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RAMBO 2018 Preface

Physiological motion is an important factor in several medical imaging applications.
The speed of motion may inhibit the acquisition of high-resolution images needed for
effective visualization and analysis, for example, in cardiac or respiratory imaging or in
functional magnetic resonance imaging (fMRI) and perfusion applications. Addition-
ally, in cardiac and fetal imaging, the variation in the frame of reference may confound
automated analysis pipelines. The underlying motion may also need to be characterized
either to enhance images or for clinical assessment. Techniques are therefore needed
for faster or more accurate reconstruction or for analysis of time-dependent images.
Despite the related concerns, few meetings have focused on the issues caused by
motion in medical imaging, without restriction on the clinical application area or
methodology used.

After a very successful international workshop on Reconstruction and Analysis of
Moving Body Organs (RAMBO) at MICCAI 2016 in Athens, Greece, and MICCAI
2017 in Quebec, Canada, we are proud to have organized this meeting for the third time
in conjunction with MICCAI 2018 in Granada, Spain.

RAMBO was set up to provide a discussion forum for researchers for whom motion
and its effects on image analysis or visualization is a key aspect of their work. By
inviting contributions across all application areas, the workshop aimed to bring together
ideas from different areas of specialization, without being confined to a particular
methodology. In particular, the recent trend to move from model-based to
learning-based methods of analysis has resulted in increased transferability between
application domains. A further goal of this workshop series is to enhance the links
between image analysis (including computer vision and machine learning techniques)
and image acquisition and reconstruction, which generally tends to be addressed in
separate meetings.

The presented contributions cover registration and tracking to image reconstruction
and information retrieval techniques, while application areas include cardiac, pul-
monary, abdominal, fetal, and renal imaging, showing the breadth of interest in the
topic. Research from both academia and industry was presented and keynote lectures
from Dr. Leo Grady (Senior Vice President of Engineering at HeartFlow Inc.) and
Dr. Elisenda Eixarch (Consultant and Associate Professor, Fetal and Perinatal Medicine
Research Group, Hospital Clínic de Barcelona) gave an overview of recent
developments.

We believe that this workshop fosters the cross-fertilization of ideas across appli-
cation domains while tackling and taking advantage of the problems and opportunities
arising from motion in medical imaging.

August 2018 Bernhard Kainz
Kanwal Bhatia

Tom Vercauteren
Ozan Oktay



BIA 2018 Preface

Welcome to the fourth edition of the Breast Image Analysis (BIA) workshop held in
conjunction with MICCAI. The aim of BIA is to bring together the growing number of
researchers in the field given the significant amount of effort in the development of
tools that can automate the analysis and synthesis of breast imaging. The main purpose
of the workshop is to provide a stimulating environment for an in-depth discussion of
important recent developments among experts in the field that enables future research
impact in the field. For the keynote talks, we invited Prof. Anne Martel from Sunny-
brook Health Sciences Centre, Assist. Prof. Orcun Goksel from ETH Zurich and
Dr. Markus Wenzel from Fraunhofer Institute for Medical Image Computing MEVIS -
they represent three prominent researchers in the field of breast image analysis.

The first call for papers for the 4th BIA was released on April 4, 2018 and the last
call was done on June 5, 2018, with the paper deadline set to June 18, 2018. The
submission site of BIA received 22 papers registrations, from which 18 papers turned
into full paper submissions. Each submission was reviewed by three or four reviewers.
The chairs decided to select nine out of the 18 submissions (50% acceptance rate)
based on the majority voting of three meta-reviewers. Meta-reviewers decided on
acceptance or rejection based on the scores and comments made by the reviewers.
Finally, we would like to acknowledge the support from the Australian Research
Council for the realisation of this workshop (discovery project DP180103232). We
would also like to thank the program committee members of BIA.

BIA Workshop ChairsJuly 2018



TIA 2018 Preface

The First International Workshop on Thoracic Image Analysis was held at the Medical
Image Computing and Computer-Assisted Intervention Conference (MICCAI) in
Granada, Spain, 2018. Building on the history of the Pulmonary Image Analysis work-
shop, a roughly biannual event at MICCAI going back 10 years, the aim of the workshop
was to bring togethermedical image analysis researchers in the area of thoracic imaging to
discuss recent advances in this rapidly developing field. Cardiovascular disease, lung
cancer, and chronic obstructive pulmonary disease (COPD), three diseases all visible on
thoracic imaging, are among the top causes of deathworldwide.Many imagingmodalities
are currently available to study the pulmonary and cardiac system, including radiography,
computed tomography (CT), positron emission tomography (PET) and magnetic reso-
nance imaging (MRI). Papers dealing with all aspects of image analysis of thoracic data,
including but not limited to segmentation, registration, quantification, modelling of the
image acquisition process, visualization, validation, statistical modelling biophysical
modelling (computational anatomy), deep learning, image analysis in small animals, and
novel applications were invited. Good-sized independent validation studies on the use of
deep learning models in the area of thoracic imaging, despite having possibly little
technical novelty, were particularly invited.

The 21 papers submitted to the workshop were reviewed in a double-blind manner
with at least two reviewers per paper, whose affiliations and recent publications were
checked to avoid conflicts of interests. Finally, 20 papers were accepted for presen-
tation as either oral or poster. Of the accepted papers, 18 were long format (8–12 pages)
and two were short format (4–7 pages). The papers were grouped into four topics,
which are reflected in the structure of this volume: Image Acquisition and Enhance-
ment (3), Image Segmentation (7), Image Registration (4), and Computer-Aided
Diagnosis (6). Deep learning is undoubtedly a hot topic in the community, with
techniques like transfer learning and generative adversarial networks being in the focus
of recent research activities. We were pleased to note that the majority (70%) of the
submissions were on the use of such state-of-the-art methods for a variety of important
clinical applications – some examples include enhancement of chest radiographs,
image registration of the lungs, lung cancer screening, and segmentation of airways.
The imaging modalities used were a good mixture of 2D X-ray, 3D CT, 4D CT, and
functional MRI, demonstrating the complementary information brought together by
different modalities used to study the thoracic system.

We would like to express our gratitude to all the authors for submitting papers to the
First International Workshop on Thoracic Image Analysis, as well as to everyone
involved in the organization and peer review process.

July 2018 TIA Workshop Chairs
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Resection-Based Demons Regularization
for Breast Tumor Bed Propagation

Marek Wodzinski(B) and Andrzej Skalski

Department of Measurement and Electronics,
AGH University of Science and Technology, Krakow, Poland

wodzinski@agh.edu.pl

Abstract. A tumor resection introduces a problem of missing data into
the image registration process. The state-of-the-art methods fail while
attempting to recover the real deformations when the structure of interest
is missing. In this work, we propose an empirical, greedy regularization
term which promotes the tumor contraction. The proposed method is
simple but very effective. It is based on a priori medical knowledge about
the scar localization to promote the direction of the tumor propagation.
The proposed method is compared to the Demons algorithm using both
the artificially generated data with a known ground-truth and a real,
medical data. A relative tumor volume reduction, a Hausdorff distance
between the tumor beds, a RMSE between the deformation fields, and
a visual inspection are used as the evaluation methods. The proposed
method models the tumor resection accurately in the target data and
improves the potential dose distribution for the radiotherapy planning.

Keywords: Image registration · Missing data · Demons
Cancer surgery · Breast cancer

1 Introduction

The breast tumor surgery and the following radiotherapy are usually planned
using the computed tomography (CT). This fact can be exploited to use the
image registration techniques to improve the estimation of the radiation dose
margins. However, an alignment of the pre-operative to the post-operative scans
is a challenging task. The tumor resection introduces the problem of missing
data which leads to several difficulties which are not present in the typical image
registration procedures.

Related Work: The majority of recent research about the image registration
was dedicated to ensuring that the calculated deformation field is a diffeomor-
phism. Since the diffeomorphic deformation field is inherently invertible and
smooth, it is desirable for majority of the image registration tasks. However, for
the tumor resection problem, the deformation field nearby the structure of inter-
est is obviously not invertible and not smooth. There were much less research

c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): RAMBO 2018/BIA 2018/TIA 2018, LNCS 11040, pp. 3–12, 2018.
https://doi.org/10.1007/978-3-030-00946-5_1
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4 M. Wodzinski and A. Skalski

about the image registration with missing data compared to ensuring the diffeo-
morphic properties. One of the first works used the thin-plate splines to estimate
the brain tumor propagation [1]. However, the author assumed that there is still
a partial correspondence between the structures which could be used as control
points. For the full tumor resection, it is not true. An interesting work about
algorithm based on local affine transformations was presented in [2]. Nonethe-
less, the main assumption was that the structure of interest is not missing, only
its surroundings. The TV-L1 was a promising algorithm [3], however it turned
out that its global optimization procedure makes it fail during the tumor bed
propagation in the CT. The reason for this was a low influence of the similarity
cost gradient nearby the resected tumor. Moreover, the deformation can be very
large so an attempt to use local realization of this technique failed. There were
even attempts to localize the tumor bed using the rigid registration based on
surgical clips which is inherently wrong because the rigid transformation is an
isometry preserving the tumor volume [4,5]. Interesting works were introduced
in the context of missing data as a result of the brain tumor resection. A fully
automatic method based on the level-set segmentation of intensity disagreements
and anisotropic diffusion filter modeling the resection area as a diffusion sink was
proposed in [6]. An improved Demons algorithm based on a fourth dimension in
order to separate removed tissues from others was proposed in [7]. There was also
a work related to an atlas-based segmentation of brain images which used mod-
ified bijective Demons to model the tumor growth process with an assumption
about a radial growth of the tumor [8]. The model is similar to our method with
the difference about ability to reconstruct larger deformations. Our method still
uses the Demons force inside the tumor which makes is possible to reconstruct,
usually large, breast deformations.

Contribution: In this work, we propose a simple but very effective regulariza-
tion term for the greedy version of the Demons algorithm. The proposed method
is based on the a priori knowledge about the cancer resection. Since we know
that the tumor is resected, its volume in the target image significantly decreases.
The proposed regularization uses this knowledge to promote the tumor volume
reduction. We evaluate the proposed method using artificially generated data,
artificial deformations resembling the tumor resection and real, medical data
representing women with the breast cancer before and after the tumor surgery.
We show that the proposed method greatly decreases the breast tumor volume
and improves the tumor bed localization.

2 Methods

The proposed method is based on the greedy, implicit version of the Demons
algorithm. For the further reference and the comparison purposes, we present
a shortened algorithmic summary of the compositive, symmetric Demons in
Algorithm 1.

The proposed method consists of an empirical, greedy regularization
term which enforces the tumor contraction and a scheme to automatically
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Algorithm 1. Demons Algorithm
Input : M (moving image), F (fixed image), σf (fluid sigma), σd (diffusion

sigma), ui (initial deformation field - optionally) number of
resolutions, convergence indicator

Output: u (calculated deformation field)
1 Ms, Fs = create moving and fixed images for each resolution
2 u = initialize the deformation field
3 foreach resolution do
4 G(σd), G(σf ) = initialize convolution kernels (typically Gaussian)
5 while not converged do
6 v = − F−M◦u

||∇F||2+(F−M◦u)2
∇F − F−M◦u

||∇M◦u||2+(F−M◦u)2
∇M ◦ u

7 v = G(σf ) � v
8 u = u ◦ v
9 u = G(σd) � u

10 u = upsample deformation field(u)

11 return u

determine an optimal regularization step. Its algorithmic summary is presented
in Algorithm 2. The presented algorithm requires a binary mask of the segmented
tumor as an additional parameter. The binary mask is usually obtained during
the surgery planning and therefore is easily available. The tumor can be seg-
mented manually or automatically. The method does not require any additional
parameter tunning (only the smoothing sigmas σd, σf must be chosen). The reg-
ularization is added as an additional greedy step during the Demons algorithm,
between the deformation field update and the diffusion regularization.

The direction structure ds can be defined as a binary mask with a single
point or a structure representing the expected tumor bed shape. Its localization
is defined relative to the initial tumor position and transformed during each
iteration. In the experiments performed, the direction structure is defined as a
center of mass of the tumor because both the source and the target are acquired
for the same patient position. Conceptually, it can be compared to the mean shift
algorithm. During each iteration, both the tumor and the structure are being
transformed, until convergence. In practice, the direction structure is defined
using the a priori knowledge, usually with help of the surgical protocol.

The regularization term c (a vector field) is based on the direction of a dif-
ference between coordinates of the direction structure and the image domain (a
grid) with the minimum distance to a given coordinate. It is simply a coordinates
subtraction, which can be defined as:

c = arg min(D(ds,Tm ◦ u)) − Idu, (1)

where Idu denotes the image domain, the Tm ◦ u is the transformed tumor and
D denotes an Euclidean distance calculation. What is important, the calculation
needs to be performed only for the segmented tumor. Then, the vector field c is
normalized to unit length, which is later compensated by the tumor volume and
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the average velocity field vector length. The distance calculation must include
the knowledge about physical voxel size which is, for clarity, omitted in the
algorithm description.

Algorithm 2. Resection-based Demons Algorithm
Input : M (moving image), F (fixed image), Tm (tumor mask), ds

(direction structure) σf (fluid sigma), σd (diffusion sigma), ui

(initial deformation field - optionally), expected tumor volume
after the resection, number of resolutions, convergence indicator

Output: u (calculated deformation field)
1 Ms, Fs, Tsm = create moving, fixed and mask images for each resolution
2 u = initialize the deformation field
3 foreach resolution do
4 G(σd), G(σf ) = initialize convolution kernels (typically Gaussian)
5 while not converged do
6 v = − F−M◦u

||∇F||2+(F−M◦u)2 ∇F − F−M◦u
||∇M◦u||2+(F−M◦u)2 ∇M ◦ u

7 v = G(σf ) � v
8 u = u ◦ v
9 c = arg min(D(ds,Tm ◦ u)) − Idu

/* a vector field with a minimum distance between the
transformed tumor and the direction structure */

10 κ = 1
s (volume(Tm ◦ u) − expected volume)

/* s - an average velocity vector length */
11 u = u ◦ κc
12 u = G(σd) � u

13 u = upsample deformation field(u)

14 return u

The optimal regularization step κ controls the tumor contraction size during
each iteration. It consists of two steps. Firstly, an average length of velocity
vectors s is being calculated. If the velocity field magnitude is significant, the
contraction term should have lower influence. It is necessary because enforcing
strong contraction during the initial alignment phase leads to medically not
reliable deformations. Secondly, the remaining tumor volume is being calculated
to make the algorithm more stable. The influence of the regularization term
linearly depends on the current tumor volume. The final regularization step is
defined as:

κ =
1
s
(volume(Tm ◦ u) − expected volume), (2)

where s is the average length of the velocity vectors. Usually, the expected volume
after the resection is zero. Adding this term makes to possible to model less
idealized scenario, e.g. when the cavity area it not completely filled with the
surrounding tissues. However, it is not a common event because the time between
the breast tumor surgery and the radiotherapy planning usually is long enough.
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The proposed method can be compared to an explicit volume regularization
where the gradient of tumor volume with respect to the deformation field is
being calculated. However, this method is extremely computationally inefficient.
We have compared the results obtained by both approaches and they were very
similar, both for the tumor and the tumor bed. However, the proposed method is
computationally efficient. It increases the overall Demons algorithm computation
time by about 4% using the CPU implementation which is absolutely acceptable.
For the explicit volume regularization the computation time depends strongly
on the tumor volume and for an average tumor size increases the computation
time by about an order of magnitude.

3 Experiments and Results

Three experiments were performed to show the influence of the proposed algo-
rithm on the tumor bed localization. The proposed method was compared to
the compositive, symmetric Demons because our previous study has shown that,
among the state-of-the-art methods (B-Splines FFD, Demons, TV-L1, and oth-
ers), the Demons method provided the best results [9]. The data spatial reso-
lution was equal to 0.97 mm x 0.97 mm x 3 mm. The σd, σf were set to 0.5 mm
and 3.0 mm respectively. The proposed method is abbreviated as RB Demons
(Resection-based Demons).

3.1 Artificial Data

The first experiment used an artificially generated data. This experiment was
necessary because the ground-truth about tumor bed localization is unknown
for the real, medical data. The artificial data made it possible to state an exact
tumor bed localization and shape in both the source and the target. We created
10 artificial cases with breast tumors in different localizations and with different
shapes. The artificial cases were synthesized based on the real CT data. Small,
big, symmetric, asymmetric convex and concave tumors were introduced. Then,
the target image was created with the explicitly stated tumor bed localization
and deformed using a known deformation based on the B-Splines transformation.
We assumed that the volume of surrounding soft tissues in the source data and
the volume of tumor bed in the target data is equal. The artificial data were syn-
thesized using the ASTRA Toolbox [10]. The registration results were evaluated
using the relative tumor volume and the Hausdorff distance between the ground-
truth and transformed tumor beds. The relative tumor volume (defined as the
ratio of the transformed tumor volume to the initial tumor volume) was used
because we know that in the ideal case the tumor volume in the target volume
is equal to zero. The Hausdorff distance was applied because it directly shows
the potential improvement for the radiotherapy planning where the maximum
margins are a crucial factor. The results are presented in Fig. 1. The proposed
method models the tumor resection and significantly decreases the maximum
margin. This confirms that ensuring the tumor resection improves the tumor
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(a) Relative Tumor Volume (b) Hausdorff Distance

Fig. 1. The relative tumor volume and the Hausdorff distance for the artificially gen-
erated breast tumor CT data. Initial - the original source and target. Demons - the
compositive, symmetric Demons. RB Demons - the proposed method.

bed localization. The margin is still above 8 mm because the artificial data uses
the same intensity value for the tumor bed and other surrounding soft tissues.
This assumption seems valid because in the real CT data the tumor bed in the
target is indistinguishable from other soft tissues. As a consequence, the align-
ment of the tumor bed is not driven by the intensity difference but the proposed
regularization term.

3.2 Artificial Deformations

The second experiment was based on an artificial but real-like deformation fields
resembling the tumor resection process. The applied deformation fields were pro-
posed in [9]. The applied deformations significantly decreased the tumor volume
and smoothly deformed the surrounding soft tissues. However, please notice
that a real tumor resection cannot be modeled by the artificial deformation
field because then it should point outside the image. The applied vector lengths
and the calculated RMSE for both the original Demons and the proposed RB
Demons are shown in Fig. 2a. The RMSE for the proposed method is lower and
the relative improvement on average is equal to 15.25%.

3.3 Real Data

The final experiment used a real, medical data. We acquired 20 CT scans
acquired before the breast cancer surgery, and after, during the radiotherapy
planning. The tumors were manually segmented by a medical expert with more
than 20 years experience in the breast cancer radiotherapy. The images were
firstly rigidly registered based on bones segmentation, SIFT and RANSAC algo-
rithms. For the real data, the ground-truth about the tumor bed is unknown.
Therefore, a quantitative assessment of the tumor bed propagation is impossi-
ble. However, we can still use the relative tumor volume reduction to evaluate



Resection-Based Demons Regularization 9

(a) RMSE (b) Relative Tumor Volume

Fig. 2. The RMSE [mm] for artificially applied deformation fields and the relative
tumor volume [%] for real data using different registration methods. The applied defor-
mation fields resemble the tumor resection process. The rigid registration is shown to
present the influence of warping error which is negligible. Please note that (a) and (b)
are from different experiments.

the calculated deformation fields. If the method is unable to model the complete
tumor resection, it is certainly incorrect. The calculated relative tumor volumes
are shown in Fig. 2b. The original Demons algorithm is incorrect (for one case it
even doubled the tumor volume) while the proposed method resembled all the
resections well. Moreover, a visual assessment is crucial for the correctness eval-
uation. An example of the tumor propagation using different methods is shown
in Fig. 3. An exemplary 3D visualization of the tumor propagation is shown in
Fig. 4.

(a) Sagittal (b) Coronal (c) Transversal

Fig. 3. An exemplary visualization of the propagated tumor in the CT target using
three image registration algorithms. The data is shown on the sagittal, coronal and

transversal planes respectively. The colors indicate following methods: - Rigid Reg-

istration - Original Demons - Proposed RB Demons. Please note that for the
rigid registration the tumor is not even inside the body. (Color figure online)
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(b) All Methods (c) Rigid

(d) Demons (e) RB Demons

Fig. 4. An exemplary 3D visualization of the propagated tumor in the CT target for

real, medical data. The colors indicate following methods: - Rigid Registration

- Original Demons - Proposed RB Demons. Please note the significant volume
decrease of the tumor using the proposed method. (Color figure online)
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4 Discussion and Conclusion

The experiments presented a significant volume reduction for the propagated
tumors with different sizes and shapes. The evaluation based on the tumor vol-
ume reduction is able to show just the evaluated algorithm wrongness. A volume
greater than zero clearly indicates the incorrectness of the registration method.
The proposed method modeled a complete resection of tumors for both the arti-
ficial and real data while the original Demons failed. The proposed algorithm
not only improved the tumor propagation but also the tumor bed localization
which is the structure of interest for the radiotherapy planning.

The Hausdorff distance shows the potential improvement on the radiotherapy.
The 1.5 mm decrease of Hausdorff distance (compared to the original Demons
algorithm), for an average tumor size, can lead to the reduction of the irradiated
volume by 32.5%. This value is significant and can decrease the risk of both the
secondary carcinogenesis and tumor recurrence.

Moreover, the proposed method is independent of the registration forces cal-
culation which makes it useful in the multi-modal registration. Therefore, this
technique can be easily extended to multi-modal problems, like e.g. a real-time
imaging system for the tumor surgery. This method, without any modifications,
can be used in the MIND-based [11] or the NMI-based Demons [12].

The proposed method can be extended to incorporate the mechanical prop-
erties of the tissues being deformed. A biomechanical model of the breast will be
used in the further study to better model the propagation destination for large
deformations. Moreover, the calculated vector directions can be changed to more
complex shape to make it useful for complex, concave and anisotropic shapes.

To conclude, we proposed a greedy, empirical regularization term for the
Demons algorithm which ensures an appropriate tumor resection. The proposed
method not only improved the tumor propagation but also the tumor bed local-
ization. In the further research, we will incorporate this technique into multi-
modal registration e.g. for the real-time surgery based on MRI-USG scans. More-
over, we will extend this technique to a structure-based contraction which should
improve the tumor bed localization even more. We will perform a research about
reliable, quantitative evaluation methods for image registration algorithms ded-
icated to the missing data problem.
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Abstract. Image registration and in particular deformable registration
methods are pillars of medical imaging. Inspired by the recent advances
in deep learning, we propose in this paper, a novel convolutional neu-
ral network architecture that couples linear and deformable registration
within a unified architecture endowed with near real-time performance.
Our framework is modular with respect to the global transformation
component, as well as with respect to the similarity function while it
guarantees smooth displacement fields. We evaluate the performance of
our network on the challenging problem of MRI lung registration, and
demonstrate superior performance with respect to state of the art elastic
registration methods. The proposed deformation (between inspiration &
expiration) was considered within a clinically relevant task of interstitial
lung disease (ILD) classification and showed promising results.

Keywords: Convolutional neural networks · Deformable registration
Unsupervised learning · Lungs · Breathing · MRI
Interstitial lung disease

1 Introduction

Image registration is the process of aligning two or more sources of data to the
same coordinate system. Through all the different registration methods used in
medical applications, deformable registration is the one most commonly used
due to its richness of description [15]. The goal of deformable registration is to
calculate the optimal non-linear dense transformation G to align in the best
c© Springer Nature Switzerland AG 2018
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possible way, a source (moving) image S to a reference (target) image R [2,6].
Existing literature considers the mapping once the local alignment has been per-
formed and therefore is often biased towards the linear component. Furthermore,
state of the art methods are sensitive to the application setting, involve multiple
hyper-parameters (optimization strategy, smoothness term, deformation model,
similarity metric) and are computationally expensive.

Recently, deep learning methods have gained a lot of attention due to their
state of the art performance on a variety of problems and applications [4,12]. In
computer vision, optical flow estimation—a problem highly similar to deformable
registration—has been successfully addressed with numerous deep neural net-
work architectures [9]. In medical imaging, some methods in literature propose
the use of convolutional neural networks (CNNs) as robust methods for image
registration [5,14]. More recently, adversarial losses have been introduced with
impressive performance [16]. The majority of these methods share two limita-
tions: (i) dependency on the linear component of the transformation and (ii)
dependency on ground truth displacement which is used for supervised training.

In this paper, we address the previous limitations of traditional deformable
registration methods and at the same time propose an unsupervised method
for efficient and accurate registration of 3D medical volumes that determines
the linear and deformable parts in a single forward pass. The proposed solu-
tion outperforms conventional multi-metric deformable registration methods and
demonstrates evidence of clinical relevance that can be used for the classification
of patients with ILD using the transformation between the extreme moments of
the respiration circle.

The main contributions of the study are fourfold: (i) coupling linear and
deformable registration within a single optimization step/architecture, (ii) cre-
ating a modular, parameter-free implementation which is independent of the
different similarity metrics, (iii) reducing considerably the computational time
needed for registration allowing real-time applications, (iv) associating deforma-
tions with clinical information.

2 Methodology

In this study, we propose the use of an unsupervised CNN for the registration
of pairs of medical images. A source image S and a reference image R are pre-
sented as inputs to the CNN while the output is the deformation G along with
the registered source image D. This section presents details of the proposed
architecture as well as the dataset that we utilized for our experiments. Please
note that henceforth, we will use the terms deformation, grid, and transformation
interchangeably.

2.1 Linear and Deformable 3D Transformer

One of the main components of the proposed CNN is the 3D transformer
layer. This layer is part of the CNN and is used to warp its input under a
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deformation G. The forward pass for this layer is given by

D = W(S,G), (1)

where W(·, G) indicates a sampling operation W under the deformation G. G is
a dense deformation which can be thought of as an image of the same size as D,
and which is constructed by assigning for every output voxel in D, a sampling
coordinate in the input S.

In order to allow gradients to flow backwards though this warping opera-
tion and facilitate back-propagation training, the gradients with respect to the
input image as well as the deformation should be defined. Similar to [10], such
gradients can be calculated for a backward trilinear interpolation sampling. The
deformation is hence fed to the transformer layer as sampling coordinates for
backward warping. The sampling process is illustrated by

D(p) = W(S,G)(p) =
∑

q

S(q)
∏

d

max (0, 1 − |[G(p)]d − qd|) , (2)

where p and q denote pixel locations, d ∈ {x, y, z} denotes an axis, and [G(p)]d
denotes the d-component of G(p).

Our modeling of the deformation G offers a choice of the type of deformation
we wish to use—linear, deformable, or both. The linear (or affine) part of the
deformation requires the prediction of a 3 × 4 affine transformation matrix A
according to the relation [x̂, ŷ, ẑ]T = A[x, y, z, 1]T , where [x, y, z, 1]T represents
the augmented points to be deformed, whereas [x̂, ŷ, ẑ]T represents their locations
in the deformed image. The matrix A can then be used to build a grid, GA, which
is the affine component of the deformation G.

To model the deformable part GN , a simple and straightforward approach is
to generate sampling coordinates for each output voxel (GN (p)). We can let the
network calculate these sampling points directly. Such a choice would however
require the network to produce feature maps with large value ranges which com-
plicates training. Moreover without appropriate regularization, non-smooth and
even unconnected deformations could be produced. In order to circumvent this
problem, we adopt the approach proposed by [13] and predict spatial gradients
Φ of the deformation along each dimension instead of the deformation itself.
This quantity measures the displacements of consecutive pixels. By enforcing
these displacements to have positive values and subsequently applying an inte-
gration operation along each dimension, the spatial sampling coordinates can be
retrieved. This integration operation could be approximated by simply apply-
ing a cumulative sum along each dimension of the input (i.e. integral image).
In such a case, for example, when Φpd

= 1 there is no change in the distance
between the pixels p and p + 1 in the deformed image along the axis d. On the
other hand, when Φpd

< 1, the distance between these consecutive pixels along
d will decrease, while it will increase when Φpd

> 1. Such an approach ensures
the generation of smooth deformations that avoid self-crossings, while allows the
control of maximum displacements among consecutive pixels.
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Finally, to compose the two parts we apply the deformable component to
a moving image, followed by the linear component. When operating on a fixed
image S, this step can be written as

W(S,G) = W (W(S,GN ), GA) . (3)

During training, the optimization of the decoders of A and GN is done jointly,
as the network is trained end-to-end. We also impose regularization constraints
on both these components. We elaborate on the importance of this regularization
for the joint training in Sect. 2.3.

2.2 Architecture

The architecture of the CNN is based on an encoder-decoder framework pre-
sented in [1] (Fig. 1). The encoder adopts dilated convolutional kernels along
with multi-resolution feature merging, while the decoder employs non-dilated
convolutional layers and up-sampling operations. Specifically, a kernel size of
3 × 3 × 3 was set for the convolutional layers while LeakyReLU activation was
employed for all convolutional layers except the last two. Instance normaliza-
tion was included before most of the activation functions. In total five layers
are used in the encoder and their outputs are merged along with the input pair
of image to form a feature map of 290 features with a total receptive field of
25×25×25. In the decoder, two branches were implemented—one for the spatial
deformation gradients and the other for the affine matrix. As far as the former
is concerned, a squeeze-excitation block [8] was added in order to weigh the
most important features for the spatial gradients calculation while for the lat-
ter a simple global average operation was used to reduce the spatial dimensions
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Fig. 1. The overall CNN architecture. The network uses a pair of 3D images and
calculates the optimal deformations from the one image to the other.
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to one. For the affine parameters and the spatial deformation gradients, a linear
layer and sigmoid activation were respectively used. Finally to retrieve Φ, the
output of the sigmoid function should be scaled by a factor of 2 in order to fall
in the range [0, 2] and hence allow for consecutive pixels to have larger distance
than the initial.

2.3 Training

The network was trained by minimizing the mean squared error (MSE) between
the R and D image intensities as well as the regularization terms of the affine
transformation parameters and the spatial deformation gradients using the
Adam optimizer [11]. Our loss is defined as

Loss = ‖R − W(S,G)‖2 + α ‖A − AI‖1 + β ‖Φ − ΦI‖1 , (4)

where AI represents the identity affine transformation matrix, ΦI is the spatial
gradient of the identity deformation, and α and β are regularization weights. As
mentioned before, regularization is essential to the joint optimization. To elabo-
rate, without the L1 regularization on A, the network might get stuck in a local
minimum where it aligns only high-level features using the affine transformation.
This will result in a high reconstruction error. On the other hand, without the
smoothness regularizer on Φ, the spatial gradients decoder network can predict
very non-smooth grids which again makes it prone to fall in a local minimum.
Having both linear and deformable components is helpful to the network because
these two components now share the work. This hypothesis aligns with [13] and
is also evaluated in Sect. 3.

The initial learning rate is 10−3 and subdued by a factor of 10 if the perfor-
mance on the validation set does not improve for 50 epochs while the training
procedure stops when there is no improvement for 100 epochs. The regularization
weights α and β were set to 10−6 so that neither of the two components has an
unreasonably large contribution to the final loss. As training samples, random
pairs among all cases were selected with a batch size of 2 due to the limited mem-
ory resources on the GPU. The performance of the network was evaluated every
100 batches, and both proposed models—with and without affine components—
converged after nearly 300 epochs. The overall training time was calculated to
∼16 h.

2.4 Dataset

MRI exams were acquired as a part of a prospective study aiming to evaluate the
feasibility of pulmonary fibrosis detection in systemic sclerosis patients by using
magnetic resonance imaging (MRI) and an elastic registration-driven biomarker.
This study received institutional review board approval and all patients gave
their written consent. The study population consisted of 41 patients (29 patients
with systemic sclerosis and 12 healthy volunteers). Experienced radiologists
annotated the lung field for the total of the 82 images and provided information
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about the pathology of each patient (healthy or not). Additionally, eleven char-
acteristic landmarks inside the lung area had been provided by two experienced
radiologists.

All MRI examinations were acquired on a 3T-MRI unit (SKYRA magne-
ton, Siemens Healthineers) using an 18-phased-array-body coil. All subjects were
positioned in the supine position with their arms along the body. Inspiratory and
expiratory MRI images were acquired using an ultrashort time of echo (UTE)
sequence, the spiral VIBE sequence, with the same acquisition parameters (rep-
etition time 2.73 ms, echo time 0.05 ms, flip angle 5◦, field-of-view 620×620 mm,
slice thickness 2.5 mm, matrix 188×188, with an in-plane resolution of 2.14×2.14
mm).

As a pre-processing step, the image intensity values were cropped within the
window [0, 1300] and mapped to [0, 1]. Moreover, all the images were scaled down
along all dimensions by a factor of 2/3 with cubic interpolation resulting to an
image size of 64×192×192 to compensate GPU memory constraints. A random
split was performed and 28 patients (56 pairs of images) were selected for the
training set, resulting to 3136 training pairs, while the rest 13 were used for
validation.

3 Experimental Setup and Results

3.1 Evaluation

We evaluated the performance of our method against two different state-of-the-
art methods, namely, Symmetric Normalization (SyN) [2], using its implemen-
tation on the ANTs package [3] and the deformable method presented in [6,7]
for a variety of similarity metrics (normalized cross correlation (NCC), mutual
information (MI) and discrete wavelet metric (DWM), and their combination).
For the evaluation we calculated the Dice coefficient metric, measured on the
lung masks, after we applied the calculated deformation on the lung mask of the
moving image. Moreover, we evaluate our method using the provided landmark
locations. For comparison reasons we report the approximate computational time
each of these methods needed to register a pair of images. For all the implementa-
tions we used a GeForce GTX 1080 GPU except for SyN implementation where
we used a CPU implementation running on 4 cores of an i7-4700HQ CPU.

3.2 Results and Discussion

Starting with the quantitative evaluation, in Table 1 the mean Dice coefficient
values along with their standard deviations are presented for different methods.
We performed two different types of tests. In the first set of experiments (Table 1:
Inhale-Exhale), we tested the performance of the different methods for the reg-
istration of the MRI images, between the inhale and exhale images, for the 13
validation patients. The SyN implementation reports the lowest Dice scores while
at the same time, it is computationally quite expensive due to its CPU imple-
mentation. Moreover, we tested three different similarity metrics along with their
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Table 1. Dice coefficient scores (%) calculated over the deformed lung masks and the
ground truth.

Method Inhale-exhale All combinations Time/subject (s)

Unregistered 75.62 ± 10.89 57.22 ± 12.90 −
Deformable with NCC [6] 84.25 ± 6.89 76.10 ± 7.92 ∼1 (GPU)

Deformable with DWM [6] 88.63 ± 4.67 75.92 ± 8.81 ∼2 (GPU)

Deformable with MI [6] 88.86 ± 5.13 76.33 ± 8.74 ∼2 (GPU)

Deformable with all above [6] 88.81 ± 5.85 78.71 ± 8.56 ∼2 (GPU)

SyN [2] 83.86 ± 6.04 − ∼2500 (CPU)

Proposed w/o Affine 91.28 ± 2.47 81.75 ± 7.88 ∼0.5 (GPU)

Proposed 91.48±2.33 82.34±7.68 ∼0.5 (GPU)

combinations using the method proposed in [6] as described earlier. In this spe-
cific setup, the MI metric seam to report the best Dice scores. However, the scores
reported by the proposed architecture are superior by at least ∼2.5% to the ones
reported by the other methods. For the proposed method, the addition of a linear
component to the transformation layer does not change the performance of the
network significantly in this experiment. Finally, we calculated the errors over
all axes in predicted locations for eleven different manually annotated landmark
points on inhale volumes after they were deformed using the decoded deforma-
tion for each patient. We compare the performance of our method against the
inter-observer (two different medical experts) distance and the method presented
in [6] in Table 2. We observe that both methods perform very well considering
the inter-observer variability, with the proposed one reporting slightly better
average euclidean distances.

For the second set of experiments (Table 1: All combinations), we report
the Dice scores for all combinations of the 13 different patients, resulting on
169 validation pairs. Due to the large number of combinations, this problem
is more challenging since the size of the lungs in the extreme moments of the
respiratory circles can vary significantly. Again, the performance of the proposed
architecture is superior to the tested baselines, highlighting its very promising
results. In this experimental setup, the linear component plays a more important
part by boosting the performance by ∼0.5%.

Concerning the computation time, both [6] and the proposed method report
very low inference time, due to their GPU implementations, with the proposed
method reaching ∼0.5 s per subject. On the other hand, [2] is computationally
quite expensive, making it difficult to test it for all the possible combinations on
the validation set.

Finally, in Fig. 2, we present the deformed image produced by the proposed
method on coronal view for a single patient in the two different moments of the
respiratory cyrcle. The grids were superimposed on the images, indicating the
displacements calculated by the network. The last column shows the difference
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Table 2. Errors measured as average euclidean distances between estimated landmark
locations and ground truth marked by two medical experts. We also report as inter-
observer, the average euclidean distance between same landmark locations marked by
the two experts. dx, dy, and dz denote distances along x-, y-, and z- axes, respectively,
while ds denotes the average error along all axes.

Method dx dy dz ds

Inter-observer 1.664 2.545 1.555 3.905

Deformable with NCC, DWM, and MI [6] 1.855 3.169 2.229 4.699

Proposed w/o Affine 2.014 2.947 1.858 4.569

Proposed 1.793 2.904 1.822 4.358

(a) Reference image (b) Moving image (c) Deformed image (d) Difference

Fig. 2. A visualized registration of a pair of images, generated by the proposed archi-
tecture. The initial and deformed grids are superimposed on the images.

between the reference and deformed image. One can observe that the majority
of the errors occur on the boundaries, as the network fails to capture large local
displacements.

3.3 Evaluation of the Clinical Relevance of the Deformation

To asses the relevance of the decoded transformations in a clinical setting, we
trained a small classifier on top of the obtained residual deformations to classify
patients as healthy or unhealthy. The residual deformation associated with a
pair of images indicates voxel displacements, written as Gδ = G − GI , where
G is the deduced deformation between the two images, and GI is the identity
deformation.

We trained a downsampling convolutional kernel followed by a multi-layer
perceptron (MLP) to be able to predict whether a case is healthy or not. The
network architecture is shown in Fig. 3. The model includes batch normalization
layers, to avoid overfitting, as we have few training examples at our disposal.
Further, a Tanh activation function is used in the MLP. The downsampling
kernel is of size 3 × 3 × 3, with a stride of 2 and a padding of 1. The number
of units in the hidden layer of the MLP was set to 100. We trained with binary
cross entropy loss, with an initial learning rate of 10−4, which is halved every
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Fig. 3. The neural network trained as a classifier on top of the transformations.

fifty epochs. Training five models in parallel took about 2 h on two GeForce GTX
1080 GPUs.

We cross-validate five models on the training set of 28 patients, and report the
average response of these models on the rest 13 patients. We conduct the same
experiment for deformations obtained using [6] and all similarity measures (NCC,
DWM, MI). The results on the test set using a threshold of 0.5 on the predicted
probability are reported in Table 3, suggesting that indeed the deformations
between inhale and exhale carry information about lung diseases.

Table 3. Results on disease prediction using deformations on the test set. The reported
accuracy is in percentage points.

Method Accuracy

Deformable with NCC, DWM, and MI [6] 69.23

Proposed 84.62

4 Conclusion

In this paper, we propose a novel method which exploits the 3D CNNs to cal-
culate the optimal transformation (combining a linear and a deformable com-
ponent within a coupled framework) between pair of images that is modular
with respect to the similarity function, and the nature of transformation. The
proposed method generates deformations with no self-crossings due to the way
the deformation layer is defined, efficient due to the GPU implementation of the
inference and reports high promising results compared to other unsupervised
registration methods. Currently, the proposed network was tested on the chal-
lenging problem of lung registration, however, its evaluation on the registration
of other modalities, and other organs is one of the potential directions of our
method.
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Abstract. Cardiac cine MRI facilitates structural and functional anal-
ysis of the heart through the dynamic aspect of the sequences. Clinical
acquisitions consist of sparse 2D images instead of 3D volumes, taken
at landmark points of the ECG to cover the whole heartbeat. A stack
of short axis images and a small number of long axis views are gener-
ally acquired. Efforts have been made to accelerate acquisitions at the
acquisition stage as well as at post-processing. A major part of current
research in medical image processing focuses on deep learning approaches
driven by large datasets. However, most of those methods leave out the
dynamic aspect of temporal data and treat frames of cine MRI sequences
individually. We propose a super resolution network based on the U-net
and long short-term memory layers to exploit the temporal aspect of the
dynamic cardiac cine MRI data. When given a sequence of low resolution
long axis images, our method is able to render a high resolution sequence.
Results on synthetic data simulating a stack of short axis images show
quantitative and qualitative improvements over traditional interpolation
methods or the equivalent machine learning method using a single frame,
including the ability of the network to recover important image features
such as the apex.

Keywords: Super-resolution · Cardiac cine MRI · Deep learning

1 Introduction

Cardiac cine MRI allows functional and structural analysis of the heart. Due
to its exceptional soft tissue contrast, reproducibility and safety considerations
it is commonly taken as the gold standard for cardiac imaging. To capture the
whole heartbeat in a sequence of images, scans are produced at landmark times
synchronised with ECG readings. To minimise the imaging times, clinical acqui-
sitions consist of anisotropic 2D slices instead of a 3D volume. A stack of parallel
short axis (SA) slices and a small number of orthogonal long axis (LA) slices
are generally acquired for each frame of the sequence. The number of slices in
the SA stack is dependent on the size of the heart but generally ranges between
8 and 12, and the number of LA slices is also variable. Standardised protocols
c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): RAMBO 2018/BIA 2018/TIA 2018, LNCS 11040, pp. 23–31, 2018.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00946-5_3&domain=pdf


24 N. Basty and V. Grau

such as the UK biobank protocol include three LA views: the vertical long axis
(VLA, also called 2-chamber view), the horizontal long axis (HLA, also called
4-chamber view), and the left ventricular outflow tract (LVOT) view [1,2]. Some
of the main issues associated with cine MRI are the slice misalignment occur-
ring due to patient motion and breath hold variations between acquisitions,
intensity differences between slices due to flow artefacts and magnetic field inho-
mogeneities, and sometimes contrast agents, as well the sparsity of the data
occasionally resulting in a lack of coverage of the left ventricle by the SA stack
[3]. The dynamic aspect of cardiac MRI is used to evaluate cardiovascular func-
tion metrics such as the ejection fraction and the stroke volume, to quantify wall
motion and thickness and identify scar tissue in follow-up scans from patients
who have suffered a myocardial infarct.

The MRI pulse sequence most commonly used in cardiac cine MRI for left
ventricular structural and functional analysis is the b-SFFP sequence. This is
due to its excellent signal-to-noise ratio per unit time and T2/T1 contrast and
the fact that it does not suffer from excessive signal loss from motion [4]. There
also exists a 3D version of the b-SFFP sequence, which allows isotropic acquisi-
tions but in turn has worse contrast between blood and the myocardium and is
therefore not commonly used in clinical practice.

MRI acquisitions may be accelerated at the acquisition stage, by undersam-
pling k-space and reconstructing images with incomplete data, which is referred
to as compressed sensing. Most compressed sensing approaches work on an indi-
vidual image basis. One of the few that uses temporal context is [5] where a
dynamic 2D+t dictionary is learnt and used to recover missing k-space data.

The limitations caused by the relatively long time required for MRI acqui-
sition have also led to interest in the development of super resolution methods
at the post-processing end of the imaging pipeline. A large part of the litera-
ture uses non-machine learning approaches. Most of these methods involve least
squares error regularisation and assume overlap between numerous slices [6].
Few approaches to super resolution of medical images, more specifically cardiac
cine MRI, actually make use of the temporal aspect. In work by Odille et al., a
parallel SA stack and two additional stacks taken at orthogonal orientations are
used to produce a 3D reconstruction of the heart using regularised least squares,
after applying a motion compensating algorithm using the data from the whole
cine sequence [7].

Recently, machine learning methods have dominated the research in the
biomedical image analysis field. With the increasing availability of computing
power, large labelled datasets and open source libraries, deep learning has quickly
become the benchmark for many tasks such as image classification and segmen-
tation. The first application of deep learning to image super-resolution consisted
of a simple network with three layers, inspired by the idea behind dictionary
learning applications to super resolution. The first layer has a small filter size
similar to a LR dictionary extracting a small LR image patch, the third layer a
larger filter size similar to a HR dictionary upsampling to a bigger higher res-
olution patch, and the middle layer introduces a non linear mapping between
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the two [8]. A small number of training images underlines the simplicity of the
approach, which shows pleasing results on natural images, and has become a
benchmark in deep learning super resolution.

Some of the best results in image segmentation have been produced by the
U-net architecture introduced by Ronneberger et al. [9]. The U-net is a convolu-
tional neural network, similar to an autoencoder but including skip connections
between input and output layers. The skip connections allow high frequency as
well as low frequency information to be processed and make it suitable for super
resolution, for which it has been applied to 3D microscopy in two recent studies.
The first of them uses a U-net to generate a residual image containing the high
frequency information to be added to the LR input [10]. The second compares
a U-net to a Super-Resolution Convolutional Neural Network (SRCNN) [8] in
3D to upsample synthetically downsampled microscopy images, showing that
both architectures can be used for the task at hand with the U-net consistently
outperforming SRCNN [11].

Deep learning has also been applied to super resolution of cardiac MRI in [12],
where a single image and a multi-image network are trained to predict residuals
which are added to the LR image and give it high frequency information. The
data used in that study comes from synthetically down-sampled 3D b-SFFP
acquisitions that do not require realignment to account for breathing between
acquisitions or patient motion. The same group recently extended the network to
an anatomically constrained neural network that resembles a U-net and is able to
do super resolution and segmentation aided by the addition of shape priors [13].
In contrast, our work aims to improve standard dynamic 2D data acquired in
clinical practice, using the dynamic information in the time sequence to improve
the reconstruction. We present a network learning a one-to-one mapping between
low resolution (LR) and high resolution (HR) 2D image sequences to generate
additional HR LA views from a dynamic SA stack.

Recurrent neural networks (RNN) and especially long short term memory
(LSTM) are starting to be applied in medical image analysis. Recurrence can
be applied in a spatial sense, by considering adjacent slices in a 3D image. In
a study on prostate MRI for cancer segmentation, adjacent 2D slices were fed
into a U-net fitted with recurrent layers at every convolution [14]. RNNs have
been applied to cardiac cine MRI first by Poudel et al. [15], at the lowest resolu-
tion level of a U-net to take advantage of low frequency features in consecutive
frames of the cardiac cycle. LSTMs have been applied to enhance performance
of myocardium segmentations in cardiac cine MRI sequences [16]. In that study,
similar to [15], recurrent layers are present in the lower resolution levels of the
network architecture.

Up to our knowledge, recurrent networks have not been used for cardiac cine
MRI sequence reconstruction. In this paper we propose a method using temporal
recurrence to recover HR LA slices from LR acquisitions. Our results show that
introducing recurrence improves the quality of the reconstruction, as compared
to equivalent single-frame approaches.
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2 Materials and Methods

Our method uses an architecture inspired by the U-net, with added recurrent
layers, sharing some characteristics with those used in [14–16] for segmentation.
While [14] used recurrence on all levels of a U-net, [16] only on the two lower
resolution levels, and [15] only on the lowest resolution level, we included recur-
rence layers on the first two layers, corresponding to the highest resolutions. We
limited the number of levels to the first two for two reasons: to save memory and
because unlike with segmentation work where the lower frequency features are
more important, we are particularly interested in the high frequency information
which is needed to convert LR into HR images.

Figure 1 shows the network architecture. The network we propose is inspired
by the U-net with a contractive part and skip connections sensitive to low and
high frequency details, respectively. At the first and second levels, we introduced
LSTM convolution layers. There are a total of five levels in the network each ini-
tiated by a 2× 2 Max pooling layer. The input data has a size of 128× 128× 10,
the lowest level therefore operates on samples of size 8× 8× 10 where only the
very low frequency features are present. We chose to put the recurrent layers on
the top levels since we want to enhance the high frequency features of the images
and they are mostly present in the first and second levels. Going down to the

Fig. 1. Network architecture. A network inspired by the U-net with four LSTM mod-
ules at the top of the network aiming to enhance high frequency features by taking into
account the dynamic aspect of the cine sequence on the original image size and after
the first max pooling operation which decreases the image size by a factor of two. Filter
numbers are indicated on the diagram on top of the blue bars after every convolution.
Arrows represent the different operations. Height, width, and time sizes are shown for
every level. (Color figure online)
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third level, the data is now 32× 32× 10 which we deemed to be less relevant to
the high frequency content. We also trained a U-net with the same architecture
where all the convolution layers are conventional convolutions with filters of size
3× 3, to compare performance between a context sensitive and a static network.
Training was performed using an Adam optimiser to minimise mean squared
error over 90 epochs, with a learning rate of 4.5.10−5. The network was writ-
ten in Python using the Keras library (https://keras.io) running on Tensorflow
backend, and training was performed on a Nvidia GeForce GTX 1080 Ti 256
RAM GPU.

2.1 Data

LA views from the Kaggle Data Science Bowl Cardiac Challenge Data [17] were
used in training. The dataset consists of cine MRI sequences of over five hundred
patients. Every data set has 30 frames, however the number of SA and LA
slices differ, as a standardised imaging protocol was not used. VLA and HLA
acquisitions were present for most of the patients but a non negligible part of
the data had only one or no LA views. The patients have a large spread of age
and size which is advantageous to preserve the generalisation properties of the
method.

After discarding unusable data (e.g. the ones affected by very strong artefacts
or wrongly labeled as LA) by visual inspection, all remaining images were resam-
pled to isotropic resolution of 1.4 mm× 1.4 mm, rotated to the same upright ori-
entation where the base is towards the top of the image and the apex towards
the bottom, and down-sampled in the baso-apical direction to match the slice
thickness of standard SA slices of 10 mm. In this way, we generated images simi-
lar to those that would be reconstructed from the SA stack. Every sequence was
also normalised such that all image intensities lie in the range between 0 and
1. We did not differentiate between HLA and VLA views, both were included
together in the training, validation and testing datasets. In this way, we aimed to
demonstrate the ability of the method to recover images with different appear-
ance (e.g. in terms of the number of chambers), with the eventual goal of using
the network to produce slices in any arbitrary orthogonal orientation from SA
stacks.

After splitting the sequences of 30 frames into shorter sequences of 10 frames
each (to reduce the time needed for training), 3342 LR-HR sequence pairs of
10 frames per sequence were available. 3000 sequences were used for training,
171 set aside for validation, and 171 for testing, ensuring that none of the split
sequences were spanning over the training and the validation or testing set. For
the static network, all the frames in a sequence were used, which increased the
training, validation, and testing data by a factor of 30.

3 Results

Results on the first 5 frames of a HLA sequence are shown in Fig. 2. A represen-
tative result on 5 non-adjacent frames of a VLA sequence can be seen in Fig. 3,

https://keras.io


28 N. Basty and V. Grau

with the cardiac contraction more easily visible due to the frames spanning a
longer time. Both figures display a sequence from the unseen testing dataset
using cubic interpolation in the first row, the result of using static frames only
in the second row, the result of the proposed network in the third row, and
the ground truth on the bottom row. Each frame has been magnified around
the apex, one of the features that is most prone to being missed by the SA
stack acquisition. The proposed network manages to recover the apex across the
sequence, with much better definition than previously used standard U-Nets.

In addition to qualitative improvements, the peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) of the dynamic network output outper-
form the static network and interpolation. More quantitative results are shown
in Table 1, which contains the average values for PSNR and SSIM of the whole
testing data set and shows that the dynamic network output is superior to the
static network as well as interpolation.

Table 1. Quantitative evaluation (PSNR and SSIM) of interpolated, single frame U-
net, and the proposed network results on the whole testing data set which has not been
seen by the networks in training.

Interpolated U-net LSTM

PSNR 23.17 dB 25.23 dB 26.57 dB

SSIM 0.72 0.77 0.81

Fig. 2. Result on the first 5 frames of a HLA view cine sequence. The top row shows
the LR interpolated input, the second row shows the result given by the static U-net,
the third the result given by network including LSTM layers, and the bottom row
shows the HR ground truth. This proposed enhanced 4-chamber sequence has a PSNR
of 25.28 dB and a SSIM of 0.82 while the static U-net gives a PSNR of 23.83 dB and a
SSIM of 0.79 and the interpolated sequence a PSNR of 22.15 dB and a SSIM of 0.73.
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Fig. 3. Result on the 1st, 8th, 15th, 22nd, and 30th frames of a VLA view cine sequence.
The top row shows the LR interpolated input, the second row shows the result given by
the static U-net, the third the result given by network including LSTM layers, and the
bottom row shows the HR ground truth. This proposed enhanced 2-chamber sequence
has a PSNR of 27.55 dB and a SSIM of 0.83 while the static U-net gives a PSNR of
25.69 dB and a SSIM of 0.78 and the interpolated sequence a PSNR of 22.23 dB and a
SSIM of 0.71.

4 Discussion and Conclusion

We have showed that there is an advantage to using the temporal context for
super resolution of cardiac cine MRI sequences, in comparison to the more com-
mon approach of reconstructing individual frames. Our proposed architecture,
which includes LSTM layers on the upper layers of a U-net, gives qualitatively
and quantitatively superior results to an equivalent U-net architecture with no
recurrence.

In order to concentrate on the effects of recurrence on reconstructions, we
chose experiments that avoid common acquisition artifacts such as misalignment
between slices and intensity mismatches. Future work will look into the recon-
struction from clinical SA stacks suffering from these artifacts, as well as recon-
struction of arbitrarily oriented slices, eventually aiming to reconstruct complete
3D datasets.

Acknowledgments. NMB acknowledges the support of the RCUK Digital Economy
Programme grant number EP/G036861/1 (Oxford Centre for Doctoral Training in
Healthcare Innovation).
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Abstract. We present a methodology for reconstructing full-cycle res-
piratory and cardiac gated short-axis cine MR sequences from real-time
MR data. For patients who are too ill or otherwise incapable of con-
sistent breath holds, real-time MR sequences are the preferred means
of acquiring cardiac images, but suffer from inferior image quality com-
pared to standard short-axis sequences and lack cardiac ECG gating.
To construct a sequence from real-time images which, as close as pos-
sible, replicates the characteristics of short-axis series, the phase of the
cardiac cycle must be estimated for each image and the left ventricle
identified, to be used as a landmark for slice re-alignment. Our method
employs CNN-based deep learning to segment the left ventricle in the
real-time sequence, which is then used to estimate the pool volume and
thus the position of each image in the cardiac cycle. We then use mani-
fold learning to account for the respiratory cycle so as to select images of
the best quality at expiration. From these images a selection is made to
automatically reconstruct a single cardiac cycle, and the images and seg-
mentations are then aligned. The aligned pool segmentations can then be
used to calculate volume over time and thus volume-based biomarkers.

Keywords: Automatic segmentation · Real time cardiac imaging
Image-based motion correction

1 Introduction

Short axis cine (SAX) is the primary cardiac magnetic resonance imaging (cMRI)
protocol for assessing cardiac function, but relies on electrocardiogram (ECG)
gating and breath holds during acquisition. The protocol requires the subject to
lie still, restricting it to acquisitions at rest, and to perform breath holds, which
not all patients can do due to pathology or age. Free breathing non-gated real-
time cine (RT) is an alternative protocol which has recently been proposed as a
solution to the above problem [10,11]. This method acquires images over multiple
cardiac cycles at the same locations in the left ventricle (LV) as SAX, both
c© Springer Nature Switzerland AG 2018
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eliminating the need for patient cooperation during breath holds and allowing
imaging during movement and distorted ECG signals, eg. during exercise. A less
demanding scanning sequence such as RT greatly expands the number of patients
who can be scanned, and using RT to assess cardiac function during exercise
has its own diagnostic potential [3]. Developing a methodology for improving
the quality of RT imaging would therefore provide a new and effective tool for
clinicians.

However the RT series suffers from poor image quality, in terms of greater
noise and artefacts, compared to SAX sequences, as well as patient motion from
respiration and minor body shifts. The images of this series are thus neither
aligned in space nor in time as each plane starts acquisition at arbitrary points
in the cardiac cycle. This significantly hinders clinical applicability, as through-
plane motion of the heart results in significant variability in quantified volumes.
In order to approach clinically acceptable standards, these issues need to be
compensated for, and to calculate biomarkers with comparable accuracy to con-
ventional cine, a motion corrected ECG gated cine image series should be recon-
structed. Specifically images must be retained at end-expiration only to eliminate
geometric and position variation, and these must be aligned so that the LV region
in each image is correctly aligned in space.

In this paper we propose a workflow for accomplishing this reconstruction
using convolutional neural networks (CNN) for automatic segmentation of the
LV, manifold learning for estimating respiratory cycles, and an image process-
ing pipeline which uses the information from these two sources to create a
single-cycle image series. Our workflow uses automatically generated segmen-
tations alone for determining cardiac cycle position for images. This contrasts
with approaches in [1,13] which estimate the R-R interval using the image fre-
quency domain and then determine which images are end-diastole based on
semi-automated segmentation, and other techniques including [5] which use sta-
ble ECG signals for reconstruction. Furthermore our method does not require
complex k-space reconstruction techniques [4] which are not widely available
in clinical practice. Analysis techniques used to assess SAX series can then be
applied to this reconstructed series to calculate biomarkers.

Our novel contribution is a workflow which wholly automates the process
of reconstructing a single-cycle image series from the input RT series, eliminat-
ing both the need for manual segmentation and inter-observer variability. This
contrasts with previous work which involved manual input in the reconstruction
pipeline [13]. The next sections will describe the steps in the workflow in detail,
present results of applying the workflow to volunteer images, and then discuss
the further work necessary to refine the technique.

2 Methodology

The automated workflow shown in Fig. 1 transforms a RT series spanning mul-
tiple cardiac cycles, containing images neither aligned in space nor corrected for
respiration, into a single-cycle series corrected for spatial alignment and contain-
ing only end-expiration images. The input image series is a 4-dimensional image
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Fig. 1. Outline of the image processing workflow

volume storing 3D image volumes capturing cardiac geometry over time (3D+t).
The output image is also 4D, but contains only a single cardiac cycle, removing
the respiratory variability and correctly aligning the sequence to reconstruct an
image similar to the standard SAX sequence. The steps in this workflow are
outlined here in brief and expanded in the following subsections:

1. Data Import: Image data is imported from the Dicom files and converted to
Nifti format using Eidolon [8]. This is the most convenient and reliable tool
for this step although any Nifti file from other sources is acceptable.

2. Estimate Respiration: Manifold learning is used to estimate the position of
each image in the respiratory cycle, and images not at end-expiration are
rejected.

3. Segment Images: A neural network trained to segment the myocardium of the
left ventricle is applied to each image, providing a myocardial mask.

4. Select Segments: Each mask is assessed for correctness and quality to remove
malformed segmentations outside the LV region.

5. Assign Bins: All images not rejected in the previous steps are assigned to
a position in the cardiac cycle. Firstly, images at end-diastole are identified
by measuring the pool volumes of their myocardial masks. Other images are
then assigned to bins representing phases of the cardiac cycle using the time
differences between the identified end-diastole images at the start and end of
that cardiac cycle.

6. Reconstruct Series: A reconstructed series is created by selecting an image
from each cycle position for every slice position.

7. Calculate Volumes: The reconstruction is also applied to the myocardial mask
associated with each image to produce a single-cycle segment series which can
be used to calculate volume properties.

2.1 Deep Learning Segmentation

Our technique relies on a convolutional neural network trained to segment LV
myocardial tissue in real-time images. The network architecture (Fig. 2) is based
on U-Net [12,16] using residual units [7] and is implemented in Tensorflow. Each
numbered section of the encoding phase of the network is implemented using
the residual unit definition on the left, where the number indicates the output
number of filters. Upsampling in the decoding phase is done with a transpose
convolution followed by a single set of batchnorm-prelu-conv2D operations.
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Fig. 2. Topology of the segmentation network.

Residual units use Parametric Rectified Linear Unit (PReLU) [6] for acti-
vation and are defined with 4 series of batchnorm-prelu-convolution operations.
Downsampling in the encoding phase of the network is done using striding on
the first convolution of the residual unit.

The training data for the network consists of RT series images from 10 volun-
teers segmented manually by a clinician resulting in a dataset of 3153 greyscale
image/mask pairs. Figure 3 shows a selection of augmented image/mask pairs
taken from the training dataset. During training, data augmentation [9,15] is
applied to the images to ensure the model does not overfit to the dataset. Specif-
ically, a random selection of rotation, transposition, flip, shift, and zoom oper-
ations are applied to each image/mask pair of a batch. Segmenting RT imag-
ing is particularly challenging as RT image quality is inferior to conventional

Fig. 3. Example augmented image/mask pairs from the training dataset.
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gated cine. Our proposed approach and the network architecture have been
specifically chosen and optimised for this task.

Figure 4 illustrates a set of segmentations for a real-time image series after
malformed segmentations are removed in the selection stage. The selection pro-
cess is necessary since every image in the RT series is used for inference with
the segmentation network. This includes images above and below the LV which
are not meant to be segmented and so are not represented in the training set.
When the network attempts to segment these the results are not well-formed
circular segmentations, and must be identified and filtered out. Secondly, during
the respiration cycle the LV may deform or move through the image plane suf-
ficiently to distort the image and produce poor segmentations. The expectation
is that the RT image will capture enough cardiac cycles that there will be a
well-segmented representative somewhere to reconstruct a single cycle.

Fig. 4. Example automatically generated segmentation

2.2 Manifold Learning

To account for respiratory motion we select the frames at end-expiration, which
is the current standard for assessment for cardiac volumes. Here we use Laplacian
Eigenmaps (LE) [2] to automatically estimate the respiratory state in each slice
in the image stack. LE is a manifold learning technique which embeds the data
into a low-dimensional space while preserving local neighbourhood relations by
finding the most significant modes of variation along the manifold on which the
original data lies. When applied to a sequence of cine cardiac images, we find
that this variation consistently corresponds to the respiratory cycle.
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Using each image’s coordinates in the low-dimensional embedding we assign
a true or false value stating whether each image is within some specified margin
of the end-respiration state. MR images, rather than myocardial masks, are
used at this step as regions outside the heart also contain information about the
respiratory state and help in this categorisation.

2.3 Image Processing

In addition to Eidolon and Tensorflow, our workflow uses Python with the
Numpy, Scipy, and Nibabel libraries for array types, scientific functions, and
Nifti loading respectively. Our workflow is implemented as a Jupyter notebook
which guides the user through the process of applying the operations. This
is available as open source on our repository at https://github.com/ericspod/
RealtimeReconWorkflow.

Select Segments. In this stage each 2D image is analysed individually to filter
out bad segmentations. Due to image quality and subject motion not all images
present usable cardiac geometry and thus cannot be correctly segmented. A seg-
mentation is rejected if it does not have exactly one cavity (i.e. the LV chamber),
if it contains fewer than 100 pixels, or if the surface area of a convex hull enclos-
ing the segmentation is at least 15% larger than the area of the segmentation
including pool. This ensures that only a segmentation representing a relatively
smooth annulus is accepted. The value of 100 pixels for minimal size has been
found in our analysis to be a rational rejection criteria for images of 256× 256
pixels, and similarly the 15% size criteria has been found to reject highly irreg-
ular segmentations.

Assign Bins. At this stage images at end-expiration have been selected using
manifold learning, these are then assigned to a position in the cardiac cycle
based on the segmentation areas. Each image with a segmentation is assigned
the surface area of their segmentation’s pools. Images with areas larger than
its non-zero neighbours are assumed to be as ED, and so an identifiable cardiac
cycle is a list of contiguous images in time, which all have surface areas, from one
of these maximal images up to the but not including the next. These individual
cycles must be a certain length to be accepted, if so each image in the cycle is
assigned a value representing their position in the cycle from 0 to 1.

The cycles thus defined will vary in length and so the values assigned to
each image do not all fall easily into obvious bins. A histogram is computed
for the percentages to determine what the bins should be such that no bin is
empty, which then allows a bin number to be assigned to each image. Each bin
represents a frame of a single cardiac cycle, where bin 0 is the ED frame. Bins
contain many images, however with the filtering done for segmentation quality
and respiration they should all represent the same geometry at the same moment
in the cardiac cycle.

https://github.com/ericspod/RealtimeReconWorkflow
https://github.com/ericspod/RealtimeReconWorkflow
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Reconstruct Series. With bins assigned to each image (excepting those
rejected for poor segmentation or respiratory motion), reconstructing a short-
axis like image becomes a process of selecting an image from each bin for each
image plane. The number of bins has been chosen to ensure that each bin is rep-
resented by at least one image from each image plane, however typically there
will be many images to choose from at each plane per bin. Our current strategy is
to select, for particular plane and bin, the image whose segmentation’s pool has
a surface area closest to the mean of all those in its bin. The time offset between
frames is taken from the original images and if this value correctly represents
the per-image time since ED this will be preserved in the final output image.

Having selected the images for each slice at each timestep, the same process
is applied to the segmentations to produce a second segmentation series. The
average of the image centroids from this series is calculated, then each image in
the segment series and its corresponding image in the reconstructed SAX-like
image are shifted in the XY plane to be centred at this position.

This produces an image and a segmentation series which accounts for patient
movement during scanning which is not respiratory in origin, although aligning
all images does produce non-physiological results since the left ventricle is not
entirely conical but flatter on the septal side. For the purposes of various 2D
assessment criteria, for example estimating ejection fraction, this does not impact
results but does aid in observing wall motion abnormalities.

Calculate Volumes. Pool volumes are calculated by summing up the number
of pixels in the pools of the segmentations. Volumes are then summed in the
depth dimension then multiplied by the voxel volume of the original image to
give a total per timestep volume.

3 Results

We scanned seven participants using the real-time protocol twice with a rest
interval between scans at St. Thomas’ Hospital, London, UK, using a 1.5T
Philips Ingenia MR scanner (Philips, Best, Netherlands). All participants were
healthy volunteers with ages ranging from 20 to 32, 4 males and 3 females. Due
to the length of the scan sequence a much larger dataset of 100 frames was
acquired for each subject. These frames are significantly dissimilar even within
one patient due to breathing and exercise motion. Therefore these datasets rep-
resent a larger training dataset than the number of participants would seem
to imply. We did not consider clinical patient participants for this study since
their morphological details will not vary significantly from healthy volunteers as
observed in the used RT sequences.

Figure 5 shows an example of reconstructed CINE-like sequence and segmen-
tations at end-diastole for all the slices. We can see that the slices are correctly
aligned and segmentations allow for accurate assessment of volumes.

For a further validation, we compared the volumes obtained with the pro-
posed reconstruction pipeline cine with a previously validated, non-gated real-
time imaging protocol (non-gated RT) that uses manual selection of respiratory
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Fig. 5. Example reconstructed CINE-like image series for all slices at ED.

Table 1. Median and inter-quartile range (iqr) of EDV and ESV for the proposed
method and the non-gated MRI method, and differences.

EDV (mL) ESV (mL)

Proposed 117.0 (iqr: 31.75) 37.0 (iqr: 14.31)

Non-gated MRI 113.6 (iqr: 32.73) 46.1 (iqr: 17.02)

Difference −3.07 (iqr: 12.00) 0.85 (iqr: 12.48)

state [10]. Table 1 summarises the ED volume (EDV) and end-systolic volume
(ESV) for the two methods.

