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Abstract. Deep learning approaches to breast cancer detection in mam-
mograms have recently shown promising results. However, such models
are constrained by the limited size of publicly available mammography
datasets, in large part due to privacy concerns and the high cost of gener-
ating expert annotations. Limited dataset size is further exacerbated by
substantial class imbalance since “normal” images dramatically outnum-
ber those with findings. Given the rapid progress of generative models
in synthesizing realistic images, and the known effectiveness of simple
data augmentation techniques (e.g. horizontal flipping), we ask if it is
possible to synthetically augment mammogram datasets using genera-
tive adversarial networks (GANs). We train a class-conditional GAN to
perform contextual in-filling, which we then use to synthesize lesions onto
healthy screening mammograms. First, we show that GANs are capable
of generating high-resolution synthetic mammogram patches. Next, we
experimentally evaluate using the augmented dataset to improve breast
cancer classification performance. We observe that a ResNet-50 classifier
trained with GAN-augmented training data produces a higher AUROC
compared to the same model trained only on traditionally augmented
data, demonstrating the potential of our approach.

1 Introduction

A major enabler of the recent success of deep learning in computer vision has
been the availability of massive-scale, labeled training sets (e.g. ImageNet [1]).
However, in many medical imaging domains, collecting such datasets is difficult
or impossible due to privacy restrictions, the need for expert annotators, and
the distribution of data across many sites that cannot share data. The class
imbalance naturally present in many medical domains, where “normal” images
dramatically outnumber those with findings, further exacerbates these issues
(Fig. 1).

A common technique used to combat overfitting is to synthetically increase
the size of a dataset through data augmentation, where affine transformations
such as flipping or resizing are applied to training images. The success of these
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Fig. 1. Generated samples from ciGAN using previously unseen patches as context.
Each row contains (from left to right) the original image, the input to ciGAN, and
the synthetic example generated for the opposite class. The first two rows contain
examples of the GAN synthesizing a non-malignant patch from a malignant lesion.
The third and fourth rows are examples of the GAN synthesizing a malignant lesion on
a non-malignant patch, using randomly selected segmentations from other malignant
patches. We observe that the GAN is able to incorporate contextual information to
smooth out borders of the segmentation masks.

simple techniques raises the question of whether one can further augment train-
ing sets using more sophisticated methods. One potential avenue could be to
synthetically generate new training examples altogether. While generating train-
ing samples may seem counterintuitive, rapid progress in designing generative
models (particularly generative adversarial networks (GANs) [2–4]) to synthesize
highly realistic images merits exploration of this proposal. Indeed, GANs have
been used for data augmentation in several recent works [5–9], and investigators
have applied GANs to medical images such as magnetic resonance (MR) and
computed tomography (CT) [10,11]. Similarly, GANs have been used for data
augmentation in liver lesions [12], retinal fundi [13], histopathology [14], and
chest x-rays [15].

A particular domain where GANs could be highly effective for data augmen-
tation is cancer detection in mammograms. The localized nature of many tumors
in otherwise seemingly normal tissue suggests a straightforward, first-order
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procedure for data augmentation: sample a location in a normal mammogram
and synthesize a lesion in this location. This approach also confers benefits to
the generative model, as only a smaller patch of the whole image needs to be
augmented. GANs for data augmentation in mammograms is especially promis-
ing because of (1) the lack of large-scale public datasets, (2) the small proportion
of malignant outcomes in a normal population (∼0.5%) [16] and, most impor-
tantly, (3) the clinical impact of screening initiatives, with the potential for
machine learning to improve quality of care and global population coverage [17].

Here, we take a first step towards harnessing GAN-based data augmenta-
tion for increasing cancer classification performance in mammography. First, we
demonstrate that our GAN architecture (ciGAN) is able to generate a diverse
set of synthetic image patches at a high resolution (256× 256 pixels). Second, we
provide an empirical study on the effectiveness of GAN-based data augmentation
for breast cancer classification. Our results indicate that GAN-based augmen-
tation improves mammogram patch-based classification by 0.014 AUC over the
baseline model and 0.009 AUC over traditional augmentation techniques alone.

2 Proposed Approach: Conditional Infilling GAN

GANs are known to suffer from convergence issues, especially with high dimen-
sional images [3,4,18,19]. To address this issue, we construct a GAN using a
multi-scale generator architecture trained to infill a segmented area in a tar-
get image. First, our generator is based on a cascading refinement network [20],
where features are generated at multiple scales before being concatenated to
improve stability at high resolutions. Second, rather than requiring the gen-
erator to replicate redundant context in a mammography patch, we constrain
the generator to infill only the segmented lesion (either a mass or calcification).
Finally, we use a conditional GAN structure to share learned features between
non-malignant and malignant cases [21].

