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Abstract. In recent years, the ability to accurately measuring and
analyzing the morphology of small pulmonary structures on chest CT
images, such as airways, is becoming of great interest in the scientific
community. As an example, in COPD the smaller conducting airways are
the primary site of increased resistance in COPD, while small changes
in airway segments can identify early stages of bronchiectasis.

To date, different methods have been proposed to measure airway wall
thickness and airway lumen, but traditional algorithms are often limited
due to resolution and artifacts in the CT image. In this work, we pro-
pose a Convolutional Neural Regressor (CNR) to perform cross-sectional
measurements of airways, considering wall thickness and airway lumen at
once. To train the networks, we developed a generative synthetic model
of airways that we refined using a Simulated and Unsupervised Genera-
tive Adversarial Network (SimGAN).

We evaluated the proposed method by first computing the relative
error on a dataset of synthetic images refined with SimGAN, in compar-
ison with other methods. Then, due to the high complexity to create an
in-vivo ground-truth, we performed a validation on an airway phantom
constructed to have airways of different sizes. Finally, we carried out
an indirect validation analyzing the correlation between the percentage
of the predicted forced expiratory volume in one second (FEV1%) and
the value of the Pi10 parameter. As shown by the results, the proposed
approach paves the way for the use of CNNs to precisely and accurately
measure small lung airways with high accuracy.

1 Introduction

In the last decade, several studies have been focused on the development of
new algorithms to precisely locate small pulmonary structures, such as airways,
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on chest CT images. Once the structures are identified, the following step is
represented by a quantitative measurement to extract geometrical properties,
which may lead to improved diagnosis and new studies of lung disorders, as the
morphology of the bronchial tree is commonly affected by inflammatory and
infectious lung diseases. As an example, the smaller conducting airways are the
structures most affected in patients with chronic obstructive pulmonary disease
(COPD) [1], and the thickness of the airway wall (measured on CT) has been
correlated to the severity and duration of asthma in different works [2,3]. For
this reason, having a method that automatically analyzes airway walls thickness
and lumen size is becoming of great interest for the scientific community.

On CT images, airways are often close to vessels and surrounded by
parenchyma, and image resolution as well as noise artifacts often affect an accu-
rate measurement. To perform airway wall thickness detection, the traditional
approaches are based on non-parametric methods, which analyze the properties
of the structure directly on the reconstructed CT signal. The most typical app-
roach is the so-called full width at half max (FWHM) [4], which is based on the
idea that the true edge of an ideal step function undergoing low-pass filtering
is located at the FWHM location. An alternative popular approach to measure
airway walls is the use of the zero crossing of the second order derivative (ZCSD)
[5], which is used to characterize the signal transitions (i.e., lumen-to-wall and
wall-to-parenchyma). More recently, a new approach for airway wall segmenta-
tion that starts from a coarse airway segmentation and implements an optimal
graph construction method for wall segmentation was proposed [6]. However,
all traditional methods suffer from over- and under-estimation errors when the
structure size approaches the scanning resolution [7].

To overcome these issues, we propose to use a convolutional neural regressor
(CNR) [8] approach, which uses a customized loss function to automatically and
simultaneously measure airway wall thickness and airway lumen on small 2D
patches extracted around the structure of interest. To the best of our knowledge,
this approach has not yet been considered to solve problems such as measurement
and analysis of the morphology of airways on CT images.

Since creating an accurate and reliable ground truth for small airway is quite
a tedious and complicated task, to train the network we developed a synthetic
model that aims at reproducing the main characteristics of airways with exact
knowledge of the physical dimensions. The generated model is then refined using
a Simulated and Unsupervised Generative Adversarial Network (SimGAN) [9].