The results obtained with the proposed automatic pipeline correlated well
with the manual results from the non-gated MRI sequence. Visual inspection
of this sort is standard clinical practice and thus our results are comparable
to assessments considered sufficiently accurate for diagnostic purposes. From a
clinical perspective, the differences between results are within expected ranges
between inter-observer measurements in the reference standard [10,13], and so
are diagnostically valid.

4 Conclusion and Future Work

We have in this paper demonstrated a workflow for reconstructing a single-cycle
image series from a real-time series. This is in multiple ways an extension of previ-
ous work on reconstruction of respiratory and cardiac gated cine SAX [13], whose
method relied on manual input to determine the location of the heart. Further-
more, the previous method for estimating temporal and spatial motions of the
images were obtained from changes in image contrast, resulting in sub-optimal
alignment and blurring of the images due to inaccurate motion estimation.
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Other pipelines have been proposed for cine reconstruction from ungated,
free-breathing MR. However, these methods often rely on complex, self-tailored
k-space acquisition and reconstruction schemes [4]. Whereas these techniques
benefit from utilising raw data instead of reconstructed RT images for recon-
struction of gated cine MR, such frameworks have limited clinical applicability,
as they are not available in most clinical MR facilities. Our technique is avail-
able as standalone Python software or integrated into Eidolon, a free cardiac MR
analysis software, and can therefore be implemented using a standard personal
computer.

Due to the high acceleration factors needed for RT imaging, image quality is
lower compared to conventional cine. Although this did not result in a significant
impact on measurements of the most frequently obtained parameters (cardiac
volumes and function), specific details and features of boundaries are less distinct
and can possibly impact more comprehensive cardiac assessment. Our future
research goals include investigating the use of autoencoders [14] as a method of
improving image quality.

Our process of assigning images to cardiac phase bins relies the assignment
of an ED image using the local maximal pool volume. This is not strictly true
and so there is some approximation in how images are assigned to cardiac cycle
position. This does not optimally utilise the RT information, as the independency
of acquisition and cardiac frequency likely results in different offsets of images
from ‘true’ ED between the different cycles acquired per slice. Exploitation of
this knowledge will make it possible to create smaller (and thus more) bins and
therefore increase temporal resolution of the reconstructed images.

With this work, we have shown a feasible technique for a complete automatic
pipeline for the reconstruction of cardiac and respiratory gated cine MR from
RT imaging and subsequent quantification of key parameters of cardiac function.
When extended to include the full heart, including the basal part of the ventricle
and the atria, this technique can be of great benefit in imaging of subjects that
are unable to hold their breath or lie still, such as children or severely ill patients.
Furthermore, as demonstrated our work allows imaging during diagnostic scans
employing physical exercise.
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Abstract. A simple and computationally efficient algorithm for per-
forming unbiased groupwise registration to correct motion in a dataset of
contrast-enhanced magnetic resonance (DCE-MR) images is presented.
All the DCE-MR images in the sequence are registered simultaneously
and updates to the reference are computed using an averaging technique
that takes into account all the transformations aligning each image to the
current reference. The method is validated both subjectively and quanti-
tatively using an abdominal DCE-MRI dataset. When combined with the
normalized gradient field dissimilarity measure, it produced promising
results and showed significant improvements compared to those obtained
from an existing motion correction approach.

Keywords: DCE-MRI registration · Multilevel elastic registration
Normalized gradient field · Groupwise registration

1 Introduction

Over the last years, dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) has been a useful clinical technique in the characterization of tumor
biology. It involves the acquisition of a sequence of images acquired pre- and post-
injection of a bolus of a contrast agent. The uptake of the contrast agent from
this sequence of images can be quantified via a concentration vs. time curve,
which in turn allows us to characterize vascular permeability [13].

DCE-MRI continues to be a crucial component in identifying appropriate
patient treatment response. However, motion present in the dataset has to first
be compensated to accurately convert signal intensity changes to contrast agent
concentrations [7]. Image registration has been demonstrated to be effective in
obtaining a motionless dataset from a sequence of DCE-MR images [1,2,6,8].

Some registration methods for DCE images include reducing motion in the
dataset through a floating image reference scheme combined with principal com-
ponent analysis, as presented in [7]. In their paper, an intensity correction term
c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): RAMBO 2018/BIA 2018/TIA 2018, LNCS 11040, pp. 42–52, 2018.
https://doi.org/10.1007/978-3-030-00946-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00946-5_5&domain=pdf


An Unbiased Groupwise Registration Algorithm for DCE-MR Images 43

was added to the similarity measure for pairwise registration. In [12], the reg-
istration problem was divided into sub-problems using auxiliary images com-
puted from the conditional probability distribution of image pairs. These aux-
iliary images were registered to the original images using the sum of squared
differences.

We introduce a groupwise registration approach combined with an NGF-
based pairwise step for correcting motion and subsequently validate the pro-
posed scheme on a set of abdominal dynamic contrast-enhanced MR images. The
groupwise framework used in this paper assumes equal weight for all pairwise
transformations to come up with an update to the reference image. It effectively
reduces naturally occurring motion induced by the respiration process and is
able to align images in spite of the changes in contrast.

2 Pairwise Registration

Constructing a motion-corrected dataset through groupwise registration entails
aligning the subjects to the same reference geometry. In this paper, we used a
combination of affine and elastic (also referred to as “non-parametric registra-
tion”in [9]) to initialize each groupwise iteration.

2.1 Mathematical Model

Given a template and a reference image T ,R : Ω ⊂ R
2 → R, we wish to find a

transformation y : Ω → R
2 such that a transformed version T [y] of the template

image T is similar to the reference R. This is equivalent to the optimization
problem

min
y

J [y] = D [T [y] ,R] + αS [y] . (1)

The term D in the joint functional J is called a distance measure and it
quantifies the similarity between the transformed template and the reference
image. The second term S is the regularization term, which makes the registra-
tion problem well-posed.

In our implementations, we have tested the following distance measures:

a. Normalized Gradient Field (NGF)

DNGF [T ,R] = NGF [T ,R] =
∫

Ω

1 −
(
NGF [T (x)]T NGF [R(x)]

)2

dx (2)

where NGF [T ] denotes the normalized gradient field of T , defined by

NGF [T ] = NGF [T , η] =
∇T√

|∇T |2 + η2

and η is an edge parameter. The NGF is suited for aligning images where
intensity changes appear at corresponding positions. These intensity changes
are given by the image gradient ∇T .
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b. Sum of Squared Differences with Intensity Correction (SSDIC)
In [7], intensity correction was used in combination with the SSD to partially
account for intensity changes between image volumes. Instead of solving for
a reasonable transformation aligning T and R, we find one that matches the
“intensity-corrected” template T c to the reference, where

T c = T + c, c = (R − T ) ∗ N (0, σ) ,

and N (0, σ) is a Gaussian kernel with a mean and standard deviation of 0
and σ, respectively. The template image is transformed using the optimal
deformation aligning the intensity-corrected template to the reference image.

The above distance measures are approximated using a midpoint quadrature
rule on a cell-centered grid with uniform mesh spacing.

2.2 Multilevel Affine and Elastic Registration

The discretized form of the registration problem in (1) is solved from the coarsest
to the finest level. We perform an affine registration at the coarsest level and use
the resulting optimal transformation to initialize yref in the regularization term
S[y], which is given by the elastic potential of the transformation y [9]:

S[y] = Elastic Potential
[
y − yref

]
.

The starting guess for the optimal transformation at every succeeding level is
taken to be the prolongated version of the solution yh from the preceding level.

3 Groupwise Registration

Groupwise registration has been used in a wide range of applications, including
normalizing structural and functional MR data [3]. In [5], the performance of a
groupwise registration method with a principal component analysis-based metric
for correcting motion in DCE-MR images of the liver was evaluated.

Here, we adopt the method used in [4,11] to correct motion in a sequence of
DCE-MR images and coupled it with the pairwise registration step discussed in
the previous section.

Each groupwise iteration is initialized by mapping every image in the dataset
to the current reference image. The reference image is then updated using an
averaging technique that takes into account all the transformations obtained
from the pairwise registration step. The update to the reference is given by

Rn+1
mean(x

h) =
1
N

N∑
i=1

Ti

(
yn

i ◦ [yn
mean]

−1 (xh)
)

, (3)

where

– N refers to the size of the dataset,
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– xh is the original grid,
– Ti are the DCE-MR images (i = 1, 2, . . . , N),
– yn

i is the mapping that aligns the ith image in the sequence to the nth reference
image,

– yn
mean is the mean of the transformations yn

i at the nth iteration, and
– yn

i ◦ [yn
mean]

−1 is the composition of yn
i with the inverse of yn

mean.

Performing the update process described in (3) leads to an average geometry
Rmean and a collection of transformations aligning the subjects to Rmean.

In our implementations, we used the following approximation for the inverse
of the average transformation field yn

mean:

[
yn
mean(x

h)
]−1 ≈ −yn

mean(x
h) + 2xh. (4)

A detailed outline of the groupwise registration framework is given in our
previous work [10].

4 Experiments and Results

A sequence of abdominal MR images was used for validation. The scans were
acquired with a T1-weighted FSPGR sequence. Spatial resolution was 1.88 mm
by 1.88 mm by 8 mm in the S/I, L/R, and A/P directions respectively. Temporal
resolution was approximately 3.7 seconds per volume [7].

We applied the proposed groupwise algorithm to visually assess how well
it eliminates real and complex patient motion. For quantitative validation, the
groupwise scheme was applied to a dataset with simulated motion. The resulting
sequence of registered images is then compared against the ground truth (the
motionless dataset). For experiments that made use of the SSDIC metric, the
standard deviation was chosen heuristically to be σ = 2.7.

4.1 Real Patient Motion

Every groupwise iteration was initialized by a pairwise alignment of the subjects
to the current reference geometry. In Fig. 1, we demonstrate how using different
distance measures can affect the overall efficiency of the proposed method. Fig-
ures 1(f) and (i) show the optimal transformations that register Fig. 1(b) to (a)
obtained using the NGF and SSDIC. Figures 1(d) and (g) show the transformed
versions of the template image. Observe that the NGF and SSDIC were able
to align corresponding features correctly, with only slight misregistrations near
the borders from using SSDIC. We also quantified the efficiency of the distance
measure by computing the difference between the transformed template and the
reference image. Ideally, if registration were done properly, this difference should
only exhibit the regions with contrast differences. This was the case with the
NGF and the SSDIC, as demonstrated in Figs. 1(e) and (h).

Next, we present results obtained from separate experiments using two sig-
nificantly different initial reference images (one before and one after the contrast
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Table 1. Mean Squared Error of the SI curves as a measure of the accuracy of the
registration methods.

ROI 1 ROI 2
α PW-NGF GW-NGF PW-SSDIC GW-SSDIC PW-NGF GW-NGF PW-SSDIC GW-SSDIC
100 1.68E-03 1.36E-04 2.01E-03 2.20E-03 4.91E-04 1.79E-04 1.61E-02 1.57E-02
200 1.20E-03 2.18E-04 6.40E-04 6.81E-04 5.34E-04 1.86E-04 4.81E-03 4.84E-03
600 2.12E-04 6.34E-05 7.10E-04 7.68E-04 3.30E-04 8.02E-05 1.10E-03 9.77E-04

(a) Ref. R (b) Temp. T (c) |T − R|

(d) T (y)-NGF (e) |T (y) − R|,
NGF

(f) y - NGF

(g) T (y)-SSDIC (h) |T (y) − R|,
SSDIC

(i) y - SSDIC

Fig. 1. Results of Pairwise Registration of DCE-MR images. (a) reference, (b) template
image, (c) difference image between the template and reference, (d) and (g) are the
transformed templates, (e) and (h) are the difference images between the transformed
template and the reference image, (f) and (i) are the optimal transformations aligning
the template to the reference image using different distance measures.

agent had been absorbed) in order to demonstrate that the proposed method for
correcting motion in DCE-MR datasets is indeed unbiased regardless of the cho-
sen initial reference. Figures 2(a) and (d) show the two initial reference images
used. Next to the reference images are the final mean images computed using
the NGF and SSDIC, respectively. Notice that the groupwise scheme converged
to the same final average image when the same distance measure was used.
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Table 2. Standard Deviation of the SI curves as means of quantifying the amount of
remaining motion in the sequence of registered images.

ROI 1 ROI 2
α PW-NGF GW-NGF PW-SSDIC GW-SSDIC PW-NGF GW-NGF PW-SSDIC GW-SSDIC
100 2.71E-02 2.48E-02 2.82E-02 2.88E-02 1.79E-02 1.43E-02 5.12E-02 5.27E-02
200 2.29E-02 2.27E-02 2.69E-02 2.95E-02 2.32E-02 2.15E-02 5.00E-02 5.03E-02
600 2.48E-02 2.43E-02 2.78E-02 2.88E-02 3.47E-02 3.46E-02 4.77E-02 4.75E-02

(a) Initial Ref-
erence 1

(b) Final Mean
-NGF

(c) Final Mean
-SSDIC

(d) Initial Ref-
erence 2

(e) Final Mean
-NGF

(f) Final Mean
-SSDIC

Fig. 2. Unbiased groupwise registration. The computation of the final mean image is
independent of the initial reference.

For instance, the final mean images Fig. 2(b) and (e) are the same in spite of
“evolving” from different initial references.

In Fig. 3, we show the rate of convergence of the groupwise scheme by plotting
the average change in pixel values between successive iterates for the reference
image against the iteration number. After around seven iterations, the average
change in intensity values dropped from approximately 0.08 to 0.005, where the
intensity values of the images in the dataset lie in the interval [0,1].

4.2 Simulated Motion

Simulated motion was added to a motionless dataset similar to [7]. Non-rigid
diaphragm motion during respiration combined with rigid rotations at point x
during time t was modelled by

ΔSI(x, t) = ΔSImax sin
(

πx

xmax

) ∣∣∣∣sin
(

πt

tb

)∣∣∣∣ .

In the above equation, ΔSImax is the maximum SI displacement, xmax is the
maximum LR extent of the patient, and tb is the duration of a full breath.
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(a) Reference Image: Figure 2(a) (b) Reference Image: Figure 2(e)

Fig. 3. Convergence of the groupwise algorithm to a stable mean image.

Signal Intensity Curves as Measures of Accuracy. We present statistics
on the signal intensity (SI) versus time curves over small regions of interest
(ROIs). The ROIs considered are regions with relatively large motion shifts that
are also affected by the administration of the contrast agent. They are shown in
Fig. 4. SI curves give us an idea of how well the registration corrects motion in
the dataset. Without motion, these curves would be smooth. However, naturally
occurring motion present in our dataset introduced changes unrelated to the
uptake of the contrast agent.

In Fig. 5, we display the SI curves after performing pairwise (PW) registra-
tion and groupwise (GW) registration for the NGF and SSDIC. All 4 methods
were able to mitigate the effects of diaphragm motion and contrast change as
demonstrated by smaller peaks in their SI curves compared to that from the
simulated data. However, it is important to note the persistence of high fluctua-
tions after using the SSDIC with either a pairwise or groupwise approach. This
signifies misregistration in the specified region of interest. On the other hand, we
obtained relatively smoother curves for the same ROIs after combining groupwise
registration with NGF. See Figs. 5(b), (d).

We measured the mean-squared error for each curve to quantify how close
our final registered images are to the ground truth. Out of all the methods we
implemented, GW-NGF had the smallest mean-squared error. In some cases, it

Fig. 4. Regions of interest considered in the sequence of DCE-MR data with simulated
motion. Green = ROI1; Red = ROI2 (Color figure online)
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(a) PW-NGF vs GW-NGF, ROI1 (b) PW-SSDIC vs GW-SSDIC, ROI1

(c) PW-NGF vs GW-NGF,ROI2 (d) PW-SSDIC vs GW-SSDIC,ROI2

Fig. 5. The signal intensity vs. time curves pre- and post-pairwise and groupwise reg-
istration for different ROIs.

even resulted to a ten-fold improvement in the MSE compared with the other
methods.

The standard deviation was also calculated to quantify the amount of motion
in the registered images. Again, the GW-NGF yielded the best results, implying
that there were smaller fluctuations in the SI curves and less misregistrations in
the ROIs considered. On the other hand, using the SSDIC with the groupwise
scheme was either a hit or miss. Notice from the convergence of the method
visualized in Fig. 3 that the final average change in pixel values fluctuated close
to the initial average change in intensity values. This could suggest that the final
reference image might be similar to the initial reference and that some of the
motion correction made in the previous iterations were cancelled out.
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(a) TREs - Pairwise (b) TREs - Groupwise

Fig. 6. The location x of the center of ROI1 was tracked in the sequence of both the
motion-corrupted (pre-registration) and motion-corrected images. The TREs are the
distances of these centers from their correct location in the motionless dataset.

Target Registration Errors as Measures of Accuracy. Target registration
errors (TRE) are defined as the distances of pixels from their initial location in
the motionless dataset pre- and post-registration. Let

– φi be the transformation that warps the initial reference image to the ith

motion-simulated image Ii,
– yPWi

the transformation that aligns the ith simulated image to the initial
reference,

– yGWi
the transformation that aligns the ith simulated image to the final

reference, and
– ψ the transformation aligning the final groupwise mean to the initial reference

image.

Then the pairwise TREs before and after registration, respectively, are given by

|x − φi(x)| and |x − φi(yPWi
(x))|.

On the other hand, the groupwise TREs are given by

|x − ψ(φi(x))| and |x − ψ(φi(yGWi
(x)))|.

Shown in Fig. 6 are the TREs for both PW-NGF and GW-NGF. Observe that the
TRE post-GW registration had a smaller average compared to the usual pairwise
approach. These are consistent with the results we obtained by analyzing the
average signal intensity values over the same ROI in the previous section.

5 Conclusions

In this paper, we presented a computationally efficient and unbiased groupwise
registration approach for correcting motion in a sequence of dynamic contrast-
enhanced images. We also demonstrated how different distance measures affect
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the performance of a multilevel elastic registration algorithm for registering
contrast-enhanced images and found that both the NGF and SSDIC are able to
account for contrast changes between the template and reference images. Finally,
we conclude that the groupwise approach combined with the NGF yielded the
smoothest SI curves and the smallest TREs, implying that this method elim-
inates motion more accurately than methods that simply register against an
arbitrarily chosen image from the dataset.
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Abstract. In a standard mammography screening procedure, two X-
ray images are acquired per breast from two views. In this paper, we
introduce a patch based, deep learning network for lesion matching in
dual-view mammography using a Siamese network. Our method is eval-
uated on several datasets, among them the large freely available digital
database for screening mammography (DDSM). We perform a compre-
hensive set of experiment, focusing on the mass correspondence prob-
lem. We analyze the effect of transfer learning between different types of
dataset, compare the network based matching to classic template match-
ing and evaluate the contribution of the matching network to the detec-
tion task. Experimental results show the promise in improving detection
accuracy by our approach.

Keywords: Biomedical imaging · Deep learning · Mammography

1 Introduction

Mammography (MG), the primary imaging modality for breast cancer screening,
typically utilizes a standard dual-view procedure. Two X-ray projection views are
acquired for each breast, a craniocaudal (CC) and a mediolateral oblique (MLO)
view. Examining the correspondence of a suspected finding in two separate com-
pression views, enables the radiologist to better classify an abnormality. Studies
have shown that using a two-view analysis helps radiologists reduce false posi-
tive masses caused by overlapping tissues that resemble a mass, and ultimately
helps achieve a higher detection rate [17]. Although Computer Aided Diagno-
sis (CAD) algorithms were developed to assist radiologists, their usefulness has
been debated. This is partially due to the many false positives they produce,
especially for masses and architectural distortions. We propose a novel approach
for identifying the correspondences between masses detected in different views,
to further improve the detection and classification of MG algorithms.

Previous work on MG classification employed hand-crafted features, such
as texture, size, histogram matching, distance from the nipple, and more. The
extracted features were then classified together using various techniques to assess
the similarity between image pairs. [11] demonstrated the positive effect of dual-
view analysis, which detects suspicious mass in one view and its counterpart
c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): RAMBO 2018/BIA 2018/TIA 2018, LNCS 11040, pp. 55–63, 2018.
https://doi.org/10.1007/978-3-030-00946-5_6
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in the other view. Based on geometric location, this analysis fuses both sets
of features and classifies them with linear discriminant analysis. [1] used dual
view analysis to improve single-view detection and classification performance by
combining the dual-view score with the single-view score. Features were obtained
manually using candidate location, shape, and image characteristics.

Deep learning approaches have already shown impressive results in MG detec-
tion and classification. [3] presents a micro-calcification (MC) classification that
uses a dual-view approach based on two neural networks; this is followed by a
single neuron layer that produces the decision based on the concatenated features
from both full image views. [15] presents a multiscale convolutional neural net-
works (CNN) for malignancy classification of full images and sub-image patches
integrated with a random forest gating network. Dhungelz et al. [5] proposed
a multi-view deep residual network (Resnet) to automatically classify MG as
normal/benign/malignant. The network consists of six input images, CC and
MLO together with binary masks of masses and MC. The output of each Resnet
is concatenated, followed by a fully connected layer that determines the class.
Similarly, [6] proposed a two-stage network approach that operates on the four
full images: CC and MLO of the left and right breasts. The second stage concate-
nates the four view-specific representations to a second softmax layer, producing
the output distribution.

Most multi-view deep learning approaches to MG are applied on unregistered
full images and concatenates the features obtained by the network on each view
separately. In contrast, we propose a Siamese approach that focuses on match-
ing localized patch pairs of masses from dual views. Siamese networks are neural
networks that contain at least two sub-networks, with identical configuration,
parameters, and weights. During training, updates to either path are shared
between the two paths. To address the correspondence problem, previous works
used the Siamese network [10] to simultaneously train inputs together. [4] uses
this type of network for a face verification task, in which each new face image
was compared with a previously known face image. [16] demonstrate the advan-
tage of Siamese networks by detecting spinal cord mass in different resolutions.
Sharing parameters leads to fewer parameters allowing training with smaller
datasets. The subnetworks representation is related, and thus better suited for
the comparison task.

Our work entails three key contributions: (1) A novel deep learning dual view
algorithm for mass detection and localization in breast MG based on Siamese
networks, which have not been used before to solve lesion correspondence in MG.
(2) A careful set of experiments using several datasets to study the contribution
of the network components, also showing that the network is better than the
classic template matching approach. (3) Evaluation on the DDSM database.

2 Methods

For this study, our input took unregistered CC/MLO MG images and matched
between lesions appearance in both views. Below, we describe the network
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matching architecture, the experimental methodology including fine-tuning and
comparison to template matching and how the matching architecture is inte-
grated into an automatic detection pipeline.

2.1 Matching Architecture

Our approach extends the work presented by Han et al. [8]. The authors devel-
oped MatchNet, a CNN approach for patch-based matching between two images.
The network consists of two sub-networks. The first is a feature network, a
Siamese neural network, in which a pair of patches, extracted from the CC and
MLO views are inserted and processed through one of two networks. Both paths
consist of interchanging layers of convolutions and pooling, which are connected
via shared weights. The second is the metric network, which concatenates the
two features, contains three fully connected layers and uses a softmax for feature
comparison. Dropout layers were added after layers FC1 and FC2 with value of
0.5. The network is jointly trained with a cross entropy loss. Figure 1(c), presents
the modified network, including the network’s ensemble approach.

The mammography datasets employed for this study were created by defining
a positive image pair label, as the detections annotated by a radiologist in each
view, while a negative pair label is defined by matching false detection with
annotated detections in the other view.

(a) Pair (b) Non-pair (c) Architecture

Fig. 1. The dual-view matching architecture. Columns (a, b) are illustration of ROI
input patches from two views, CC and MLO. (a) Matching pair of images (b) Non
matching images. (c) Patch pairs from CC and MLO views are inserted to the network.
The feature network, consists of interchanging layers of convolutions and pooling, share
parameters between paths. The metric network has fully connected layers with dropout,
produce the final decision by networks ensemble.

2.2 Fine Tuning the Network

Fine-tuning and transfer learning have shown to improve performance results
despite of specific application domains [14,18]. To adapt MatchNet to the task
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of matching detections from different MG views, we first evaluated fine-tuning.
We fine-tuned by training the layers of the metric network, i.e. the three fully
connected layers and the last convolution layer from the feature network. We
used three different datasets, as described in the Experiment and Results section,
including: Photo tourism (natural image pairs)[12], Digital Database for Screen-
ing Mammography (DDSM) [9] and In-house dataset. We used the trained
weights of one dataset domain to fine tune the other datasets.

2.3 Template Matching

Template matching, which extracts sub-image patches and computes a similarity
measure that reflects the template and image patch correspondence, has been
used extensively in computer vision [2]. We compare our deep learning network
to template matching with normalized cross correlation. Intuitively, we assume
that the similarity of image patches of a mass in one view with the same mass
in the other view under deformations, will be higher than the similarity with a
different mass or region of the breast [7].

2.4 Dual-View Automatic Lesion Detection

We integrated two components, a matching architecture and a single-view
detection algorithm to exploit the contribution of the dual-view network to
the full pipeline. The detection algorithm is based on a modified version of U-net
[13], which was originally designed for the biomedical image processing field. In
the original U-net, the output size is identical to the input size. However, for
our task segmentation is not required at the pixel level, since the boundary of
tumors and healthy tissue is ill-defined. Thus, we modified the U-net output, so
that each pixel of the output, corresponds to a 16× 16 pixels area of the input.

The system flow is such that, given a dual-view pair of images as input, the
single-view detection algorithm is applied separately on the CC, MLO image
Icc, IMLO and outputs a set of candidate patches, PCC = {p1CC , ...pNCC}, PMLO =
{p1MLO, ...pMMLO} respectively. The objective of the matching architecture is to
identify the correspondences. If both patch candidates, CC and MLO views,
from the detection flow, are identified as a true lesion, then the label for the pair
will be true and accordingly considered a positive match. We assign labels to
each pair based on the Dice Coefficient threshold δ, between two masks, defined
by a detection contour and ground truth lesion contour respectively. For our
experiments, we used δ = 0.1 as the threshold. Any contour with a larger score
is said to be a true lesion.

3 Experiments and Results

3.1 Data Description

We carried out the experiments on three datasets: (a) The Photo Tourism dataset
[12], consists of three image datasets: Trevi fountain, Notre Dame and Yosemite.
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Which is similar to the dataset used in the MatchNet paper [8]. It consists of
1024× 1024 bitmap images, containing a 16× 16 array of image patches. Each
image patch has 64× 64 pixels and has several matching images that differ in
contrast, brightness and translation. (b) The Digital Database for Screening
Mammography (DDSM) [9], contains 2620 cases of four-view MG screenings. It
includes radiologist ground truth annotations for normal, benign and malignant
image. 1935 images contain tumors. (c) The In-house dataset includes benign
and malignant tumor ground truth annotations, from both CC/MLO MG views
for either left, right or both breasts. It contains 791 tumor pairs. Figure 1(a, b)
shows some tumor pairs from In-house dataset used as positive examples for
the network versus negative examples. We randomly split the data into training
(80%) and testing (20%) subsets of patients. The partitioning was patient-wise
to prevent training and testing on images of the same patient.

3.2 Patch Preprocessing and Augmentations

We extracted ROI patches from the full MG images of 4000× 6000 pixels by
cropping a bounding box around each detection contour. Each such bounding
box was enlarged by 10% in each dimension to include useful information around
the lesion border. The extracted patches were then resized to 64× 64 to generate
the input to the network. We normalized all the datasets by subtracting the mean
of each image and dividing by the standard deviation of each patch, avoiding
the proposed MatchNet normalization [12].

Augmentation was utilized throughout the training stage on all three
datasets, such that each patch was flipped left and right and rotated by 90◦,
180◦, 270◦. Each augmented patch was matched with all the others augmented
patches. Medical datasets are generally unbalanced. Namely, the number of pos-
itive pairs are significantly smaller than the negative pairs. Thus, we train two
networks, each network has a balanced input of positive pairs and randomly
selected negative pairs. In the testing stage, we evaluate each test image through
all networks, and achieve a final score using a mean probability.

We trained with a learning rate of 0.0001, Adam optimizer and batch size of
512. Experiments were performed on a Titan X Pascal GPU. Training time for
DDSM models took 4 h. Testing time with model ensemble took 6 s.

3.3 Fine Tuning the Network

We studied the contribution of fine-tuning on the results in three experiments.
Full training on Photo tourism and fine tuning with (i) In-house (ii) DDSM (iii)
Full training on DDSM and fine tuning with In-house. (i+ii) were done using
Notredam dataset. The results for these tests are presented in Fig. 2, where
the upper and lower subfigures correspond to the In-house and DDSM dataset
respectively. The comparison of the In-house and DDSM full training results
(AUC 0.969, 0.92) with the fine tuning results (AUC 0.973, 0.91) did not show
a clear advantage over the fine tuning process. This can be explained by two
factors: the domain transfer effect, namely despite the Notredam large dataset
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(a) In-house results (b) DDSM results

Fig. 2. Fine tuning ROC results. The figures demonstrate the different experiment
performed to evaluate the ability of the matching architecture to classify MG pairs
and non pairs. (a) In-house dataset shows no advantage for fine tuning. (b) DDSM
dataset shows best result by full train (cyan). (Color figure online)

of image pairs, natural images are different than medical images. Second, the
Noterdam dataset pairs are much more similar to each other than the different
views pairs from the breast images, which go through deformation.

Fine tuning the DDSM with the In-house dataset in (iii), obtained (AUC
0.971) compared to full training of (AUC 0.969). DDSM is a large MG dataset,
however it is acquired with a different imaging technique from the In-house data
(full field digital mammography) and this might explain the similar results. The
ROC plot also shows the improvement in AUC by adding dropout in Fig. 2.

3.4 Template Matching

The cross-correlation score was transformed from the range of [−1, 1] to [0, 1] to
represent the score as probabilities. The correlation presented in Fig. 2 obtained
significantly lower results of AUC 0.73, 0.63 on In-house, DDSM respectively.

3.5 Dual-View Automatic Lesion Detection

To evaluate the contribution of the matching architecture to the full detection
pipeline, we applied the single-view detection algorithms on the CC, MLO image
pairs followed by the matching architecture on the DDSM dataset. In some
cases, detections will appear only for one view and not in the other. These cases
cannot be evaluated using the matching architecture. Thus, two possibilities
arise, exclude all detections without a pair or include them. Figure 3(a) shows the
classification of the set of patches into positive and negative matches, generates
an AUROC of 0.864, 0.81 depending on whether the small set of detections with
no-pairs were included or excluded. We conclude that it is reasonable to include
these detection as some tumors may be identified only in a single view.
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(a) Patch matching ROC (b) CC/MLO (c) CC/MLO

Fig. 3. Results of automatic lesion detection pipeline. (a) Green curve includes detec-
tions with no-pair in second view, orange curve excludes those detection. Detection
examples on DDSM dataset (b, c). Red contours denote automatically detected pairs
that correspond to GT while, the cyan contours are false positive automatic detections
that were reduced by the dual-view algorithm. (Color figure online)

Additionally, Fig. 3(a) shows that proposed approach can reduce the false
positive detection rate while keeping a high sensitivity. For MG pairs matching,
we can keep a sensitivity of 0.99 and specificity of 0.19. Namely, by keeping the
standalone detections we are able to reduce the false positives by almost 20%.
Fig. 3(b, c), illustrates the full pipeline prediction on MG images. Probabilities of
the false detections pairs (in cyan) are omitted in the final detection output. This
is similar to the approach used by human radiologists, first detecting suspicious
findings and then analyzing them by comparing the dual-view appearance.

4 Discussion

Finding correspondence between patches from different views of the same breast
is a challenging task. Each image from MLO/CC views undergoes nonlinear
deformations which can make the lesions very different from each other. On the
other hand, being able to detect the lesion in both views can help the radiologists
reach more accurate findings. In this work, we propose a dual-view Siamese based
network, in which the architecture learns a patch representation and similarity
for lesion matching. We demonstrate the advantage of a learned distance metric
implemented in the network and its value in addition to a single view detection.
This work can also be extended to 3D mammography by applying 3D patches.
Future work will extend this work to other types of findings such as calcifications
and will utilize mass location information to better eliminate false positives.
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Abstract. State-of-the-art deep learning methods for image processing
are evolving into increasingly complex meta-architectures with a growing
number of modules. Among them, region-based fully convolutional net-
works (R-FCN) and deformable convolutional nets (DCN) can improve
CAD for mammography: R-FCN optimizes for speed and low consump-
tion of memory, which is crucial for processing the high resolutions of
to 50µm used by radiologists. Deformable convolution and pooling can
model a wide range of mammographic findings of different morphology
and scales, thanks to their versatility. In this study, we present a neural
net architecture based on R-FCN/DCN, that we have adapted from the
natural image domain to suit mammograms—particularly their larger
image size—without compromising resolution. We trained the network on
a large, recently released dataset (Optimam) including 6,500 cancerous
mammograms. By combining our modern architecture with such a rich
dataset, we achieved an area under the ROC curve of 0.879 for breast-
wise detection in the DREAMS challenge (130,000 withheld images),
which surpassed all other submissions in the competitive phase.

1 Introduction

Breast cancer is the most commonly diagnosed cancer and the second leading
cause of cancer death in U.S. women [1]. Timely and accurate diagnosis is of
paramount importance since prognosis is improved by early detection and treat-
ment, notably before metastasis has occurred. Screening asymptomatic women
with mammography reduces disease specific mortality by between 20% and
40% [1] but incorrect diagnosis remains problematic. Radiologists achieve an
area under the ROC curve (AUC) between 0.84 and 0.88 [2], depending on
expertise and use of computer aided detection (CAD).

CAD for mammography was first approved 20 years ago but some studies
showed it to be ineffective [3] or counterproductive [2] because of over-reliance.
Early CAD methods used simple handcrafted features and produced many false
positive detections [2]. The best of these “classical”, feature-engineered methods,
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represented by e.g., [4,5], plateaued at 90% sensitivity for masses at one false
positive per image [5], and at 84% area of overlap in segmentation [4].

Deep learning (DL) has enhanced image recognition tasks, building on GPUs,
larger data sets and new algorithms. Convolutional neural nets (CNNs) have
been applied to mammography, outperforming classical methods. For example,
Dhungel et al. [6] used CNNs to achieve state of the art results in mass classifi-
cation. In a recent study, Kooi et al. [7] proposed a two-stage system in which
a random forest classifier first generated proposals for suspicious image patches,
and a CNN then classified such patches into malignant or normal groups. Kooi’s
system was trained on a large private dataset of 40,506 images (6,729 cases) of
which 634 were cancerous, and achieved an AUC of 0.941 in patch classification—
representing significant improvement beyond prior work.

Despite the adoption of CNNs and increasing size of datasets, mammographic
analysis still lags work on natural images in dataset size and algorithm com-
parability. Databases like ImageNet [8] and MS COCO [9] include millions of
instances. Moreover, these public datasets enable independent verification of
algorithmic performance with private test sets. Very recently, the Optimam [10]
and Group Health datasets have begun to approach ImageNet and MS Coco
sizes. Group Health was made available under the DREAMS Digital Mammog-
raphy Challenge [11] (henceforth “the Challenge”), which used a verified hidden
test set to benchmark comparisons between methods. The Challenge had 1,300
participants, and was supported by the FDA and IBM among others.

Moreover, CNN architectures now include a plethora of new techniques for
detection, classification and segmentation [12–14]. It has also been shown that
integration of these tasks in unified architectures – rather than pipelining net-
works – not only enables more efficient end-to-end training, but also achieves
higher performance than when tasks are performed independently (e.g., [14]).
This is due to sharing of features that use richer locality information in the
labels – segmentations or bounding boxes.

Here we present our submission to the second phase (“collaborative”) of
the Challenge. Our contribution includes the selection of architectures from the
natural image domain, adaptation to mammography to balance the trade-off
between high resolution and network size (computational tractability) for fine
feature detection, e.g., microcalcifications, data augmentation and score aggre-
gation. In particular, the presented system is – to the best of our knowledge –
the highest resolution DL mammography object detection system ever trained.

2 Methods

2.1 Network Architecture

Even though our objective is classifying whole images, we chose a detection
architecture to exploit the rich bounding box information in our training dataset
(Optimam), and also to increase the interpreteability of the results, which is use-
ful for clinicians. Our choice of meta-architecture is Region-based Fully Convolu-
tional Networks (R-FCN) [15], which are more memory-efficient than the popular
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Faster Region-based Convolutional Neural Nets (F-RCNN) [16]. R-FCNs were
enhanced with Deformable Convolutional Networks (DCN) [12], which dynam-
ically model spatial transformations for convolutions and Regions of Interest
(ROI) Pooling, depending on the data’s current features:

y(p0) =
∑

pn∈R
w(pn) · x(p0 + pn + Δpn),

where y is the filter response at a location p0; R is a neighborhood around p0; and
w and Δpn are learnable sets of weights and offsets, respectively. The versatility
of adaptive convolution and pooling enables DCNs to model a wider spectrum
of shapes and scales, which is appropriate in mammography – where features of
interest can be of very different sizes (from barely perceptible microcalcifications
to large masses) and forms (foci, asymmetries, architectural distortions).

Fig. 1. Network architecture used in this study. C, B and R stand for convolution, batch
norm and ReLU layers; RPN for region proposal network; DPS (ROI) for deformable
position sensitive ROI; and OHEM [17] for online hard example mining.

A diagram of our architecture is shown in Fig. 1. It starts with a detec-
tion backbone, followed by two parallel branches: a region proposal network
(RPN) branch, and a region of interest (ROI) branch – as per the R-FCN
meta-architecture. The RPN branch [16] proposes candidate ROIs, which are
applied on the score maps from the Inception 7b module. The ROI branch
uses deformable position sensitive (DPS) score maps to generate class probabil-
ities. Analogously to deformable convolutions, deformable ROI pooling modules
include a similar parallel branch (Fig. 4 in [12]), in order to compute the offsets.
Deformable pooling can directly replace its plain equivalent and can be trained
with back propagation.

2.2 Adaptations

Backbone: Our backbone is descended from Inception v3 [18] from which we
selected the first 7 layers (the “stem”) and modules 7A, 7B and 7C. Choosing
Inception, for which pre-trained weights from natural images were published,
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allowed transfer learning which showed beneficial for mammographic image anal-
ysis [19]. We included early layers on the assumption these are more consistent
between domains. We chose consecutive layers to preserve co-adaption of weighs
where possible. We compared to other recent architectures [20–22] in a pilot
dataset but results were weaker; we did not pursue them.

Resolution-Related Trade-Offs: Current GPU memory constraints preclude
full size mammographic images in deep CNNs – yet radiologists regularly zoom
in to the highest level of detail. In particular, malignant microcalcifications may
only be discerned at ∼50µm resolution (approximately 4, 000 × 5, 000 pixels).
Leading CNNs are designed for maximal GPU memory usage when fed natural
images, which have two orders of magnitude fewer pixels, so the CNNs must
be trimmed judiciously for mammography. This results in a trade-off between
backbone choice, module selection, image downsampling, batch size, and number
of channels in the different layers. We selected Inception v3 for its superior trade-
off between parameter parsimoniousness and accuracy in natural images [23]. Its
successor, Inception ResNet v2, was used in [12] but would have restricted images
to 1, 300 × 1, 300 pixels. We included fewer repeats of modules 7A, 7B and 7C:
three, one and two repeats, respectively; pilot experiments showed fewer layers to
be sufficient for mammograms, whose content is less heterogeneous than natural
images. We reduced batch size to one image per GPU. The channels are co-
adapted in the pretrained weights and we ultimately retained them all. These
choices, combined with meta-architecture and framework choices, enabled input
size of 2, 545×2, 545 pixels (i.e. minimum downsample factor of 0.42), the highest
resolution used for mammography classification to the best of our knowledge.

Data Augmentation: Training is more effective if additional augmented data
are included. Each training image was rotated through 360◦ in 90◦ increments
and flipped horizontally, thus included eight times per epoch. We opted for the
benefit of using rotated images despite induced “anatomical” noise, i.e., implau-
sible anatomy. We also used the same four rotations and flipping at inference.
We did not use random noise or random crops (which are standard in the natural
image domain), to avoid omitting lesions at the image edge.

Aggregation of Multiple Views: Screening exams usually consist of two views
(cranio-caudal, CC, and medio-lateral oblique, MLO) of each breast, giving four
images per exam. For each of these images we generated 8 predictions, when
including augmentations. Each subjects’s probability of malignancy lesion was
calculated by computing the mean over views and augmentations for each later-
ality, and then taking the maximum over the two sides; other combination rules
were explored but yielded inferior results (see results in Sect. 3.3).

3 Experiments and Results

3.1 Data

Two datasets were released in 2016/17, which were substantially larger than prior
digital mammography datasets. These are the Optimam [10] dataset, which we
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used in training, and Group Health (GH), used in testing. The ground truths
were determined by biopsy. Using standardised data makes comparisons objec-
tive and reproducible, e.g., as for ImageNet in the natural image domain. We
believe these new benchmarks will allow attribution to future architectures.

Group Health images are a representative sample of 640,000 screening mam-
mogram images, approximately 0.5% cancerous, provided in the Challenge. All
machines were Hologic and maximum image size was 3, 300 × 4, 100 pixels. The
GH data were not downloadable, excepting a small pilot set of 500 images for
prototyping. The data are kept on IBM’s cloud and are not accessible directly.
Challenge participants could only upload models, run inference on the cloud,
and receive a score. While this hampers testing experiments, it preserves patient
confidentiality and ensures veracity of results. We used two subsets of GH in our
study: 1. GH-13K, a subset of approximately 13,000 images with cancer preva-
lence inflated artificially by a factor of four; and 2. GH-Validation, a representa-
tive subset with 130,000 images, which was used for final testing and ranking and
which the organisers intend to keep open for future testing, providing a hitherto
absent way to benchmark performance.

Optimam consists of 78,000 selected digital screening and symptomatic mam-
mograms including approximately 7,500 findings with bounding boxes of which
6,500 were cancerous. It included preprocessed and magnification images. Mam-
mography machines were mainly Hologic and GE, and maximum image size was
4, 000 × 5, 000 pixels. Most teams in phase 2 of the Challenge used Optimam.

3.2 Experimental Setup

We trained our network on all Optimam images with findings. We trained our
architecture on three different classes: negative, benign and malignant findings.
For subsequent analyses, we used the score of the malignant class as predic-
tion score. Pixel intensities were normalised across different manufacturers and
devices using the corresponding lookup tables. We chose MXNet http://mxnet.
incubator.apache.org/, for its memory-efficiency which surpasses most frame-
works including TensorFlow. In terms of parameters, we used the same values as
in the original publications describing the different DL modules, with two main
differences: 1. We changed the scale of the input images, as explained in Sect. 2.2;
and 2. In order to reflect the much lower risk of overlap and occlusion observed
in mammography compared with natural images, we reduced the RPN positive
overlap parameter from 0.7 to 0.5, and the proposal NMS threshold from 0.7 to
0.1. Training took 48 h on two NVIDIA TitanX GPUs.

We chose AUC on breast or patient classification as measure of diagnostic
accuracy. AUC is used frequently to estimate the diagnostic performance of
both CAD and radiologists. Compared with metrics like specificity at sensitivity
or partial AUC, which are usually applied at high sensitivity levels and may
be used to evaluate screening radiologists, AUC measures diagnostic accuracy
across all probability thresholds, so is a comprehensive metric. Use cases for
DL algorithms may range form automated flagging of some positive cases for
immediate follow up – where high precision at high confidence thresholds is

http://mxnet.incubator.apache.org/
http://mxnet.incubator.apache.org/
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key – to safely excluding normal mammograms – where high negative predictive
value at low confidence thresholds prevails.

We conducted three sets of experiments. First, we tested a number of design
choices on the pilot set, then second on the GH-13K dataset, changing one or
two key variables at a time while holding others constant. We tested backbone
choices, scales, train and test augmentation and aggregation. Each evaluation
on GH-13K took a day on the IBM cloud. Finally, we submitted our final model
for testing on GH-Validation, which took approximately 8 days.

3.3 Results

Table 1 summarises results from our GH-13K experiments. Experiments 1–5
explored combinations of backbones and scales. In terms of backbone, empir-
ical results showed that Inception was superior to ResNet [24] (1 vs. 2 and
5). In terms of scales, the main conclusion was that performance peaked when
train and test inference was run at the higher scale (2, 8); however, accuracy
dropped when testing size exceeded training (3, 4). Experiments 6–8 assessed
the impact of augmentation (6), as well as answering the question of how to
aggregate augmentation scores (7). In general, these experiments showed that:
(a) augmentation at inference does help; and (b) within a single breast, tak-
ing the mean over views and augmented images outperformed the alternative of

Table 1. Summary of GH-13K results. Legend for consistent variables: R - ResNet
backbone; M - mean probability over augmentations and views, maximum over later-
ality; I - Inception backbone; N - No augmentation at inference. The scale is in pixels.

Exp. # Changed variable AUC
before

AUC
after

Consistent
variables

1 Train and Test Scale: 2145 to 2545 0.8352 0.8227 R, M, N

2 Train and Test Scale: 2145 to 2545 0.8595 0.8667 M, I

3 Increased test image size: 2500 to
2900

0.8173 0.8143 I

4 Increased test image size: 2900 to
3300

0.8143 0.8039 I

5 Changed backbone: Resnet to
Inception

0.8352 0.8584 M, N

6 Added augmentation at inference 0.8584 0.8667 M, I

7 Max over breast’s images changed
to mean

0.8591 0.8667 I

8 As for 8 above and inference scale:
2,454 to 2,545

0.8511 0.8667 I

9 Adapted Inception ResNet v2.
Image size of 1, 600 × 1, 600

N/A 0.7366 M, I, N
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taking the maximum (we still use the maximum across lateralities). Row 9 shows
a test AUC of 0.74 on GH-Validation from the competitive phase of the Challenge
using a classification net (an adapted Inception ResNet v2), TensorFlow with
the largest possible resolution under that setup (1, 600 × 1, 600, much smaller
than our current model, thus leading to a 0.15 decrease in AUC).

Based on these results, we submitted our final architecture described in
Sect. 2 for testing on the large GH-Validation dataset. In the first sub-challenge,
which records the AUC by breast purely on imaging and blinded to demo-
graphic information, we achieved AUC = 0.879 (standard deviation: 0.00914),
see Fig. 2(e), which is 0.005 above the top AUC in the competitive phase of
the Challenge. It was also the highest single-model AUC in the collaborative
phase, 0.014 below an ensemble of detection models, and higher than all patch-
based models. The second sub-challenge is on subject-wise AUC, with access to
both images and demographics. Despite ignoring demographics, our architecture
gave AUC = 0.868, behind only the top score in the competitive phase (a patch-
based curriculum-trained model) by 0.006. Twenty-five method descriptions from
this phase are available at synapse.org, but details of the collaborative phase,
including performance of patch-based models trained on Optimam, is embargoed
pending publication by the Challenge. Figure 2 shows sample outputs from GH.

Fig. 2. (a) True positive prediction (p = 0.90 probability of malignancy) of an incon-
spicuous lesion on a left MLO of a 73 year old woman. (b) True negative (malignancy:
p = 0.06) for left MLO view of a 66 year old woman. (c) False positive (p = 0.78)
on left MLO of a 43 year old woman, due to hyper-intense region. (d) False negative
(p = 0.03) for left CC view of a 61 year old woman. (e) ROC by breast, AUC = 0.879.

4 Discussion and Conclusion

We have presented a two-stage detection network trained on strongly labelled
data which achieved 0.879 AUC by breast on a large unseen representative
screening test set, operating at high resolution. Important questions remain,
e.g., the impact of deformable modules, ameliorating batch size = 1 in batch nor-
malisation, image rotation, the use of architectures that handle multiple scales
(FPNs), single pass models, comparison to the different setup in [7] and clini-
cal applicability. Exploring these directions, along with integrating demographic

http://synapse.org
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features into the architecture, will be in a future journal extension. As mam-
mographic training databases grow and the rapid progress in DL for machine
vision continues, we hope this will provide a first benchmark in mammogram
classification on an public yet hidden test set.
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Abstract. End-to-end deep learning improves breast cancer classifica-
tion on diffusion-weighted MR images (DWI) using a convolutional neu-
ral network (CNN) architecture. A limitation of CNN as opposed to pre-
vious model-based approaches is the dependence on specific DWI input
channels used during training. However, in the context of large-scale
application, methods agnostic towards heterogeneous inputs are desir-
able, due to the high deviation of scanning protocols between clinical
sites. We propose model-based domain adaptation to overcome input
dependencies and avoid re-training of networks at clinical sites by restor-
ing training inputs from altered input channels given during deployment.
We demonstrate the method’s significant increase in classification per-
formance and superiority over implicit domain adaptation provided by
training-schemes operating on model-parameters instead of raw DWI
images.

Keywords: Convolutional neural networks
Diffusion-weighted MR imaging · Deep learning · Lesion classification
Domain adaptation

1 Introduction

As mammography suffers from high amounts of false positive findings, a promis-
ing image modality for breast cancer classification is DWI, which aims at
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reducing the number of biopsies through reliable early diagnosis [1]. The model-
based state of the art for DWI signal exploitation is diffusion kurtosis imaging
(DKI), where diffusion properties are estimated in suspicious tissue to distin-
guish between malignant and benign tumor cells [2,3]. An end-to-end q-space
deep learning approach (E2E) has recently been shown to outperform DKI-based
approaches by optimally exploiting input correlations using CNNs [4,5]. How-
ever, a limitation of E2E is the inherent input dependence of CNNs [6], which in
this case are trained on specific diffusion-weighted images acquired at certain b-
values, i.e. strengths and timings of gradient fields. This limitation is crucial for
large-scale clinical application, since DWI scanning protocols deviate between
sites and standardization is not expected in the near future. Furthermore, due
to limited training data, it is desirable to ship trained models across clinical sites
for inference on unseen images acquired with arbitrary local protocols. This pro-
cedure implies heterogeneities between training data and local inference data,
e.g. in the form of shifted or missing b-values.

Generative models such as generative adversarial networks [7,8] and varia-
tional autoencoders [9,10] have recently succeeded at domain transformations.
Such models could potentially be used to transform altered test-time inputs to
original input channels used during training, yet do not eliminate input depen-
dencies. Similar to other domain adaptation methods such as fine-tuning of
models on new input or common representation learning of inputs [11], they
themselves need to be trained on specific input alteration modes. As model fits
such as DKI come with an inherent robustness towards input variations, input
independence could potentially be achieved by operating on the fit parameters
instead of raw DWI inputs. However, this robustness is proportional to the num-
ber of observed values, which, as will be shown, is not sufficient in typical DWI
acquisition setups.

In this paper, we propose model-based domain adaptation, where the original
training channels are derived from DKI using the altered inputs at test time.
This method does not require training and hence can be deployed in any clinical
setting without prior assumptions about protocol deviations. We show that this
method significantly reduces input dependencies by optimally exploiting input
correlations (E2E) based on estimations from the DKI model. We further demon-
strate the superiority of our approach over training networks on DKI parameters
(fit-to-end, F2E).

2 Methods

2.1 DWI Data Set

This study is performed on a data set of 221 patients and is equal to the data
set used for E2E training [4,5]. For each patient, images of four b-values 0, 100,
750 and 1500 s mm−2 with a slice thickness of 3 mm were acquired using two
different 1.5 T MR scanners. The in-plane resolution of one scanner had to be
upsampled by a factor 2 to match the other scanners resolution of 1.25 mm.
Prior to DWI scanning, all patients were diagnosed with BI-RADS [12] ≥ 4
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from mammography screenings. A core-needle biopsy was performed to secure
diagnosis, which resulted in 121 malignant and 100 benign lesions. The biopsy
result served as the classification ground truth. Lesions were manually segmented
as regions of interest (ROI) by expert radiologist without knowledge about the
biopsy results. As 23 images do not contain any visible lesion, those subjects
were predicted as benign. Figure 1 shows an example set of diffusion-weighted
images for one patient.

Fig. 1. Sample slice of diffusion-weighted images of one patient at distinct b-values
and the segmentation of the lesion on b = 1500 s mm−2 (right).

2.2 Diffusion Kurtosis Imaging

DKI is the the state of the art model for DWI signal exploitation in lesion clas-
sification. To derive diagnostically conclusive tissue parameters, DKI estimates
the apparent diffusion coefficient (ADC) and additionally the apparent kurto-
sis coefficient (AKC) which quantifies deviations from free Gaussian diffusion
induced by diffusion restrictions and diffusion heterogeneity [13]. These param-
eters are estimated by fitting the DKI model to measured signal intensities S(b)
in each voxel:

S(b) = (θ2 + S0 exp(−b ADC +
1
6

b2 ADC2 AKC)2)0.5 (1)

where S0 is the signal intensity for b0 (b = 0), the b-value is the strength
of diffusion weighting [14]. Furthermore, the model accounts for a background
signal level induced by fat signal contamination in the lesion using the mean
signal intensity θ of an additionally segmented fat area for each patient. In
DKI, ADC and AKC are used most commonly to determine the malignancy of
a suspicious lesion by averaging the coefficients over an ROI to obtain global
coefficients [2]. Notably, we updated the DKI fit of [5] by not omitting S(0) and
added fat calibration to increase DKI fitting performance according to [14].

2.3 End-to-End Q-Space Deep Learning

E2E has recently been proposed as a successful model-free approach to classifying
suspicious breast lesions [4,5]. Classification is performed by feeding the raw
signal intensities of the segmented ROI into a CNN. Using 1 × 1 convolutions,
deep diffusion coefficients are learned mimicking DKI parameters by correlating
signal intensities of each pixel across DWI input channels. Subsequently, the
network extracts features related to texture and geometry, which are globally
pooled and fed through a softmax layer to obtain probabilities of malignancy.
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2.4 Model-Based Domain Adaptation

To overcome dependence on specific b-values and enable clinical applicability
of lesion classification regardless of scanning protocols, we propose to perform
model-based domain adaptation (MBDA). During inference, the DKI model is
fit to the signal intensities of all available (potentially altered) b-values. In order
to restore the original set of b-values seen during training, the fitted model is
used to derive estimates of the signal intensities S(b) at the missing b-values
(see Formula 1). Subsequently, the restored set of inputs is fed into the trained
model to obtain classification scores (see Fig. 2 top).
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Fig. 2. Concept of our proposed method for the missing scenario (top). The missing b-
value is derived from a DKI-model and used as CNN input. The fit-to-end architecture
trained on ADC and AKC is used for comparison (bottom).

Experimental Setup. Two scenarios of heterogeneous inputs were studied:
shifted scenario, where one measured b-value in the inference data is provided at
a different (shifted) value w.r.t. the training data, and missing scenario, where
one measured b-value in the inference data is missing w.r.t. the training data.
Both scenarios were imitated by training and testing on respective subsets of the
four b-values provided by the utilized data set. Note, that scenarios comprising
alterations of multiple inputs were not studied due to the limited number of
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b-values provided. Furthermore, no alterations were applied to b0 as in practice
all protocols include at least one b-value equal or close to zero [13–15].

An upper bound performance for MBDA is given by training and testing
on the same subset of b-values (matched input). A lower bound performance
for MBDA is given by testing on the altered inputs without domain adaptation
(altered input). To compare our approach against the implicit domain adapta-
tion of DKI, we train on DKI fit parameters ADC and AKC by feeding the
parameter maps directly into the feature extraction and classification modules
of the CNN (F2E). During testing, ADC and AKC are fitted using the altered
inputs (see Fig. 2 bottom). For inference subsets containing only two b-values,
which causes the DKI model to be under-constrained, we set AKC = 0.

The network details and training setup are equal to the setup reported in
[5]. The signal exploitation module is omitted for F2E training. The networks
are trained using 5-fold cross validation with 60% training-, 20% validation- and
20% test data and selected based on the lowest validation error.

Evaluation. Evaluation is conducted by comparing the area under the receiver
operator curves (AUC). Significance tests were performed using DeLong’s
method and corrected for multiple testing using the Holm-Bonferroni-Method
(initial α = 0.05).

3 Results

Results are shown in Table 1. The observed moderate decrease of performance
caused by a general absence of inputs (matched input) indicates a general redun-
dancy of information across b-values of the input images. For instance, subsets of
three b-values seem to roughly contain the same information as the original four
b-values with respect to overall performance. However, strong input dependence
is observed in both E2E and F2E (altered input, i.e. no domain adaptation)
with an average decrease of 19.2% and 10.6%. MBDA is able to significantly
increase this lower bound performance in the shifted scenario (12.4%) and miss-
ing scenario (16.8%) (see Fig. 3). Comparing F2E to E2E, F2E altered input
performs on average slightly better than E2E altered input, i.e. 7.1% for shifted
scenario and 4.4% for missing scenario, indicating a positive effect of implicit
domain adaptation. E2E with MDBA considerably outperforms F2E by 5.3%
for shifted scenario and 12.4% for missing scenario. Notably, extrapolation to
large b-values is a poorly constrained problem, which causes performance drops
across all explored methods. As expected, F2E only works when constraining
the DKI model (setting AKC = 0) during CNN training.
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Table 1. Results comparing all explored methods. All numbers report AUC except
for p-values. x marks the available b-values. o marks the derived b-value. * marks
observed significance.

a) Shifted Scenario.

Training b-values
E2E

Matched

Input

F2E

Matched

Input

Testing b-values
E2E

Altered

Input

F2E

Altered

Input

MBDA p-value

E2E;MBDA

p-value

E2E;F2E
b0 b100 b750 b1500 b0 b100 b750 b1500

x x x 0.893±0.04 0.819±0.05
x x o x 0.741±0.06 0.768±0.05 0.848±0.05 0.0005* 0.011

x o x x 0.831±0.05 0.845±0.05 0.893±0.04 0.0052* 0.0622

x x x 0.882±0.04 0.855±0.05
x x x o 0.799±0.06 0.817±0.06 0.751±0.07 0.1426 0.1132

x o x x 0.831±0.05 0.845±0.05 0.880±0.04 0.0019* 0.816

x x x 0.886±0.04 0.892±0.04
x x x o 0.725±0.07 0.845±0.05 0.766±0.07 0.3199 0.0416

x x o x 0.737±0.07 0.844±0.05 0.871±0.05 6.96e-5* 0.422

x x 0.777±0.06 0.674±0.072
x o x 0.680±0.07 0.679±0.07 0.794±0.06 0.00014* 0.0018*

x o x 0.666±0.07 0.679±0.07 0.791±0.06 0.0002* 0.0015*

x x 0.889±0.04 0.871±0.05
x x o 0.723±0.07 0.608±0.08 0.796±0.06 0.0467 4.08e-6*

x o x 0.752±0.06 0.833±0.06 0.869±0.05 0.0009* 0.1426

x x 0.882±0.04 0.877±0.05
x x o 0.729±0.07 0.589±0.08 0.757±0.06 0.4864 0.0002*

x x o 0.817±0.06 0.825±0.06 0.866±0.05 0.0643 0.1485

b) Missing Scenario.
As for subsets of two available b-value images DKI is manually constrained by setting AKC = 0,
performances for both training with and without the constraint are reported (DKI/ADC)

Training b-values
E2E

Matched

Input

F2E

Matched Input

(DKI/ADC)

Testing b-values
E2E

Altered

Input

F2E

Altered

Input

MBDA p-value

E2E;MBDA

p-value

E2E;F2E

(DKI/ADC)b0 b100 b750 b1500 b0 b100 b750 b1500

x x x x 0.898±0.05 0.896±0.05

x x x o 0.678±0.07 0.655±0.07 0.745±0.07 0.1463 0.0449*

x x o x 0.604±0.08 0.667±0.07 0.882±0.04 1.4e-12* 8.76e-8*

x o x x 0.823±0.53 0.678±0.07 0.901±0.04 0.00028* 1.04e-8*

x x x 0.893±0.04
0.819±0.05/

0.859±0.05

x x o 0.513±0.08
0.522±0.08/

0.617±0.07
0.780±0.06 2.1e-7*

1.18e-8*/

0.00014*

x o x 0.817±0.05
0.514±0.08/

0.857±0.08
0.891±0.04 0.00026*

2.2e-16*/

0.1041

x x x 0.882±0.04
0.855±0.05/

0.860±0.05

x x o 0.512±0.08
0.612±0.08/

0.652±0.074
0.755±0.06 6.92e-6*

0.00067*/

0.0125*

x o x 0.818±0.05
0.647±0.08/

0.875±0.05
0.879±0.04 0.0003*

3.63e-9*/

0.8804

x x x 0.886±0.04
0.892±0.04/

0.860±0.05

x x o 0.657±0.07
0.646±0.07/

0.836±0.05
0.878±0.04 5.14e-9*

8.72e-10*/

0.1036

x o x 0.649±0.07
0.699±0.07/

0.868±0.05
0.868±0.04 3.24e-7*

2.66e-6*/

0.997
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Fig. 3. Mean AUC derived from Table 1. Matched input represents the upper bound
with matching b-value subsets during training and inference. Altered Input represents
the lower bound by testing on the altered subset without domain adaptation. E2E with
MBDA significantly improves the robustness towards heterogeneous inputs compared
to F2E with altered inputs (implicit domain adaptation) in both scenarios.

4 Discussion

The results of this study suggest that model-based domain adaptation is an effec-
tive approach to overcome input dependencies and avoid re-training at clinical
sites during large-scale application of DWI lesion classification. MBDA signif-
icantly increases the performance for both missing and shifted input scenarios
by combining optimal exploitation of input correlations of raw DWI with DKI-
based signal estimation to restore information lost due to altered input. In other
words, MBDA is a “minimal invasive” method, which leaves unaltered input
untouched, while the implicit domain adaptation performed by training and
testing on fit parameters generates entirely new fit parameters given altered
input, discarding unaltered correspondences. The latter works in theory, given a
sufficient number of b-value images, but suffers from fitting instabilities in a typ-
ical DWI setup. In addition, strong assumptions have to be made on the amount
of b-value images available during clinical inference prior to CNN training (as
manually constraining the model by setting AKC = 0 might be required), which
contradicts the desire for input independence. Future research includes studying
multiple input alterations on data sets providing a larger number of b-values,
application on unsegmented breast DWI, investigating the generalization of deep
learning models trained on large DWI data sets and exploring the applicability
to further entities.
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Abstract. We explore the use of deep learning for breast mass segmen-
tation in mammograms. By integrating the merits of residual learning
and probabilistic graphical modelling with standard U-Net, we propose a
new deep network, Conditional Residual U-Net (CRU-Net), to improve
the U-Net segmentation performance. Benefiting from the advantage of
probabilistic graphical modelling in the pixel-level labelling, and the
structure insights of a deep residual network in the feature extrac-
tion, the CRU-Net provides excellent mass segmentation performance.
Evaluations based on INbreast and DDSM-BCRP datasets demonstrate
that the CRU-Net achieves the best mass segmentation performance
compared to the state-of-art methodologies. Moreover, neither tedious
pre-processing nor post-processing techniques are not required in our
algorithm.

Keywords: Mammogram mass segmentation · Structured prediction
Deep residual learning

1 Introduction

Breast cancer is the most frequently diagnosed cancer among women across
the globe. Among all types of breast abnormalities, breast masses are the most
common but also the most challenging to detect and segment, due to variations
in their size and shape and low signal-to-noise ratio [6]. An irregular or spiculated
margin is the most important feature in indicating a cancer. The more irregular
the shape of a mass, the more likely the lesion is malignant [12]. Oliver et al.
demonstrated in their review paper that mass segmentation provides detailed
morphological features with precise outlines of masses, and plays a crucial role
in a subsequent cancerous classification task [12].

The main roadblock faced by mass segmentation algorithms is the insuf-
ficient volume of contour delineated data, which directly leads to inadequate
c© Springer Nature Switzerland AG 2018
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accuracy [4]. The U-Net [13], as a Convolutional Neural Network (CNN) based
segmentation algorithm, is shown to perform well with limited training data by
interlacing multi-resolution information. However, the CNN segmentation algo-
rithms including the U-Net are limited by the weak consistency of predicted
pixel labels over homogeneous regions. To improve the labelling consistency and
completeness, probabilistic graphical models [5] have been applied for mass seg-
mentation, including Structured Support Vector Machine (SSVM) [7] and Con-
ditional Random Field (CRF) [6] as a post-processing technique. To train the
CRF integrated network in an end-to-end way, the CRF with the mean-field
inference is realised as a recurrent neural network [14]. This is applied on mass
segmentation [15], and achieved the state-of-art mass segmentation performance.
Another limitation of CNN segmentation algorithms is that as the depth of the
CNNs increase for better performing deep features, they may suffer from the
gradient vanishing and exploding problems, which are likely to hinder the con-
vergence [8]. Deep residual learning is shown to address this issue by mapping
layers with residuals explicitly instead of mapping the deep network directly [8].

In this work, the CRU-Net is proposed to precisely segment breast
masses with small-sample-sized mammographic datasets. Our main contribu-
tions include: (1) the first neural network based segmentation algorithm that
considers both pixel-level labelling consistency and efficient training via inte-
grating the U-Net with CRF and deep residual learning; (2) the first deep learn-
ing mass segmentation algorithm, which does not require any pre-processing or
post-processing techniques; (3) the CRU-Net achieves the best mass segmen-
tation performance on the two most commonly used mammographic datasets
when compared to other related methodologies.

2 Methodology

The proposed algorithm CRU-Net is schematically shown in Fig. 1. The inputs
are mammogram regions of interest (ROIs) that contain masses and the outputs

Fig. 1. Proposed CRU-Net Structure
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are the predicted binary images. In this section, a detailed description of applied
methods is introduced: our U-Net with residual learning, followed by the pixel-
level labelling with graphical inference.

2.1 U-Net with Residual Learning

The U-Net is shown to perform well with a limited volume of training data
for segmentation problems in medical imaging [13], which suits our situation.
However, the gradient vanishing and explosion problem, which hinders the con-
vergence, is not considered in the U-Net. We integrate residual learning into
the U-Net to precisely segment breast masses over a small sample size training
data. Assuming x : Ω → R (Ω represents the image lattice) as an ROI and
y : Ω → {0, 1} as the corresponding binary labelling image (0 denotes back-
ground pixels and 1 for the mass pixels), the training set can be represented by
D = {(x(n),y(n))}n∈{1,...,N}.

The U-Net comprises of a contractive downsampling and expansive upsam-
pling path with skip connections between the two parts, which makes use of
standard convolutional layers. The output of mth layer with input x(n) at pixel
(i, j) is formulated as follows:

y
(n,m)
i,j = hks({xsi+δi,sj+δj}0≤δi,δj≤k) (1)

where k represents for kernel size, s for stride or maxpooling factor, and hks is
the layer operator including convolution, maxpooling and the ReLU activation
function.