2.1 Architecture

Our conditional infilling GAN architecture (here on referred to as ciGAN) is
outlined in Fig. 2. The input is a concatenated stack (in blue) of one grayscale
channel with the lesion replaced with uniformly random values between 0 and
1 (the corrupted image), one channel with ones representing the location of the
lesion and zeros elsewhere (the mask), and two channels with values as [1, 0]
representing the non-malignant class or [0, 1] as the malignant class (the class
labels). The input stack is downsampled to 4× 4 and passed into the first convo-
lutional block (in green), which contains two convolutional layers with 3× 3
kernels and ReLU activation functions. The output of this block is upsam-
pled to twice the current resolution (8× 8) and then concatenated with an
input stack resized to 8× 8 before being passed into the second convolutional
block. This process is repeated until a final resolution of 256× 256 is obtained.
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Fig. 2. The ciGAN generator architecture. The inputs consist of four channels (in blue):
one context image (where the lesion is replaced with a random noise mask), one lesion
mask, and two class channels for indicating a malignant or non-malignant label. Each
convolutional block (in green) represents two convolutional layers with an upsampling
operation. (Color figure online)

The convolutional layers have 128, 128, 64, 64, 32, 32, and 32 kernels from the
first to the last block. We use the nearest neighbors method for upsampling.

The discriminator network has a similar but inverse structure. The input con-
sists of a 256 × 256 image. This is passed through a convolutional layer with 32
kernels, 3× 3 kernel size, and the LeakyReLU [22] activation function, followed
by a 2× 2 max pooling operation. We apply a total of 5 convolutional layers,
doubling the number of kernels each time until the final layer of 512 kernels.
This layer is then flattened and passed into a fully connected layer with one unit
and a sigmoid activation function.

2.2 Training Details

Patch-Level Training: Given that most lesions are present within a local-
ized area much smaller than the whole breast image (though context & global
features may also be important), we focus on generating patches (256× 256) con-
taining such lesions. This allows us to more meaningfully measure the effects of
GAN-augmented training as opposed to using the whole image. Furthermore,
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patch-level pre-training has been shown to increase generalization for full
images [23–25].

The ciGAN model is trained using a combination of the following three loss
functions:

Feature Loss: For a feature loss, we utilize the VGG-19 [26] convolutional neu-
ral network, pre-trained on the ImageNet dataset. Real and generated images
are passed through the network to extract the feature maps at the pool1, pool2,
and pool3 layers, where the mean of the absolute errors is taken between the
maps. This loss encourages the features of the generator to match the real image
at different spatial resolutions and feature complexities. Letting Φi be the collec-
tion of layers in Φ, the VGG19 network, where Φ0 is the input image, we define
VGG loss for the real image R and generated image S as:

LR,S(θ) =
∑

l

||Φl(R) − Φl(S)||1

Adversarial Loss: We use the adversarial loss formulated in [27], which seeks
optimize over the following mini-max game involving generator G and discrimi-
nator D:

min
G

max
D

LGAN (G,D)

LGAN (G,D) = E(c,R)[log D(c,R)] + ER[log(1 − D(c, S)]

Where c is the class label, R is a real image, and S is the generated image.

Boundary Loss: To encourage smoothing between the infilled component and
the context of a generated image, we introduce a boundary loss, which is the L1

difference between the real and generated image at the boundary:

BR,S(θ) = ||w � (R − S)||1
Where R is the real image, S is the generated image, w is the mask boundary

with a Gaussian filter of standard deviation 10 applied, and � is the element-wise
product.

Training Details: In our implementation, we alternate between training the
generator and discriminator when the loss for either drops below 0.3. We use
the Adam [28] optimizer with β1 = 0.9, β2 = 0.999, ε = 10−8, a learning rate of
1e−4, and batch size of 8. To stabilize training, we first pre-train the generator
exclusively on feature loss for 10,000 iterations. Then, we train the generator
and discriminator on all losses for an additional 100,000 iterations. We weigh
each loss with coefficients 1.0, 10.0, and 10000.0 for GAN loss, feature loss, and
boundary loss, respectively.
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3 Experiments

3.1 DDSM Dataset

The DDSM (Digital Database for Screening Mammography) dataset contains
10,480 total images, with 1,832 (17.5%) malignant cases and 8,648 (82.5%) non-
malignant cases. Image patches are labeled as malignant or non-malignant along
with the segmentation masks in the dataset. Both calcifications and masses are
used and non-malignant patches contain both benign and non-lesion patches.

We apply a 80% training, 10% validation, and 10% testing split on the
dataset. To process full resolution images into patches, we take each image
(∼5500× 3000 pixels) and resize to a target range of 1375× 750 while ensur-
ing the original aspect ratio is maintained, as described in [23]. For both non-
malignant and malignant cases, we generate 100,000 random 256× 256 pixel
patches and only accept patches that consist of more than 75% breast tissue.