New synthetic airway images are used for an initial validation to compute the
relative error obtained by the proposed error. Then, as a further test, we created
a synthetic phantom of airways with varying wall thicknesses. Finally, in order
to prove the reliability of our approach, we performed an indirect validation
on in-vivo cases in comparison to traditional methods through the correlation
between the predicted FEV1% and the Pi10 parameter.
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2 Materials and Methods

The proposed CNR algorithm used 2D patches of 32× 32 pixels extracted from
the structure of interest. These patches are then refined using SimGAN to resem-
ble in-vivo patches better. In this section, we first introduce the creation and
refinement of the synthetic patches. Then, the proposed CNR is described with
the different training processes implemented. Finally, the validation methods are
presented.

2.1 Synthetic Modeling of Airways

In order to generate reliable synthetic patches of airways, the main aspects of the
structure of interest as well as the characteristics of the CT scanner with regard
to resolution, PSF, and imposed noise have to be reproduced. Based on the
knowledge that on reformatted axial plane airways have tangent vessels [10], each
airway patch consisted of two bright ellipses (inner and outer walls) with a dark
central zone (airway lumen) and zero, one or two tangent vessels, represented by
bright ellipses rotated around the airway. The parameters to create the synthetic
airways were randomly chosen based on physiological values and are reported in
Table 1. Although the creation of a synthetic airway presents some limitations,
we think that the proposed model represents an appropriate simulation that
helps a neural network learn the main features of real airways. Also, using the
multi-scale particle extraction method described in [11], 2D patches can be easily
extracted along the airway’s main axis, which is given by the first eigenvector
of the Hessian matrix. For this reason, we do not consider 3D patches, which
due to the different tubular profiles and a wide variation of 3D orientations that
should be taken into account would increase the complexity of the modeling.

To reproduce the structure of the parenchyma, a Gaussian smoothing (with
a standard deviation of 5) was applied to Gaussian distributed noise, to create
some broadly correlated noise, which made a texture of multiple structures that

Table 1. Parameter ranges used for the creation of the airway model. All values were
uniformly distributed within the specified ranges. LR stands for lumen radius.

Parameter Parameter range

Lumen radius (LR) 0.5 to 6.0 (mm)

Airway wall thickness 0.1LR + 0.2 to 0.3LR + 1.5 (mm)

Number of vessels 0 to 2

Vessel radius (VR) LR to LR + 0.8 (mm)

Skewness of reconstruction −40 to 40 (degrees)

Airway Lumen Intensity −1150 to −1050 (HU)

Airway Wall Intensity −500 to −200 (HU)

Vessel Intensity −50 to 50 (HU)
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mimicked the parenchyma. Afterward, the correlated noise was altered to have
a mean intensity of −900 HU and a standard deviation of 150. All values were
empirically chosen.

All patches were created starting at a super-resolution of 0.05 mm/pixel in
a sampling grid of 640× 640 pixels. To obtain the final patch, the obtained
images were first down-sampled to a resolution of 0.5 mm/pixel. Then, a PSF
was simulated to mimic the blurring caused by the image reconstruction process.
To this end, due to the small size of the patch, we assumed that the PSF can
be approximated by means of a spatially locally invariant Gaussian function, as
demonstrated in [12]. The standard deviation of the Gaussian filter was randomly
chosen in an empirically determined range of 0.4 to 0.9 mm to simulate the
differences in the PSF across CT scanners and manufacturers. Finally, a spatially
correlated Gaussian noise was added to the image based on Gaussian distributed
random noise smoothed with a Gaussian filter (with a standard deviation of 2),
with the empirically determined mean of zero and standard deviation of 25. As
a last step, the image is cropped to a 32× 32 pixels grid.

2.2 SimGAN Refinement

Although the proposed generative model simulates reasonably well the geomet-
rical aspects of the structure of interest, the generated patches still may present
differences to patches extracted from real structures. For this reason, we imple-
mented a SimGAN refinement, similar to the one described in [9], to improve
the quality of the synthetic patches. SimGAN makes use of simulated and unsu-
pervised learning by using a generative adversarial network (GAN) that consists
of both a generator (refiner) and a discriminator. The purpose of the refining
step is to trick the discriminator in deciding whether an image is a synthetic or
real image.

