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Abstract. End-to-end deep learning improves breast cancer classifica-
tion on diffusion-weighted MR images (DWI) using a convolutional neu-
ral network (CNN) architecture. A limitation of CNN as opposed to pre-
vious model-based approaches is the dependence on specific DWI input
channels used during training. However, in the context of large-scale
application, methods agnostic towards heterogeneous inputs are desir-
able, due to the high deviation of scanning protocols between clinical
sites. We propose model-based domain adaptation to overcome input
dependencies and avoid re-training of networks at clinical sites by restor-
ing training inputs from altered input channels given during deployment.
We demonstrate the method’s significant increase in classification per-
formance and superiority over implicit domain adaptation provided by
training-schemes operating on model-parameters instead of raw DWI
images.
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1 Introduction

As mammography suffers from high amounts of false positive findings, a promis-
ing image modality for breast cancer classification is DWI, which aims at
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reducing the number of biopsies through reliable early diagnosis [1]. The model-
based state of the art for DWI signal exploitation is diffusion kurtosis imaging
(DKI), where diffusion properties are estimated in suspicious tissue to distin-
guish between malignant and benign tumor cells [2,3]. An end-to-end q-space
deep learning approach (E2E) has recently been shown to outperform DKI-based
approaches by optimally exploiting input correlations using CNNs [4,5]. How-
ever, a limitation of E2E is the inherent input dependence of CNNs [6], which in
this case are trained on specific diffusion-weighted images acquired at certain b-
values, i.e. strengths and timings of gradient fields. This limitation is crucial for
large-scale clinical application, since DWI scanning protocols deviate between
sites and standardization is not expected in the near future. Furthermore, due
to limited training data, it is desirable to ship trained models across clinical sites
for inference on unseen images acquired with arbitrary local protocols. This pro-
cedure implies heterogeneities between training data and local inference data,
e.g. in the form of shifted or missing b-values.

Generative models such as generative adversarial networks [7,8] and varia-
tional autoencoders [9,10] have recently succeeded at domain transformations.
Such models could potentially be used to transform altered test-time inputs to
original input channels used during training, yet do not eliminate input depen-
dencies. Similar to other domain adaptation methods such as fine-tuning of
models on new input or common representation learning of inputs [11], they
themselves need to be trained on specific input alteration modes. As model fits
such as DKI come with an inherent robustness towards input variations, input
independence could potentially be achieved by operating on the fit parameters
instead of raw DWI inputs. However, this robustness is proportional to the num-
ber of observed values, which, as will be shown, is not sufficient in typical DWI
acquisition setups.

In this paper, we propose model-based domain adaptation, where the original
training channels are derived from DKI using the altered inputs at test time.
This method does not require training and hence can be deployed in any clinical
setting without prior assumptions about protocol deviations. We show that this
method significantly reduces input dependencies by optimally exploiting input
correlations (E2E) based on estimations from the DKI model. We further demon-
strate the superiority of our approach over training networks on DKI parameters
(fit-to-end, F2E).

2 Methods

2.1 DWI Data Set

This study is performed on a data set of 221 patients and is equal to the data
set used for E2E training [4,5]. For each patient, images of four b-values 0, 100,
750 and 1500 s mm−2 with a slice thickness of 3 mm were acquired using two
different 1.5 T MR scanners. The in-plane resolution of one scanner had to be
upsampled by a factor 2 to match the other scanners resolution of 1.25 mm.
Prior to DWI scanning, all patients were diagnosed with BI-RADS [12] ≥ 4
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from mammography screenings. A core-needle biopsy was performed to secure
diagnosis, which resulted in 121 malignant and 100 benign lesions. The biopsy
result served as the classification ground truth. Lesions were manually segmented
as regions of interest (ROI) by expert radiologist without knowledge about the
biopsy results. As 23 images do not contain any visible lesion, those subjects
were predicted as benign. Figure 1 shows an example set of diffusion-weighted
images for one patient.

Fig. 1. Sample slice of diffusion-weighted images of one patient at distinct b-values
and the segmentation of the lesion on b = 1500 s mm−2 (right).

