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Abstract. In a standard mammography screening procedure, two X-
ray images are acquired per breast from two views. In this paper, we
introduce a patch based, deep learning network for lesion matching in
dual-view mammography using a Siamese network. Our method is eval-
uated on several datasets, among them the large freely available digital
database for screening mammography (DDSM). We perform a compre-
hensive set of experiment, focusing on the mass correspondence prob-
lem. We analyze the effect of transfer learning between different types of
dataset, compare the network based matching to classic template match-
ing and evaluate the contribution of the matching network to the detec-
tion task. Experimental results show the promise in improving detection
accuracy by our approach.
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1 Introduction

Mammography (MG), the primary imaging modality for breast cancer screening,
typically utilizes a standard dual-view procedure. Two X-ray projection views are
acquired for each breast, a craniocaudal (CC) and a mediolateral oblique (MLO)
view. Examining the correspondence of a suspected finding in two separate com-
pression views, enables the radiologist to better classify an abnormality. Studies
have shown that using a two-view analysis helps radiologists reduce false posi-
tive masses caused by overlapping tissues that resemble a mass, and ultimately
helps achieve a higher detection rate [17]. Although Computer Aided Diagno-
sis (CAD) algorithms were developed to assist radiologists, their usefulness has
been debated. This is partially due to the many false positives they produce,
especially for masses and architectural distortions. We propose a novel approach
for identifying the correspondences between masses detected in different views,
to further improve the detection and classification of MG algorithms.

Previous work on MG classification employed hand-crafted features, such
as texture, size, histogram matching, distance from the nipple, and more. The
extracted features were then classified together using various techniques to assess
the similarity between image pairs. [11] demonstrated the positive effect of dual-
view analysis, which detects suspicious mass in one view and its counterpart
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in the other view. Based on geometric location, this analysis fuses both sets
of features and classifies them with linear discriminant analysis. [1] used dual
view analysis to improve single-view detection and classification performance by
combining the dual-view score with the single-view score. Features were obtained
manually using candidate location, shape, and image characteristics.

Deep learning approaches have already shown impressive results in MG detec-
tion and classification. [3] presents a micro-calcification (MC) classification that
uses a dual-view approach based on two neural networks; this is followed by a
single neuron layer that produces the decision based on the concatenated features
from both full image views. [15] presents a multiscale convolutional neural net-
works (CNN) for malignancy classification of full images and sub-image patches
integrated with a random forest gating network. Dhungelz et al. [5] proposed
a multi-view deep residual network (Resnet) to automatically classify MG as
normal/benign/malignant. The network consists of six input images, CC and
MLO together with binary masks of masses and MC. The output of each Resnet
is concatenated, followed by a fully connected layer that determines the class.
Similarly, [6] proposed a two-stage network approach that operates on the four
full images: CC and MLO of the left and right breasts. The second stage concate-
nates the four view-specific representations to a second softmax layer, producing
the output distribution.

Most multi-view deep learning approaches to MG are applied on unregistered
full images and concatenates the features obtained by the network on each view
separately. In contrast, we propose a Siamese approach that focuses on match-
ing localized patch pairs of masses from dual views. Siamese networks are neural
networks that contain at least two sub-networks, with identical configuration,
parameters, and weights. During training, updates to either path are shared
between the two paths. To address the correspondence problem, previous works
used the Siamese network [10] to simultaneously train inputs together. [4] uses
this type of network for a face verification task, in which each new face image
was compared with a previously known face image. [16] demonstrate the advan-
tage of Siamese networks by detecting spinal cord mass in different resolutions.
Sharing parameters leads to fewer parameters allowing training with smaller
datasets. The subnetworks representation is related, and thus better suited for
the comparison task.

Our work entails three key contributions: (1) A novel deep learning dual view
algorithm for mass detection and localization in breast MG based on Siamese
networks, which have not been used before to solve lesion correspondence in MG.
(2) A careful set of experiments using several datasets to study the contribution
of the network components, also showing that the network is better than the
classic template matching approach. (3) Evaluation on the DDSM database.

2 Methods

For this study, our input took unregistered CC/MLO MG images and matched
between lesions appearance in both views. Below, we describe the network
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matching architecture, the experimental methodology including fine-tuning and
comparison to template matching and how the matching architecture is inte-
grated into an automatic detection pipeline.

2.1 Matching Architecture

Our approach extends the work presented by Han et al. [8]. The authors devel-
oped MatchNet, a CNN approach for patch-based matching between two images.
The network consists of two sub-networks. The first is a feature network, a
Siamese neural network, in which a pair of patches, extracted from the CC and
MLO views are inserted and processed through one of two networks. Both paths
consist of interchanging layers of convolutions and pooling, which are connected
via shared weights. The second is the metric network, which concatenates the
two features, contains three fully connected layers and uses a softmax for feature
comparison. Dropout layers were added after layers FC1 and FC2 with value of
0.5. The network is jointly trained with a cross entropy loss. Figure 1(c), presents
the modified network, including the network’s ensemble approach.