For the implementation of this network, we pre-trained the refiner on syn-
thetic images with 1000 steps and a batch size of 256, while the discrimina-
tor was pre-trained on real patches (extracted using the multi-resolution parti-
cles method described in [11], initialized with the technique of [13]) and refined
patches, obtained from the pre-trained refiner, with 100 steps and a batch size of
256. The number of steps was the same as in [9]. Then, the adversarial training
of the SimGAN network was trained for 10,000 steps, batch size of 256, and all
parameters and loss function set as in [9]. An example of a generated synthetic
airway is shown in Fig. 1.

2.3 Measurement of Airway Morphology

To extract both measurements for airways, we implemented a 9-layer 2D net-
work, which consists of seven convolutional layers, five of which had stride 1
and two had stride 2, and two fully-connected layers (see Fig. 2). The network
regresses the measure of the central structure in a patch 32×32 pixels, a size
chosen to include enough neighborhood information for big structures, without
losing specificity for small and thin features. To train the network, we used an



Accurate Measurement of Airway Morphology on Chest CT Images 339

Fig. 1. Example of creation of a small synthetic airway patch (lumen: 0.7 mm, wall
thickness: 1.25 mm). (a) The initial geometric model; (b) downsampling of the model;
(c) blurring of the downsampled patch; (d) noise addition; (e) final synthetic airway
(after applying SimGAN and cropping to obtain a 32 × 32 pixels patch).

Fig. 2. Scheme of neural network used for measuring airways. The network is the same
in both cases. The CNN for airways had 2 outputs (wall thickness and lumen)

Adam update (β1 = 0.9, β2 = 0.999, ε = 1e−08, decay = 0.0) with a specifi-
cally customized loss function that combines the absolute relative error and the
precision of the measure to improve the network performance and stability (see
Sect. 2.4).

The network was trained on a NVIDIA Titan X GPU machine, using the
deep learning framework Keras [14] on top of TensorFlow [15], for 300 epochs at
a learning rate of 0.001 and batch size of 64.

2.4 Customized Loss Function for Airway Morphology
Measurement

When trying to accurately measure small airways with sizes at image resolution
level, typical approaches usually have problems of under- or over-estimation.
For this reason, in this paper we suggest the usage of a new loss function that
combines the loss of the relative error over all images, Lμ, and the precision of
the measure over 25 replicas of the same structure, Lσ:

L(y, ŷ) = Lμ(y, ŷ) + λ · Lσ(y, ŷ) (1)
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where y is the true measure of a synthetic patch, ŷ is the measure predicted by
the CNR, and λ defines the weight of Lσ with respect to Lμ. The definition of
Lμ is given by:

Lμ(y, ŷ) =
N

∑

i=1

|yi − ŷi|
yi

(2)

where N indicates the total number of patches. On the other hand, the loss
term for the precision, Lσ, is computed over a number of replicas of the same
geometric model (with fixed physical dimensions) to which varying PSFs are
applied and a different number of airways and vessels are added with varying
locations and rotations. This way, the network learns to accurately measure the
structures of interest regardless of possible confounding factors inside the patch.
The definition of Lσ is given by:

Lσ =
1
N

N
∑

i=1

(

M
∑

j=1

(

yi,j − ŷi,j

)2

−
( 1

M

M
∑

j=1

(yi,j − ŷi,j)
)2

)

(3)

where N represents the total number of images, and M indicates the number of
replicas considered. In this work, we used M = 25.

Since for airways lumen radius and wall thickness are measured simultane-
ously, for this structure the two terms of the loss, Lμ and Lσ, are given by the
sum of the corresponding loss computed independently for the two measures.

