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Abstract. Segmentation is a key step for various medical image analy-
sis tasks. Recently, deep neural networks could provide promising solu-
tions for automatic image segmentation. The network training usually
involves a large scale of training data with corresponding ground truth
label maps. However, it is very challenging to obtain the ground-truth
label maps due to the requirement of expertise knowledge and also
intensive labor work. To address such challenges, we propose a novel
semi-supervised deep learning framework, called “Attention based Semi-
supervised Deep Networks” (ASDNet), to fulfill the segmentation tasks in
an end-to-end fashion. Specifically, we propose a fully convolutional con-
fidence network to adversarially train the segmentation network. Based
on the confidence map from the confidence network, we then propose
a region-attention based semi-supervised learning strategy to include
the unlabeled data for training. Besides, sample attention mechanism
is also explored to improve the network training. Experimental results
on real clinical datasets show that our ASDNet can achieve state-of-
the-art segmentation accuracy. Further analysis also indicates that our
proposed network components contribute most to the improvement of
performance.

1 Introduction

Recent development of deep learning has largely boosted the state-of-the-art seg-
mentation methods [8,11]. Among them, fully convolutional networks (FCN) [8],
a variant of convolutional neural networks (CNN), is a recent popular choice
for semantic image segmentation in both computer vision and medical image
fields [8,11,13]. FCN trains neural networks in an end-to-end fashion by directly
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optimizing intermediate feature layers for segmentation, which makes it outper-
form the traditional methods that often regard the feature learning and seg-
mentation as two separate tasks. UNet [11], an evolutionary variant of FCN,
has achieved excellent performance by effectively combining high-level and low-
level features in the network architecture. Generally, while being effective, the
training of FCN (or UNet) requires a large amount of labeled data as there are
millions of parameters in the network to be optimized. However, it is difficult
to acquire a large training set with manually labeled ground-truth maps due to
the following three factors: (a) manual annotation requires expertise knowledge;
(b) it is time-consuming and tedious to annotate pixel-wise (voxel-wise) label
maps; (c) it suffers from large intra- and inter-observer variability.

Several works have been done to address the aforementioned challenges [1,
2,6]. To relieve the demand for large-scale labeled data, Bai et al. [1] proposed
a semi-supervised deep learning framework for cardiac MR image segmenta-
tion, in which the segmented label maps from unlabeled data are incrementally
included into the training set to refine the network. Baur et al. [2] introduced
auxiliary manifold embedding in the latent space to FCN for semi-supervised
learning in the MS lesion segmentation. In both cases, the unlabeled data infor-
mation are fully involved in the model learning. However, certain regions of the
unlabeled data may not be suitable for the learning due to their low-quality
(automatically-) segmented label maps. To overcome such issues, we propose
an attention based semi-supervised learning framework for medical image seg-
mentation. Our framework is composed of two networks: (1) segmentation net-
work and (2) confidence network. Specifically, we propose a fully convolutional
adversarial learning scheme (i.e., using confidence network) to better train the
segmentation network. The confidence map generated by the confidence network
can provide us the trustworthy regions in the segmented label map from the seg-
mentation network. Based on the confidence map, we further propose a region
based semi-supervised loss to adaptively use part of unlabeled data for training
the network. Since we can adopt unlabeled data to further train the segmenta-
tion network, the need of a large-scale training set can be alleviated accordingly.
Our proposed algorithm has been applied to the task of pelvic organ segmen-
tation, which is critical for guiding both biopsy and cancer radiation therapy.
Experimental results indicate that our proposed algorithm can improve the seg-
mentation accuracy, compared to other state-of-the-art methods. In addition,
our proposed training strategies are also proved to be effective.

2 Method

As mentioned above, the proposed ASDNet consists of two subnetworks, i.e.,
(1) segmentation network (denoted as S) and (2) confidence network (denoted
as D). The architecture of our proposed framework is presented in Fig. 1.

To ease the description of the proposed algorithm, we first give the notations
used throughout the paper. Given a labeled input image X ∈ RH×W×T with
corresponding ground-truth label map Y ∈ ZH×W×T , we encode it to one-
hot format P ∈ RH×W×T×C , where C is the number of semantic categories
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in the dataset. The segmentation network outputs the class probability map
̂P ∈ RH×W×T×C . Similarly, we regard an unlabeled image as U ∈ RH×W×T .
Therefore, the whole input image dataset can be defined by O = {X,U}.