The mammography datasets employed for this study were created by defining
a positive image pair label, as the detections annotated by a radiologist in each
view, while a negative pair label is defined by matching false detection with
annotated detections in the other view.

(a) Pair (b) Non-pair (c) Architecture

Fig. 1. The dual-view matching architecture. Columns (a, b) are illustration of ROI
input patches from two views, CC and MLO. (a) Matching pair of images (b) Non
matching images. (c) Patch pairs from CC and MLO views are inserted to the network.
The feature network, consists of interchanging layers of convolutions and pooling, share
parameters between paths. The metric network has fully connected layers with dropout,
produce the final decision by networks ensemble.

2.2 Fine Tuning the Network

Fine-tuning and transfer learning have shown to improve performance results
despite of specific application domains [14,18]. To adapt MatchNet to the task
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of matching detections from different MG views, we first evaluated fine-tuning.
We fine-tuned by training the layers of the metric network, i.e. the three fully
connected layers and the last convolution layer from the feature network. We
used three different datasets, as described in the Experiment and Results section,
including: Photo tourism (natural image pairs)[12], Digital Database for Screen-
ing Mammography (DDSM) [9] and In-house dataset. We used the trained
weights of one dataset domain to fine tune the other datasets.

2.3 Template Matching

Template matching, which extracts sub-image patches and computes a similarity
measure that reflects the template and image patch correspondence, has been
used extensively in computer vision [2]. We compare our deep learning network
to template matching with normalized cross correlation. Intuitively, we assume
that the similarity of image patches of a mass in one view with the same mass
in the other view under deformations, will be higher than the similarity with a
different mass or region of the breast [7].

2.4 Dual-View Automatic Lesion Detection

We integrated two components, a matching architecture and a single-view
detection algorithm to exploit the contribution of the dual-view network to
the full pipeline. The detection algorithm is based on a modified version of U-net
[13], which was originally designed for the biomedical image processing field. In
the original U-net, the output size is identical to the input size. However, for
our task segmentation is not required at the pixel level, since the boundary of
tumors and healthy tissue is ill-defined. Thus, we modified the U-net output, so
that each pixel of the output, corresponds to a 16× 16 pixels area of the input.

The system flow is such that, given a dual-view pair of images as input, the
single-view detection algorithm is applied separately on the CC, MLO image
Icc, IMLO and outputs a set of candidate patches, PCC = {p1CC , ...pNCC}, PMLO =
{p1MLO, ...pMMLO} respectively. The objective of the matching architecture is to
identify the correspondences. If both patch candidates, CC and MLO views,
from the detection flow, are identified as a true lesion, then the label for the pair
will be true and accordingly considered a positive match. We assign labels to
each pair based on the Dice Coefficient threshold δ, between two masks, defined
by a detection contour and ground truth lesion contour respectively. For our
experiments, we used δ = 0.1 as the threshold. Any contour with a larger score
is said to be a true lesion.

3 Experiments and Results

3.1 Data Description

We carried out the experiments on three datasets: (a) The Photo Tourism dataset
[12], consists of three image datasets: Trevi fountain, Notre Dame and Yosemite.
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Which is similar to the dataset used in the MatchNet paper [8]. It consists of
1024× 1024 bitmap images, containing a 16× 16 array of image patches. Each
image patch has 64× 64 pixels and has several matching images that differ in
contrast, brightness and translation. (b) The Digital Database for Screening
Mammography (DDSM) [9], contains 2620 cases of four-view MG screenings. It
includes radiologist ground truth annotations for normal, benign and malignant
image. 1935 images contain tumors. (c) The In-house dataset includes benign
and malignant tumor ground truth annotations, from both CC/MLO MG views
for either left, right or both breasts. It contains 791 tumor pairs. Figure 1(a, b)
shows some tumor pairs from In-house dataset used as positive examples for
the network versus negative examples. We randomly split the data into training
(80%) and testing (20%) subsets of patients. The partitioning was patient-wise
to prevent training and testing on images of the same patient.

3.2 Patch Preprocessing and Augmentations

We extracted ROI patches from the full MG images of 4000× 6000 pixels by
cropping a bounding box around each detection contour. Each such bounding
box was enlarged by 10% in each dimension to include useful information around
the lesion border. The extracted patches were then resized to 64× 64 to generate
the input to the network. We normalized all the datasets by subtracting the mean
of each image and dividing by the standard deviation of each patch, avoiding
the proposed MatchNet normalization [12].

