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Abstract. Model-based segmentation (MBS) has been successfully used
for the fully automatic segmentation of anatomical structures in medical
images with well defined gray values due to its ability to incorporate
prior knowledge about the organ shape. However, the robust and accu-
rate detection of boundary points required for the MBS is still a challenge
for organs with inhomogeneous appearance such as the prostate and mag-
netic resonance (MR) images, where the image contrast can vary greatly
due to the use of different acquisition protocols and scanners at differ-
ent clinical sites. In this paper, we propose a novel boundary detection
approach and apply it to the segmentation of the whole prostate in MR
images. We formulate boundary detection as a regression task, where a
convolutional neural network is trained to predict the distances between
a surface mesh and the corresponding boundary points. We have eval-
uated our method on the Prostate MR Image Segmentation 2012 chal-
lenge data set with the results showing that the new boundary detection
approach can detect boundaries more robustly with respect to contrast
and appearance variations and more accurately than previously used
features. With an average boundary distance of 1.71 mm and a Dice sim-
ilarity coefficient of 90.5%, our method was able to segment the prostate
more accurately on average than a second human observer and placed
first out of 40 entries submitted to the challenge at the writing of this

paper.

1 Introduction

Model-based segmentation (MBS) [1] has been successfully used for the auto-
matic segmentation of anatomical structures in medical images (e.g., heart [1])
due to its ability to incorporate prior knowledge about the organ shape into the
segmentation method. This allows for robust and accurate segmentation, even
when the detection of organ boundaries is incomplete. MBS approaches typi-
cally use rather simple features for detecting organ boundaries such as strong
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Fig. 1. Example images showing the large variability in image and prostate appearance.

gradients [8] and a set of additional constraints based on intensity value inter-
vals [7] or scale invariant feature transforms [9]. Those features can detect organ
boundaries reliably when they operate on well calibrated gray values, as is the
case for computed tomography (CT) images. However, defining robust boundary
features for the segmentation of organs with heterogeneous texture, such as the
prostate, and varying MR protocols and scanners still remains a challenge due
to the presence of weak and ambiguous boundaries caused by low signal-to-noise
ratio and the inhomogeneity of the prostate, as well as the large variability in
image contrast and appearance (see Fig.1). To increase the robustness of the
boundary detection for segmenting the prostate in MR images, Martin et al. [5]
have used atlas matching to derive an initial organ probability map and then
fine-tuned the segmentation using a deformable model, which was fit to the ini-
tial organ probability map and additional image features. Guo et al. [3] have
extended this approach by using learned features from sparse stacked autoen-
coders for multi-atlas matching. Alternatively, Middleton et al. [6] have used a
neural network to classify boundary voxels in MR images followed by the adap-
tation of a deformable model to the boundary voxels for lung segmentation. To
speed up the detection of boundary points, Ghesu et al. [2] have used a sparse
neural network for classification and restricted the boundary point search to
voxels that are close to the mesh and aligned with the triangle normals.

We propose a novel boundary detection approach for fully automatic model-
based segmentation of medical images and apply it to the segmentation of the
whole prostate in MR images. We formulate boundary detection as a regression
task, where a convolutional neural network (CNN) is trained to predict the dis-
tances between the mesh and the organ boundary for each mesh triangle, thereby
eliminating the need for the time-consuming evaluation of many boundary voxel
candidates. Furthermore, we combine the per-triangle boundary detectors into
a single network in order to facilitate the calculation of all boundary points in
parallel and designed it to be locally adaptive to cope with variations of appear-
ance for different parts of the organ. We have evaluated our method on the
Prostate MR Image Segmentation 2012 (PROMISE12) challenge [4] data set
with the results showing that the new boundary detection approach can detect
boundaries more robustly with respect to contrast and appearance variations
and more accurately than previously used features and that the combination of
shape-regularized model-based segmentation and deep learning-based boundary
detection achieves the highest accuracy on this very challenging task.
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2 Method

In this section, we will give a brief introduction to the model-based segmentation
framework followed by a description of two network architectures for boundary
detection: a global neural network-based boundary detector that uses the same
parameters for all triangles, and a triangle-specific boundary detector that uses
locally adaptive neural networks to search for the right boundary depending on
the triangle index. A comprehensive introduction the model-based segmentation
and previously designed boundary detection functions can be found in the papers
by Ecabert et al. [1] and Peters et al. [7].