Then we integrate the residual learning into the U-Net, which solves the
applied U-Net network mapping H(x) with:

F(x) := H(x) − W ∗ x (2)

thus casting the original mapping into F(x) + W ∗ x, where W is a convolution
kernel and linearly projects x to match F(x)’s dimensions as Fig. 1. As the U-Net
layers resize the image, residuals are linearly projected either with 1 × 1 kernel
convolutional layer along with maxpooling or upsampling and 2 × 2 convolution
to match dimensions. The detailed residual connections of layer 2 and layer 6 are
described in Fig. 2. These layers are shown as examples as all residual layers have
analogous structure. In the final stage, a 1 × 1 convolutional layer with softmax
activation creates a pixel-wise probabilistic map of two classes (background and
masses). The residual U-Net loss energy for each output during training is defined
with categorical cross-entropy. Mathematically,

f = −
∑

i,j

log P
(
y
(n)
i,j | x(n);θ

)
(3)

where P is the residual U-Net output probability distribution at position (i, j)
given the input ROI x(n) and parameters θ.
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Fig. 2. Residual Learning illustration for layer2 and layer6. Other layers are equivalent
to this example but with different parameters.

Note that the standard U-Net is designed for images of size 572 × 572. Here
we modify the standard U-Net to adapt mammographic ROIs (40 × 40) with
zero-padding for downsampling and upsampling. Residual short-cut additions
are calculated in each layer. After that, feature maps are concatenated as: layer
1 with layer 7, layer 2 with layer 6, layer 3 with layer 5 as shown in Fig. 1. Both
original ROIs and U-Net Outputs are then fed into the graphical inference layer.

2.2 Graphical Inference

Graphical models are recently applied on mammograms for mass segmentation.
Among them, CRF incorporates the label consistency with similar pixels and
provide sharp boundary and fine-grained segmentation. Mean field iterations
are applied as the inference method to realise the CRF as a stack of RNN layers
[14,15]. The cost function for CRF (g) can be defined as follows:

g = A(x(n)) − exp
( ∑

i,j∈V

P
(
y
(n)
i,j ) +

∑

p,q∈E

φ(y(n)
p , y(n)

q | x(n))
)

(4)

where A is the partition function, P is the unary function which is calculated
on the residual U-Net output, and φ is the pair-wise potential function which
is defined with the label compatibility μ(y(n)

p , y
(n)
q ) for position p and q [14],

Gaussian kernels k1
G, k2

G and corresponding weights ω
(1)
G , ω

(2)
G [10] as φ(y(n)

p , y
(n)
q |

x(n)) = μ(y(n)
p , y

(n)
q )

(
ω
(1)
G k

(1)
G (x(n)) + ω

(2)
G k

(2)
G (x(n))

)
[6,15].

Finally, by integrating (3) and (4) the total loss energy in the CRU-Net for
each input x(n) is defined as:

� = (1 − λ)f + λ · g(f,x(n)) (5)

where λ ∈ [0, 1] is a trade-off factor, which is empirically chosen as 0.67. And
the whole CRU-Net is trained by backpropagation.
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3 Experiments

3.1 Datasets

The proposed method is evaluated on two publicly available datasets INbreast
[11] and DDSM-BCRP [9]. INBreast is a full-field digital mammographic dataset
(70µm pixel resolution), which is annotated by a specialist with lesion type
and detailed contours for each mass. 116 accurately annotated masses are con-
tained with mass size ranging from 15 mm2 to 3689 mm2. The DDSM-BCRP
[9] database is selected from the Digital Database for Screening Mammogra-
phy (DDSM) database, which contains digitized film screen mammograms (43.5
microns resolution) with corresponding pixel-wise ground truth provided by
radiologists.

To compare the proposed methods with other related algorithms, we use the
same dataset division and ROIs extraction as [6,7,15], in which ROIs are manu-
ally located and extracted with rectangular bounding boxes and then resized into
40 × 40 pixels using bicubic interpolation [6]. In work [6,7,15], extracted ROIs
are pre-processed with the Ball and Bruce technique [1], which our algorithms
do not require. The INbreast dataset is divided into 58 training and 58 test
ROIs; The DDSM-BCRP is divided into 87 training and 87 test ROIs [6]. The
training data is augmented by horizontal flip, vertical flip, and both horizontal
and vertical flip.

3.2 Experiment Configurations

In this paper, each component of the CRU-Net is experimented, including λ =
0, 1, 0.67 and the CRU-Net without residual learning (CRU-Net, No R). In the
CRU-Net, convolutions are first computed with kernel size 3× 3, which are then
followed by a skip to compute the residual as shown in Fig. 1. The feature maps
in each downsampling layer are of size 16, 32, 64, and 128 respectively, while
the ROIs spatial dimensions are 40 × 40, 20 × 20, 10 × 10 and 5 × 5. To avoid
over-fitting, dropout layers are involved with 50% dropout rate. The resolution
of two datasets are different, with the DDSM’s much higher than the INbreast’s.
To address this, the convolutional kernel size for DDSM is chosen as 7 × 7 by
experimental grid search. All other hyper parameters are identical. The whole
CRU-Net is optimized by the Stochastic Gradient Descent algorithm with the
Adam update rule.

3.3 Performance and Discussion

All state-of-art methods and the CRU-Net’ performances are shown in the
Table 1, where [15] are reproduced, results of [2,3,6,7] are from their papers.
Table 1 shows that our proposed algorithm performs better than other published
algorithms on both data sets. In INbreast, the best Dice Index (DI) 93.66% is
obtained with CRU-Net, No R (λ = 0.67) and a similar DI 93.32% is achieved by
its residual learning; while in DDSM-BCRP, all state-of-art algorithm performs
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similarly and the best DI 91.43% is obtained by CRU-Net (λ = 0). The CRU-Net
performs worse on DDSM-BCRP than INbreast, which is because of its worse
data quality. To better understand the dice coefficients distribution in test sets,

Table 1. Mass segmentation performance (DI, %) of the CRU-Net and several state-
of-art methods on test sets. λ is the trade off loss factor as (5).

Methodology INbreast DDSM-BCRP Residual Preprocess Postprocess

Cardoso et al. [3] 88 - - - -

Beller et al. [2] - 70 - - -

Dhungel et al. [7] 88 87 × � �
Dhungel et al. [6] 90 90 × � �
Zhu et al. [15] 89.36± 0.37 90.62± 0.16 × � ×
U-Net 92.99± 0.23 90.08± 0.62 × × ×
CRU-Net (λ = 0) 92.72± 0.09 91.43± 0.02 � × ×
CRU-Net (λ = 1) 92.60± 0.24 91.41± 0.02 � × ×
CRU-Net, No R (λ = 0.67) 93.66± 0.10 91.14± 0.09 × × ×
CRU-Net (λ = 0.67) 93.32± 0.12 90.95± 0.26 � × ×

Fig. 3. Test Dice Coefficients Distribution of INbreast Dataset. The first row shows the
distribution of INbreast dataset and the second row shows DDSM’s. The left figures
depict the histogram of test dice coefficients and the rights show the sampled cumulative
distribution.
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Fig. 3 shows the histogram of dice coefficients and sampled cumulative distribu-
tion of two datasets. In those figures we can observe that the CRU-Net achieves
a higher proportion of cases with DI > 95%. In addition, all algorithms follow
a similar distribution, but Zhu’s algorithm has a bigger tail than others on the
INbreast data. To visually compare the performances, example contours from
the CRU-Net (λ = 0.67) and Zhu’s algorithms are shown in Fig. 4. It depicts
that while achieving a similar DI value to Zhu’s method, the CRU-Net obtains
a less noisy boundary. To examine the tail in Zhu’s DIs histogram (DI ≤ 81%),
Fig. 5 compares the contours of the hard cases, which suggests that the pro-
posed CRU-Net provides better contours for irregular shape masses with less
noisy boundaries.

(a) (b) (c) (d) (e) (f)

Fig. 4. Visualized comparison of segmentation results (DI > 81%) between CRU-Net
and Zhu’s work. Red lines denote the radiologist’s contour, blue lines are the CRU-
Net’s results (λ = 0.67), and green lines denote Zhu’s method results. (Color figure
online)

(a) (b) (c) (d) (e) (f)

Fig. 5. Visualized comparison of segmentation results between CRU-Net (λ = 0.67)
method and Zhu’s work on the 5 hardest cases, when Zhu’s DI ≤ 81%. Red lines denote
the radiologist’s contour, blue lines are the CRU-Net’s results, and green lines are from
Zhu’s method. From (a) to (f), Zhu’s DIs are: 70.16%, 73.47%, 76.11%, 72.95%, 80.36%
and 79.98%. The CRU-Net’s corresponding DIs are: 87.51%, 92.43%, 88.52%, 95.01%,
93.50% and 91.33%. (Color figure online)

4 Conclusions

In summary, we propose the CRU-Net to improve the standard U-Net segmenta-
tion performance via incorporating the advantages of probabilistic graphic mod-
els and deep residual learning. The CRU-Net algorithm does not require any
tedious preprocessing or postprocessing techniques. It outperforms published
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state-of-art methods on INbreast and DDSM-BCRP with best DIs as 93.66%
and 91.14% respectively. In addition, it achieves higher segmentation accuracy
when the applied database is of higher quality. The CRU-Net provides similar
contour shapes (even for hard cases) to the radiologist with less noisy boundary,
which plays a vital role in subsequent cancerous diagnosis.
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Abstract. Convolutional Neural Networks (CNN) have had a huge suc-
cess in many areas of computer vision and medical image analysis. How-
ever, there is still an immense potential for performance improvement in
mammogram breast cancer detection Computer-Aided Detection (CAD)
systems by integrating all the information that radiologist utilizes, such
as symmetry and temporal data. In this work, we proposed a patch based
multi-input CNN that learns symmetrical difference to detect breast
masses. The network was trained on a large-scale dataset of 28294 mam-
mogram images. The performance was compared to a baseline architec-
ture without symmetry context using Area Under the ROC Curve (AUC)
and Competition Performance Metric (CPM). At candidate level, AUC
value of 0.933 with 95% confidence interval of [0.920, 0.954] was obtained
when symmetry information is incorporated in comparison with base-
line architecture which yielded AUC value of 0.929 with [0.919, 0.947]
confidence interval. By incorporating symmetrical information, although
there was no a significant candidate level performance again (p = 0.111),
we have found a compelling result at exam level with CPM value of 0.733
(p = 0.001). We believe that including temporal data, and adding benign
class to the dataset could improve the detection performance.

Keywords: Breast cancer · Digital mammography
Convolutional neural networks · Symmetry · Deep learning
Mass detection

1 Introduction

Breast cancer is the second most common cause of cancer death in women
after lung cancer in the United States, which covers around 30% of cancers
diagnosed and the chance of women dying from breast cancer is 2.6% [1].
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Mammography is the main imaging modality used to detect breast abnormalities
at an early stage. Breast masses are most dense and appear in grey to white pixel
intensity with oval or irregular shape [2]. Normally, irregular shaped masses are
suspicious [2,3]. Breast cancer screening has shown a reduction in mortality rate
of between 40% and 45% for women who were undergoing mammogram screen-
ing regularly [4]. However, mammogram screening has drawbacks due to False
Positive (FP) recalls, such as FP biopsy and cost associated with the unneces-
sary follow up [5]. Therefore, it is necessary to increase sensitivity for early stage
detection and increase specificity to reduce FP detection.

Nowadays, with a massive amount of data and computational power, Deep
Learning (DL) has shown a remarkable success in natural language processing [6]
and object detection and recognition [7]. This has opened an interest in applying
DL in medical image processing and analysis. However, care should be taken as
the way we as humans interpret natural images and medical images are different
in some cases. Eventually, the performance of DL method will be compared with
the radiologist and thus, the CNN should preferably be given all the information
that radiologist utilize. For instance, during the reading of screening mammo-
grams, radiologists use priors, multiple views and look for asymmetries between
the two breasts.

DL has been explored for Digital Mammogram (DM) image analysis. Some
of them work directly on the whole image [3,5], and others focused on patch
based [8]. [5] proposed a multi-view single stage CNN breast mammogram clas-
sification that works at original resolution. To address memory issue, aggressive
convolution and pooling layers with stride greater than one were proposed. It
is stated also that this approach suffers from loss of spatial information. In the
work by [8], incorporating symmetry and temporal context improves detection
of malignant soft tissue lesion, in which random forest classifier was used for
mass detection and CNN for classification.

In this study, we conducted an investigation to analyze the performance gain
of integrating symmetry information into a CNN to detect malignant lesions on
a large scale mammography database. First, a database of 7196 exams which
contains 28294 images was collected from different sites in the Netherlands.
Previous work by [9] was employed to detect suspicious candidates locations.
Then, patches centered on the points were extracted to train a two input CNN
to reduce FP candidates. Left and right breast images were considered as contra-
later images to each other, and a patch in a primary image and an exact reflection
or mirror on the contra-lateral were considered as a pair of inputs to the network.

2 Materials and Methods

2.1 Dataset

The mammogram images used were collected from General Electric, Siemens,
and Hologic from women attending for diagnostic purpose between 2000 and
2016. The images are anonymized and approved by the regional ethics board
after summary review, with a waiver of a full review and informed consent [10].
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The database contains 7196 exams. For most of the exams, Medio Lateral
Oblique (MLO) and Cranio-Caudal (CC) views of both breasts are provided,
resulting in 28294 DM images in totals. All images with malignant lesions were
histopathologically confirmed, while normal exams were selected if they had at
least two years of negative follow-up. From 7196 DM exams, 2883 exams (42%)
contained a total of 3023 biopsy-verified malignant lesions. The exact distribu-
tion of the dataset is shown in Table 1. In the whole dataset, 1315 exams does
not have either left or right breast images of MLO and/or CC views.

Training, validation and test data split was done at patient level to evaluate
the generalization of the model developed. Data was randomly split into training
(50%), validation (10%) and testing (40%) while making sure exams from each
vendors present in each partition proportionally.

Table 1. Distribution of DM dataset used including their vendor.

General Electric Siemens Hologic

Number of studies 2248 1518 3430

Normal images 7771 5842 12288

Images with malignant lesions 1292 255 1476

2.2 Candidate Selection

Previous work by [9] was employed to detect suspicious mass candidates. Figure 1
shows sample MLO view DM images of left and right breast. Likelihood of a pixel
to be part of a mass was computed using local lines and distribution of gradient

Fig. 1. An illustrative example showing center location of suspected masses in a sam-
ple MLO views of right and left breast mammogram images, and patches used to train
symmetry CNN model. The green box represents a patch centered on a positive candi-
date on MLO view of right breast DM image, and its corresponding symmetry patch at
the same location on the contra-lateral image is displayed in blue. (Color figure online)
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Table 2. Number of suspicious candidates. The numbers after + indicate candidates
from exams without left or right breast images. Positive refers to candidates inside
malignant mass and negative candidates are outside a mass.

Candidates Training Validation Test

Negative 337366+ 2359 61833+ 1093 250293+ 6154

Positive 2217+ 58 927+ 30 727+ 67

orientation features. Then, a global threshold was applied to the likelihood image
to generate regions that are considered as suspicious. The red and green points
correspond to suspected candidate center locations of mass. The green point is
a true mass and others are false positive candidates. Table 2 details the number
of suspicious candidates from training, validation and test data.

3 Patch Extraction and Augmentation

To extract patches, the contra-lateral images were flipped horizontally to place
both images in the same space. Maximum size of the mass in our dataset was
about 5 cm, and a patch size of 300 × 300 pixels (6 cm × 6 cm) was considered
to provide enough context to discriminate soft tissue lesions. We reduced the
number of training negative candidates by ensuring a sufficient distance (at
least 2 cm) from a lesion and an inter-negative candidate distance of 1.4 cm.
This resulted in 253476 (74.6%) negatives patches.

As an augmentation scheme, initially positive patches were flipped and Gaus-
sian blurred with standard deviation between [0.2, 3]. Then, with probability of
0.5 one of the three augmentations were applied to both negative and positive
patches: scaling, translation around the center and rotation. The parameters
for these augmentations were uniformly selected from [0.88, 1.25], [−25, 25] and
[−30◦, 30◦], respectively.

4 Network Architecture and Training

In addition to incorporating symmetry information, a single input baseline archi-
tecture was trained. The baseline architecture is a variant of VGG architecture
[11] as shown in Fig. 2a and it consists of feature extraction and classification
parts. The feature extraction section has a series of seven convolutional layers
with {16, 32, 32, 64, 64, 128, 128} filters each followed by a max pooling layer.
Convolution was performed with a stride of (1, 1) and valid padding. The clas-
sification part is composed of three dense layers with {300, 300, 2} neurons and
with dropout (rate = 0.5) regularization after the first dense layer. ReLU acti-
vation was chosen for all layers but softmax for the last. Global Average Pooling
(GAP) [12] was applied after the last convolutional layer while the other layers
are followed by 3 × 3 max pooling. The advantage of GAP over flattening is
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a) b)

Fig. 2. CNN architectures: (a) Baseline architecture (b) Symmetry model architecture

it minimizes overfitting by reducing the number of parameters. The symmetry
model has two inputs, the primary patch and a contra-lateral patch as shown
in Fig. 2b. The parallel streams were transfer learned from the baseline archi-
tecture in Fig. 2a without weight sharing. The features from the parallel stream
were concatenated and fed to the classifier. The classification part is similar to
the baseline model. For exams without a contra-lateral image, zero matrices were
used as a symmetry image.

Weights of both networks were initialized using Glorot weight initialization
and optimized using Stochastic Gradient Decent (SGD) with time-based learning
rate scheduler with an initial learning rate (ILR) of 10−2 for baseline architecture
and 10−3 for the symmetry model, decay rate (ILR/200), and momentum (0.9).
Mini-batch size of 64 was used and for each epoch, all positives samples were
presented twice and an equal number of randomly sampled negatives, ensuring
balance in each batch. Model with highest AUC on validation was selected as the
best model. Furthermore, we monitored AUC for early stopping with patience
of 20 epochs.

5 Result

All the experiments were conducted in Keras [13], and results presented are
on a separately held 40% of the data. Candidate level quantitative evaluation
was done using AUC and Free Receiver Operating Characteristic (FROC) along
with CPM [14] for image and exam level performance analysis. Moreover, a
95% confidence interval and p-values of AUC and CPM were computed using
bootstrapping [15], using 1000 bootstraps.

Table 3 reveals AUC values of the candidate selection, baseline and symmetry
models. AUC value of 0.896 with 95% confidence interval of [0.879, 0.913] was
obtained by the model used for candidate selection. The baseline architecture
that processes a single Region of Interest (ROI) image yielded an AUC value
of 0.929 with 95% confidence interval [0.916, 0.942], which is significantly bet-
ter than the candidate selection stage performance (p = 0.004). Incorporating
symmetry information improved the AUC to 0.933 with [0.919, 0.947] 95% con-
fidence interval, although it was not significant (p = 0.111) in comparison with
baseline architecture. For symmetry model, a zero matrix was used as a substi-
tute when contra-lateral image is missing and a separate evaluation is presented
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Table 3. AUC comparison of candidate selection, baseline and symmetry network.
Symmetry∗ represents evaluation of symmetry model on candidates with missing
contra-lateral patch.

Candidate selection Baseline Symmetry Symmetry∗

AUC 0.896 0.929 0.933 0.866

in Table 3. The separate evaluation resulted in an AUC value of 0.866 with 95%
significance interval of [0.788, 0.930]. A symmetry model was trained without
augmentation and the best model resulted in AUC value of 0.91. This shows
the proposed augmentation has significantly improved detection AUC. Figure 3
present image and exam based FROC comparison of the three models. In our test
set, the symmetry model showed a better performance (p = 0.001) compared to
the baseline architecture at both image and exam level. At an image level, CPM
value of 0.716, 0.718, and 0.744 with 95% confidence interval of [0.682, 0.750],
[0.679, 0.756], and [0.723, 0.794] was obtained for candidate selection, base-
line and symmetry model, respectively. Moreover, during exam level evaluation
sensitivity of the model that incorporates symmetry context was found to be
better than the other model throughout the whole False Positive Rate (FPR)
range, resulting in CPM value and confidence interval of 0.733 [0.721, 0.823]
compared to 0.682 [0.671, 0.746] and 0.702 [0.687, 0.772] for candidate selection
and baseline model, respectively.

Fig. 3. FROC comparison of candidate selection, baseline and symmetry models; (a)
Image based FROC. (b) Exam based FROC.

6 Discussion

The proposed patch augmentation method showed an improvement in the gen-
eralization of the CNN model and thus, the performance of the classifier. Sym-
metry model trained without patch augmentation yielded AUC value of 0.91 on
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Fig. 4. Sample patches with an improved prediction using symmetry model: (a) Pos-
itive patches that were misclassified by baseline architecture and correctly classified
by symmetry model. (b) Negative patches that were misclassified by baseline architec-
ture and correctly classified by symmetry model. The top and bottom row images are
primary and contra-lateral pairs, respectively.

a test set, in comparison to 0.933 when augmentation was applied. Moreover,
incorporating symmetry information helps in learning distinctive features when
there is a low-intensity contrast between mass and the background as shown
in Fig. 4a. For the malignant candidates in Fig. 4a, without symmetry context
malignancy probability was found to be below 0.2, however, integrating symmet-
rical information increased the malignancy prediction to a value greater than 0.7.
Moreover, the negative patches in Fig. 4b were predicted as malignant masses
by the baseline model (probability greater than 0.9), however, after including
symmetrical context, their malignancy probability was found less than 0.1.

One of the main limitations of this work is that only soft tissue lesions were
studied and detecting calcification will be of added value. Secondly, some benign
abnormalities were found to be difficult for the network to differentiate from
malignant candidates. We expect that separating the benign candidates from
the normal and training with three classes could improve the detection perfor-
mance. As studied in [8], integrating temporal context could also improve the
performance of the model.

7 Conclusions

In this work, we proposed a deep learning approach that integrates symmetrical
information to improve breast mass detection from mammogram images. Pre-
vious work by Karssemeijer et al. [9] was used to detect suspicious candidates.
The FP candidates were reduced by learning symmetrical differences between
primary and contra-lateral patches. AUC was employed as a performance mea-
sure at candidate level, whilst CPM was computed for image and exam level
evaluation. We have found that our proposed approach reduces FP predictions
compared to baseline architecture. An AUC value 0.933 (p = 0.111) with 95%
confidence interval of [0.919, 0.947] was obtained at candidate level and 0.733
(p = 0.001) CPM with 95% confidence interval of [0.721, 0.823] was achieved
with our symmetry model.
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Training with a dataset which includes more time points could possibly
improve reliability and detection accuracy [8], and will be part of our future
work.
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A. (eds.) IPMI 1999. LNCS, vol. 1613, pp. 280–293. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48714-X 21

10. de Moor, T., Rodriguez-Ruiz, A., Mann, R., Teuwen, J.: Automated soft tissue
lesion detection and segmentation in digital mammography using a U-Net deep
learning network. arXiv preprint arXiv:1802.06865 (2018)

11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

12. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400
(2013)

13. Chollet, F., et al.: Keras (2015). (2017)
14. Setio, A.A.A., et al.: Validation, comparison, and combination of algorithms for

automatic detection of pulmonary nodules in computed tomography images: the
LUNA16 challenge. Med. Image Anal. 42, 1–13 (2017)

15. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. CRC Press, Boca
Raton (1994)

https://doi.org/10.1007/978-3-319-93000-8_83
http://arxiv.org/abs/1703.07047
http://arxiv.org/abs/1409.0473
https://doi.org/10.1007/3-540-48714-X_21
http://arxiv.org/abs/1802.06865
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1312.4400


Conditional Infilling GANs for Data
Augmentation in Mammogram

Classification

Eric Wu1,2(B), Kevin Wu1,2(B), David Cox1, and William Lotter1,2

1 Harvard University, Cambridge, MA, USA
ericwu09@gmail.com

2 DeepHealth, Inc., Boston, MA, USA

Abstract. Deep learning approaches to breast cancer detection in mam-
mograms have recently shown promising results. However, such models
are constrained by the limited size of publicly available mammography
datasets, in large part due to privacy concerns and the high cost of gener-
ating expert annotations. Limited dataset size is further exacerbated by
substantial class imbalance since “normal” images dramatically outnum-
ber those with findings. Given the rapid progress of generative models
in synthesizing realistic images, and the known effectiveness of simple
data augmentation techniques (e.g. horizontal flipping), we ask if it is
possible to synthetically augment mammogram datasets using genera-
tive adversarial networks (GANs). We train a class-conditional GAN to
perform contextual in-filling, which we then use to synthesize lesions onto
healthy screening mammograms. First, we show that GANs are capable
of generating high-resolution synthetic mammogram patches. Next, we
experimentally evaluate using the augmented dataset to improve breast
cancer classification performance. We observe that a ResNet-50 classifier
trained with GAN-augmented training data produces a higher AUROC
compared to the same model trained only on traditionally augmented
data, demonstrating the potential of our approach.

1 Introduction

A major enabler of the recent success of deep learning in computer vision has
been the availability of massive-scale, labeled training sets (e.g. ImageNet [1]).
However, in many medical imaging domains, collecting such datasets is difficult
or impossible due to privacy restrictions, the need for expert annotators, and
the distribution of data across many sites that cannot share data. The class
imbalance naturally present in many medical domains, where “normal” images
dramatically outnumber those with findings, further exacerbates these issues
(Fig. 1).

A common technique used to combat overfitting is to synthetically increase
the size of a dataset through data augmentation, where affine transformations
such as flipping or resizing are applied to training images. The success of these
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Fig. 1. Generated samples from ciGAN using previously unseen patches as context.
Each row contains (from left to right) the original image, the input to ciGAN, and
the synthetic example generated for the opposite class. The first two rows contain
examples of the GAN synthesizing a non-malignant patch from a malignant lesion.
The third and fourth rows are examples of the GAN synthesizing a malignant lesion on
a non-malignant patch, using randomly selected segmentations from other malignant
patches. We observe that the GAN is able to incorporate contextual information to
smooth out borders of the segmentation masks.

simple techniques raises the question of whether one can further augment train-
ing sets using more sophisticated methods. One potential avenue could be to
synthetically generate new training examples altogether. While generating train-
ing samples may seem counterintuitive, rapid progress in designing generative
models (particularly generative adversarial networks (GANs) [2–4]) to synthesize
highly realistic images merits exploration of this proposal. Indeed, GANs have
been used for data augmentation in several recent works [5–9], and investigators
have applied GANs to medical images such as magnetic resonance (MR) and
computed tomography (CT) [10,11]. Similarly, GANs have been used for data
augmentation in liver lesions [12], retinal fundi [13], histopathology [14], and
chest x-rays [15].

A particular domain where GANs could be highly effective for data augmen-
tation is cancer detection in mammograms. The localized nature of many tumors
in otherwise seemingly normal tissue suggests a straightforward, first-order
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procedure for data augmentation: sample a location in a normal mammogram
and synthesize a lesion in this location. This approach also confers benefits to
the generative model, as only a smaller patch of the whole image needs to be
augmented. GANs for data augmentation in mammograms is especially promis-
ing because of (1) the lack of large-scale public datasets, (2) the small proportion
of malignant outcomes in a normal population (∼0.5%) [16] and, most impor-
tantly, (3) the clinical impact of screening initiatives, with the potential for
machine learning to improve quality of care and global population coverage [17].

Here, we take a first step towards harnessing GAN-based data augmenta-
tion for increasing cancer classification performance in mammography. First, we
demonstrate that our GAN architecture (ciGAN) is able to generate a diverse
set of synthetic image patches at a high resolution (256× 256 pixels). Second, we
provide an empirical study on the effectiveness of GAN-based data augmentation
for breast cancer classification. Our results indicate that GAN-based augmen-
tation improves mammogram patch-based classification by 0.014 AUC over the
baseline model and 0.009 AUC over traditional augmentation techniques alone.

2 Proposed Approach: Conditional Infilling GAN

GANs are known to suffer from convergence issues, especially with high dimen-
sional images [3,4,18,19]. To address this issue, we construct a GAN using a
multi-scale generator architecture trained to infill a segmented area in a tar-
get image. First, our generator is based on a cascading refinement network [20],
where features are generated at multiple scales before being concatenated to
improve stability at high resolutions. Second, rather than requiring the gen-
erator to replicate redundant context in a mammography patch, we constrain
the generator to infill only the segmented lesion (either a mass or calcification).
Finally, we use a conditional GAN structure to share learned features between
non-malignant and malignant cases [21].

2.1 Architecture

Our conditional infilling GAN architecture (here on referred to as ciGAN) is
outlined in Fig. 2. The input is a concatenated stack (in blue) of one grayscale
channel with the lesion replaced with uniformly random values between 0 and
1 (the corrupted image), one channel with ones representing the location of the
lesion and zeros elsewhere (the mask), and two channels with values as [1, 0]
representing the non-malignant class or [0, 1] as the malignant class (the class
labels). The input stack is downsampled to 4× 4 and passed into the first convo-
lutional block (in green), which contains two convolutional layers with 3× 3
kernels and ReLU activation functions. The output of this block is upsam-
pled to twice the current resolution (8× 8) and then concatenated with an
input stack resized to 8× 8 before being passed into the second convolutional
block. This process is repeated until a final resolution of 256× 256 is obtained.
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Fig. 2. The ciGAN generator architecture. The inputs consist of four channels (in blue):
one context image (where the lesion is replaced with a random noise mask), one lesion
mask, and two class channels for indicating a malignant or non-malignant label. Each
convolutional block (in green) represents two convolutional layers with an upsampling
operation. (Color figure online)

The convolutional layers have 128, 128, 64, 64, 32, 32, and 32 kernels from the
first to the last block. We use the nearest neighbors method for upsampling.

The discriminator network has a similar but inverse structure. The input con-
sists of a 256 × 256 image. This is passed through a convolutional layer with 32
kernels, 3× 3 kernel size, and the LeakyReLU [22] activation function, followed
by a 2× 2 max pooling operation. We apply a total of 5 convolutional layers,
doubling the number of kernels each time until the final layer of 512 kernels.
This layer is then flattened and passed into a fully connected layer with one unit
and a sigmoid activation function.

2.2 Training Details

Patch-Level Training: Given that most lesions are present within a local-
ized area much smaller than the whole breast image (though context & global
features may also be important), we focus on generating patches (256× 256) con-
taining such lesions. This allows us to more meaningfully measure the effects of
GAN-augmented training as opposed to using the whole image. Furthermore,
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patch-level pre-training has been shown to increase generalization for full
images [23–25].

The ciGAN model is trained using a combination of the following three loss
functions:

Feature Loss: For a feature loss, we utilize the VGG-19 [26] convolutional neu-
ral network, pre-trained on the ImageNet dataset. Real and generated images
are passed through the network to extract the feature maps at the pool1, pool2,
and pool3 layers, where the mean of the absolute errors is taken between the
maps. This loss encourages the features of the generator to match the real image
at different spatial resolutions and feature complexities. Letting Φi be the collec-
tion of layers in Φ, the VGG19 network, where Φ0 is the input image, we define
VGG loss for the real image R and generated image S as:

LR,S(θ) =
∑

l

||Φl(R) − Φl(S)||1

Adversarial Loss: We use the adversarial loss formulated in [27], which seeks
optimize over the following mini-max game involving generator G and discrimi-
nator D:

min
G

max
D

LGAN (G,D)

LGAN (G,D) = E(c,R)[log D(c,R)] + ER[log(1 − D(c, S)]

Where c is the class label, R is a real image, and S is the generated image.

Boundary Loss: To encourage smoothing between the infilled component and
the context of a generated image, we introduce a boundary loss, which is the L1

difference between the real and generated image at the boundary:

BR,S(θ) = ||w � (R − S)||1
Where R is the real image, S is the generated image, w is the mask boundary

with a Gaussian filter of standard deviation 10 applied, and � is the element-wise
product.

Training Details: In our implementation, we alternate between training the
generator and discriminator when the loss for either drops below 0.3. We use
the Adam [28] optimizer with β1 = 0.9, β2 = 0.999, ε = 10−8, a learning rate of
1e−4, and batch size of 8. To stabilize training, we first pre-train the generator
exclusively on feature loss for 10,000 iterations. Then, we train the generator
and discriminator on all losses for an additional 100,000 iterations. We weigh
each loss with coefficients 1.0, 10.0, and 10000.0 for GAN loss, feature loss, and
boundary loss, respectively.
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3 Experiments

3.1 DDSM Dataset

The DDSM (Digital Database for Screening Mammography) dataset contains
10,480 total images, with 1,832 (17.5%) malignant cases and 8,648 (82.5%) non-
malignant cases. Image patches are labeled as malignant or non-malignant along
with the segmentation masks in the dataset. Both calcifications and masses are
used and non-malignant patches contain both benign and non-lesion patches.

We apply a 80% training, 10% validation, and 10% testing split on the
dataset. To process full resolution images into patches, we take each image
(∼5500× 3000 pixels) and resize to a target range of 1375× 750 while ensur-
ing the original aspect ratio is maintained, as described in [23]. For both non-
malignant and malignant cases, we generate 100,000 random 256× 256 pixel
patches and only accept patches that consist of more than 75% breast tissue.

3.2 GAN-Based Data Augmentation

We evaluate the effectiveness of GAN-based data augmentation on the task of
cancer detection. We choose the ResNet-50 architecture as our classifier network
[29]. We use the Adam optimizer with an initial learning rate of 10−5 and β1 =
0.9, β2 = 0.999, ε = 10−8. To achieve better performance, we initialize the
classifier with ImageNet weights. For each regime, we train for 10,000 iterations
on a batch size of 32 with a 0.9 learning rate decay rate every 2,000 iterations.
The GAN is only trained on the training data used for the classifier.

For traditional image data augmentation, we use random rotations up to 30
degrees, horizontal flipping, and rescaling by a factor between 0.75 and 1.25.
For augmentation with ciGAN, we double our existing dataset via the following
procedure: for each non-malignant image, we generate a malignant lesion onto
it using a mask from another malignant lesion. For each malignant patch, we
remove the malignant lesion and generate a non-malignant image in its place.
In total, we produce 8,648 synthetically generated malignant patches and 1,832
synthetically generated non-malignant patches. We train the classifier by initially
training on equal proportions of real and synthetic data. Every 1000 iterations,
we increase the relative proportion of real data used by 20%, such that the final
iteration is trained on 90% real data. We observe that this regime helps prevent
early overfitting and greater generalization for later epochs.

3.3 Results

Table 1 contains the results of three classification experiments. ciGAN, combined
with traditional augmentation, achieves an AUC of 0.896. This outperforms the
baseline (no augmentation) model by 0.014 AUC (p < 0.01, DeLong method [30])
and traditional augmentation model by 0.009 AUC (p < 0.05). Direct comparison
of our results with similar works is difficult given that DDSM does not have
standardized training/testing splits, but we find that our models compare on
par or favorably to other DDSM patch classification efforts [25,31,32].
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Table 1. ROC AUC (Area under ROC curve) for three augmentation schemes.

Data augmentation scheme AUC

Baseline (no augmentation) 0.882

Traditional augmentation 0.887

ciGAN + Traditional aug 0.896

4 Conclusion

Recent efforts for using deep learning for cancer detection in mammograms have
yielded promising results. One major limiting factor for continued progress is the
scarcity of data, and especially cancer positive exams. Given the success of simple
data augmentation techniques and the recent progress in generative adversarial
networks (GANs), we ask whether GANs can be used to synthetically increase
the size of training data by generating examples of mammogram lesions. We
employ a multi-scale class-conditional GAN with mask infilling (ciGAN), and
demonstrate that our GAN indeed is able to generate realistic lesions, which
improves subsequent classification performance above traditional augmentation
techniques. ciGAN addresses critical issues in other GAN architectures, such as
training instability and resolution detail. Scarcity of data and class imbalance
are common constraints in medical imaging tasks, and we believe our techniques
can help address these issues in a variety of settings.

Acknowledgements. This work was supported by the National Science Foundation
(NSF IIS 1409097).
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Abstract. Automatic mammogram classification and mass segmenta-
tion play a critical role in a computer-aided mammogram screening sys-
tem. In this work, we present a unified mammogram analysis frame-
work for both whole-mammogram classification and segmentation. Our
model is designed based on a deep U-Net with residual connections, and
equipped with the novel hybrid deep supervision (HDS) scheme for end-
to-end multi-task learning. As an extension of deep supervision (DS),
HDS not only can force the model to learn more discriminative features
like DS, but also seamlessly integrates segmentation and classification
tasks into one model, thus the model can benefit from both pixel-wise and
image-wise supervisions. We extensively validate the proposed method
on the widely-used INbreast dataset. Ablation study corroborates that
pixel-wise and image-wise supervisions are mutually beneficial, evidenc-
ing the efficacy of HDS. The results of 5-fold cross validation indicate
that our unified model matches state-of-the-art performance on both
mammogram segmentation and classification tasks, which achieves an
average segmentation Dice similarity coefficient (DSC) of 0.85 and a
classification accuracy of 0.89. The code is available at https://github.
com/angrypudding/hybrid-ds.

Keywords: Whole mammogram classification · Mass segmentation
Deep supervision

1 Introduction

Breast cancer is one of the top causes of cancer death in women. In 2017, it is
estimated that there are 252,710 new diagnoses of invasive breast cancer among
women in the United States, and approximately 40,610 women are expected to
die from the disease [2]. The detection of breast cancer in its early stage by mam-
mography allows patients to get better treatments, and thus can effectively lower
the mortality rate. Currently, mammogram screening is still based on experts
reading, but this process is laborious and prone to error.

Computer-aided diagnosis (CADx) system is a potential solution to facili-
tate mammogram screening, and the research on automatic (or semi-automatic)
mammogram analysis has been a focus in medical vision field. Given the fact
c© Springer Nature Switzerland AG 2018
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that a mass only occupies a small region (typically 2%) of a whole mammogram
(i.e. the needle in a haystack problem [9]), it is very hard to identify a mass from
the whole image without introducing a large number of false positives. Therefore,
traditionally, both hand-crafted feature based methods [1,11] and deep learning
models [4,7] require manually extracted regions of interest (ROIs), which, how-
ever, affects their usefulness in clinical practice. Recently, Dhungel et al. [3] pro-
posed a sophisticated framework integrating mass detection, segmentation and
classification modules to do whole-image classification, which achieved state-of-
the-art performance with minimal manual intervention (manually rejecting false
positives after detection). Besides, Lotter et al. [9] proposed a 2-stage curriculum
learning method to cope with the classification of whole mammograms, and Zhu
et al. [14] developed a sparse multi-instance learning (MIL) scheme to facilitate
the end-to-end training of convolution neural networks (CNNs) for whole-image
classification. Nevertheless, these methods either require manual intervention
and multi-stage training, or only focus on the classification problem, while the
accurate location and size of masses also play a critical role in a CADx system.

In this paper, we propose a CNN-based model with Hybrid Deep Supervision
(Hybrid DS, HDS) to perform whole-mammogram classification and mass seg-
mentation simultaneously. This model is based on a very deep U-Net [12] with
residual connections [6] (U-ResNet) which has 45 convolutional layers in the main
stream. To facilitate the multi-task training of the deep network and boost its
performance, we extend deep supervision (DS) [8] to Hybrid DS by introducing
multi-task supervision into each auxiliary classifier in DS, and apply this scheme
to the U-ResNet model. To evaluate the proposed method, we performed exten-
sive experiments on a publicly available full-field digital mammographic (FFDM)
dataset, i.e. INbreast [10]. The results show that our model achieves state-of-the-
art performance in both classification and segmentation metrics, and ablation
studies are performed to demonstrate the efficacy of HDS scheme.

2 Method

2.1 Motivation

Due to the very small size of masses, directly training deep CNN models for whole
mammogram classification can lead to a severe overfitting problem, where the
powerful model may easily memorize the patterns presented in the background
area rather than learn the feature of masses, leading to poor generalization per-
formance. To deal with this problem, we propose to employ both image-wise
and pixel-wise labels to supervise the training process. The underlying assump-
tion for this multi-task scheme is two-fold. First, since classification (whether
there exist any masses in a mammogram) and segmentation (whether each pixel
belongs to a mass) are highly correlated tasks, the features learned in one task
should also be useful in the other; second, multi-task learning itself can serve as
a regularization method as it prevents the training process from biasing towards
either task. Therefore, we propose a multi-task CNN model trained with Hybrid
DS to attack the whole-mammogram classification and segmentation problems.
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Fig. 1. Architecture of the U-ResNet model with Hybrid DS. Best viewed in color.

2.2 Hybrid Deep Supervision

Similar to DS, Hybrid DS directly supervises intermediate layers via auxiliary
classifiers to force the model to learn more discriminative features in early lay-
ers. Meanwhile, HDS extends DS by introducing multi-task classifiers into each
supervision level. Formally, the optimization objective of HDS is defined as:

L (X;W , ŵ) = L(seg)
(

X;W , ŵ(seg)
)

+ αL(cls)
(

X;W , ŵ(cls)
)

+ λ
(

‖W ‖2 + ‖ŵ(seg)‖2 + ‖ŵ(cls)‖2
) (1)

where X denotes the training dataset, W is the trainable parameters of the
main stream, i.e. the U-ResNet model without multi-task supervision pathways,
ŵ(seg) and ŵ(cls) respectively denote the parameters of the segmentation and
classification parts of the multi-task paths, and α is a constant that controls
the relative importance of the classification loss. The third term to the right
is a regularization term weighted by a hyper-parameter λ, and ‖ · ‖2 denotes
L2-norm. The segmentation loss L(seg) and classification loss L(cls) are defined
as follow:

L(seg)
(

X;W , ŵ(seg)
)

=
∑

d∈D
ηdJ (seg)

d

(

X;W d, ŵ
(seg)
d

)

(2)

L(cls)
(

X;W , ŵ(cls)
)

=
∑

d∈D
ηdJ (cls)

d

(

X;W d, ŵ
(cls)
d

)

(3)

where W d denotes the parameter in the first d layers of the main stream, ŵ(seg)
d

and ŵ
(cls)
d are respectively the weights in the segmentation and the classification
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parts of the multi-task path associated with the d-th layer, ηd is the weights of
the corresponding loss level, and D is a set that contains the indices of the lay-
ers directly connected to multi-task supervision paths. J (seg)

d is a segmentation
cross-entropy cost function that returns the average loss across all pixel loca-
tions. J (cls)

d is basically a cross-entropy cost function, which is made compatible
with MIL scheme, and its definition will be detailed in the following section.

2.3 Deep Multi-Instance Learning

Conventionally, CNN models used in classification tasks includes at least 1 fully
connected (FC) layers, which can only take fixed-size inputs. However, segmen-
tation models, e.g. fully convolutional networks (FCNs), are usually trained on
cropped image patches and tested on whole images, where the input size may
vary. To integrate the two tasks into one unified framework, we convert the clas-
sification part of the model into a FCN manner. Thus, the classification part
may take inputs of different sizes like a segmentation model, but its output also
turns into a 2D probabilistic map, no longer a single value. If we map the pixels
in such a 2D map back to nonoverlapping patches in the input image, the whole
input image can then be regarded as a bag of patches (instances), thus the mam-
mogram classification can be treated as a standard MIL problem. In this case,
denoting the pixel values in a 2D probabilistic map as ri,j , the mass probability
of the input image I is then p(y = 1|I) = maxi,j{ri,j}. Following the practice of
Zhu et al. in [14], we define the classification cost for an input image I as below:

J (cls)(I, yI ;W ,w(cls)) = − log p(y = yI |I) + μ
∑

i,j

ri,j (4)

where yI is the true label of image I, and ri,j is the pixel value in the 2D
probabilistic map. Since masses are sparse in mammograms, the summation of
ri,j should be small. Therefore, a sparsity term (the second term to the right) is
added to the cost function, which is weighted by μ.

2.4 Network Architecture

The architecture of the proposed neural network model is illustrated in Fig. 1.
The model is basically a deep U-ResNet with 45 3 × 3 convolutional layers (1
convolution and 22 residual blocks), and multi-task supervision pathways are
inserted into each scale level for Hybrid DS. We use max pooling in downsam-
pling modules (except for the last downsampling layer in the classification part of
each multi-task path, which employs average pooling), and bi-linearly upsample
feature maps in upsampling layers. For those transition modules (i.e. downsam-
ple, upsample and concatenation), if the input and output channel dimensions
are different, 1 × 1 convolutions are inserted before the operation to change the
channel dimension. All max pooling layers have a stride of 2, and the stride
of average pooling layers ranges from 20 to 25 to ensure a total downsampling
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factor of 27 for the output of each classification path (so the size of the out-
put probabilistic map is 4 × 3 in training and 8 × 4 in testing). Similarly, All
upsampling layers except for the ones in multi-task paths have a stride of 2, and
those in multi-task paths range from 20 to 25 to ensure the output mask have
the same size as the input image. Besides, Dropout [13] layers of rate 0.2 (for
residual blocks with less than 128 channels) or 0.5 (for others) are inserted into
each residual block.

3 Experiments and Results

Dataset. The proposed method was evaluated on a publicly available FFDM
dataset, i.e. INbreast [10]. Among the 410 mammograms in INbreast dataset, 107
contain one or more masses, and totally contain 116 benign or malignant masses.
In pre-processing, we removed the left or right blank regions by thresholding,
resized the mammograms to 1024×512, and then normalized each image to zero-
mean and unit-std according to the statistics of training sets. During training,
the whole image was randomly flipped vertically or horizontally, and patches of
size 512 × 384 were randomly sampled from it with 50% chance centered on a
positive (mass) pixel. The classification label of a cropped patch was set to 1 if
the patch contained any pixel from masses, and 0 otherwise. In our experiment,
the whole dataset was uniformly divided into 5 folds (82 images per fold), and we
used three of them for training, one for validation and one for testing. We first
performed ablation study on one data split to demonstrate the efficacy of the
proposed method, and then ran a 5-fold cross validation for a fairer comparison
with existing methods.

Implementation Details. The proposed method was implemented with
PyTorch v0.4.0 on a PC with one NVIDIA Titan Xp GPU. Stochastic gradi-
ent descent (SGD) method with a momentum of 0.9 was used to optimize the
model, with an initial learning rate of 0.01 and decayed by 0.3 after 1000, 1800,
2400 and 2410 epochs. In all experiments, the model was trained for 2800 epochs,
which took about 12.5 h and was long enough for each configuration to converge.
The model parameters were initialized by Kaiming method [5]. Other hyper-
parameters were set as follows: classification loss weight α = 0.03 (such that
the segmentation and classification losses of each mini-batch were comparable in
magnitude), weight decay λ = 0.0005, sparsity weight μ = 10−6, and the weights
of different supervision levels (η0, η1, η2, η3, η4, η5) = (1.0, 1.5, 2.0, 2.5, 3.0, 3.5),
where η1 to η5 were gradually decayed to very small values (i.e. 0.005ηi) dur-
ing training. The losses stemmed from inner layers of the U-Net were initially
weighted higher to force the these layers to learn meaningful features, otherwise
they tended to be ignored due to the difficulty in learning from low-resolution
feature maps.

Metrics. We employed dice similarity coefficient (DSC), sensitivity (SE) and
false positives per image (FPI) to evaluate the segmentation results. For clas-
sification, accuracy (ACC), area under ROC curve (AUC), F1 score, precision
(Prec) and recall (Recl) were reported.
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Table 1. Ablation study

Model Segmentation Classification

DSC SE FPI ACC AUC F1 Recl Prec

Multi-task Only 0.787 0.882 0.293 0.829 0.866 0.682 0.714 0.652

Cls + DS N/A N/A N/A 0.878 0.853 0.722 0.619 0.867

Seg + DS∗ 0.802 0.910 0.183 0.842 0.890 0.723 0.810 0.654

Hybird DS 0.848 0.907 0.110 0.915 0.887 0.821 0.762 0.889
∗Classification results were retrieved from segmentation masks by assigning the
largest activation across the output probabilistic map to the whole image

Ablation Study. To investigate the efficacy of the proposed Hybrid DS scheme,
a series of experiments were conducted on one data split. From Table 1, it can
be observed that the Hybrid DS model achieves the best performance on several
important metrics (e.g. DSC, FPI, ACC, F1, etc.), and also has high scores on
others. HDS outperforms the baseline multi-task model by a large margin (0.848
vs 0.787 in DSC, 0.915 vs 0.829 in ACC), indicating that directly supervising
intermediate layers is necessary for training such a deep model. Thanks to the
sparse MIL [14] and DS schemes, the Cls+DS model performed well in clas-
sification, having an accuracy of 0.878. Meanwhile, HDS achieves even higher
classification performance (e.g. ACC: 0.915) than Cls+DS, which evidences the
benefit of employing extra pixel-wise supervision. Compared to Seg+DS, HDS
achieves better DSC (0.848), accuracy (0.915), F1 score (0.821) and precision
(0.889), which we attribute to the extra image-wise supervision. Since image-
wise supervision can force the network to look wider and to learn features based
on the whole image (or at least a larger area), the network becomes less sen-
sitive to local patterns that mimic masses and more robust in rejecting false
positives, as has been validated by the much higher precision of HDS (0.889)
than Seg+DS (0.654). Altogether, these experiments suggest that the proposed
Hybrid DS scheme is a promising approach to improve deep model’s performance
on the mammogram analysis problem.

Comparison with Existing Methods. To compare the proposed model
with other mammogram analysis methods, we used 5-fold cross validation to

Table 2. Comparison with state-of-the-art methods

Model Segmentation Classification

DSC SE FPI ACC AUC F1 Recl Prec

D. [3] 0.85∗ N/A 1.00# 0.91±0.02 0.76±0.23 N/A N/A N/A

Z. [14] N/A N/A N/A 0.90±0.02 0.89±0.04 N/A N/A N/A

Ours 0.85±0.01 0.88±0.02 0.08±0.02 0.89±0.02 0.85±0.02 0.77±0.04 0.69±0.04 0.87±0.06
∗Calculated on correctly detected masses.
#These detection false positives were manually rejected before further processing
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evaluate it on the whole INbreast dataset. As shown in Table 2, our model
matches the current state-of-the-art performance on both mass segmentation and
classification tasks, achieving a high average segmentation DSC of 0.85 and a
classification accuracy of 0.89. Besides, our method is fully automatic and easy
to deploy, which takes whole mammograms as input and then outputs segmen-
tation masks and image-wise labels simultaneously. In contrast, the method by
Dhungel et al. [3] still requires manual intervention to reject false positives after
mass detection, and the method by Zhu et al. [14] can only give a very rough
location of identified masses. Qualitative segmentation results of our method on
several typical testing images have been illustrated in Fig. 2.

Fig. 2. Qualitative results. The first row is original mammograms. In the second row,
red and green boundaries are ground truth delineation and automatic segmentation
results, respectively. The fifth column contains a false negative lesion, and the last
column has a false positive lesion. Best viewed in color (Color figure online).

4 Conclusion

In this paper, we have developed an end-to-end and unified framework for mam-
mogram classification and segmentation. We seamlessly integrate the two tasks
into one model by employing the novel Hybrid DS scheme, which not only inher-
its the merits of DS but also supports multi-task learning. With such a multi-task
learning scheme, pixel-wise labels tell the model where to learn while image-wise
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labels force the network to make better use of contextual information. We con-
ducted extensive experiments on the publicly available INbreast dataset, and
the results show that our method matches the state-of-the-art performance on
both segmentation and classification tasks. Ablation study demonstrates that
pixel-wise and image-wise supervisions are mutually beneficial, and the proposed
Hybrid DS can effectively boost the model’s performance on both tasks. Besides,
our unified framework is inherently general, which can be easily extended to other
medical vision problems.

References

1. Buciu, I., Gacsadi, A.: Directional features for automatic tumor classification of
mammogram images. Biomed. Sig. Process. Control 6(4), 370–378 (2011)

2. DeSantis, C.E., Ma, J., Goding Sauer, A., Newman, L.A., Jemal, A.: Breast cancer
statistics, 2017, racial disparity in mortality by state. CA Cancer J. Clin. 67(6),
439–448 (2017)

3. Dhungel, N., Carneiro, G., Bradley, A.P.: A deep learning approach for the analysis
of masses in mammograms with minimal user intervention. Med. Image Anal. 37,
114–128 (2017)

4. Geras, K.J., Wolfson, S., Shen, Y., Kim, S., Moy, L., Cho, K.: High-resolution
breast cancer screening with multi-view deep convolutional neural networks. arXiv
preprint arXiv:1703.07047 (2017)

5. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on imagenet classification. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 1026–1034 (2015)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

7. Kooi, T., et al.: Large scale deep learning for computer aided detection of mam-
mographic lesions. Med. Image Anal. 35, 303–312 (2017)

8. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In:
Artificial Intelligence and Statistics, pp. 562–570 (2015)

9. Lotter, W., Sorensen, G., Cox, D.: A multi-scale CNN and curriculum learn-
ing strategy for mammogram classification. In: Cardoso, M.J., et al. (eds.)
DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 169–177. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-67558-9 20

10. Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., Cardoso,
J.S.: Inbreast: toward a full-field digital mammographic database. Acad. Radiol.
19(2), 236–248 (2012)

11. Pratiwi, M., Harefa, J., Nanda, S.: Mammograms classification using gray-level
co-occurrence matrix and radial basis function neural network. Proc. Comput. Sci.
59, 83–91 (2015)

12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

http://arxiv.org/abs/1703.07047
https://doi.org/10.1007/978-3-319-67558-9_20
https://doi.org/10.1007/978-3-319-24574-4_28


A Unified Mammogram Analysis Method via Hybrid Deep Supervision 115

13. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

14. Zhu, W., Lou, Q., Vang, Y.S., Xie, X.: Deep multi-instance networks with sparse
label assignment for whole mammogram classification. In: Descoteaux, M., Maier-
Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017.
LNCS, vol. 10435, pp. 603–611. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66179-7 69

https://doi.org/10.1007/978-3-319-66179-7_69
https://doi.org/10.1007/978-3-319-66179-7_69


Structure-Aware Staging for Breast
Cancer Metastases

Songtao Zhang1, Li Sun1, Ruiqiao Wang1, Hongping Tang2, Jin Zhang1,
and Lin Luo3(B)

1 Southern University of Science and Technology, Shenzhen 518055, China
2 Department of Pathology, Shenzhen Maternity and Child Healthcare Hospital

Affiliated to Southern Medical University, Shenzhen 518028, China
3 Peking University, Beijing 100871, China

luol@pku.edu.cn

Abstract. Determining the stage of breast cancer metastases is an
important component of cancer surveillance and control. It is laborious
for pathologist to manually examine large amount of biological tissue and
this process is error-prone. Deep learning methods can be used to auto-
matically detect cancer metastases and identify cancer subtypes. How-
ever, current deep learning-based methods mainly focus on local patches
but ignore the overall structure of lymph tissue, due to the memory lim-
itation and computational cost of processing the gigapixel whole slide
histopathological image (WSI) at a time. In this paper, we propose a
structure-aware deep learning framework for staging of breast cancer
metastases, in which we introduce lymph structure information to guide
training patch selection and prediction features design. Our approach
achieves 85.1% accuracy on slide-level and 0.80 kappa score on patient
level. In addition, we see 6.1% and 5% performance gain on slide level and
patient level classification respectively after introducing global structure
information.

Keywords: Cancer staging · Structure-aware · Deep learning

1 Introduction

Breast cancer is the most common malignant tumor among the women, whose
morbidity has increased fastest compared to other kinds of cancer. Metastatic
breast cancer is a kind of breast cancer that has spread beyond the breast to
other organs in the body. Metastases staging can contribute to the prediction of
the patient prognosis and treatment planning. For example, early-stage cancer
may need to be treated with surgery or radiation, while a more advanced cancer
may need to be treated with chemotherapy. In addition, early detection for breast
cancer has the best prognosis.
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In order to determine the stage for breast cancer metastases, pathologists
need to examine histopathological slides manually. But this process is painstak-
ing and error-prone. The last decade has witnessed the advancement of digital
pathology, which aims to digitize tissue slides and automatically analyze them
using computer algorithms. In recent years, deep convolutional neural network
(CNN) has immensely improved performance on a wide range of computer vision
tasks such as image recognition, instance detection, and semantic segmentation.
Similarly, deep CNNs have been introduced in digital pathology to improve the
accuracy of diagnoses.

Several research works [2,7] have applied deep learning to histopathology.
But these methods only focus on local characters of lymph node. In this paper,
we propose a structure-aware staging framework to determine the metastases
stage using gigapixel pathology image of lymph tissue. We observe considerable
performance gain after we bring in global structure features of lymph nodes.

2 Related Work

2.1 pN Stage in TNM System

The TNM Classification of Malignant Tumors (TNM) [4] is a notation system
that describes the stage of a cancer. In this system, T stands for the original
(primary) tumor, N stands for nodes while M stands for metastases. In this
paper, we focus on pathology N stands (pN-stage) [1] which describes the extent
of cancer spread in nearby lymph nodes. Our diagnosis target is to determine the
pN-stage for patients, depending on the categories of lymph node metastases,
including macro-metastases, micro-metastases and isolated tumor cells (ITC).
Based on the description of diagnosis on WSI level, the pN stage on patient level
can be defined as below (Table 1):

Table 1. pN stage on patient level

pN-stage Description

pN0 No micro-metastases or macro-metastases or ITCs found

pN0(i+) Only ITCs found

pN1mi Micro-metastases found, but no macro-metastases found

pN1 Metastases found in 13 lymph nodes, of which at least one is a
macro-metastases

pN2 Metastases found in 49 lymph nodes, of which at least one is a
macro-metastases
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2.2 Previous Methods

In recent years, several research works have applied deep learning to histopathol-
ogy. Many camelyon17 participants [1] achieve good performance in the challenge
of staging lymph node involvement for breast cancer patients. Thagaard et al.
[1] from DTU team proposed to detect region-of-interest (ROI) by intensity
thresholding. Then they extracted image patches from ROI as training set. The
authors trained a InceptionV3 model to classify patches, and trained a random
forest classier on 42 hand-engineered local features of morphology for prediction.
Liu et al. [7] proposed to extract image patches from multiple magnifications,
then input to separate towers and merged for prediction. However, their methods
still focus on local patches but ignore the overall structure of lymph tissue.

3 Methodology

3.1 Overview

Our proposed structure-aware staging framework consists of the following
steps, as illustrated in the figure below. The surrounding box shows a typical
learning process of pathological image classification, which includes patch selec-
tion, patch-level classification, heatmap composition and processing, feature
engineering, slide-level classification and patient diagnosis. The center area in
the figure shows how lymph structure is extracted and then applied to guide the
steps in the whole learning process. We extract the overall lymph structure from
WSIs. The segmented lymph region is used to guide patch selection while the
contour information is used for feature engineering.

Fig. 1. Overview of our proposed structure-aware staging framework
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3.2 Lymph Structure Extraction with Semantic Segmentation

We use semantic segmentation to extract the overall structure of lymph tissue,
which is used to guide the selection of relevant patches for training and fea-
ture engineering. Traditionally patch selection is done by thresholding method,
which is transferring the original image to the HSV color space, then use the
Otsu algorithm to select the optimal threshold values in each channel. But this
method produces rather coarse result. We use semantic segmentation to under-
stand the slide by assigning a class for each pixel. It can delineate the boundaries
of lymph tissue and obtain the overall structure. In natural image processing,
convolutional neural networks (CNN) have achieved great success on segmen-
tation problems. We leverage the current state of the art method for seman-
tic segmentation, DeepLab-v3+ model [3], to extract the overall structure of
lymph tissue. DeepLab-v3+ model employs the encoder-decoder structure. For
the encoder module, rich contextual information is extracted using atrous con-
volution, which is capable of encoding features at an arbitrary resolution. The
decoder module is used to recover the boundaries of lymph tissue.

3.3 Lymph Region-Guided Selection of Training Patches

We use overall structure of lymph tissue to guide the patch selection for training.
With aim of training a dedicated model, all patches are selected from the lymph
tissue region. In addition, we extract similar number of positive and negative
patches to deal with class imbalance. The size of training patches is 256 * 256.

3.4 Patch-Level Classification

This step mainly consists of three parts which are data argumentation, evalu-
ation of convolution neural network and hard example mining. Because these
slides are from different medical centers, the H&E stained color on the slide may
also be slightly different. We preprocessed images by adjusting the brightness,
saturation, hue and contrast randomly in a limited range. In addition, we applied
random rotation and random flip to the patches.

Then we evaluated the predicting performance of different deep CNN archi-
tectures for the patch-based classification task, including VGG16 [5], GoogLeNet
[9], InceptionV3 [10], ResNet101 [6] and Inception-ResNet [8]. The validation
performance is shown in the experiment section. We found that ResNet101 and
InceptionV3 architectures achieve the best performance. Based on the trade off
between performance and speed, InceptionV3 is chosen as our final model.

Since our training set only consists of a small portion of all patches, it may
not be sufficient to represent the entire diversity of different tissue. We enriched
the training set by adding additional normal patches that are wrongly predicted
in cross-validation stage. The patch-level classifier is trained again using the
enriched training set. Based on the patch-level classifier, we transformed each
whole slide image into a tumor possibility heatmap in which each pixel represents
the tumor possibility of patch from original whole slide.
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3.5 Contour-Aware Feature Engineering for Slide-Level
Classification

We extracted both structure level features and local features from tumor proba-
bility heatmap to grade breast cancer metastasis on slide level and patient level.
We in total designed 50 features based on medical criteria, which can be divided
into three categories: size, shape and depth of tumor invasion. The shape features
include relative size of tumor, absolute size of tumor, number of tumor regions.
The shape features include eccentricity, major axis length, minor axis length,
perimeter, extent and other features. Depth of tumor invasion is an important
indicator of metastases state. So we incorporate the overall structure of lymph
tissue to characterize the extent of tumor invasion, which is defined as the dis-
tance of tumor region to the contour of lymph node. We introduced the features
of maximum invasion depth, mean invasion depth and minimum invasion depth.

In order to select the important features for prediction and reduce overfitting,
recursive feature selection method is used. Then we use random forest classifier
to determine the metastasis state on slide level. Finally, based on classification
result of five lymph node slides belonging to each patient, we can determine the
patient-level pN-stage according to the criteria mentioned before.

4 Experiment

4.1 Dataset

We use the whole-slide images of histological lymph node sections from Came-
lyon challenge provided by the Diagnostic Image Analysis Group (DIAG) and
Radboud University medical center. Both Camelyon16 and Camelyon17 datasets
are used. The Camelyon16 dataset [2] consists of 400 WSIs from 2 different cen-
ters, including 170 tumor WSIs and 230 normal WSIs. The Camelyon17 dataset
[1] consists of a total of 1000 whole slides images (WSIs) from 200 patients (each
patient has five whole-slide images of histological lymph node sections). All slides
were annotated by professional pathologists where annotations are considered as
lesion-level ground truth.

4.2 Segmentation of Lymph Structure

We manually annotate 400 slides as training set for the DeepLab-v3+ model.
Horizontal and vertical flipping is used to augment the data. We also use the
contrast limited adaptive histogram equalization method to enhance the local
contrast of the image. Due to the memory limitation, we resize the slides to
1408*1408. We train the model using momentum optimizer with initial learning
rate of 10−6. For the testing phase, we also resize the slides and enhance the
local contrast. Then we use trained DeepLab-v3+ model to segment the tissue
region. Finally, we resize the segmentation result back to the original slide size.
Our experiment shows that semantic segmentation can precisely extracted the
overall structure of lymph tissue.
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Fig. 2. Illustration of lymph tissue extraction result

The DeepLab-v3+ model converges after 20 epochs training. It achieves Dice
coefficient of 0.95 for lymph tissue segmentation, which demonstrated it can be
used to extract the lymph tissue precisely.

4.3 Patch-Level Classification

In the patch-level classifier, the validation dataset is split from camelyon16
dataset. Particularly, all patches are extracted in lymph region detected by
semantic segmentation. And the sample of positive and negative is balanced
when sampling.

The table below show the evaluation result of the patch-level classifier
(Table 2).

Table 2. Evaluation result of different architectures

CNN-architecture Validation accuracy Test accuracy

VGG-19 96.12% 93.11%

GoogLeNet 97.12% 96.17%

InceptionV3 97.80% 97.23%

Inception-ResNet 97.90% 97.21%

ResNet101 98.01% 97.33%

4.4 Performance Gain by Semantic Segmentation

This table show the evaluation result of the patch-level classifier compar-
ing threshold processing method and lymph region guided method for patch
extraction.

We found that most of the false positive patches appear out of lymph tis-
sue region in WSI when using thresholding method for patch extraction. This
explains the reason that our proposed lymph region guided method is superior.
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Methods Threshold processing method Lymph region guided

Category Validation
accuracy

Test
accuracy

Validation
accuracy

Test
accuracy

VGG-19 96.12% 93.11% 97.31% 96.81%

GoogLeNet 97.12% 96.17% 98.51% 98.21%

InceptionV3 97.80% 97.23% 98.73% 98.35%

Inception-ResNet 97.90% 97.21% 99.14% 98.71%

ResNet101 98.01% 97.33% 98.94% 98.40%

Fig. 3. Examples of false positive patches found by thresholding method

4.5 Evaluation Metric

We use multi-class quadratic weighted kappa for evaluation where the classes
are the pN-stages.

κ =

∑k
i=1

∑k
j=1 wij xij

∑k
i=1

∑k
j=1 wij mij

(1)

where k stands for number of classes and wij , xij , and mij are elements in the
weight, observed, and expected matrices, respectively.

4.6 Slide-Level and Patient-Level Evaluation

For training of slide-level classifier, we use 500 slides with five-fold cross valida-
tion. For patient-level prediction, 500 WSIs are used as test set. We compare
the performance of our structure-aware method with the traditional threshold-
ing method, and the result demonstrates that incorporating overall structure
information brings considerable performance gain (Table 3).

4.7 Implementation Details

To implement the algorithm framework, we use Tensorflow framework and We
train a fine tuning model without any pre-trained weight running on a NVIDIA
Tesla M40 GPU. We use SGD with momentum 0.9 and set initial learning rate
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Table 3. Slide and patient-level evaluation result

Category Result without
structure guidance

Result with structure
guidance

Slide-level accuracy 0.793 0.851

Patient-level Kappa score 0.75 0.80

to 0.01. We also set the number of epoch to decay at 70, decay to 0.001 and
batch size to 32 for training.

5 Conclusion

In this paper, we presented a structure-aware staging framework for breast cancer
metastases which can take the global structure information into account com-
pared to existing method. Results shows impressive improvement by introducing
lymph structure information to guide patch selection and to design prediction
features. The proposed framework can also be applied to tasks related to staging
other cancer metastases based on the whole slide histopathological images. In the
future, we will explore more possibilities of introducing hierarchical information
to the computer-aided diagnosis of the slide histopathological images.
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Abstract. Accurate methods for computer aided diagnosis of breast
cancer increase accuracy of detection and provide support to physicians
in detecting challenging cases. In dynamic contrast enhancing magnetic
resonance imaging (DCE-MRI), motion artifacts can appear as a result
of patient displacements. Non-linear deformation algorithms for breast
image registration provide with a solution to the correspondence problem
in contrast with affine models. In this study we evaluate 3 popular non-
linear registration algorithms: MIRTK, Demons, SyN Ants, and compare
to the affine baseline. We propose automatic measures for reproducible
evaluation on the DCE-MRI breast-diagnosis TCIA-database, based on
edge detection and clustering algorithms, and provide a rank of the meth-
ods according to these measures.