Augmentation was utilized throughout the training stage on all three
datasets, such that each patch was flipped left and right and rotated by 90◦,
180◦, 270◦. Each augmented patch was matched with all the others augmented
patches. Medical datasets are generally unbalanced. Namely, the number of pos-
itive pairs are significantly smaller than the negative pairs. Thus, we train two
networks, each network has a balanced input of positive pairs and randomly
selected negative pairs. In the testing stage, we evaluate each test image through
all networks, and achieve a final score using a mean probability.

We trained with a learning rate of 0.0001, Adam optimizer and batch size of
512. Experiments were performed on a Titan X Pascal GPU. Training time for
DDSM models took 4 h. Testing time with model ensemble took 6 s.

3.3 Fine Tuning the Network

We studied the contribution of fine-tuning on the results in three experiments.
Full training on Photo tourism and fine tuning with (i) In-house (ii) DDSM (iii)
Full training on DDSM and fine tuning with In-house. (i+ii) were done using
Notredam dataset. The results for these tests are presented in Fig. 2, where
the upper and lower subfigures correspond to the In-house and DDSM dataset
respectively. The comparison of the In-house and DDSM full training results
(AUC 0.969, 0.92) with the fine tuning results (AUC 0.973, 0.91) did not show
a clear advantage over the fine tuning process. This can be explained by two
factors: the domain transfer effect, namely despite the Notredam large dataset
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(a) In-house results (b) DDSM results

Fig. 2. Fine tuning ROC results. The figures demonstrate the different experiment
performed to evaluate the ability of the matching architecture to classify MG pairs
and non pairs. (a) In-house dataset shows no advantage for fine tuning. (b) DDSM
dataset shows best result by full train (cyan). (Color figure online)

of image pairs, natural images are different than medical images. Second, the
Noterdam dataset pairs are much more similar to each other than the different
views pairs from the breast images, which go through deformation.

Fine tuning the DDSM with the In-house dataset in (iii), obtained (AUC
0.971) compared to full training of (AUC 0.969). DDSM is a large MG dataset,
however it is acquired with a different imaging technique from the In-house data
(full field digital mammography) and this might explain the similar results. The
ROC plot also shows the improvement in AUC by adding dropout in Fig. 2.

3.4 Template Matching

The cross-correlation score was transformed from the range of [−1, 1] to [0, 1] to
represent the score as probabilities. The correlation presented in Fig. 2 obtained
significantly lower results of AUC 0.73, 0.63 on In-house, DDSM respectively.

3.5 Dual-View Automatic Lesion Detection

To evaluate the contribution of the matching architecture to the full detection
pipeline, we applied the single-view detection algorithms on the CC, MLO image
pairs followed by the matching architecture on the DDSM dataset. In some
cases, detections will appear only for one view and not in the other. These cases
cannot be evaluated using the matching architecture. Thus, two possibilities
arise, exclude all detections without a pair or include them. Figure 3(a) shows the
classification of the set of patches into positive and negative matches, generates
an AUROC of 0.864, 0.81 depending on whether the small set of detections with
no-pairs were included or excluded. We conclude that it is reasonable to include
these detection as some tumors may be identified only in a single view.
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(a) Patch matching ROC (b) CC/MLO (c) CC/MLO

Fig. 3. Results of automatic lesion detection pipeline. (a) Green curve includes detec-
tions with no-pair in second view, orange curve excludes those detection. Detection
examples on DDSM dataset (b, c). Red contours denote automatically detected pairs
that correspond to GT while, the cyan contours are false positive automatic detections
that were reduced by the dual-view algorithm. (Color figure online)

Additionally, Fig. 3(a) shows that proposed approach can reduce the false
positive detection rate while keeping a high sensitivity. For MG pairs matching,
we can keep a sensitivity of 0.99 and specificity of 0.19. Namely, by keeping the
standalone detections we are able to reduce the false positives by almost 20%.
Fig. 3(b, c), illustrates the full pipeline prediction on MG images. Probabilities of
the false detections pairs (in cyan) are omitted in the final detection output. This
is similar to the approach used by human radiologists, first detecting suspicious
findings and then analyzing them by comparing the dual-view appearance.

4 Discussion

Finding correspondence between patches from different views of the same breast
is a challenging task. Each image from MLO/CC views undergoes nonlinear
deformations which can make the lesions very different from each other. On the
other hand, being able to detect the lesion in both views can help the radiologists
reach more accurate findings. In this work, we propose a dual-view Siamese based
network, in which the architecture learns a patch representation and similarity
for lesion matching. We demonstrate the advantage of a learned distance metric
implemented in the network and its value in addition to a single view detection.
This work can also be extended to 3D mammography by applying 3D patches.
Future work will extend this work to other types of findings such as calcifications
and will utilize mass location information to better eliminate false positives.
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