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Abstract. Accurate segmentation of anatomical structures in chest
radiographs is essential for many computer-aided diagnosis tasks. In this
paper we investigate the latest fully-convolutional architectures for the
task of multi-class segmentation of the lungs field, heart and clavicles in a
chest radiograph. In addition, we explore the influence of using different
loss functions in the training process of a neural network for semantic
segmentation. We evaluate all models on a common benchmark of 247
X-ray images from the JSRT database and ground-truth segmentation
masks from the SCR dataset. Our best performing architecture, is a mod-
ified U-Net that benefits from pre-trained encoder weights. This model
outperformed the current state-of-the-art methods tested on the same
benchmark, with Jaccard overlap scores of 96.1% for lung fields, 90.6%
for heart and 85.5% for clavicles.
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1 Introduction

Approximately 3.6 billion diagnostic radiological examinations, such as radio-
graphs (x-rays), are performed globally every year [1]. Chest radiographs are
performed to evaluate the lungs, heart and thoracic viscera. They are crucial
for diagnosing various lung disorders in all levels of health care. Computer-aided
diagnostic (CAD) tools serve an important role to assist the radiologists with
the growing number of chest radiographs. Accurate segmentation of anatomi-
cal structures in chest radiographs is essential for many analysis tasks in CAD.
For example: segmentation of the lungs field can help detecting lung diseases
and shape irregulars; segmentation of the heart outline can help to predict
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cardiomegaly; and the segmentation of clavicles can improve the diagnosis of
pathologies near the apex of the lung.

Evaluating a chest radiograph is a challenging task due to the high variability
between patients, unclear and overlapping organs borders, and image artifacts.
A clear and high quality radiograph is not easy to acquire. This challenge drew
many researchers over the years to improve the segmentation of anatomical struc-
tures in chest radiographs [2–5]. An open benchmark dataset that was provided
by Ginneken et al. [6] facilitated over the years an objective comparison between
the different segmentation methods. Classic approaches include active shape and
appearance models, pixel classification methods, hybrid models and landmark
based models. More recently deep learning approaches were suggested [2,3] based
on the successful employment of convolutional neural networks (CNNs) on var-
ious detection and segmentation tasks in the medical imaging domain [7].

CNN architectures for semantic segmentation usually incorporate encoder
and decoder networks [8,9] that reduce the resolution of the image to capture
the most important details and then restore the resolution of the image. Another
semantic segmentation approach is to keep the resolution of the network by
incorporating dilated convolutions [10] that enlarge the global receptive field
of the CNN to larger context information. In both approaches, the CNN can
output single-class or multiple-class segmentation masks. The resolution of the
output mask is the same as the input radiograph image. The training process
of each CNN is affected by several training features: One is the selection of the
loss function that guides the optimization process during the training process
(with different loss functions effecting differently the final output segmentation
performance results); The other is the initialization of the network weights - ran-
dom initialization or weights transferred from another trained network (transfer
learning from a totally different task).

In this paper, we explore the segmentation of anatomical structures in chest
radiographs, namely the lungs field, the heart and the clavicles, using a set of
the most advanced CNN architectures for multi-class semantic segmentation.
We propose an improved encoder-decoder style CNN with pre-trained weights
of the encoder network and show its superiority over other state of the art CNN
architectures. We further examine the use of multiple loss functions for training
the best selected network and the effect of multi-class vs. single-class training.
We present qualitative and quantitative comparisons on a common benchmark
data, based on the JSRT database [11]. Our best performing model, the U-net
with an ImageNet pre-trained encoder, outperformed the currently state-of-the-
art segmentation methods for all anatomical structures.