Keywords: Medical image processing · Reproducibility · DCE-MRI
Registration · Diffeomorphism · Optical flow · Non-affine registration

1 Introduction

Early and accurate detection is a key factor in maximizing probability of survival
of breast cancer, the second most common cause of cancer death, after lung
cancer [17]. Computer aided diagnosis (CAD) systems support the physicians
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in decision making by means of imaging processing techniques. Dynamic con-
trast enhancing magnetic resonance imaging (DCE-MRI) allows to obtain non-
invasive information about tissue dynamics that allows for cancer identification,
and CAD systems have been developed to assist clinicians in the analysis. Accu-
racy of such CADs depend on the preprocessing steps such as registration. Reg-
istration is a challenging task due to the highly deformable nature of the breast,
and linear methods are unsuitable.

Nowadays, with the impetuous advance of data-sharing and code-sharing
in science, reproducibility has become a key factor in new developments and
analysis. Medical image processing traditionally has been focused in giving a
solution to the registration problem, together with the segmentation problem.
In the field of DCE-MRI of the breast, there has been considerable interest in
non-linear deformation modeling to solve the correspondence problem due to
the deformable nature of the breast. Although successful methods for enhance-
ment subtraction have been developed [11], the non-rigid registration step in
DCE-MRI is often performed using state-of-the art approaches, such as dif-
feomorphic based ones, or partial-differential-equations-based ones [6,7,13,18].
However, there is no clear argument for a preferable choice nor a systematic
comparison of the proposed solutions. Led by the neuroimaging community, a
large variety of high quality software tools, projects and analysis are publicly
available to the medical imaging community that solve the registration problem.
Concretely, consistent effort has been dedicated in the last decade to evaluate
registration algorithms, such as with the projects the mindboggle (http://www.
mindboggle.info) and NIREPS (http://www.nirep.org/links).

Given the importance and challenges in nonlinear deformation algorithms
for breast image registration, a systematic analysis with reproducible results
can provide an evaluation of the available registration tools and its efficacy in
the aforementioned task, setting a baseline for ulterior developments. Exist-
ing evaluations of registration methods are often based on landmarks. Land-
marks require some expert intervention, and are prone to subjectivity and non-
reproducibility. We propose an automatic method for registration evaluation
based on an algorithmic-driven extraction of morphological features: contours
and volume. For the extraction of contours we propose the use of the Canny edges
detection algorithm and k-means algorithm to extract tissue-specific volumes.
We evaluate 3 popular non-linear registration algorithms: MIRTK, Demons, SyN
Ants, and compare to the affine baseline. We use a publicly available DCE-MRI
breast database and rank the tested registration algorithms according to the
measures proposed.

2 Methods

2.1 TCIA Database

The data used in this work is the Breast-Diagnosis collection [3] from the cancer
imaging archive (TCIA)[4]. The Breast-Diagnosis collection contains cases that
are high-risk normals, DCIS, fibroids and lobular carcinomas. Each case has 3

http://www.mindboggle.info
http://www.mindboggle.info
http://www.nirep.org/links
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or more distinct MR pulse sequences from a Phillips 1.5 T, such as T2, STIR
and BLISS. For the DCE-MRI, the volume of Magnevist (Bayer) gadolinium
contrast injected into the brachial vein is based on a rule of thumb which in ml’s
is 10% of the patient weight. The injection itself is 6 or 7 s, at a rate of 3cc per
second. The first dynamic sequence is started 1 min after the injection is started.

2.2 The Registration Problem

One of the main medical image processing problems is the registration problem.
The goal of the registration is to find the transformation T that maps each point
x of a fixed image F to a point y = T(x) in image moving image M, so that some
measure of similarity E(F,M) between F and M is minimized. In the affine case,
this transformation can be parametrized by a small set of parameters (12 in 3D).
When non-rigid transformations are allowed, a non-parametric characterization
of the transformation must be given, usually in terms of a displacement field.

This study will consider well established deformable techniques for
deformable registration: Diffeomorfic Demons, MIRTK, SyN [8]:

– Diffeomorphic Demons is a non-parametric algorithm based in optical
flow theory that generalizes Thirion’s Demons algorithm with a diffeomorphic
spatial transformation [20]. This method alternates between the computation
of warping forces and smoothing. The Demons algorithm may be related to
a Taylor expansion of the squared difference between the fixed and moving
image, with some regularization in the form of fluid-like equations.

– MIRTK [15,16] uses a combined transformation T which consists of a global
affine transformation and a local transformation. The local transformation
describes any local deformation required to match the anatomies of the sub-
jects using a free-form deformation (FFD) model based on B-splines. The
basic idea of FFDs is to deform an object by manipulating an underlying
mesh of control points. The resulting deformation controls the shape of the
3-D object and can be written as the 3-D tensor product of the familiar 1-D
cubic B-splines. The lattice of control points is defined as a grid with uni-
form spacing which is placed on the underlying reference image. The optimal
transformation is found using a gradient descent minimization of a cost func-
tion associated with the global transformation parameters as well as the local
transformation parameters. The cost function comprises two competing goals:
The first term represents the cost associated with the voxel-based similarity
measure, in this case normalised mutual information, while the second term
corresponds to a regularization term which constrains the transformation to
be smooth.

– The symmetric normalization (SyN) methodology uses a symmetric
parameterization of the shortest path of diffeomorphisms connecting two
anatomical configurations [2]. The SyN formulation uses a bidirectional gra-
dient descent optimization which gives results that are unbiased with respect
to the input images. SyN also provides forward and inverse continuum map-
pings that are consistent within the discrete domain and enables both large
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and subtle deformations to be captured. Specific performance characteristics
depend upon the range of similarity metrics chosen for the study and the
velocity field regularization.

2.3 Automatic Contour and Volume Estimation

For evaluation purposes, two features are extracted from the 3D MRI images:
contours and volumes. Contours are extracted by a Canny edge detector algo-
rithm, that provides the external surface as well as interior structures. The Canny
filter is a multi-stage edge detector that uses a derivative-of-a-Gaussian in order
to compute the intensity of the gradients. We used the simpleITK [10,21] imple-
mentation and set the variance of the Gaussian [σx, σy, σz] to [25, 25, 25]. The
Canny edge detector has been reported to have superior capabilities as other
edge detectors as Sobel [14].

In brain imaging, registration evaluation is usually performed by evaluating
the overlap between different brain structures, as the thalamus or the hippocam-
pus, defined in some standard atlas. The differences on breast density, shape and
randomness of breast lesion locations makes the definition of a breast atlas invi-
able. Therefore, the volume overlap evaluation of the registration algorithm lacks
of a natural volume subdivision of the breast to compare to. Consequently, sub-
volumes and structures must be either manually defined case by case, a task
prone to inaccuracies and subjectivity, or extracted automatically from a clus-
tering algorithm. Here, different breast structures are extracted by the k-means
algorithm. Since the number of different tissues is expected to be low, following
Thirion et al. [19], the k-means algorithm performs better than other competi-
tive alternatives, as the Ward agglomerative clustering with spatial constraints.
We use the k-means implementation from nilearn [1] with standardization and
smoothing (FWHM = 10) and 3 clusters.

3 Results

For file preparation, the first step is convert the DICOM files to NIFTI format.
All the tested algorithms require NIFTI files as input, since it is the standard
format in neuroimaging. This task is performed with the use of dcm2niix [9].
Next, the images are masked to remove the strong signals from internal organs.
It is important for a registration algorithm to remove the signals from interior
cavities of the chest. In the case of non-affine transformations, the variability
of these regions produces the highest metric values on those localized regions,
thus dominating in the optimization algorithm. The mask is defined as the mid-
dle plane in the axial direction, and all the voxels inside the plane are set to
background.
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The masked images are registered to the pre-contrast images using the differ-
ent tested algorithms. Contours and volumes are extracted from each sequence
and two metrics are employed to evaluate the overlap between solutions:

– Dice similarity score (DCS) Also known as F1-score, the DSC evaluates
the overlap between the true labels in the fixed image (F) and the test labels
in the moving image (M) by:

DSC(F,M) =
2|F ∩ M |
|F | + |M | (1)

– Jaccard similarity score (JCS) Evaluates the overlap between the fixed
image and the moving image with respect to the whole volume of both.

JSC(F,M) =
|F ∩ M |
|F ∪ M | =

|F ∩ M |
|F | + |M | − |F ∩ M | (2)

A Welch t-test is performed between the values obtained by each algorithm
and the best performance, in order to detect significant differences. Figure 1
shows a boxplot of the evaluation parameters on different algorithms, while
Fig. 2 shows the adequacy of the DSC parameter to evaluate the registration
performance: in time point 5 a movement is registered and not corrected by
the affine transformation, while the deformation transformation minimizes the
differences in subsequent times in the sequence (Table 1).

(a) DSC (b) JSC

Fig. 1. DSC and Jaccard scores for contour overlap evaluation

Table 1. Average performance parameters on validating data for contour and volume

Contour Volume

DSC JSC DSC

Affine 0.517 ± 0.007 0.9873 ± 0.0001 0.975 ± 0.001

ANTs 0.631 ± 0.009 0.9904 ± 0.0001 0.979 ± 0.001

MIRTK 0.646 ± 0.007 0.9898 ± 0.0001 0.982 ± 0.006

Diffeomorphic Demons 0.497 ± 0.029 0.987 ± 0.001 0.965 ± 0.001



Reproducible Evaluation of Registration Algorithms 129

(a)

100 200 300 400 500 600

200

400

600

800

1000

1200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Fig. 2. (a) DSC comparison of an example affine and deformable registration for 6
timepoints in the DCE-MRI sequence. Pre and post contrast differences can be noted,
as well as post-contrast motion correction with the deformable model. (b) Center axial
slice of mean contour overlap after deformable registration (up) and affine registration
(down). Increase in sharpness in chest-wall lines can be noted in deformable-registration
mean contours.

4 Discussion

The results presented here combine two independent measures of 3 registration
algorithms. Taking altogether, diffeomorphic Demons appear to be the registra-
tion algorithm with less consistent performance. In the contour evaluation, ANTs
and MIRTK provide similar performance. Although MIRTK reaches the maxi-
mum DSC, ANTs has the maximum JSC. This fact can be explained from the
effect on chest-wall contours, where ANTs algorithm produces larger deforma-
tions to remove dissimilarities, not related to motion artifacts. When perfoming
a Welch t-test, the null hypothesis of having equal values for ANTs and MIRTK
can not be rejected (p-value 0.32), while is rejected when comparing with the
other methods. Regarding the volumetric measures, it is remarkable that inde-
pendent measures show a consistent behavior, suggesting that this results may
generalize to other databases. These results are in coherence with other perfor-
mance studies involving some of the studied algorithms [5,8].

For registration evaluation its implicitly assumed in this work that within
subject differences due to enhancing tissues do not modify substantially the
contour and volume of organic structures. However, one of the limitations of the
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present study relies on the automatic algorithms employed to obtain the struc-
ture measures, as they are affected by the intensity changes due to enhancement.
To alleviate this effect, results within pre-contrast images are studied indepen-
dently from post-contrast ones. It has been argued that the intensity enhance-
ment of MRI signals has itself an effect on registration algorithms [12]. From
the results presented in this work, it can be argued that the effect of intensity
enhancement on the registration algorithms is not as dramatic as the effect of
interior chest organs, as preliminary results in this study showed. Once the mask-
ing preprocessing step is done, the registration algorithms seem to depend weakly
on the enhancement, as the difference between contour and volume measures dis-
play. A future line of research will be to define an enhancing-independent mea-
sure of structure features in breast MRI to quantitatively evaluate the enhancing
effect on registration algorithms.

5 Conclusion

We have presented a reproducible analysis on registration performance in breast
DCE-MRI for 3 non-rigid deformation algorithms on a TCIA open dataset. Two
automatic measures are calculated containing information on contours and vol-
ume overlap, and manual intervention is avoided. Results suggest that ANTs
and MIRTK should be between the preferable choices for registration, and this
result may generalize to other datasets.

Acknowledgments. This work has received funding from the European Unions Hori-
zon 2020 research and innovation programme under the Marie Skodowska-Curie grant
agreement No. 656886.
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Abstract. The HARP methodology is a widely extended procedure for
cardiac tagged magnetic resonance imaging since it is able to analyse
local mechanical behaviour of the heart; extensions and improvements of
this method have also been reported since HARP was released. Acquisi-
tion of an over-determined set of orientations is one of such alternatives,
which has notably increased HARP robustness at the price of increas-
ing examination time. In this paper, we explore an alternative to this
method based on the use of multiple peaks, as opposed to multiple ori-
entations, intended for a single acquisition. Performance loss is explored
with respect to multiple orientations in a real setting. In addition, we
have assessed, by means of a computational phantom, optimal tag ori-
entations and spacings of the stripe pattern by minimizing the Frobe-
nius norm of the difference between the ground truth and the estimated
material deformation gradient tensor. Results indicate that, for a sin-
gle acquisition, multiple peaks as opposed to multiple orientations, are
indeed preferable.

Keywords: Cardiac tagged magnetic resonance imaging
Harmonic phase · Multi-harmonic analysis
Robust strain reconstruction

1 Introduction

Measures of local myocardial deformation are essential for a deeper comprehen-
sion of heart functionalities for both normal and pathologic subjects [1]. Tagged
magnetic resonance (MR-T) is a noninvasive method for assessing the displace-
ment of heart tissue over time [2]. This modality is based on the generation of
a set of saturated magnetization planes on the imaged volume, so that mate-
rial points may be tracked throughout the cardiac cycle [3] and local functional
indicators, such as the strain tensor [4], can be estimated.

Regarding the analysis of MR-T images [5], we can differentiate two main
families of methods, image-based and k-space-based techniques. The image-based
c© Springer Nature Switzerland AG 2018
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techniques are devised to directly process and analyse the tagged images by iden-
tifying the tag lines and tracking their deformation between frames. Examples
of such techniques are optical flow [6] or deformable models [7] methodologies.
Alternatively, the k-space-based techniques focus on the Fourier Transform (FT)
of the tagged images. Compared to the image-based, k-space-based techniques
have proven to be much faster and less prone to artifacts [8]. Most notable
methodologies in this category are sinewave modeling (SinMod) [9] and HAR-
monic Phase (HARP) [10] analysis. Recent studies have reported that, although
both techniques are consistent in motion estimates, an exaggeration in measure-
ments is often observed for SinMod [8], leading to larger biases. Therefore, we
have focused on HARP-based methods. These methods are grounded on the
extraction of the complex image phase obtained by band-pass (BP) filtering the
spectral peaks introduced by the applied modulation; they rely on the fact that
the extracted harmonic phase is linearly related to a directional component of
the true motion [10]. Hence, dense displacement fields can be recovered on the
basis on a constant local phase assumption, which turns out to be more reliable
than a constant pixel brightness assumption.

An in-depth study of the HARP method is provided in [11]; the author uses
a communications-based approach to analyze the method in detail, including
resolution, dynamic range and noise. Signal processing solutions based on the
Windowed Fourier Transform (WFT) [12] have been proposed to balance the
spatial and spectral localization of the image, thus obtaining smooth local phase
estimations. Adaptive approaches have been subsequently proposed in [13,14] in
order to accommodate tag local properties both in window and filter designs,
respectively. However, slight improvements have been reported with respect to
non-adaptive methods, taking into account the considerable computational cost
increasing.

Techniques to synthesize more desirable tag patterns have also been proposed
using multiple harmonic peaks, both with different tag spacings [15] and new
profiles [16]. Methodologies that make use of multiple orientations [17–19] have
also been devised to improve the quality of the estimated motion at the prize of
increasing acquisition time. Besides, these methodologies require of non-trivial
image registration techniques to align the multiple acquisitions, which itself may
also have an important impact on processing conclusions.

In this paper we depart from the reported idea that using an overdeter-
mined set of orientations (MO) significantly increases the quality of the estimated
deformation gradient tensor [19]; however, our purpose is to convey information
within a single acquisition at the expense of a worse performance with respect
to multiple acquisitions. Therefore, we have explored performance of using two
peaks with two orthogonal orientations within a single acquisition, as opposed
to multiple single-peaked orientations in multiple acquisitions, and we quantify
performance loss. Then, we find out through optimization both tag orientation
and spacing of two stripes patterns that are set free when another two are set
beforehand. Interestingly, our results indicate that the latter approach converges
to the former, i.e., two orthogonal orientations with two peaks is the preferable
solution when a unique acquisition is pursued.
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2 Materials

MR-T is usually performed by SPAtial Modulation of Magnetization (SPAMM)
[20], which is grounded on the ability of altering the magnetization of the tissue
in presence of motion. This process will generate a modulation with different
sinusoidal functions. Each of these sinusoids will be given by its wave vector ki

with ki = kiui, where ki is the wave number (related to its frequency) and ui

its orientation vector (corresponding to the orientation of the applied gradient).
We have acquired a medial slice on an adult volunteer using a MR SPAMM

SENSitivity Encoding (SENSE) Turbo Field Echo sequence on a Philips Achieva
3T scanner. The image has a spatial resolution of 1.333 × 1.333mm2 and a slice
thickness of 8mm. The acquisition parameters are TE = 3.634ms, TR = 6.018ms
and α = 10◦. Regarding the tagging parameters, the tag spacing has been set
to λ = 7mm, with its different harmonic peaks at k = {1, 2}/λ and different
orientations ui = (cos(θi), sin(θi)). The specific orientations are θi = −85◦ +i ·5◦

with 0 ≤ i ≤ 35, therefore with −85◦ ≤ θi ≤ 90◦. Two grid patterns have also
been acquired with {45◦–135◦} and {0◦–90◦} orientations.

Simulated SPAMM sequences [21] have also been launched both with one
(1D) and two orientations (2D), with different λ values and multiple spectral
peaks, some examples of which are shown in Fig. 1. Harmonic coefficients have
been set according to [16].

Fig. 1. The two upper images show synthetic data (2D) while real dataset is sketched
below for 2D in a {45◦–135◦} grid. All intermodulations for the 2D case are present.
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Optimization experiments have been performed on the synthetic data; the
computational phantom consists in an annulus centered at the myocardium
with Ri = 28 and Ro = 40 as its inner and its outer radii, respectively. An
incompressible radially varying deformation has also been applied according to
r =

√
R2 − γR2

i , where γ controls the degree of deformation and r and R rep-
resent the spatial and material radial coordinates, respectively. Notice that for
the simulated SPAMM synthetic data, we have not included noise, tag fading
or other undesired effects. We have preferred not to simulate these confounding
factors, which are present in real data, in order to remove its influence in the
final tag pattern design.

3 Method

3.1 Reconstruction Pipeline

As stated in [10], HARP motion reconstruction using SPAMM requires a mini-
mum of 2 linearly independent wave vectors. The proposed approach allows us
to accommodate multiple wave vectors stemming from the different orientations
and harmonic peaks. Reconstruction pipeline can be summarized in the following
steps (see Fig. 2):

– Calculation of the local phase of the image. For a given cardiac phase,
we compute the 2D discrete WFT [19] to obtain the local spectrum S[m] for
each image I[x]. The window employed at this step is real, even, of unit norm,
and monotonically decreasing for positive values of its argument. Hence, the
obtained discrete WFT can be seen as a set of discrete FTs applied to the
result of windowing an image throughout its support.
Once local spectrum is calculated, a complex BP filter is applied to extract
the corresponding phase to each wave vector i. Therefore, for each pixel of
the image, we have built a circumferential spectral filter, whose radius is
linearly related to a previously defined bandwidth, which has been centered
at the maximum of the spectra inside a predefined region located in the
surroundings of the reference spatial frequency of the tags.
The final WHARP image, for each wave vector, can be reconstructed in the
spatial domain by using an inverse WFT (IWFT) from which its phase is
readily extracted, i.e., φi[x] = ∠Îi[x].

– Material deformation gradient tensor estimation at end-systolic
phase. The material deformation gradient tensor F(x) can be estimated from
the gradient of the phase image Y(x) as stated in [10]. Robust estimation of
F(x) is achieved through Least Absolute Deviation (LAD) procedure [22].
Reconstruction is performed via Iteratively Reweighted Least Squares:

Fl+1(x) = (YT (x)Wl(x)Y(x))−1YT (x)Wl(x)K, (1)

where K represents the given wave vectors and Wl(x) a diagonal weighting
matrix updated at each iteration by considering the fitting residuals [19]. For
illustration purposes, the Green-Lagrange strain tensor is also computed in
the polar coordinate system.
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3.2 Optimal Tag Pattern Search

In order to find the optimal tag pattern, we have carried out an optimization
procedure on the synthetic data; the procedure is schematically shown in Fig. 2.
The upper part shows how the ground truth data is obtained. First, the stripe
patterns, consisting in two sets of two orthogonal directions are generated. Each
pattern is then applied to a previously acquired cine sequence. Each pattern
is applied in isolation so that no interference arises. Then, the methodology
described in Sect. 3.1 is applied to calculate FGT .

The stripes are oriented as {0◦, 45◦, 90◦, 135◦} with λ = 7.15 mm and only
the DC component and the two symmetric peaks are included in the simulation.
The analysis window w of the WFT is defined as stated in Sect. 3.1 and its size
has been set to Q = [32, 32].

The BP filter parameters, for each pixel x and wave vector i, are represented
as βi[x] = (k̂i[x], ρ), where ρ is the radius of the filter, which is centered at k̂[x].
The filter bandwidth is normalized with respect to the wave number (μ = ρ/k,
k = 2π/λ) so that area of all filters remains the same along the pipeline.

As for the lower part of the figure, the tags are multiplied to each other
as well as to the cine sequence; intermodulations are therefore present in the
problem. Then, the aforementioned reconstruction procedure is performed but
for the fact that the WFT is applied to the image degraded by interference.
When the BP filter bank is applied, channels are processed in parallel. In this
case, two stripes ({0◦, 90◦}) remain fixed with its tag spacing at λ1,2 = 7.15 mm.
The other two stripes are considered as variables in the optimization problem,
both in tag orientation and spacing (θ3, θ4, λ3, λ4). The objective function to
be minimized is defined upon the Frobenius Norm Difference (FND) between a
ground-truth tensor FGT and the estimated tensor with a specific value of the
variable Θ (see below); this function is integrated over a predefined region of
interest χ that encloses the myocardium. Formally:

Θ∗ = arg min
Θ

∫

χ

FND(x,Θ)2dχ

= arg min
Θ

∫

χ

2∑

m=1

2∑

n=1

(FGT
mn (x) − Fmn(x,Θ))2dχ (2)

with Θ =
[
θ3, θ4, λ3, λ4

]
.

The solution has been obtained by means of the Nelder-Mead algorithm [23].
This algorithm does not require derivatives of the objective function. Simulation
has been limited to four stripes to avoid an overwhelming peak interference.

4 Evaluation and Discussion

The importance of the number of orientations is measured in Fig. 3 in terms of
reproducibility for the real dataset. Estimated tensors should be equal irrespec-
tive of the stripe pattern used; therefore, a useful measure of reproducibility is
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Fig. 2. Flowchart of the optimization procedure for optimal stripes parameter search.
Notice that connections from the Nelder-Mead algorithm to stripes 1 and 2 do not
undergo any variation.

the FND defined above but applied in this case to two instances of the recon-
structed tensor with two different, albeit comparable, stripe sets. Specifically,
given two stripe sets with the same number of orientations and their respective
reconstructed tensors, we have calculated the median of the FND(x) with both
for x ∈ χ.

Figure 3 shows the impact on reproducibility of using either additional ori-
entations or additional harmonic peaks.

Fig. 3. Median of the FND ∀x ∈ χ obtained with different number of images as a
function of the filter bandwidth μ.
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As previously described [19], an overdetermined set of stripes increases repro-
ducibility at the price of a higher number of acquisitions. For a given number
of orientations the multi-peak (MP) windowed approach (WHARP) shows addi-
tional improvement for moderate bandwidths. HARP analysis has also been
added showing lower figures. When bandwidth is excessive, interference from
nearby peaks reduces the stability of results. MP-WHARP obtained with I = 2
is located halfway between the other results with I = 2 and those with I = 4.
This solution would require a single acquisition while I = 4 requires at least two,
for a grid pattern.

For the synthetic dataset, Fig. 4 shows the mean squared error (MSE) of the
strain tensor principal components (Êrr) and (Êcc) for different options (win-
dowed, MP, MO) as a function of the degree of deformation γ. In these figures
solid lines are obtained with multiple images (I = 18) and dashed lines with
only two orthogonal directions (I = 1); in both, grid patterns have been used.
As can be observed, MO and MP play a satisfactory role for moderate values of
γ. It is worthy to say that MP approach presents a notable performance, even
with a unique grid-like acquisition. On the other side, when severe deformation
is applied to the I = 1 cases, non-MP approaches depart dramatically from the
ground truth while LAD algorithm maintains quality fairly unaltered for the MP
version (dashed-red line).

Fig. 4. Log-mean squared error of (Êrr) (left) and (Êcc) (right) for μ = 0.35. Solid
line denotes reconstruction error with 18 images while dashed lines are obtained with
only two. (Color figure online)

In Fig. 5, we show the output of the optimization procedure described in
Sect. 3.2. According to the figure, the two free orientations turn out to align
with the two that remained fixed, although spectral separation is lower than the
separation of the steady peaks with respect to the DC component; specifically,
the steady peaks are located at k = (7.15mm)−1 = 0.14mm−1, while the other
two turn out to be located (on average) k ∼ 1.6

7.15 mm−1. This output, however,
is not directly available in equipments routinely used in clinical settings.

Therefore, we have carried out an additional two-fold experiment in order to
test relevance of peak separation or, equivalently, tag spacing. For this purpose,
we have calculated the MSE in Err estimation for both 1D and 2D cases; for the
former, we have simulated a pattern with two peaks in the same direction, where
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Fig. 5. Final configuration of the tag pattern obtained with Nelder-Mead algorithm
both on k-space (left figure) and spatial domain (centered at right figure) with γ = 0.45.

the first peak is located at λ1 = 7.15 mm and the second peak is translated, in
k-space, along that direction. For the latter, the pattern consists of a multipli-
cation of two such 1D patterns in orthogonal directions. Results, as shown in
Fig. 6, indicate that optimal separation depends on the degree of deformation γ,
with higher sensitivity in the 1D case, whereas, for 2D, sensitivity is much lower
for γ ≥ 0.3. In this interval, performance is fairly constant so a 1

λ1
= 0.14mm−1

separation, i.e., location of harmonically related peaks, seems an appropriate
design choice. This is the case of a grid pattern with second order SPAMM
acquisition, which is a commonly available sequence. Presence of noise and tag
fading in simulation will presumably increase smearing in k-space, making this
space more crowded, so this conclusions tend to reinforce. With this in mind, it
may be appealing to include even more peaks in the acquisition. However, grow-
ing between-peak-interference may severely affect estimates. For that reason, we
have limited our experiments to a maximum of four stripes per acquired image.
Further research should be developed in this direction to assess the influence of
heavily-peaked acquisitions in the robustness of reconstructions.

Fig. 6. Log-mean squared error in Err estimation as a function of the distance between
peaks in presence of different degrees of deformation with a fixed μ = 0.35. 1D and 2D
cases have been plotted in left and right figures, respectively
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Fig. 7. Median of the FND obtained with different stripe sets as a function of μ.

Additionally, in Fig. 7 we show the FND obtained on real data with different
stripe sets for different bandwidths; we have used as a silver estimate of F the
one obtained with the eight 1D orientations indicated in Sect. 2. Specifically, we
have tried the following subsets: {45◦–135◦} and {0◦–90◦} in a grid (2D) pattern
with two peaks per orientation, and {45◦–135◦}, {0◦–90◦}, {45◦–135◦–0◦–90◦}
and {30◦–60◦–120◦–150◦} for line (1D) acquisitions with a unique peak. The
figure reveals that harmonic MP solution with a single acquisition overcomes
the solution obtained with two orthogonal line acquisitions and it provides a
reasonable performance loss with respect to four-orientation reconstructions, i.e.,
those needing two acquisitions, at least, in commercial equipments. Therefore, we

Fig. 8. Err (left) and Ecc (right) strain components for synthetic data obtained for
different bandwidths and methodologies. Ground-truth (GT) is also shown for the sake
of comparison.
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can conclude that our solution shows an appropriate balance between estimation
robustness and time consumption.

Finally, in Fig. 8 we show Err and Ecc estimates from the simulated SPAMM
data using the different methods (FT, WFT and MP-WFT) using two grid
images for the FT and WFT approaches, while only one has been employed for
the proposed MP-WFT approach (four wave vectors in total).

Visual results illustrate about the influence of bandwidth; when using smaller
ones strain is underestimated whereas when incrementing significant artifacts
and interferences arise. Obviously, the emergence of these artifacts would be
greatly limited by the use of a larger number of wave vectors, although MP-
WFT approach seems less prone to them.

5 Conclusions

In this paper we have described a robust alternative to the original HARP
method, intended for a single acquisition. To this end, we have observed that
information comprised by various peaks of the stripe pattern is useful for achiev-
ing robust results despite using a unique acquisition. We have quantified perfor-
mance of this solution with respect to multi-oriented solutions.

Simulation results indicate that four orientations converge into an orthogo-
nal grid with harmonically related peaks (in a mid to high deformation degree
interval) for an optimal performance, so multiple peaks as opposed to multiple
stripes is a preferable solution. The proposed pattern has also shown comparable
results, for the case of a single acquisition, to those obtained with two different
grid acquisitions, while the latter doubles the scan time.

Furthermore, the proposed multi-peaked method has significantly improved
both the accuracy and the reproducibility of strain measurements with respect to
the standard acquisition in which just two orthogonal orientations are acquired,
using same amount of time. With the proposed design, current acquisition pro-
tocols can be easily recast to include multiple peaks, which could simultaneously
improve the resolution, robustness and precision of motion sensitive MR imaging
and its subsequent analysis.

Acknowledgments. This work was partially supported by the European Regional
Development Fund (ERDF-FEDER) under Research Grants TEC2014-57428-R and
TEC2017-82408-R and the Spanish Junta de Castilla y León under Grant VA069U16.

References

1. Jeung, M., Germain, P., Croisille, P., El Ghannudi, S., Roy, C., Gangi, A.: Myocar-
dial tagging with MR imaging: overview of normal and pathologic findings. Radio-
Graphics 32, 1381–1398 (2012)

2. Shehata, M., Cheng, S., Osman, N., Bluemke, D., Lima, J.: Myocardial tissue tag-
ging with cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 11(1),
55 (2009)



Robust Windowed Harmonic Phase Analysis with a Single Acquisition 145

3. Ibrahim, E.: Myocardial tagging by cardiovascular magnetic resonance: evolution
of techniques pulse sequences, analysis, algorithms and applications. J. Cardiovasc.
Magn. Reson. 13, 36 (2011)

4. Simpson, R., Keegan, J., Firmin, D.: MR assessment of regional myocardial
mechanics. J. Cardiovasc. Magn. Reson. 37, 576–599 (2013)

5. Axel, L., Montillo, A., Kim, D.: Tagged magnetic resonance imaging of the heart:
a survey. Med. Image Anal. 9, 376–393 (2005)

6. Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)
7. Young, A., Axel, L.: Three-dimensional motion and deformation of the heart

wall: estimation with spatial modulation of magnetization-a model-based approach.
Radiology 185(1), 241–247 (1992)

8. Ibrahim, E., Swanson, S., Stojanovska, J., Duvernoy, C., Pop-Busui, R.: Harmonic
phase versus sine-wave modulation for measuring regional heart function from
tagged MRI images. In: 13th IEEE ISBI, Prague, Czech Republic (2016)

9. Arts, T., Prinzen, F., Delhaas, T., Milles, J., Rossi, A., Clarysse, P.: Mapping
displacement and deformation of the heart with local sine-wave modeling. Trans.
Med. Imag. 29, 1114–1123 (2010)

10. Osman, N., McVeigh, E., Prince, J.: Imaging heart motion using harmonic phase
MRI. IEEE Trans. Med. Imaging 19(3), 186–202 (2000)

11. Parthasarathy, V.: Characterization of harmonic phase MRI: theory, simulations
and applications. Ph.D. thesis, Doctoral dissertation, Johns Hopkins University
(2006)

12. Cordero-Grande, L., Vegas-Sánchez-Ferrero, G., Casaseca-de-la-Higuera, P.,
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14. Sanz-Estébanez, S., Cordero-Grande, L., Mart́ın-Fernández, M., Aja-Fernández,
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Abstract. The abundance of overlapping anatomical structures appear-
ing in chest radiographs can reduce the performance of lung pathology
detection by automated algorithms (CAD) as well as the human reader.
In this paper, we present a deep learning based image processing tech-
nique for enhancing the contrast of soft lung structures in chest radio-
graphs using Fully Convolutional Neural Networks (FCNN). Two 2D
FCNN architectures were trained to accomplish the task: The first per-
forms 2D lung segmentation which is used for normalization of the lung
area. The second FCNN is trained to extract lung structures. To create
the training images, we employed Simulated X-Ray or Digitally Recon-
structed Radiographs (DRR) derived from 516 scans belonging to the
LIDC-IDRI dataset. By first segmenting the lungs in the CT domain, we
are able to create a dataset of 2D lung masks to be used for training the
segmentation FCNN. For training the extraction FCNN, we create DRR
images of only voxels belonging to the 3D lung segmentation which we
call “Lung X-ray” and use them as target images. Once the lung struc-
tures are extracted, the original image can be enhanced by fusing the
original input x-ray and the synthesized “Lung X-ray”. We show that
our enhancement technique is applicable to real x-ray data, and display
our results on the recently released NIH Chest X-Ray-14 dataset. We see
promising results when training a DenseNet-121 based architecture to
work directly on the lung enhanced X-ray images.

Keywords: Deep learning · Image synthesis · CT · X-ray
Lung nodules · CAD

1 Introduction

Chest X-ray is the most frequently performed diagnostic x-ray examination. It
produces images of the heart, lungs, airways, blood vessels and the bones of the
spine and chest. It aides in the diagnosis and evaluation of chest diseases such
as lung cancer, pneumonia, emphysema, fibrosis, pleural effusion, pneumothorax
and tuberculosis. Lung cancer is the leading cause of cancer death among men
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D. Stoyanov et al. (Eds.): RAMBO 2018/BIA 2018/TIA 2018, LNCS 11040, pp. 147–158, 2018.
https://doi.org/10.1007/978-3-030-00946-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00946-5_16&domain=pdf


148 O. Gozes and H. Greenspan

and women in the United States and around the world. In the U.S, according
to the American Cancer Society [1], in 2018 alone, lung cancer is expected to
account for 25% of cancer related deaths, exceeding breast, prostate, colorectal,
skin melanoma and bladder cancers combined.

It was found that approx. 90% of presumed mistakes in pulmonary tumor
diagnosis occur in chest radiography, with only 5% in CT examinations [2]. For
this reason, missed lung cancer in chest radiographs is a great source of concern
in the radiological community.

In 2006 Suzuki et al. [7] introduced a method for suppression of ribs in chest
radiographs by means of Massive Training Artificial Neural Networks (MTANN).
Their work relied on Dual energy X-ray in the creation of training images. Other
recently published works have used Digitally Reconstructed Radiographs (DRR)
for training CNN models. Albarqouni et al. [10] used DRR image training for
decomposing CXR into several anatomical planes, while Campo et al. [9] used
the DRR image training to quantify emphysema severity. In recent years, with
the rapid evolution of the field of deep learning, hand in hand with the release of
large datasets [3,4], an opportunity to create a data driven approach for X-ray
lung structures enhancement as well as lung pathology CAD has been enabled [5].

The current work focuses on enhancement of lung structures in chest X-ray.
Our training approach is based on CT data and is focused on extraction of lung
tissues and their enhancement in combination with the original radiograph. The
enhanced result maintains a close appearance to a regular x-ray, which may be
attractive to radiologists. The proposed methodology is based on neural networks
trained on synthetic data: To produce training images, we use DRRs that we
generated from a subset of LIDC-IDRI dataset. The LIDC-IDRI dataset (Lung
Image Database Consortium image collection) [3] consists of diagnostic and lung
cancer screening thoracic computed tomography (CT) scans with marked-up
annotated lesions.

Given a chest X-ray as input, we introduce a method that allows extraction
of lung structures as well as synthesis of an enhanced radiograph.

The contribution of this work includes the following:

– We present a novel CT based approach to automatically generate lung masks
which can be used for training 2D lung segmentation algorithms.

– We present a novel CT based approach to automatically extract lung struc-
tures in CXR which we term “lung X-ray” synthesis. The training process
for this method makes use of nodule segmentations contained in LIDC-IDRI
dataset to introduce a novel nodule weighted reconstruction loss. This assures
lungs nodules are not suppressed by the extraction FCNN.

– Combining the above mentioned methods, we present a scheme for lung struc-
tures enhancement in real CXR.

The proposed method is presented in Sect. 2. Experimental results are shown in
Sect. 3. In Sect. 4, a discussion of the results is presented followed by a conclusion
of the work.
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2 Methods

The principal methods presented in the work are the following:

• Synthetic chest X-ray generation for training
• 2D segmentation of the lungs: We present an algorithm for 2D segmen-

tation of the lungs in synthetic X-ray. The algorithm is trained using masks
retrieved from CT 3D lung segmentation.

• Generation of “lung X-ray” for training: Given a CT case as input,
we describe a process for the creation of a synthetic X-ray of exclusively
the lungs. We term the resulting reconstruction “lung X-ray” and use it for
training.

• Lung structures extraction: Given a synthetic X-ray as input, a FCNN
based algorithm for the synthesis of “lung X-ray” is presented.

• Lung structures enhancement: Combining the above mentioned methods,
we present a scheme for lung structures enhancement on real CXR.

Given real chest X-ray as input, the resulting trained lung enhancement method
is presented in Fig. 1. The solution is comprised of a lung segmentation FCNN, a
lung structures extraction FCNN, and a fusion block to create the final enhanced
radiograph.

Fig. 1. A description of the enhancement algorithm structure.

2.1 Synthetic X-Ray: Digitally Reconstructed Radiographs

We begin by introducing the method for generating digitally reconstructed radio-
graphs (DRRs).

Our neural networks are trained by using 2D DRRs which serve as input
images during the training process. These synthetic X-ray images are generated
by reconstructing a three dimensional CT case such that the physical process
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of 2D X-ray generation is simulated. In the following subsection we review the
physical process which governs chest X-ray generation and review our method
for simulating it.

DRR Generation: Our DRR generation method is based on the recently pub-
lished work by Campo et al. [9]. As X-rays propagate through matter, their
energy decreases. This attenuation in the energy of the incident X-ray depends
on the distance traveled and on the attenuation coefficient. This relationship is
expressed by Beer Lambert’s law, where I0 is the incident beam, I is the Intensity
after traveling a distance x and A is the attenuation coefficient:

I = I0 expAx (1)

In order to simulate the X-ray generation process, calculation of the attenua-
tion coefficient is required for each voxel in the CT volume. In a CT volume, each
voxel is represented by its Hounsfield unit (HU) value, which is a linear transfor-
mation of the original linear attenuation coefficient. Therefore the information
regarding the linear attenuation is maintained. We assume for simplicity a par-
allel projection model and compute the average attenuation coefficient along the
y axis ranging from [1, N] (where N is the pixel length of the posterior anterior
view). Denoting the CT volume by G(x, y, z), the 2D average attenuation map
can be computed using Eq. 2:

μav(x, z) =
N∑

y=1

μwater(G(x, y, z) + 1000)
(N · 1000)

(2)

Utilizing Beer Lambert’s law (Eq. 1) the DRR is generated (Eq. 3):

IDRR(x, z) = expβ·μav(x,z) (3)

The attenuation coefficient of water μwater was taken as 0.2 CM−1 while β was
selected as 0.02 such that the simulated X-ray matched the appearance of real
X-ray images.

As some cases in the LIDC-IDRI dataset include radiographs as well as CT
data, we were able to compare them to our generated synthetic radiograph. In
Fig. 2, we present a sample result of the DRR creation process. The real X-ray
and the DRR appear similar in structure. Since our CT dataset contains cases
with slice thickness as high as 2.5 mm, the DRR is less detailed then the CXR.

2.2 Lung Segmentation in Synthetic X-Ray

In the next step of the process, our goal is to segment the lung region in a given
synthetic X-ray (DRR). For this we employ a FCNN and train it as detailed
next.
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Fig. 2. (a) DRR(simulated X-ray) for LIDC-007 (b) CXR for LIDC-007

Creation of 2D Lungs Masks for Training: For each synthetic X-ray, a
2D training mask can be generated by a 2D projection of the 3D lung mask
matching the CT case used for DRR generation. In order to create a 3D lung
mask of the lung volume in CT, we first perform binarization of the CT scan
G(x, y, z) with a threshold of −500[HU]. For each axial slice we extract the filled
structure of the largest connected component. The 2D axial segmentations are
then stacked to create a 3D binary mask Mlung3D of the entire volume. In order
to create 2D masks to accompany the 2D DRR’s we project the binary Mlung3D
along the y axis, yielding a 2D mask which we denote Mlung2D.

In contrast to 2D masks usually employed in the process of training 2D lung
field segmentation algorithms [8], the masks generated by our method reflect the
exact position the of lungs in the image even when occluded by other structures.
As a result, the subdiaphagramatic and retrocardiac areas which are known as
hidden spots for nodule detection [2] are included in the mask. An example of a
3D mask and a 2D mask is given in Fig. 3.

Segmentation FCNN: The networks we use in this work are based on the U-
net FCNN architecture [6]. We specify here the modifications which we made to
the original architecture: The inputs size to the segmentation network is 512×512
with 32 filters in the first convolution layer. In order to improve generalization
of the network, we add a Gaussian noise layer(std = 0.2) which operates on the
input. We use dilated convolutions (dilation rate = 2) in order to enlarge the
receptive field of the network. Batch normalization layers were not used. For
nonlinearity, RELU activation is used throughout the net, while at the network
output we use a sigmoid activation. The output size is 512 × 512. The loss
function we used is weighted binary cross entropy.

Training was performed on batches of size 8. ADAM optimizer was used. The
optimal initial learning rate was found to be 1E–4. Validation loss converged after
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Fig. 3. (a) 3D lung segmentation mask (b) 2D projection of the lung mask

80 epochs. To augment the dataset during the training we utilized random data
augmentation for both the source and the lung mask. We used random rotations
by 2◦, width shift with range 0.1, height shift with range 0.2, random zooming
with factor 0.3.

2.3 Lung Structures Extraction Method

The input to the lung structures extraction algorithm is a synthetic X-ray. The
output is an image which includes only the lung structures appearing in the
original image. In order to teach a FCNN to perform this decomposition task,
we make use of the 3D CT data. A DRR of the lungs which we term “Lung
X-ray” is created and used as the training target image. Training pairs of source
and target images are generated as detailed next:

Source “Synthetic X-Ray” DRR Image Generation: For each CT case
we produce a DRR (Eq. 3) which serves as a “Synthetic X-ray” source image.

Target “Lung X-Ray” Image Generation: Utilizing the 3D segmentation
map Mlung, we mask out all non Lung voxels yielding GLung.

GLung = Mlung · G(x, y, z) (4)

A DRR can now be generated as before for GLung using Eq. 3. As a consequence,
the DRR generation process is now limited to the lung area. An example result
of the “Lung X-ray” generation process is given in Fig. 4. It is noticeable that
only inner lung structures appear, excluding overlapping anatomical structures.
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Fig. 4. (a) DRR source image: (b) “Lung X-ray” target image for training

Lung Structures Extraction FCNN: By training a FCNN to synthesize a
“Lung X-ray” matching a DRR input, we are able to extract the lung structures
from the input image.

In the following we describe the FCNN used in the lung structures extraction
algorithm. We used the U-Net Architecture [6] with the following modifications:
The inputs size is 512 × 512 with 32 filters in the first convolution layer. We use
RELU activation functions throughout the net while at the network output we
use the Tanh activation. The output size is 512 × 512.

In order to ensure small structures such as nodules appear in the synthesized
“Lung X-ray”, we assigned higher loss weight to image areas which contained
nodules. For each DRR, a matching 2D binary mask of nodules was generated
by projecting the 3D CT nodule annotations which are available in the LIDC
dataset.

The resulting loss function (Eq. 5) is a weighted L1 loss computed between
the FCNN output ypred and the GT target “Lung X-ray” image.

L1weighted = ‖(ypred − target) · (1 + wnoduleLoss · noduleMask)‖1 (5)

Nodules with the following features were selected: median texture greater
then 3, median subtlety greater then 4, level of agreement of at least 2 radiolo-
gists. This was performed in order to ensure that the nodules used are actually
visible in the DRR. A suitable wnoduleLoss was found to be 30.

Preprocessing. Images have been normalized to be in the range of [0,1] and
have been equalized using by first HE, then CLAHE with window of [40,40] and
contrast clip limit 0.01. When working with real X-ray, before feeding the images
to the extraction network, we use the segmentation FCNN to segment the lungs
and then normalize the lung area to mean 0, and std 0.5.
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Training of the Lung Extraction FCNN. The network was trained to syn-
thesize the required target image using training with batches of size 8 and with
ADAM optimizer. The optimal initial learning rate was found to be 1E–4. Vali-
dation loss converged after 200 epochs.

To augment the dataset during the training we utilized random data aug-
mentation for both the source and the target. We used random rotations by 4
degrees, width and height shift with range 0.1, random zooming with factor 0.2,
and horizontal flipping.

2.4 A Scheme for Lung Structures Enhancement in Real CXR

Once extracted, the lung structures can be added to the original DRR image,
allowing for a selective enhancement of lung structures. For the enhancement
of real CXR (Fig. 1), we first segment the lung area using the segmentation
FCNN. We proceed by normalizing the lung area to mean 0, std 0.5. Following
the normalization procedure, we use the lung structures extraction FCNN to
extract lung structures from the input image (i.e. prediction of a “Lung X-ray”).
The input CXR image and the synthesized “Lung X-ray” are scaled to the range
of [0,1]. We fuse the two images by performing a weighted summation (Eq. 6).

IEnhanced = ICXR + w · ILungXray (6)

In Fig. 5 we display example results on a real chest X-ray image. An enhance-
ment weight factor w is used to factor the extracted lung image. By controlling
w, multiple enhancement levels can be achieved.

Fig. 5. NIH chest X-Ray-14 case #1555 enhancement results
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3 Experiments and Results

3.1 Lung Segmentation

A total of 990 CT cases were used to create pairs of DRR and Lung mask for
training the segmentation FCNN. Data was split in 80-20 training validation
ratio. We threshold the continuous output of the segmentation network to get
a binary segmentation prediction (threshold=0.95). An example result of the
segmentation algorithm is given in Fig. 6. The Dice coefficient was chosen as
the segmentation metric. On the training set the Dice score was 0.971 while
on the validation set the Dice score was 0.953. Since our lung segmentation
algorithm is used for normalization of the input to the extraction FCNN we
were satisfied with the result. To the best of our knowledge, this is the first work
that performs lung segmentation using CT ground truth. As a result, we were
not able to perform a comparison to other works.

Fig. 6. (a) Original DRR (b) Segmentation result (Red: GT mask derived from CT,
Yellow: segmentation result, Orange: overlap) (Color figure online)

3.2 Lung Structures Extraction

A subset of 516 CT scans belonging to LIDC dataset was used for training. For
each CT case we generate a DRR and a “Lung X-ray” pair which we denote by
ISource and ITarget. In addition, we generate a 2D binary mask of the nodules
that belong to the case and use it for the computation of the loss function(Eq. 5).
We split the dataset to 465 training pairs and 51 validation pairs. We evaluate
our results on 51 validation cases and report MAE (Mean Absolute Error), MSE,
PSNR, and SSIM. Results are given in Table 1. An example result of the extrac-
tion algorithm is given in Fig. 7. In this case, the CT (7b) contained one nodule
which was projected to create the nodules mask (7c). Notice that the introduc-
tion of our weighted nodule loss function greatly improves the visibility of the
nodule in the extracted result(7e vs 7f).
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Table 1. Extraction network performance results

MAE MSE PSNR [dB] SSIM

Average 0.082 0.03 24.98 0.80

Std 0.017 0.007 1.41 0.04

Fig. 7. (a) DRR (b) CT view of a solid 1.6CM nodule (c) Nodules mask created by
projecting LIDC annotations to 2D (d) Target GT- “Lung X-ray” (e) Synthesized result
without nodule weighted L1 loss (f) Synthesized result (wnoduleLoss = 30)

3.3 Applicability to Real X-Ray

In order to explore the applicability of our algorithm to real X-ray and to exam-
ine whether the enhancement scheme introduces artifacts detrimental to CAD
detection performance, we chose to perform the lung enhancement algorithm as
a preprocessing step on nodule and mass CAD input images.

To accomplish this, we trained and tested a CheXNet [5] based network on
67,313 images released in ChestX-ray14 dataset(subset of PA images). In Fig. 8
we show the results of the enhancement on an image from NIH ChestX-ray14
dataset [4]. The architecture we chose was a DenseNet-121 based network, with
512×512 input size. Network weights were initialized with pretrained ImageNet
weights and training was performed independently for enhanced images and
non-enhanced images.

The dataset was split to 44,971 training, 11,245 validation and 11,097 test
images. Results are given on the official test set in terms of average precision
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(AP) for the labels mass and nodule. We see a moderate increase in AP scores
for the mass detection task (Table 2).

Table 2. Effect of lung structure enhancement preprocessing on CAD AP%. Evaluated
using 5000 bootstrap replicates, given as mean(std).

Mass Nodule

Non enhanced 36.83 (1.58) 29.25 (1.53)

Enhanced 39.65 (1.74) 29.73 (1.56)

Fig. 8. Enhancement result on NIH ChestX-Ray14 image. One network was trained
on the original X-ray and a second network was trained on the enhanced X-ray (a)
Original X-ray (b) Enhanced X-ray (c) Zoom (d) Zoom-Enhanced

4 Discussion and Conclusion

In this work we presented a novel method for enhancement of lung structures
in chest X-ray. We demonstrated that 3D CT data, along with 3D nodule anno-
tations, can be used to train a 2D lung structures enhancement algorithm. By
generating our own synthetic data, we enable neural networks to train on ground
truth images which are not achievable by current X-ray techniques. Initial results
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suggest a moderate improvement of lung mass CAD can be achieved by perform-
ing the proposed lung enhancement scheme as a preprocessing step. The results
also indicate that the effect of artifacts that may have been introduced by the
enhancement scheme is minimal. We plan to study next the impact that the
enhancement algorithm can have on a human reader performance. In future
work, we plan to improve the robustness of our method by performing unsu-
pervised domain adaptation between the CXR domain and the synthetic DRR
domain.
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Abstract. Accurate segmentation of anatomical structures in chest
radiographs is essential for many computer-aided diagnosis tasks. In this
paper we investigate the latest fully-convolutional architectures for the
task of multi-class segmentation of the lungs field, heart and clavicles in a
chest radiograph. In addition, we explore the influence of using different
loss functions in the training process of a neural network for semantic
segmentation. We evaluate all models on a common benchmark of 247
X-ray images from the JSRT database and ground-truth segmentation
masks from the SCR dataset. Our best performing architecture, is a mod-
ified U-Net that benefits from pre-trained encoder weights. This model
outperformed the current state-of-the-art methods tested on the same
benchmark, with Jaccard overlap scores of 96.1% for lung fields, 90.6%
for heart and 85.5% for clavicles.

Keywords: Chest radiographs · Lung segmentation
Clavicle segmentation · Heart segmentation
Fully convolutional networks

1 Introduction

Approximately 3.6 billion diagnostic radiological examinations, such as radio-
graphs (x-rays), are performed globally every year [1]. Chest radiographs are
performed to evaluate the lungs, heart and thoracic viscera. They are crucial
for diagnosing various lung disorders in all levels of health care. Computer-aided
diagnostic (CAD) tools serve an important role to assist the radiologists with
the growing number of chest radiographs. Accurate segmentation of anatomi-
cal structures in chest radiographs is essential for many analysis tasks in CAD.
For example: segmentation of the lungs field can help detecting lung diseases
and shape irregulars; segmentation of the heart outline can help to predict
c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): RAMBO 2018/BIA 2018/TIA 2018, LNCS 11040, pp. 159–168, 2018.
https://doi.org/10.1007/978-3-030-00946-5_17
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cardiomegaly; and the segmentation of clavicles can improve the diagnosis of
pathologies near the apex of the lung.

Evaluating a chest radiograph is a challenging task due to the high variability
between patients, unclear and overlapping organs borders, and image artifacts.
A clear and high quality radiograph is not easy to acquire. This challenge drew
many researchers over the years to improve the segmentation of anatomical struc-
tures in chest radiographs [2–5]. An open benchmark dataset that was provided
by Ginneken et al. [6] facilitated over the years an objective comparison between
the different segmentation methods. Classic approaches include active shape and
appearance models, pixel classification methods, hybrid models and landmark
based models. More recently deep learning approaches were suggested [2,3] based
on the successful employment of convolutional neural networks (CNNs) on var-
ious detection and segmentation tasks in the medical imaging domain [7].

CNN architectures for semantic segmentation usually incorporate encoder
and decoder networks [8,9] that reduce the resolution of the image to capture
the most important details and then restore the resolution of the image. Another
semantic segmentation approach is to keep the resolution of the network by
incorporating dilated convolutions [10] that enlarge the global receptive field
of the CNN to larger context information. In both approaches, the CNN can
output single-class or multiple-class segmentation masks. The resolution of the
output mask is the same as the input radiograph image. The training process
of each CNN is affected by several training features: One is the selection of the
loss function that guides the optimization process during the training process
(with different loss functions effecting differently the final output segmentation
performance results); The other is the initialization of the network weights - ran-
dom initialization or weights transferred from another trained network (transfer
learning from a totally different task).

In this paper, we explore the segmentation of anatomical structures in chest
radiographs, namely the lungs field, the heart and the clavicles, using a set of
the most advanced CNN architectures for multi-class semantic segmentation.
We propose an improved encoder-decoder style CNN with pre-trained weights
of the encoder network and show its superiority over other state of the art CNN
architectures. We further examine the use of multiple loss functions for training
the best selected network and the effect of multi-class vs. single-class training.
We present qualitative and quantitative comparisons on a common benchmark
data, based on the JSRT database [11]. Our best performing model, the U-net
with an ImageNet pre-trained encoder, outperformed the currently state-of-the-
art segmentation methods for all anatomical structures.

2 Methods

2.1 Fully Convolutional Neural Network Architectures

Fully convolutional networks (FCN) are extensively used for semantic segmen-
tation tasks. In this study, four different state of the art architectures have been
tested as follows:
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FCN - The first FCN architecture that we used in this work is based on the
FCN-8s net that uses the VGG-16 layer net [9,12]. The VGG-16 net is con-
verted into an FCN by decapitating the final classification layer and converting
fully connected layers into convolution. Deconvolution layers are then used to
upsample the coarse outputs to pixel-dense outputs. Skip connections are used
to merge output from previous pooling layers in the network which was shown
to improve the segmentation quality [9].
Fully Convolutional DenseNet - The second network architecture that was
tested is based on the fully convolutional DenseNet shown in [13]. DenseNet
architecture [14] proposes intensive layer fusion. Each dense block consists of
a set of convolution layers using a similar scale where each convolution layer
processes the concatenation of all its previous layers thus enabling the fusion of
numerous representation levels. For the fully convolutional DenseNet architec-
ture a decoding path is added to generate the segmentation output. The fusion
between different layers consists of intra dense block layers fusion as well as the
concatenation of the preceding high level feature maps and the ones coming from
the encoding block at the same scale.
Dilated Residual Networks - The dilated residual network (DRN) [10] uses
dilated convolution [15] to increase the resolution of output feature maps without
reducing the receptive field of individual neurons. It was shown to improve the
performance compared to the standard residual networks presented in [16]. We
have implemented the DRN-C-26 as stated in [10].
U-Net with VGG-16 Encoder - The U-Net architecture [8] has been exten-
sively used for different image-to-image tasks in computer vision with a major
contribution to the image segmentation task. The U-Net includes a contracting
path (the encoder) with several layers of convolution and pooling for down-
sampling. The second half of the network includes an expansion path (the
decoder) that uses up-sampling and convolution layers sequentially to gener-
ate an output with a similar size as the input image. Additionally, the U-Net
architecture combines the encoder features with the decoder features in different
levels of the network using skip connections. Iglovikov et al. [17] proposed to use
a VGG11 [12] as an encoder which was pre-trained on ImageNet [18] dataset and
showed that it can improve the standard U-Net performance in binary segmen-
tation of buildings in aerial images. A similar concept was used in the current
study with the more advanced VGG16 [12] as an encoder. Figure 1 shows a dia-
gram of our proposed network. The chest X-ray image is duplicated to obtain an
input image with 3 channels similar to the RGB images that are used as input
to the VGG-16 net (which is the encoder in the proposed architecture).

2.2 Objective Loss Functions

The loss function is used to guide the training process of a convolutional network
by measuring the compatibility between the network prediction and the ground
truth label. Let us denote S as the estimated segmentation mask and G as
the ground truth mask. In a multi-class semantic segmentation task including
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Fig. 1. The proposed U-Net architecture with a VGG-16 based encoder.

C = {c1, ..., cm} classes, the total loss (TS) between S and G is defined as the
sum of losses in every class:

TL(S,G) =
m∑

c=1

Lc(S,G) (1)

In this study we explore the influence of using different loss functions in the FCNs
training process. The Dice similarity coefficient (DSC) and Jaccard similarity
coefficient (JSC) are two well known measures in segmentation and can be used
as objective loss functions in training. These segmentation measures between S
and G are defined as:

DSC(S,G) = 2
|SG|

|S| + |G| (2)

JSC(S,G) =
|SG|

|S| + |G| − |SG| (3)

when used as loss in training, both measures weights FP and FN detections
equally. The Tversky loss [19] introduces weighting into the loss function for
highly imbalanced data, where we want to segment small objects. The Tversky
index is defined as:

Tversky(S,G;α, β) =
|SG|

|SG| + α|S/G| + β|G/S| (4)

where α and β control the magnitude of penalties for FPs and FNs, respectively.
In our study we used α = 0.3 and β = 0.7.

An additional loss function tested is the Binary Cross-Entropy (BCE). BCE
was calculated separately for each class segmentation map. For each pixel si ∈ S
and pixel gi ∈ G that share the same pixel position i, the loss is averaged over
all pixels N as follows:

BCE(S,G) =
1
N

N∑

i=1

gi log(si) + (1 − gi) log(1 − si) (5)
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3 Segmentation of Anatomical Structures

3.1 Dataset

Evaluation of the chest anatomical structures segmentation was done on chest
radiographs from the JSRT database [11]. This public database includes 247
posterior-anterior (PA) chest radiograph images of size 2048 × 2048 pixels,
0.175 mm pixel spacing and 12-bit gray levels. Ginneken et al. [6] publicized
the Segmentation in Chest Radiographs (SCR) database, a benchmark set of
segmentation masks for the lungs field, heart and clavicles (see Fig. 2). The
annotations were made by two human observers and a radiologist consultant.
The segmentations of the first observer generate the ground-truth segmentation
masks and the other - human observer results. The benchmark data is split into
two folds of 124 and 123 cases, each containing equal amount of normal cases
and cases with lung nodules. Following the suggested instructions for compari-
son between the segmentation results, images in one fold were used for training
and images from the other fold were used for testing, and vise versa. The final
evaluation is defined as the average performance over the two folds.

Fig. 2. Data sample from [6]: (a) chest radiograph image; (b) clavicles segmentation
mask; (c) lung segmentation mask; (d) heart segmentation mask.

For training, we resize the images to 224×224 pixels and normalize each image
by its mean and standard deviation. The networks are trained using Adam opti-
mizer with initial learning rate of 10−5 and default parameters for 100 epochs.
We use augmentations of scaling, translation and small rotations. In testing,
We threshold the output score maps with threshold = 0.25 to generate binary
segmentation masks of each anatomical structure.

3.2 Performance Measures

To measure the performance of the proposed architectures and compare to state-
of-the-art results, we use well accepted metrics for segmentation: Dice similar-
ity coefficient, jaccard index (also known as intersection over union) and mean
absolute contour distance (MACD). MACD is a measure of distance between
two contours. For each point on contour A, the closest point on contour B is
computed by the euclidean distance d(ai, B) = minbj∈B‖bj − ai‖. The distance
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values are then averaged over all points. Since distances from A to B are not
the same as B to A, we derive a common average between the two averages as
follows:

MACD(A,B) =
1
2
(
∑n

i=1 d(ai, B)
n

+
∑m

i=1 d(bi, A)
m

) (6)

Because MACD measure is given in millimeters, we multiply the original pixel
spacing by a factor of 2048/224 to match the target image resolution.

3.3 Experimental Results

Table 1 compares the segmentation performance of the four state of the
art fully convolutional networks for semantic segmentation as listed in
Sect. 2.1. All models are trained for multi-class segmentation into three classes:
lungs field, heart, clavicles. We use the sigmoid activation function after the
last layer of each network with Dice as the loss function. An additional column
in Table 1 shows if the network is fine-tunned (FT) from a pre-trained network.

The results show that the best performing architecture for the segmenta-
tion of all anatomical structures in chest radiograph, is the U-Net including
the VGG16 encoder pre-trained on ImageNet. This architecture achieved the
highest segmentation overlap scores (Jaccard) of 0.961, 0.906 and 0.855 for the
Lungs field, Heart and Clavicles respectively. It is noticeable that between all
four architectures, the fine-tuned networks performed better than the networks
trained from scratch.

Table 1. Segmentation results of four compared architectures trained with multi-class
Dice loss showing the Dice (D), Jaccard (J) and MACD metrics. Fine tuned (FT)
architectures include a pre-trained VGG16 as an initial encoder.

Architecture FT Lungs Heart Clavicles

D J MACD D J MACD D J MACD

FCN v 0.976 0.953 1.341 0.944 0.895 3.099 0.884 0.795 1.277

U-Net (VGG16) v 0.980 0.961 1.121 0.950 0.906 2.569 0.921 0.855 0.871

FC DenseNet 0.973 0.947 1.511 0.934 0.879 3.396 0.884 0.796 1.349

DRN 0.966 0.935 1.842 0.936 0.881 3.365 0.840 0.727 1.860

For the top performing architecture, the U-Net based network, we further
analyzed several training features. Table 2 summarizes the multi-class segmen-
tation performance using different objective loss functions. It is evident that
structures with smaller pixel area, like the clavicles, benefits from loss metrics
with pixel weighing such as Tversky loss function. We also tested the perfor-
mance of training a single-class network for each of the three classes vs. the
multi-class training. For the lungs, the single class training did not resolve in
significant improvement. However, for the heart and clavicles, the Dice and Jac-
card scores in a single-class training were improved each by 1% in comparison to
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Table 2. Multi-class segmentation results using different loss functions including DSC,
JSC, Tversky and BCE (rows). The Dice (D), Jaccard (J) and MACD are used as
metrics (columns) for each anatomical structure

Loss Function Lungs Heart Clavicles

D J MACD D J MACD D J MACD

DSC 0.980 0.961 1.121 0.950 0.906 2.569 0.921 0.855 0.871

JSC 0.979 0.960 1.082 0.949 0.905 2.602 0.921 0.855 0.920

Tversky 0.979 0.960 1.139 0.950 0.905 2.581 0.923 0.858 0.987

BCE 0.980 0.961 1.119 0.950 0.906 2.592 0.911 0.838 1.145

the multi-class training. The last improvement in performance of the multi-class
segmentation was achieved using post-processing including small objects removal
and hole fill. While the Dice and Jaccard metrics were not improved, the MACD
metric showed an improvement from 1.121, 2.569 and 0.871 [mm] for the lungs,
heart and clavicles to 1.019, 2.549 and 0.856 [mm] respectively. Figure 3 shows a
few segmentation examples of our best performing model. A comparison of our
U-Net based model trained with multi-class dice loss to existing state-of-the-art
methods, validated on the same benchmark of chest radiographs and a human
observer, is presented in Table 3.

Fig. 3. Segmentation results of our best performing architecture with Jaccard score
above each image for the Lungs(L), Heart(H) and Clavicles(C); Ground-truth segmen-
tation is shown in blue, CNN segmentation in red and the overlap (true detections) in
green. (Color figure online)
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Table 3. Our best performing architecture compared to state-of-the-art models; “-”
means that the score was not reported; (*) used different data split than suggested in
SCR benchmark

Dice Jaccard MACD (mm)

Lungs

Human observer [6] - 0.946 ± 0.018 1.64 ± 0.69

Hybrid voting [6] - 0.949 ± 0.020 1.62 ± 0.66

Ibragimov et al. [4] - 0.953 ± 0.020 1.43 ± 0.85

Hwang and Park [3] 0.980 ± 0.008 0.961 ± 0.015 1.237 ± 0.702

Novikov et al. [2](*) 0.974 0.950 -

Yang et al. [5] 0.975 ± 0.001 0.952 ± 0.018 1.37 ± 0.67

U-Net (VGG16) 0.980 ± 0.008 0.961 ± 0.014 1.019 ± 0.564

Heart

Human observer [6] - 0.878 ± 0.054 3.78 ± 1.82

Hybrid voting [6] - 0.860 ± 0.056 4.24 ± 1.87

Novikov et al. [2](*) 0.937 0.882 -

U-Net (VGG16) 0.950 ± 0.021 0.906 ± 0.038 2.549 ± 1.126

Clavicles

Human observer [6] - 0.896 ± 0.037 0.68 ± 0.26

Hybrid voting [6] - 0.736 ± 0.106 1.88 ± 0.93

Novikov et al. [2](*) 0.929 0.868 -

U-Net (VGG16) 0.921 ± 0.027 0.855 ± 0.045 0.855 ± 0.322

4 Discussion and Conclusion

Segmentation of anatomical structures in chest radiographs is a challenging task
that attracted considerable interest over the years. The advantages of newly
introduced CNN architectures, together with the public benchmark dataset pro-
vided in [6] on the JSRT images, motivated further studies in this field. Some
of the recent studies focused only on the problem of lung segmentation, and a
few have also dealt with the problem of heart and clavicles segmentation. In this
paper, we employed and evaluated the segmentation performance of four top
FCN architectures [9,10,13,17] for semantic segmentation for all three anatom-
ical structures, using multi-class dice loss.

The network architectures presented in this study are well known and showed
promising results in many computer vision semantic segmentation tasks. The
FCN [9] and the U-Net [8] are considered classical approaches while the FC
DenseNet and the DRN are more advanced and relatively new approaches for
semantic segmentation. Hence, it was interesting to see in Table 1 that the clas-
sic U-Net and FCN showed superior segmentation performance over the more
advanced approaches. The advantage of using pre-trained networks for medical
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imaging tasks has already been shown in several studies [7], and even though
only the encoder part of the FCN and U-Net (VGG16 encoder) networks was
pre-trained using the ImageNet database in our case, it seemed to be advan-
tageous. The best segmentation performance was obtained using the proposed
U-Net based architecture including the pre-trained VGG16 encoder (Table 1).