Since we noticed that the measurement of small airways (lumen less than
1.0 mm) was the most affected by a high standard deviation, we also empirically
assigned a higher weight to the precision term of these structures so that they
acquire more importance when computing the loss. Therefore, Eq. 1 becomes:

La(y, ŷ) = Lμ(y, ŷ) + λ ·
(

ωl · Lσ,l(y, ŷ) + ωwt · Lσ,wt(y, ŷ)
)

(4)

where λ = 2.0 has been empirically selected, l indicates the airway lumen, wt
stands for wall thickness, and

ωl =

{

1.5 if airway lumen < 1.0 mm
1.0, otherwise

(5)

and

ωwt =

{

3.0, if wall thickness < 1.0 mm
1.0, otherwise

(6)

2.5 Training Set Definition

The training dataset consisted of 100,000 × 25 replicas of the same geometric
model, to which varying PSFs were applied, and different additional vessels were
added at varying locations and rotations. Therefore, a total of 2,500,000 training
patches were used. Conversely, for the validation set we generated 1,000,000
patches (40,000 × 25 replicas).
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The values of the parameters used for the creation of the images were ran-
domly chosen in ranges that were empirically defined based on physiological
measures of the structures of interest, as shown in Table 1. We trained the net-
work using all images refined by SimGAN.

Finally, in order to help the network focus more on geometry than intensity
values, during training, we applied a data augmentation that in addition to
adding random noise it also randomly inverts intensity values inside the patches.
Furthermore, we introduce a small random shift and random axes flipping to the
patch to improve the learning of the network.

Fig. 3. An image taken from the CT scan of phantom showing the 8 tubes used for
testing the CNR.

2.6 Experimental Setup

We evaluated the proposed approach for airway measurements on both synthetic
and in-vivo cases. For the synthetic validation, we first generated a dataset of
200,000 patches (with random values chosen in the range of Table 1) that were
used in three different experiments. First, we evaluated the accuracy of the
algorithm by calculating the relative error (RE) between the CNR measurement
and the ground truth defined by our geometrical model when varying lumen and
the wall thickness size. To compare our results to the state-of-the-art methods,
we also computed the absolute error obtained for airways with a wall thickness
of 1.0 mm at the image resolution level (0.5 mm).

In order to demonstrate the ability of the method to accurately measure the
structures of interest regardless of presence of noise and smoothness, as a second
experiment we generated 100 images for each level of noise (σn ∈ [0, 40] HU)
and for each level of Gaussian smoothing (σs ∈ [0.4, 0.9] mm) and computed
the mean RE (in percentage) across the 100 patches. We repeated the same
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experiment first fixing the wall thickness at 1.5 mm and considering three values
of airway lumen (small: 0.5 mm; medium: 2.5 mm; large: 4.5 mm), and then fixing
the airway lumen at 1.5 mm and using three wall thickness values (small: 0.5 mm;
medium: 1.2 mm; large: 2.0 mm).

As a final test on synthetic images, we compared the proposed method for
airway measurement to FWHM and ZCSD computing the mean RE (in percent-
age) on patches of different sizes.

As a further validation, we tested the performance of the algorithm on a
CT airway phantom of known lumen size and wall thickness. The phantom
was constructed using Nylon66 tubing inserted into polystyrene to simulate
lung parenchyma surrounding the airways. Non-overlapping, 0.6 mm collimation
images, 40 cm FOV, were acquired using a GE Siemens Sensation 64 CT scan-
ner and reconstructed with a standard reconstruction kernel. Eight tubes with
varying wall thickness and lumen diameter (reported in Table 2), as measured
by a caliper, were studied. An image taken from the CT scan of the phantom
showing the eight tubes is presented in Fig. 3.

Table 2. Wall thickness (WT) and lumen diameter (in mm) for the eight tubes of the
synthetic phantom as measured by a caliper.