2.2 Diffusion Kurtosis Imaging

DKI is the the state of the art model for DWI signal exploitation in lesion clas-
sification. To derive diagnostically conclusive tissue parameters, DKI estimates
the apparent diffusion coefficient (ADC) and additionally the apparent kurto-
sis coefficient (AKC) which quantifies deviations from free Gaussian diffusion
induced by diffusion restrictions and diffusion heterogeneity [13]. These param-
eters are estimated by fitting the DKI model to measured signal intensities S(b)
in each voxel:

S(b) = (θ2 + S0 exp(−b ADC +
1
6

b2 ADC2 AKC)2)0.5 (1)

where S0 is the signal intensity for b0 (b = 0), the b-value is the strength
of diffusion weighting [14]. Furthermore, the model accounts for a background
signal level induced by fat signal contamination in the lesion using the mean
signal intensity θ of an additionally segmented fat area for each patient. In
DKI, ADC and AKC are used most commonly to determine the malignancy of
a suspicious lesion by averaging the coefficients over an ROI to obtain global
coefficients [2]. Notably, we updated the DKI fit of [5] by not omitting S(0) and
added fat calibration to increase DKI fitting performance according to [14].

2.3 End-to-End Q-Space Deep Learning

E2E has recently been proposed as a successful model-free approach to classifying
suspicious breast lesions [4,5]. Classification is performed by feeding the raw
signal intensities of the segmented ROI into a CNN. Using 1 × 1 convolutions,
deep diffusion coefficients are learned mimicking DKI parameters by correlating
signal intensities of each pixel across DWI input channels. Subsequently, the
network extracts features related to texture and geometry, which are globally
pooled and fed through a softmax layer to obtain probabilities of malignancy.
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2.4 Model-Based Domain Adaptation

To overcome dependence on specific b-values and enable clinical applicability
of lesion classification regardless of scanning protocols, we propose to perform
model-based domain adaptation (MBDA). During inference, the DKI model is
fit to the signal intensities of all available (potentially altered) b-values. In order
to restore the original set of b-values seen during training, the fitted model is
used to derive estimates of the signal intensities S(b) at the missing b-values
(see Formula 1). Subsequently, the restored set of inputs is fed into the trained
model to obtain classification scores (see Fig. 2 top).
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Fig. 2. Concept of our proposed method for the missing scenario (top). The missing b-
value is derived from a DKI-model and used as CNN input. The fit-to-end architecture
trained on ADC and AKC is used for comparison (bottom).

Experimental Setup. Two scenarios of heterogeneous inputs were studied:
shifted scenario, where one measured b-value in the inference data is provided at
a different (shifted) value w.r.t. the training data, and missing scenario, where
one measured b-value in the inference data is missing w.r.t. the training data.
Both scenarios were imitated by training and testing on respective subsets of the
four b-values provided by the utilized data set. Note, that scenarios comprising
alterations of multiple inputs were not studied due to the limited number of
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b-values provided. Furthermore, no alterations were applied to b0 as in practice
all protocols include at least one b-value equal or close to zero [13–15].

An upper bound performance for MBDA is given by training and testing
on the same subset of b-values (matched input). A lower bound performance
for MBDA is given by testing on the altered inputs without domain adaptation
(altered input). To compare our approach against the implicit domain adapta-
tion of DKI, we train on DKI fit parameters ADC and AKC by feeding the
parameter maps directly into the feature extraction and classification modules
of the CNN (F2E). During testing, ADC and AKC are fitted using the altered
inputs (see Fig. 2 bottom). For inference subsets containing only two b-values,
which causes the DKI model to be under-constrained, we set AKC = 0.

The network details and training setup are equal to the setup reported in
[5]. The signal exploitation module is omitted for F2E training. The networks
are trained using 5-fold cross validation with 60% training-, 20% validation- and
20% test data and selected based on the lowest validation error.

Evaluation. Evaluation is conducted by comparing the area under the receiver
operator curves (AUC). Significance tests were performed using DeLong’s
method and corrected for multiple testing using the Holm-Bonferroni-Method
(initial α = 0.05).

