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Abstract. Recent advances in deep learning, like 3D fully convolutional
networks (FCNs), have improved the state-of-the-art in dense semantic
segmentation of medical images. However, most network architectures
require severely downsampling or cropping the images to meet the mem-
ory limitations of today’s GPU cards while still considering enough con-
text in the images for accurate segmentation. In this work, we propose a
novel approach that utilizes auto-context to perform semantic segmenta-
tion at higher resolutions in a multi-scale pyramid of stacked 3D FCNs.
We train and validate our models on a dataset of manually annotated
abdominal organs and vessels from 377 clinical CT images used in gas-
tric surgery, and achieve promising results with close to 90% Dice score
on average. For additional evaluation, we perform separate testing on
datasets from different sources and achieve competitive results, illustrat-
ing the robustness of the model and approach.

1 Introduction

Multi-organ segmentation has attracted considerable interest over the years. The
recent success of deep learning-based classification and segmentation methods
has triggered widespread applications of deep learning-based semantic segmen-
tation in medical imaging [1,2]. Many methods focused on the segmentation of
single organs like the prostate [1], liver [3], or pancreas [4,5]. Deep learning-based
multi-organ segmentation in abdominal CT has also been approached recently
in works like [6,7]. Most of these methods are based on variants of fully convo-
lutional networks (FCNs) [8] that either employ 2D convolutions on orthogonal
cross-sections in a slice-by-slice fashion [3–5,9] or 3D convolutions [1,2,7]. A
common feature of these segmentation methods is that they are able to extract
features useful for image segmentation directly from the training imaging data,
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which is crucial for the success of deep learning. This avoids the need for hand-
crafting features that are suitable for detection of individual organs.

However, most network architectures require severely downsampling or crop-
ping the images for 3D processing to meet the memory limitations of today’s
GPU cards [1,7] while still considering enough context in the images for accurate
segmentation of organs.

In this work, we propose a multi-scale 3D FCN approach that utilizes a scale-
space pyramid with auto-context to perform semantic image segmentation at a
higher resolution while also considering large contextual information from lower
resolution levels. We train our models on a large dataset of manually annotated
abdominal organs and vessels from pre-operative clinical computed tomography
(CT) images used in gastric surgery and evaluate them on a completely unseen
dataset from a different hospital, achieving a promising performance compared
to the state-of-the-art.

Our approach is shown schematically in Fig. 1. We are influenced by classical
scale-space pyramid [10] and auto-context ideas [11] for integrating multi-scale
and varying context information into our deep learning-based image segmenta-
tion method. Instead of having separate FCN pathways for each scale as explored
in other work [12,13], we utilize the auto-context principle to fuse and integrate
the information from different image scales and different amounts of context.
This helps the 3D FCN to integrate the information of different image scales and
image contexts at the same time. Our model can be trained end-to-end using
modern deep learning frameworks. This is in contrast to previous work which
utilized auto-context using a separately trained models for brain segmentation
[13].

In summary, our contributions are (1) introduction of a multi-scale pyramid
of 3D FCNs; (2) improved segmentation of fine structures at higher resolution;
(3) end-to-end training of multi-scale pyramid FCNs showing improved perfor-
mance and good learning properties. We perform a comprehensive evaluation on
a large training and validation dataset, plus unseen testing on data from different
hospitals and public sources, showing promising generalizability.

2 Methods

2.1 3D Fully Convolutional Networks

Convolutional neural networks (CNN) have the ability to solve challenging classi-
fication tasks in a data-driven manner. Fully convolutional networks (FCNs) are
an extension to CNNs that have made it feasible to train models for pixel-wise
semantic segmentation in an end-to-end fashion [8]. In FCNs, feature learning is
purely driven by the data and segmentation task at hand and the network archi-
tecture. Given a training set of images and labels S = {(Xn, Ln), n = 1, . . . , N},
where Xn denotes a CT image and Ln a ground truth label image, the model
can train to minimize a loss function L in order to optimize the FCN model
f(I,Θ), where Θ denotes the network parameters, including the convolutional
kernel weights for hierarchical feature extraction.
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Fig. 1. Multi-scale pyramid of 3D fully convolutional networks (FCNs) for multi-organ
segmentation. The lower-resolution-level 3D FCN predictions are upsampled, cropped
and concatenated with the inputs of a higher resolution 3D FCN. The Dice loss is used
for optimization at each level and training is performed end-to-end.