Next, we explored the effect of training multi-class segmentation model using
different loss functions (Table 2). We demonstrated that small structures such as
the clavicles can benefit from weighted loss functions such the Tversky loss func-
tion while the larger structures (lung and heart) achieved the best segmentation
results using Dice or Binary Cross-Entropy loss functions. Applying additional
minor post-processing resulted in further decrease of the MACD measure with
cleaner and more precise segmentations for all three structures as displayed in
Fig. 3.

Table 3 presents the final comparison between our top selected model, the
multi-class U-Net VGG16 with dice loss, to state-of-the-art methods [2–6] and
human observer segmentations [6]. Our model outperformed all state-of-the-art
methods tested in this study and the human observer for the lungs and heart seg-
mentation. For the clavicles segmentation, fewer studies were conducted. Novikov
et al. [2] reported results on different data split than the benchmark recom-
mendation so its not an objective comparison. However, our proposed network
outperformed an additional top reported method [6].

In conclusion, we presented an experimental study in which four top segmen-
tation architectures and several losses were compared for the task of segmenting
anatomical structures on chest X-Ray images. Results were evaluated quantita-
tively with qualitative examples of our best performing model. Improving the
segmentation of the lung field, heart and clavicles is the foundation for better
CAD tools and the development of new applications for medical thoracic images
analysis.
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Abstract. Cutting-edge translational research on preclinical models of lung
infectious diseases, such as Tuberculosis disease uses computed tomography
(CT) images for assessing infection burden and drug efficacy over treatment.
Biomarkers which characterize the distribution and extent of the disease-
associated tissue are commonly based on the analysis of the intensity histogram
as the involved tissues present abnormal densities in the organ being diagnosed.
Often the cellular composition of the tissue represented by those grey-levels is
ignored. Our hypothesis is that an accurate CT segmentation of the disease-
associate tissue components could be based on the histopathological analysis of
the sample. Drug development studies would then benefit of the efficacy
assessment by lesion compartment response. We present here a protocol that
allows to segment the healthy parenchyma, foamy macrophages and neutrophil
foci in excised lung samples of healthy and tuberculous animal models.

Keywords: Tuberculosis � Micro-CT � X-ray histology � HU segmentation

1 Introduction

The increase of drug-resistant strains of Mycobacterium Tuberculosis (Tb) claims for
new effective antibiotic combinations. The selection of compound candidates is
speeded up by the use of animal models that accurately reflect the pathological pro-
gression of pulmonary tuberculosis [1–3].

The hallmark of tuberculosis is the formation of organized aggregates of immune
cells, known as granulomas. In the presence of stimuli, tuberculous granulomas are the
host-protective structures formed to contain infection. These containments act as bar-
riers preventing the penetration of chemotherapeutic eradication agents, and also as an
incubator for bacillus proliferation.

In granulomas, bacteria are predominantly found evading immune defences:
intracellularly, inside macrophages and neutrophils and extracellularly, in interstitial
tissue. Necrotizing granulomas present a caseous centre which constitutes the reservoir
from which large bacterial numbers emerge. Furthermore, Tb can also provoke an
inflammatory response in lung tissue which is subjected to repair, a niche that is often
ignored [4, 5].
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Thus, drug efficacy depends on its ability to reach both their extracellular and
intracellular targets, penetrating and permeating complex lung lesion compartments.

The classical bacteriological examination used for human subjects such as the
tuberculin skin test or the sputum culture are not available for mouse models. Clas-
sically, histopathological tests are performed at significant points during the experiment
to estimate the number of viable bacteria or fungal cells in the samples [1, 6–12].

In drug development studies, in vivo low-dose high-resolution micro-CT imaging
allows to follow up the advance/recession of the infection in terms of disease tissue
extent [13, 14], independently on the type of lesion. Well established biomarkers are
based on the intensity thresholding between the healthy and diseased lung parenchyma
in thoracic micro-CT scans [6–9, 11, 12, 15]. Among the variety of texture features, the
ones based on the grey level co-occurrence matrix (GLCM) [16] are proved to be
especially useful in our context [17–20]. The information provided by these biomarkers
allows to follow up the host response over time per subject of the experimental pro-
tocol, reducing the need of the histopathological evaluation. The strength of longitu-
dinal studies is the deep understanding of the disease mechanisms and the structural
changes it causes in the damaged parenchymal tissue.

The nomenclature stablished by CT biomarkers defines the mid-high intensity lung
regions as soft diseased tissue and the high intensity lung regions as hard diseased
tissue, remarking that the higher the diseased volume, the higher the disease burden
(soft and hard). More specifically, the larger the hard volume, the lower responsiveness
to treatment [10]. However, the relationship between grey levels and cellular compo-
sition of the lesion is not yet defined. We believe that the prognosis information given
by those known biomarkers reflects underlying histopathology of the disease. For this
reason, in this work, we propose a thresholding protocol which translates the
histopathological segmentation to the CT images for the classification of granuloma
intensities by their cellular composition. This approach enables the detection and
stratification of tuberculosis involvement in micro-CT volumes of excised mouse lungs
and opens the door to the assessment of treatment efficacy per granuloma composition.

2 Materials

For this work, we used lungs excised from two females C57BL/6J mice using pro-
cedures approved by the Animal Experimentation Ethics Committee of Hospital
General Universitario Gregorio Marañón, Madrid, Spain and performed according to
EU directive 2010/63/EU and national regulations (RD 53/2013). One was inoculated
with the virulent strain of Tb H37Rv at the age of ten weeks. Both subjects were
sacrificed eight weeks after the intratracheal insult. At that time, the infected mouse
reached the chronic phase of the disease.

The preparation for histology consists on the immersion of the whole organ in
paraffin blocks. The tissue was processed for fixation, dehydration, and wax immersion
treatment. An iodinated-based staining step was added to the cycle before the wax
immersion to enhance the CT contrast of the embedded organs.

When embedded in paraffine and before histology slicing, the two lungs were
screened by micro CT scan. A standard micro-CT subsystem of a SuperArgus scanner
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(Sedecal Molecular Imaging, Madrid) was used (settings: 68 kV, 420 uA and soft-
tissue filtering). We selected a 0.5° step-and-shoot protocol covering 360° and a multi-
frame rate of eight frames per gantry position at 20 frames per second. These acqui-
sition parameters lead to a total volume data of 4.27 GB (2.84 MB per frame, 80
frames in total) and a total acquisition time of sixteen minutes. Data-sets were
reconstructed using the filtered back-projection (FBP) algorithm and an isotropic voxel
resolution of 44 um. The axial CT slices were acquired parallel to the microtome
slicing plane.

Once the acquisitions were finished, we processed four infected histological glass
slides (from the disease model lung) and one healthy histological glass slide (from the
healthy organ) with haematoxylin and eosin (He) stain which adds the contrast for
nuclei, cytoplasm and extracellular matrix. The five slides were digitalized using the
Aperio CS2 image capture device (Leica Biosystems, Nussloch, Germany) in tiled
multi-resolution format. This format is the standard for virtual slides. By default, it is
composed by three images of different resolution and each one stored as a separate
layer within the image file. For the files on this work, the first layer corresponds to the
full resolution image (at 40x magnification and 0.251 microns-per-pixel), the second
level to a 25% of the original slide, meaning a 4:1 ratio, and the last level corresponds
to a preview image called thumbnail.

3 Methods

The main steps of the proposed algorithm are presented in Fig. 1. The 3D micro-CT
volumes and the 2D mid resolution histology images are the input datasets for the
registration, annotation and Hounsfield Unit (HU) thresholding steps which result in
the cellular segmentation of the micro-CT volume. The dissected Tb-infected mouse
lung served as training sample for the protocol in Fig. 1 and the dissected healthy
mouse lung served as thresholding testing sample.

Fig. 1. Thresholding algorithm: The paraffine block with the embedded organ is scanned by CT
and then the block is sliced and digitalized. The CT slices are registered with the annotated
histology slides. HU-based segmentation is done using the histopathological labelling
information.
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3.1 Histological Annotation

An He slide (Fig. 2) corresponding to the right upper lobe of the infected animal was
used to create and train the classifier of the information concerning lung tissue: healthy
alveolar tissue appears as light pink and diseased tissue as dark violet. Other structures
such as the airways and tracheal walls appear as the diseased tissue stained with a dark
violet colour.

The granulomas from the murine model under study are characterized by unor-
ganized lesions composed of lymphocyte or neutrophil foci forming a more defined
cup, and of diffuse inflammatory cells (foamy macrophages) isolated or surrounding
those cups. Thus, the images were annotated using four labels corresponding to
background, healthy parenchyma (HP), foamy macrophages (FM) and neutrophil foci
(NF).

An expert histopathologist created and trained the classifier using the Trainable
Weka Segmentation tool [21]. The same tool was then used for labelling the other
regions of the slide (the lobes which were not use for training) and the remaining
histological slides. The segmentation accuracy has already been demonstrated by its
utilization in microscopy [22–28].

3.2 CT-Histology Registration

Owing that the same excised sample has been acquired by CT and by microscopy
imaging of the histology preparations, datasets are affine sets even after manipulating
the paraffin block. The possible deformations may involve rotations, translations,

Fig. 2. Lung tissue appearance in histological images. Detail of lesions and cells represented by
the colour scale in haematoxylin and eosin stain. Scale bars represent 2 mm and 100 um. (Color
figure online)
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scaling, and/or shears, which leads us to use the affine registration. By preserving
collinearity and ratios of distances, the histological slide is deformed using a gradient
descent optimization until the mutual information between it and the reference image is
maximized. The mutual information is the similarity measure commonly used for
registration of multimodality images and it is the parameter considered for the
assessment of the optimum registration.

By finding the micro-CT slice correspondence and the transformation matrix, we
can compare the structures and lesion compartments in the 2D histology slide and in
the 3D micro-CT slice.

3.3 HU Thresholding by Histopathology

A preliminary slice segmentation based on the CT volume histogram served as basis for
the fine threshold determination using the histopathological annotations. This step
consisted on the identification of three tuberculosis-related tissue classes by iso-data
thresholding: healthy tissue, soft tissue and hard tissue. An extra class is added for the
background identification. The segmentation was done according to the classes defined
in literature [9, 11, 29] and its main purpose is to delimit the regions of interest to avoid
the misclassification induced by noise and image artefacts.

The four CT classes applied to each slice were then registered with their corre-
sponding four histology classes using the previously derived affine transformation
(Sect. 3.2). By separating the CT slices into four masks each corresponding to a normal
distribution per tissue.

The intersection points of their probability density functions determine the HU
thresholds. Radiodensity ranges can then be applied to the 3D CT volumes of the
paraffin blocks to stratify the pulmonary tissues.

All methods presented in this section were developed in Matlab (Matlab Inc.,
Natick, MA, USA).

4 Results

The four histological slides from tuberculosis-infected subjects were classified using
WEKA and registered with their corresponding 3D micro-CT slices (Fig. 3). From the
four micro-CT slices, the HU tissue masks were extracted and the resulting normal
distributions per tissue are shown in Fig. 4. The points of intersections of their prob-
ability density function are the micro-CT thresholds. These thresholds were used for the
segmentation of the 3D micro-CT volumes, comprising the remaining 75 slices of the
Tb-infected mouse lung and the 80 slices of dissected healthy mouse lung.

To evaluate and validate the proposed histopathological thresholding protocol, two
metrics were defined: the visual assessment of the resulting segmented volumes for
both the infected and the healthy samples, and their quantitative assessment by the
Jaccard index, a well-known similarity index.

The diagnostic ground truth used for evaluation is the manual segmentation of the
3D CT volumes by an expert radiologist, who used the intensity segmentation approach
described in Gordaliza et al. [29] for evaluating disease burden. Table 1 gives a
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Fig. 3. Registered images: (first row) micro-CT slice, (second row) histological annotated slide
registered with the micro-CT and (third row) the composite result with colour code: Black,
background; blue, healthy parenchyma; green, foamy macrophages and red neutrophil foci. This
leads to HU tissue masks guided by histological annotations. Image size 256 � 256 px. (Color
figure online)

Table 1. Thresholds for segmentation of 3D micro-CT volumes (HU).

Tissue Ground truth Histological thresholding

Healthy parenchyma �384�HP\� 198 �345�HP\� 185
Foamy macrophages �198�FM\157 �185�FM\103
Neutrophil foci 157�NF\max 103�NF\max

Table 2. Jaccard indexes between histology-based segmentation and radiologist decision.

Tissue Healthy organ TB infected organ

Healthy parenchyma 0,95 0,91
Foamy macrophages 0,75 0,71
Neutrophil foci 0,79 0,73
Total 0,90 0,85
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Fig. 4. Histogram per tissue of the CT-histology registered slices (bars) and their derived
probability distribution function (curves) of the normal distribution. Labels from the histology
annotation have been preserved: black, background; blue, healthy parenchyma; green, foamy
macrophages and red neutrophil foci. (Color figure online)

Fig. 5. Composite of the classified 3D micro CT based on the HU distribution of the three
tuberculosis-associated tissue volumes in a, healthy organ and in b, an infected organ. Black,
background; blue, healthy parenchyma; green, foamy macrophages and red neutrophil foci.
(Color figure online)
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summary of the tissue segmentation thresholds used to build the ground truth and those
computed by the presented histology-based approach.

The qualitative assessment is depicted in Fig. 5 in which the composition of the
segmented masks uses the colour scheme shown in Fig. 4. The absence of disease
tissue (in the form of inflammatory response or of granulomas) can be visually assessed
on the healthy volume (Fig. 5A).

The presence of disease tissue within healthy parenchyma can be assessed on the
infected volume (Fig. 5B). The trachea and the oesophagus are also segmented as
diseased tissue, since the radiodensities of those structures lay in the same ranges as the
macrophages or the neutrophils. This circumstance is also present on the histological
annotations.

The similarity between the radiologist and the histology-based segmentation was
measured using the Jaccard index, a metric that quantifies the size of the intersection
divided by the union of the sets under comparison: the closer to the unit, the higher
similarity. Table 2 shows the obtained Jaccard indexes for each type of segmented
tissue (healthy parenchyma, foamy macrophages, neutrophil foci) and all segmented
tissue.

5 Discussion

Our results confirm that the proposed histopathology on x ray CT provides a satis-
factory estimation of the granuloma cellular structure by statistically modelling the HU
distribution and by registering the CT with histological slides. The proposed
methodology automatically assigns thresholds to 3D micro-CT for revealing the
presence, extent and appearance of the immune responses to a tuberculosis challenge.
Lobes and tuberculous granulomas were segmented by healthy parenchyma, foamy
macrophages (predominant in inflammatory response) and neutrophil foci.

Histological annotations based in intensity have misidentifications owing that
multiple tissues are coded with the same colour range. In our case, the characteristic
cells composing the walls of collapsed alveoli, trachea and airways are automatically
annotated as diseased tissue, both in the 3D micro CT volume and in the 2D histo-
logical slide. Spots in the digitalized histology slide due to dust in the lens were also
detected by the classifier as diseased tissue. Furthermore, the staining concentration
also interferes the classification, preventing the extraction of a global set of thresholds
for CT slices or He slides. Approaches worth to explore are those using texture to
classify the different cell components on the histological slides and those using his-
togram equalization strategies to further generalize the HU thresholds for Tb-related
tissues.

The correspondence between standard histology and molecular imaging techniques
can be estimated using registration techniques tailored for multimodal images. Most
approaches rely on rigid registrations (i.e., affine transformation), for the initial slice
correspondence between the 2D histology and 3D micro-CT [30, 31]. The intact tissue
preservation and the digitalization quality are critical aspects for an optimum
registration.
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There are multiple image-based procedures which benefit from the 3D/2D regis-
tration of the whole organ image volume with histological slides. For example, the
correspondence between MRI and histopathology in prostate cancer detection [32, 33].
In this type of cancer, it is generally difficult to differentiate the cancerous and non-
cancerous regions directly on the preoperative in vivo MR images and the information
that histopathological images offer ease the planning tasks.

It has also been demonstrated that is a good method to compare bone structure
measurements performed on micro-CT images and to check that the diagnosis is correct
[30, 31]. As far as we know, few results have been presented for soft tissue imaging
tasks such as the pulmonary tissue [34–36].

It must also be considered that there is not exact correspondence between the
histology image and a slice in the micro-CT. The voxel size of our 2D micro-CT slice is
40 um, meaning that the image is a flat cross-section which integrates all the structures
within 40 um depth, whereas the width of the histology samples is 3 um. This may lead
to misclassification of lesions or patterns that appear in the histology slide but not in the
CT slice. One common event is the edge effect. Edges in histology have high intensity
values and sometimes misclassified as neutrophil focus. However, those patterns are
not expressed at the micro-CT scale. The limitations mentioned will be addressed in
future studies by considering multiple disease models, strains and disease mechanisms,
which will extend the robustness and accuracy of the granuloma stratification. We will
focus on increasing the sample size of the training dataset with the goal of translating
the approach to in-vivo longitudinal studies for a robust prediction of treatment out-
come. With such studies, the efficacy of a compound to penetrate any type of lesion can
be tested and therefore, the time to find plausible candidates for clinical trials can be
reduced.

To conclude, we have proposed a fully automatic method for a virtual
histopathological analysis based on the radiodensities of tuberculosis involvement on
whole mouse lungs. The statistical model profits from the expert’s semiquantitative
histopathological annotations. The method has the potential to define the correspon-
dence between the grey-level intensity-based biomarkers and the pathological mani-
festations of infectious diseases involving any organ.
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Applied Chest Imaging Laboratory (ACIL), Brigham and Women’s Hospital,
Harvard Medical School, Boston, MA, USA

{gvegas,rsanjose}@bwh.harvard.edu

Abstract. Recent studies have suggested the central role of small airway
destruction in the pathogenesis of COPD leading to further parenchymal
destruction. This evidence has sparked the interest in in-vivo assessment
of small airway disease overall at the early onset of the disease. The
parametric response mapping (PRM) technique has been proposed to
distinguish gas trapping due to small airway disease from low attenuation
areas due to emphysema. Despite its success, the PRM technique shows
some limitations that are precluding the interpretation of its results.
The density value used to assess gas trapping highly depends on acquisi-
tion parameters, such as dose and reconstruction kernel, and changes in
body size, that introduce inhomogeneous photon absorption patterns. In
particular, many studies using PRM employ inspiratory and expiratory
images that are obtained at different dose levels. Emphysema impact in
early disease may be confounded with the gas trapping due to the noise
introduced by differences in the acquisition during the PRM. In this
work, we propose a CT harmonization technique to remove the nuisance
factors to distinguish between small airway disease and emphysema. Our
results show that the measurements based on CT harmonization provide
an increase in the detection of both emphysema and airway disease,
resulting in a statistically significant impact of both components and a
better association with lung function measures.

Keywords: CT scans · Emphysema · Lung disease
Statistical characterization

1 Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a complex syndrome with
widely varying clinical and imaging characteristics. The chronic airflow limita-
tion of COPD is caused by a mixture of small airway disease and parenchymal
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destruction (emphysema). COPD is a major cause of morbidity and mortality.
Despite declines in smoking, mortality from COPD continues to increase and is
now the third leading cause of death in the US. Recent studies have suggested
that the central role of small airway disease in the pathogenesis of COPD leads
to additional parenchymal destruction [1]. This evidence has sparked the inter-
est in in-vivo assessment of small airway disease overall at the early onset of the
disease.

Computed Tomography (CT) is the main imaging modality for thoracic con-
ditions due to its high tissue-air contrast. CT has been proven to be effective
in the quantification of emphysema [2]. However, direct measurements of the
dimensions of small airways using CT scanning is beyond current imaging res-
olution [3]. One option to indirectly assess the effects of smaller airways is to
quantify gas trapping by measuring the percent of voxels in the lung lower than
-856 Hounsfield Units (HU) on an expiratory CT scan [4]. A technique named
Parametric Response Mapping (PRM) has been proposed to distinguish gas
trapping due to small airway disease from low attenuation areas due to emphy-
sema [5]. The technique employs both inspiratory and expiratory CT scans. After
the co-registration of both images and the application of established CT density
thresholds, one can distinguish between functional small airway disease (FSAD)
and emphysema.

The COPD imaging community has extensively used PRM since its introduc-
tion. However, despite its success, the PRM technique shows some limitations
that are precluding the interpretation of its results. The density value used to
assess gas trapping highly depends on acquisition parameters, such as dose and
reconstruction kernel, and changes in body size, that introduce inhomogeneous
photon absorption patterns. In particular, many studies using PRM employ
inspiratory and expiratory images that are obtained at different dose levels and
introduce a spatially variant noise and bias across the image [6]. These effects
are nuisance factors that affect the inter-scanner and inter-subject variability in
CT density and confounds CT-derived metrics by PRM. As an example, Fig. 1
shows the expiratory and inspiratory scans of the same subject and the local

Inspiratory Scan

CT Local Std. Dev. [HU]

Expiratory Scan

Local Std. Dev. [HU]CT

Fig. 1. Inspiratory and expiratory scans used for PRM analysis. Note that the noise
variance remarkably increases in the expiratory scan due to the lower dose applied.
Additionally, the noise changes across the image affecting the PRM analysis.
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standard deviation in each image. Note that the noise changes across the image
and that the expiratory scan shows a higher variance of noise due to the lower
dose applied.

Researchers are aware of the importance of these nuisance factors and much
effort has been done in reducing the spatially variant noise for both iterative
and back projection reconstruction techniques [7,8]. Spatial discrepancies in the
attenuation levels have been largely observed in clinical studies, especially for
air [9]. Some approaches using anatomical references like trachea and aorta den-
sities have been proposed with promising results [9–11]. The inter-scanner devi-
ations due to calibration are also an important factor that has been studied
in [12].

A recent PRM study has successfully associated functional respiratory decline
with FSAD in the mild-moderate stage of COPD [13]. Surprisingly, the emphy-
sema in this early stage has no effect. The detection of FSAD has been useful
in the early detection of rapid lung function decline. However, if the mentioned
nuisance factors that affect the interpretation of PRM are precluding the distinc-
tion between FSAD and emphysema, we could be losing valuable information
about the emphysema and FSAD interplay that can help identify trajectories of
rapid decline.

In this work, we propose a harmonization methodology that simultaneously
minimizes the spatially variant noise and biases. We employ the harmonization
in both inspiratory and expiratory scans for the PRM analysis. Results show
that our technique is able to detect the impact of both emphysema and airway
disease in contrast to other reference methods used to palliate the effect of noise.
Correlation analyses with lung function show a better fit with the harmonized
data that cannot be achieved with other conventional noise reduction method-
ologies. This result evidences the importance of scan harmonization for clinical
data and shows that the role of emphysema is still significant in early disease
and can be distinguished from FSAD.

2 Harmonization of CT Scans

The harmonization of CT scans will be performed in three steps. First, we
estimate the spatially variant noise power and signal. Second, we remove the
spatially variant bias induced by the noise, and finally the density levels are
re-calibrated to the nominal values of apparent anatomical structures.

Characterization of Tissues. The estimation of both the signal and noise
components of the CT image is performed by adopting the statistical charac-
terization of signal/noise in CT scans proposed in [8]. We adopted this model
because it offers a versatile methodology to describe the spatially variant noise in
CT scans reconstructed with both backprojected and iterative methods without
the need of sinograms or any interaction with the reconstruction method.
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This model consists in a non-central Gamma distribution (nc-Γ ) for each
voxel X(r) of the image:

fX(x|α, β, δ) =
(x − δ)α−1

βαΓ (α)
e− x−δ

β , x ≥ δ and α, β > 0 (1)

where α, β are the spatially variant shape, scale parameters; and δ is location
parameter usually set to the minimum value of the CT scan (usually −1024 HU).

The heterogeneous nature of lung parenchyma is effectively described by
means of a mixture model of nc-Γ distributions:

p(x(r)) =
J∑

j=1

πj(r)fX(x(r)|αj(r), βj(r), δ) (2)

for J components, where πj are the weights of the mixture and αj , βj the
parameters of each component. To ensure that the heterogeneous composition
of the lung is properly described in the mixture model, we set J = 9 components
from −1000 to 400 HU. This is a reasonable range of attenuations considering
that the normal lung attenuation is between −600 and −700 HU, and also allows
us to model other tissues within the CT image such as vasculature, muscle, fat
or bone.

The estimation of the parameters for each component is achieved through
the Expectation-Maximization method for known mean values for each com-
ponent, {μj}J

j=1, which reduces the problem to solve a non-linear equation in
each iteration at each location. The estimation of the shape parameters for each
component, αj , are obtained for each location r by solving the following non-
linear equation derived from the maximum likelihood estimation in the local
neighborhood η(r) (see [8] for more details):

log(αj(r))−ψ(αj(r)) =

∑

s∈η(r)

γj(s)
xi(s) − δ

μj

∑

s∈η(r)

γj(s)
−

N∑

s∈η(r)

γj(s) log

(
xi(s) − δ

μj

)

∑

s∈η(r)

γj(s)
−1 (3)

with ψ(·) = Γ ′(x)/Γ (x) being the digamma function, and γj(r) = P (j|x(r)) are
the posterior probabilities for the j-th tissue class at location r :

γj(r) =
πj(r)fX(x(r)|αj(r), βj(r), δ)

∑J
k=1 πk(r)fX(x(r)|αk(r), βk(r), δ)

. (4)

Then, the scale factor is calculated as βj = μj/αj and the priors πj are
updated as πj = 1

N

∑N
i=1 γi,j .

Equations (3 and 4) are iteratively applied until convergence is reached. This
convergence is usually achieved in very few iterations due to the constraint
imposed by the mean {μj}J

j=1 for each tissue. A suitable initialization of param-
eters for the iterative optimization is πj = 1/J , αj = 2 and βj = μj/αj for each
component.
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Estimation of the Signal and Local Variance of Noise. The characteri-
zation of tissues allows us to calculate the sample conditioned moments to each
tissue class as follows:

〈Xk(r)|j〉 =

∑
s∈η(r) x(s)kγj(s)∑

s∈η(r) γj(s)
. (5)

This formulation provides a more robust estimate of conditioned local moments
since it just considers the samples belonging to the j-th tissue class.

Finally, the moments for each location can be calculated as the weighted
average of the conditioned moments as:

E{X(r)k} =
J∑

j=1

πj(r)E{X(r)k|j} ≈
J∑

j=1

πj(r)〈X(r)k|j〉. (6)

Correction of Spatially Variant Bias. The estimation of the local mean
E{X(r)} and local variance of noise σ̂2(r) = E{X2(r)} − E{X(r)}2 allow us
to remove any bias derived from the noise. This bias has been previously reported
in the literature [9–11]. As an example of this effect, in Fig. 2a we show the linear
dependence between local mean and local variance.

a) Original b) Calibrated

Fig. 2. Linear regression between local mean and local variance in the trachea before
and after calibration.

This dependence is corrected by estimating the linear coefficient of the ordi-
nary least squares (OLS) linear regression, β, in the trachea. This coefficient
decreases as the tissue becomes denser as a consequence of the more symmetric
distribution of tissues with higher attenuation value than the lung (blood, fat,
bone).

One of the advantages of adopting the noise model of Eq. 2 is that there
is a functional relationship between the linear coefficient and the CT number:
β(μ) = K/(μ − δ), where μ is the attenuation coefficient and K is a constant to
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be determined [11]. In this work, we take advantage of the linear regression in
the trachea to determine K. This way, the linear coefficient becomes:

β(μ) =

⎧
⎨

⎩
βtrachea

μtrachea − δ

μ − δ
if μ > μtrachea

βtrachea if μ ≤ μtrachea

(7)

where μtrachea is the mean value of samples in the trachea. Now, the spatially
variant bias can be removed as follows:

X̃(r) = E{X(r)} − β (E{X(r)}) σ̂2(r) (8)

It is important to note that a systematic bias still can be present in the image
since Eq. (8) removes the linear relationship with the local variance, but not the
intercept. We remove the intercept by adjusting the mean values to the nominal
densities of tissues in anatomical references. The most evident structures are
the descending aorta, (Ωaorta), where the blood attenuation level (μblood = 50
HU) is usually adopted [10]; and the trachea, (Ωtrachea), where the air is set
to μair = −1000 HU by definition. Then, the harmonized image is obtained by
linear interpolation for those attenuation levels:

X̂(r) = (1−λ(r))μair+λ(r)μblood; with λ(r) =
X̃(r) − E

{
X̃(r)|Ωtrachea

}

E
{

X̃(r)|Ωaorta

}
− E

{
X̃(r)|Ωtrachea

}

(9)

We show in Fig. 2b the effect of harmonization in the trachea. Note that
the linear relationship between the variance of noise and the attenuation level
is effectively removed by Eq. (8). Additionally, the intercept is also corrected to
the nominal value for air (−1000 HU).

3 Experiments and Results

The PRM study was performed in a set of 48 inspiratory and expiratory scan
pairs acquired in the same session from subjects with diagnosed COPD with
a range of severity levels. 5 Different devices from 2 different manufacturers
were used: GE VCT-64, Siemens Definition Flash, Siemens Definition, Siemens
Sensation-64, and Siemens Definition AS+. The doses for the inspiratory and
expiratory scans were 200 mAs and 50 mAS respectively in all the acquisitions.
Expiratory scans are typically done at a lower dose to reduce total radiation
exposure resulting in an increased image noise. The discrepancy in doses implies
that different responses in the spatial noise variance and biases (as in Fig. 1).

The assessment of the harmonization technique here proposed was performed
by comparing its performance to other reference methods that are commonly
used to reduce the effects of noise in medical imaging. We considered the median
filter and the non-local means filter as the reference methods for comparison. The
median filter has been widely used in the CT imaging community for denoising
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purposes due to the little assumptions about the underlying noise model [14].
We used two median filters with 3×3×3 (Median1) and 5×5×5 (Median2) vox-
els window respectively. We also chose the non-local means filter (NLM) since
it has shown to be an effective filtering technique in multiple modalities [15].
We use the implementation presented in [16] because of its efficiency for 3D
volumes. The main parameter of this approach is the noise power. To perform
a fair comparison, we estimated the noise power for each case using the same
approach that we used in the CT harmonization. After filtering the image with
our approach and the reference methods, we computed the percentage of emphy-
sema (Emph%) and FSAD (FSAD%) using the same PRM technique for all the
methods (we applied the −950 HU and −856 HU thresholds for inspiratory and
expiratory scans as suggested in [5]).

Comparison Between Methods. We performed a population analysis of the
difference of emphysema% and FSAD% across the different methods comparing
means and concordance between methods. Figure 3a–b show the distributions of
emphysema% and FSAD%, where our approach yields a mean score statistically
higher to the other methods in pairwise comparisons using Dunn’s method for
joint ranking (p-value < 10−4). The reference methods do not show significant
differences among them or even with respect to the original. This discrepancy
between the harmonized data with respect to the reference methods and the
original image is due to the better detection of emphysema and FSAD. This can
be easily confirmed by visual inspection in Fig. 3c–d, where the PRM analysis of
a subject with an evident emphysema region is represented for the original and

Normal Tissue FSAD Emphysema

Original Harmonizeda)

b)

c) d)

Fig. 3. Left: Distribution of Emph% (a) and FSAD% (b) in the analyzed population
across filtering methods. The proposed harmonization approach increased the ability
to resolve more emphysema and small airway disease. Right: PRM analysis for the
inspiratory scans; original (c) and harmonized (d).
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harmonized data. Note that the PRM overestimates the normal tissue because
of the noise influence. Conversely, the harmonization mitigates the noise effect
in regions of parenchyma and massive emphysema which, in turn, leads to a
more accurate measure of emphysema and FSAD. This result suggests that a
reduction of noise with the methods available in the literature does not pro-
vide a statistically significant difference with the original image when measuring
FSAD or emphysema. To confirm this fact, we performed a concordance anal-
ysis using the so-called Concordance Correlation Coefficient (CCC) proposed
by Lin [17], a widely accepted index of agreement in settings with different
raters. This measure assumes a positive correlation between raters, is bounded
in [0, 1], and considers low concordance for values under 0.9 [18]. In Table 1,
we show the concordance results obtained for the emphysema (lower diagonal)
and FSAD (upper diagonal). We highlighted values under 0.9 of concordance
to enhance the methods that can provide further information compared to the
original image. Note that all of the reference methods show an almost exact
concordance with the original image and among them. This implies that all the
reference methods do not provide further information compared to the original
image. The harmonized data, however, shows a lower concordance, suggesting
that the emphysema and FSAD description can be improved. Indeed, in the next
section, we demonstrate that the harmonized data allows us to distinguish better
the interplay between FSAD and emphysema that leads to a better description
of functional respiratory outcomes.

Table 1. Concordance correlation coefficients for the PRM metrics: Emphysema%
(lower diagonal) and FSAD% (upper diagonal). Low concordance (<0.9) is highlighted
with bold letters. The low concordance for emphysema and FSAD of the harmonized
image shows that the harmonized data is the only one providing different information
about FSAD and emphysema from the one obtained in the original image.

Original NLM Median1 Median2 Harmonized

Original - 0.99 0.98 0.96 0.84

NLM 1.00 - 1.00 0.98 0.80

Median1 1.00 1.00 - 1.00 0.77

Median2 0.99 1.00 1.00 - 0.72

Harmonized 0.88 0.86 0.85 0.83 -

Physiological Validation. The common histological references for emphysema
and small airway disease are the mean linear intercept and the airway counting
approach [1]. However, when histological approaches are not available, indirect
functional measures must be used. An indirect validation is usually performed
by evaluating the ability of the measurements obtained with each approach to
ascertain the physiological response to emphysema and small airway disease.
Both processes imply a reduction in lung function due to airway collapse (emphy-
sema) and increase airway resistance (small airway disease) that can be assessed
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Table 2. Linear regression analysis for the FEV1% with respect to the amount of
emphysema (Emph%) and small airway disease (FSAD%).

by the Force Expiratory Volume in 1-second percent predicted (FEV1%). We
show in Table 2 the results of the multivariate linear models that relate Emph%
and FSAD% to FEV1% for each method. Note that the reference methods obtain
the same outcome as the one obtained with the original image: a significant effect
of FSAD% in the FEV1%. However, note also that the explained variance is
lower for all the reference cases. This result shows that the commonly used noise
reduction methods do not provide a better description of FSAD and emphysema
interplay. On the other hand, the harmonization improves the explained variance
from 51% to 54%, showing that the harmonized data contributes to model the
lung function better than the original image and any reference method. Further-
more, with the harmonization, the emphysema becomes statistically significant,
showing a negative relationship of the emphysema ratio with the lung function.
This result is consistent with the natural progression of COPD: “the function
declines as both the emphysema and FSAD ratios increase,” and exhibits the
importance of the proposed harmonization technique in distinguishing FSAD
and emphysema.

4 Conclusion

We have presented a harmonization technique to deal with non-stationary noise
and bias in chest CT scans. Our approach rests on a mixture model that describes
the local statistics of the CT signal. The model is used to stabilize the noise and
generate a stationary process. Then, the spatially varying bias induced by noise
is corrected by removing the linear dependence between the signal and the noise
variance. Finally, the systematic bias is removed by adjusting with trachea and
aorta reference levels. This approach was used in the quantification of both
emphysema and small airway disease using the PRM methodology. This is an
ideal problem to illustrate our approach as it deals with information from two
images acquired at inspiration and expiration with different noise characteristics
due to acquisition and lung volume differences. The assessment is performed
through a population study of 48 subjects acquired from different scanners and
manufacturers. Comparisons with other reference methods show that the CT
harmonization provides a significant increase in the detection of both emphy-
sema and airway disease when compared to the original image or the reference
methods. This increase results in a better distinction between emphysema and
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airway disease that cannot be achieved with the PRM analysis in the origi-
nal image or the image filtered with the reference methods, as the concordance
analysis confirmed. Additionally, the better distinction between emphysema and
airway disease significantly increases the correlation with functional metrics of
airway obstruction suggesting that our approach is better empowered to measure
biomarkers that better reflect the disease pathophysiology.
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Abstract. Deep learning using convolutional neural networks (Con-
vNets) achieves high accuracy across many computer vision tasks, with
the ability to learn multi-scale features and generalize across a variety of
input data. In this work, we propose a deep learning framework that uti-
lizes a coarse-to-fine cascade of 3D ConvNet models for segmentation of
lung structures obtained from computed tomographic (CT) images. Deep
learning requires a large number of training datasets, which may be chal-
lenging in medical imaging, especially for rare diseases. In the present
study, transfer learning is utilized for lung segmentation of CT scans in
large animal models of the acute respiratory distress syndrome (ARDS)
using only 13 subjects. The method was quantitatively evaluated on a
human dataset, consisting of 395 3D CT scans from 153 subjects, and
an animal dataset consisting of 148 3D CT images from 5 porcine sub-
jects. The human dataset achieved an average Jacaard index of 0.99, and
an average symmetric surface distance (ASSD) of 0.29 mm. The animal
dataset had an average Jacaard index of 0.94, and an ASSD of 0.99 mm.

Keywords: Segmentation · Computed tomography · Deep learning

1 Introduction

Segmentation of lungs in pulmonary computed tomographic (CT) images is an
important precursor for characterizing and quantifying disease patterns, regional
functional analysis, and determining treatment interventions. With the increas-
ing resolution and quantity of scans, automatic and reliable lung segmentation
is essential to support efficient image analyses. Several methods have been pro-
posed for automatic lung segmentation in thoracic CT images. Intensity-based
methods [1,2] are simple and effective for segmentation of healthy lung parenchy-
mal tissue. However, these methods fail to include dense pathological alterations
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such as fibrosis, edema, or tumors. Additionally, artifacts from pacemakers,
stents, central intravenous catheters, or air in the intestines may pose addi-
tional challenges for intensity-based methods. More sophisticated methods have
incorporated prior shape information in the form of statistical shape models [3]
or anatomical atlases [4,5].

More recently, deep learning using convolutional neural network (ConvNet)
models has been successfully used for accurate image segmentation across many
domains in computer vision [6,7]. A major barrier for deploying deep learning
in medical imaging is the high memory demand for the volumetric images and
the limited memory in current GPUs that are used for training. Recent studies
have investigated the use of ConvNets for lung segmentation in CT images [8,9].
However, these methods involve training ConvNets on 2D slices, which do not
incorporate 3D features or other global information. Another major barrier for
using deep learning is the availability of labeled training datasets, which may
be challenging for medical images as they require expert annotation. Transfer
learning is an effective technique in medical imaging of pathologies for which
limited labeled training data is available. Here, a learnable model is pre-trained
on an extensive dataset from a different problem domain, and then fine-tuned
with a limited targeted-domain dataset [10].

In this study, we used a deep learning approach to train a ConvNet model for
segmentation of lungs in a large animal model of the acute respiratory distress
syndrome (ARDS), using a limited training dataset. ARDS is radiographically
characterized by diffuse opacification, producing regions with little or no con-
trast near the boundary between the lung parenchyma and surrounding medi-
astinal and chest wall structures [11]. Furthermore, parenchymal consolidation
has no distinguishable textural patterns compared to surrounding soft tissue.
This makes the segmentation of images depicting ARDS lungs a challenging
task, even for manual segmentation by trained operators, resulting in very lim-
ited availability of training datasets. We propose a novel coarse-to-fine model
consisting of two cascaded 3D ConvNets, which enables learning of both global
context and high-resolution features in 3D images. The model is pre-trained on
a dataset of human subjects, and then fine-tuned on a small dataset of animal
subjects with lung injury mimicking ARDS.

2 Methods

2.1 Image Datasets

A ConvNet model was trained for segmentation of thoracic CT images,
using annotated training data from human and animal subjects. The pre-
training dataset consisted of 1604 human subjects with chronic obstructive
pulmonary disease (COPD), and 152 human subjects with idiopathic pul-
monary fibrosis (IPF). Human data were acquired from the COPDGene [12] and
SPIROMICS [13] clinical trials. The fine-tuning dataset consisted of 9 canine and
4 porcine subjects with an experimental model of ARDS, each scanned under
baseline and injured conditions at various static airway pressures.
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We evaluate the performance of the proposed method on human and animal
datasets which were not included in training. The human evaluation dataset
consisted of 107 subjects with COPD, and 38 subjects with IPF. The animal
evaluation dataset consisted of porcine subjects with an experimental lung injury
model exhibiting structural derangements similar to ARDS. These subjects were
dynamically scanned during mechanical ventilation, producing 4D CT images
with high temporal resolution [14]. In total, 148 3D CT images from 5 porcine
subjects were included in the animal evaluation dataset.

The ground truth lung segmentations for the human datasets were generated
using an intensity-based method [2], followed by manual inspection and correc-
tion by an experienced human analyst. The ground truth lung segmentations for
the animal datasets were manually delineated by experienced image analysts.

2.2 Convolutional Neural Network

The ConvNet architecture used in this work is a 3D fully convolutional neu-
ral network (FCN) [15] called Seg3DNet (Fig. 1) [16]. Seg3DNet consists of an
encoder which learns a multi-scale feature representation, and a decoder which
combines the multi-scale information through learnable upsampling operations.
Seg3DNet has similar properties as U-Net [17]. However, Seg3DNet is extended
to 3D and the decoder is less memory-intensive to accommodate 3D convolutions
and larger input volumes. The output of Seg3DNet is a probability map with
the same resolution as the input image, estimating the probability that a given
voxel is contained within the lung.

2.3 Coarse-to-Fine Model

A coarse-to-fine model is used to accommodate learning on large 3D images
without having to sacrifice global information for high spatial resolution. Two
Seg3DNets are trained in sequence: a low-resolution network (Seg3DNet-LR),
and a high-resolution network (Seg3DNet-HR). Seg3DNet-LR is trained with
aggressively downsampled images, to facilitate the learning of global lung fea-
tures. Seg3DNet-HR is trained with high-resolution images to learn precise
parenchymal boundary information.

Seg3DNet-LR is trained using images that were downsampled to 64×64×64
voxels, corresponding to a downsampling factor of approximately 8 along each
axis. Seg3DNet-HR was trained using images that were resampled to 1 mm3

isotropic voxels for the human datasets, and with 0.6 mm3 isotropic voxels for the
animal datasets. The CT images, as well as the coarse probability maps predicted
by Seg3DNet-LR were then used as a 2-channel input to Seg3DNet-HR. At this
resolution, the memory required to train the network using the entire lung field
exceeded available GPU memory. Therefore, axial stacks of size 256 × 256 × 32
were extracted at different axial positions. Without the coarse probability maps
provided by Seg3DNet-LR, a model trained exclusively on these stacks would be
unable to incorporate global structural features of the lung anatomy. However,
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Fig. 1. Seg3DNet architecture. The arrows represent an operation performed by a layer
and the cubes represent the intermediate feature representations produced by a layer.
For visualization purposes, only the spatial dimensions of the feature representations
are illustrated. The number of activation maps (size of channel dimension) is denoted in
the lower left corner. For the encoder module, we define Ni = 2i+5 so that the number
of activation maps increases by a factor of two at each level. The number of kernels
used in each convolutional layer can be inferred by the number of activation maps in
the layer’s output representation, i.e., the first convolutional layer has N0 = 20+5 = 32
kernels. The relative spatial size of the activation maps are drawn to scale. At each level
the spatial dimensions of the feature representation gets downsampled by a factor of
two. Batch normalization and ReLU nonlinearity are performed after each convolution
except the last.

the proposed coarse-to-fine model allows global information to be encoded by
using the Seg3DNet-LR prediction.

2.4 Training and Transfer Learning

The coarse-to-fine model was pre-trained using the human training dataset. The
ConvNet parameters were randomly initialized using Xavier normal initializa-
tion [18]. Transfer learning was used to extend the model to segment lungs in
animal models of ARDS, i.e., using the parameters learned from pre-training for
initialization, a second coarse-to-fine model was trained by fine-tuning with the
animal dataset.

A categorical cross entropy loss function was used for training all networks.
Adam optimization [19] was used with a learning rate of 0.0001 for pre-training
and 0.00005 for fine-tuning. The implementation used open-source frameworks
Theano [20] and Lasagne [21]. Training was performed using a P40 NVIDIA
GPU with 24 GB of RAM.
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2.5 Post-Processing

The probability map predicted by the Seg3DNet-HR was post-processed using
thresholding and connected-component analysis to obtain final binary lung seg-
mentations. The probability map was thresholded at P = 0.5, where P is the
probability that a voxel is contained within the lungs. After thresholding, the
two largest connected components were selected. If the ratio of volumes of the
second largest component to the first largest component was greater than 0.4,
the two largest components were identified as the right and left lungs. Other-
wise, it was assumed the left and right lungs were connected and only the largest
component was selected.

2.6 Experimental Methods

We evaluated the performance of the proposed lung segmentation method on
the human and animal evaluation datasets described in Sect. 2.1. The Jacaard
index was used to measure volume overlap between the ground truth (GT) and
the predicted segmentation (PS). The Jacaard index is defined as

J(PS,GT) =
|PS ∩ GT|
|PS ∪ GT| , (1)

where | · | is set cardinality. The Jacaard index has values ranging from 0 to
1, with 1 indicating perfect agreement. Additionally, the distance between the
predicted lung boundary (BPS) and ground truth lung boundary (BGT) was
evaluated. The distance between a voxel x and a set of voxels B is defined as

D(x,B) = min
y∈B

d(x,y), (2)

where d(x,y) is the Euclidean distance between voxels x and y. Based on
Eq. 2 the average symmetric surface distance (ASSD) between two boundaries
is defined as

ASSD =
1

|BPS| + |BGT| ×
( ∑

x∈BPS

D(x,BGT) +
∑

y∈BGT

D(y,BPS)
)
. (3)

3 Results

Jacaard index and ASSD box and whisker plots for the human and animal
datasets are displayed in Fig. 2. Overall, the human dataset had an average
Jacaard index of 0.99, and an average ASSD of 0.29 mm. The animal dataset
had an average Jacaard index of 0.94, and an average ASSD of 0.99 mm. Rep-
resentative results for the human and animal datasets are displayed in Figs. 3
and 4, respectively. Figure 5 depicts the segmentation result for a porcine sub-
ject with severe bilateral dependent consolidation, with maximum and minimum
intensity projections included to emphasize the amount of diffuse opacification
in the dependent regions of the lung.
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Fig. 2. (a) Jacaard index and (b) average surface distance (ASSD) in mm for the
human and animal evaluation datasets. The boxes represent the quartiles and the
whiskers represent the range of values.

4 Discussion

We proposed a coarse-to-fine ConvNet model for lung segmentation in human
and animal CT images using transfer learning. The pre-trained model accurately
segmented lungs in human datasets with severe fibrosis. However, direct applica-
tion of this model to animals with lung injury similar to ARDS failed to include
portions of consolidated lung tissue, and in some instances of normally aerated
lung regions. This failure can be attributed to differences in the human and ani-
mal datasets (e.g. the lack of consolidated injury in the human images), as well
as anatomic variations among the different species. Using 3D CT scans of 9 dog
and 4 pig subjects, we were able to fine-tune the model and produce accurate
segmentations for 4D CT scans in pigs with ARDS.

The proposed method achieved high segmentation performance on the human
and animal datasets, which include challenging cases with dense pathologies. Col-
umn (d) in Fig. 3 and Fig. 4 show spatial distributions of discrepancies between
the ground truth and predicted lung segmentations. The majority of errors occur
within a single-voxel layer at the lung boundary and at the mediastinum where
airways and blood vessels enter the lung. The network successfully includes the
dense pathologies, such as fibrosis and consolidation.

A limitation of the evaluation is that manual tracing was performed by one
observer for each case. Therefore, we were unable to evaluate inter- and intra-
observer variability. We would expect there to be a large variability for the
injured animal datasets due to the poor contrast between parenchymal tissue
and surrounding soft tissue, which could also explain why the performance was
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Fig. 3. Segmentation results for 4 human subjects with IPF in rows 1–4. (a) CT
image, (b) ground truth lung segmentation, (c) predicted lung segmentation, (d) dif-
ference between ground truth and predicted lung segmentations with under- and over-
segmented voxels depicted in red and blue, respectively.

worse on the animal datasets. In addition to evaluating inter- and intra-observer
variability, in future work we plan to extend the evaluation set to more subjects.

Training all models took approximately 48 h. After training, runtime for seg-
mentation of a new case was approximately 5 s, in contrast to 4–6 h required for
manual segmentation of a lung image with ARDS. By automating lung segmen-
tation for this challenging disease case, quantitative clinical assessment of these
images can be performed without the time and cost impediments of manual
segmentation.



198 S. E. Gerard et al.

Fig. 4. Segmentation results for 4 porcine subjects with ARDS in rows 1–4. (a) CT
image, (b) ground truth lung segmentation, (c) predicted lung segmentation, (d) dif-
ference between ground truth and predicted lung segmentations with under- and over-
segmented voxels depicted in red and blue, respectively.
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Fig. 5. Visualization of segmentation result for one phase of a 4D CT scan of porcine
subject with ARDS: (a) Axial slice of CT with segmentation contour depicted in
magenta; (b) 3D surface rendering of segmentation; (c) and (d) minimum and maximum
intensity projections, respectively, of masked CT image. Projection images emphasize
the amount of diffuse opacification in the dependent regions of the lung.

5 Conclusion

A deep learning framework was used to train a ConvNet model for segmentation
of lungs in human datasets. The model was then able to generalize to a new
dataset of 4D porcine scans with ARDS, after fine-tuning the human-trained
model with a limited dataset of 3D porcine and canine scans of subjects with
ARDS. This approach could be used for parenchymal segmentation in the pres-
ence of other pathophysiologic processes, such as pulmonary edema, atelectasis,
or pneumonia - conditions for which limited training datasets are available, and
manual segmentation is prohibitively tedious and difficult.
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Abstract. Deep learning methods have been widely and successfully applied to
the medical imaging field. Specifically, fully convolutional neural networks
have become the state-of-the-art supervised segmentation method in a variety of
biomedical segmentation problems. Two fully convolutional networks were
proposed to sequentially achieve accurate lobar segmentation. Firstly, a 2D
ResNet-101 based network is proposed for lung segmentation and 575 chest CT
scans from multicenter clinical trials were used with radiologist approved lung
segmentation. Secondly, a 3D DenseNet based network is applied to segment
the 5 lobes and a total of 1280 different CT scans were used with radiologist
approved lobar segmentation as ground truth. The dataset includes various
pathological lung diseases and stratified sampling was used to form training and
test sets following a ratio of 4:1 to ensure a balanced number and type of
abnormality present. A 3D CNN segmentation model was also built for lung
segmentation to investigate the feasibility using current hardware. Using 5-fold
cross validation a mean Dice coefficient of 0.988 ± 0.012 and Average Surface
Distance of 0.562 ± 0.49 mm was achieved by the proposed 2D CNN on lung
segmentation. 3D DenseNet on lobar segmentation achieved Dice score of
0.959 ± 0.087 and Average surface distance of 0.873 ± 0.61 mm.

Keywords: CT � Lung segmentation � Lobar segmentation � CNN

1 Introduction

1.1 Conventional Lung and Lobar Segmentation

Segmentation of pathologic lungs on CT images has been investigated in a number of
studies. Voxel classification utilizing local texture features has been used to segment
abnormal lung regions [1]. Applying anatomical model constraint was another strategy
to overcome the challenge of pathological lung segmentation [2]. For example, cur-
vature of ribs [3] was used to assist the selection of optimal thresholds to segment the
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lung. A modified convex hull algorithm [4] was introduced to extract coarse lung
regions present with diffuse lung disease followed by morphological analysis as post-
processing. Traditional lobar segmentation is usually achieved by fissure
detection/segmentation and a variety of methods have been proposed to accomplish this
task, such as watershed, level set, and SVM based. Occasionally, segmentation of
airway and vessels are used to assist. However, most of the methods were evaluated on
a relatively small datasets and their efficiency is not ideal for high throughput pro-
cessing. More importantly, they still struggle when confronted with pathological lungs
which are common in clinical practice.

1.2 Deep Learning in Medical Image Segmentation

Deep learning methods have been successfully applied to various medical image
analysis problems [5–7]. More specifically, fully convolutional neural networks
(FCN) [8] have become the state-of-the-art approach for segmentation on many
imaging modalities. U-Net [9] has demonstrated success in many biomedical image
segmentation problems, including cell segmentation in microscopic images. SegNet
[10], which is a deep Encoder-Decoder neural network, showed promising results
regarding lung segmentation in chest radiographs. Volumetric image based methods
were also introduced, such as 3D U-Net [11] and V-Net [12], to segment prostate and
kidney in MR. As for FCN application on chest CT, Harrison et al. [13] proposed a
progressive and multi-path holistically nested 2D network (P-HNN) for lung seg-
mentation. The method was evaluated on a large dataset including many pathological
lungs. A V-Net [14] like architecture was proposed by IBM research aimed at volu-
metrically segmenting the lung with more spatial context. It demonstrated promising
results using a 3D CNN. A relatively small input size was used to compromise the
memory constraints and this actually caused noticeable under-segmentation near the
boundary. George et al. [15] applied the same P-HNN method on lobar segmentation
using 2D axial slices, and the crude segmentation from CNN was followed by a 3D
random walker to refine it. Presumably, it is difficult to segment different lobes based
on 2D slices without spatial context and a 3D volume based method has the potential to
overcome this obstacle.

1.3 ResNet and DenseNet

The Residual Network (ResNet [16]) has been the state-of-the-art image recognition
architecture and won first place on the ILSVRC-2015 classification task. Due to its
much deeper network with residual learning it demonstrated exceptional performance,
surpassing previous models such as VGG [17] and GoogleNet [18]. More recently,
DenseNet [19] was introduced in which each layer is connected to every other layer in
a feed-forward fashion. It is easier to train due to the improved flow of gradients
throughout the network and able to achieve better performance using fewer parameters.

In this paper, we will introduce two fully convolutional networks applied
sequentially achieve accurate lobar segmentation. In the first stage, a 2D ResNet-101
based model is used for lung segmentation. Thereafter, a 3D DenseNet based network
is applied to perform lobar segmentation based on the initial lung segmentation.
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2 Materials

The chest CT images used in this study were collected retrospectively from 6 multi-
center clinical trials. This provides image acquisition at different sites with variations in
slice thickness, reconstruction kernel, scanner, etc. The slice thickness range is
[0.625 mm, 3 mm], in-plane (x-y) spacing range is [0.467 mm, 1 mm], tube current
range is [80 mA, 644 mA] and reconstruction kernels include a range from smooth to
sharp. In total, 575 chest CT scans from different subjects were used, each with
radiologist-approved lung segmentation. 143 scans are from subjects enrolled in
Chronic Obstructive Pulmonary Disease (COPD) clinical trials and 432 are from
interstitial pulmonary fibrosis (IPF) trials. These cases contain common lung
parenchymal abnormalities including emphysema, ground glass, fibrosis, nodule, and
honeycombing. Sample axial images of these disease patterns are shown in Fig. 1.

The ground truth reference lung segmentations of these scans were derived using an
independent semi-automated segmentation. Specifically, the scans were segmented
using a threshold-based anatomical model technique [20, 21], followed by manual
editing by lab technologists. Finally, radiologists performed review, editing as needed,
and approved the final segmentation. Two thoracic radiologists were involved, both
with more than 20 years experience.

Balanced sampling, rather than random sampling, was used to form training and
test sets that were balanced in terms of the number and type of abnormalities present.
The whole image set was sorted based on the mean Hounsfield Unit (HU) within the
lung in ascending order. As a consequence, scans with lower and higher mean lung
intensity are likely corresponding to cases with emphysema and IPF, respectively. For
every 5 scans of the sorted image set, they were split into training, and test following a
ratio of 4:1. 5-fold cross validation with balanced distribution was used and each scan
was used for testing exactly once. At each fold, the training set consisted of 460 scans,
and the test set was composed of 115 scans. Using this approach similar to stratified
cross validation [22], the composition distributions of training, and test set are similar
to the original dataset. For a specific scan, only slices (axial images) with lung seg-
mentation (i.e., containing lung) were used.

Fig. 1. Sample axial chest CT of cases with different lung disease in our dataset, including
(a) emphysema, (b) ground glass, (c) honeycombing, and (d) fibrosis.
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For lobar segmentation, 705 more scans were used to increase the size of data set
with a total number of 1280 scans and all of them have corresponding radiologist
approved lobar segmentations. The resolution (z spacing) limit is <= 3 mm since our
method is 3D volume based. Similar to the previous 575 scans used in lung seg-
mentation, the additional 705 scans also include different types of lung abnormalities.
In terms of breath-hold type, 1193 scans were acquired at Total Lung Capacity
(TLC) and 87 at Residual Volume (RV). The same data sorting and splitting strategy
was used to form training and test set.

3 Methods

3.1 Network Architectures

Figure 2 shows the general structure of ResNet-101 based segmentation architecture
with input and output size of 256 � 256. The original input image was progressively
scaled down 5 times (from 256 � 256 to 8 � 8). Each down-sampling stage includes a
residual block, stride of 2 convolution to downsize feature maps. In the de-convolution
section, corresponding 5 times up-sampling was used to recover the same resolution as
the input image, i.e., from 8 � 8 back to 256 � 256. Each up-sampling stage includes
transposed convolution, concatenation and a residual block. Following the same
strategy suggested by Szegedy et al. [23], the number of feature maps in the de-
convolutional layer was cut by half every time the image size doubles. Also, skip-
connections were used in the up-sampling process to incorporate finer details from the
lower layers as well as abstract and sematic information from higher layers.

The 3D DenseNet based network is shown in Fig. 3. The down-sampling path
includes 4 Transitions Down and 4 Dense Block. Corresponding up-sampling path
includes 4 Transitions Up and 4 Dense Block. Transitions Down modules include
[Convolution3D, Dropout and Max-pooling]. Transitions Up modules include
[Transposed Convolution3D and Dropout]. The Dense Block includes 4 densely
connected layers. This architecture was used both in 3D lung segmentation (to compare
with 2D CNN) and lobar segmentation. In the case of lung segmentation, the input was
a raw image and a sigmoid is used in the final layer. For the lobar segmentation, the
input is raw image plus lung mask and softmax is used. To mitigate memory con-
straints, we decided to perform lobar segmentation on the left and right lung separately.
A previous anatomical model based method [21] was used for left and right lung
separation.

3.2 Pre-processing, Data Augmentation, and Training

Preprocessing of each CT scan prior to inputting to the CNN involved normalization
and rescaling. Image intensity was clipped to range from −1000 HU to +1000 HU and
then normalized to [0.0, 1.0]. For 2D model, each slice was resized to 256 � 256.

Similarly, each scan was resized to 128 � 128 � 128 as the input for 3D model.
The model was trained from scratch, rather than applying transfer learning using pre-
trained weights. Real-time data augmentation was applied using rotation and
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translation, with the CPU responsible for generating new samples and the GPU for the
computation to improve the uniqueness of the augmented data. Dice loss was used as
the loss function since it has been shown to be more robust in segmentation problems.

Training of the model was performed using a NVIDIA TITAN X with 12 GB of
memory. The Keras deep learning package [24] was used for implementation. Dice
Similarity Coefficient and Average Surface Distance were used as evaluation metric.

4 Results

4.1 Lung Segmentation

During testing, the whole scan was fed into the segmentation network to generate a 3D
lung segmentation for both the 2D and 3D CNN model. For a single test scan with 200
slices, it takes about 5 s to segment the whole lung.

Table 1 illustrates the segmentation results by the proposed 2D CNN model, 3D
CNN model and also previous threshold and anatomical based method [20, 21]
developed by our group. Specifically, only 3 out of the total 575 scans from 2D CNN
segmentation and 9 scans from 3D CNN segmentation had a Dice coefficient below
0.95. While for our previous method, there were 111 cases with a Dice score below
0.95 from.

Figure 4 shows three example segmentations with different amount of fibrosis
present (from mild to severe) by the proposed 2D based CNN, 3D based CNN and

Fig. 2. ResNet-101 based lung segmentation architecture.
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previous threshold anatomical model based methods. The second row corresponds to
Dice scores of (0.954, 0.931, 0.847) and ASD of (0.575 mm, 1.689 mm, 4.51 mm) by
the threshold and anatomical model based method. 2D CNN achieved Dice scores of
(0.989, 0.980, 0.976) and ASD of (0.36 mm, 0.505 mm, 1.18 mm). 3D CNN achieved
Dice scores of (0.979, 0.969, 0.970) and ASD of (0.484 mm, 0.677 mm, 1.653 mm).

Fig. 3. 3D DenseNet architecture used for lobar segmentation. Dashed lines indicate skip
connection from down-sampling to up-sampling.

Table 1. Lung segmentation results comparison between the CNN based and previous threshold
and anatomical model based methods

Dice coefficient ASD (mm)

2D CNN based 0.988 ± 0.012 0.562 ± 0.49
3D CNN based 0.980 ± 0.017 0.581 ± 0.52
Threshold and anatomical model 0.965 ± 0.023 0.599 ± 0.47
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The CNN based methods achieved much better segmentation when the attenuation of
the lung changed significantly due to disease.

Figure 5 shows example segmentations of emphysema, ground glass and honey-
combing by the proposed the CNN methods as well as our previous threshold and
anatomical model based method for comparison. In these examples, there are no major
attenuation changes in the lung and all three methods were able to achieve good
segmentation relative to the ground truth. The Dice scores of these 3 cases (from left to
right) are (0.992, 0.973, 0.974) by the threshold and anatomical based method, (0.991,
0.984, 0.976) by 2D CNN, (0.989, 0.981, 0.972) by 3D CNN. Comparable ASD were
achieved by the 3 segmentation methods: (0.355 mm, 0.55 mm, 0.503 mm) vs.
(0.352 mm, 0.327 mm, 0.479) vs. (0.356 mm, 0.374 mm, 0.488 mm). One minor
difference is the successful exclusion of airway by CNN in this honeycombing case.

Fig. 4. Three examples with differing degrees of fibrosis. Segmentations errors by the threshold
and anatomical model based method in the second row are highlighted with red arrows. (Color
figure online)
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4.2 Lobar Segmentation

The overall Dice score across 5 lobes is 0.959 ± 0.087 and Average surface distance is
0.873 ± 0.61 mm. More specific performance on each lobe is shown in Table 2.

Fig. 5. Example segmentations on emphysema, ground glass and honeycombing cases.

Table 2. Segmentation results of 5 different lobes by 3D DenseNet

Dice coefficient ASD (mm)

RUL 0.971 ± 0.078 0.699 ± 0.432
RML 0.923 ± 0.114 1.542 ± 1.164
RLL 0.970 ± 0.126 0.783 ± 0.372
LUL 0.972 ± 0.083 0.807 ± 0.594
LLL 0.962 ± 0.105 0.861 ± 0.753
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Figures 6, 7, and 8 show three lobar segmentation examples by sagittal plane: an
emphysema case with TLC, a fibrosis case with TLC and a scleroderma case with RV.
Detailed Dice score and ASD were shown in their captions respectively.

5 Discussion

The CNN based method achieved highly accurate lung segmentation based on Dice
score and Average surface distance. The 2D based CNN model has been successfully
applied to segment over 5000 chest CT scans in clinical practice. Our method showed
substantial advantages when large amounts of fibrosis are present, especially in
peripheral areas close to other soft tissue. Another strength of the CNN based method is
its ability to consistently exclude airway trees regardless of the disease patterns and
many other methods occasionally require post-processing. In comparison with P-HNN,
our work differs in terms of using a radiologist edited and approved reference seg-
mentation for training and testing, as well as the use of a simpler single channel
architecture (train from scratch) and no post-processing (such as 3D hole filling).

Using current hardware in clinical practice, the 2D slice based CNN slightly out-
performed the 3D volume based CNN. Although 3D based model is able to incorporate
more contextual information, this is actually not surprising considering following.
Firstly, the variation of slice spacing along the z direction is much larger than in the

Fig. 6. Lobar segmentation on an emphysema case with TLC. [LUL: 0.983 and 0.514 mm,
LLL: 0.981 and 0.570 mm, RUL: 0.981 and 0.561 mm, RML: 0.970 and 0.673 mm, RLL: 0.977
and 0.635 mm].
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x-y plane. One strategy would be to resample all the scans to the same resolution but
this is computationally expensive. Secondly, the number of training samples is also
much smaller when a 3D scan is used instead of individual 2D slices. As such, the 2D
model was built with more diverse dataset. Lastly, the image was down-sampled more
aggressively in the scenario of 3D CNN (512 to 128 vs. 512 to 256). This would
inevitably cause more information loss especially fine details near boundary and this is
also observed in the work by IBM research [14].

Using the initial lung segmentation from ResNet-101, the 3D DenseNet model
successfully segmented the five lobes correctly on pathological lungs. Conventional
fissure detection based methods often fail when fissures are incomplete or impacted by
lung abnormalities, such as emphysema, fibrosis. However, our 3D CNN model
demonstrated robustness in those challenging cases. One deficiency of our current
model is the assumption that five lobes are present which may not be true when a lobe
collapses, for example. In the future, we will include these highly abnormal cases in
training and also expand our evaluation to include public data sets.

Fig. 7. Lobar segmentation on a fibrosis case with TLC. [LUL: 0.978 and 0.427 mm, LLL:
0.960 and 0.538 mm, RUL: 0.975 and 0.496 mm, RML: 0.967 and 0.585 mm, RLL: 0.965 and
0.583 mm].
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6 Conclusion

We developed two fully convolutional neural network to segment lung and lobes
sequentially. The 2D ResNet-101 based segmentation architecture was successfully
applied to lung segmentation on chest CT without the need for any additional post-
processing. It achieved high accuracy even in the presence of challenging diffuse lung
diseases. The 3D DenseNet based network demonstrated competitive lobar segmen-
tation performance on various pathological lungs.
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Abstract. Labeled data is the current bottleneck of medical image
research. Substantial efforts are made to generate segmentation masks
to characterize a given organ. The community ends up with multiple
label maps of individual structures in different cases, not suitable for
current multi-organ segmentation frameworks. Our objective is to lever-
age segmentations from multiple organs in different cases to generate a
robust multi-organ deep learning segmentation network. We propose a
modified cost-function that takes into account only the voxels labeled
in the image, ignoring unlabeled structures. We evaluate the proposed
methodology in the context of pectoralis muscle and subcutaneous fat
segmentation on chest CT scans. Six different structures are segmented
from an axial slice centered on the transversal aorta. We compare the per-
formance of a network trained on 3,000 images where only one structure
has been annotated (PUNet) against six UNets (one per structure) and
a multi-class UNet trained on 500 completely annotated images, show-
ing equivalence between the three methods (Dice coefficients of 0.909,
0.906 and 0.909 respectively). We further propose a modification of the
architecture by adding convolutions to the skip connections (CUNet).
When trained with partially labeled images, it outperforms statistically
significantly the other three methods (Dice 0.916, p<0.0001). We, there-
fore, show that (a) when keeping the number of organ annotation con-
stant, training with partially labeled images is equivalent to training with
wholly labeled data and (b) adding convolutions in the skip connections
improves performance.
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216 G. González et al.

Keywords: Deep learning · Multi-organ · Segmentation · Unet
Pectoralis

1 Introduction

Segmentation of structures of interest is one of the main tasks of medical image
analysis, serving as a prior step to biomarker quantification. Deep learning has
been used to solve many segmentation problems [1] in images ranging from
computed tomography [2] to MRI [3] or even in multi-modality images with the
same network, [4] for one or multiple-organs [5].

