu’s method, the CRU-Net obtains
a less noisy boundary. To examine the tail in Zhu’s DIs histogram (DI ≤ 81%),
Fig. 5 compares the contours of the hard cases, which suggests that the pro-
posed CRU-Net provides better contours for irregular shape masses with less
noisy boundaries.

(a) (b) (c) (d) (e) (f)

Fig. 4. Visualized comparison of segmentation results (DI > 81%) between CRU-Net
and Zhu’s work. Red lines denote the radiologist’s contour, blue lines are the CRU-
Net’s results (λ = 0.67), and green lines denote Zhu’s method results. (Color figure
online)

(a) (b) (c) (d) (e) (f)

Fig. 5. Visualized comparison of segmentation results between CRU-Net (λ = 0.67)
method and Zhu’s work on the 5 hardest cases, when Zhu’s DI ≤ 81%. Red lines denote
the radiologist’s contour, blue lines are the CRU-Net’s results, and green lines are from
Zhu’s method. From (a) to (f), Zhu’s DIs are: 70.16%, 73.47%, 76.11%, 72.95%, 80.36%
and 79.98%. The CRU-Net’s corresponding DIs are: 87.51%, 92.43%, 88.52%, 95.01%,
93.50% and 91.33%. (Color figure online)

4 Conclusions

In summary, we propose the CRU-Net to improve the standard U-Net segmenta-
tion performance via incorporating the advantages of probabilistic graphic mod-
els and deep residual learning. The CRU-Net algorithm does not require any
tedious preprocessing or postprocessing techniques. It outperforms published
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state-of-art methods on INbreast and DDSM-BCRP with best DIs as 93.66%
and 91.14% respectively. In addition, it achieves higher segmentation accuracy
when the applied database is of higher quality. The CRU-Net provides similar
contour shapes (even for hard cases) to the radiologist with less noisy boundary,
which plays a vital role in subsequent cancerous diagnosis.
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