2.1 Segmentation Network with Sample Attention

In ASDNet as shown in Fig. 1, the segmentation network can be any end-to-
end segmentation network, such as FCN [8], UNet [11], VNet [9], and DSRe-
sUNet [13]. In this paper, we adopt a simplified VNet [9] (internal pool-conv-
deconv layers are removed, and thus is denoted as SVNet) as the segmentation
network to balance the performance and memory cost.

Multi-class Dice Loss: The class imbalance problem is usually serious in med-
ical image segmentation tasks. To overcome it, we propose using a generalized
multi-class Dice loss [12] as the segmentation loss, as defined below in Eq. 1:

LDice (X,P; θs) = 1 − 2
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. ̂P is the pre-

dicted probability maps from the segmentation network: ̂P = S (X, θs).

Multi-class Dice Loss with Sample Attention: Besides the class imbalance
problem, the network optimization also suffers from the issue of dominance by
easy samples: the large number of easy samples will dominate network train-
ing, thus the difficult samples cannot be well considered. To address this issue,

Fig. 1. Illustration of the architecture of our proposed ASDNet, which consists of a
segmentation network and a confidence network.
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inspired by the focal loss [6] proposed to handle similar issue in detection net-
works, we propose a sample attention based mechanism to consider the impor-
tance of each sample during the training. The multi-class Dice loss with sample
attention is thus defined below by Eq. 2:

LAttDice (X,P; θs) = (1 − dsc)β
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(2)
where dsc is the average Dice similarity coefficient of the sample over different
categories, e.g., different organ labels. Note that we re-compute the dsc in each
iteration, but we don’t back-propagate gradient through it when training the
networks. β is the sample attention parameter with a range of [0, 5]. Following [6],
we set β to 2 in this paper.

2.2 Confidence Network for Fully Convolutional Adversarial
Learning

Adversarial learning is derived from the recent popular Generative Adversarial
Network (GAN) [3]. It has achieved a great success in image generation and
segmentation [3,5,10]. Hence, we also incorporate adversarial learning in our
architecture to further improve the segmentation network. Instead of using CNN-
based discriminator, we propose to use FCN-based discriminator to generate
local confidence at local region.

Adversarial Loss of the Confidence Network: The training objective of the
confidence network is the summation of binary cross-entropy loss over the image
domain, as shown in Eq. 3. Here, we use S and D to denote the segmentation
and confidence networks, respectively.

LD(X,P; θd) = LBCE(D(P, θd),1) + LBCE(D(S(X), θd),0), (3)

where
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(4)
where X and P represent the input data and its corresponding manual label
map (one-hot encoding format), respectively. θd is network parameters for the
confidence network.

Adversarial Loss of the Segmentation Network: For segmentation net-
work, besides the multi-class Dice loss with sample attention as defined in
Eq. 2, there is another loss from D working as “variational” loss. It enforces
higher-order consistency between ground-truth segmentation and automatic
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segmentation. In particular, the adversarial loss (“ADV”) to improve S and
fool D can be defined by Eq. 5.

LADV (O, θs) = LBCE (D (S (O; θs)) ,1) (5)

2.3 Region-Attention Based Semi-supervised Learning

Since our discriminator (i.e., confidence network) could provide local confi-
dence information over the image domain, we use such information in the semi-
supervised setting to include unlabeled data for improving segmentation accu-
racy, and the similar strategy has been explored in [5].

Specifically, given an unlabeled image U, the segmentation network will first
produce the probability map ̂P = S (U), which will be then used by the trained
confidence network to generate a confidence map M = D(̂P), indicating where
the confident regions of the prediction results are close enough to the ground
truth label distribution. The confident regions can be easily obtained by setting
a threshold (i.e., γ) to the confidence map. In this way, we can use these confident
regions as masks to select parts of unlabeled data and their segmentation results
to enrich the set of supervised training data. Thus, our proposed semi-supervised
loss can be defined by Eq. 6.
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where P is the one-hot encoding of ̂Y, and ̂Y = arg max(̂P). [] is the indicator
function. Similar to dsc in Eq. 2, P and the value of indicator function are re-
computed in each iteration.