Current deep-learning segmentation algorithms are trained on a dataset
where the structures of interest are annotated, producing a complete mask per
case. Every voxel is given a label, as being either a structure or background.
This enables to optimize cost functions such as the normalized cross entropy or
the dice coefficient [6,7].

While this learning methodology has achieved great performance in single
and multi-structure detection, it is not scalable to complete multi-organ seg-
mentation, since it would require an extensive dataset where all the voxels are
annotated. The expenses incurred in the generation of such dataset are beyond
the scope of the effort that the community can afford. However, through the
organization of challenges and public datasets, a great wealth of annotated cases
with one or few structures of interest are currently available. What if we could
leverage these single-organ databases for the generation of multiple-organ seg-
mentation algorithms?

In this manuscript, we address this issue and propose a principled method-
ology to train a multi-class deep-learning segmentation algorithm from partially
labeled datasets. The proposed method encodes the labels in a one-hot schema
and optimizes the average per-structure dice coefficient. The proposed custom
loss function adapts to the labels being provided. One of the most popular seg-
mentation network architectures is the UNet [8], consisting of an encoding path,
a decoding path and a set of skip connections [9]. We will, therefore, perform
our experiments with UNet-based networks. We further such architecture by
adding convolutions in the skip connections. Such is done to allow for flexibility
between the information used in the encoding and decoding paths of the UNet.
Such UNet, labeled CUNet, shows statistically significant improved performance
over the baseline UNet.

We illustrate the proposed methodology in the problem of pectoralis and sub-
cutaneous fat segmentation. Those structures have been shown to be of clinical
relevance in different diseases like Chronic Obstructive Pulmonary Disease and
Lung Cancer [10,11]. Prior work has attempted to segment this structures using
atlas-based techniques [12] and standard UNets [13].

This work is closely related to the work of [14], where the authors use few 2D
annotated axial slices to train networks able to segment the whole 3D structures
using a weighted softmax cost function. In their work, unlabeled voxels are given
a zero weight and therefore do not contribute to the computation of the error.
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Our works differs from [14] in the sense that we use a weighted cost function
on the per-structure dice score. Our proposed cost function penalizes pixels that
are not assigned to the right structure, even if the precise right structure of such
pixel is unknown.

Fig. 1. Left: Axial slice at the level of the transversal aorta zoomed at the pectoralis
region. Middle: Reference standard. Right: Segmentation obtained with the proposed
method. Color code: blue: right pectoralis major, green: right pectoralis minor, yellow:
right subcutaneous fat, light blue: left pectoralis minor, magenta: left pectoralis minor,
red: left subcutaneous fat. (Color figure online)

2 Materials and Methods

2.1 Data

CT scans were acquired from a large retrospective COPD observational
study [15]. An expert identified the axial slice where pectoralis muscles were
most visible at the level of the transversal aorta and segmented six different
structures: left pectoralis major, left pectoralis minor, right pectoralis major,
right pectoralis minor, left pectoralis subcutaneous fat and right pectoralis sub-
cutaneous fat. The annotations were generated by applying intensity thresholds
to the image and manually in-painting the structures of interest. Subcutaneous
fat was defined as the layer of fat between lying between the margins of the
major pectoralis muscle and the skin. Complete annotations (for the six struc-
tures) were generated for 2,000 cases, forming the completely annotated dataset.
Partial annotations (only one structure per case) were generated for 3,000 cases,
forming the partially annotated dataset.
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Func on

Fig. 2. Schema of the proposed training methodology. The input to the network is an
image, the segmentation mask where only one of the structures is segmented and the
structure identifier. The output of the network is a segmentation of all the structures
present on the image encoded in a one-hot schema. Each channel has information of
only one structure or the background. Only the channel corresponding to the labeled
structure is used to compute the loss metric. The structure of the network is, in this
case, the proposed CUNet - a UNet with convolutions in the skip connections.

2.2 Algorithm

Network: The network structure of the proposed algorithm is the same as the
UNet [8], but allowing for multi-class segmentation by adding a one-hot coding
schema in the last layer, which has a softmax activation. We name such network
a partial-UNet (PUNet). The output of the network is an image of the same
dimensions as the original, but with N+1 channels, one per each of the N struc-
tures and an extra one for the background. We further modify such architecture
by adding convolutions in the skip connections (CUNet). The schema of the mod-
ified network is depicted in Fig. 2. The input to the networks is the 512× 512
pixels CT axial slice, where the Hounsfield units (HU) have been clipped to the
range [−300, 500] and then normalized to the range [−0.5, 0.5]. The training set
is formed by {Xi, (Yi, idi)}, where Xi is the image, and Yi is the segmentation
mask associated with the structure identifier idi. The final per-pixel class is
computed in a maximum likelihood fashion.

Cost Function: We use a cost-function that is the sum of the per-structure
soft dice score for the structures that are present in the mini-batch. Thus, the
loss function for a training point can be written as:

f(Yi, Ŷi) =
∑n

i=1 δ(idi = i)dice(Yi, Ŷi)∑n
i=1 δ(idi = i)

(1)
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where δ is a function equal to one if the structure is present in the masks of
the minibatch and zero otherwise, dice stands for the Dice coefficient, Ŷ is the
output of the softmax layer of the network, and n stands for the number of
structures in the problem. Please note that Ŷ is a real-valued scored over all the
voxels of the image. Therefore the cost function is an approximation of the real
dice coefficient.

Baseline Algorithms: We compare the results of the UNet trained on with
partial labels (PUNet) and the modified architecture trained with partial labels
(CUNet) against (a) a multi-class u-net trained completely annotated images
(UNet) using as cost function the per-class normalized dice score and (b) six
per-organ u-nets (6xUNet) trained on the partially labeled dataset.

Training: 500 cases with complete annotations were used to train the baseline
UNet, 3,000 cases with partial annotations were used to train the CUNet, the
PUNet and six the per-structure UNets; 500 cases with complete annotations
were used to validate the training, perform model selection and optimize meta-
parameters and 1,000 cases with complete annotations were used only for testing
and to report the results. We use the well-known ADAM optimizer to train the
network with a learning rate fixed to 0.00005. The training is performed for a
maximum of 30 epochs, and the validation loss is monitored. Training is stopped
if the validation loss does not improve or decreases for five consecutive epochs.

2.3 Statistical Analysis

We use the Kruskal-Wallis statistical method to test if the per-method Dice
score samples are coming from the same distributions. Upon rejection of the null
hypothesis, we perform a non-parametric comparison for all pairs of methods
using the Dunn method for joint ranking. Statistical analysis was performed
with JMP Statistical Software (SAS Institute Inc.).

3 Results

The UNet trained with partial labels (PUNet) obtained a Dice score of 0.909,
similar to that of the six per-class UNets (0.907) and the UNet trained with com-
plete annotation (0.909). The modified architecture, (CUNet) achieved an overall
average dice score of 0.916, improving over the other methods. The per-structure
analysis can be found in Table 1. The Kruskal-Wallis test showed differences
between the CUNet and the other methods for the average dice (p < 0.0001).
PUNet, 6xUNets and UNet average dice scores did not reach significance between
them, indicating an equivalent behavior between such methods.

Figure 3 displays box-plots of the performance of the method per structure.
There is an evident presence of outliers for all the structures. Some selected
outliers are displayed in Fig. 4. We performed a post-hoc difference analysis
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Table 1. Average dice score and standard deviation per structure and global for the
proposed method and the alternative algorithms. UNet: multi-class unet trained in 500
annotated cases. 6xUNet: six UNets trained, one for each structure, in 500 cases with
partial labels. PUNet: unet multiclass trained in the partially labeled dataset with the
loss function of Eq. 1. CUNet: the proposed: the architecture of Fig. 2 trained on the
partially labeled dataset.

UNet 6xUNets PUNet CUNet

Left minor pectoralis 0.877 (0.087) 0.888 (0.091) 0.884 (0.084) 0.878 (0.100)

Left major pectoralis 0.915 (0.063) 0.923 (0.064) 0.918 (0.060) 0.922 (0.058)

Left subcutaneous fat 0.931 (0.068) 0.942 (0.070) 0.935 (0.066) 0.940 (0.064)

Right minor pectoralis 0.878 (0.082) 0.884 (0.091) 0.872 (0.087) 0.890 (0.078)

Right major pectoralis 0.921 (0.055) 0.914 (0.061) 0.919 (0.057) 0.928 (0.051)

Right subcutaneous fat 0.933 (0.068) 0.896 (0.109) 0.932 (0.067) 0.940 (0.063)

Mean per-case dice score 0.909 (0.049) 0.908 (0.056) 0.910 (0.050) 0.916 (0.048)

*
*

*

Fig. 3. Boxplots of the dice scores obtained with the different methdos. Left: all dice
scores per method. Horizontal bars with stars denote statistical significance. Only the
CUNet is statistically significantly different to the other methods. Right: per structure
boxplot. Statsitical significance bars have been removed for clarity.

between each method pair for each structure using the Dunn’s non-parametric
test. The modified architecture, CUNet, mean dice score was greater than the
traditional UNet for all structures analyzed (p < 0.0001). The CUNet did not
show significant differences with the 6xUNets for the left major and right minor
pectoralis and performed worse for the left subcutaneous fat and left minor
pectoralis structures (p < 0.01). However, CUNet performed on average better
than 6xUNets (p<0.0001).

Training time ranged from ≈ 3 min/epoch for the UNet trained with complete
labels to ≈ 18 min/epoch for the other methods, since they need to circle through
six times the number of raw training images. At test time, all methods analyzed
an image in ≈ 1s, while the 6xUNet needed 6s. All times measured in a 1080Ti
GPU.
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Fig. 4. Some challenging cases of the database. Each column is a different case. From
top to bottom: reference standard, jointly trained UNet, individually trained UNet,
UNet trained with partial labels (PUNet) and the UNet with convolutions in the skip
connections trained with partial labels (CUNet). We use the same color schema as in
Fig. 1. (Color figure online)

4 Discussion

We have presented a training methodology and a cost-function that enable the
generation of multi-class deep learning segmentation algorithms from partially
labeled images. We further the results by proposing a modification of the net-
work architecture. Our method has shown improvement over a UNet trained
on wholly annotated datasets and over six UNets trained for each organ indi-
vidually, improving statistically significantly over the overall Dice score. The
proposed CUNet improves the segmentation with respect to a traditional UNet
when keeping the rest of parameters constant.
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We have tested training with partially labeled datasets in the context of
body composition measurements from axial images in CT scans. However, the
proposed method is generalizable to any other context where multiple labels in
different cases are present and could be used to train multi-organ segmentation
method by leveraging single-class labeled data. In the current experiments, we
are assuming that each image has only been labeled with a single organ. However,
Eq. 1 could enable a variable number of classes to be present in each image. We
have focused on 2D images. However, extensions to 3D are straightforward, for
instance using a v-net instead of a u-net [14,16].

The proposed method segments pectoralis and subcutaneous fat with high
average dice coefficients, enabling its use for large cohort research. However, when
presented with images with poor quality, cases with thin pectoralis or with dense

Fig. 5. Three extra segmentations of cases with moderate DICE score in at least one
structure. The color conventions follows that of Fig. 4. Best viewed in color.



Multi-Structure Segmentation from Partially Labeled Datasets 223

breasts, the segmentation can be mislead, as shown in Fig. 5. Further analysis
of such outliers, and an importance sampling strategy that over-represents such
fringe cases, could be used to improve the performance of the algorithm.

We have chosen as cost function the average of the per-structure dice coef-
ficient, which is independent of the size of the structure being segmented. This
might pose problems with structures that are small or too difficult to segment.
An extension of the proposed method would be to modulate the cost function
with weights that take into account such structural properties. Such analysis
is left for future work. We have trained with a balanced dataset, in the sense
that each structure had the same number of annotated images in the partial
database. Modifications of Eq. 1 and data augmentation strategies can be made
to compensate for unbalanced datasets.

Deep learning segmentation methods have conquered most of single organ
segmentation problems. The next challenge in medical image segmentation would
be to segment complex images, such as CT scans entirely. With this work, we
have demonstrated that we can create multi-organ segmentation algorithms from
partially labeled datasets that are equivalent or better than algorithms trained
with wholly labeled datasets. This could be extrapolated to the creation of multi-
organ segmentation networks from the already existing per-organ segmentation
databases.n.

References

1. Kayalibay, B., Jensen, G., van der Smagt, P.: CNN-based segmentation of medical
imaging data. arXiv preprint arXiv:1701.03056 (2017)

2. Cai, J., Lu, L., Xie, Y., Xing, F., Yang, L.: Improving deep pancreas segmentation
in CT and MRI images via recurrent neural contextual learning and direct loss
function. arXiv preprint arXiv:1707.04912 (2017)

3. Fidon, L., et al.: Scalable multimodal convolutional networks for brain tumour
segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins,
D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 285–293. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66179-7 33

4. Drozdzal, M., Chartrand, G., Vorontsov, E.: Learning normalized inputs for itera-
tive estimation in medical image segmentation. Med. Image Anal. 44, 1–13 (2018)

5. Roth, H.R., et al.: Hierarchical 3D fully convolutional networks for multi-organ
segmentation. arXiv preprint arXiv:1704.06382 (2017)

6. Fidon, L., et al.: Generalised wasserstein dice score for imbalanced multi-class seg-
mentation using holistic convolutional networks. arXiv preprint arXiv:1707.00478
(2017)

7. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised
dice overlap as a deep learning loss function for highly unbalanced segmentations.
In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp.
240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9 28

8. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

http://arxiv.org/abs/1701.03056
http://arxiv.org/abs/1707.04912
https://doi.org/10.1007/978-3-319-66179-7_33
http://arxiv.org/abs/1704.06382
http://arxiv.org/abs/1707.00478
https://doi.org/10.1007/978-3-319-67558-9_28
https://doi.org/10.1007/978-3-319-24574-4_28


224 G. González et al.
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Abstract. The characterization of the vasculature in the mediastinum,
more specifically the pulmonary artery, is of vital importance for the
evaluation of several pulmonary vascular diseases. Thus, the goal of this
study is to automatically segment the pulmonary artery (PA) from com-
puted tomography angiography images, which opens up the opportunity
for more complex analysis of the evolution of the PA geometry in health
and disease and can be used in complex fluid mechanics models or indi-
vidualized medicine. For that purpose, a new 3D convolutional neural
network architecture is proposed, which is trained on images coming
from different patient cohorts. The network makes use a strong data
augmentation paradigm based on realistic deformations generated by
applying principal component analysis to the deformation fields obtained
from the affine registration of several datasets. The network is validated
on 91 datasets by comparing the automatic segmentations with semi-
automatically delineated ground truths in terms of mean Dice and Jac-
card coefficients and mean distance between surfaces, which yields values
of 0.89, 0.80 and 1.25 mm, respectively. Finally, a comparison against a
Unet architecture is also included.
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1 Introduction

The morphological assessment of the Pulmonary Artery (PA) is essential to eval-
uate several Pulmonary Vascular Diseases (PVD). Most patients with Pulmonary
Hypertension (PH), present a remodeled main PA with a diameter considerably
larger than that of a control subject and thus, being an important biomarker for
predicting and detecting hypertension. In the Chronic Obstructive Pulmonary
Disease (COPD), a widening of the PA is associated with increased risks of exac-
erbation and decreased survival rates. Pulmonary Embolism (PE) refers to the
blockage of one of the pulmonary arteries, mostly caused by blood clots. Thus,
it is essential to monitor the arterial obstruction to evaluate the severity of PE.

Computed tomography (CT) and CT angiography (CTA) play a crucial role
in the diagnosis and management of PVD since they allow to assess macroscopic
pulmonary vascular morphology quantitatively. In this study, we aim at lever-
aging CTA images of several patient cohorts to segment the PA with a new 3D
Convolutional Neural Network (CNN) architecture. Deep learning has already
been applied to segment other vascular structures from CT images with promis-
ing results [3,7,10], which encouraged us to use it for PA segmentation.

2 Literature Review

The segmentation of PA can be challenging due to its complicated and vari-
able shape, motion artifacts, and proximity to other blood vessels such as the
pulmonary vein that may hamper the correct segmentation. Even if there are
many studies in the literature about pulmonary vascular tree segmentation, they
usually focus on vessel segmentation within the lungs or pulmonary emboli and
nodule detection, without specifically analyzing the PA.

Regarding the segmentation of the PA outside the lung, which is our goal,
only a few studies have been proposed. In [2] a Hessian matrix based preprocess-
ing followed by a region growing method is proposed, which relies on a previous
extraction of the lungs and the heart. The method in [14] also requires a pri-
ori knowledge of the artery morphology followed by a fast-marching algorithm
and a registration to a target reference volume, which did not fully address
the variability in PA sizes and shapes. In [6] a semi-automated tool which uses
level sets and geodesic active contours to segment the main PA is presented,
with the goal of measuring the PA diameters in patients with PH. From the
obtained segmentations, the authors extract the artery centerline and measure
the diameter, reporting a mean error up to 6 mm. A similar study to measure
PA cross-sectional area is proposed in [9], where the artery is segmented using
dilation and erosion operations on 14 normal patient CTA scans.

Compared to previous works in the literature, our method combines images
from PE cohorts, PH cohorts, and control patients and is tested on many vol-
umes. Additionally, it is fully automatic, it does not include any shape prior and
it yields a mean error when measuring PA diameters of 2.5 mm.
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3 Materials

A total of 51 CTA volumes of different patients are employed to train our CNN.
Among these datasets, 39 patients have PE, 8 of them are control subjects who
were thought to have PH, and the remaining 4 have hypertension. The mean
intensity in the PA is higher than 550 HU in all the CTA volumes, and motion-
related artifacts are present in most of the images. Figure 1 shows sample CTA
slices of three patients coming from different cohorts.

Fig. 1. Sample CTA slices of 3 patients from different cohorts. Left - Pulmonary
embolism dataset, where the arrow points towards a clot; Middle - Control subject;
Right - Pulmonary hypertension case, where the arrows show a dilated artery.

To test the network, an additional 91 CTA volumes are used, all of them cor-
responding to patients with PE, being it our largest cohort. The mean intensity
in the PA in these cases ranges between 350 HU and 550 HU.

3.1 Fuzzy Ground Truth Generation

For the 142 patients, ground truth labels are obtained semi-automatically using
ITK-Snap [16]. The first step consists of selecting a region of interest around the
PA, extracting a sub-volume that starts at the aortic valve and expands until
the main PA is not observed.

Then, an initial segmentation is extracted with the region competition snake
approach, using a thresholded version of the image as the feature image that
drives the evolution and forces the snake to fit the boundary of the artery.
The minimum and maximum thresholds employed to create the feature image
for the training datasets are set to 500 HU and 900 HU, respectively, whereas
for the test images, the employed thresholds are 300 HU and 900 HU. A seed
point is placed within the main PA to initialize the evolution of the snake,
which is manually stopped when an approximate segmentation is obtained. The
parameters that control the evolution of the front, i.e. the region competition
force and the smoothing or curvature force, are set to 1 and 0.5, respectively.
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Finally, the output segmentation from the region competition snake approach
is manually refined, as shown in Fig. 2. Two main corrections are applied:

– Removal of veins and other structures incorrectly labeled as arteries
– Inclusion of clots in the segmentation to ensure a natural artery shape

Fig. 2. Correction of the automatically generated ground truth labels. Left - Automat-
ically obtained segmentation; Middle - Correction of the segmentation by including the
clot (green) and removing the vein (blue); Right - Final fuzzy ground truth used for
the CNN. (Color figure online)

The resulting ground truth segmentations are considered fuzzy, since it is
difficult to have a precise delimitation of the artery contour when there is a large
clot in the artery. Additionally, small artery branches have not been consistently
labeled across the different datasets.

4 Methods

Hereby, we propose a new 3D convolutional neural network for the segmenta-
tion of the PA from CTA volumes. The proposed network, fully described in
Sect. 4.3, is inspired by the 3D V-net [8] with modifications introduced from the
2D Fully Convolutional DenseNet (FC-DenseNet) [5] and the 2D Efficient neural
network (ENet) [11]. We employ a training strategy that relies on a strong use of
data augmentation, mostly generated with realistic deformations, as explained
in Sect. 4.1. Finally, we validate our network with the test set by comparing
the semi-automatically generated ground truths with the network predictions in
terms of Dice and Jaccard scores. Since the final clinical goal is to characterize
the aortic morphology, we also measure the distance at each point between the
two surfaces, i.e., the ground truth and the output from the network.

4.1 Data Augmentation Using Realistic Deformations

Data augmentation have been largely used in deep learning in the biomedical
field due to the limited number of annotated datasets. In particular, for the case
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of 3D datasets, it is difficult and time-consuming to obtain a corpus of annotated
images that are large enough to account for the anatomical variability between
subjects. Thus, researchers usually apply data augmentation techniques, mostly
in the form of rotations and translations to generate new volumes. In [12] a new
data augmentation approach was proposed, based on applying random elastic
deformations to the original volumes. The use of these synthetically generated
volumes seemed to be the key to train a segmentation network with very few
annotated samples.

Inspired by this work, we efficiently augment our dataset using realistic elastic
deformations as well as traditional rotations and translations. Unlike in [12],
where the applied deformations were random, we propose to generate realistic
deformation vectors from the Principal Component Analysis (PCA) of a subset
of deformation fields extracted directly from the affine registration of several
volumes. The steps are the following:

1. Register 10 CTA volumes to a reference volume of a control subject using
3D Slicer [1] and extract the 3D deformation fields corresponding only to the
affine transformation

2. Extract the mean deformation and the eigenvectors and eigenvalues of the
ten deformation fields using two PCA models:

– PCA1-Model: considers the correlation between the components of the
deformation fields, i.e., x, y, and z

– PCA2 Model: considers each component of the fields independently
3. Generate new deformation fields by randomly weighing the first six eigen-

vectors (which account for most of the variability) with values from 0 to the
square root of the corresponding eigenvalue

– For PCA1-Model the three components are weighted equally
– For PCA2-Model we weight x, y and z independently

4. Generate new synthetic volumes by applying these deformation fields to each
original CTA volume in the training set, as shown in Eq. 1 for PCA1-Model
and in Eq. 2 for PCA2-Model.

Ĩj :
6∑

i=1

< wi ∗ Bi > +µ (1)

Ĩj :
6∑

i=1

< wxi
∗Bxi

> +µx+
6∑

i=1

< wyi
∗Byi

> +µy +
6∑

i=1

< wzi ∗Bzi > +µz

(2)

where Ĩj is the generated synthetic image, wi are the weights generated from
the eigenvalues, Bi are the eigenvectors, and µ is the mean image extracted from
the 10 original deformation fields.

Following this procedure, we create 50 new volumes per each original input
CTA. 30 of them are extracted with PCA1-Model, whereas another 20 are gen-
erated with PCA2-Model. This allows the network to learn invariance to defor-
mations without the need to see these transformations in the annotated image
corpus. This is particularly important in biomedical segmentation since defor-
mation is the most common variation in tissue and realistic deformations can
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be simulated efficiently with the proposed approach. Examples of the generated
volumes in 2D and 3D are shown in Figs. 3 and 4, respectively.

4.2 Related Networks Served as Inspiration

The V-Net [8] network is one of the few architectures in the literature specifi-
cally designed to work with 3D images. It is composed of convolution, deconvo-
lution and pooling layers arranged in an encoding and a decoding path. Every
couple of layers in the encoding path a down-convolution is performed, and for
every pooling the number of feature maps is doubled to allow the network to
distribute the information from the previous layer throughout the maps, instead
of losing it when reducing the spatial resolution. Before each down-convolution,
a skip-connection is introduced to pass higher resolution maps to the decod-
ing path. In the decoding path, an up-convolution is performed every couple

Fig. 3. Sample axial slices of volumes generated using the realistic deformation based
data augmentation technique. Right: original axial slice; Middle: corresponding slice
generated using PCA2-Model; Left: corresponding slice generated using PCA1-Model.

Fig. 4. Sample volumes generated using the realistic deformation based data augmen-
tation technique.
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of layers and feature fusion with the skip connections is applied, improving the
convergence time and the quality of the segmentation.

FC-DenseNet [5] is one of the most recent networks for 2D semantic seg-
mentation. As the V-Net, FC-DenseNet also uses an encoding and a decod-
ing pathway to obtain global features, incorporating feature fusion. However,
opposed to the idea in V-Net, this architecture uses many convolutional layers
but each of them with few channels, whereas in V-net there are fewer convo-
lutional layers and the information is distributed in more filters. Each layer is
directly connected to every other layer in a feed-forward fashion and batch nor-
malization is implemented before all convolutional layers, which helps to control
over-fitting.

Finally, in [11] the ENet is proposed, which aims at providing real-time
semantic segmentation by using a low amount of parameters, squeezing in as
much information as possible in every parameter. A critical contribution of ENet
is the introduction of a down-sampling block that combines max pooling and
strided convolution to avoid representational bottlenecks.

4.3 Proposed Convolutional Neural Network

Figure 5 shows the main building blocks of our proposed network, displayed
in Fig. 6. It has an encoding and a decoding path as the V-Net and the FC-
DenseNet. As in FC-DenseNet, the input is propagated through the network via
dense connections and channels are appended throughout. The structure of the
encoder is also changed to an ENet style block. We also remove some layers as
compared to FC-DenseNet, but increase the width. The number of filters in each

Fig. 5. The several blocks that compose the proposed convolutional neural network.
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Fig. 6. Scheme of the proposed convolutional neural network.

regular dense block is increased gradually. In the decoding pathway, we decrease
the number of channels steadily to reach an amount that is computationally
feasible without performing extreme information compression.

The network is implemented using Keras with tensorflow. It is trained with
3468 volumes extracted by augmenting the scans of 91 different patients. All
volumes are resized to 128 × 128× 64 and the intensities are rescaled to 0–1.

The model is built in a Xeon E7 3.6 GHz, 62 GB processor equipped with
a Nvidia GeForce GTX1080 card, under Linux Ubuntu 16.04 SMP 64 bits. We
train the network using ADAM optimization with a batch size of 1, an initial
learning rate of 1e−03 and plateau learning rate decay with a factor of 0.2 when
the validation loss is not improved after five epochs, with a minimum learning
rate of 1e−05. We use the binary accuracy metric and try to minimize the binary
cross entropy loss function. Early stopping is also applied to avoid overfitting,
thus, stopping the learning process after 20 epochs, as shown in Fig. 7.
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Fig. 7. Training and validation loss and accuracy curves and fitted polynomial trendline
as a function of epochs. Over-fitting is observed after epoch 20.

Finally, the model is tested on the 91 less contrasted CTA scans described
in Sect. 3. The predictions are 3D probability maps where the intensity of each
pixel is the probability of it being PA. We apply gaussian smoothing to the
output grayscale image, followed by Otsu’s thresholding that aims at selecting
an optimal case-specific threshold when the image contains two classes following
bi-modal histogram and voting binary hole filling to obtain the final binary
segmentation.

4.4 Validation Approach

To evaluate the performance of our network, we compare the automatically
obtained segmentation with the fuzzy ground truths in terms of Dice and Jaccard
scores for the 91 test cases, and we calculate the mean and standard deviation.

Since the final clinical goal is to characterize PA morphology, i.e. its diameter,
we generate the 3D surfaces of both segmentations using VTK [13] to calculate
the mean distance between them. First, we use the Discrete Marching Cubes
method to extract the surfaces and the normals at every point. Then, we create
a Kd-tree spatial decomposition of the set of points of each surface. Finally,
we use a point locator to find the closest point in the ground truth surface for
every point in our segmentation, and we measure the Euclidean distance between
them. The distance between surfaces is the mean distance of all the points in the
surface, which corresponds to the mean error when measuring the PA radius.

5 Results

Table 1 summarizes the results for the proposed network using realistic
deformation-based data augmentation and without using it. Our method yields



234 K. López-Linares Román et al.

a mean Dice coefficient of 89% and a Jaccard score of 80%. From the clinical
point of view, when measuring the PA radius our method falls into a mean error
of 1.25 mm. According to several studies [4,15], the PA diameter of a control
subject is smaller than 29 mm and in patients with PH the artery is enlarged.
Hence, the mean error made with our segmentation approach falls at least below
8.6%.

Figure 8 depicts the box plots for the validation scores for all the patients
used for testing, where some clear outliers that negatively impact the achieved
mean values are observed. The most noticeable two cases correspond to patients
with a very big liver, in which the network gets confused and segments part of
the liver as if it were the artery (see Fig. 10). Our guess is that the network may
interpret that this region corresponds to the end part of the artery branch.

Regarding the use of deformation-based data augmentation, an improvement
of 2.3% and 3.9% is obtained for Dice and Jaccard coefficients, respectively. For
the distance between surfaces, an improvement of 1.57% is achieved. As shown
in Fig. 8, the Dice and Jaccard score’s improvement is statistically significant
according to the Wilcoxon test but it is not for the distance between surfaces.

Finally, we also trained and tested the V-net in [8] to compare the results,
which are shown in Table 2. Even if the Dice and Jaccard scores are very similar
for both architectures, the distance between surfaces is much larger in the case
of the Unet and the statistical significance is notable, with a p-value of 1.73e−09
for the case of the distance according to the Wilkoxon test (Fig. 9). This suggest
that our architecture enables better quantification of mean pulmonary artery
diameters.

Table 1. Evaluation metrics for the proposed network when including realistic
deformable registration based data augmentation and without it.

Mean Dice Score Mean Jaccard Score Mean distance between
surfaces (mm)

Without
augmentation

0.87 ± 0.07 0.77 ± 0.09 1.27 ± 0.98

With data
augmentation

0.89 ± 0.07 0.80 ± 0.09 1.25 ± 1.17

Table 2. Evaluation metrics for the proposed method as compared to a traditional
Unet when using the deformation-based data augmentation.

Mean Dice Score Mean Jaccard Score Mean distance between
surfaces (mm)

Unet 0.89 ± 0.04 0.80 ± 0.05 1.66 ± 1.03

Proposed
architecture

0.89 ± 0.07 0.80 ± 0.09 1.25 ± 1.17



3D Pulmonary Artery Segmentation from CTA Scans Using Deep Learning 235

Fig. 8. Plots showing the Dice and Jaccard scores and the mean distance between
surfaces for all the test volumes when using the proposed data augmentation technique,
and without it. The p-values corresponding to the Wilkoxon test are also displayed.

Fig. 9. Plots showing the Dice and Jaccard scores and the mean distance between
surfaces for the proposed architecture and a Unet. The p-values corresponding to the
Wilkoxon test are also displayed.

Fig. 10. Outlier test case of a patient with a very big liver, which the network segments
as artery.

6 Conclusions

Hereby, we proposed a new CNN to PA segmentation from CTA images, which
opens up the opportunity for more complex analysis of the evolution of the PA
geometry (i.e. going beyond just measuring the diameter). The network is based
on an encoder-decoder scheme similar to the V-net [8], but by including Dense
blocks and Enet blocks, we are able to improve the segmentation results, mostly
in terms of distance between surfaces. Adding bootstrapping to the loss function
could further increase the accuracy of our model.

Additionally, a novel data augmentation approach has been described, which
relies on a PCA analysis of deformation fields extracted from the affine regis-
tration of several volumes. For the current work, 10 different base deformation
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fields have been extracted by registering 10 volumes to a reference CTA. Look-
ing at the results, it seems that more fields are necessary to account for a larger
anatomical variability between patients since the improvement as compared to
training without this data augmentation is not statistically significant regarding
the distance between surfaces. However, a tendency is observed in the Dice and
Jaccard scores, which suggests that with more deformation fields a better out-
come may be achieved. Additionally, the fields generated to create the synthetic
images after the PCA analysis are obtained by varying the weight of each eigen-
vector with the square root of the corresponding eigenvalue, which limits the
range of deviation from the mean deformation. Weighting each eigenvector with
a wider value range could also account for more variability in the input data.

Finally, regarding future work, our aim is to incorporate a data augmentation
technique that simulates non-contrast CT volumes from CTA scans. This may
allow to use the same network to segment and characterize the artery in cohorts
where the use of contrast is not usual, such as COPD patients.
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Abstract. Segmentation of the airway tree from chest computed tomog-
raphy (CT) images is critical for quantitative assessment of airway dis-
eases including bronchiectasis and chronic obstructive pulmonary disease
(COPD). However, obtaining an accurate segmentation of airways from
CT scans is difficult due to the high complexity of airway structures.
Recently, deep convolutional neural networks (CNNs) have become the
state-of-the-art for many segmentation tasks, and in particular the so-
called Unet architecture for biomedical images. However, its application
to the segmentation of airways still remains a challenging task. This
work presents a simple but robust approach based on a 3D Unet to per-
form segmentation of airways from chest CTs. The method is trained
on a dataset composed of 12 CTs, and tested on another 6 CTs. We
evaluate the influence of different loss functions and data augmenta-
tion techniques, and reach an average dice coefficient of 0.8 between the
ground-truth and our automated segmentations.

Keywords: Airway segmentation · Convolutional neural networks
Data augmentation · Bronchiectasis · CT

1 Introduction

Segmentation of airways in chest computed tomography (CT) images is critical
to obtain reliable biomarkers to assess the presence and extent of airway diseases.
Biomarkers such as airway lumen diameter, airway wall thickness, airway taper-
ing and airway-artery diameter ratio help in detection of early signs of disease
and quantification of its severity. However, the segmentation of airways is a diffi-
cult task due to the complex tree-like structure of airways, with a large number
of branches of very different sizes and orientations.
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There are several methods proposed for automatic extraction/segmentation
of the airway tree in chest CTs. Conventional methods such as region growing
can successfully capture the main bronchi, but systematically fail at extract-
ing the peripheral bronchi of smaller size. Other more sophisticated techniques
are: [1], based on a region growing approach using an airway probability map
computed by a voxel classifier, together with an airway/vessel orientation sim-
ilarity term; [2], based on a tube-likeness shape detector computed from the
Gradient Vector Flow field properties; or [3,4], based on optimal surface graph-
cut methods which find a globally optimal solution accounting for both airway
lumen and outer wall surfaces with a wide range of tailored geometric constraints.
These and other airway segmentation methods were evaluated by Lo et al. in
the EXACT09 challenge [5].

Since recently, the state-of-the-art methods for many image segmentation
tasks are based on convolutional neural networks (CNNs) [6]. In particular, the
so-called Unet network proposed by Ronneberger et al. [7] has become popular
in segmentation tasks of biomedical images. With regards to airway segmenta-
tion, a number of CNNs-based methods [8–11] have been proposed which have
outperformed the classical methods compared in [5]. In particular, [8–10] use the
3D Unet network to analyse volumetric images. Another novel method for air-
way extraction is proposed by Selvan et al. [12], by formulating it as a mean field
approximation based graph refinement task that resembles feed forward neural
networks.

In this paper, we propose a robust fully automatic end-to-end method based
on 3D Unets to perform airway segmentation in chest CT images. Other Unet-
based approaches are more complex, such as [8] which relies on a tracking algo-
rithm of the connected structure of the airway tree, and uses a local volume of
interest (VOI) around single tracked branches. In contrast, our method is simpler
and end-to-end optimised, whose only input are large images patches containing
various branches at once. This makes it more robust.

2 Methodology

The processing pipeline for airway segmentation proposed in this work is
described in the next subsections, including pre- and postprocessing techniques.

2.1 Network Architecture

The 3D Unet is adopted for volumetric image analysis by replacing the opera-
tors of the original 2D U-Net proposed in [7]: (i) convolution; (ii) pooling; (iii)
upsampling; with their analogous 3D operator. The Unet method consists of an
encoder/downsampling path followed by a decoder/upsampling path, each with
5 levels of resolution. Each level in the downsampling path is composed of two
3× 3× 3 convolutional layers followed by a 2× 2× 2 pooling layer. At each level
the number of feature channels is doubled, with a number of channels in the
first level of 16. In the upsampling path, only one 3× 3× 3 convolutional layer
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is used before an 2× 2× 2 upsample layer. This is in order to reduce memory
requirements of the network, since convolutions in the upsampling path can be
less relevant, as mentioned in [13]. Each convolution operator is followed by a
rectified linear unit (ReLU). At each level the number of feature channels is
halved. The final layer consists of a 1× 1× 1 convolutional layer followed by a
sigmoid activation function. This way the network output is a voxelwise prob-
ability map of the sought airways, of the same size as input images. The total
number of convolutional layers in the network is 15.

In the convolution operations, an adequate zero-padding is used to obtain an
output of the same size as the input. This is for sake of simplicity in designing the
same network for arbitrary sizes of input image. Moreover, due to size constraints
of the input images, we disable the convolution/pooling operators applied in axial
direction in the deepest level of the network, i.e. we use 1× 3× 3 convolutions
and 1× 2× 2 pooling.

As regularisation, we use exclusively on-the-fly data augmentation during
training, explained in Sect. 2.3. No dropout has been used. The reason for this is
twofold: (i) our experiments showed that data augmentation was more efficient
for regularisation, and (ii) the use of dropout in Keras incurs in a large increase
in memory footprint, since the feature maps input to the dropout layers are
duplicated. Indeed, the main challenge of our experiments is the maximum size
of the network that fits in GPU memory, more important than computational
speed. And while the inclusion dropout layers requires a significant reduction of
size, data augmentation is generated on the fly with no memory overhead and a
negligible increase in computational time.

2.2 Choice of Loss Function

Two different loss functions for training the network have been tested in our
experiments, namely: (i) weighted binary cross-entropy (wBCE) (Eq. 1), and (ii)
Dice coefficient (dice) loss (Eq. 2).

L1 = wB

∑

x∈NB∩NL

log(1 − p(x)) + wA

∑

x∈NA∩NL

log(p(x)) (1)

L2 =
2
∑

x∈NL
p(x)g(x)

∑
x∈NL

p(x) +
∑

x∈NL
g(x) + ε

(2)

where p(x), g(x) are the voxelwise airway probability maps and airway ground-
truth, respectively. The subindexes B,A refer to the ground-truth classes back-
ground/airways, respectively, and L corresponds to the region of interest (ROI):
the lungs. Nk is the group of voxels for each class. ε is a tolerance needed when
there are no ground-truth voxels found in the (sub)image.

We force the training of the network to the ROI: the lungs fields, so that only
voxels within this region contribute to the loss. This is achieved by masking the
probability maps and ground-truth with a lung segmentation. This is indicated
by the intersection NB ∩NL in Eqs. 1–2. This approach forces the voxelwise clas-
sification to focus only on discriminating between airways and lung parenchyma
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(background), ignoring other non-relevant structures including ribs, adipose tis-
sue, and skin. The lung segmentation needed in this approach is easily computed
by a region-growing method [1].

In the wBCE function (Eq. 1), the weights wB , wA are used to compensate for
a large interclass imbalance of lung parenchyma (background)/airways voxels.
The weights are computed on the fly, for a given input image patch, as the
ratio of the opposite class voxels with respect to the total voxels, or analogously:
wB = 1, wA = NB/NA.

2.3 Preprocessing

The main challenge of our experiments is that chest CT images have a size
much larger than the maximum input to the network that fits in GPU memory.
We apply several preprocessing steps to adapt the input images and reduce the
memory footprint.

Cropping Images. The CTs are cropped to the region of interest: the lungs.
The bounding-box is of fixed size in x, y dimensions: 352× 240 pixels, and cen-
tered in each lung. The axial dimension is different for each CT. The box is
enlarged by 30 voxels in each direction to account for border effects.

Sliding-Window. A sliding-window approach is used to extract smaller image
patches from the input CTs that fit to the size requirements of the network,
similar to the method in [6]. The sliding is undertaken only in axial direction
with a stride of 104 pixels, while the x, y dimensions are fixed and equal to
the network input size: 352× 240 pixels. This is schematically shown in Fig. 1.
The sliding stride is set to have 75% overlap in between the extracted patches,
in order to prevent border effects. The sliding-window is used for all CTs of
training and validation sets. The resulting image patches are generated on the
fly during training, to prevent any memory overhead, and are randomly shuffled
at the beginning of each epoch.

Data Augmentation. Data augmentation is applied systematically to the
input images during training, by means of (i) rigid transformations, and/or (ii)
elastic deformations. The former operations consist of random flipping and rota-
tions with a maximum value of 10 degrees, in the three dimensions. The elas-
tic deformations consist of smooth voxel displacements computed using bicubic
interpolation from random displacement vectors on a coarse grid of 3× 3, which
are sampled from a Gaussian distribution with 25 voxels standard deviation.
This methodology is similar to the one used in [7]. This is schematically shown
in Fig. 1. The data augmentation is applied over the 3D images patches extracted
by the sliding-window method, on both the training and validations sets. The
resulting images are generated on the fly during training, and these are the input
to the network.
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Fig. 1. Preprocessing pipeline of input images to the network. 1: crop CTs. 2: Extract
3D images patches by sliding-window. 3, 4: Apply data augmentation (elastic defor-
mations) to the input patch, which is fed to the network.

2.4 Post-processing

Zero-padding in convolution operations in the network is used for simplicity,
but the results suffer from border effects where the probability maps are less
reliable towards the image boundaries. Instead, a network composed of valid
convolutions ensures a fully reliable output, but its size is strongly reduced to
roughly 25–50% of input size. This is an issue in our experiments where the axial
dimension of input patches is rather small.

The technique implemented to prevent border effects is schematically shown
in Fig. 2 and works as follows: the output probability maps are multiplied with
a function that is: (i) “1” within a window corresponding to the output of a
similar network with valid convolutions, (ii) elsewhere, a quadratic polynomial
decreasing towards the output borders. The function in 1D corresponds to Eq. 3,
with xl, xr the limits of the output in (i), and image dimensions x ∈ [0, xm].

f(x) =

⎧
⎨

⎩

(x/xl)2 if x < xl

1 if xl ≤ x ≤ xr

((xm − x)/(xm − xr))2 if x > xr

(3)

The full size output is reconstructed by placing together output patches following
the structure generated for input images, and normalizing for patches overlap.
Finally, the output outside the lung ROI is discarded by masking the probabil-
ity maps with the binary mask of lungs. The final airway tree is obtained by
thresholding the resulting airway probability maps.

3 Dataset and Experiments Set-Up

The dataset used to conduct the experiments consists of 24 inspiratory chest
CT scans from pediatric subjects, 12 controls and 12 with respiratory disease:
11 with Cystic fibrosis (CF) and 1 with Common Variable Inmune Deficiency
(CVID). Both groups were gender and age matched: range 6 to 17 years old,
5 females, per group. Scanning was undertaken using spirometry-guidance in



Automatic Airway Segmentation in Chest CT 243

Fig. 2. Postprocessing of output probability maps. 1: diminish output near image
boundaries to prevent border effects. 2, 3: Reconstruct full size probability maps, and
apply thresholding to obtain airway tree.

a Siemens SOMATOM Definition Flash scanner. Similar kernel reconstructions
were used for all scans: I70f/3, B75f, and B70f. This dataset has been prepared
in the works of [14,15].

Each CT scan consists of a number of cross-sectional slices, from 265 to 971
slices, with varying thickness in the range 0.75–1.0 mm, and slice spacing from
0.3 to 1.0 mm. Each slice is of fixed size equal to 512 × 512 pixels, with a pixel
size in the range 0.44–0.71 mm.

The 12 CTs for control and disease patients are randomly split in three cate-
gories: training, validation and testing, with proportion 50/25/25%, respectively.
The final data groups are then: 12 CTs for training, 6 CTs for validation and 6
CTs for testing.

The ground-truth used to train the network are reference segmentations of
the airways outer wall obtained from an accurate airway segmentation method [4]
applied on manual annotations of centrelines. These are manually extracted for
the entire airway tree using specialised software in the work of [14]. A coarse
segmentation is generated from the centrelines, and then the surface graph-cut
method [4] is applied to refine this and obtain an accurate segmentation of both
airway lumen and outer wall.

The experiments are conducted in a GPU NVIDIA GeForce GTX 1080 Ti
with 11 GB memory. The network architecture has been implemented in Keras
framework1.

3.1 Network Optimisation

The network is designed to accommodate the largest input images possible that
fit the GPU memory during training. This corresponds to input images of size
104× 352× 240 with a batch containing only one image. It has been observed
that this is advantageous over increasing the batch size using smaller input
images.

1 https://keras.io/.
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For training the network, the Adam optimizer is used with a learning rate of
1.0e-05. The training time is stopped either when (i) the validation loss increases
over 15 epochs, or (ii) a maximum of 300 epochs is reached. In either case, the
results consists of the model with the lowest validation error during training,
evaluated on the test set. Training time is approximately 1 day, while testing
time is only a few seconds per CT scan.

3.2 Experiments Set-Up

The various experiments conducted correspond to different set-ups of the net-
work, namely: (i) use of (a) dice or (b) wBCE loss function, and (ii) use of (a)
rigid transformations or (b) elastic deformations as data augmentation. All the
experiments are displayed in Table 1.

4 Results and Discussion

The free ROC (FROC) curves for all models in Table 1 are displayed in Fig. 3.
This shows the sensitivity and number of false positives for the segmentations

Table 1. List of set-ups of experiments conducted

Loss function Data augmentation Name

1 wBCE None wBCE-None

2 wBCE Rigid wBCE-Rigid

3 dice None dice-None

4 dice Rigid dice-Rigid

5 dice Elastic dice-Elastic

Fig. 3. Left: FROC curve computed on the test set, by varying the thresholding in
the probability maps, for all models in Table 1. The circle/triangle corresponds to a
threshold of 0.5/optimal value, respectively. The optimal thresholds are: with dice loss:
0.5; with wBCE loss: around 0.9. Right: average Dice coefficient on the test set. The
results correspond to the optimal threshold for each model.
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Fig. 4. Left: visualization of the segmented airway tree, obtained for one of test CTs
with the model “dice-Elastic” and optimal threshold. Right: ground-truth

obtained when varying the threshold level in the probability maps. An optimal
threshold value for each case is estimated as the point on the FROC curve closest
to the upper-left corner. The accuracy measured as the Dice coefficient averaged
over the test set is also shown in Fig. 3. The trachea and main bronchi are
excluded from this calculation. For visualization, the segmented airway tree for
one of test CTs obtained with the model “dice-Elastic” in Table 1 is displayed in
Fig. 4, together with the ground-truth. Furthermore, the false positives and false
negatives voxels for the segmentations obtained with all models tested (Table 1)
on the same CT are displayed in Fig. 5. These results correspond to the optimal
threshold for each model.

The most accurate segmentations are obtained when using the dice loss func-
tion, and elastic deformations as data augmentation. The average Dice coefficient
on the test set is 0.80, excluding the trachea and main bronchi. This accuracy is
similar to the results reported in [8] on a larger dataset.

In Fig. 5 it is seen that the largest errors are false negatives located in the tip
of peripheral airways, which indicates that the method captures slightly shorter
branches than the ground-truth. Also false positives are important in this region.
Nevertheless, some of these errors might be due to missing smaller airways in
the ground-truth, explained by the fact that some terminal branches were missed
in the centrelines annotations. Other false positives are present in the form of
small disconnected blobs. To reduce these errors, one could select the largest
connected component or apply post-processing techniques such as Conditional
Random Fields (CRF) [16]. Furthermore, when using wBCE loss, one could
further reduce the number of misclassifications by locally increasing the weights
at the peripheral airways.
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(a) wBCE-None (b) wBCE-None, detailed view

(c) wBCE-Rigid (d) wBCE-Rigid, detailed view

Fig. 5. Left: visualization of false positives (red) and false negatives (blue) voxels,
together with true positives (yellow), for the airway segmentations obtained for one
of test CTs and all models tested (Table 1). The results correspond to the optimal
threshold for each model. Left: view of full airways tree. Right: detailed view around
the peripheral branches in the lower-right section of the tree.
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(g) dice-Rigid (h) dice-Rigid, detailed view

(i) dice-Elastic (j) dice-Elastic, detailed view

(e) dice-None (f) dice-None, detailed view

Fig. 5. (continued)
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In Figs. 3 and 5 it is shown how the use of data augmentation increases sub-
stantially the accuracy in the resulting segmentations, both when using wBCE
and when using dice loss function. For either case, the average Dice increases
approximately by 0.1 and 0.05, respectively. The airways segmented with data
augmentation show a much lower number of both false positives and false neg-
atives. Also, they show more regular tubular structure, with uniform diameter
along the branches. On the contrary, the results without data augmentation show
branches with irregular blob shape, observed by the false positives around the
branches. In particular, elastic deformation as data augmentation has been very
efficient in our experiments, resulting in an increase of average Dice of approxi-
mately 0.05 when compared to the same set-up but using rigid transformations.
Also, it is seen in Fig. 5 that it leads to further decrease in false negatives in
peripheral branches. This agrees with the observation in [7] that “especially ran-
dom elastic deformations of the training samples seem to be the key concept to
train a segmentation network with very few annotated images”.

It is shown in Figs. 3 and 5 that the use of dice loss function results in
more accurate segmentation when compared to the wBCE loss. The tests with
wBCE loss show over-segmented branches, as it is observed in Fig. 5 by the
larger amount of false positives around the peripheral airways. This is due to
the weighting for the airways class used in the wBCE formula. This compensates
for the intraclass imbalance, but on the downside causes an over-segmentation
of airways. In order to reduce this issue, one could adopt an approach where the
ratio between the airways and background weights is reduced as the training of
the network proceeds.

5 Conclusions

This paper shows a simple but robust method based on 3D Unets to perform
segmentation of airways from chest CTs. Accurate segmentations have been
obtained on a dataset containing 24 CTs, reaching a Dice coefficient of 0.8
between the ground-truth and our automated segmentations. Moreover, the
importance of using data augmentation for our experiments has been demon-
strated, in particular elastic deformations. In contrast to other CNNs-based
methods, our approach is simpler and end-to-end optimised, and extracts a
coherent and accurate airway tree based on voxelwise airway probabilities, with
no need to input any prior knowledge of the connected tree structure.
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Abstract. Functional avoidance radiation therapy (RT) uses lung func-
tion images to identify and minimize irradiation of high-function lung
tissue. Lung function can be estimated by local expansion ratio (LER)
of the lung, which we define in this paper as the ratio of the maxi-
mum to the minimum local lung volume in a breathing cycle. LER is
computed using deformable image registration. The end exhale (0EX)
and the end inhale (100IN) phases of four-dimensional computed tomog-
raphy (4DCT) are often used to estimate LER, which we refer to as
LER3D. However, the lung may have out-of-phase ventilation, i.e., local
lung volume change is out of phase with respect to global lung expansion
and contraction. We propose the LER4D measure which estimates the
LER measure using all phases of 4DCT. The purpose of this paper is
to quantify the amount of out-of-phase ventilation of the lung. Out-of-
phase ventilation is defined to occur when the LER4D measure is 5% or
more than the LER3D measure. 4DCT scans of 14 human subjects were
used in this study. Low-function (high-function) regions are defined as
regions that have less (greater) than 10% expansion. Our results show
that on average 19.3% of the lung had out-of-phase ventilation; 3.8% of
the lung had out-of-phase ventilation and is labeled as low-function by
both LER3D and LER4D; 9.6% of the lung is labeled as low-function
by LER3D while high-function by LER4D; and 5.9% of the lung had
out-of-phase ventilation and is labeled as high-function by both LER3D
and LER4D. We conclude that out-of-phase ventilation is common in all
14 human subjects we have investigated.
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1 Introduction

Lung cancer is the leading cause of cancer death (25.9% of all cancer deaths)
in the United States [11]. Approximately 50% of the patients receive radiation
therapy (RT) during the course of lung cancer [4]. The goal of RT is to deliver
high-energy radiation beams to the tumors to kill cancer cells. However, irradi-
ation of the surrounding healthy lung tissue during RT causes lung toxicity to
about 5% to 20% of lung cancer patients [10]. To reduce this radiation-induced
lung injury, functional avoidance RT has been proposed to minimize irradiation
of high-function lung regions [3,8,9,13–17,19].

In functional avoidance RT planning, the high-function lung regions can be
identified by imaging of lung function. In this paper, we use ventilation as a
synonym for lung function since the main function of lung is for gas exchange.
Clinical standard ventilation modalities such as single photon emission computed
tomography (SPECT) and positron emission tomography (PET) have been used
in functional RT planning [3,9,13,14]. Although studies have shown the possibil-
ity of reducing dose to high-function tissue in RT using SPECT and PET, these
techniques are often limited by low spatial resolution, high cost, long scan time,
and/or low accessibility to patients [18]. Recently, ventilation images derived
from four-dimensional computed tomography (4DCT) data have been used in
functional avoidance RT [5,8,15,17,19]. One advantage of CT ventilation imag-
ing is that it only requires processing of 4DCT data and acquisition of a 4DCT
scan is often included in the treatment planning for lung cancer. Therefore, CT
ventilation imaging is less expensive and more accessible to patients than clini-
cal standard ventilation imaging techniques. Moreover, 4DCT has a shorter scan
time and can be used to generate CT ventilation images with a higher spatial
resolution than clinical standard lung function modalities.

CT ventilation images may be estimated by local expansion ratio (LER) of
the lung [6,12]. We define the LER at each voxel as the ratio of the maximum
to the minimum local lung volume in a breathing cycle. Most CT ventilation
imaging algorithms use pairwise image registration to find a one-to-one corre-
spondence map between the end exhale (0EX) CT image and the end inhale
(100IN) CT image. Pulmonary ventilation at each voxel can then be estimated
by the Jacobian determinant of the correspondence map at that voxel [12], which
we refer to as LER3D.

However, the lung may have out-of-phase ventilation, i.e., local lung volume
change is out of phase with respect to global lung expansion and contraction.
In such a situation, the LER3D measure which only uses the 0EX and 100IN
phases may underestimate the LER quantity. In this paper, we proposed a new
measure of LER by all phases of 4DCT, which we refer to as LER4D. Note that
both LER3D and LER4D provide voxel-wise measurement of lung function. The
purpose of this paper is to quantify the amount of out-of-phase ventilation of
the lung.
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2 Methods

2.1 Image Acquisition

This study evaluated fourteen human subjects undergoing radiation therapy
and was approved by the University of Wisconsin-Madison institutional review
board. Two 4DCT scans were acquired for each subject before radiation treat-
ment, with a 5-min break between two scans. The 4DCT scans were acquired
on a Siemens EDGE CT scanner using 120 kV, 100 mAs per rotation, 0.5 s tube
rotation period, 0.09 pitch, 76.8 mm beam collimation, 128 detector rows, and
reconstructed slice thicknesses ranging between 0.6 and 3 mm. Musical melody
and voice instruction guidance were played throughout the scan to improve
the repeatability of the respiratory pattern. Each 4DCT data set was recon-
structed into 10 breathing phases, with 20% (20IN), 40% (40IN), 60% (60IN),
80% (80IN) and 100% (100IN) inspiration phases and 80% (80EX), 60% (60EX),
40% (40EX), 20% (20EX) and 0% (0EX) expiration phases.

2.2 Tissue-Volume Preserving Deformable Image Registration

Given a fixed image and a moving image, the goal of image registration is to find
a one-to-one correspondence map between the two images. Image registration
is an optimization problem whose objective function is a combination of the
difference between the fixed image and the deformed image, and the smoothness
of the correspondence map. In this paper, we focus on pairwise registration of
volumetric CT images.

We denote the fixed and moving CT lung images by I0 : Ω → R and I1 :
Ω → R, respectively, where the closed and bounded set Ω ⊂ R

3 is the image
domain. The CT images in Housfield unit (HU) can be converted into tissue ratio
images by

HU − HUair

HUtissue − HUair
=

HU + 1000
1000

(1)

where the HUs of the tissue and the air are approximately HUtissue = 0 and
HUair = −1000.

We denote the tissue ratio images associated with I0 and I1 by R0 and
R1, respectively, i.e., R0 = I0+1000

1000 and R1 = I1+1000
1000 . The HU of CT lung

image varies with tissue density change during breathing (see Eq. 1). To take
into account this variation of CT intensity, we use the sum of squared tissue
volume difference (SSTVD) similarity metric [1,7,20].

The input to the registration algorithm are the tissue ratio images R0 and
R1. The moving image R1 is deformed by the transformation φ : Ω → Ω by the
operation of φ acting on R1 denoted by φ · R1. This action is defined as follows:
φ · R1 � |Jφ| × R1 ◦ φ, where |Jφ| is the Jacobian determinant of φ. It can be
shown that this definition is a group action. The SSTVD similarity metric is
then given by

CSSTV D =
∫

Ω

(
R0(x) − |Jφ|(x) × R1(φ(x))

)2

dx (2)
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The regularization constraint is given by

Reg(φ) =
∫

Ω

(
c1(∇ · ∇)u(x) + c2∇(∇ · u(x))

)
dx (3)

where ∇ = [ ∂
∂x1

, ∂
∂x2

, ∂
∂x3

]T , ∇· is the divergence operator, u = φ − Id is the
associated displacement vector field, and c1 and c2 are constants.

We choose c1 = 0.75 and c2 = 0.25 in this paper. The objective function is
given by

Ctotal = CSSTV D + λ · Reg(φ) (4)

where the variable λ is used to balance the weights put on similarity cost and
regularization cost.

The image registration algorithm used in this paper has been shown to have
sub-voxel accuracy [2].

2.3 Local Expansion Ratio by Two 4DCT Phases (LER3D)

The SSTVD deformable image registration algorithm is used to find a plausible
correspondence map (transformation) φ from the 0EX CT image to the 100IN
CT image. The Jacobian matrix Jφ of the transformation φ is given by

Jφ �

⎡
⎢⎣

∂φ1
∂x1

∂φ1
∂x2

∂φ1
∂x3

∂φ2
∂x1

∂φ2
∂x2

∂φ2
∂x3

∂φ3
∂x1

∂φ3
∂x2

∂φ3
∂x3

⎤
⎥⎦ = I3 + Ju. (5)

where I3 is the 3 × 3 identity matrix and Ju is the Jacobian of the displacement
field u = φ − Id.

Reinhardt et al. [12] proposed to estimate local expansion ratio of the lung
at each voxel x by the Jacobian determinant of φ (LER3D), i.e.,

LER3D(x) � |Jφ(x)| (6)

2.4 Local Expansion Ratio by All 4DCT Phases (LER4D)

The LER3D measure may underestimate LER when out-of-phase ventilation
happens. To solve this problem, we propose to estimate LER by all 4DCT phases,
which we refer to as LER4D. We perform a nonrigid registration from each
breathing phase to the 0EX phase and denote the resulting Jacobian determinant
images by J1, · · · , JN , where N is number of breathing phases of a 4DCT scan.
The LER4D measure at each point x ∈ Ω is given by the ratio of the maximum
to the minimum local lung volume:

LER4D(x) = max
i∈{1,··· ,N}

Ji(x)
/

min
i∈{1,··· ,N}

Ji(x) (7)

By definition, the LER4D measure is always greater or equal to the LER3D
measure, and we hypothesize that it may provide a more accurate estimate of
local lung expansion ratio.
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2.5 Out-of-Phase Ventilation

The lung has out-of-phase ventilation when local lung volume change is out of
phase with respect to global lung volume change. By definition, out-of-phase
ventilation occurs whenever the LER4D measure is greater than the LER3D
measure. We define the lung to have out-of-phase ventilation if LER4D ≥ T ×
LER3D, where T > 1 a threshold value. The threshold T is used to reduce
the effect of noise. We choose the out-of-phase threshold T to be 1.05, i.e., the
LER4D measure is greater than or equal to 5% of the LER3D measure. We
chose 1.05 as the threshold value since the standard deviation of the ratio of two
LER3Ds for repeated 4DCT scans is about 0.05.

3 Results

For each of the 14 human subjects, we compute the LER3D measure and the
LER4D measure by Eqs. 6 and 7, respectively. Figure 1 shows the cumulative 2D
histogram of LER3D image versus LER4D image for all 14 subjects. A logarith-
mic scale is used for visualization. Overlaid on this histogram are the functions
y = x and y = 1.05x. Notice all points lie above the y = x solid line since
LER4D ≥ LER3D by our definition. Points that lie above the y = 1.05x dashed
line are defined to be out-of-phase ventilation and points that lie between the
two lines are defined to be in-phase ventilation.

We divide the 2D plane in Fig. 1 into four regions: A, B, C and D, where
region A corresponds to in-phase ventilation, and regions B, C and D correspond
to out-of-phase ventilation. Low-function (high-function) regions are defined as
regions that have less (greater) than 10% expansion and are denoted by the
dashed lines at 1.1. On average for all 14 subjects, 80.7% of all voxels are in
region A, i.e., 80.7% of the lung has in-phase ventilation. Conversely, 19.3% of
the lung has out-of-phase ventilation. 3.8% of all voxels are in region B, i.e., on
average 3.8% of the lung volume is labeled as low-function by both of the LER3D
and LER4D measures and at the same time has out-of-phase ventilation. 9.6%
of all voxels are in region C, i.e., on average 9.6% of the lung volume is labeled as
low-function by the LER3D measure while high-function by the LER4D measure.
5.9% of all voxels are in region D, i.e., on average 5.9% of the lung volume is
labeled as high-function by both of the LER3D and LER4D measures and at
the same time has out-of-phase ventilation.

Table 1 summarizes the percentages of the lung volume for regions A, B, C
and D for each of the 14 subjects. This table shows that every subject has out-of-
phase ventilation in more than 10% of the lung volume. The last row of Table 1
shows the mean (± standard deviation) over all 14 subjects for all regions.

Figure 2 shows the location of the tumor and the spatial distribution of
regions A, B, C and D of two subjects. Both subject 1 and subject 8 have
less out-of-phase ventilation than the average. Note that for subject 1, large
regions near the tumor have out-of-phase ventilation. This means it is possible
that some of the tissue that was classified as low-functioning by LER3D should
have been classified as high-functioning when using LER4D due to out-of-phase
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Fig. 1. Cumulative 2D histogram of LER3D images versus LER4D images for 14 sub-
jects. A logarithmic scale is used for visualization. Low-function (high-function) regions
are defined as regions that have less (greater) than 10% expansion and are denoted by
the dashed lines at 1.1. Region A is where the lung has in-phase ventilation, region B,
C and D are regions where the lung has out-of-phase ventilation. The lung is consid-
ered as low-function by both LER3D and LER4D in region B, the lung is considered
as low-function by LER3D while high-function by LER4D in region C, the lung is
considered as high-function by both LER3D and LER4D in region D. We use P (A),
P (B), P (C), and P (D) to denote the percentages of the voxels in regions A, B, C and
D, respectively.

ventilation. For this subject, using the LER4D measure instead of the LER3D
measure will make a difference to the functional avoidance treatment plan. How-
ever, for subject 8, out-of-phase regions are far from the tumor and using the
LER4D measure will not make much difference to functional avoidance plan
derived from LER3D.

4 Discussion and Conclusions

We are conducting a clinical trial at UW-Madison (NCT02843568) that uses both
conventional and functional avoidance treatment plans to treat patients with
lung cancer. In this trial, the LER3D method is used in functional avoidance
RT to minimize radiation delivered to the regions of high-function. The goal
of this trial is to show functional avoidance RT can reduce damage to healthy
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Table 1. Percentages of the lung volume for Regions A, B, C and D.

Subject Region

A B C D

1 82.9% 2.0% 6.9% 8.2%

2 84.5% 2.2% 9.8% 3.5%

3 80.7% 1.5% 9.4% 8.4%

4 76.0% 4.6% 14.2% 5.2%

5 89.6% 0.4% 2.8% 7.2%

6 77.3% 7.1% 12.8% 2.8%

7 89.9% 0.7% 4.9% 4.5%

8 87.8% 1.4% 3.4% 7.4%

9 2.9% 5.1% 6.0% .0%

10 69.3% 3.9% 18.9% 7.9%

11 77.6% 4.9% 15.5% 2.0%

12 77.8% 2.9% 11.0% 8.3%

13 73.6% 12.4% 12.1% 1.9%

14 79.8% 3.4% 7.1% 9.7%

Average 80.7% ± 6.02% 3.8% ± 3.13% 9.6% ± 4.76% 5.9% ± 2.61%

Fig. 2. Spatial distribution of regions A, B, C and D of two subjects. Region A is
where the lung has in-phase ventilation; region B is where the lung has out-of-phase
ventilation and is labeled as low-function by both LER3D and LER4D; region C is
where the lung is labeled as high-function by LER4D while low-function by LER3D;
region D is where the lung has out-of-phase ventilation and is labeled as high-function
by both LER3D and LER4D.

lung tissue compared to conventional treatment. In total, 120 patients will be
recruited in this clinical trial; half will be treated with conventional RT and the
other half will be treated with functional avoidance RT. In this paper, we have
shown that out-of-phase ventilation was common in all 14 human subjects that
we investigated. When large difference between LER4D and LER3D happens
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near the tumor (e.g. subject 1), then using the LER4D measure may preserve
more healthy lung tissue than the LER3D measure in functional avoidance RT.

In conclusion, we investigated the out-of-phase ventilation of 14 human sub-
jects. Our study shows that all subjects had out-of-phase ventilation in more
than 10% of the lung volume. Our results show that on average 19.3% of the
lung has out-of-phase ventilation; 3.8% of the lung has out-of-phase ventilation
and is labeled as low-function by both of LER3D and LER4D; 9.6% of the lung
is labeled as low-function by LER3D while high-function by LER4D; and 5.9%
of the lung has out-of-phase ventilation and is labeled as high-function by both
LER3D and LER4D.
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Abstract. This paper presents a novel method for multi-modal lung
image registration constrained by a motion model derived from lung
4DCT. The motion model is estimated based on the results of intra-
patient image registration using Principal Component Analysis. The app-
roach with a prior motion model is particularly important for regions
where there is not enough information to reliably drive the registration
process, as in the case of hyperpolarized Xenon MRI and proton den-
sity MRI to CT registration. Simultaneously, the method addresses local
variations between images in the supervoxel-based motion model param-
eters optimization step. We compare our results in terms of the plau-
sibility of the estimated deformations and correlation coefficient with
4DCT-based estimated ventilation maps using state-of-the-art multi-
modal image registration methods. Our method achieves higher average
correlation scores, showing that the application of Principal Component
Analysis-based motion model in the deformable registration, helps to
drive the registration for the regions of the lungs with insufficient amount
of information.

Keywords: Lung 4D CT · XeMRI · Multi-modal image registration
Lung motion model · Ventilation estimation

1 Introduction

Medical images acquired at different time points, or originating from different
scanners, need to be brought into spatial alignment to assess complementary
structural and/or functional information. This process is called image regis-
tration and is one of the fundamental medical image analysis procedures [23].
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Deformable image registration is particularly important for lung applications
where, for example, the different breath-hold levels need to be compensated
in the acquired images. Single-modality lung registration, especially Computed
Tomography (CT)-CT registration, has been widely studied [4,17] and dedicated
image registration methods have been proposed [7,10,11,25,28].