While efficient implementations of 3D convolutions and growing GPU mem-
ory have made it possible to deploy FCN on 3D biomedical imaging data [1,2],
image volumes are in practice often cropped and downsampled in order for the
network to access enough context to learn an effective semantic segmentation
model while still fitting into memory. Our employed network model is inspired
by the fully convolutional type 3D U-Net architecture proposed in Çiçek et al.
[2].

The 3D U-Net architecture is based on U-Net proposed in [14] and consists of
analysis and synthesis paths with four resolution levels each. It utilizes deconvo-
lution [8] (also called transposed convolutions) to remap the lower resolution and
more abstract feature maps within the network to the denser space of the input
images. This operation allows for efficient dense voxel-to-voxel predictions. Each
resolution level in the analysis path contains two 3 × 3 × 3 convolutional layers,
each followed by rectified linear units (ReLU) and a 2 × 2 × 2 max pooling with
strides of two in each dimension. In the synthesis path, the convolutional layers
are replaced by deconvolutions of 2 × 2 × 2 with strides of two in each dimen-
sion. These are followed by two 3 × 3 × 3 convolutions, each followed by ReLU
activations. Furthermore, 3D U-Net employs shortcut (or skip) connections from
layers of equal resolution in the analysis path to provide higher-resolution fea-
tures to the synthesis path [2]. The last layer contains a 1 × 1 × 1 convolution
that reduces the number of output channels to the number of class labels K.
This architecture has over 19 million learnable parameters and can be trained
to minimize the average Dice loss derived from the binary case in [1]:
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L (X,Θ,L) = − 1
K

K∑

k=1

(
2
∑N

i pi,kli,k∑N
i pi,k +

∑N
i li,k

)
. (1)

Here, pi,k ∈ [0, . . . , 1] represents the continuous values of the softmax 3D pre-
diction maps for each class label k of K and li,k the corresponding ground truth
value in L at each voxel i.

2.2 Multi-scale Auto-Context Pyramid Approach

To effectively process an image at higher resolutions, we propose a method that
is inspired by the auto-context algorithm [11]. Our method both captures the
context information at lower resolution downsampled images and learns more
accurate segmentations from higher resolution images in two levels of a scale-
space pyramid F = {(fs(Xs, Θs)) , s = 1, . . . , S}, with S being the number of
levels s in our multi-scale pyramid, and Xs being one of the multi-scale input
subvolumes at each level s.

g.t. (scale 0) pred. (scale 0) g.t. (scale 1) pred. (scale 1)

g.t. (scale 0) pred. (scale 0) g.t. (scale 1) pred. (scale 1)

Fig. 2. Axial CT images and 3D surface rendering with ground truth (g.t.) and pre-
dictions overlaid. We show the two scales used in our experiments. Each scale’s input
is of size 64 × 64 × 64 in this setting.

In the first level, the 3D FCN is trained on images of the lowest resolution
in order to capture the largest amount of context, downsampled with a factor of
ds1 = 2S and optimized using the Dice loss L1. This can be thought of as a form
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of deep supervision [15]. In the next level, we use the predicted segmentation
maps as a second input channel to the 3D FCN while learning from the images
at a higher resolution, downsampled by a factor of ds2 = ds1/2, and optimized
using Dice loss L2. For input to this second level of the pyramid, the previous
level prediction maps are upsampled by a factor of 2 and cropped in order to
spatially align with the higher resolution levels. These predictions can then be fed
together with the appropriately cropped image data as a second channel. This
approach can be learned end-to-end using modern multi-GPU devices and deep
learning frameworks with the total loss being Ltotal =

∑L
s=1 Ls (Xs, Θs, Ls).