3.2 GAN-Based Data Augmentation

We evaluate the effectiveness of GAN-based data augmentation on the task of
cancer detection. We choose the ResNet-50 architecture as our classifier network
[29]. We use the Adam optimizer with an initial learning rate of 10−5 and β1 =
0.9, β2 = 0.999, ε = 10−8. To achieve better performance, we initialize the
classifier with ImageNet weights. For each regime, we train for 10,000 iterations
on a batch size of 32 with a 0.9 learning rate decay rate every 2,000 iterations.
The GAN is only trained on the training data used for the classifier.

For traditional image data augmentation, we use random rotations up to 30
degrees, horizontal flipping, and rescaling by a factor between 0.75 and 1.25.
For augmentation with ciGAN, we double our existing dataset via the following
procedure: for each non-malignant image, we generate a malignant lesion onto
it using a mask from another malignant lesion. For each malignant patch, we
remove the malignant lesion and generate a non-malignant image in its place.
In total, we produce 8,648 synthetically generated malignant patches and 1,832
synthetically generated non-malignant patches. We train the classifier by initially
training on equal proportions of real and synthetic data. Every 1000 iterations,
we increase the relative proportion of real data used by 20%, such that the final
iteration is trained on 90% real data. We observe that this regime helps prevent
early overfitting and greater generalization for later epochs.

3.3 Results

Table 1 contains the results of three classification experiments. ciGAN, combined
with traditional augmentation, achieves an AUC of 0.896. This outperforms the
baseline (no augmentation) model by 0.014 AUC (p < 0.01, DeLong method [30])
and traditional augmentation model by 0.009 AUC (p < 0.05). Direct comparison
of our results with similar works is difficult given that DDSM does not have
standardized training/testing splits, but we find that our models compare on
par or favorably to other DDSM patch classification efforts [25,31,32].
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Table 1. ROC AUC (Area under ROC curve) for three augmentation schemes.

Data augmentation scheme AUC

Baseline (no augmentation) 0.882

Traditional augmentation 0.887

ciGAN + Traditional aug 0.896

4 Conclusion

Recent efforts for using deep learning for cancer detection in mammograms have
yielded promising results. One major limiting factor for continued progress is the
scarcity of data, and especially cancer positive exams. Given the success of simple
data augmentation techniques and the recent progress in generative adversarial
networks (GANs), we ask whether GANs can be used to synthetically increase
the size of training data by generating examples of mammogram lesions. We
employ a multi-scale class-conditional GAN with mask infilling (ciGAN), and
demonstrate that our GAN indeed is able to generate realistic lesions, which
improves subsequent classification performance above traditional augmentation
techniques. ciGAN addresses critical issues in other GAN architectures, such as
training instability and resolution detail. Scarcity of data and class imbalance
are common constraints in medical imaging tasks, and we believe our techniques
can help address these issues in a variety of settings.
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17. Ribli, D., Horváth, A., Unger, Z., Pollner, P., Csabai, I.: Detecting and classifying

lesions in mammograms with deep learning. Sci. Rep. 8(1), 4165 (2018)
18. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:

Improved techniques for training GANs. In: NIPS, pp. 2234–2242 (2016)
19. Kodali, N., Abernethy, J., Hays, J., Kira, Z.: How to train your dragan. arXiv

preprint arXiv:1705.07215 (2017)
20. Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement

networks. In: ICCV 2017, pp. 1520–1529. IEEE (2017)
21. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint

arXiv:1411.1784 (2014)
22. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations

in convolutional network. arXiv (2015)
23. Lotter, W., Sorensen, G., Cox, D.: A multi-scale CNN and curriculum learn-

ing strategy for mammogram classification. In: Cardoso, M.J., et al. (eds.)
DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 169–177. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-67558-9 20

24. Nikulin, Y.: DM challenge yaroslav nikulin (therapixel) (2017). Synapse.org
25. Shen, L.: End-to-end training for whole image breast cancer diagnosis using an all

convolutional design. arXiv preprint arXiv:1708.09427 (2017)
26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556 (2014)
27. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS
28. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint

arXiv:1412.6980 (2014)
29. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: CVPR, pp. 770–778 (2016)
30. DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L.: Comparing the areas under

two or more correlated receiver operating characteristic curves: a nonparametric
approach. Biometrics 44(3), 837–845 (1988)

https://doi.org/10.1007/978-3-319-68127-6_2
https://doi.org/10.1007/978-3-319-66179-7_48
http://arxiv.org/abs/1801.02385
http://arxiv.org/abs/1709.01872
http://arxiv.org/abs/1712.01636
http://arxiv.org/abs/1705.07215
http://arxiv.org/abs/1411.1784
https://doi.org/10.1007/978-3-319-67558-9_20
http://synapse.org
http://arxiv.org/abs/1708.09427
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1412.6980


106 E. Wu et al.

31. Zhu, W., Lou, Q., Vang, Y.S., Xie, X.: Deep multi-instance networks with sparse
label assignment for whole mammogram classification. In: Descoteaux, M., Maier-
Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017.
LNCS, vol. 10435, pp. 603–611. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66179-7 69
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