3 Results

Results are shown in Table 1. The observed moderate decrease of performance
caused by a general absence of inputs (matched input) indicates a general redun-
dancy of information across b-values of the input images. For instance, subsets of
three b-values seem to roughly contain the same information as the original four
b-values with respect to overall performance. However, strong input dependence
is observed in both E2E and F2E (altered input, i.e. no domain adaptation)
with an average decrease of 19.2% and 10.6%. MBDA is able to significantly
increase this lower bound performance in the shifted scenario (12.4%) and miss-
ing scenario (16.8%) (see Fig. 3). Comparing F2E to E2E, F2E altered input
performs on average slightly better than E2E altered input, i.e. 7.1% for shifted
scenario and 4.4% for missing scenario, indicating a positive effect of implicit
domain adaptation. E2E with MDBA considerably outperforms F2E by 5.3%
for shifted scenario and 12.4% for missing scenario. Notably, extrapolation to
large b-values is a poorly constrained problem, which causes performance drops
across all explored methods. As expected, F2E only works when constraining
the DKI model (setting AKC = 0) during CNN training.
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Table 1. Results comparing all explored methods. All numbers report AUC except
for p-values. x marks the available b-values. o marks the derived b-value. * marks
observed significance.

a) Shifted Scenario.

Training b-values
E2E

Matched

Input

F2E

Matched

Input

Testing b-values
E2E

Altered

Input

F2E

Altered

Input

MBDA p-value

E2E;MBDA

p-value

E2E;F2E
b0 b100 b750 b1500 b0 b100 b750 b1500

x x x 0.893±0.04 0.819±0.05
x x o x 0.741±0.06 0.768±0.05 0.848±0.05 0.0005* 0.011

x o x x 0.831±0.05 0.845±0.05 0.893±0.04 0.0052* 0.0622

x x x 0.882±0.04 0.855±0.05
x x x o 0.799±0.06 0.817±0.06 0.751±0.07 0.1426 0.1132

x o x x 0.831±0.05 0.845±0.05 0.880±0.04 0.0019* 0.816

x x x 0.886±0.04 0.892±0.04
x x x o 0.725±0.07 0.845±0.05 0.766±0.07 0.3199 0.0416

x x o x 0.737±0.07 0.844±0.05 0.871±0.05 6.96e-5* 0.422

x x 0.777±0.06 0.674±0.072
x o x 0.680±0.07 0.679±0.07 0.794±0.06 0.00014* 0.0018*

x o x 0.666±0.07 0.679±0.07 0.791±0.06 0.0002* 0.0015*

x x 0.889±0.04 0.871±0.05
x x o 0.723±0.07 0.608±0.08 0.796±0.06 0.0467 4.08e-6*

x o x 0.752±0.06 0.833±0.06 0.869±0.05 0.0009* 0.1426

x x 0.882±0.04 0.877±0.05
x x o 0.729±0.07 0.589±0.08 0.757±0.06 0.4864 0.0002*

x x o 0.817±0.06 0.825±0.06 0.866±0.05 0.0643 0.1485

b) Missing Scenario.
As for subsets of two available b-value images DKI is manually constrained by setting AKC = 0,
performances for both training with and without the constraint are reported (DKI/ADC)

Training b-values
E2E

Matched

Input

F2E

Matched Input

(DKI/ADC)