This idea is shown schematically in Fig. 1. The resulting segmentation masks
for the two-level case are shown in Fig. 2. It can be observed that the second-
level auto-context network markedly outperforms the first-level predictions and
is able to segment structuress with improved detail, especially at the vessels.

2.3 Implementation and Training

We implement our approach in Keras1 using the TensorFlow2 backend. The
Dice loss [3] is used for optimization with Adam and automatic differentiation
for gradient computations. Batch normalization layers are inserted throughout
the network, using a mini-batch size of three, sampled from different CT volumes
of the training set. We use randomly extracted subvolumes of fixed size during
training, such that at least one foreground voxel is at the center of each subvol-
ume. On-the-fly data augmentation is used via random translations, rotations
and elastic deformations similar to [2].

3 Experiments and Results

In our implementation, a constant input and output size of 64×64×64 randomly
cropped subvolumes is used for training in each level. For inference, we employ
network reshaping [8] to more efficiently process the testing image with a larger
input size while building up the full image in a tiling approach [2]. The result-
ing segmentation masks for both levels are shown in Fig. 3. It can be observed
that the second-level auto-context network markedly outperforms the first-level
predictions and is able to segment structures with improved detail. All experi-
ments were performed using a DeepLearning BOX (GDEP Advance) with four
NVIDIA Quadro P6000s with 24 GB memory each. Training of 20,000 iterations
using this unoptimized implementation took several days, while inference on a
full CT scan takes just a few minutes on one GPU card.

Data: Our data set includes 377 contrast-enhanced clinical CT images of the
abdomen in the portal-venous phase used for pre-operative planning in gastric
surgery. Each CT volume consists of 460–1,177 slices of 512×512 pixels. Voxel
dimensions are [0.59−0.98, 0.59−0.98, 0.5−1.0] mm. With S = 2, we downsample
1 https://keras.io/.
2 https://www.tensorflow.org/.

https://keras.io/
https://www.tensorflow.org/
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Ground truth (axial) first level (upsampled) second level (auto-context)

Ground truth (3D) first level (upsampled) second level (auto-context)

Fig. 3. Axial CT images and 3D surface rendering of predictions from two multi-
scale levels in comparison with ground truth annotations. In particular, the vessels are
segmented more completely and in greater detail in the second level, which utilizes
auto-context information in its prediction.

each volume by a factor of ds1 = 4 in the first level and a factor of ds2 = 2 in
the second level. A random 90/10% split of 340/37 patients is used for training
and testing the network. We achieve Dice similarity scores for each organ labeled
in the testing cases as summarized in Table 1. We list the performance for the
first level and second level models when utilizing auto-context trained separately
or end-to-end, and compare to using no auto-context in the second level. This
shows the impact of using or not using the lower resolution auto-context channel
at the higher resolution input while training from the same input resolution from
scratch. In our case, each Ln contains K = 8 labels consisting of the manual
annotations of seven anatomical structures (artery, portal vein, liver, spleen,
stomach, gallbladder, pancreas), plus background.

Table 2 compares our results to recent literature and also displays the result
using an unseen testing dataset from a different hospital consisting of 129 cases
from a distinct research study. Furthermore, we test our model on a public data
set of 20 contrast-enhanced CT scans.3

3 We utilize the 20 training cases of the VISCERAL data set (http://www.visceral.
eu/benchmarks/anatomy3-open) as our test set.

http://www.visceral.eu/benchmarks/anatomy3-open
http://www.visceral.eu/benchmarks/anatomy3-open
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Table 1. Comparison of different levels of our model. End-to-end training gives a
statistically significant improvement (p < 0.001).

Dice (%) Artery Vein Liver Spleen Stomach Gall. Pancreas Avg.