While CT-CT lung image registration is a non-trivial task, mainly because
of sliding motion between the surfaces of the lungs, the ribcage, and diaphragm
[18,22], multi-modal lung image registration is even more challenging due to
more complex deformations and directly incomparable intensities between the
acquired scans. Registration between proton density Magnetic Resonance Imag-
ing (pMRI) and CT is one such example, where the difficulty stems from the
low proton density in the lungs and susceptibility to acquisition artifacts caused
by the interfaces between air and lung tissue. Such registration, however, plays
an important role in the analysis of hyperpolarized Xenon MRI (XeMRI) [2].
XeMRI, due to its non-ionizing nature, has received substantial attention in
the field for imaging ventilation, perfusion, and gas transfer in the lungs [16].
As XeMRI does not provide structural information, its correspondences to the
patient anatomy rely on pMRI, which is acquired during the same imaging ses-
sion but not within the same breath-hold. Even though patients are provided
with bags containing 1l of gas for both image acquisitions, due to different prop-
erties of air and xenon, as well as individual breathing patterns, the images might
be acquired at different levels of lung inflation. It is not, therefore, straightfor-
ward to directly map XeMRI to diagnostic lung CT, for instance in the case
of patients undergoing radiotherapy treatment. An intermediate registration
between pMRI and CT is needed to find this mapping, as shown in Fig. 1. This
registration becomes particularly challenging for a number of reasons, including
the lower spatial resolution of pMRI compared with CT, the limited informa-
tion from lung tissue in pMRI due to its low proton density, and the presence
of susceptibility artifacts. For these reasons, the registration can easily result in
under or over-estimation of deformations inside the lungs.

An alternative approach for this problem might be the application of lung
motion models [15]. For instance, a statistical motion model based on deforma-
tions estimated from 4DCT was proposed in [5]. The individual motion models
estimated for each subject from the dataset have been co-registered to an aver-
age shape and intensity model was generated from reference frames from 4DCT.
This resulted in a development of an average inter-subject model. In [13], after
estimating the deformations from 4DCT, the surface point distribution model
of the shape of the lungs was constructed. After applying Principal Component
Analysis (PCA) to reduce the dimensionality, the statistical model between the
estimated deformations and point-based shape variations was calculated. Simi-
lar approach has been presented in [29], with the diaphragm position used as a
surrogate of the motion to control the model. To create a lung motion model,
Finite Element Analysis (FEA) could be also used, such as in [9], where a patient-
specific bio-mechanical model has been proposed for lung CT registration. How-
ever, to achieve satisfying accuracy the FEA model-based method requires an
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Fig. 1. To bring XeMRI into alignment with CT, we compose two transformations:
transformation T1 that compensates for a possible initial misalignment between XeMRI
and pMRI, and transformation T2 estimated based on registration between pMRI and
CT. The dedicated framework addressing this problem is the main contribution of this
work.

additional registration. All of the aforementioned methods have been applied
to CT-to-CT registration problem. In the case of pMRI-to-CT registration, the
task may be even more challenging due to the low out-of-plane spatial resolution
of pMRI and lack of direct intensity correspondences.

In this work, we address the issue of insufficient amount of information inside
the lungs in pMRI, by proposing a personalized 4D-CT statistical motion model
for a supervoxel-based graphical image registration [11,25]. The main contribu-
tion is a dedicated framework, which addresses the challenges of XeMRI to CT
deformable registration in the form of supervoxel-based motion model enhanced
method. The evaluation has been performed on a clinical dataset and compared
with state-of-the-art image registration methods, showing higher correlation of
XeMRI with ventilation maps estimated from 4DCT.

2 Methods

The proposed method consists of three main steps: (1) creation of a personalized
lung motion model from 4DCT, (2) lung image clustering and (3) graph-based
pMRI-to-CT registration. We introduce these steps in detail in this section. An
overview of the proposed method is presented in Fig. 2.

2.1 Personalized Lung Motion Model from 4DCT

In our work, to create a personalized motion model we use displacements result-
ing from 4DCT registration to a reference volume. We apply an image regis-
tration method dedicated to lung applications [25], which has the potential to
more accurately estimate abnormal lung motion. The method has shown good
performance in terms of accuracy, plausibility of the resulting deformations for
lung CT registration, and the ability to address the sliding motion problem.
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Fig. 2. Diagram presenting the workflow of the proposed method. We start from reg-
istering all the 4DCT volumes for each of the patients to the chosen reference frame.
Over the estimated deformation fields we apply PCA decomposition to create a motion
model. Subsequently, we extract supervoxels from the lungs in the reference CT volume.
We create a graph, where every supervoxel is represented by a node an all adjacent
supervoxels are connected by an edge. For every supervoxel we find the best set of
motion model parameters to bring pMRI into alignment with CT using graph cuts
optimization. We apply the estimated deformation field to XeMRI as the ultimate goal
of the registration framework.

Subsequently, we perform PCA to the estimated deformations to obtain major
motion patterns for each patient.

In the proposed method, for each patient, all breathing phases from 4DCT are
co-registered to a reference volume, which is chosen as the peak inhale breathing
phase volume. Our 4DCT data consists of 10 volumes; therefore as a result of the
alignment we acquired 9 displacement fields. After the registration, we create for
the reference volume vectors comprising all the estimated deformation fields:

Rp(x) = [V p
1 (x), V p

2 (x), ..., V p
n (x)], (1)

where p is the direction the deformations (anterior-posterior, left-to-right, up-
to-down), n is the number of volumes co-registered to the reference volume, and
x is a voxel location.

After applying PCA, we can reformulate Eq. 1 in terms of eigenvalues and
eigenvectors:

Rp(x) � μp
d +

n∑

i=1

λp
i ν

p
i (x), (2)

where μp
d is the mean displacement, νp

i (x) is i-th eigenvector and λp
i is corre-

sponding eigenvalue for direction p (anterior-posterior, left-to-right, up-to-down)
for voxel’s spatial location x. We restricted the motion model to use the first
eigenvector, as it covers the main motion pattern observed during the registra-
tion (in anterior-posterior - 83%, left-to-right - 82% and up-to-down - 95% direc-
tions on average for our dataset). The restriction to the use of first eigenvector
makes the optimization more efficient, while taking advantage of the personalized
motion model application. Regional variations from the motion pattern are com-
pensated by applying supervoxel-based motion model parameters optimization
registration step.

2.2 Lung Clustering

Image clustering provides a compact image representation, which has the poten-
tial to represent anatomically consistent regions in the form of larger structures.
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The peak inhale breathing phase volume, which has been chosen as a reference
frame, is clustered using the well-established Simple Linear Iterative Clustering
method [1], which groups spatially and visually close voxels into supervoxels. In
this method, a fixed number of seeds for the expected number of supervoxels
is uniformly located in the image. Their initial position is corrected by moving
the seeds to a position of the lowest gradient in a 3 × 3 × 3 neighborhood. This
step is performed to avoid placing them on an edge or a noisy voxel. Following
that, every voxel in the image is assigned to the closest supervoxel, based on the

distance measure: D =
√

(de)2 + (dI/S)2 m2, where de is the Euclidean distance
of a particular voxel to the supervoxel center, dI is a voxel’s intensity distance
from the supervoxel average intensity, and m is a compactness parameter. The
resultant clustering of a CT image is shown in Fig. 3.

Fig. 3. The reference CT image in the coronal view and superpixels estimated for the
lungs imposed on the image are shown in the upper row. Below, the estimated motion
model for the reference CT volume frame left-to-right, anterior-posterior and up-to-
down directions shown in coronal view with propagated superpixels from the CT image.
For illustrative purposes, we show superpixels extracted from a 2D image, whereas in
our method we use supervoxels extracted from 3D volumes.

2.3 Graph-Based Lung Image Registration

Image registration, as a problem of finding the optimal transformation between
two images, can be stated using an Markov Random Fields-based optimization
and posed on a graph. Graphical methods for deformable image registration
[6,10,11,19,25] have achieved state-of-the-art accuracy and good performance
in addressing sliding motion. Therefore, following image clustering, we create
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a graph where every supervoxel is represented by a node and all nodes corre-
sponding to adjacent supervoxels are connected by an edge. The edge values are
uniformly set to 1.

We apply a similar approach to [25], with graph cuts [3] as an optimization
scheme. In the proposed method, we create a predefined set of labels l ∈ L,
where every label l is a set of parameters of the motion model in form of a
vector [lxlylz]. This is one of the main differences compared with the majority
of other methods in the field, where labels usually directly represent displace-
ments. The label is applied to the corresponding patch of the motion model, and
therefore, even if the algorithm assigns the same labels to neighboring supervox-
els, they may potentially still have different displacements. The displacement
inside the patch is not uniform and should mimic the motion of its tissue. Such
an approach restricts the possible displacements of the patches to those which
have been estimated for the particular regions of the lungs, and therefore results
in more anatomically plausible estimated displacements. At the same time, the
method still allows for local adjustments to the model by the estimated param-
eters. The estimation of the motion model parameters in a form of lx, ly and
lz is one advantage of our application, as it compensates for the residual dif-
ferences, when ideal rigid alignment of pMRI and CT is difficult to achieve.
This alignment is challenging mainly because of the multi-modal nature of the
images, differences in position inside the scanner, as well as possible variations
in the patient anatomy, for instance due to tumor appearance. The model was
created from 4DCT, based on co-registration of images acquired with the patient
remaining at the same position in a scanner. Therefore our approach gives more
degrees of freedom than a classic model based-approaches to compensate for the
misalignments, while at the same time taking the advantage of the main motion
patterns represented by the motion model.

As a similarity measure to find the optimal parameters of the motion model
for every supervoxel we have applied the local correlation coefficient (LCC) [12],
which is a well established approach for measuring image similarity in medical
image registration. The general formulation of the energy to be minimized during
the optimization process is:

E(l) =
∑

p

LCC(Ifix(xp), Imov(xp + lp ∗ R(xp))

︸ ︷︷ ︸
data term

+α
∑

p,q∈N

‖lp − lq‖2

︸ ︷︷ ︸
smoothness term

, (3)

where the data term is formulated as a mean error calculated for all voxels x in
the fixed image Ifix and moving image Imov clustered in a certain supervoxel
represented by a node p, for the applied motion model R with the parameters
represented by a label lp. The piecewise smoothness term represents quadratic
distance between the labels. The influence of the piecewise smoothness term on
the energy is controlled by a weighting parameter α. Since no XeMRI ventilation
signal is expected to be present outside of the lung, our registration framework
is therefore restricted to estimating deformations inside the volume of the lungs.
The lungs are segmented from CT and registration is done only inside the masks.
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Akin to [11], we use a single resolution level with multiple layers of supervoxels,
slightly varying their size and initial location. The estimated deformations are
averaged across all layers.

The displacements estimated for the pMRI-to-CT registration are propagated
to XeMRI, just as shown in Fig. 1, resulting in their alignment. Visual assessment
of the framework are presented in Fig. 4, where we also display the estimated
displacement fields for all the methods.

3 Experiments and Results

Our experiments have been performed on a dataset of three patients undergoing
radiotherapy at Churchill Hospital in Oxford. For each patient, imaging data
consisting of 4DCT, pMRI and XeMRI have been acquired, with the resolu-
tion of 0.98 × 0.98 × 2.5 [mm3]. Each 4DCT consisted of 10 3D volumes of CTs
acquired in axial plane. A mixture of 129Xe gas (80%) and air was polarized
on-site to between 4% and 12%, by using a commercial polarizer operating on
the rubidium vapor spin-exchange optical pumping basis. The hyperpolarized
gas has been delivered to patients during the imaging in 1.0-L bags [14]. The
pMRI and XeMRI have been performed at 1.5 T MR scanner as 3D volumes
from coronal acquisition the resolution of 1.56 × 20 × 1.56 [mm3].

Following [26], pMRI volumes and reference volume from 4DCT were care-
fully aligned initially using rigid registration with mutual information as a simi-
larity measure. In our application it is important to achieve good alignments at
the apex and upper parts of the lungs. The resulting transformation was propa-
gated to the corresponding XeMRI volumes, bringing them into rigid alignment
with the reference CT volume.

We subsequently performed deformable registration of pMRI-to-CT and com-
pared results of our registration method with the results of the deeds deformable
image registration [10] and free form deformation-based registration using B-
splines [21]. The deeds method originally proposed for lung CT registration
shows good performance in multi-modal image registration application due to its
image descriptor-based similarity measure, while FFDs on B-splines with mutual
information as a similarity measure is one of the most established approaches
for multi-modal image registration.

For the proposed method we have extracted supervoxels consisting of approx-
imately 500 voxels each, with the compactness parameter set to 0.1, and used 20
layers of supervoxels. The range of motion model parameters lx, ly and lz is set
between −0.6 and 0.6, at the intervals of 0.1. The weighting parameter α is 0.2
and local cross correlation was calculated for a 7× 7× 7 voxels patch size. Our
method has been implemented in Matlab environment and its running time with
the chosen parameters setting is approximately 45 min on a i7 laptop machine.
The running times for the deeds and B-splines were approximately 13 min and
25 min, respectively, with C++ implementation. Our method is capable of fur-
ther optimization and parallelization, which should result in significant running
time reduction.
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Visual inspection from Fig. 4 of the results reveals that the displacements esti-
mated by the proposed method are anatomically more consistent. We decided
to compare the XeMRI ventilation images with ventilation maps estimated from
4DCT, which is obtained using image registration of the dynamic sequence to
a reference CT volume. To estimate ventilation maps, we have used a method
based on the changes of the lung intensity expressed in Hounsfield units between
peak inhale and peak exhale breathing phases [27]. An alternative approaches

Fig. 4. Coronal view of the CT scan of patient 2 is shown in (a). In (b) XeMRI after
applying rigid registration (T1 from Fig. 1) and in (c) ventilation estimated from 4DCT
are presented. The remaining figures show XeMRI ventilation images for the corre-
sponding to CT slices. The lung border from CT is super-imposed on the ventilation
images. The results of the XeMRI ventilation after applying deformable registration are
shown only inside of the lung mask in the middle row. The possible under-estimation
of the motion for B-splines [21] (d) and deeds [10] (e) are pointed by green arrows,
and implausible deformations by blue arrows. The results for the proposed method are
shown in (f). In the bottom row we show displacements in up-to-down direction for
the corresponding slices for all the methods in (g), (h) and (i). (Color figure online)
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could estimate the ventilation from 4D CT based on determinant of Jacobian
[8,20] or with the use of supervoxel tracking [24]. We calculate Spearman’s corre-
lation coefficient of the registered XeMRI ventilation images with the estimated
4DCT-based ventilation maps. Our method resulted in higher correlation coef-
ficient for patient 1 and patient 2 (0.344 and 0.572) compared to both other
image registration methods (0.217 and 0.367 for B-splines and 0.299 and 0.5 for
deeds). For patient 3 all methods achieved comparable results, with a slightly
higher value for B-splines (0.171). On average our method achieved the best score
of 0.359, with deeds being the second highest-scoring method (0.322), while the
lowest correlation was calculated for B-splines (0.251). Standard deviation of the
determinant of the Jacobian of deformations, which can be seen as a measure
of complexity of the deformations, for our method was on average 0.35, com-
pared with 1.15 for B-splines and 0.63 for deeds. The results of the calculated
correlations are shown in Fig. 5.

Fig. 5. Spearman’s correlation between CT-based estimated ventilation maps and
XeMRI ventilation images for different pMRI-to-CT registration approaches.

4 Discussion and Conclusions

In this work, we proposed a personalized model-driven method for pMRI-to-CT
lung image registration. The method was evaluated on three datasets of patients
undergoing radiation treatment for lung cancer. The visual results presented in
Fig. 4, where we show the estimated deformations, might suggest that the pro-
posed method better mimic the motion of the lungs. The sudden changes in
the direction of the motion estimated by B-splines and deeds, especially for the
left lung, are unlikely to be present during breathing. We calculated correlation
between CT-based estimated ventilations and XeMRI brought into alignment
with CT by our method. On average, our method outperformed other image
registration approaches in terms of the correlation with ventilation maps esti-
mated from 4DCT. The slightly lower score for patient 3 was possibly caused by
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the fact that the difference in the lung volume between pMRI/XeMRI and CT
was the lowest in this case. This observation seems to be supported by the fact
that all the methods achieved comparable results.

Our motion model-based method requires an accurate initial rigid registra-
tion. The upper parts of the lungs and apexes should be well aligned initially,
or else the motion model-based registration might result in suboptimal perfor-
mance. Such behavior is imposed by the lung physiology and should not be
considered as a limitation of the method.

One of the challenges in our work is the lack of ground truth or landmarks
set in both modality images. Low out-of-plane resolution of pMRI and XeMRI
(20 mm) is another factor and, hence, the registration problem is not a trivial one
to address. The correlation of XeMRI with 4DCT-based estimated ventilation
maps resulted in the overall moderate correlation. The reason for that might
be different breathing patterns in 4DCT compared to XeMRI/pMRI, related to
physical properties of xenon gas, which is much heavier than air. Ventilation
maps based on 4DCT are estimated based on the changes of the tissue density,
which should correspond to the lungs filling with air, however in practice they
might provide complementary information. Another limitation is that we had
access to only one 4DCT scan of each patient. Therefore our method might
be prone to intra breathing cycle variations. This issue could potentially be
eliminated by including more scans, such as diagnostic CT, of the same patient
in the breathing motion creation step.

The presented method shows promising results for the challenging applica-
tion of XeMRI to CT registration. The application of the Principal Component
Analysis-based motion model in the deformable registration step of the frame-
work, seems to have the potential to help drive the registration for the regions
of the lungs with insufficient amount of information.
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Abstract. A general problem of any deformable image registration
method for change assessment is to find a good balance between com-
puting a precise match and keeping locally differences. In this work we
present the rigid lens concept dealing with this issue. The rigid lens is
based on locally rigid approximation of locally precise deformations and
can be used for interactive viewing and visualization of changes as well
as for automatic change detection. We demonstrate the rigid lens in the
context of oncological workup of thorax-abdomen CT follow-up scans
and evaluate the concept for change assessment based on a study with
1492 manually annotated lesion in scans from more than 400 patients.
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1 Introduction

Image registration is one of the central tasks in medical imaging with a wide
range of application. The overall goal is alignment of images by spatially map-
ping corresponding locations. Registration typically stands at the beginning of
an image processing pipeline and once spatial correspondence has been estab-
lished, it allows for subsequent local or even voxel-wise comparison or other local
processing. Typical usage in medical imaging is navigation support, motion cor-
rection, propagation of information such as markers or segmentations, change
detection and change analysis. Behind these examples, there are hidden two com-
peting registration goals that generally cannot be reached simultaneously. While
the first examples ask for local alignment as perfect as possible, the assessment
of (in particular) morphological changes requires to keep local differences. Thus,
finding the right balance is a challenging and application depending task that
needs to be solved by every image registration method.

In this work we present an approach dealing with this issue in the context
of software support for reading and analyzing thorax-abdomen CT scans that
undergo an oncological workup. Here, accurate deformable image registration
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can be used to compare follow-up scans by synchronized viewing, to link courser
positions to the retrieval and to propagate findings from prior images in follow-
up scans. On the other hand, if the registration keeps local differences, it can be
used for subtraction imaging with baseline and warped follow-up scans to assist
radiologists with the detection and quantification of changes, such as new lesions
or tumor growth.

State-of-the-art deformable registration approaches try to achieve a reason-
able trade-off between alignment quality and preservation of local changes. For
example in a variational registration setting, this is typically steered by a so-
called regularization parameter that weights image similarity versus smoothness
of the computed mapping [2,5,9,12,16,21]. Also variational approaches were
introduced for deformable registration that incorporate local rigidity. This is
done either by adding an penalty term to the objective function to be mini-
mized [8,10,11,17,18] or by forcing local rigidity as hard constraints [6,7,13,14].
However, all these methods have been proposed for modeling stiff tissue such as
bone and they require prior knowledge about the regions that shall be kept rigid.
In our setting we generally cannot assume to have such prior information avail-
able. Furthermore, utilizing these type of methods would be quite costly since
we have to run a complete registration if we change the local region to be kept
rigid. To this end, we follow the ideas of Dzyubachyk et al. [3]. The authors intro-
duced an interactive method with focus on finding bone lesion in follow-up MRI
scans. Therefore, the user selects a point of interest on a skeletal structure, the
surrounding area of interest is segmented by region growing and a locally rigid
transform is derived from a pre-computed whole-body deformable registration.
The derived rigid transformation is then used for visual side-by-side comparison
of follow-up MRI scans by a lens view, color-fusion, warped iso-contours and a
quiver plot of the local deformation.

In this work we extend the ideas from [3] to CT follow-up imaging, change
detection and subtraction imaging. We consider a generalized setting for taking
full advantage of locally precise deformable registration. We also present a lens
tool called rigid lens for visualizing, detecting and analyzing changes by locally
rigid approximations of the deformation field. We give quantitative measures
for rating and detection of changes and evaluate the rigid lens and its use for
change detection and change assessment with a quantitative study based on 1492
annotated tumors in thorax-abdomen CT follow-up scans.

2 Method

Our idea follows the work presented in [3] and is inspired by common lens view-
ing tools for interactive inspection of changes and image fusion of aligned images
where one image is shown in the background and another image is shown inside
a lens region. We assume that we have given two registered images which we
call reference and template image and the corresponding deformation vector
field warping the template image onto the reference image. Then in principle
we could use a common lens tool to inspect the reference and warped template.
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If the registration produced a reasonable alignment we will not recognize sig-
nificant morphological differences between inside and outside the lens, since
local change have been removed by registration. In the extreme case of perfect
alignment the warped image will look almost identical to the reference image.
However, our idea is to compute a rigid approximation to the given non-rigid
deformation restricted to the lens region. Then we use the obtained rigid map-
ping for warping the template and show the result inside the lens region. As
a result we obtain a locally rigid registration valid for the particular position
of the lens region with complete morphology from the template preserved. The
concept of the rigid lens is illustrated in Fig. 1 and the details are given next in
Sects. 2.1 and 2.2.

Besides using the rigid lens for interactive viewing, where users hovers with
the rigid lens over the reference image, we are also interested in its use for change
detection. The most simple extensions is to perform subtraction imaging between
reference and rigid lens. However, we are also interested in deriving measures that
can be used for automatic change detection. To this end, in Sect. 2.3 we present
three measures based on the hypothesis that relevant changes alter shape, size
or appearance of structures.

x0

r

Reference image R

Lens region L with center x0 and radius r,
warped template image T (yrigid) inside with
rigid approx. yrigid to non-rigid deformation y on L

Fig. 1. Schematic overview of the rigid lens concept.

2.1 Modeling

Let R, T : R3 → R denote the reference and template image, respectively, and
let Ω ⊂ R3 be a domain modeling the field of view of R. Then the goal of image
registration is to find a deformation y : Ω → R3 that aligns the reference R
and template T such that R(x) and T (y(x)) are similar for x ∈ Ω. For example
common variational registration approaches compute y as a minimizer of an
objective function of the type

D(R, T (y)) + αS(y)

with so-called distance measure D that quantifies the similarity of reference
R and warped moving image T (y), smoother S that forces smoothness of the
deformation and a regularization parameter α > 0 that weights smoothness
versus similarity. However, in the following we just assume that y is a non-rigid



Rigid Lens – Locally Rigid Approximation for Change Assessment 275

deformation produced by some registration algorithm and that reasonably well
aligns R and T . Furthermore, for practical purpose we restrict ourselves to the
discrete case. To this end, we assume the domain Ω is discretized by a uniform
grid with resolution h > 0 and let Ωh be the set of all cell-centered points. The
idea of the rigid lens is to locally approximate y by a rigid transformation yrigid
on a lens region L defined as a neighborhood of a point x0 and radius r > h:

L ≡ Lr(x0) := {x ∈ Ωh : ‖x − x0‖2 ≤ r}.

For ease of notation, in the following we denote the lens region just by L always
with the implicit understanding that L depends on center x0 and radius r. Then
we define yrigid as rigid least squares solution, such that

∑

x∈L
‖y(x) − yrigid(x)‖2 != min . (1)

Note that yrigid depends on the lens region and center x0, radius r, respectively,
i.e., yrigid(x) ≡ yrigid(L;x) ≡ yrigid(Lr(x0);x).

2.2 Algorithm

Least-squares-estimation of rigid transformations for fitting point clouds is a
well-known problem in computer vision. Problem (1) is also known as Pro-
crustes matching and tracing back to mid 1960’s to the work of Whaba [20] and
Schönemann [15]. Since then, various algorithms and methods have been pro-
posed [4]. Dzyubachyk et al. [3] uses a unit quaternions based approach. Here
we follow the work of Arun et al. [1] and Umeyama [19], that is based on the
singular value decomposition which has been shown to be the numerically most
stable method [4]. For sake of completeness we give a sketch of the algorithm.

The rigid transformation can be parameterized by a rotation matrix Q ∈
SO(3) and translation vector b ∈ R3, such that yrigid can be written as yrigid(x) =
Qx + b and above least-squares problem is equivalent to find Q, b such that

∑

x∈L
‖y(x) − (Qx + b)‖2 != min s.t. Q�Q = I and det(Q) = 1. (2)

First we compute mean and covariance of the point sets L and y(L). We set

μx :=
1

|L|
∑

x∈L
x, μy :=

1
|L|

∑

x∈L
y(x) and Σxy :=

1
|L|

∑

x∈L
(x−μx)(y(x)−μy)�.

Next we compute the singular value decomposition Σxy = UDV �, with the
diagonal matrix D = diag(d1, d2, d3) and singular values d1 ≥ d2 ≥ d3 ≥ 0. If
rank(Σxy) ≥ 2 then (2) has a unique solution

Q∗ = USV � and b∗ = μy − Q∗μx,
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with diagonal matrix S defined as

S :=
{

I, if det(U) det(V ) = 1,
diag(1, 1,−1), if det(U) det(V ) = −1.

Thus the solution yrigid of (1) is given by

yrigid(x) = Q∗x + b∗.

Note that from practical perspective we expect Σxy having full rank as this
is the case iff L contains at least three (linear independent) points and the
deformation y is invertible. Otherwise, either the lens region is degenerated or
the registration results will most likely cause locally non-feasible deformations
such as grid foldings.

2.3 Rigid Lens Measures for Change Detection

As mentioned above, we are interested in features for automatic change detec-
tion and visualization. Next we introduce three evident measures based on the
hypothesis that relevant changes alter shape, size or appearance of structures.
The first measure that we propose is the average deformation difference targeting
changes in shape and size:

ddef =
1

|L|
∑

x∈L
‖y(x) − yrigid(x)‖.

It estimates the degree of local rigidity of y and therefore provides information
about local morphological changes w.r.t. lengths and angles. The second measure
aims at detection of changes in size. We define the average Jacobian as

djac =
1

|L|
∑

x∈L
det ∇y(x).

Both measures ddef and djac are purely based on the computed deformation
field only and do not take any image information into account, i.e., how the
deformation affects the image appearance. To this end we propose the relative
intensity difference quotient defined as

dint =
∑

x∈L |D(yrigid, x) − D(y, x)|∑
x∈L D(yrigid, x)

with difference image D(φ, x) := |R(x)−T (φ(x))|. Clearly, dint only makes sense
in a mono-modal setting as ours and aims on subtraction imaging. However,
under the assumption that the deformation y computed by non-rigid registration
leads to better alignment than its locally rigid approximation yrigid we expect
that D(yrigid, x) ≥ D(y, x). Therefore values of dint are expected in the range
[0, 1] with dint ≈ 1 if y leads to almost perfect alignment, such that R and T (y)
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are almost identical, and dint ≈ 0 if y and yrigid produce basically the same
warped images, i.e., T (y) and T (yrigid) are almost identical. Note, that ddef, djac,
dint are local averages depending on the location and size of the lens region
L ≡ Lr(x). Therefore, they can also be considered as point-wise measures at
scale r, i.e., ddef ≡ ddef(r, x), djac ≡ djac(r, x) and dint ≡ dint(r, x).

3 Results

We demonstrate the rigid lens and evaluate our measures for change detection on
CT follow-up thorax-abdomen scans of cancer patients. The CT data used for our
experiments was collected from patients referred from the oncology department
at the Radboud University Medical Center, Nijmegen, the Netherlands. In total
we used, 1263 thorax-abdomen CT scans of 487 patients from different scanners
and protocols with slice thickness varying from 1 mm to 2 mm. Furthermore, we
used 2898 annotations of tumors made by the radiologists during reporting for
quantitative evaluation of the rigid lens measures. We implemented the rigid lens
as an interactive application in MeVisLab (http://www.mevislab.de), where the
user hovers the lens over a reference image. The rigid deformation is instanta-
neously calculated from the given non-rigid deformation and the locally rigid
warped template image is displayed inside the lens region. All computations are
performed in real time on a state-of-the-art off-the-shelf PC. The application
was used for the computations and visualization of the results described below.

3.1 A Motivating Example

Our first example illustrates the rigid lens concept for interactive viewing with
a deformation that almost perfectly aligns the images and removes relevant
local changes. Figure 2 shows an example of a lens region with a kidney tumor
inside. The tumor in the non-rigid deformed template matches nearly perfect the
tumor in the reference, such that we cannot observe changes in the difference
image. In contrast, with the rigid lens we can see significant tumor growth in
the rigidly deformed template. The difference between non-rigid registered and
rigidly deformed template are quite high, which is also reflected by the rigid
lens measures: ddef = 5.32, dint = 0.67, and djac = 1.18. The deformation in
the lens region deviates 5.32 mm on average from the rigid deformation. This is
also reflected by the Jacobian, that indicates volume growth of 18% in the lens
region. Finally, our third measure dint also takes a high value that indicates high
intensity and appearance changes, respectively. Those high values are also visible
in the intensity/deformation difference and Jacobian images shown in Fig. 2.

3.2 CT Follow-Up Registration

Now we look at thorax-abdomen CT follow-up scans, to demonstrate the utility
of the proposed method. First we want to look on the visible effects and the
qualitative information gain of the rigid lens in tumor regions. Afterwards we
examine the quantitative benefit of the proposed algorithm in those regions.

http://www.mevislab.de
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Qualitative Study. The image top left of Fig. 3 shows the sagittal view of a
CT abdomen scan with the considered tumor region, where we want to analyze

Lens location ‖y − yrigid‖ det∇y

TR (y) T (yrigid)

|T (y) − T (yrigid)| |R − T (y)| |R − T (yrigid)|

Fig. 2. CT abdomen scan with a rigid lens on a kidney tumor region: the image top left
shows the coronal view of the reference image with the rigid template lens region. In the
second row from left to right the lens region of the reference, the registered and rigid
deformed template are displayed. The images of the last row show the intensity dif-
ferences between the registered and the rigidly approximated and the difference image
between the reference and the registered/rigid deformed template. The image top mid-
dle shows deformation differences between the registered and the rigidly approximated
template and the image on the right shows the Jacobian of the deformation.
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Fig. 3. Follow-up CT abdomen scan with a rigid lens on a liver tumor region: In the first
row the sagittal view of the reference CT abdomen scan with the rigid template lens
region and the lens region of the reference image are displayed. The rows from top to
bottom show the rigidly approximated template region, the registered template region
and intensity/deformation difference images between registered and rigid deformed
template at the same position in the time follow-up template images.
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the shape and volume development of the tumor. The baseline scan served as ref-
erence for registration with three follow-up scans token two, six, and nine month
later. In the lens region a large and a small tumor can be recognized. With the
rigid lens we clearly recognize how the tumors grow, whereas we do not recognize
such tumor changes in the registered template images as in the rigid deformed
region: In the first column the registration matches the tumor regions of the tem-
plate image quite well to the ones of the reference image, but in the images token
later the corresponding regions match less perfect. These tumor changes are also
visible in the intensity and deformation difference between the registered and the
rigid deformed template: In the first image we do not recognize high intensity and
deformation changes in the tumor region, so the transformation of this region
is quite rigid. In the images on the right we see more intensity and deformation
differences in the tumor region, since the difference between the rigid deformed
and registered tumor get higher. These observations fit to the calculated rigid
lens measures listed in Table 1: We measured high deformation changes, which
increase through the time follow-up images. Furthermore the intensity quotients
are always on a high level and the average Jacobians indicates an expansion of
the volume vector field. In summary we assessed a growing and expansion of the
tumor in the lens region by approximating the deformation field rigidly.

Quantitative Study. In this experiment we do a quantitative evaluation of the
rigid lens measures for change analysis of tumor regions. In total we considered
881 non-rigid follow-up registrations with the baseline image as reference and
the corresponding follow-up images as templates. We used the tumor annotations
(largest diameter and center) to define 1492 rigid lens regions and evaluated the
average deformation difference, intensity difference and Jacobian in the region
of interest. From in total 2898 annotations we only considered those with diam-
eter ≥ 2cm to avoid statistics based on very small lens regions only containing
few pixels. Furthermore, to avoid duplicate measurements in our statistics we
used the annotations from the baseline scan for all corresponding follow-up reg-
istrations. Only in cases when no annotations at baseline are available, then the
ones from follow-up scans were used. The results of our study are summarized in
Table 2. We observe a large range of deformation differences with values ranging
from 0.05mm to 16.13mm. We also observed intensity quotients on a significant
high level. In average volume change djac is near 1, but standard deviation is

Table 1. Rigid lens measures to the corresponding follow-up data of Fig. 3. Each line
shows the results of the corresponding template image.

Follow-up ddef dint djac

2 month 2.62 0.71 1.08

6 month 2.93 0.63 1.02

9 month 3.81 0.76 1.06
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quite high > 30% indicating significant tumor growth or shrinkage. For better
understanding we illustrate the meaning of djac � 1 and djac � 1 in Fig. 4.

djac = 0.52 djac = 2.57

R
T
(y
)

T
(y

ri
g
id
)

|R
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)|
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−

T
(y

ri
g
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) |

Fig. 4. Tumor regions with djac � 1 and djac � 1: In each column is from top to
bottom the reference image, the original and rigid deformed template, and the absolute
intensity differences between reference and original/rigid deformed template shown. We
observed djac = 0.52 in the first and djac = 2.57 in the second column.



282 S. Jäckle and S. Heldmann

Table 2. Rigid lens measures of the quantitative study: Mean and standard deviation
of the measured values are listed for each tumor type.

Tumor type Number ddef dint djac

Liver 352 2.88 ± 1.91 0.52 ± 0.12 1.01 ± 0.34

Lung 157 2.65 ± 2.26 0.49 ± 0.14 1.03 ± 0.33

Other 983 3.27 ± 1.98 0.55 ± 0.14 0.99 ± 0.37

All 1492 3.11 ± 2.01 0.54 ± 0.14 1.00 ± 0.36

4 Conclusions

We proposed a simple approach for change assessment which is independent from
any particular image registration method. We showed, that the rigid lens can
be used to assess changes of volume, shape and appearance of structures. The
benefits of the rigid lens are its interactive usage and its computationally cheap
calculation in real time, yielding local rigid alignment without performing addi-
tional registration. Furthermore we introduced three measures for non-rigid local
changes. We showed that the measures are generally able to indicate changes in
shape, size and appearance. Finally we evaluated our tool for the assessment of
tumor in follow-up CT scans and demonstrated the approach with a quantita-
tive study. In future work, we aim to verify, that the rigid lens measures are
sensitive to changes by correlating the results presented in Table 2 with ground-
truth tumor growth. Furthermore, we aim to extent the approach for automatic
change detection. Another interesting direction of research is the generalization
of the rigid lens to comparison and change detection in multi-modal registration.
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Abstract. Image registration is a well-known problem in the field of
medical imaging. In this paper, we focus on the registration of chest
inspiratory and expiratory computed tomography (CT) scans from the
same patient. Our method recovers the diffeomorphic elastic displace-
ment vector field (DVF) by jointly regressing the direct and the inverse
transformation. Our architecture is based on the RegNet network but
we implement a reinforced learning strategy that can accommodate a
large training dataset. Our results show that our method performs with
a lower estimation error for the same number of epochs than the RegNet
approach.

Keywords: Deep learning · Reinforced learning · Lung registration
Chest computed tomography · Diffeomorphism

1 Introduction

In this paper we address the problem of lung registration, with the aim of over-
laying two chest CT scans from the same patient obtained during inspiration and
expiration breath cycles. Numerous works have been published addressing lung
registration in CT scans. Some of these methods competed in the EMPIRE10
Challenge [1], which evaluated registration methods on thoracic CT. Song et al.
[2] proposed different configurations for their ANTS open source software pack-
age [3] to build diffeomorphic transformation models to perform a non-rigid
image transformation that achieved good results in the challenge. Modat et al.
[4] also achieved good results using a reformatted version of the Rueckert Free-
Form Deformation algorithm [5] using the NiftyReg package. In 2013, Rühaak
et al. [6] proposed a method based on minimizing the normalized gradient fields
distance measure with curvature regularization.
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Deep learning has emerged in the last years as a powerful tool to solve differ-
ent medical image problems [7–9], including lung registration. The use of strate-
gies based on deep learning allows to register the images without the need of
a dissimilarity metric, as the algorithm is optimized using just images saliency
features. In this work, we used the RegNet architecture proposed by Sokooti
et al. [10] to directly estimate a DVF using multiple resolution patches from a
pair of input images. We focus on recovering the elastic diffeomorphic transfor-
mation. This is especially challenging in lung registration due to the large field
displacement that takes places between the breathing cycle extremes.

The contributions of this work were twofold. First, we propose a new loss
function that jointly estimates the direct and inverse diffeomorphic transforma-
tion. To train the algorithm, we obtained both fields using ANTs and visually
validating the results. Second, we sequentially selected the data training patches
more adequate for training using a reinforced learning strategy [11]. The rein-
forced learning strategy aims at selecting the most adequate training points
allowing for a scalable approach in large training datasets.

2 Methods

2.1 Computation of Training Deformation Fields

We used 10 patients from the COPDGene cohort [12] to train our algorithm with
inspiratory and expiratory high-resolution CT scanning. We tested the algorithm
in another 5 different scans.

We registered the inspiration-expiration scans using ANTs [3] with the inspi-
ration scan as the fixed image and the expiration scan as the moving one. We
performed an initial affine registration using mutual information as the cost func-
tion. Then, a diffeomorphic B-spline registration was performed based on the
Lagrangian diffeomorphic registration technique described in [13]. The parame-
ters of the registration were optimized using Spearmint [14], a Bayesian optimiza-
tion approach, using a publicly available reference dataset with corresponding
landmarks [15].

Fig. 1. Example of the DVF Jacobian for a test patient
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Fig. 2. Inspiratory-Expiratory registration regression network based on the RegNet
architecture [10]

We focused on the registration of the lung area and ignored the rest of the
image. To that end, we generated a lung mask using the segmentation method
described in [16] as implemented in the Chest Imaging Platform. All the images
were preprocessed to rescale them to an isometric spacing of 1 × 1× 1 mm. The
DVFs and the lung masks reformatted to match the new resolution. The scans
were visually assessed to ensure that the original registration and the lung masks
were correct. We input into the CNN the inspiratory and the affined transformed
expiratory images, as we were only interested in estimating the elastic part.
Figure 1 shows an example of the Jacobian of the DFV for one of the used scans
after applying our lung segmentation mask.

For all our experiments, we used the RegNet architecture proposed by Sokooti
et al. [10] (Fig. 2). The original network takes as an input four 3D patches cen-
tered in a voxel, and it outputs the DVF for that voxel. The first two patches
have a 29× 29× 29 voxel size, and they are obtained at the original scan res-
olution (one of the patches belong to the fixed image, while the other belongs
to the moving one). Analogously, we select another two patches (one from each
image) with a 27× 27× 27 voxel size, but these patches are obtained at the half
resolution to capture a bigger context in the image. The main difference in our
approach is that we performed additional experiments to obtain not only the
direct DVF, but also the inverse diffeomorphic DVF (using the same architec-
ture, just adding a second output vector).

To create our training dataset, we randomly selected 20,000 points for each
scan that were within the bounds of the lung mask. For each point (voxel),
we obtained the four patches that compound the network input, and stored
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both the direct DVF and the inverse DVF from the elastic component of the
original transformation (network output). We used a total of 200,000 points to
train/validate the algorithm. We followed a similar approach to create a test
dataset with the 5 test scans. We randomly selected 5,000 voxels for each scan
in bounds with the corresponding lung mask, for a total of 25,000 test data
points.

2.2 Reinforced-Sequential Training

We evaluated different sequential training strategies as an alternative to a tradi-
tional learning approach, based on the concept of reinforced learning in machine
learning [11]. Instead of training using all the data points in the training dataset,
we split them into batches of n = 5,000 that were trained independently. We
also reserved a fixed number of 3,000 points for validation in each epoch, which
were common to all the sequences.

Fig. 3. Schema for the proposed reinforced learning workflow for one Epoch

We used an identical RegNet architecture, loss function and hyper parameters
in all the sequences. The L2 loss error function is defined as:

L =
1
n

n∑

i=1

(vi − f(vi))2 (1)

where vi is a ground truth vector of 3 coordinates containing the DVF for the
voxel i, and f(vi) is the output of the CNN that contains the corresponding DVF
prediction.

Every sequence begins with an initial learning rate of 0.0001, which is reduced
by a factor of 0.8 whenever two consecutive epochs do not improve the validation
loss. The training for a sequence is interrupted after 3 consecutive epochs with
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no improvement in the loss function for the validation data. A batch size of 40
and the default Keras library (v2.1.5) implementation of RMSprop optimizer are
used to minimize the loss function L.

After training each sequence, we use the current state of the model to evaluate
all the data points that were used in it, and select the best b and the worst w
ones based on the loss function value. pb and pw are two hyperparameters that
control the percentage of points used with respect to the total number of points
n used in the sequence training. After each sequence we select the b = n ∗ pb
best points and the w = n ∗ pw worst points of the current training (where
p, bε[0, 1]), and we keep them to be reused in the next sequence. By doing so, the
method can reuse the data points that are thought to contain the most useful
information for the current model. Therefore, p = n− b−w new data points are
added to the training dataset at the end of each sequence. The full process is
represented in Fig. 3.

Since each sequence is trained independently and sequentially, there is a need
to define a strategy to initialize the model weights at the beginning of each one
of them. We tested three different strategies: continue with the last model state
(like a regular training), use the best model that was found during the previous
sequence, and use the best model that was found globally in all the previous
sequences.

2.3 Use of Direct-Inverse DVFs for Training

We also tested the impact of training our algorithm using the diffeomorphic
direct DVF (that contains the displacement for every voxel in the moving image
to the closest one in the fixed image), the diffeomorphic inverse DVF (to go from
the fixed image to the moving one) or both of them simultaneously. When using
both DVFs, the value of the loss function L is the sum of the L2 error for the
direct DVF and in the inverse DVF. Formally:

L = LD + LI (2)

where LD is the L2 loss function defined in Eq. 1 for the direct DVF and LI is
the L2 loss function for the inverse DVF. We compared the values of each one
of the loss functions when using the different DVFs for the training.

3 Results

3.1 Evaluation of Reinforced-Sequential Training Strategies

We analyzed the performance of 5 different reinforced-sequential learning strate-
gies, as described in the Sect. 2.2. Figure 4 shows the results of the validation loss
value obtained during the first 3 Epochs. Note that in order to keep a consistent
nomenclature and compare the results with a traditional learning approach, we
define an Epoch like the moment where all the points in the training dataset have
been used. It is important not to confuse it with each one of the regular epochs
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that happen during the training of each one of the sequences. Each reinforced
learning Epoch is composed of around 60 sequential training steps, depending
on the values of the hyperparameters pb and pw that are used to determine the
number of data points to be reused in each sequence.

Fig. 4. Evaluation of reinforced-sequential training strategies

The figure shows that the variation of the hyperparameters pb and pw do not
seem to have a big impact in the overall result, at least in the ranges that we
tested ([0.05–0.2]). However, note how the strategy used to initialize the weights
in each sequence can impact dramatically in the performance of the algorithm.
Given the same values for pb and pw (pb = 0.2 and pw = 0.05), using the best
model found for all the past sequences performed much worse than the other two
strategies. A possible explanation for this behavior is that using this strategy
may break the continuity in the learning process, leading to poor performance
of the optimizers used during the training. We can also see that indeed the
continuous model strategy seems to perform slightly better than the best model
found in the previous sequence, although the differences are smaller. This may
happen because, since the size of the training data used in each sequence is small
compared to the overall training dataset size, and we also used pretty aggressive
early stopping conditions, the best model found in a sequence should be very
similar to the one found when the sequence stopped. Therefore, the effect of the
break in continuity should be limited. In any case, we can conclude that using
a continuous training strategy is the best candidate for the tested reinforced-
sequential training approach.

The best strategy found was a continuous learning with pb = 0.2 and pw =
0.05, which reached an L2 validation error of 0.77647 after 34 Epochs.
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3.2 Comparison of Reinforced-Sequential and Traditional Learning
Strategies

We compared the learning process of one of the reinforced-sequential training
(Continuous learning with pb = 0.2 and pw = 0.05) to traditional learning, using
the same train and validation datasets. The results are shown in Fig. 5. The
figure shows the L2 error in the validation dataset in each Epoch. As it was
described in the previous section, we are defining an Epoch as the moment when
all the training data have been used for training purposes once.

Fig. 5. Comparison of reinforced-sequential and traditional learning strategies

We can see how after very few Epochs (around 4–5), the loss error in the
reinforced-sequential learning is already quite close to the best-achieved result,
especially when compared to a regular training. This indicates that the use of the
proposed reinforced-sequential strategy allows having a pretty good estimation
of the algorithm performance with very few iterations over the training dataset.
This may be particularly useful in a context where the data generation process
is difficult but virtually unlimited.

Besides, the overall error after 34 Epochs in the best reinforced-sequential
strategy was 0.77647, which is lower than a traditional learning after 121 epochs
(0.846). These results suggest that our reinforced-sequential learning strategy
may be used in different problems to increase the efficiency of other deep CNN
algorithms.

Both algorithms were trained in the same hardware (using a Nvidia
GEFORCE GTX 1080 Ti GPU). The total training time for the traditional
training over 121 epochs was 2 days, 18:47:05 s, while the compared reinforced
learning over 34 Epochs took 5 days, 1:13:35 s. The higher training time in the
reinforced learning is due to the bigger number of iterations for every sequence
as well as the extra time needed to evaluate the best/worst training data points
after each sequence. The training time in reinforced learning could be reduced
by selecting a higher number of training data points for each sequence.



Diffeomorphic Lung Registration Using Deep CNNs and Reinforced Learning 291

3.3 Direct DVF and Inverse DVF in the Loss Function

We finally compared the performance of three regular trainings using different
DVFs in the training loss function, evaluating the trained models in the test
dataset. For evaluation purposes, we report the error distribution using the norm-
2 Euclidean distance (in a mm scale) for the different DVFs used.

In the first training, we used the direct DVF to train the model and to
evaluate the distance D in the test dataset. We did a second analog training but
using the inverse DVF for training/testing. Finally, we trained a third model
using an L2 loss function whose total value is the sum of the individual L2 losses
for the direct and the inverse DVF respectively (as described in the Methods
section).

Fig. 6. Validation loss in full training

Figure 6 shows that the validation loss during the training of the direct DVF
and the inverse DVF are very similar. However, when we look at the same metric
in a training using a dual DVF loss, we can appreciate how the error is higher
in the first epochs, but it ends up converging to a similar validation error in
advanced phases of the training process. This indicates that the complexity of
the problem increased (as we are predicting 2 fields instead of one), but after
some epochs the network is able to perform predictions at a similar level than
the single DVF training.
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Fig. 7. Test error comparison when using different DVFs in the training loss function

Moreover, as we can see in Fig. 7, no significant differences in the test error
were detected when using both DVFs in the loss function. Therefore, we can
conclude that we are able to learn both the direct and the inverse DVFs simul-
taneously without the need for any adaptations in the network architecture or
the training hyperparameters (learning rate, optimizer parameters, etc.).

4 Discussion

We proved the feasibility of using different training strategies to improve the
accuracy of an algorithm based on deep CNNs, using the concepts of reinforced
learning that have been applied to other tasks in the machine learning field. In
the future, we will evaluate other strategies that can work in a more efficient
way than the ones proposed since they could increase the total training time.

We evaluated the performance of our algorithm to study its convergence
properties as well as the error when estimating just the direct and inverse DVF
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separately and jointly. Our results showed a lower error bound when the rein-
forced learning strategy was applied. We also showed that our diffeomorphic
method can estimate both the direct and inverse DVF with an error that is
similar to the one that is obtained when only estimating the direct or inverse
DVF.

In the future, we will extend these strategies to bigger training datasets that
can increase the generalization of the problem and reduce the total registration
error.

References

1. Murphy, K., et al.: Evaluation of registration methods on thoracic CT: the
EMPIRE10 challenge. IEEE Trans. Med. Imaging 30(11), 1901–1920 (2011)

2. Song, G., Tustison, N.J., Avants, B.B., Gee, J.C.: Lung CT image registration
using diffeomorphic transformation models. In: Medical Image Analysis for the
Clinic: A Grand Challenge, pp. 23–32 (2010)

3. Avants, B.B., Tustison, N., Song, G.: Advanced Normalization Tools (ANTS).
Insight J. 2, 1–35 (2009)

4. Modat, M., McClelland, J., Ourselin, S.: Lung registration using the NiftyReg
package. In: MICCAI2010 Workshop: Medical Image Analysis for the Clinic - A
Grand Challenge, pp. 33–42 (2010)

5. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.:
Nonrigid registration using free-form deformations: application tobreast MR
images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)
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Abstract. The goal of this study is to train and assess the perfor-
mance of a deep 3D convolutional network (3D-CNN) in classifying inde-
terminate lung nodules as either benign or malignant based solely on
diagnostic-grade thoracic CT imaging. While prior studies have relied
upon subjective ratings of malignancy by radiologists, our study relies
only on data from subjects with biopsy-proven ground truth labels. Our
dataset includes 796 patients who underwent CT-guided lung biopsy at
one institution between 2012 and 2017. All patients have pathology-
confirmed diagnosis (from CT-guided biopsy) and high-resolution CT
imaging data acquired immediately prior to biopsy. Lesion location was
manually determined using the biopsy guidance CT scan as a reference
for a subset of 86 patients for this proof-of-concept study. Rather than
training the network without a priori knowledge, which risks over fitting
on small datasets, we employed transfer learning, taking the initial lay-
ers of our network from an existing neural network trained on a distinct
but similar dataset. We then evaluated our network on a held out test
set, achieving an area under the receiver operating characteristic curve
(AUC) of 0.70 and a classification accuracy of 71%.

Keywords: Deep learning · Lung cancer · Machine learning

1 Introduction

1.1 Lung Cancer

Lung cancer is the leading cancer-related cause of death in the US and despite
significant advances in treatment options, the five-year survival rate remains low
at 18.6% [7]. This is partially explained by the fact that lung cancer has often pro-
gressed to an advanced stage by the time it becomes clinically noticeable to most
patients. Multiple randomized studies investigating the survival benefit of lung
cancer screening have been performed. Screening with plain chest radiographs
and sputum cytology has proven questionably useful, but the pivotal National
c© Springer Nature Switzerland AG 2018
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Lung Screening Trial demonstrated a significant survival benefit of screening
with low dose spiral computed tomography (CT) in high-risk patients. This study
spurred a change in the United States Preventive Services Task Force screening
guidelines, which now recommends annual low dose CT scans for patients with a
high risk of lung cancer. Under these guidelines, 9 million Americans will receive
a screening CT each year, resulting in 2.2 million positive test results [8], which
will all require further evaluation. After a positive screening CT, the next step
is a diagnostic, full resolution CT scan. If the radiologist finds this CT scan to
be concerning, a CT-guided biopsy is performed.

1.2 Lung Biopsies

CT-guided lung biopsies are used to diagnose malignancy with pathologic cer-
tainty in patients with suspected lung cancer. Tissue is needed to confirm a
diagnosis of lung cancer as well as to guide the application of targeted thera-
pies. Although often necessary, CT-guided lung biopsies carry a risk of possi-
ble complications. Complications include pneumothorax, hemoptysis, pain, air
embolism, and even death in rare cases. If lung nodules could be accurately
classified into malignant vs. benign using exclusively non-invasive imaging data,
biopsies could be avoided, sparing patients without malignancies the risk and
cost of the biopsy.

1.3 Machine Learning in Lung Cancer Diagnosis

For nearly 30 years, physicians have sought to enhance their ability to accurately
classify pulmonary nodules using predictive models [2]. In a study published in
1993, a Bayesian classifier was trained to classify solitary pulmonary nodules as
benign or malignant based on hand-extracted clinical and radiographic features
[4,5]. Even with a dataset of limited size, the investigators were able to train
a model with an area under the curve (AUC) of 0.71. Various studies have
also employed radiomics approaches, using handcrafted imaging features such as
texture and entropy to predict for malignancy, with one such study achieving an
AUC of 0.79 [6].

Recent advances in the field of computer vision, in particular the populariza-
tion of the convolutional neural network (CNN), have resulted in corresponding
advances in the field of automated medical image analysis. In the field of lung
nodule analysis specifically, multiple groups have presented impressive results.
Chon et al. demonstrated that a deep learning approach could accurately detect
pulmonary nodules from CT images employing a U-net architecture [1]. The
interest pulmonary nodule classification peaked in 2017 when the popular “Kag-
gle Data Science Bowl” was focused on this topic. A public dataset from the Lung
Image Data Consortium (LIDC) was made available and many groups submit-
ted impressive solutions leveraging a variety of network architectures including
U-net, AlexNet, and others [10].
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All of these studies, however, relied on datasets without true ground truth
labels. That is, the label of malignancy vs. non malignancy was based on sub-
jective ratings of by radiologists, not on subjects with biopsy confirmed disease.
Because of this, all of these models are limited in performance to what an actual
radiologist can achieve today. A natural extension of these methods would be
application to a dataset with ground truth labels provided by biopsies.

1.4 Transfer Learning

Because a large open dataset containing both ground truth pathology data and
CT imaging data does not yet exist, we turned to transfer learning as a possible
solution [9]. In transfer learning, a network is trained on one dataset and then
fine-tuned using another dataset. In our case, we chose to train a network using
an open dataset from the Lung Image Data Consortium of subjects with and
without lung nodules containing CT imaging data along with subjective radiol-
ogists ratings of suspicious nodules. We then fine-tuned this network to predict
pathologically-confirmed lung cancer, using a smaller dataset of patients with
pathologically confirmed lung cancer diagnoses.

2 Methods

2.1 Dataset

Our dataset consists of 796 patients who underwent CT-guided lung biopsy at
one institution between 2012 and 2017 to evaluate suspicious pulmonary nodules.
All patients had pathology-confirmed diagnosis (from CT-guided biopsy) and
high-resolution CT imaging data acquired immediately prior to biopsy. Lesion
location was manually determined using the biopsy guidance CT scan as a ref-
erence for a subset of 86 patients for this proof of concept study. The median
nodule size was 2.1 cm.

A random selection of 65 patients was used as the training set. The remaining
21 patients were reserved solely for testing and performance assessment.

In the training set, 72% of subjects had biopsies showing malignancy, while
28% of patients were shown to have benign disease. In the testing set, 72% were
malignant, while 28% were benign.

Given the 3D location of nodule, the images were re-sampled to
1mm× 1mm× 1mm resolution and a 64× 64× 64 cube volume around the cen-
ter of nodule was then cropped. Visual inspection on the cropped volume was
performed to ensure the inclusion of the full nodule. Examples of cropped vol-
umes are shown in Fig. 1 below.
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Fig. 1. Example 2D slice of a thoracic CT scan showing malignant and benign (non-
malignant) lesions.

2.2 Network Construction

Rather than training the network without a priori knowledge, which risks over
fitting on small datasets, we employed transfer learning, taking the initial layers
of our network from an existing neural network trained on a distinct but similar
dataset. In our case, we first identified an existing 3D-CNN to identify nodules
from thoracic CT data that was trained on an open dataset from the LIDC [3].
Using the final batch pooling layer from the existing network, we then added
three new untrained layers (spatial pooling, dense, and softmax) and re-trained
the network using our training set employing dropout and batch normaliza-
tion. This final 3D-CNN network was evaluated using the test set. The network
schematic is shown in Fig. 2.

Fig. 2. A diagram showing our transfer learning methodology.

To reduce the model’s parameters, we applied a simple weighted spatial
pooling of the pretrained feature vector. Next, a voxel-wise importance map
is regressed out with a conv/relu/bn/sigmoid sandwich and is used to weighted
average the feature vector spatially, resulting in a single feature vector of 128
features. This layer is followed by a dense layer, a softmax classification layer
and standard binary cross entropy loss. Our dataset contains much more malig-
nant cases than benign. To counter class imbalance, class weight of 10:1 (benign
to malignant) weight is added to the loss function. We use a standard Adam
optimizer with learning rate 1e−3. Two drop out layers with keep rate 0.8/drop
rate 0.2 are added to the network to counter overfitting. We use batch size 10
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Fig. 3. Receiver Operating Characteristic Curve for fine tuned network.

and run the training for 2000 steps. Empirically this is enough for the network
to reach convergence.

3 Results

When validated on a held out test set, our classifier achieved and AUC of 0.70
and a classification accuracy of 71%. The Receiver Operating Characteristic
Curve can be seen in Fig. 3. Examples of incorrectly classified nodules can be
seen in Fig. 4

Fig. 4. Examples of mis-classified labels. (a), (b) are true malignant nodules labeled
by the network as benign. (c), (d) are true benign nodules labeled by the network as
malignant.



300 W. Lindsay et al.

4 Conclusion

Machine learning based image analysis methods have the potential to signifi-
cantly enhance radiology workflows, reduce the occurrence of missed diagnoses
and false positives, and improve survival rates for lung cancer patients. However,
creation of larger, more comprehensive medical image datasets is required before
clinically acceptable models can be trained. In this proof of concept study, we
demonstrate that a network trained on a publicly available dataset can be fine-
tuned, even with a small number of subjects, to a more specific classification
task. Although the performance of our model does not reach state-of-the-art in
terms of classification accuracy or AUC, we believe that the inclusion of ground
truth labels based on pathology is novel and an important step towards clinical
adoption of lung cancer CAD software. We are currently extracting additional
imaging and pathology data from our larger dataset, and a more complete anal-
ysis on the full 796 patients is planned in the near future. In this study, we
hope that the larger sample size will allow us to further fine-tune our existing
network and allow for meaningful gains in accuracy and AUC. Ultimately, single
institution datasets will not lead to optimal classifier performance. Given the
importance of diagnosing lung cancer at an early stage and the government’s
new screening guidelines, we strongly advise the medical community to begin
construction of a comprehensive open dataset consisting of pathology and imag-
ing data. Furthermore, radiologists don’t makes clinical diagnoses using solely on
imaging data. They often correlate their imaging finding with additional clinical
data such as the patient’s smoking history, demographics, and co-morbid con-
ditions. We hope to expand our dataset to include additional clinical features
from the patient’s electronic medical record, with a goal of creating a workflow-
integrated CAD solution for lung cancer screening.
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Abstract. Lung cancer is a leading cause of mortality and morbidity for
patients suffering from Chronic Obstructive Pulmonary Disease (COPD).
Both the presence of visually assessed emphysema on CT scans and
abnormal pulmonary function tests are associated with the development
of lung cancer. Based on recent results showing that convolutional neural
networks (CNNs) applied to CT scans can predict spirometrically-defined
COPD (FEV1

FV C
< 0.7), we hypothesized that CNN-based classification of

COPD and emphysema is predictive of lung cancer development in the
National Lung Cancer Screening (NLST) cohort. We trained spiromet-
ric COPD and visual emphysema CNN classifiers using data from the
COPDGene study. The classifiers were then used to generate COPD and
emphysema scores (CSCNN and ESCNN , respectively) on 7347 CT scans
from the NLST study. Cox proportional hazards regression was used to
model the effects of CSCNN , ESCNN , age, body mass index, educa-
tion, gender, smoking pack-years, and years since smoking cessation on
lung cancer diagnosis. It was found that, individually, both CSCNN and
ESCNN were statistically significant predictors (p< 0.000 and p< 0.000,
respectively) of lung cancer diagnosis hazard.

Keywords: CNN · COPD · Lung cancer screening · Survival analysis

1 Introduction

Chronic Obstructive Lung Disease (COPD), an inflammatory lung disease result-
ing in pulmonary airflow obstruction, is projected to be the fourth leading cause
of death in the world by 2030 [1]. COPD is typically diagnosed using spirometry
(i.e. pulmonary function tests, PFTs), with a forced expiratory volume in 1 sec-
ond to forced vital capacity ratio (FEV1

FV C ) less than 70% being considered a COPD
c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): RAMBO 2018/BIA 2018/TIA 2018, LNCS 11040, pp. 302–309, 2018.
https://doi.org/10.1007/978-3-030-00946-5_30
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diagnosis [1]. Emphysema, a sub-type of COPD that involves the thinning and
destruction of the alveoli, is one of the diseases comprising COPD. Emphysema
presence and severity is typically assessed by visual reading of thoracic computed
tomography (CT) scans.

Lung cancer has been shown to be associated with spirometrically defined
COPD (sCOPD), with Young et al. reporting a two-fold increase in lung cancer
incidence among patients in the National Lung Cancer Screening Trial (NLST)
who had COPD [2]. The presence of visually assessed emphysema on CT scans
is also associated with lung cancer diagnosis, as a meta-analysis conducted by
Smith et al. showed that the presence vs. absence of visual emphysema on CT
resulted in a lung cancer diagnosis odds ratio of 3.50 [3].

It is therefore possible that using PFT and/or CT imaging data may allow
for more accurate lung cancer risk stratification, which could improve lung can-
cer screening inclusion criteria and/or be used to help motivate patients to quit
smoking [5]. Unfortunately, PFTs and visual assessment of emphysema are not
always available due to the associated costs. In addition, visual assessment of
emphysema is subjective and thus suffers from high intra and inter-reader vari-
ability [6].

It was recently shown that Convolutional Neural Networks (CNNs) can be
used to train end-to-end CT-based classifiers of clinical COPD outcomes [7]
such as GOLD stage, exacerbation frequency, and mortality. Based on these
results, we hypothesized these techniques could used to improve lung cancer risk
modeling without the need for PFTs or visual assessment of emphysema.

In this work, we present a CT-based CNN classification workflow for assess-
ment of sCOPD and visual emphysema and show that classification results pro-
duced by the CNNs are predictive of lung cancer diagnosis hazard in the NLST
cohort.

2 Methods

2.1 Data

The CNNs were trained using image and clinical data from the Genetic Epidemi-
ology of COPD (COPDGene) study [8]. CT scans from the baseline image collec-
tion and 5-year follow-up were available for training and validation. Only scans
reconstructed using a smooth kernel (GE Standard, Siemens B31f, or Philips B)
were used in this study.

The CNN models trained on COPDGene data were applied to CT scans
from the NLST. We processed low-dose CT scans from the NLST that were
reconstructed with a Siemens B30f, GE Standard, Philips B, or Toshiba FC10
kernel, and that had a slice thickess of 2.5 mm or less. After accounting for
missing clinical data and failed image processing, this resulted in 7347 datasets.
2694 of these datasets had associated spirometry data.
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2.2 CNN Architecture

Image Processing. High resolution CT volumes are too large to train and
process on current graphics processing units (GPUs). Similar to [7], we devel-
oped a data reduction strategy that used a subset of image slices for training
and processing. A set of 8 axial slices, each down-sampled from 512× 512 to
256× 256 pixels, were randomly sampled from equally sized “zones” of the lung
and combined into a single image montage (Fig. 1).

Fig. 1. Top: Image processing steps: segmentation and division of the lungs into 8
equally-sized zones. Bottom: 2048× 256 pixel image montage used for training and
classification. Each slice of the montage was randomly sampled from within it’s corre-
sponding zone

CNN Configuration. The CNN configuration is presented in Table 1. Both
sCOPD and visual emphysema classifiers used this configuration for training
and testing. The CNN was implemented in PyTorch and trained using stochastic
gradient descent with a cross-entropy loss function, Nesterov momentum of 0.9,
a learning rate of 0.001, and a batch size of 32.

Training. For the sCOPD classifier, subjects were classified as having COPD
if they were in Global Initiative for Chronic Obstructive Lung Disease (GOLD)
stage 1 or greater. GOLD stage 0 and PRISM subjects were classified as not
having COPD. 3750 subjects were used for training. Due to the to use of random
slices for processing each CT scan, data augmentation was used to increase the
size of the training dataset from 3750 to 15000 by generating four different slice
configurations for each subject. 5-year follow-up CT scans were used for training
validation.
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The emphysema classifier was trained using visual centrilobular emphysema
classifications. A subset of the baseline COPDGene CT scans were visually scored
by two analysts using the Fleischner Society classification system. Emphysema
was classified as centrilobular (trace, mild, moderate, confluent, and advanced
destructive emphysema), panlobular, and paraseptal (mild or substantial). A
two-category classifier was generated that classified an image as having visual
emphysema if it contained mild, moderate, confluent, or advanced destructive
centrilobular emphysema, and no emphysema otherwise. Visual reads that were
not agreed upon by both analysts were not used for training. A total of 875
subjects were used for training, resulting in 3500 training images after using the
data augmentation strategy outlined above. 3500 datasets from different subjects
were used for training validation.

Table 1. CNN configuration. conv3 = 3 × 3 convolution. relu = Rectified linear unit.
maxpool = 2 × 2 max-pooling. FC = Fully-connected. dropout= 50% dropout.

input (256x2048x1)
(256x2048x1) >conv3 >relu >(256x2048x16) >conv3 >relu >(256x2048x16)

maxpool
(128x1024x16) >conv3 >relu >(128x1024x32) >conv3 >relu >(128x1024x32)

maxpool
(64x512x32) >conv3 >relu >(64x512x64) >conv3 >relu >(64x512x64)

maxpool
(32x256x64) >conv3 >relu >(32x256x128) >conv3 >relu >(32x256x128)

maxpool
(16x128x128) >conv3 >relu >(16x128x128) >conv3 >relu >(16x128x128)

maxpool
(16x128x128) >FC512 >relu >dropout >FC2

log softmax

CNN Validation and Testing. Following training, the CNN models were used
to create sCOPD and emphysema classification probabilities (i.e. classification
scores CSCNN ∈ (0, 1) ⊂ IR, ESCNN ∈ (0, 1) ⊂ IR, respectively) by taking the
exponential of the model output. Classification scores were assigned to a binary
category by thresholding at 0.5 (e.g. CSCNN > 0.5 → sCOPD, CSCNN ≤ 0.5 →
NO sCOPD). Validation and test accuracy was computed as the percentage of
correct classifications.

The sCOPD classifier was further validated in a subset of NLST images (2694
subjects) with spirometry data available. Radiologist generated visual emphy-
sema classification, however, was not available for the NLST datasets.

2.3 Statistical Analysis

Cox proportional hazard models were used to test the association between
CSCNN and ESCNN and time-to-event of lung cancer diagnosis incidence.
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Participants were censored at 6 years of follow-up. Regression models were
adjusted for covariates known to be associated with cancer development includ-
ing age, gender, body mass index, pack-years, and time since smoking cessa-
tion. Three models were generated: One with both CSCNN and ESCNN scores
included as continuous variables, one with only the CSCNN score included as a
continuous variable, and one with only the ESCNN score included as a contin-
uous variable.

Kaplan-Meier curves were also generated for CSCNN and ESCNN classifiers
for subjects that fell above and below the median classification scores within the
NLST cohort (Fig. 2).

