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Abstract. Automated surgical workflow analysis and understanding
can assist surgeons to standardize procedures and enhance post-
surgical assessment and indexing, as well as, interventional monitor-
ing. Computer-assisted interventional (CAI) systems based on video can
perform workflow estimation through surgical instruments’ recognition
while linking them to an ontology of procedural phases. In this work, we
adopt a deep learning paradigm to detect surgical instruments in cataract
surgery videos which in turn feed a surgical phase inference recurrent
network that encodes temporal aspects of phase steps within the phase
classification. Our models present comparable to state-of-the-art results
for surgical tool detection and phase recognition with accuracies of 99
and 78% respectively.
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1 Introduction

Surgical workflow analysis can potentially optimise teamwork and communica-
tion within the operating room to reduce surgical errors and improve resource
usage [1]. The development of cognitive computer-assisted intervention (CAI)
systems aims to provide solutions for automated workflow tasks such as proce-
dural segmentation into surgical phases/steps allowing to predict the next steps
and provide useful preparation information (e.g. instruments) or early warnings
messages for enhanced intraoperative OR team collaboration and safety. Work-
flow analysis could also assist surgeons with automatic report generation and
optimized scheduling as well as off-line video indexing for educational purposes.
The challenge is to perform workflow recognition automatically such that it does
not pose a significant burden on clinicians’ time.

Early work on automated phase recognition monitored the surgeon’s hands
and tool presence [2,3] as it is reasonable to assume that specific tools are used to
carry out specific actions during an operation. Instrument usage can be used to
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Fig. 1. Examples of tools in the training set and their corresponding labels.

train random forests models [4] or conditional random fields [5] for phase recogni-
tion. More recently, visual features have been explicitly used [6,7]; however, these
features were hand-crafted which limits their robustness [8]. The emergence of
deep learning techniques for image classification [9] and semantic segmentation
[10] provide a desirable solution for more robust systems allowing for automated
feature extraction and have been applied in medical imaging tasks in domains
such as laparoscopy [11] and cataract surgery [12]. EndoNet, a deep learning
model for single and multi task tool and phase recognition in laparoscopic pro-
cedures was introduced in [11] relying on AlexNet as a feature extractor for tool
recognition and a hierarchical Hidden Markov Model (HHMM) for inferring the
phase. Similar architectures have since performed well on laparoscopic data [13]
with variations of the feature predictor (e.g. ResNet-50 or Inception) and the
use of LSTM instead of HHMM [14]. Such systems also won the latest MICCAI
2017 EndoVis workflow recognition challenge1 focusing on laparoscopic proce-
dures where video is the primary cue. Despite promising accuracy results, ranging
60–85%, in laparoscopy and the challenging environment with deformation, the
domain adaptation, resilience to variation of methods and their application to
other procedures has been limited.

In this work, we propose an automatic workflow recognition system for
cataract surgery, the most common surgical procedure worldwide with 19 million
operations performed annually [15]. The environment of the cataract procedure
is controlled with few camera motions and the view of the anatomy is approxi-
mately opposite to the eye. Our approach follows the deep learning paradigm for
surgical tool and phase recognition. A residual neural network (ResNet) is used
to recognize the tools within the video frames and produce image features fol-
lowed by a recurrent neural network (RNN) which operates on sequences of tool
features and performs multi-class phase classification. For training and testing of
the phase recognition models we produced phase annotations by hand-labeling
the CATARACTS dataset2. Our results perform near the state-of-the-art for
both tool and phase recognition.

1 https://endovissub2017-workflow.grand-challenge.org/.
2 https://cataracts.grand-challenge.org/.

https://endovissub2017-workflow.grand-challenge.org/
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DeepPhase: Surgical Phase Recognition in CATARACTS Videos 267

2 Materials and Methods

2.1 Augmented CATARACT Dataset

We used the CATARACTS dataset for both tool and phase recognition. This
dataset consists of 25 train and 25 test videos of cataract surgery recorded at 30
frames per second (fps) at a resolution of 1920×1080. The videos are labelled with
tool presence annotations performed by assigning a presence vector to each frame
indicating which tools are touching the eyeball. For the task of tool recognition
we only used the 25 train CATARACTS videos as the tool annotations of the
test videos are not publicly available. There is a total of 21 different tool classes,
with some examples shown in Fig. 1. The 25 train videos were randomly split
into train, validation (videos 4, 12 and 21) and hold-out test (2 and 20) sets.
Frames were extracted with a rate of 3 fps and half of the frames without tools
were discarded. As an overview, the dataset was split into a 80-10-10% split of
train, validation and hold-out test sets of with 32,529, 3,666 and 2,033 frames,
respectively.