Level 1: initial (low res)

Avg 75.4 64.0 95.4 94.0 93.7 80.2 79.8 83.2

Std 3.9 5.4 1.0 0.8 7.6 15.5 8.5 06.1

Min 67.4 41.3 91.5 92.6 48.4 27.3 49.7 59.7

Max 82.3 70.9 96.4 95.8 96.5 93.5 90.6 89.4

Level 2: auto-context

Avg 82.5 76.8 96.7 96.6 95.9 84.4 83.4 88.1

Std 4.1 6.4 1.0 0.7 8.0 14.0 8.4 6.1

Min 73.3 46.3 92.9 94.4 48.1 28.0 53.9 62.4

Max 90.0 83.5 97.9 98.0 98.7 96.0 93.4 93.9

End-to-end: auto-context (high-res)

Avg 83.0 79.4 96.9 97.2 96.2 83.6 86.7 89.0

Std 4.4 6.7 1.0 1.0 5.9 17.1 7.4 6.2

Min 73.2 50.2 93.5 94.9 61.4 29.7 60.0 66.1

Max 91.0 87.7 98.3 98.7 98.7 96.4 95.2 95.1

Level 2: no auto-context (high-res)

Avg 69.9 72.8 86.7 90.9 3.8 73.4 77.0 67.8

Std 6.2 7.0 6.4 5.3 1.3 22.5 10.8 8.5

Min 59.5 47.1 69.9 75.7 0.7 7.8 36.1 42.4

Max 82.1 82.9 95.7 97.0 7.4 95.9 90.9 78.8
∗Best average performance is shown in bold.

Table 2. We compare our model trained in an end-to-end fashion to recent work
on multi-organ segmentation. [9] is using a 2D FCN approach with a majority voting
scheme, while [7] employs 3D FCN architectures. Furthermore, we list our performance
on an unseen testing dataset from a different hospital and on the public Visceral dataset
without any re-training and compare it to the current challenge leaderboard (LB) best
performance for each organ. Note that this table is incomprehensive and direct com-
parison to the literature is always difficult due to the different datasets and evaluation
schemes involved.

Dice (%) Train/Test Artery Vein Liver Spleen Stomach Gall. Pancreas Avg.

Ours (end-to-end) 340/37 83.0 79.4 96.9 97.2 96.2 83.6 86.7 89.0

Unseen test none/129 - - 95.3 93.6 - 80.8 75.7 86.3

Gibson et al. [7] 72 (8-CV) - - 92 - 83 - 66 80.3

Zhou et al. [9]a 228/12 73.8 22.4 93.7 86.8 62.4 59.6 56.1 65.0

Hu et al. [6] 140 (CV) - - 96.0 94.2 - - - 95.1

Visceral (LB) 20/10 - - 95.0 91.1 - 70.6 58.5 78.8

Visceral (ours)b none/20 - - 94.0 87.2 - 68.2 61.9 77.8
aDice score estimated from Intersection over Union (Jaccard index).
bAt the time of writing, the testing evaluation servers of the challenge were not available anymore
for submitting results.
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4 Discussion and Conclusion

The multi-scale auto-context approach presented in this paper provides a sim-
ple yet effective method for employing 3D FCNs in medical-imaging settings.
No post-processing was applied to any of the network outputs. The improved
performance in our approach is effective for all organs tested (apart from the
gallbladder, where the differences are not significant). Note that we used dif-
ferent datasets (from different hospitals and scanners) for separate testing. This
experiment illustrates our method’s generalizability and robustness to differences
in image quality and populations. Running the algorithms at a quarter to half
of the original resolution improved performance and efficiency in this applica-
tion. While this method could be extended to using a multi-scale pyramid with
the original resolution as the final level, we found that the added computational
burden did not add significantly to the segmentation performance. The main
improvement comes from utilizing a very coarse image (downsampled by a fac-
tor of four) in an effective manner. In this work, we utilized a 3D U-Net-like
model for each level of the image pyramid. However, the proposed auto-context
approach should in principle also work well for other 3D CNN/FCN architectures
and 2D and 3D image modalities.