Tube WT (mm) Lumen (mm)

A 0.89 4.62

B 1.24 3.64

C 0.66 2.44

D 0.38 1.23

E 0.65 0.95

F 2.80 2.84

G 0.90 1.34

H 1.56 2.35

As a final experiment, since an accurate and reliable in-vivo ground-truth
is very complicated to obtain, we performed an indirect validation by means of
a physiological evaluation. To this end, we computed the Pi10 parameter with
our approach and with ZCSD, and analyzed its correlation to FEV1% on 590
clinical cases, with airway particles extracted using [11]. Pi10 is a metric of
airway thickness that is computed measuring the square root of the wall area
across the whole airway tree and regressing the value at a hypothetical airway
with an internal perimeter of 10 mm. The wall area is found by subtracting the
area of the lumen from the airway area, while Pi is computed from the lumen
radius.
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3 Results

3.1 Synthetic Evaluation

Figure 4 shows the tendency of the RE for predictions obtained on the synthetic
data when varying the lumen radius (Fig. 4a) and the wall thickness (Fig. 4b)
of the airway. As expected, the error is small for airways with a large lumen
(Fig. 4a), while it increases (with a tendency to under-estimate the measure) for
lumens smaller than 1.0 mm, although it is always below a 10% RE. Regarding
the wall thickness (Fig. 4b), a significant under-estimation error is obtained at
sub-voxel levels (below the image resolution of 0.5 mm), while a tendency to
over-estimation is obtained when the wall thickness is bigger than 2.0 mm.

Fig. 4. Tendency of the relative error obtained with CNR when varying (a) airway
lumen and (b) wall thickness.

On average, an absolute RE of 6.3% is obtained for airways with a wall thick-
ness of 1.0 mm, while when the airway wall thickness is at the image resolution
(0.5 mm) the absolute RE is at 13.09%. These REs are significantly lower than
those previously reported in the literature for structures of similar sizes [5,7].

Results obtained when fixing three values of airway lumen (0.5, 2.5, and
4.5 mm) and three values of wall thickness (0.5, 1.5, and 2.5 mm) and varying
the level of noise and smoothing are presented in Fig. 5. As shown, for both
measurements the RE is stable across the different levels of noise and smoothness.
While for medium and large structures a very high accuracy is obtained (RE close
to 0), the smallest structures (generated with airway lumen or wall thickness at
the image resolution of 0.5 mm) are the one confusing the network the most
determining also a bigger standard deviation. In all cases, the RE is stable when
varying noise and smoothness, and the bias introduced by the CNR is small,
with a little under-estimation for small structures, as expected. For small wall
thicknesses (0.5 mm), when the smoothing level is low (<0.6 mm) a very small RE
is obtained, while this error increases when applying higher levels of smoothing
(>0.6 mm).
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Fig. 5. Effect of varying noise (first row) and smoothing (second row) on lumen (a)
and wall thickness (b) predictions. The RE is reported in %.

Finally, Table 3 shows the mean relative error (in percentage) obtained for
different sizes of wall thickness using the proposed method in comparison to
ZCSD and FWHM on the 200,000 testing patches. Three wall thickness inter-
vals were chosen: lower than 0.7 mm, between 0.7 mm and 1.5 mm, and bigger
than 1.5 mm. As shown, while traditional methods tend to have a very high rel-
ative error, especially for small airways, the proposed method yields a very high
accuracy and outperforms them. Similar results were obtained for the airway
lumen.

Table 3. Mean RE (in %) for the proposed method (CNR), FWHM, and ZCSD for
the wall thickness (wt).

wt ≤ 0.7 mm 0.7 mm < wt ≤ 1.5 mm wt > 1.5 mm

CNR FWHM ZCSD CNR FWHM ZCSD CNR FWHM ZCSD

RE (%) −7.6 −1153.9 −1034.2 1.04 −582.9 −895.6 0.28 −450.8 −200.3

3.2 Phantom Evaluation

The relative error obtained measuring the wall thickness of the eight tubes of
the phantom using the proposed method (CNR) in comparison with traditional
techniques are presented in Table 4. For completeness, the relative error obtained
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Table 4. Mean RE (in %) obtained measuring the wall thickness (WT) on the eight
phantom tubes using the proposed method (CNR) in comparison with FWHM and
ZCSD. Smallest relative error is reported in bold. For completeness, the last column
reports the relative error obtained measuring the lumen of the tubes with CNR (tra-
ditional methods only provide WT). All results are in %.