For the task of phase recognition, we created surgical phase annotations for
all 50 CATARACTS videos, 25 of which are part of the train/validation/hold-out
test spit and were used for both tool and phase recognition, while the remain-
ing 25 videos were solely used as an extra test set to assess the generalisation
of phase recognition. Annotation was carried out by a medical doctor and an
ophthalmology nurse according to the most common phases in cataract surgery,
that is Extracapsular cataract extraction (ECCE) using Phacoemulsification and
implantation of an intraocular lens (IOL). A timestamp was recorded for each
phase transition according to the judgement of the annotators, resulting in a
phase-label for each frame. A total of 14 distinct phases were annotated com-
prising of: (1) Access the anterior chamber (ACC): sideport incision, (2) AAC:
mainport incision, (3) Implantable Contact Lenses (ICL): inject viscoelastic,
(4) ICL: removal of lens, (5) Phacoemulsification (PE): inject viscoelastic, (6)
PE: capsulorhexis, (7) PE: hydrodissection of lens, (8) PE: phacoemulsification,
(9) PE: removal of soft lens matter, (10) Inserting of the Intraocular Lens (IIL):
inject viscoelastic, (11) IIL: intraocular lens insertion, (12) IIL: aspiration of
viscoelastic, (13) IIL: wound closure and (14) IIL: wound closure with suture.

2.2 Tool Recognition with CNNs

For tool recognition we trained the ResNet-152 [9] architecture towards multi-
label classification in 21 tool classes. ResNet-152 is comprised of a sequence of 50
residual blocks each consisting of three convolutional layers followed by a batch-
normalization layer and ReLU activation, as described in Fig. 2. The output
of the third convolutional layer is added to the input of the residual block to
produce the layer’s output.

We trained the network towards multi-label classification using a fully con-
nected output layer with sigmoid activations. This can essentially be seen as 21
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Fig. 2. Pipeline for tool and phase recognition. ResNet-152 consists of 50 residual
blocks, each composed of three convolutional layers with batch-normalization layer and
ReLU activations. Two pooling layers (green) are used in the input and the output of
the network. The CNN receives video frames and calculates tool features which are
then passed into an RNN for phase recognition.

parallel networks, each focused on single-task recognition, using shared weights.
The loss function optimized was the sigmoid cross-entropy,

LCNN = − 1
Nt

1
Ct

Nt∑

i=1

Ct∑

c=1

pic log p̂ic +
(
1 − pic

)
log

(
1 − p̂ic

)

where pic ∈ {0, 1} is the ground-truth label for class c in input frame i, p̂ic = σ(pic)
is the corresponding prediction, Nt is the total number of frames within a mini-
batch and Ct = 21 is the total number of tool classes.

2.3 Phase Recognition with RNNs

Since surgical phases evolve over time it is natural that the current phase depends
on neighbouring phases and to capture this temporal information we focused on
an RNN-based approach. We used tool information to train two RNNs towards
multi-class classification. We gathered two different types of information from
the CNN: tool binary presence from the output classification layer and tool
features from the last pooling layer. The aim of training on tool features was to
capture information (e.g. motion and orientation of the tools) and visual cues
(e.g. lighting and colour) that could potentially enhance phase recognition.

Initially, we trained an LSTM consisting of one hidden layer with 256 nodes
and an output fully connected layer with 14 output nodes and softmax activations.
The loss function used in training was the cross-entropy loss defined as:

LLSTM = − 1
Np

Np∑

i=1

Cp∑

c=1

pic log[φ(pic)], φ(pc) =
epc

∑Cp

c=1 epc

, (1)

where pic ∈ {0, 1} is the ground-truth label for class c for input vector i, Np is
the mini-batch size and Cp = 14 is the total number of phase classes.

We additionally trained a two-layered Gated Recurrent Unit (GRU) [16] with
128 nodes per layer and a fully connected output layer with 14 nodes and soft-
max activation. Similar to the LSTM, we trained the GRU on both binary tool
information and tool features using the Adam optimizer and the cross-entropy
loss.
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3 Experimental Results

3.1 Evaluation Metrics

For the evaluation of the multi-label tool presence classification problem we cal-
culated the area under the receiver-operating characteristic curve (ROC), or
else area under the curve (AUC), which is also the official metric used in the
CATARACTS challenge. Additionally, we calculated the subset (sAcc) and ham-
ming (hAcc) accuracy. sAcc calculates the proportion of instances whose binary
predictions are exactly the same as the ground-truth. The hamming accuracy
between a ground-truth vector gi and a prediction vector pi is calculated as

hAcc =
1
N

N∑

i=1

xor(gi,pi)
C

,

where N and C are the total number of samples and classes, respectively.
For the evaluation of phase recognition we calculated the per-frame accuracy,

mean class precision and recall and the f1-score of the phase classes.