Total Loss for Segmentation Network: By summing the above losses, the
total loss to train the segmentation network can be defined by Eq. 7.

LS = LAttDice + λ1LADV + λ2Lsemi, (7)

where λ1 and λ2 are the scaling factors to balance the losses. They are selected
at 0.03 and 0.3 after trails, respectively.

2.4 Implementation Details

Pytorch1 is adopted to implement our proposed ASDNet shown in Fig. 1. We
adopt Adam algorithm to optimize the network. The input size of the segmen-
tation network is 64×64×16. The network weights are initialized by the Xavier
algorithm, and weight decay is set to be 1e–4. For the network biases, we initial-
ize them to 0. The learning rates for the segmentation and confidence network
are initialized to 1e–3 and 1e–4, followed by decreasing the learning rate 10 times
every 3 epochs. Four Titan X GPUs are utilized to train the networks.
1 https://github.com/pytorch/pytorch.

https://github.com/pytorch/pytorch
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3 Experiments and Results

Our pelvic dataset consists of 50 prostate cancer patients from a cancer hospital,
each with one T2-weighted MR image and corresponding manually-annotated
label map by medical experts. In particular, the prostate, bladder and rectum in
all these MRI scans have been manually segmented, which serve as the ground
truth for evaluating our segmentation method. Besides, we have also acquired
20 MR images from additional 20 patients, without manually-annotated label
maps. All these images were acquired with 3T MRI scanners. The image size is
mostly 256 × 256 × (120−176), and the voxel size is 1 × 1 × 1 mm3.

Five-fold cross validation is used to evaluate our method. Specifically, in each
fold of cross validation, we randomly chose 35 subjects as training set, 5 subjects
as validation set, and the remaining 10 subjects as testing set. We use sliding
windows to go through the whole MRI for prediction for a testing subject. Unless
explicitly mentioned, all the reported performance by default is evaluated on
the testing set. As for evaluation metrics, we utilize Dice Similarity Coefficient
(DSC) and Average Surface Distance (ASD) to measure the agreement between
the manually and automatically segmented label maps.

3.1 Comparison with State-of-the-art Methods

To demonstrate the advantage of our proposed method, we also compare our
method with other five widely-used methods on the same dataset as shown
in Table 1: (1) multi-atlas label fusion (MALF), (2) SSAE [4], (3) UNet [11],
(4) VNet [9], and (5) DSResUNet [13]. Also, we present the performance of our
proposed ASDNet.

MALF SSAE UNet VNet DSResNet Proposed

Fig. 2. Pelvic organ segmentation results of a typical subject by different methods.
Orange, silver and pink contours indicate the manual ground-truth segmentation, and
yellow, red and cyan contours indicate automatic segmentation.

Table 1 quantitatively compares our method with the five state-of-the-art
segmentation methods. We can see that our method achieves better accuracy
than the five state-of-the-art methods in terms of both DSC and ASD. The
VNet works well in segmenting bladder and prostate, but it cannot work very
well for rectum (which is often more challenging to segment due to the long and
narrow shape). Compared to UNet, DSResUNet improves the accuracy by a large
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Table 1. DSC and ASD on the pelvic dataset by different methods.

Method DSC ASD

Bladder Prostate Rectum Bladder Prostate Rectum

MALF .867(.068) .793(.087) .764(.119) 1.641(.360) 2.791(.930) 3.210(2.112)

SSAE .918(.031) .871(.042) .863(.044) 1.089(.231) 1.660(.490) 1.701(.412)

UNet .896(.028) .822(.059) .810(.053) 1.214(.216) 1.917(.645) 2.186(0.850)

VNet .926(.018) .864(.036) .832(.041) 1.023(.186) 1.725(.457) 1.969(.449)

DSResUNet .944(.009) .882(.020) .869(.032) .914(.168) 1.586(.358) 1.586(.405)

Proposed .970(.006) .911(.016) .906(.026) .858(.144) 1.316(.288) 1.401(.356)

margin, indicating that residual learning and deep supervision bring performance
gain, and thus it might be a good future direction for us to further improve our
proposed method. We also visualize some typical segmentation results in Fig. 2,
which further show the superiority of our proposed method.