2 Methods

2.1 Fully Convolutional Neural Network Architectures

Fully convolutional networks (FCN) are extensively used for semantic segmen-
tation tasks. In this study, four different state of the art architectures have been
tested as follows:
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FCN - The first FCN architecture that we used in this work is based on the
FCN-8s net that uses the VGG-16 layer net [9,12]. The VGG-16 net is con-
verted into an FCN by decapitating the final classification layer and converting
fully connected layers into convolution. Deconvolution layers are then used to
upsample the coarse outputs to pixel-dense outputs. Skip connections are used
to merge output from previous pooling layers in the network which was shown
to improve the segmentation quality [9].
Fully Convolutional DenseNet - The second network architecture that was
tested is based on the fully convolutional DenseNet shown in [13]. DenseNet
architecture [14] proposes intensive layer fusion. Each dense block consists of
a set of convolution layers using a similar scale where each convolution layer
processes the concatenation of all its previous layers thus enabling the fusion of
numerous representation levels. For the fully convolutional DenseNet architec-
ture a decoding path is added to generate the segmentation output. The fusion
between different layers consists of intra dense block layers fusion as well as the
concatenation of the preceding high level feature maps and the ones coming from
the encoding block at the same scale.
Dilated Residual Networks - The dilated residual network (DRN) [10] uses
dilated convolution [15] to increase the resolution of output feature maps without
reducing the receptive field of individual neurons. It was shown to improve the
performance compared to the standard residual networks presented in [16]. We
have implemented the DRN-C-26 as stated in [10].
U-Net with VGG-16 Encoder - The U-Net architecture [8] has been exten-
sively used for different image-to-image tasks in computer vision with a major
contribution to the image segmentation task. The U-Net includes a contracting
path (the encoder) with several layers of convolution and pooling for down-
sampling. The second half of the network includes an expansion path (the
decoder) that uses up-sampling and convolution layers sequentially to gener-
ate an output with a similar size as the input image. Additionally, the U-Net
architecture combines the encoder features with the decoder features in different
levels of the network using skip connections. Iglovikov et al. [17] proposed to use
a VGG11 [12] as an encoder which was pre-trained on ImageNet [18] dataset and
showed that it can improve the standard U-Net performance in binary segmen-
tation of buildings in aerial images. A similar concept was used in the current
study with the more advanced VGG16 [12] as an encoder. Figure 1 shows a dia-
gram of our proposed network. The chest X-ray image is duplicated to obtain an
input image with 3 channels similar to the RGB images that are used as input
to the VGG-16 net (which is the encoder in the proposed architecture).

2.2 Objective Loss Functions

The loss function is used to guide the training process of a convolutional network
by measuring the compatibility between the network prediction and the ground
truth label. Let us denote S as the estimated segmentation mask and G as
the ground truth mask. In a multi-class semantic segmentation task including
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Fig. 1. The proposed U-Net architecture with a VGG-16 based encoder.

C = {c1, ..., cm} classes, the total loss (TS) between S and G is defined as the
sum of losses in every class:

TL(S,G) =
m∑

c=1

Lc(S,G) (1)

In this study we explore the influence of using different loss functions in the FCNs
training process. The Dice similarity coefficient (DSC) and Jaccard similarity
coefficient (JSC) are two well known measures in segmentation and can be used
as objective loss functions in training. These segmentation measures between S
and G are defined as:

DSC(S,G) = 2
|SG|

|S| + |G| (2)

JSC(S,G) =
|SG|

|S| + |G| − |SG| (3)

when used as loss in training, both measures weights FP and FN detections
equally. The Tversky loss [19] introduces weighting into the loss function for
highly imbalanced data, where we want to segment small objects. The Tversky
index is defined as:

Tversky(S,G;α, β) =
|SG|

|SG| + α|S/G| + β|G/S| (4)

where α and β control the magnitude of penalties for FPs and FNs, respectively.
In our study we used α = 0.3 and β = 0.7.

An additional loss function tested is the Binary Cross-Entropy (BCE). BCE
was calculated separately for each class segmentation map. For each pixel si ∈ S
and pixel gi ∈ G that share the same pixel position i, the loss is averaged over
all pixels N as follows:

BCE(S,G) =
1
N

N∑

i=1

gi log(si) + (1 − gi) log(1 − si) (5)
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3 Segmentation of Anatomical Structures

3.1 Dataset

Evaluation of the chest anatomical structures segmentation was done on chest
radiographs from the JSRT database [11]. This public database includes 247
posterior-anterior (PA) chest radiograph images of size 2048 × 2048 pixels,
0.175 mm pixel spacing and 12-bit gray levels. Ginneken et al. [6] publicized
the Segmentation in Chest Radiographs (SCR) database, a benchmark set of
segmentation masks for the lungs field, heart and clavicles (see Fig. 2). The
annotations were made by two human observers and a radiologist consultant.
The segmentations of the first observer generate the ground-truth segmentation
masks and the other - human observer results. The benchmark data is split into
two folds of 124 and 123 cases, each containing equal amount of normal cases
and cases with lung nodules. Following the suggested instructions for compari-
son between the segmentation results, images in one fold were used for training
and images from the other fold were used for testing, and vise versa. The final
evaluation is defined as the average performance over the two folds.

Fig. 2. Data sample from [6]: (a) chest radiograph image; (b) clavicles segmentation
mask; (c) lung segmentation mask; (d) heart segmentation mask.

