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Abstract. Deep neural networks have achieved significant success in
medical image segmentation in recent years. However, poor contrast to
surrounding tissues and high flexibility of anatomical structure of the
interest object are still challenges. On the other hand, statistical shape
model based approaches have demonstrated promising performance on
exploiting complex shape variabilities but they are sensitive to local-
ization and initialization. This motivates us to leverage the rich shape
priors learned from statistical shape models to improve the segmentation
of deep neural networks. In this work, we propose a novel Bayesian model
incorporating the segmentation results from both deep neural network
and statistical shape model for segmentation. In evaluation, experiments
are performed on 82 CT datasets of the challenging public NIH pan-
creas dataset. We report 85.32 % of the mean DSC that outperforms the
state-of-the-art and approximately 12 % improvement from the predicted
segment of deep neural network.

Keywords: Bayesian model · Deep neural networks
Statistical shape model · Pancreas segmentation

1 Introduction

With the rapid development of Convolutional Neural Networks (CNNs) in
semantic segmentation, deep neural networks like U-Net [1], SegNet [2] have
become a popular trend in medical image segmentation and achieved remark-
able success in segmentation of many organs, e.g. liver, lung and spleen. However,
segmentation of challenging organs such as pancreas still remains difficulties due
to the relatively small region in the whole volume, highly complex anatomical
structure and significantly ambiguous boundary. On the other hand, usually the
amount of labeled medical image data is limited which inhibits the segmenta-
tion from achieving considerable accuracy. To tackle these challenges, we aim to
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propose a robust segmentation approach for pancreas, which is one of the most
challenging organs.

Numerous works focus on pancreas segmentation in literature, and the major-
ity of them adopt deep neural networks with various refinement methods. In
[3,4], a coarse-to-fine framework is designed where the coarse network is trained
to obtain the rough segment and remove the background regions, afterwards the
shrunken region is passed to the fine network for precise segmentation. In [5], a
Recurrent Neural Network (RNN) combining with CNN layers is employed to
exploit spatial relations among successive slices. On the other hand, traditional
machine learning approaches are demonstrated to be useful in segmentation
framework for locally fine-tuning, e.g., random forests are utilized in feature
extraction and classification following the deep neural networks in [6,7] and
Gaussian Mixture Model is employed to refine the U-Net in [8].

Considering of the ambiguities on boundary, it is well worth to leverage the
3D shape variabilities to distinguish the non-visible boundary, this motivates us
to employ statistical shape models in segmentation framework. Through back
projection onto the shape model, the corruptness on input shape is supposed
to be corrected. Owing to the high variability of pancreas shape, we adopt
the robust kernel statistical shape model presented in [9] as it has compelling
advantages in handling corrupted and highly deformable training data than con-
ventional PCA models. However, the model based approaches are sensitive to
initialization, thus a deep neural network plays an important role in provid-
ing a rough segmentation for shape model initialization. With this motivation,
we integrate the segmentation from deep neural network and statistical shape
model within a Bayesian model for pancreas segmentation. A novel optimization
principle joint with image feature and shape prior is proposed to guide segmen-
tation. Our approach is demonstrated to be promising and efficient in terms of
evaluation.

2 Method

In this section, we elaborate our segmentation approach starting with the deep
neural network architecture, followed by the Bayesian model. Let us assume we
have a set of 3D CT volumes I = {I1, . . . , IN} and corresponding ground truth
mask Y = {Y1, . . . YN} for training. We extract shapes S = {S1, . . . , SN} from
the ground truth mask to train the robust kernel statistical shape model [9],
defined as RKSSM(S|Φ;V;K), where Φ represents the implicit feature space,
V decides the eigenvectors in kernel space, K is the robust kernel matrix with
elements Kij = κ(Si, Sj) = Φ(Si)T Φ(Sj) and κ is the kernel trick function.