Both Cox proportional hazards regression and Kaplan-Meier analysis were
implemented in Python using the lifelines package.

3 Results

3.1 Validation and Test Accuracy

Validation accuracy for the COPDGene cohort and test accuracy for the NLST
cohort are shown in Table 2. The validation accuracy of the CSCNN classifier
was almost exactly the same as reported for test subset in [7]. It should also be
noted that there was almost no decrease in the sCOPD classification accuracy
when going from the COPDGene to the NLST scans, despite that fact that the
patient cohorts and CT image acquisition and reconstruction parameters were
different.

Table 2. Validation and test accuracy of the CSCNN and ESCNN classifiers

Validation (COPDGene) accuracy NLST test accuracy

sCOPD 77.7% 76.2%

Emphysema 79.8% Not available

3.2 Statistical Analysis

Results for each Cox model are shown in Table 3. When CSCNN and ESCNN

were not combined into a single model, both were statistically significant
(p< 0.000) predictors of lung cancer diagnosis hazard. When combined in a
single model, however, the statistical significance of the CSCNN and ESCNN

classification scores decreased (to p = 0.0195 and p = 0.0598, respectively).
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Table 3. Cox regression results. Statistically significant predictors are in bold.

CS and ES CS-only ES-only

Hazard p Hazard p Hazard p

CSCNN 1.7849 0.0195 2.46 0.0000 - -

ESCNN 1.5934 0.0598 - - 2.3555 0.0000

Age 1.0632 0.0000 1.0651 0.0000 1.0660 0.0000

BMI 0.9778 0.0625 0.9723 0.0164 0.9787 0.0745

Education 0.9935 0.6730 0.9931 0.6595 0.9935 0.6728

Gender 0.7840 0.0237 0.7959 0.0334 0.7841 0.0237

Pack-years 1.0110 0.0000 1.0112 0.0000 1.0112 0.0000

Quit-years 0.9362 0.0000 0.9348 0.0000 0.9360 0.0000

Concordance 0.714 Concordance 0.711 Concordance 0.711

Fig. 2. Kaplan-Meier curves showing time to lung cancer diagnosis for subjects with
CSCNN and ESCNN scores less than or greater than the median for the cohort. 0.23
and 0.28 are the median CSCNN and ESCNN , scores, respectively, in the NLST cohort.

4 Discussion and Conclusion

The relationship between objective quantitative CT-based assessment of emphy-
sema (i.e. percent low-attenuation area, %LAA) and lung cancer has been shown
to be either weak [9] or non-existent [3,10,11], despite an association between
visual emphysema and lung cancer. In this work, we showed that CNN-based
probability scores of spirometrically defined COPD and visual emphysema were
both statistically significant predictors of lung cancer diagnosis hazard in the
NLST cohort. An encouraging result of this work is that, although the sCOPD
classifier was trained on full-dose CTs from the COPDGene study, the valida-
tion accuracy of the classifier decreased only 1.5% when applied to low-dose CTs
from the NLST, which is evidence that the classifier was robust and not overfit
to the training data.

The CNN architecture presented in this work uses only a subset of axial
slices from a high-resolution CT image. A potential benefit of this architecture
is that it might be possible to obtain accurate classification of sCOPD and/or
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emphysema from “incremental” CT scans (scans acquired with large spacing
between slices), which when used in combination with low-tube currents, would
allow for screening of COPD at very low x-ray doses. Another benefit of the
image processing workflow is that, due to the use of random slices within lung
zones, it may be possible to increase the accuracy of the classifier estimates by
ensembling the results from multiple configurations.

A limitation of this preliminary work is that CNN models were only trained to
classify COPD and emphysema as binary categories even though more granular
data was available (e.g. GOLD 0–4 and Fleischner society emphysema classifica-
tions). Additionally, the variation in CNN scores obtained using different random
slice configurations from the same image should be characterized to help under-
stand the classification repeatability. Finally, a comparison with the performance
of other quantitative CT-based COPD metrics (e.g. LAA-950 or Perc15) is of
particular interest. Future work will focus on addressing these issues.

In conclusion, we trained CNNs to classify COPD and emphysema presence
from CT images, and showed that the classification probabilities were statisti-
cally significant predictors of lung cancer diagnosis hazard.
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Abstract. We propose a deep learning-based pipeline that, given a low-
dose computed tomography of a patient chest, recommends if a patient
should be submitted to further lung cancer assessment. The algorithm
is composed of a nodule detection block that uses the object detection
framework YOLOv2, followed by a U-Net based segmentation. The found
structures of interest are then characterized in terms of diameter and tex-
ture to produce a final referral recommendation according to the National
Lung Screen Trial (NLST) criteria. Our method is trained using the
public LUNA16 and LIDC-IDRI datasets and tested on an independent
dataset composed of 500 scans from the Kaggle DSB 2017 challenge.
The proposed system achieves a patient-wise recall of 89% while pro-
viding an explanation to the referral decision and thus may serve as a
second opinion tool to speed-up and improve lung cancer screening.

Keywords: Computer aided diagnosis · Lung cancer
Low dose computed tomography images · Screening · Deep learning

1 Introduction

Lung cancer is the deadliest type of cancer worldwide in both men and women [1]
but early diagnosis significantly increases patient survival rate. In fact, the
National Lung Screen Trial (NLST) showed that annual screening of lung can-
cer risk groups with low-dose chest computed tomography (LDCT) via manual
analysis of scans by experts reduces lung cancer mortality by 20% [2]. However,
LDCT screening is challenging because (i) the process is prone to errors due to
factors such as interobserver variability and (ii) the equipment and personnel
costs of these programs inhibit their application on developing countries, where
tobacco consumption is difficult to control [3]. To address the problem of lung
c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): RAMBO 2018/BIA 2018/TIA 2018, LNCS 11040, pp. 310–318, 2018.
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cancer detection we propose a second opinion system that helps to reduce the
overall screening burden by indicating if a patient should or not be referred for
follow-up. The framework is composed of an initial nodule detection step, nod-
ule segmentation and finally a scan-wise decision based on the NLST criteria for
positive screens and thus provides an interpretable justification of its decision.

Lung nodule detection is a mandatory step for the automatic referral pipeline.
Deep learning has become the standard technique to complete this task, with the
leaderboard of LUNA161 nodule detection challenge being mainly composed of
these kind of approaches [4]. The most common pipeline is to detect candidates
by slice or 3D-wise via an object detection framework such as Faster-R CNN [5]
followed by a 3D convolutional neural network (CNN) for false-positive (FP)
reduction and these systems achieve detection sensitivities greater than 0.80
with 0.125 FP/scan or greater than 0.90 with 1 FP/scan. Then, nodule segmen-
tation is used for characterizing the detected abnormalities. The most common
approach for nodule segmentation is to use intensity (or HU) and shape fea-
tures [6], but CNNs can also be applied for 3D nodule segmentation and achieve
Sorensen-Dice coefficients close to 0.8 [7].

Despite the advances on both nodule detection and segmentation, automatic
patient referral is little explored. Recently, Kaggle2 hosted a challenge aimed at
the development of algorithms for predicting if a patient should be referred for
follow-up after screening. The training set is composed of 1398 training scans
with labels at the scan level. It is widely known that the majority of the scans
originated from the NLST trial, but the exact origin of each anonymized scan
has not been disclosed by Kaggle. In this challenge, the best methods used deep
learning approaches with an initial candidate detection followed by an expected
malignancy prediction that allow to achieve an overall log loss of 0.39–0.41.

We move beyond the nodule detection task and aim at tackling the more
complex lung cancer screening pipeline. Our contribution to the state-of-the-art
is a single step nodule detection algorithm followed by a segmentation and field-
knowledge classification step that allows a near-human scan-wise abnormality
detection performance for scan referral. The next section describes the devel-
oped algorithms and the datasets used for validation. Section 3 discusses the
performance of the proposed system. Finally, Sect. 4 summarizes our study.

2 Method

Our system was designed to follow the standard clinician pipeline of NLST [2],
where radiologists were instructed to refer a patient for follow-up if any non-
calcified nodule with diameter d > 4 mm was found. With that in mind, our
system is composed of 3 main steps (see Fig. 1) (i) nodule detection via YOLOv2
(Sect. 2.2) that focuses on nodules with d > 4 mm, (ii) nodule segmentation
for measurement and characterization via U-Net (Sect. 2.3) and (iii) scan-wise
referral indication based on the NLST guidelines (Sect. 2.4).
1 https://luna16.grand-challenge.org/home/.
2 https://www.kaggle.com/c/data-science-bowl-2017.

https://luna16.grand-challenge.org/home/
https://www.kaggle.com/c/data-science-bowl-2017
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single-step lung nodule detection nodule segmentation

U-NetYOLO

nodule characterization

NLST rules

⌀30 mm

referral decion

NLST rules

This patient is likely 
to have lung cancer 
(see the found nodule) 
and should be further 
examined       

Fig. 1. Pipeline of the proposed lung cancer referral system.

2.1 Datasets and Technical Details

The nodule detection network is trained on the LUNA16 dataset [4], which
contains 888 scans from the LIDC-IDRI dataset [8]. The LIDC-IDRI contains
1012 LDCT scans with variable slice thickness and nodule voxel-wise annotations
from up to 4 different expert radiologists. The LUNA16 contains the information
of 1186 nodules’ centroids and diameter (no voxel-wise data) with an agreement
level 3 or higher, as well as the centroid of non-nodule lesions of diagnostic
interest. For the nodule detection step, we train in subsets 1–9 (20% validation)
and test on the 89 scans of subset 0. The test set has 112 nodules, from which
80 have d > 4 mm. The nodule segmentation system is trained on LIDC-IDRI
with an agreement level 1 or higher and multiple segmentations are combined
via logical OR. We train on 1400 axial view 64 × 64 pixels (approx. 51 × 51 mm)
patches, validate on 300 and test on 570 samples. We experimentally set the
segmentation threshold at 0.5 by analysis of the results on the validation set.

We tested our screening system on 500 randomly selected scans from the 1st

stage of the Kaggle dataset. The scans are labeled according to future cancer
presence (123 cases) or low cancer risk (377 cases). All datasets are anonymized
and there is no access to relevant patient metadata. Unless stated otherwise, we
consider the HU interval [−1000, 400] for our experiments.

Experiments were performed on a Intel Core i7-5960X @3.00 GHz, 32 Gb
RAM, 2× GTX1080 desktop. The framework was developed on Python 3.5
and Keras 2.0.4. The YOLOv2 implementation is based on3. Both YOLOv2
and U-Net were trained with optimizer Adam (learning rate 1e–4) and we used
real time data augmentation by randomly applying translations, zooms, edge
sharpening, blurring and brightness and contrast alterations to the training data.

2.2 YOLOv2 for Lung Nodule Detection

Our framework uses YOLOv2 [9], an end-to-end 2D object detection network, to
perform lung nodule detection without the need for a FP reduction step (refer to
Fig. 2 for an example). Specifically, the network divides the input image in a grid

3 https://github.com/experiencor/basic-yolo-keras.

https://github.com/experiencor/basic-yolo-keras
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Fig. 2. Schematic representation of the YOLO framework applied to lung nodule detec-
tion. We consider a single anchor size for the optimization of the network.

and predicts, for each grid element, how likely there is a nodule there. Let our
input image be divided in blocks of size defined by the network architecture. Each
block can contain a nodule, which bounding box we impose to be 35 × 35 mm
(51 × 51 pixels) to fit the largest nodules in the dataset. The model works as
follows: (1) the InceptionV3 [10] network is used for extracting a M × M × N
feature map, F , where M is the spatial grid size and N is the number of feature
maps from the input image; (2) F is convolved into a M × M × 7 new tensor,
Y . Each element mi,j,k ∈ Yk has a direct correspondence with a block from
the input image and each of the 7 feature maps corresponds to a variable of
the respective bounding boxi,j to be optimized. The maps are responsible for
controlling the probability of the box belonging to the ‘nodule’ or ‘other’ (non-
nodule) classes (pi,j(nodule) = σ(mi,j,1)), how likely there is a nodule on that
block (confidencei,j = σ(mi,j,3)), the box width/height (ŵi,j = wemi,j,4 , ĥi,j =
hemi,j,5) and the box center (x̂i,j = xi,j + σ(mi,j,6), ŷi,j = yi,j + σ(mi,j,7)),
where σ is a sigmoid function. The entire network can be trained end-to-end by
minimizing the following loss function:

LYOLO = L1(x, y) + L2(w, h) + L1(confidence) + L2(class) (1)

where L1 is the squared error and L2 is the log loss function. In the end, only the
boxes with high confidence and class probability are kept, as depicted in Fig. 2.

Since Inception V3 is pre-trained with RGB images, we train our model with
images of the axial slice containing the nodule centroid together with one slice
above and one slice below (2.5D). This strategy provides extra context to the
network and has already been successful for lung nodule detection [11]. However,
preliminary experiments led us to conclude that the selection of the non-central
slices greatly hinders the nodule detection performance of YOLOv2. Namely,
since all datasets show variable inter-scan slice thickness, the usage of the two
immediate adjacent slices may provide a poor and irregular depth information.
Instead, we retrieve slices from an approximate distance of 2 mm. This improved
the system’s performance by almost 20% since it allows blood vessels, natural
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Fig. 3. Influence of slice depth for the reduction of confounders in 2.5D. Red: top slice;
Green: middle slice; Blue: bottom slice Left: original slice thickness (approx. 1mm);
Right: with approximately 2mm slice thickness both small and large blood vessels are
more visible in the red and blue channels. (Color figure online)

nodules’ confounders in the axial plane, to be better distinguished from the
structures of interest (see Fig. 3) without compromising the model’s speed.

Training Details. Having in account the goal of our system, we opt for a very
low value of FP/scan, close to 0.25, and thus higher risk of nodule detection
failure because (i) detecting one nodule per scan (assumed to be lung cancer
representative) is enough for referral and (ii) a large number of FP can lead
to non-proper scan referral and thus unnecessary medical procedures. Based
on these assumptions, we adopt a training scheme that achieves high scan-wise
referral recall and specificity rates with a low number of FP detections.

First, we train the detection module using 512 × 512 2.5D axial images that
contain d > 3 mm nodules and use it for finding nodule candidates on all 2.5D
axial images of the training scans. The resulting 2D predictions are combined to
3D nodule locations having in account the intra and inter-axial slice distance.
Specifically, candidates are merged if there is more than 80% area overlap in the 2
adjacent slices. These 3D candidates integrate a second dataset composed of (1)
all nodules from the training data with diameter ≥ 4 mm and (2) a set of nodules’
confounders composed of FP predictions with probability higher than 0.5 and
all nodules with d < 4 mm. YOLOv2 is then retrained from scratch so that the
weights can adapt to the two class problem, thus significantly reducing the final
number of FP detections. This framework avoids the need for a second classifier
for FP reduction and thus extra training-related parameter tuning. Similarly
to the training step, scan-wise predictions are made by merging depth-wise the
candidates that resulted from sliding the model over the scan.

2.3 U-Net for Nodule Segmentation

We segment the found nodules via an adaptation of U-Net [12]. Our model has 5
contracting steps, a 1×1 bottle neck and a higher number of feature maps on the



Towards an Automatic Lung Cancer Screening System 315

expansive part. Also, Batch Normalization is performed at each convolutional
layer for regularization. We use the soft intersection over union (IoU) as loss

IoU =
∑

S ◦ Ŝ
∑

(S + Ŝ) − ∑
S ◦ Ŝ

(2)

where S and Ŝ are the ground truth and the segmentation prediction ∈ [0, 1].

2.4 Rule-Based Classification

Finally, we perform a referral decision based on the guidelines of NLST. Specif-
ically, a decision tree is used for indicating if a patient should be referred for
further examination or not. First, scans where no nodule candidates are detected
are considered as negatives. From the remaining, a scan is considered patholog-
ical if there is at least a nodule candidate with d > 4 mm and less than 50%
of calcified area. The nodule diameter d is the equivalent diameter of our seg-
mentation, thus the diameter of a perfect sphere with an equal volume as the
volume of our segmentation. The calcified area is computed by calculating the
total area of all volumes above a threshold of 70 HU.

3 Experimental Results and Discussion

Our pipeline is composed of a novel single-step nodule detection system, fol-
lowed by U-Net for segmentation and a final referral decision based on the NLST
guidelines. Table 1 compares the performance of our system with the the top-3
methods from LUNA16. A nodule is considered detected (TP) if the distance
to the prediction centroid is less than the nodule radius and hits on non-nodule
lesions are not considered as FP. Also, note that we only consider nodules of
d > 4 mm, instead of d > 3 mm, since these are the ones with relevance for
screening. Even though it is not possible to state that our system is as good
as other approaches because the detection-per-radius performance is not pub-
licly available, the achieved recall is satisfactory for a 2.5D single-step nodule
detection framework that requires less model-related parameter tuning and com-
putation power than other state-of-the-art methods. Furthermore, our nodule
detection achieves a scan-wise recall (i.e., finding at least one of the nodules in
a scan) of 0.90, increasing to 0.95 if only nodules of d > 4 mm are considered.

U-Net achieves an average test IoU of 0.63±0.02 and Sorensen-Dice coefficient
of 0.79±0.15, which is line with the state-of-the-art performance. Moreover, the

Table 1. Nodule detection accuracy of the top-3 from LUNA16 (Feb 2018) for 0.25
false-positive per scan and ours for nodules of diameter d > 4mm.

Name PAtech JianPeiCAD FONOVACAD ours d > 4mm

Recall 0.921 0.940 0.932 0.926
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estimated diameter error is of 1.89 ± 3.20 mm, with greater errors occurring at
the largest nodules. This means that the system is capable of providing a robust
measurement that does not compromise the NLST rule-based decision.

Figure 4 shows examples of nodules and the respective segmentation predicted
by our method on the independent NLST dataset. As depicted in Fig. 4A–B, we
are capable of detecting nodules of different sizes and challenging textures and still
provide a good segmentation. Furthermore, in Fig. 4B we show examples of calci-
fied structures being correctly detected due to the field knowledge-based threshold
on the soft tissue HU window.

A B C

Fig. 4. Examples of predicted detections and segmentations on the NLST dataset
(51×51mm). A: nodules that contributed for a correct patient referral; B: benign and
non-relevant lesions; C: false-positive and missed lesions.

In terms of referral, we evaluate our system in terms of scan sensitivity and
specificity to ease the comparison with the specialists from NLST. We do not
compare with Kaggle solutions because our method does not produce a referral
probability and thus log loss computation is not possible. Our screening pipeline
achieves a cancer detection sensitivity of 89.4%, which is in line with the find-
ings of the NLST study. This suggests that the proposed system is successfully
locating, measuring and applying the decision criteria to relevant abnormalities
as depicted in Fig. 4A–B. For comparison purposes, NLST specialists were capa-
ble of successfully detecting 93.8% of the cancer cases by manual inspection of
LDCT scans using the same radius-based criteria [2].

Despite its high sensitivity, our system is still not robust enough for unsuper-
vised cancer screening. Namely, detecting FP, as showed in Fig. 4C, combined
with the simplistic diameter decision which, although diagnostic relevant, is not
sufficient to perform cancer prediction because our specificity is only 23.8%.
This is in line with the NLST study, where 96.4% of the cancer cases referred
for follow-up were actually FP detections. Instead, our method is to be used as
an independent observer during the screening process since, unlike end-to-end
deep learning approaches such as the Kaggle solutions, it has a human under-
standable reasoning behind the referral decision, i.e., the clinician can verify the
structure that the model considered to be of interest for the decision process.
This means that our FP predictions can be easily checked by the expert during
the screening.
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4 Conclusions

We propose and validate a second opinion computer-aided lung cancer screening
system that achieves high patient referral sensitivity. Despite its high perfor-
mance, the decision based on the NLST criteria does not allow the system to be
robust in terms of cancer risk prediction. Future research should thus focus on
the development of advanced methods capable of characterizing nodules using a
single or multiple time-points and predict nodule malignancy accordingly.

Ultimately, the high performance and explainability of our approach makes
it an objective second-opinion system for clinicians to use during the screening
process and can contribute to further increase the early detection of lung cancer.
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Abstract. The presence and severity of emphysema, scored visually on
computed tomography (CT) using a classification system developed by
the Fleischner Society, is a clinically significant index of disease sever-
ity. Since visual assessment can be subjective and is time consuming,
our purpose was to evaluate the potential of a deep learning method for
automatic grading of emphysema. The study cohort included 8213 sub-
jects enrolled in the COPDGene study. Baseline CT and visual scores
on 2500 subjects were used to train a deep learning model for classifi-
cation of centrilobular emphysema according to the Fleischner system.
The model was then used to predict emphysema scores on 5713 subjects
not included in the training set. Predictions were compared with visual
emphysema scores, pulmonary function tests (PFTs), smoking history
and St. George Respiratory Questionnaire (SGRQ). Agreement between
visual emphysema scores and those generated automatically was moder-
ate (weighted κ = 0.60, p < 0.0001). Emphysema scores predicted by the
deep learning model showed significant associations with PFTs, smok-
ing history and SGRQ, similar to those seen in comparison with visual
scores.

Keywords: Computed tomography · Emphysema · Deep learning

1 Introduction

Chronic obstructive pulmonary disease (COPD), the third leading cause of death
in the U.S., is a heterogeneous group of lung disorders, including a range of
patterns of emphysema, chronic bronchitis, and non-emphysematous obstruction
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due to small-airway disease [7]. CT plays an important role in assessment of
COPD. While quantitative image analysis techniques such as lung densitometry
are able to detect and quantify emphysema [13], visual assessment has remained
necessary for complete characterization of emphysema patterns [7].

To facilitate data comparison in research and clinical trials, and to improve
diagnostic accuracy, the Fleischner Society developed a structured system for
visual classification of phenotypic abnormalities on CT in subjects with COPD
[6]. The system provides a six point ordinal scale (absent, trace, mild, moder-
ate, confluent, and advanced destructive) for grading the severity of centrilobular
emphysema, the prototypical form of emphysema seen in cigarette smokers. This
approach was applied in the COPDGene study where baseline CT scans were
retrospectively visually scored by trained analysts. Visual scores for presence
and severity of centrilobular emphysema were found to be significantly associ-
ated with genetic loci previously associated with COPD [5] and with increased
mortality risk [7]. Visual assessment required substantial effort, however, with
multiple analysts working nearly four years to score approximately ten thousand
scans.

The purpose of this study was to assess the feasibility of a deep learning
model for automatic emphysema classification on CT. We hypothesized that
the Fleischner system, a structured scale developed by domain experts, would
provide an effective supervisory signal for training. To develop a model capable of
predicting subject-level scores from volumetric CT, which are difficult to process
at full resolution due to memory constraints of graphics processing units (GPUs),
we combined a convolutional neural network (CNN) architecture with a long
short-term memory (LSTM) layer. LSTMs are a type of recurrent neural network
capable of learning dependencies in sequence data. They have been used with
some success to classify data such as frame sequences from video clips [1]. This
enabled efficient prediction using features extracted from axial image sequences
sampled over a lung volume. We tested the approach by comparing predictions
with visual scores and clinical parameters including pulmonary function tests
and Global initiative for Obstructive Lung Disease (GOLD) stage.

2 Methods

2.1 Study Population

COPDGene is a prospective and multicenter investigation focused on the genetic
epidemiology of COPD (ClinicalTrials. gov: NCT00608764). All subjects under-
went volumetric inspiratory and expiratory CT using a standardized protocol
[9]. Inspiratory CT on 8213 subjects were included in this work. The cohort
was partitioned so that scans and visual scores on 2500 subjects were used for
training and data on the remaining 5713 subjects were reserved for testing. Dis-
tribution of emphysema scores in training data was n = 774, 435, 473, 431,
275, 112 for Fleischner scores 0, 1, 2, 3, 4, and 5, respectively. Additional vari-
ables including GOLD stage, Forced Expiratory Volume in the first second per-
cent predicted (FEV1%pred), FEV1/Forced Vital Capacity ratio (FEV1/FVC),



Automatic Classification of Centrilobular Emphysema on CT 321

St. George Respiratory Questionnaire (SGRQ) and smoking history (pack-years)
were retrieved from the study database for the test partition. The SGRQ is a
respiratory health-related quality of life questionnaire where higher scores corre-
spond to greater impairment [15]. Quantitative CT emphysema score calculated
as the percentage of lung voxels with intensity less than −950 Hounsfield Units
(LAA-950) was also used for comparison in test subjects.

2.2 Visual Scoring

Each CT study had been retrospectively visually scored by two trained analysts
using the scale 0 = absent, 1 = trace, 2 = mild, 3 = moderate, 4 = confluent,
and 5 = advanced destructive [7]. Analyst agreement was assessed periodically
throughout the study as good to excellent (weighted κ range 0.71–0.80). Analyst
discordances larger than one point in score were adjudicated by a thoracic radi-
ologist. Mean analyst score rounded down to the nearest integer was recorded
as the final value.

2.3 Classification Algorithm

In an initial process, segmentation was performed on all CTs using an auto-
matic lung segmentation function included in an open source library [11,12].
Using Python and PyTorch [8] we implemented a combined CNN-LSTM net-
work architecture [1] designed to predict visual centrilobular emphysema score
from a sequence of 25 axial images. Axial images were sampled at evenly-spaced
intervals over the height of each lung segmentation volume, excluding the upper
and lowermost 5 mm. Figure 1 represents the architecture of the CNN-LSTM
model. Briefly, the components of the network include four blocks consisting of
two dimensional (2D) convolutions, rectified linear unit (RELU) activation and
max pooling. The four 2D convolutional layers have 32 6× 6, 96 3× 3, 256 3× 3
and 384 3× 3 filters, respectively. The first two max pooling layers have stride 3
and the second two max pooling layers have stride 4. The input images are fed
through the CNN portion separately to extract features, which are concatenated
into a sequence and passed to the LSTM layer followed by a dense layer before
output. The loss function is negative log likelihood.

The model was trained using CT scans and visual centrilobular emphysema
scores, expressed as integers 0–5, on 2500 subjects. Some data augmentation
was used, including in-plane image translations and offsets in sampling of axial
images.

2.4 Statistical Analysis

Weighted κ statistics between analysts visual scores and automatic scores were
computed. Descriptive statistics between CNN-LSTM emphysema scores and
demographic and clinical parameters were computed. One-way analysis of vari-
ance (ANOVA) was used to test for significant differences in FEV1%pred.,
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Fig. 1. The network combines CNN and LSTM architectures. 25 axial images sam-
pled over the lung volume are separately processed by the CNN to extract features.
These are concatenated into a sequence and passed to the LSTM layer, which learns
representations of sequences that are useful for classification.

FEV1/FVC, SGRQ, LAA-950 and smoking history values stratified by emphy-
sema severity scores. Chi-square tests of independence were used to compare
centrilobular emphysema scores with GOLD stage. Statistical calculations were
performed using R version 3.4.4 (2018-03-15). A p-value of <0.05 was considered
statistically significant.

3 Results

Agreement between visual emphysema scores and those generated automatically
by the CNN-LSTM was moderate (weighted κ = 0.60, p< 0.0001). Table 1 shows
a confusion matrix comparing visual and automatic emphysema scores.

Table 2 shows comparison between visual emphysema score and clinical vari-
ables. ANOVA showed that more severe visual emphysema scores were sig-
nificantly associated with diminished FEV1%pred and FEV1/FVC as well as
increased SGRQ, LAA-950 and smoking pack-years (p< 0.0001). Chi-square test
of independence examining the relationship between visual score and GOLD
stage was significant, χ2 (df = 25, n = 5713) = 2716.4, p< 0.0001. Similarly,
Table 3 shows comparison between CNN-LSTM emphysema scores and clini-
cal variables. ANOVA shows that more severe emphysema grades predicted by
the CNN-LSTM were associated with more severe clinical measures. Chi-square
test of independence examining the relationship between CNN-LTSM score and
GOLD stage was also significant, χ2 (df = 25, n = 5713) = 3203.4, p< 0.0001.
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Table 1. Confusion matrix comparing visual emphysema scores with those predicted
by the CNN-LSTM. Fleischner centrilobular emphysema scores are: 0 = absent, 1 =
trace, 2 = mild centrilobular, 3 = moderate centrilobular, 4 = confluent, 5 = advanced
destructive.

CNN score
0 1 2 3 4 5

0 895 700 385 40 3 0
1 240 367 384 65 3 1
2 87 174 589 253 20 0
3 4 11 119 506 182 2
4 0 1 5 113 332 57

V
is
u
al

sc
or

e

5 0 0 0 11 86 78

Table 2. Clinical variables according to visual emphysema score. FEV1%pred,
FEV1/FVC, SGRQ, LAA-950 and pack-years are means (s.d.). GOLD data are number
of subjects. Preserved Ratio Impaired Spirometry (PRISm) is defined as FEV1/FVC
ratio ≥ 0.7.

Visual emphysema score
0 1 2 3 4 5

n subjects 2023 1060 1123 824 508 175
FEV1%pred. 90.0(17.6) 83.8(19.5) 78.9(21.9) 66.7(24.1) 48.4(22.1) 40.2(21.1)
FEV1/FVC .77( .08) .73( .10) .67( .12) .57( .14) .45( .13) .39( .12)
SGRQ 17.3(19.0) 21.6(20.4) 24.7(21.5) 32.3(22.5) 41.2(20.6) 45.1(18.8)
LAA-950 2.5( 3.1) 2.5( 3.6) 3.9( 5.0) 8.9( 7.9) 22.0(11.3) 32.8(11.2)
Pack-yrs 35.1(19.5) 40.7(22.8) 46.9(24.0) 52.5(26.8) 26.8(55.9) 59.5(28.8)
GOLD Stage

PRISm 303 177 112 42 7 0
0 1381 563 460 155 17 0
1 109 85 131 111 37 8
2 190 164 283 290 153 42
3 32 61 113 168 187 54
4 5 4 17 58 107 70

4 Discussion

The Fleischner Society visual scoring system is a clinically significant index of
COPD severity that is associated with mortality risk. We have developed a
CNN-LSTM model that is capable of automatic classification of centrilobular
emphysema pattern on CT according to the Fleischner scale. In a group of
5713 test subjects, automatically scored emphysema patterns showed moder-
ate agreement with visual scores and significant associations with GOLD stage,
pulmonary function, SGRQ, LAA-950 and smoking pack-years. While agree-
ment between visual and automatic emphysema scores in this test set is some-
what modest, similar statistical associations are seen when comparing visual and
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Table 3. Clinical variables according to CNN-LSTM emphysema score. FEV1%pred,
FEV1/FVC, SGRQ, LAA-950 and pack-years are means (s.d.). GOLD data are number
of subjects.

CNN-LSTM score
0 1 2 3 4 5

n subjects 1226 1253 1482 988 626 138
FEV1%pred. 91.4(16.1) 89.3(17.2) 81.9(20.7) 66.4(23.1) 49.0(21.2) 34.2(17.8)
FEV1/FVC .78(.07) .76(.08) .70(.11) .58(.14) .46(.13) .35(.10)
SGRQ 16.2(18.1) 18.4(19.6) 23.3(20.9) 31.7(22.6) 41.1(20.1) 47.9(17.1)
LAA-950 2.0( 2.4) 2.5( 2.9) 3.2( 4.4) 8.1( 7.6) 20.3(10.4) 38.5( 8.5)
Pack-yrs 34.6(18.8) 38.2(20.9) 43.4(23.7) 52.7(27.0) 55.1(28.8) 55.8(25.4)
GOLD Stage

PRISm 174 194 203 63 7 0
0 906 810 669 172 20 0
1 51 86 173 124 43 4
2 80 140 309 366 200 21
3 11 17 104 209 229 45
4 3 0 16 51 124 67

CNN-LSTM emphysema scores with other clinical parameters, suggesting that
the CNN-LSTM learns to classify clinically significant features.

Deep learning has become the dominant approach in medical image anal-
ysis [16] for applications ranging from segmentation [10] and detection [14] to
diagnosis [2]. One challenge when designing CNN architectures is to manage
the total number of model parameters considering memory constraints of avail-
able GPUs. This is generally the case in applications using volumetric chest CT.
Other researchers have shown that limiting model input to a small number (1–4)
of relevant “canonical” slices, selected in pre-processing using anatomy detection
methods, can be effective [3,4]. In the present study we instead used an LSTM
architecture, which made it possible to limit the number of convolutional weights
while still using 25 full-resolution axial images as input.

This study has some limitations. COPDGene uses a well-defined CT protocol
and study images are very consistent. Performing both training and testing on
images from this cohort may produce optimistic results. We also did not per-
form systematic comparisons of different CNN architectures. Future work will
incorporate mortality and longitudinal assessment for further clinical validation.

5 Conclusions

A combined CNN-LSTM architecture provides an efficient model for subject-
level prediction and can be trained to perform automatic classification of cen-
trilobular emphysema on CT.
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Abstract. In this work, we evaluate the relevance of the choice of loss
function in the regression of the Agatston score from 3D heart volumes
obtained from non-contrast non-ECG gated chest computed tomography
scans. The Agatston score is a well-established metric of cardiovascular
disease, where an index of coronary artery disease (CAD) is computed
by segmenting the calcifications of the arteries and multiplying each cal-
cification by a factor related to their intensity and their volume, creating
a final aggregated index. Recent work has automated such task with
deep learning techniques, even skipping the segmentation step and per-
forming a direct regression of the Agatston score. We study the effect
of the choice of the loss function in such methodologies. We use a large
database of 6983 CT scans to which the Agatston score has been man-
ually computed. The dataset is split into a training set and a validation
set of n = 1000. We train a deep learning regression network using such
data with different loss functions while keeping the structure of the net-
work and training parameters constant. Pearson correlation coefficient
ranges from 0.902 to 0.938 depending on the loss function. Correct risk
group assignment measurements range between 59.5% and 81.7%. There
is a trade-off between the accuracy of the Pearson correlation coefficient
and the risk group measurement, which leads to optimize for one or the
other.
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1 Introduction

The Agatston score is a well-established metric used to measure the extent of
coronary artery disease (CAD) in ECG-gated CT studies [1]. This biomarker
is computed by measuring the volume and maximum intensity of the coronary
artery calcifications (CAC) and adding the per-lesion score to learn a global
index. The Agatston score is then used to classify subjects in five different
clinically relevant risk groups, defined by the following ranges: [0, 1], (1, 100],
(100, 400], (400, 1000], (1000, inf], as described [3].

Several works automate the computation of the Agatston following the same
general pipeline: hearts are located using anatomy-based [9], atlas-based [7] or
2.5D object detection [4,11] strategies and a 3D Region of Interest (ROI) is
extracted around the heart. Then, each CAC candidate is categorized as rele-
vant or not using their relative position [16], texture and size features [6] or a
combination of both [12,13]. Finally, the Agatston score is computed from the
CACs. The latest work of [14,15] uses a deep-learning solution for CAC classi-
fication. This methodology uses a database of segmented CAC as the reference
standard, where each voxel is labeled to indicate if it is part of a CAC or not,
to train a lesion-based or a voxel-based classifier. In contrast, the work of [4]
generates the inclusion and exclusion rules of the CACs by optimizing the global
score directly.

The work of [5] uses a deep learning network for the regression of image-based
biomarkers, and the work of [2] does so, specifically for the problem of Agatston
from CT images. The latter approach minimizes the L2 cost function between
the reference standard and the regressed Agatston score. While being attractive
for its simplicity and achieving a similar Pearson correlation coefficient as other
deep-learning based methods, it is inferior with respect to the classification of
subjects to risk-groups. In this experimental work, we explore improvements to
such methodology by analyzing the relevance of the cost-function of the regres-
sion network.

2 Materials and Methods

2.1 Database

COPDGene is a multi-center observational study designed to understand the
evolution and genetic signature of COPD in smokers [10]. COPDGene contains
a total of 10,000 pulmonary non-ECG gated CT Scans obtained with 16 detec-
tors scanners. Subjects are both smokers and non-smokers, with ages between
45 and 80 years and 10 years of smoking history from non-hispanic white and
non-hispanic African Americans ethnicities. The Agatston score was manually
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estimated in 6983 of such images, forming the database on which we train and
evaluate the method.

We automatically select a region of interest (ROI) centered around the heart
in each CT scan (Fig. 1), using the method of [4,11]. We use a prefixed ROI
size to avoid the need of re-scaling the reference standard Agatston score. Each
heart ROI is further normalized to a canonical size of 64 × 64 × 64 voxels to
enable their processing using a 3D convolutional neural network. The images are
clamped to the range [−500, 2000] HUs to highlight the lesions and discard lung
structures. Mistakes in the automated location of the heart were eliminated by
manual inspection, resulting in 6663 images that are divided between a training
set (n = 5663) and a testing set (n = 1000).

1927 2264 2788 4972

Fig. 1. Regions of Interest extracted around the heart. Each column corresponds to
a case. Rows are the axial, coronal and sagittal planes that cross the central point of
the ROI. Coronary Calcifications are identified by bright voxels found in the coronary
arteries. They have highlighted with green circles. Numbers below each image corre-
spond to the Agatston score value calculated using the full volumetric information.
Please note that there are other bright voxels in the image that correspond to bone
structure or calcifications that are not present in the coronary arteries. Such structures
should be rejected by the algorithm. (Color figure online)

2.2 Data Augmentation

In our database, the number of cases in high-risk groups according to their
Agatston score is lower than the number of cases in low-risk groups, as shown
in Fig. 2. This poses challenges when training the regression network. We use
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Group Agatston Score range subjects

0 [0, 1] 2285

1 (1, 100] 1967

2 (100, 400] 1395

3 (400, 1000] 714

4 > 1000 302

Fig. 2. Left: Distribution of database for each Risk Group, Right: Risk Groups Agat-
ston score range as defined in [3].

a data augmentation technique to reduce such data imbalance. The technique
generates an equalized number of cases per group by generating random dis-
placements over the three axes, using a spherical probabilistic volume. Such is
done to ensure that the new augmented sample is equidistant from the center
of the heart in all directions. The data augmentation is done on-the-fly and to
ensure reproducibility, the random seed of the data augmentation policy is fixed.

2.3 Convolutional Network

Due to its simplicity and for comparative purposes, we use the network proposed
in [2] and depicted in Fig. 3. The network consists of three 3D convolutional-
max-pooling blocks with rectified linear activation functions, followed by two
fully connected layers that output the regression in a single neuron with linear
activation. Dropout layers are present to prevent over-fitting. At test time, the
negative regressions are clipped to 0, since the Agatston score is always positive.
The optimizer used is the well known Adaptive Momentum optimizer [8], with
an exponential decay rate.

Cost Functions: The convolutional network is optimized with respect to four
different cost functions: mean square error of normalized values, absolute dif-
ference of normalized values, mean square error of the logarithmic scaled scores
and absolute difference of the logarithmic scaled scores. The definition of the
cost functions is shown in Table 1. We have chosen to optimize using linear and
logarithmic cost functions because while the Agatston score is computed in a
linear scale, its association to risk groups follows a loosely-logarithmic scale.

Categorization: We analyzed the performance of the network with respect
to the direct risk group estimation for the subject in two manners: first, we
assigned to each subject his risk group and regressed the group directly using
the L1 norm as cost function. Second, we turned the regression network into a
categorization one by substituting the last neuron for five neurons followed by
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Fig. 3. Convolutional network diagram.

a softmax activation function and optimized the categorical cross entropy loss
function.

2.4 Comparison Metrics

To evaluate the performance of the different cost functions, we use the well
defined Pearson’s correlation coefficient, the Spearman correlation coefficient
and the risk-group accuracy (RGAcc), defined as the percentage of cases that
correctly classified in their risk group.

3 Results

Table 1 shows the results obtained for the six defined loss functions. Better Pear-
son correlation coefficients are found when using linear cost functions instead of
logarithmic ones. However, the RGAcc metric improves when using logarithmic
cost functions. The Spearman correlation coefficient is higher in the logarithmic

Table 1. Loss function comparative results, Pearson ‘ρ’ and Spearman ‘s’ correlation
coefficients in linear and logarithmic scale, and Risk Group Accuracy ‘RGAcc’. ‘Z’
correspond to a normalization value, 5000 in this case. We have omitted ‘s’ correlation
coefficient in logarithmic scale since it is equivalent to ‘s’ in linear scale due to the fact
that a logarithmic transformation preserves ordering.

Loss function ρ ρ (log) s RGAcc

(1) 1
n

∑n
i=1(

yi−xi
Z

)2 0.932 0.664 0.843 55.2%

(2) 1
n

∑n
i=1 | yi−xi

Z
| 0.938 0.657 0.903 59.5%

(3) 1
n

∑n
i=1(log(yi + 1) − log(xi + 1))2 0.902 0.620 0.949 78.2%

(4) 1
n

∑n
i=1 |log(yi + 1) − log(xi + 1)| 0.916 0.631 0.949 81.7%

(5) Categorical cross entropy N/A N/A N/A 75.7%

(6) Categorical regression N/A N/A N/A 81.1%
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Linear scale Logarithmic scale Confusion matrix

(1)

(2)

(3)

(4)

Fig. 4. Correlation results for the loss functions in Table 1. In each row, the first two
plots represent the correlation plotted in linear and logarithmic scale respectively. Red
dots were used for incorrect risk group result and blue dots depicted a correct group
classification. The last plot shows the confusion matrix of risk groups, where the color
of each cell represents the relative prevalence within the column. The numbers of the
first column correspond to the loss functions described in Table 1. (Color figure online)
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cost functions than in the linear ones. Such is consistent with the measurements
RGAcc, which are higher in logarithmic cost functions.

Figure 4 displays the correlation plots between the reference standard and
the computed Agatston score, as well as the concordance matrices of the risk
groups. The correlation plots are made in both linear and logarithmic scales
to provide a fair comparison between the different metrics. There is a large
difference in performance between linear and logarithmic cost functions in the
lowest range of the Agatston score, where the logarithmic cost functions produce
more accurate results. Conversely, the logarithmic cost functions are less accurate
with large Agatston scores, which leads to lower Pearson correlation coefficients.
Since low-risk groups are more prevalent in the database as shown the Fig. 2,
the logarithmic cost functions achieve better risk accuracy percentages.

In both logarithmic and linear scales, the mean absolute difference outper-
forms or equals the mean squared error for Pearson and Spearman coefficients
and the risk group accuracy percentage.

The cost function that achieves a good trade-off between the correlation
coefficient and the risk accuracy percentage is the mean logarithmic absolute
error, with a ρ = 0.916 and accuracy of 81.7% and the maximum Spearman
coefficient of 0.949.

When treating the Agatston risk group assignment as a classification prob-
lem, we achieve a RGAcc of 75.7% when using the categorical cross entropy loss
function and of 81.1% when using a risk group regression with the mean average
error loss function.

4 Discussion

In this work, we have shown that keeping the deep learning network, the training
parameters and the data constant, the selection of the cost function has drastic
effects on the performance of the Agatston score regression. We have found that
the mean absolute error of the logarithm of the score achieves a good trade-
off between the Pearson correlation coefficient and the correct classification of
the subjects according to their risk group while achieving the highest Spearman
correlation. Such result is of little surprise, since the risk groups are defined in
a pseudo-logarithmic scale, and the errors of the linearly scaled network are in
the lowest range.

As an alternative to the regression of the Agatston score and then assignment
of the subjects to the risk groups, we have predicted the risk group directly using
a classification network. Such framework breaks the ordering of the risk groups,
and shows worse performance than the regression networks. When regressing the
Agatston risk group directly, we achieve comparable, but lower, RGAcc than that
obtained with our best Agatston score regression network. This comparison favor
the Agatston score regression network, since it does not only provides the risk
group but also quantifies the score itself.

One valid criticism of this work is the extreme simplicity of the network
used. This has been chosen since (a) it achieves results comparable to the state
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of the art and (b) it is faster to train than deeper convolutional networks. Still,
training time is of 600 s per epoch, and convergence is normally achieved around
the 100th epoch, depending on the loss function. Such numbers are due to the
3D nature of the problem and the extension of the dataset.

The Pearson correlation coefficient is often referred in the literature as the
figure of merit for biomarker regression methodologies. However, in our experi-
ments, we have found that the Spearman correlation coefficient provides a more
coherent view of the data as an aggregated statistic. Such is demonstrated with
the data of Table 1, where the Spearman correlation relates more to the risk
accuracy group than the Pearson correlation coefficient. The Pearson correlation
coefficient depends on the per-case error, and high-valued cases can strongly bias
the overall measurement. The Spearman correlation coefficient assess a mono-
tonic relationship among variables, ignoring their absolute error. For cases such
as the problem presented, it is more important to produce good rankings among
the cases than minimizing the error on the Agatston score, and thus justifying
Spearman’s correlation as the preferred figure of merit.
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Abstract. In recent years, the ability to accurately measuring and
analyzing the morphology of small pulmonary structures on chest CT
images, such as airways, is becoming of great interest in the scientific
community. As an example, in COPD the smaller conducting airways are
the primary site of increased resistance in COPD, while small changes
in airway segments can identify early stages of bronchiectasis.

To date, different methods have been proposed to measure airway wall
thickness and airway lumen, but traditional algorithms are often limited
due to resolution and artifacts in the CT image. In this work, we pro-
pose a Convolutional Neural Regressor (CNR) to perform cross-sectional
measurements of airways, considering wall thickness and airway lumen at
once. To train the networks, we developed a generative synthetic model
of airways that we refined using a Simulated and Unsupervised Genera-
tive Adversarial Network (SimGAN).

We evaluated the proposed method by first computing the relative
error on a dataset of synthetic images refined with SimGAN, in compar-
ison with other methods. Then, due to the high complexity to create an
in-vivo ground-truth, we performed a validation on an airway phantom
constructed to have airways of different sizes. Finally, we carried out
an indirect validation analyzing the correlation between the percentage
of the predicted forced expiratory volume in one second (FEV1%) and
the value of the Pi10 parameter. As shown by the results, the proposed
approach paves the way for the use of CNNs to precisely and accurately
measure small lung airways with high accuracy.

1 Introduction

In the last decade, several studies have been focused on the development of
new algorithms to precisely locate small pulmonary structures, such as airways,
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on chest CT images. Once the structures are identified, the following step is
represented by a quantitative measurement to extract geometrical properties,
which may lead to improved diagnosis and new studies of lung disorders, as the
morphology of the bronchial tree is commonly affected by inflammatory and
infectious lung diseases. As an example, the smaller conducting airways are the
structures most affected in patients with chronic obstructive pulmonary disease
(COPD) [1], and the thickness of the airway wall (measured on CT) has been
correlated to the severity and duration of asthma in different works [2,3]. For
this reason, having a method that automatically analyzes airway walls thickness
and lumen size is becoming of great interest for the scientific community.

On CT images, airways are often close to vessels and surrounded by
parenchyma, and image resolution as well as noise artifacts often affect an accu-
rate measurement. To perform airway wall thickness detection, the traditional
approaches are based on non-parametric methods, which analyze the properties
of the structure directly on the reconstructed CT signal. The most typical app-
roach is the so-called full width at half max (FWHM) [4], which is based on the
idea that the true edge of an ideal step function undergoing low-pass filtering
is located at the FWHM location. An alternative popular approach to measure
airway walls is the use of the zero crossing of the second order derivative (ZCSD)
[5], which is used to characterize the signal transitions (i.e., lumen-to-wall and
wall-to-parenchyma). More recently, a new approach for airway wall segmenta-
tion that starts from a coarse airway segmentation and implements an optimal
graph construction method for wall segmentation was proposed [6]. However,
all traditional methods suffer from over- and under-estimation errors when the
structure size approaches the scanning resolution [7].

To overcome these issues, we propose to use a convolutional neural regressor
(CNR) [8] approach, which uses a customized loss function to automatically and
simultaneously measure airway wall thickness and airway lumen on small 2D
patches extracted around the structure of interest. To the best of our knowledge,
this approach has not yet been considered to solve problems such as measurement
and analysis of the morphology of airways on CT images.

Since creating an accurate and reliable ground truth for small airway is quite
a tedious and complicated task, to train the network we developed a synthetic
model that aims at reproducing the main characteristics of airways with exact
knowledge of the physical dimensions. The generated model is then refined using
a Simulated and Unsupervised Generative Adversarial Network (SimGAN) [9].

New synthetic airway images are used for an initial validation to compute the
relative error obtained by the proposed error. Then, as a further test, we created
a synthetic phantom of airways with varying wall thicknesses. Finally, in order
to prove the reliability of our approach, we performed an indirect validation
on in-vivo cases in comparison to traditional methods through the correlation
between the predicted FEV1% and the Pi10 parameter.
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2 Materials and Methods

The proposed CNR algorithm used 2D patches of 32× 32 pixels extracted from
the structure of interest. These patches are then refined using SimGAN to resem-
ble in-vivo patches better. In this section, we first introduce the creation and
refinement of the synthetic patches. Then, the proposed CNR is described with
the different training processes implemented. Finally, the validation methods are
presented.

2.1 Synthetic Modeling of Airways

In order to generate reliable synthetic patches of airways, the main aspects of the
structure of interest as well as the characteristics of the CT scanner with regard
to resolution, PSF, and imposed noise have to be reproduced. Based on the
knowledge that on reformatted axial plane airways have tangent vessels [10], each
airway patch consisted of two bright ellipses (inner and outer walls) with a dark
central zone (airway lumen) and zero, one or two tangent vessels, represented by
bright ellipses rotated around the airway. The parameters to create the synthetic
airways were randomly chosen based on physiological values and are reported in
Table 1. Although the creation of a synthetic airway presents some limitations,
we think that the proposed model represents an appropriate simulation that
helps a neural network learn the main features of real airways. Also, using the
multi-scale particle extraction method described in [11], 2D patches can be easily
extracted along the airway’s main axis, which is given by the first eigenvector
of the Hessian matrix. For this reason, we do not consider 3D patches, which
due to the different tubular profiles and a wide variation of 3D orientations that
should be taken into account would increase the complexity of the modeling.

To reproduce the structure of the parenchyma, a Gaussian smoothing (with
a standard deviation of 5) was applied to Gaussian distributed noise, to create
some broadly correlated noise, which made a texture of multiple structures that

Table 1. Parameter ranges used for the creation of the airway model. All values were
uniformly distributed within the specified ranges. LR stands for lumen radius.

Parameter Parameter range

Lumen radius (LR) 0.5 to 6.0 (mm)

Airway wall thickness 0.1LR + 0.2 to 0.3LR + 1.5 (mm)

Number of vessels 0 to 2

Vessel radius (VR) LR to LR + 0.8 (mm)

Skewness of reconstruction −40 to 40 (degrees)

Airway Lumen Intensity −1150 to −1050 (HU)

Airway Wall Intensity −500 to −200 (HU)

Vessel Intensity −50 to 50 (HU)
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mimicked the parenchyma. Afterward, the correlated noise was altered to have
a mean intensity of −900 HU and a standard deviation of 150. All values were
empirically chosen.

All patches were created starting at a super-resolution of 0.05 mm/pixel in
a sampling grid of 640× 640 pixels. To obtain the final patch, the obtained
images were first down-sampled to a resolution of 0.5 mm/pixel. Then, a PSF
was simulated to mimic the blurring caused by the image reconstruction process.
To this end, due to the small size of the patch, we assumed that the PSF can
be approximated by means of a spatially locally invariant Gaussian function, as
demonstrated in [12]. The standard deviation of the Gaussian filter was randomly
chosen in an empirically determined range of 0.4 to 0.9 mm to simulate the
differences in the PSF across CT scanners and manufacturers. Finally, a spatially
correlated Gaussian noise was added to the image based on Gaussian distributed
random noise smoothed with a Gaussian filter (with a standard deviation of 2),
with the empirically determined mean of zero and standard deviation of 25. As
a last step, the image is cropped to a 32× 32 pixels grid.

2.2 SimGAN Refinement

Although the proposed generative model simulates reasonably well the geomet-
rical aspects of the structure of interest, the generated patches still may present
differences to patches extracted from real structures. For this reason, we imple-
mented a SimGAN refinement, similar to the one described in [9], to improve
the quality of the synthetic patches. SimGAN makes use of simulated and unsu-
pervised learning by using a generative adversarial network (GAN) that consists
of both a generator (refiner) and a discriminator. The purpose of the refining
step is to trick the discriminator in deciding whether an image is a synthetic or
real image.

For the implementation of this network, we pre-trained the refiner on syn-
thetic images with 1000 steps and a batch size of 256, while the discrimina-
tor was pre-trained on real patches (extracted using the multi-resolution parti-
cles method described in [11], initialized with the technique of [13]) and refined
patches, obtained from the pre-trained refiner, with 100 steps and a batch size of
256. The number of steps was the same as in [9]. Then, the adversarial training
of the SimGAN network was trained for 10,000 steps, batch size of 256, and all
parameters and loss function set as in [9]. An example of a generated synthetic
airway is shown in Fig. 1.

2.3 Measurement of Airway Morphology

To extract both measurements for airways, we implemented a 9-layer 2D net-
work, which consists of seven convolutional layers, five of which had stride 1
and two had stride 2, and two fully-connected layers (see Fig. 2). The network
regresses the measure of the central structure in a patch 32×32 pixels, a size
chosen to include enough neighborhood information for big structures, without
losing specificity for small and thin features. To train the network, we used an
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Fig. 1. Example of creation of a small synthetic airway patch (lumen: 0.7 mm, wall
thickness: 1.25 mm). (a) The initial geometric model; (b) downsampling of the model;
(c) blurring of the downsampled patch; (d) noise addition; (e) final synthetic airway
(after applying SimGAN and cropping to obtain a 32 × 32 pixels patch).

Fig. 2. Scheme of neural network used for measuring airways. The network is the same
in both cases. The CNN for airways had 2 outputs (wall thickness and lumen)

Adam update (β1 = 0.9, β2 = 0.999, ε = 1e−08, decay = 0.0) with a specifi-
cally customized loss function that combines the absolute relative error and the
precision of the measure to improve the network performance and stability (see
Sect. 2.4).

The network was trained on a NVIDIA Titan X GPU machine, using the
deep learning framework Keras [14] on top of TensorFlow [15], for 300 epochs at
a learning rate of 0.001 and batch size of 64.

2.4 Customized Loss Function for Airway Morphology
Measurement

When trying to accurately measure small airways with sizes at image resolution
level, typical approaches usually have problems of under- or over-estimation.
For this reason, in this paper we suggest the usage of a new loss function that
combines the loss of the relative error over all images, Lμ, and the precision of
the measure over 25 replicas of the same structure, Lσ:

L(y, ŷ) = Lμ(y, ŷ) + λ · Lσ(y, ŷ) (1)
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where y is the true measure of a synthetic patch, ŷ is the measure predicted by
the CNR, and λ defines the weight of Lσ with respect to Lμ. The definition of
Lμ is given by:

Lμ(y, ŷ) =
N

∑

i=1

|yi − ŷi|
yi

(2)

where N indicates the total number of patches. On the other hand, the loss
term for the precision, Lσ, is computed over a number of replicas of the same
geometric model (with fixed physical dimensions) to which varying PSFs are
applied and a different number of airways and vessels are added with varying
locations and rotations. This way, the network learns to accurately measure the
structures of interest regardless of possible confounding factors inside the patch.
The definition of Lσ is given by:

Lσ =
1
N

N
∑

i=1

(

M
∑

j=1

(

yi,j − ŷi,j

)2

−
( 1

M

M
∑

j=1

(yi,j − ŷi,j)
)2

)

(3)

where N represents the total number of images, and M indicates the number of
replicas considered. In this work, we used M = 25.

Since for airways lumen radius and wall thickness are measured simultane-
ously, for this structure the two terms of the loss, Lμ and Lσ, are given by the
sum of the corresponding loss computed independently for the two measures.

Since we noticed that the measurement of small airways (lumen less than
1.0 mm) was the most affected by a high standard deviation, we also empirically
assigned a higher weight to the precision term of these structures so that they
acquire more importance when computing the loss. Therefore, Eq. 1 becomes:

La(y, ŷ) = Lμ(y, ŷ) + λ ·
(

ωl · Lσ,l(y, ŷ) + ωwt · Lσ,wt(y, ŷ)
)

(4)

where λ = 2.0 has been empirically selected, l indicates the airway lumen, wt
stands for wall thickness, and

ωl =

{

1.5 if airway lumen < 1.0 mm
1.0, otherwise

(5)

and

ωwt =

{

3.0, if wall thickness < 1.0 mm
1.0, otherwise

(6)

2.5 Training Set Definition

The training dataset consisted of 100,000 × 25 replicas of the same geometric
model, to which varying PSFs were applied, and different additional vessels were
added at varying locations and rotations. Therefore, a total of 2,500,000 training
patches were used. Conversely, for the validation set we generated 1,000,000
patches (40,000 × 25 replicas).
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The values of the parameters used for the creation of the images were ran-
domly chosen in ranges that were empirically defined based on physiological
measures of the structures of interest, as shown in Table 1. We trained the net-
work using all images refined by SimGAN.

Finally, in order to help the network focus more on geometry than intensity
values, during training, we applied a data augmentation that in addition to
adding random noise it also randomly inverts intensity values inside the patches.
Furthermore, we introduce a small random shift and random axes flipping to the
patch to improve the learning of the network.

Fig. 3. An image taken from the CT scan of phantom showing the 8 tubes used for
testing the CNR.

2.6 Experimental Setup

We evaluated the proposed approach for airway measurements on both synthetic
and in-vivo cases. For the synthetic validation, we first generated a dataset of
200,000 patches (with random values chosen in the range of Table 1) that were
used in three different experiments. First, we evaluated the accuracy of the
algorithm by calculating the relative error (RE) between the CNR measurement
and the ground truth defined by our geometrical model when varying lumen and
the wall thickness size. To compare our results to the state-of-the-art methods,
we also computed the absolute error obtained for airways with a wall thickness
of 1.0 mm at the image resolution level (0.5 mm).

In order to demonstrate the ability of the method to accurately measure the
structures of interest regardless of presence of noise and smoothness, as a second
experiment we generated 100 images for each level of noise (σn ∈ [0, 40] HU)
and for each level of Gaussian smoothing (σs ∈ [0.4, 0.9] mm) and computed
the mean RE (in percentage) across the 100 patches. We repeated the same
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experiment first fixing the wall thickness at 1.5 mm and considering three values
of airway lumen (small: 0.5 mm; medium: 2.5 mm; large: 4.5 mm), and then fixing
the airway lumen at 1.5 mm and using three wall thickness values (small: 0.5 mm;
medium: 1.2 mm; large: 2.0 mm).

As a final test on synthetic images, we compared the proposed method for
airway measurement to FWHM and ZCSD computing the mean RE (in percent-
age) on patches of different sizes.

As a further validation, we tested the performance of the algorithm on a
CT airway phantom of known lumen size and wall thickness. The phantom
was constructed using Nylon66 tubing inserted into polystyrene to simulate
lung parenchyma surrounding the airways. Non-overlapping, 0.6 mm collimation
images, 40 cm FOV, were acquired using a GE Siemens Sensation 64 CT scan-
ner and reconstructed with a standard reconstruction kernel. Eight tubes with
varying wall thickness and lumen diameter (reported in Table 2), as measured
by a caliper, were studied. An image taken from the CT scan of the phantom
showing the eight tubes is presented in Fig. 3.

Table 2. Wall thickness (WT) and lumen diameter (in mm) for the eight tubes of the
synthetic phantom as measured by a caliper.

Tube WT (mm) Lumen (mm)

A 0.89 4.62

B 1.24 3.64

C 0.66 2.44

D 0.38 1.23

E 0.65 0.95

F 2.80 2.84

G 0.90 1.34

H 1.56 2.35

As a final experiment, since an accurate and reliable in-vivo ground-truth
is very complicated to obtain, we performed an indirect validation by means of
a physiological evaluation. To this end, we computed the Pi10 parameter with
our approach and with ZCSD, and analyzed its correlation to FEV1% on 590
clinical cases, with airway particles extracted using [11]. Pi10 is a metric of
airway thickness that is computed measuring the square root of the wall area
across the whole airway tree and regressing the value at a hypothetical airway
with an internal perimeter of 10 mm. The wall area is found by subtracting the
area of the lumen from the airway area, while Pi is computed from the lumen
radius.
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3 Results

3.1 Synthetic Evaluation

Figure 4 shows the tendency of the RE for predictions obtained on the synthetic
data when varying the lumen radius (Fig. 4a) and the wall thickness (Fig. 4b)
of the airway. As expected, the error is small for airways with a large lumen
(Fig. 4a), while it increases (with a tendency to under-estimate the measure) for
lumens smaller than 1.0 mm, although it is always below a 10% RE. Regarding
the wall thickness (Fig. 4b), a significant under-estimation error is obtained at
sub-voxel levels (below the image resolution of 0.5 mm), while a tendency to
over-estimation is obtained when the wall thickness is bigger than 2.0 mm.

Fig. 4. Tendency of the relative error obtained with CNR when varying (a) airway
lumen and (b) wall thickness.

On average, an absolute RE of 6.3% is obtained for airways with a wall thick-
ness of 1.0 mm, while when the airway wall thickness is at the image resolution
(0.5 mm) the absolute RE is at 13.09%. These REs are significantly lower than
those previously reported in the literature for structures of similar sizes [5,7].

Results obtained when fixing three values of airway lumen (0.5, 2.5, and
4.5 mm) and three values of wall thickness (0.5, 1.5, and 2.5 mm) and varying
the level of noise and smoothing are presented in Fig. 5. As shown, for both
measurements the RE is stable across the different levels of noise and smoothness.
While for medium and large structures a very high accuracy is obtained (RE close
to 0), the smallest structures (generated with airway lumen or wall thickness at
the image resolution of 0.5 mm) are the one confusing the network the most
determining also a bigger standard deviation. In all cases, the RE is stable when
varying noise and smoothness, and the bias introduced by the CNR is small,
with a little under-estimation for small structures, as expected. For small wall
thicknesses (0.5 mm), when the smoothing level is low (<0.6 mm) a very small RE
is obtained, while this error increases when applying higher levels of smoothing
(>0.6 mm).
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Fig. 5. Effect of varying noise (first row) and smoothing (second row) on lumen (a)
and wall thickness (b) predictions. The RE is reported in %.

Finally, Table 3 shows the mean relative error (in percentage) obtained for
different sizes of wall thickness using the proposed method in comparison to
ZCSD and FWHM on the 200,000 testing patches. Three wall thickness inter-
vals were chosen: lower than 0.7 mm, between 0.7 mm and 1.5 mm, and bigger
than 1.5 mm. As shown, while traditional methods tend to have a very high rel-
ative error, especially for small airways, the proposed method yields a very high
accuracy and outperforms them. Similar results were obtained for the airway
lumen.

Table 3. Mean RE (in %) for the proposed method (CNR), FWHM, and ZCSD for
the wall thickness (wt).

wt ≤ 0.7 mm 0.7 mm < wt ≤ 1.5 mm wt > 1.5 mm

CNR FWHM ZCSD CNR FWHM ZCSD CNR FWHM ZCSD

RE (%) −7.6 −1153.9 −1034.2 1.04 −582.9 −895.6 0.28 −450.8 −200.3

3.2 Phantom Evaluation

The relative error obtained measuring the wall thickness of the eight tubes of
the phantom using the proposed method (CNR) in comparison with traditional
techniques are presented in Table 4. For completeness, the relative error obtained
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Table 4. Mean RE (in %) obtained measuring the wall thickness (WT) on the eight
phantom tubes using the proposed method (CNR) in comparison with FWHM and
ZCSD. Smallest relative error is reported in bold. For completeness, the last column
reports the relative error obtained measuring the lumen of the tubes with CNR (tra-
ditional methods only provide WT). All results are in %.

Tube CNR WT FWHM WT ZCSD WT CNR Lumen

A −2.5 −115.1 −126.1 4.6

B 17.5 −25.9 −33.6 −6.3

C −28.9 −23.6 −46.2 7.6

D −12.8 −474.0 −79.0 10.4

E −13.0 −4884.6 −20.5 9.8

F 2.4 −55.3 −59.8 −5.2

G 5.4 −18.06 −29.2 −7.8

H 18.5 −30.7 −40.3 −5.2

when measuring the lumen with CNR (not measured by traditional methods) is
also reported. The proposed CNR has the lowest RE for all considered tubes,
with the exception of tube C where FWHM gives the best result, and in general
is able to well measure the wall thickness even for small and thin tubes, as in
case of tube D. Although there is variance in the RE for the measurement of
the wall thickness of all tubes, this variance is smaller than the one obtained
using traditional methods, that for some tubes seem to really confounded. An
important aspect to notice is the small RE obtained for all tubes when measuring
the lumen radius with the proposed CNR.

3.3 In-Vivo Indirect Evaluation (FEV1% in Correlation to Pi10)

Table 5(a) shows the Pearson’s correlation coefficient between FEV1% and the
Pi10 metric computed with our approach and ZCSD in airway patches extracted
from a real CT. The correlation coefficient between FEV1% and Pi10 calculated
by ZCSD and CNR was −0.38 and −0.54, respectively, indicating a significantly
higher correlation of the Pi10 computed by the CNR with FEV1%. This result
suggests that the proposed method could potentially be used to accurately mea-
sure FEV1% in patients with COPD.

Table 5. Results from the indirect in-vivo analysis for airways. The Pearson’s corre-
lation coefficient for the correlation between the Pi10 computed with the ZCSD and
SimGAN, and FEV1% is reported

Correlation (CI)

ZCSD −0.39 (−0.46, −0.32)

CNR −0.60 (−0.65, −0.55)
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4 Discussion and Conclusion

In this paper, a novel method to automatically measure and analyze the mor-
phology of airways using deep learning on chest CT images is proposed. The use
of a neural network in combination with SimGAN to refine the synthetic model
and the proposed loss function represent the innovative aspects of this work.

Results from the validation on synthetic patches showed a low absolute rela-
tive error across all airway wall thicknesses and airway lumens. Although a direct
comparison is not possible, considering the absolute relative error for airways of
1.0 mm, the presented method obtains a better performance (absolute relative
error around 6%) than the method proposed in [16], where the wall thickness
was measured on plastic tubes of 1.0 mm yield to an absolute relative error of
approximately 10%. Also, a test for structures of different sizes and varying the
level of noise and smoothing showed that the proposed method is not affected by
noise or smoothing, and, as expected, only sizes at lower than the image resolu-
tion may determine a small increase of the prediction error. A comparison of two
traditional algorithms shows that our method outperforms the state-of-the-art,
especially for small and complex airways.

Finally, phantom-related results and indirect validation with in-vivo patches
showed promising results, indicating the stability of the CNR in accurately mea-
suring the wall thickness and lumen radius regardless of the varying starting
conditions. This indicates that the method here proposed may potentially be
used for future early diagnosis of lung disorders.

For future work, the creation of the synthetic model might be improved
by reducing the level of approximation of the PSF and additive noise. Also,
new refinement processes of the synthetic images, such as using CycleGAN [17],
should be explored.
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11. Kindlmann, G., San José Estépar, R., Smith, S., Westin, C.: Sampling and visual-
izing creases with scale-space particles. IEEE T. Vis. Comput. Gr. 15(6) (2009)

12. Schwarzband, G., Kiryati, N.: The point spread function of spiral CT. Phy. Med.
Biol. 50(22), 5307 (2005)
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