Model-Based Segmentation. The prostate surface is modeled as a triangulated
mesh with fixed number of vertices V' and triangles T. Given an input image I,
the mesh is first initialized based on a rough localization of the prostate using
a 3D version of the generalized Hough transformation (GHT) [1], followed by a
parametric and a deformable adaptation. Both adaptation steps are governed by
the external energy that attracts the mesh surface to detected boundary points.
The external energy, Foy, given a current mesh configuration and an image I is

defined as )
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where ¢; denotes the center of triangle i, 2P °™%*Y denotes the boundary point
boundary

for triangle i, and VI(x ) is the image gradient at the boundary point
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w?oundary. The boundary point difference (¢; — w?oundary) is projected onto the

image gradient to allow cost-free lateral sliding of the triangles on the organ
boundary. For the parametric adaptation, the external energy is minimized sub-
ject to the constraint that only affine transformations are applied to the mesh
vertices. For the deformable adaptation, the vertices are allowed to float freely,
but an internal energy term is added to the energy function, which penalizes
deviations from a reference shape model of the prostate.

Neural Network-Based Boundary Detection. For each triangle, the correspond-
ing boundary point is searched for on a line that is aligned with the triangle
normal and passes through the triangle center. In previous work (e.g., [7]), can-
didate points on the search line were evaluated using predefined feature func-
tions and the candidate point with the strongest feature response was selected
as a boundary point. In contrast, we directly predict the signed distances d;,
i € [1,T], of the triangle centers to the organ boundary using neural networks,
fiCNN : RP*HXW R that process small subvolumes of I with depth D, height
H, and width W such that

n;

boundary
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with
d;i = fFNN(S(I; e, my)), (3)
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Fig. 2. Illustration of the boundary point search. For simplicity, the boundary point
search is illustrated in 2D. The subvolume S(I,¢;,n;) is extracted from the image I
and used by a neural network as input to predict the signed distance d; of triangle i to
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where n; are the normals of triangles i. The subvolumes S(I, ¢;, ;) are sampled
on a D x H x W grid that is centered at ¢; and aligned with n; (see Fig. 2).
The depth of the subvolumes is chosen such that they overlap with the organ
boundary for the expected range of boundary distances called the capture range.
The physical dimension of the subvolume is influenced by the number of voxels in
each dimension of the subvolume and the spacing of the sampling grid. To keep
the number of sampling points constant and thereby to allow the same network
architecture to be used for different capture ranges, we change the voxel spacing
in normal direction to account for different expected maximum distances of a
triangle from the organ boundary. The parametric adaptation uses boundary
detectors that were trained for an expected capture range of +20mm and a
sampling grid spacing of 2 x 1 x 1 mm. We padded the size of the subvolume to
account for the reduction of volume size caused by the first few convolutional
layers, resulting in a subvolume size of 40 x 5 x 5 voxels or 80 x 5 x 5 mm. After
the parametric adaptation, the prostate mesh is already quite well adapted to the
organ boundary so we trained a second set of boundary detectors for a capture
range of =5 mm and a sampling grid spacing of 0.5 x 1 x 1 mm to facilitate the
fine adaptation of the surface mesh during the deformable adaptation.

We propose and evaluate two different architectures for the boundary detec-
tion networks: a global boundary detector network that uses the same parameters
for all triangles, and a locally adaptive network that adds a triangle-specific chan-
nel weighting layer to the global network and thereby facilitates the search for
different boundary features depending on the triangle index. For both architec-
ture, we combine the per-triangle networks, fCNN, into a single network fCNN
that predicts all distances in one feedforward pass in order to speed up the
prediction of all triangle distances and to allow for the sharing of parameters
between the networks fCNN:

(dl,dg, .. .,dT) = fCNN(S(I, cl,nl),S(I, CQ,’I’LQ), .. .,S(I, cT,nT)). (4)
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Table 1. Network architecture with optional feature selection layer and correspond-
ing dimensions used for predicting boundary point distances for each triangle for a

subvolume size of 40 x 5 x 5 voxels.