3.2 Tool Recognition

We trained ResNet-152 for multi-label tool classification into 21 classes on a
training set of 32,529 frames. In our pipeline each video frame was pre-processed
by re-shaping to input dimensions of 224 × 224 and applying random horizontal
flips and rotations (within 45◦) with mirror padding. ResNet-152 was initialized
with the weights trained on ImageNet [17] and the output layer was initialized
with a gaussian distribution (μ = 0, σ = 0.01). The model was trained using
stochastic gradient descent with a mini-batch size of 8, a learning rate of 10−4

and a momentum of 0.9 for a total of 10,000 iterations.
Evaluated on the train and hold-out test sets, ResNet-152, achieved a ham-

ming accuracy of 99.58% and 99.07%, respectively. The subset accuracy was
calculated at 92.09% and 82.66%, which is lower because predictions that do not
exactly match the ground-truth are considered to be wrong. Finally, the AUC
was calculated at 99.91% and 99.59% on the train and test sets, respectively. Our
model was further evaluated on the CATARACTS challenge test set achieving
an AUC of 97.69%, which is close to the winning AUC of 99.71%. Qualitative
results are shown in Fig. 3. The model was able to recognize the tools in most
cases, with the main challenges posed by the quality of the video frames and
the location of the tool with regards to the surface of the eyeball (the tools were
annotated as present when touching the eyeball).

3.3 Phase Recognition

For phase recognition we trained both the LSTM and GRU models on both
binary and feature inputs. The length of the input sequence was tuned at 100,
which corresponds to around 33 s within the video. This is a reasonable choice
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Fig. 3. Example results for the tasks of tool and phase recognition. The main chal-
lenge in recognizing tools was noisy frames. In the first row the viscoelastic canula is
successfully recognized (green) in all but the first blurry frame. In the second row, the
model produced a false positive (red) on the micromanipulator as it is not touching
the eyeball. In the last two rows we can see the results of phase recognition. The model
produced false predictions in the absence of tools, such as in phase transitions.

since most phases span a couple of minutes. For phase inference we took 100
frame batches, extracted tool-features and classified the 100-length batches in
a sliding-window fashion. Both models were trained using the Adam optimizer
with a learning rate of 0.001 and momentum parameters β1 = 0.9 and β2 = 0.999
for 4 epochs.

Tested on binary inputs the LSTM achieved an accuracy of 75.20%, 66.86%
and 85.15% on the train, validation and hold-out test sets, respectively, as shown
in Table 1. The discrepancy in the performance on the validation and test sets
seems to occur because the test set might be easier for the model to infer. An
additional challenge is class imbalance. For example, phases 3 and 4 appear only
in two videos and are not “learned” adequately. These phases appear in the
validation set but not in the test set, reducing the performance on the former.
When trained on tool features the LSTM achieved better results across all sets.
In order to further assess the ability of the LSTM to generalize, we tested on the
CATARACTS test set and achieved an accuracy of 68.75% and 78.28% for binary
and features input, respectively. The LSTM trained on tool features was shown
to be the best model for phase recognition in our work. Similarly, we assessed
the performance of the GRU model. On binary inputs the model achieved accu-
racies of 89.98% and 71.61% on train and test sets, which is better than the
LSTM counterpart. On feature inputs, however, GRU had worse performance
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with a test accuracy of 68.96%. As a conclusion, tool features other than binary
presence supplied important information for the LSTM but failed to increase the
performance of the GRU. However, GRU performed comparably well on binary
inputs despite having less parameters than the LSTM. As presented in Fig. 3,
the presence of tools was essential for the inference of the phase; e.g. in the third
row of the figure it is shown how the correct phase was maintained as long as
the tool appeared in the field of view.

Table 1. Evaluation results for the task of phase recognition with LSTM and GRU:
accuracy and average class f1-score (%). The models were evaluated on the train,
validation and test sets which came from the 25 training CATARACTS videos. To
further test the ability to generalize in a different dataset, we also evaluated the models
on the 25 testing CATARACTS videos.

Model Input Train Validation Test CATARACTS test set

Acc. F1-score Acc. F1-score Acc. F1-score Acc. F1-score

LSTM Binary 75.20 65.17 66.86 62.11 85.15 77.69 68.75 68.50

Features 89.99 83.17 67.56 68.86 92.05 88.10 78.28 74.92

GRU Binary 89.98 90.31 75.73 75.48 89.85 85.10 71.61 67.33

Features 96.90 94.40 66.70 68.55 85.03 82.79 68.96 66.62

4 Discussion and Conclusion

In this paper, we presented a deep learning framework for surgical workflow
recognition in cataract videos. We extracted tool presence information from
video frames and employed it to train RNN models for surgical phase recog-
nition. Residual learning allowed for results at the state-of-the-art performance
achieving AUC of 97.69% on the CATARACTS test set and recurrent neural
networks achieved phase accuracy of 78.28% showing potential in automating
workflow recognition. The main challenge in our model was the scarcity of some
phase classes that prohibited learning all surgical phases equally well. We could
address this in future work using data augmentations and weighted loss func-
tions or stratification sampling techniques. Additionally, in future work we could
experiment with different architectures of RNNs like bidirectional networks or
temporal convolutional networks (TCNs) [18] for an end-to-end approach which
is appealing.
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