2.1 Dense-UNet Segmentation Network

DenseNet [10] has advantages in narrowing the network width, reusing features
and significantly alleviating the problem of gradient vanishing. Therefore, we
adopt the DenseNet in U-Net architecture by simply replacing the stacked
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Conv − Relu and a following max pooling operation at each downsampling
step with a 3-layer dense block with the growth rate of 4, meanwhile, keep-
ing the upsampling path and concatenation unchanged. We use the Dice coef-
ficient loss with a smooth value according to the most of related works that
L(Z, Y ) = 1 − 2×∑

i ziyi+0.1
∑

i(z
2
i +

∑
i y2

i )+0.1
, where Z represents the predicted mask. Our

Dense-UNet is trained with 2D slices extracted from 3D training images from
Axial view, Sagittal view and Coronal view respectively, resulting in three pre-
dicted segment ZA, ZS and ZC . Due to the ReLu activation in the output
layer, the intensity range in predicted segment is in [0, 255]. To make use of
the predicted segments in further Bayesian model, we generate probability maps
Π = {Π1, . . . , ΠN} by merging the three predicted segments and feeding into a
sigmoid logistic function:

Πi =
1

1 + exp(−SA
i +SZ

i +SC
i

255 )
, (1)

where Πi indicates the probability map of the ith image. Using the sigmoid func-
tion to compute probability map is because (1) this is a binary segmentation task
with 2 classes in total, and (2) considering the uncertain accuracy of Dense U-
Net, we make the probability for each pixel in range [0.5, 1] that “1” indicates
the pixel has a considerable probability of being ROI (Region of Interest) and
“0.5” indicates the pixel is unsure to be ROI or NOI (Non of Interest). Appar-
ently, the intersection region of ZA, ZS and ZC is assigned higher probabilities,
and uncertain or corrupted areas receive lower probabilities.

2.2 Bayesian Model

Let the shape model RKSSM fed into Π for initialization (cf. Fig. 1(b)), we
have an initial shape of segmentation C = {x1, . . . , xnP

}, where landmark xi

represents the ith pixel in the test image. Given the test image I, probability
map Π and the shape model RKSSM , assume the optimal shape C can be
derived using Bayes’ rule as follows:

p(C|I,Π) ∝ p(I,Π|C) p(C), (2)

term p(I,Π|C) is maximum likelihood estimation of C based on image and
probability map and term p(C) is considered as the prior distribution of the
shape model. Shape C is guided towards the most probable mode by maximizing
the posteriori in Eq. 2, which is equivalent to simply minimizing its negative
logarithm leading to the energy function:

E(C) = − log(p(I,Π|C)) − log(p(C)), (3)

the first term related to the intensity feature is solved via a Gaussian Mixture
Model and the second term related to the shape prior is solved with the shape
model. The optimal solution is reached by adapting the gradient descent to
the energy. The overall procedure of segmentation algorithm is summarized in
Algorithm 1.
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Fig. 1. This figure illustrates the pipeline of segmentation approach: given the test
image with probability map (a), the shape model is initialized to fit the detected
region (b); considering the neighborhood region around each landmark (c), a Gaussian
Mixture Model is trained (d) to guide shape adaption (e); afterwards, project the
shape onto statistical shape model (f); we obtain the segmentation output (g) when
the convergence is reached.

Gaussian Mixture Model Joint with Probability Map. To find the maxi-
mum likelihood of p(I,Π|C), we train a Gaussian Mixture Model (GMM) based
on the image intensity as the pixels are statistically independent from each other.
In contrast to conventional mixture models, the probability map Π is adopted
as prior weights of different components in the model. Let X = {x1, . . . , xnK

} be
a D-dimension image with nK pixels, the probability density function of GMM
is defined as:

P(X|Π,Θ) =
nK∏

i=1

{πiΨ(xi|ΘR) + (1 − πi)Ψ(xi|ΘN )}, (4)

given that Ψ(X|ΘR) follows Gaussian distribution where the parameters ΘR

consists of mean value and standard deviation of image intensity, Ψ(X|ΘN )
is defined in the same way. This GMM contains two independent components
Ψ(X|ΘR) and Ψ(X|ΘN ) representing ROI and NOI. As a result, the probability
of pixel xi being each component can be estimated from GMM in Eq. 4, we define
wR(xi) and wN (xi) as the probability of pixel xi being ROI and NOI:

wR(xi) =
πiΨ(xi|ΘR)

πiΨ(xi|ΘR) + (1 − πi)Ψ(xi|ΘN )

wN (xi) =
(1 − πi)Ψ(xi|ΘN )

πiΨ(xi|ΘR) + (1 − πi)Ψ(xi|ΘN )
.