Layer type Input dimension |Kernel size |# kernels| Output dimension
Conv 4+ BN + ReLU |T x 40 x 5° 1x7x25 32 T x 34 x 32
Conv + BN + ReLLU T x 34 x 32 1x7x32 |32 T x 28 x 32
Conv + BN + ReLU |T x 28 x 32 1x7x32 32 T x 22 x 32
Conv + BN + ReLLU T x 22 x 32 1 x 22 x 32|32 Tx1x32

Conv + BN + ReLU |T'x 1 x 32 1x1x32 (32 Tx1x 32
(Per-triangle weighting)|T" x 1 x 32 — — Tx1x32

Conv Tx1x 32 1x1x32 |1 Tx1x1

To simplify the network architecture, we assume that the width of all subvolumes
is equal to their height and additionally reshape all subvolumes from size D x
W xW to Dx W?2. Consequently, the neural network for predicting the boundary
distances is a function of the form fONN . RT*D xW* _, RT. The network input
is processed using several blocks of convolutional (Conv), batch normalization
(BN), and rectified linear unit (ReLU) layers called CBR, blocks as summarized
in Table 1, where each 1 x A x B kernel only operates on the input values and
hidden units corresponding to a single triangle. Through the repeated application
of valid convolutions, the network input of size T'x D x W? is reduced to T x 1 x 1,
where each element of the output vector represents the boundary distance of a
particular triangle. Because the kernels are shared between all triangles, the
network essentially calculates the same function for each triangle. However, the
appearance of the interior and exterior of the organ might vary over the organ
boundary and hence a triangle-specific distance function is often required. To
allow for the learning of triangle-specific distance estimators, we extend the
global network to a locally adaptive network by introducing a new layer that is
applied before the last convolutional layer and defined as

1 =FOx_o,

()

where L is the number of layers of the network, x; is the output of layer [, ®
denotes element-wise multiplication, and F' € RT7*1*32 is a trainable parameter
matrix with one column per triangle and one row per channel of the output
of the last CBR block. The locally adaptive network learns a pool of distance
estimators, which are encoded in the convolutional kernels and shared between
all triangles, along with triangle-specific weighting vectors encoded in the matrix
F that allow the distance estimation to be adapted for different parts of the
surface mesh.

Training. Training of the boundary detectors requires a set of subvolumes that
are extracted around each triangle and corresponding boundary distances, which
can be generated from a set of training images and corresponding reference



520 T. Brosch et al.

meshes. To that end, we adapt a method previously used for selecting opti-
mal boundary detectors from a large set of candidates called Simulated Search
[7]. At each training iteration, mesh triangles are transformed randomly and
independently of each other using three types of basic transformations: (a) ran-
dom translations along the triangle normal, (b) small translations orthogonal
to the triangle normal, and (c¢) and small random rotations. Then, subvolumes
are extracted for each transformed triangle and the distance of the triangle to
the reference mesh is calculated. The network parameters are optimized using
stochastic gradient descent by minimizing the root mean square error between
the predicted and simulated distances. The coarse and fine boundary detectors
have been trained with a translation range along the triangle normal of £20 mm
and +5mm, which matches the capture range of the respective networks.

3 Results

We have evaluated our method on the training and test set from the Prostate
MR Image Segmentation 2012 (PROMISE12) challenge! [4]. The training set
consists of 50 T2-weighted MR, images showing a large variability in organ size
and shape. The training set contains acquisitions with and without endorectal
coils and was acquired from multiple clinical centers using scanners from different
vendors, thereby further adding to the variability in appearance and contrasts of
the training images. Training of the boundary detection networks took about 6 h
on an NVIDIA GeForce 1080 GTX graphics card. Segmentation of the prostate
took about 37s on the GPU and 98s on the CPU using 8 cores. A comparison
of the global and locally adaptive boundary detection networks with previously
proposed boundary detection functions [7] was performed on the training set
using 5-fold cross-validation. For a direct comparison to state-of-the-art methods,
we submitted the segmentation results produced by the locally adaptive method
on the test set for evaluation to the challenge.