For training, we resize the images to 224×224 pixels and normalize each image
by its mean and standard deviation. The networks are trained using Adam opti-
mizer with initial learning rate of 10−5 and default parameters for 100 epochs.
We use augmentations of scaling, translation and small rotations. In testing,
We threshold the output score maps with threshold = 0.25 to generate binary
segmentation masks of each anatomical structure.

3.2 Performance Measures

To measure the performance of the proposed architectures and compare to state-
of-the-art results, we use well accepted metrics for segmentation: Dice similar-
ity coefficient, jaccard index (also known as intersection over union) and mean
absolute contour distance (MACD). MACD is a measure of distance between
two contours. For each point on contour A, the closest point on contour B is
computed by the euclidean distance d(ai, B) = minbj∈B‖bj − ai‖. The distance
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values are then averaged over all points. Since distances from A to B are not
the same as B to A, we derive a common average between the two averages as
follows:

MACD(A,B) =
1
2
(
∑n

i=1 d(ai, B)
n

+
∑m

i=1 d(bi, A)
m

) (6)

Because MACD measure is given in millimeters, we multiply the original pixel
spacing by a factor of 2048/224 to match the target image resolution.

3.3 Experimental Results

Table 1 compares the segmentation performance of the four state of the
art fully convolutional networks for semantic segmentation as listed in
Sect. 2.1. All models are trained for multi-class segmentation into three classes:
lungs field, heart, clavicles. We use the sigmoid activation function after the
last layer of each network with Dice as the loss function. An additional column
in Table 1 shows if the network is fine-tunned (FT) from a pre-trained network.

The results show that the best performing architecture for the segmenta-
tion of all anatomical structures in chest radiograph, is the U-Net including
the VGG16 encoder pre-trained on ImageNet. This architecture achieved the
highest segmentation overlap scores (Jaccard) of 0.961, 0.906 and 0.855 for the
Lungs field, Heart and Clavicles respectively. It is noticeable that between all
four architectures, the fine-tuned networks performed better than the networks
trained from scratch.

Table 1. Segmentation results of four compared architectures trained with multi-class
Dice loss showing the Dice (D), Jaccard (J) and MACD metrics. Fine tuned (FT)
architectures include a pre-trained VGG16 as an initial encoder.

Architecture FT Lungs Heart Clavicles

D J MACD D J MACD D J MACD

FCN v 0.976 0.953 1.341 0.944 0.895 3.099 0.884 0.795 1.277

U-Net (VGG16) v 0.980 0.961 1.121 0.950 0.906 2.569 0.921 0.855 0.871

FC DenseNet 0.973 0.947 1.511 0.934 0.879 3.396 0.884 0.796 1.349

DRN 0.966 0.935 1.842 0.936 0.881 3.365 0.840 0.727 1.860

For the top performing architecture, the U-Net based network, we further
analyzed several training features. Table 2 summarizes the multi-class segmen-
tation performance using different objective loss functions. It is evident that
structures with smaller pixel area, like the clavicles, benefits from loss metrics
with pixel weighing such as Tversky loss function. We also tested the perfor-
mance of training a single-class network for each of the three classes vs. the
multi-class training. For the lungs, the single class training did not resolve in
significant improvement. However, for the heart and clavicles, the Dice and Jac-
card scores in a single-class training were improved each by 1% in comparison to
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Table 2. Multi-class segmentation results using different loss functions including DSC,
JSC, Tversky and BCE (rows). The Dice (D), Jaccard (J) and MACD are used as
metrics (columns) for each anatomical structure

Loss Function Lungs Heart Clavicles

D J MACD D J MACD D J MACD

DSC 0.980 0.961 1.121 0.950 0.906 2.569 0.921 0.855 0.871

JSC 0.979 0.960 1.082 0.949 0.905 2.602 0.921 0.855 0.920

Tversky 0.979 0.960 1.139 0.950 0.905 2.581 0.923 0.858 0.987

BCE 0.980 0.961 1.119 0.950 0.906 2.592 0.911 0.838 1.145

the multi-class training. The last improvement in performance of the multi-class
segmentation was achieved using post-processing including small objects removal
and hole fill. While the Dice and Jaccard metrics were not improved, the MACD
metric showed an improvement from 1.121, 2.569 and 0.871 [mm] for the lungs,
heart and clavicles to 1.019, 2.549 and 0.856 [mm] respectively. Figure 3 shows a
few segmentation examples of our best performing model. A comparison of our
U-Net based model trained with multi-class dice loss to existing state-of-the-art
methods, validated on the same benchmark of chest radiographs and a human
observer, is presented in Table 3.