(5)

To release the non-related pixels’ influence on GMM , only the neighbor-
hood around each landmark is considered in training (cf. Fig. 1(c)). Let Ω(xi)
donate the cubic neighborhood around the center xi with radius r, thus each
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neighborhood contains (2r + 1)3 pixels. Let Ω+(xi) be the region inside the
shape within Ω(xi) and Ω−(xi) = Ω(xi) − Ω+(xi) be the outside region (cf.
Fig. 1(c)). Therefore, the parameters ΘR, ΘN are trained within

∫
xi∈C

Ω+(xi)dx

and
∫

xi∈C
Ω−(xi)dx respectively. Similarly, we obtain the mean probability μwR

and μwN of being ROI and NOI by only considering the pixels in region∫ nP

i=1
Ω(xi)dx. In this way, more precise probabilities can be obtained by shrink-

ing the region of neighborhood, leading to finer segmentation.
Theoretically, it would be ideal that the pixels inside shape C have the high-

est probability of being ROI and the pixels outside shape C have the highest
probability of being NOI. Inspired by the popular Mumford-Shah function [11],
we form the energy function term:

− log(p(I,Π|C)) =
∫ nP

i=1

∫

j∈Ω(xi)

(
wR(xj) − μwR

)2 +
(
wN (xj) − μwN

)2

+
(
wR(xj) − μwR

)(
wN (xj) − μwN

)
dx,

(6)

at this stage, the landmarks are fitting to superior positions automatically in
terms of the probability rules in Eq. 5. Since the pixels are statistically inde-
pendent without global constraint, assume the landmark xi will move along the
outward curvature normal with direction −→j (xi) to reach the optimal, we com-
pute ∂(p(I,Π|C))

∂(C) = 0 to obtain the movement direction −→j ∗(xi) for each landmark
that:

−→j ∗(xi) =
(wR(xi) − μwR)2 − (wN (xi) − μwN )2

(wR(xi) − μwR)(wN (xi) − μwN )
, (7)

note that for pixels xj ∈ Ω+(xi), −→j ∗(xj) < 0, otherwise for pixels xj ∈ Ω−(xi),−→j ∗(xj) > 0. Namely, −→j ∗(xi) > 0 indicates xi moves along the normal to exterior
and −→j ∗(xi) < 0 indicates xi moves along the inverse direction of outward normal
to interior.

Shape Prior. Statistical shape models are demonstrated to have a strong abil-
ity in global shape constraint. In this work, we employ the RKPCA method in
[9] to train such a robust kernel model RKSSM(S|Φ;V;K). Differently, we use
the model statistics to correct the erroneous modes and estimate the uncertain
pieces (cf. Fig. 1(e) to (f)), which means we only focus on the back projection
process. Subject to the nonlinearity of kernel space, it is sensitive to initialization
of clusters. Furthermore, the shape to be projected onto the model at this stage
already contains certain pieces that are supposed to be preserved. Consequently,
we improve the back projection of kernel model by assigning a supervised ini-
tialization to project onto the optimal cluster. Namely, finding the jth shape in
training datasets Sj satisfying κ(C,Sj) = max(κ(C,Si) : i = 1, . . . , N). Employ-
ing the shape model in Bayesian model, we consider the prior as:

− log(p(C)) =
∥∥∥PnΦ(C) − Φ(Ĉ)

∥∥∥
2

+ λ
∥∥∥Sj − Ĉ

∥∥∥
2

, (8)

the first term is the objective function employed in [9] and we add an additional
term with a balance λ. PnΦ(x) denotes the projection of Φ(x) onto the principal
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subspace of Φ. Afterwards, the shape projection is solved by taking gradient
∂(− log(p(C)))

∂(Ĉ)
= 0 and the reconstructed shape vector is derived by:

Ĉ =
∑N

i=1 γiκ(C,Si)Si − λSj∑N
i=1 γiκ(C,Si) − λ

, γi =
N∑

k=1

Vj
i KjVk

i . (9)

Algorithm 1. Algorithm of Segmentation with Bayesian Model
Input: a set of test images I = {I1, . . . , InS}, the probability maps Π =
{Π1, . . . , ΠnS}, shape model RKSSM , radius r = 2
1. Feed shape model to the initial shape C extract from probability map
2. while neighborhood radius r ≥ 0 do
3. Train P(X|Π, Θ) with current shape C in Eq. 4
4. while not converged do
5. Train GMM in Eq. 6
6. Shape Adaption in terms of Eq. 7 and obtain the new shape C∗

7. if ‖C∗ − C‖2 ≤ ε break
8. end while
9. Update C by back projection onto RKSSM in Eq. 9
10. Shrink the neighborhood for fine tuning r = r − 1
11. end while
Output: the segment Ŷ from the final shape Ĉ

3 Evaluation

Datasets and Experiments Experiments are conducted on the public NIH
pancreas datasets [12], containing 82 abdominal contrast-enhanced 3D CT vol-
umes with size 512 × 512 × D (D ∈ [181, 146]) under 4-fold cross validation. We
take the measures Dice Similarity Coefficient DSC = 2(|Y+ ∩ Ŷ+|)/(|Y+|+ |Ŷ+|)
and Jaccard Index JI = (|Y+ ∩ Ŷ+|)/(|Y+| ∪ |Ŷ+|). For statistical shape mod-
eling, we define the kernel trick κ(xi, xj) = exp(−(xi − xj)2/2σ2), where the
kernel width σ = 150. In the shape projection, we set the balance term λ = 1

2σ2 .
We set r = 2 at the beginning in shape adaption with GMM . The convergence
condition value for shape adaption is ε = 0.0001.

Segmentation Results. We compare the segmentation results with related
works using the same datasets in Table 1. In terms of the segmentation results,
we report the highest 85.32% average DSC with smallest deviation 4.19, and the
DSC for the worse case reaches 71.04%. That is to say, our proposed method is
robust to extremely challenging cases. We can also find an improvement of JI.
More importantly, we can come to the conclusion that the proposed Bayesian
model is efficient and robust in terms of the significant improvement (approx-
imately 12% in DSC) from the neural network segmentation. For an intuitive



486 J. Ma et al.

Table 1. Pancreas segmentation results comparing with the state-of-the-art. ‘−’ indi-
cates the item is not presented.

Method Mean DSC Max DSC Min DSC Mean JI

Ours 85.32 ± 4.19 91.47 71.04 74.61 ± 6.19

Our DenseUNet 73.39 ± 8.78 86.50 45.60 58.67 ± 10.47

Zhu et al. [4] 84.59 ± 4.86 91.45 69.92 −
Cai et al. [5] 82.40 ± 6.70 90.10 60.00 70.60 ± 9.00

Zhou et al. [3] 82.37 ± 5.68 90.85 62.43 −

view, the segmentation procedure of Bayesian model is shown in Fig. 2, where
we compare the segmentation at every stage with the ground truth (in red).
The DSC for probability map in Fig. 2(b) is 57.30%, and DSC for the final
segmentation in Fig. 2(f) is 82.92%. Obviously, we find that the segmentation
leads more precise by shrinking the radius of neighborhood.

(a) (b) (c) (d) (e) (f)

Fig. 2. Figure shows the segmentation procedure of NIH case #4: (a) test image I; (b)
probability map Π; (c) initialization for shape model (ground truth mask is in red);
(d)–(f) shape adaption with neighborhood radius r = 2, 1, 0 respectively.

4 Discussion

Motivated by tackling difficulties in challenging organ segmentation, we integrate
deep neural network and statistical shape model within a Bayesian model in
this work. A novel optimization principle is proposed to guide segmentation.
We conduct experiments on the public NIH pancreas datasets and report the
average DSC = 85.34% that outperforms the state-of-the-art. In future work,
we will focus on more challenging segmentation tasks such as the tumor and
lesion segmentation.
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