3.2 Impact of Each Proposed Component

As our proposed method consists of several designed components, we conduct
empirical studies below to analyze them.

Impact of Sample Attention: As mentioned in Sect. 2.1, we propose a sam-
ple attention mechanism to assign different importance for different samples so
that the network can concentrate on hard-to-segment examples and thus avoid
dominance by easy-to-segment samples. The effectiveness of sample attention
mechanism (i.e., AttSVNet) is further confirmed by the improved performance,
e.g., 0.82%, 1.60% and 1.81% DSC performance improvements (as shown in
Table 2) for bladder, prostate and rectum, respectively.

Impact of Fully Convolutional Adversarial Learning: We conduct more
experiments for comparing with the following three networks: (1) only segmen-
tation network; (2) segmentation network with a CNN-based discriminator [3];
(3) segmentation network with a FCN-based discriminator (i.e., confidence net-
work). Performance in the middle of Table 2 indicates that adversarial learning
contributes a little bit to improving the results as it provides a regularization
to prevent overfitting. Compared with CNN-based adversarial learning, our pro-
posed FCN-based adversarial learning further improves the performances by
0.90% in average. This demonstrates that fully convolutional adversarial learn-
ing works better than the typical adversarial learning with a CNN-based dis-
criminator, which means the FCN-based adversarial learning can better learn
structural information from the distribution of ground-truth label map.

Impact of Semi-supervised Loss: We apply the semi-supervised learning
strategy with our proposed ASDNet on 50 labeled MRI and 20 extra unla-
beled MRI. The comparison methods are semiFCN [1] and semiEmbedFCN [2].
We use the AttSVNet as the basic architecture of these two methods for fair
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Table 2. Comparison of the performance of methods with different strategies on the
pelvic dataset in terms of DSC.

Method Bladder Prostate Rectum

VNet .926(.018) .864(.036) .832(.041)

SVNet .920(.015) .862(.037) .844(.037)

AttSVNet .931(.010) .878(.028) .862(.034)

AttSVNet+CNN .938(.010) .884(.026) .874(.031)

AttSVNet+FCN .944(.008) .893(.022) .887(.025)

semiFCN .959(.006) .895(.024) .885(.030)

semiEmbedFCN .964(.007) .902(.022) .891(.028)

AttSVNet+Semi .937(.012) .878(.036) .865(.041)

Proposed .970(.006) .911(.016) .906(.026)

comparison. The evaluation of the comparison experiments are all based on the
labeled dataset, and the unlabeled data involves only in the learning phase. The
experimental results in Table 2 show that our proposed semi-supervised strategy
works better than the semiFCN and the semiEmbedFCN. Moreover, it is worth
noting that the adversarial learning on the labeled data is important to our pro-
posed semi-supervised scheme. If the segmentation network does not seek to fool
the discriminator (i.e., AttSVNet+Semi), the confidence maps generated by the
confidence network would not be meaningful.

3.3 Validation on Another Dataset

To show the generalization ability of our proposed algorithm, we conduct addi-
tional experiments on the PROMISE12-challenge dataset [7]. This dataset con-
tains 50 subjects, each with a pair of MRI and its manual label map (where only
prostate was annotated). Five-fold cross validation is performed to evaluate the
performance of all comparison methods. Our proposed algorithm again achieves
very good performance in segmenting prostate (i.e., 0.900 in terms of DSC), and
it is also very competitive compared to the state-of-the-art methods applied to
this dataset in the literature [9,13]. These experimental results indicate a good
generalization capability of our proposed ASDNet.

4 Conclusions

In this paper, we have presented a novel attention-based semi-supervised deep
network (ASDNet) to segment medical images. Specifically, the semi-supervised
learning strategy is implemented by fully convolutional adversarial learning, and
also region-attention based semi-supervised loss is adopted to effectively address
the insufficient data problem for training the complex networks. By integrat-
ing these components into the framework, our proposed ASDNet has achieved
significant improvement in terms of both accuracy and robustness.
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