In conclusion, we showed that an auto-context approach can result in
improved semantic segmentation results for 3D FCNs based on the 3D U-Net
architecture. While the low-resolution part of the model is able to benefit from
a larger context in the input image, the higher resolution auto-context part
of the model can segment the image with greater detail, resulting in better
overall dense predictions. Training both levels end-to-end resulted in improved
performance.
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2. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net:
learning dense volumetric segmentation from sparse annotation. In: Ourselin, S.,
Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016 Part II.
LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46723-8 49

3. Christ, P.F., et al.: Automatic Liver and lesion segmentation in CT using cascaded
fully convolutional neural networks and 3D conditional random fields. In: Ourselin,
S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016 Part
II. LNCS, vol. 9901, pp. 415–423. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46723-8 48

https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-319-46723-8_48
https://doi.org/10.1007/978-3-319-46723-8_48


A Multi-scale Pyramid of 3D Fully Convolutional Networks 425

4. Roth, H.R., Lu, L., Farag, A., Sohn, A., Summers, R.M.: Spatial aggregation of
holistically-nested networks for automated pancreas segmentation. In: Ourselin, S.,
Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016 Part II.
LNCS, vol. 9901, pp. 451–459. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46723-8 52

5. Zhou, Y., Xie, L., Shen, W., Wang, Y., Fishman, E.K., Yuille, A.L.: A fixed-point
model for pancreas segmentation in abdominal CT scans. In: Descoteaux, M.,
Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI
2017 Part I. LNCS, vol. 10433, pp. 693–701. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66182-7 79

6. Hu, P., Wu, F., Peng, J., Bao, Y., Chen, F., Kong, D.: Automatic abdominal multi-
organ segmentation using deep convolutional neural network and time-implicit level
sets. Int. J. Comput. Assist. Radiol. Surg. 12(3), 399–411 (2017)

7. Gibson, E., et al.: Towards image-guided pancreas and biliary endoscopy: auto-
matic multi-organ segmentation on abdominal CT with dense dilated networks.
In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne,
S. (eds.) MICCAI 2017 Part I. LNCS, vol. 10433, pp. 728–736. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66182-7 83

8. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: IEEE CVPR, pp. 3431–3440 (2015)

9. Zhou, X., Takayama, R., Wang, S., Hara, T., Fujita, H.: Deep learning of the
sectional appearances of 3D CT images for anatomical structure segmentation
based on an FCN voting method. Med. Phys. 44, 5221–5233 (2017)

10. Adelson, E.H., Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid
methods in image processing. RCA Eng. 29(6), 33–41 (1984)

11. Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and
3D brain image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 32(10),
1744–1757 (2010)

12. Chen, L.C., Yang, Y., Wang, J., Xu, W., Yuille, A.L.: Attention to scale: scale-
aware semantic image segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3640–3649 (2016)

13. Salehi, S.S.M., Erdogmus, D., Gholipour, A.: Auto-context convolutional neural
network (auto-net) for brain extraction in magnetic resonance imaging. IEEE
Trans. Med. Imaging 36(11), 2319–2330 (2017)

14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015 Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24574-4 28

15. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In:
Artificial Intelligence and Statistics, pp. 562–570 (2015)

https://doi.org/10.1007/978-3-319-46723-8_52
https://doi.org/10.1007/978-3-319-46723-8_52
https://doi.org/10.1007/978-3-319-66182-7_79
https://doi.org/10.1007/978-3-319-66182-7_79
https://doi.org/10.1007/978-3-319-66182-7_83
https://doi.org/10.1007/978-3-319-24574-4_28

	A Multi-scale Pyramid of 3D Fully Convolutional Networks for Abdominal Multi-organ Segmentation
	1 Introduction
	2 Methods
	2.1 3D Fully Convolutional Networks
	2.2 Multi-scale Auto-Context Pyramid Approach
	2.3 Implementation and Training

	3 Experiments and Results
	4 Discussion and Conclusion
	References