Fig. 3. Segmentation results of our best performing architecture with Jaccard score
above each image for the Lungs(L), Heart(H) and Clavicles(C); Ground-truth segmen-
tation is shown in blue, CNN segmentation in red and the overlap (true detections) in
green. (Color figure online)



166 M. Frid-Adar et al.

Table 3. Our best performing architecture compared to state-of-the-art models; “-”
means that the score was not reported; (*) used different data split than suggested in
SCR benchmark

Dice Jaccard MACD (mm)

Lungs

Human observer [6] - 0.946 ± 0.018 1.64 ± 0.69

Hybrid voting [6] - 0.949 ± 0.020 1.62 ± 0.66

Ibragimov et al. [4] - 0.953 ± 0.020 1.43 ± 0.85

Hwang and Park [3] 0.980 ± 0.008 0.961 ± 0.015 1.237 ± 0.702

Novikov et al. [2](*) 0.974 0.950 -

Yang et al. [5] 0.975 ± 0.001 0.952 ± 0.018 1.37 ± 0.67

U-Net (VGG16) 0.980 ± 0.008 0.961 ± 0.014 1.019 ± 0.564

Heart

Human observer [6] - 0.878 ± 0.054 3.78 ± 1.82

Hybrid voting [6] - 0.860 ± 0.056 4.24 ± 1.87

Novikov et al. [2](*) 0.937 0.882 -

U-Net (VGG16) 0.950 ± 0.021 0.906 ± 0.038 2.549 ± 1.126

Clavicles

Human observer [6] - 0.896 ± 0.037 0.68 ± 0.26

Hybrid voting [6] - 0.736 ± 0.106 1.88 ± 0.93

Novikov et al. [2](*) 0.929 0.868 -

U-Net (VGG16) 0.921 ± 0.027 0.855 ± 0.045 0.855 ± 0.322

4 Discussion and Conclusion

Segmentation of anatomical structures in chest radiographs is a challenging task
that attracted considerable interest over the years. The advantages of newly
introduced CNN architectures, together with the public benchmark dataset pro-
vided in [6] on the JSRT images, motivated further studies in this field. Some
of the recent studies focused only on the problem of lung segmentation, and a
few have also dealt with the problem of heart and clavicles segmentation. In this
paper, we employed and evaluated the segmentation performance of four top
FCN architectures [9,10,13,17] for semantic segmentation for all three anatom-
ical structures, using multi-class dice loss.

The network architectures presented in this study are well known and showed
promising results in many computer vision semantic segmentation tasks. The
FCN [9] and the U-Net [8] are considered classical approaches while the FC
DenseNet and the DRN are more advanced and relatively new approaches for
semantic segmentation. Hence, it was interesting to see in Table 1 that the clas-
sic U-Net and FCN showed superior segmentation performance over the more
advanced approaches. The advantage of using pre-trained networks for medical
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imaging tasks has already been shown in several studies [7], and even though
only the encoder part of the FCN and U-Net (VGG16 encoder) networks was
pre-trained using the ImageNet database in our case, it seemed to be advan-
tageous. The best segmentation performance was obtained using the proposed
U-Net based architecture including the pre-trained VGG16 encoder (Table 1).

Next, we explored the effect of training multi-class segmentation model using
different loss functions (Table 2). We demonstrated that small structures such as
the clavicles can benefit from weighted loss functions such the Tversky loss func-
tion while the larger structures (lung and heart) achieved the best segmentation
results using Dice or Binary Cross-Entropy loss functions. Applying additional
minor post-processing resulted in further decrease of the MACD measure with
cleaner and more precise segmentations for all three structures as displayed in
Fig. 3.

Table 3 presents the final comparison between our top selected model, the
multi-class U-Net VGG16 with dice loss, to state-of-the-art methods [2–6] and
human observer segmentations [6]. Our model outperformed all state-of-the-art
methods tested in this study and the human observer for the lungs and heart seg-
mentation. For the clavicles segmentation, fewer studies were conducted. Novikov
et al. [2] reported results on different data split than the benchmark recom-
mendation so its not an objective comparison. However, our proposed network
outperformed an additional top reported method [6].

In conclusion, we presented an experimental study in which four top segmen-
tation architectures and several losses were compared for the task of segmenting
anatomical structures on chest X-Ray images. Results were evaluated quantita-
tively with qualitative examples of our best performing model. Improving the
segmentation of the lung field, heart and clavicles is the foundation for better
CAD tools and the development of new applications for medical thoracic images
analysis.
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