Tube CNR WT FWHM WT ZCSD WT CNR Lumen

A −2.5 −115.1 −126.1 4.6

B 17.5 −25.9 −33.6 −6.3

C −28.9 −23.6 −46.2 7.6

D −12.8 −474.0 −79.0 10.4

E −13.0 −4884.6 −20.5 9.8

F 2.4 −55.3 −59.8 −5.2

G 5.4 −18.06 −29.2 −7.8

H 18.5 −30.7 −40.3 −5.2

when measuring the lumen with CNR (not measured by traditional methods) is
also reported. The proposed CNR has the lowest RE for all considered tubes,
with the exception of tube C where FWHM gives the best result, and in general
is able to well measure the wall thickness even for small and thin tubes, as in
case of tube D. Although there is variance in the RE for the measurement of
the wall thickness of all tubes, this variance is smaller than the one obtained
using traditional methods, that for some tubes seem to really confounded. An
important aspect to notice is the small RE obtained for all tubes when measuring
the lumen radius with the proposed CNR.

3.3 In-Vivo Indirect Evaluation (FEV1% in Correlation to Pi10)

Table 5(a) shows the Pearson’s correlation coefficient between FEV1% and the
Pi10 metric computed with our approach and ZCSD in airway patches extracted
from a real CT. The correlation coefficient between FEV1% and Pi10 calculated
by ZCSD and CNR was −0.38 and −0.54, respectively, indicating a significantly
higher correlation of the Pi10 computed by the CNR with FEV1%. This result
suggests that the proposed method could potentially be used to accurately mea-
sure FEV1% in patients with COPD.

Table 5. Results from the indirect in-vivo analysis for airways. The Pearson’s corre-
lation coefficient for the correlation between the Pi10 computed with the ZCSD and
SimGAN, and FEV1% is reported

Correlation (CI)

ZCSD −0.39 (−0.46, −0.32)

CNR −0.60 (−0.65, −0.55)
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4 Discussion and Conclusion

In this paper, a novel method to automatically measure and analyze the mor-
phology of airways using deep learning on chest CT images is proposed. The use
of a neural network in combination with SimGAN to refine the synthetic model
and the proposed loss function represent the innovative aspects of this work.

Results from the validation on synthetic patches showed a low absolute rela-
tive error across all airway wall thicknesses and airway lumens. Although a direct
comparison is not possible, considering the absolute relative error for airways of
1.0 mm, the presented method obtains a better performance (absolute relative
error around 6%) than the method proposed in [16], where the wall thickness
was measured on plastic tubes of 1.0 mm yield to an absolute relative error of
approximately 10%. Also, a test for structures of different sizes and varying the
level of noise and smoothing showed that the proposed method is not affected by
noise or smoothing, and, as expected, only sizes at lower than the image resolu-
tion may determine a small increase of the prediction error. A comparison of two
traditional algorithms shows that our method outperforms the state-of-the-art,
especially for small and complex airways.

Finally, phantom-related results and indirect validation with in-vivo patches
showed promising results, indicating the stability of the CNR in accurately mea-
suring the wall thickness and lumen radius regardless of the varying starting
conditions. This indicates that the method here proposed may potentially be
used for future early diagnosis of lung disorders.

For future work, the creation of the synthetic model might be improved
by reducing the level of approximation of the PSF and additive noise. Also,
new refinement processes of the synthetic images, such as using CycleGAN [17],
should be explored.
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