For the comparison of different boundary detectors, we measured the seg-
mentation accuracy in terms of the average boundary distance (ABD) between
the produced and the reference segmentation. We were not able to achieve good
segmentation results (ABD = 6.09 mm) using designed boundary detection func-
tions with trained parameters as described in [7], which shows the difficulty
of detecting the right boundaries for this data set. Using the global boundary
detection network, we were able to achieve satisfying segmentation results with
a mean ABD of 2.08 mm. The ABD could be further reduced to 1.48 mm using
the locally adaptive network, which produced similar results compared to the
global network, except for a few cases where the global network was not able to
detect the correct boundary (see Fig. 3(a)) due to the inhomogeneous appearance
of the prostate. In those cases, the global network only detected the boundary
of the central gland, which produces the correct result for the anterior part of
the prostate, but causes errors where the prostate boundary is defined by the
peripheral zone. In contrast, locally adaptive networks (see Fig.3(b)) are able

! https://promisel2.grand-challenge.org/.


https://promise12.grand-challenge.org/

Deep Learning-Based Boundary Detection for Model-Based Segmentation 521

Ve ’
< \ ~

(a) Global boundary detection (b) Locally adaptive boundary detection

Fig. 3. Comparison of segmentation results (red) and reference meshes (green) using
two network architectures. The locally adaptive network correctly detects the prostate
hull for the central gland and the peripheral zone, despite the large appearance differ-
ences of the two structures.

to switch between the detection of the central gland and the peripheral zone
depending on the triangle index, consequently detecting the true boundary in
all cases.

A comparison of our method to the best performing methods on the
PROMISE12 challenge in terms of the Dice similarity coefficient (DSC), the
average boundary distance (ABD), the absolute volume difference (VD), and
the 95 percentile Hausdorff distance (HD95) calculated over the whole prostate
is summarized in Table2. The “score” relates a metric to a second observer,
where a score of 85 is assigned if a method performs as well as a second observer
and a score of 100 corresponds to a perfect agreement with the reference segmen-
tation. At the writing of this paper, our method placed first in the challenge out
of 40 entries, although the scores of the top three methods are very close. With

Table 2. Comparison of our method to state-of-the-art methods on the PROMISE12
challenge in terms of the Dice similarity coefficient (DSC), the average boundary dis-
tance (ABD), absolute volume difference (VD), and the 95 percentile Hausdorff dis-
tance (HD95) calculated over the whole prostate. Our method ranks first in all metrics
except for HD95 and performs better on average than a second observer (score > 85).

Rank | Method (Year) DSC | ABD | VD |HD95 | Score
1 Our method (2018) 90.5 1.71 | 6.6 4.94 |87.21
2 AutoDenseSeg (2018) 90.1 [1.83 | 7.6 |5.36 |87.19
3 CUMED (2016) 89.4 |1.95 7.0 | 5.54 |86.65
4 RUCIMS (2018) 88.8 12.05 | 8.5 |5.59 |85.78
5 CREATIS (2017) 89.3 193 | 9.2 /559 |85.74
6 | methinks (2017) 87.9 |2.06 | 8.7 553 |85.41
7 MedicalVision (2017) [89.8 |1.79 | 8.2 |5.35 |85.33
8 BDSlab (2017) 87.8 12.35 9.1 7.59 |85.16
9 TAU (2018) 89.3 |1.86 | 7.7 |5.34 |84.84

10 UBCRCL (2017) 88.8 11.91 10.6 |4.90 |84.48
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a DSC of 90.5%, an average boundary distance of 1.71 mm, and a mean abso-
lute volume difference of 6.6% calculated over the whole prostate, our method
achieved the best scores in these three metrics. Our method is second in only
one metric, the 95 percentile Hausdorff distance, where our method achieved
the second best value (4.94mm) and is only slightly worse than the fully con-
volutional neural network approach by UBCRCL, which achieved a distance of
4.90 mm. Overall, our method demonstrated very good segmentation results and
performed better on average (score > 85) than a second human observer.

4 Conclusion

We presented a novel deep learning-based method for detecting boundary points
for the model-based segmentation of the prostate in MR images. We showed that
using neural networks to directly predict the distances to the organ boundary
instead of evaluating several boundary candidates using hand-crafted boundary
features significantly improves the accuracy and robustness to large contrast vari-
ations. The accuracy could be further improved by making the network locally
adaptive, which facilitates the learning of boundary detectors that are tuned for
specific parts of the boundary. With an average boundary distance of 1.71mm
and a Dice similarity coefficient of 90.5%, our method was able to segment the
prostate more accurately on average than a second human observer and placed
first out of 40 submitted entries on this very challenging data set.
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