Testing b-values
E2E

Altered

Input

F2E

Altered

Input

MBDA p-value

E2E;MBDA

p-value

E2E;F2E

(DKI/ADC)b0 b100 b750 b1500 b0 b100 b750 b1500

x x x x 0.898±0.05 0.896±0.05

x x x o 0.678±0.07 0.655±0.07 0.745±0.07 0.1463 0.0449*

x x o x 0.604±0.08 0.667±0.07 0.882±0.04 1.4e-12* 8.76e-8*

x o x x 0.823±0.53 0.678±0.07 0.901±0.04 0.00028* 1.04e-8*

x x x 0.893±0.04
0.819±0.05/

0.859±0.05

x x o 0.513±0.08
0.522±0.08/

0.617±0.07
0.780±0.06 2.1e-7*

1.18e-8*/

0.00014*

x o x 0.817±0.05
0.514±0.08/

0.857±0.08
0.891±0.04 0.00026*

2.2e-16*/

0.1041

x x x 0.882±0.04
0.855±0.05/

0.860±0.05

x x o 0.512±0.08
0.612±0.08/

0.652±0.074
0.755±0.06 6.92e-6*

0.00067*/

0.0125*

x o x 0.818±0.05
0.647±0.08/

0.875±0.05
0.879±0.04 0.0003*

3.63e-9*/

0.8804

x x x 0.886±0.04
0.892±0.04/

0.860±0.05

x x o 0.657±0.07
0.646±0.07/

0.836±0.05
0.878±0.04 5.14e-9*

8.72e-10*/

0.1036

x o x 0.649±0.07
0.699±0.07/

0.868±0.05
0.868±0.04 3.24e-7*

2.66e-6*/

0.997
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Fig. 3. Mean AUC derived from Table 1. Matched input represents the upper bound
with matching b-value subsets during training and inference. Altered Input represents
the lower bound by testing on the altered subset without domain adaptation. E2E with
MBDA significantly improves the robustness towards heterogeneous inputs compared
to F2E with altered inputs (implicit domain adaptation) in both scenarios.

4 Discussion

The results of this study suggest that model-based domain adaptation is an effec-
tive approach to overcome input dependencies and avoid re-training at clinical
sites during large-scale application of DWI lesion classification. MBDA signif-
icantly increases the performance for both missing and shifted input scenarios
by combining optimal exploitation of input correlations of raw DWI with DKI-
based signal estimation to restore information lost due to altered input. In other
words, MBDA is a “minimal invasive” method, which leaves unaltered input
untouched, while the implicit domain adaptation performed by training and
testing on fit parameters generates entirely new fit parameters given altered
input, discarding unaltered correspondences. The latter works in theory, given a
sufficient number of b-value images, but suffers from fitting instabilities in a typ-
ical DWI setup. In addition, strong assumptions have to be made on the amount
of b-value images available during clinical inference prior to CNN training (as
manually constraining the model by setting AKC = 0 might be required), which
contradicts the desire for input independence. Future research includes studying
multiple input alterations on data sets providing a larger number of b-values,
application on unsegmented breast DWI, investigating the generalization of deep
learning models trained on large DWI data sets and exploring the applicability
to further entities.
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5. Jäger, P.F., et al.: Complementary value of end-to-end deep learning and radiomics
in breast cancer classification on diffusion-weighted MR. In: ISMRM (2017)

6. Ghodrati, M., et al.: Feedforward object-vision models only tolerate small image
variations compared to human. Front. Comput. Neurosci. 8, 74 (2014)

7. Nie, D., et al.: Medical image synthesis with context-aware generative adversarial
networks. In: MICCAI, pp. 417–425 (2017)

8. Isola, P., et al.: Image-to-image translation with conditional adversarial networks.
In: IEEE Conference on CVPR, p. 5967 (2017)

9. Rezende, D., Jimenez, S.M., Wierstra, D.: Stochastic backpropagation and approx-
imate inference in deep generative models. ICML 32(2), 1278–1286 (2014)

10. Kingma, D., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)
11. Havaei, M., et al.: HeMIS: Hetero-modal image segmentation. In: MICCAI, pp.

469–477 (2016)
12. Balleyguier, A.C., et al.: BI-RADSTM classification in mammography. Eur. J.

Radiol. 61(2), 192–194 (2007)
13. Jensen, J.H., et al.: Diffusional kurtosis imaging: the quantification of nongaussian

water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 53(6),
1432–1440 (2005)

14. Bickelhaupt, S., et al.: Radiomics based on adapted diffusion kurtosis imaging helps
to clarify most mammographic findings suspicious for cancer. Radiology 287(3),
761–770 (2018)

15. Roethke, M.C., et al.: Evaluation of diffusion kurtosis imaging versus standard
diffusion imaging for detection and grading of peripheral zone prostate cancer.
Invest. Radiol. 50(8), 483–489 (2015)

https://doi.org/10.1007/978-3-319-66182-7_76

	Domain Adaptation for Deviating Acquisition Protocols in CNN-Based Lesion Classification on Diffusion-Weighted MR Images
	1 Introduction
	2 Methods
	2.1 DWI Data Set
	2.2 Diffusion Kurtosis Imaging
	2.3 End-to-End Q-Space Deep Learning
	2.4 Model-Based Domain Adaptation

	3 Results
	4 Discussion
	References




