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Abstract. Brain deformation (or brain shift) during neurosurgical pro-
cedures such as tumor resection has a significant impact on the accuracy
of neuronavigation systems. Compensating for this deformation during
surgery is essential for effective guidance. In this paper, we propose
a method for brain shift compensation based on registration of vessel
centerlines derived from preoperative C-Arm cone beam CT (CBCT)
images, to intraoperative ones. A hybrid mixture model (HdMM)-based
non-rigid registration approach was formulated wherein, Student’s t and
Watson distributions were combined to model positions and centerline
orientations of cerebral vasculature, respectively. Following registration
of the preoperative vessel centerlines to its intraoperative counterparts,
B-spline interpolation was used to generate a dense deformation field
and warp the preoperative image to each intraoperative image acquired.
Registration accuracy was evaluated using both synthetic and clinical
data. The former comprised CBCT images, acquired using a deformable
anthropomorphic brain phantom. The latter meanwhile, consisted of
four 3D digital subtraction angiography (DSA) images of one patient,
acquired before, during and after surgical tumor resection. HdMM con-
sistently outperformed a state-of-the-art point matching method, coher-
ent point drift (CPD), resulting in significantly lower registration errors.
For clinical data, the registration error was reduced from 3.73 mm using
CPD to 1.55 mm using the proposed method.

1 Introduction

Brain shift compensation is imperative during neurosurgical procedures such as
tumor resection as the resulting deformation of brain parenchyma significantly
affects the efficacy of preoperative plans, central to surgical guidance. Conven-
tional image-guided navigation systems (IGNS) model the skull and its contents
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as rigid objects and do not compensate for soft tissue deformation induced dur-
ing surgery. Consequently, non-rigid registration is essential to compensate to
update surgical plans, and ensure precision during image-guided neurosurgery.

C-arm computed tomography (CT) is a state-of-the-art imaging system,
capable of acquiring high resolution and high contrast 3D images of cerebral
vasculature in real time. However, in contrast to other intraoperative imaging
systems such as magnetic resonance (MR), ultrasound (US), laser range scan-
ners and stereo vision cameras, few studies have investigated the use of C-arm
CT in an interventional setting for brain shift compensation [1]. The advantages
of C-arm interventional imaging systems are, they do not require special surgi-
cal tools as with MR and provide high resolution images (unlike MR and US).
Additionally, they enable recovery of soft tissue deformation within the brain,
rather than just the external surface (as with laser range imaging and stereo
vision cameras). The downsides are a slight increase in X-ray and contrast agent
dose.

Recently, Smit-Ockeleon et al. [5] employed B-spline based elastic image regis-
tration to compensate for brain shift, using pre- and intraoperative CBCT images
(although, not during surgical tumor resection). Coherent point drift (CPD) [8],
a state-of-the-art non-rigid point set registration approach was used in [3] and [7],
for brain shift compensation. Both studies used thin plate splines (TPS)-based
interpolation to warp the preoperative image to its intraoperative counterparts,
based on the initial sparse displacement field estimated using CPD. Although
[3] demonstrated the superiority of CPD compared to conventional point match-
ing approaches such as iterative closest point (ICP), a fundamental drawback
of the former in an interventional setting is that it lacks automatic robustness
to outliers. To overcome this limitation, Ravikumar et al. [10] proposed a prob-
abilistic point set registration approach based on Student’s t-distributions and
Von-Mises-Fisher distributions for group-wise shape registration.

In this paper we propose a vessel centerlines-based registration framework
for intraoperative brain shift compensation at different stages of neurosurgery,
namely, at dura-opening, during tumor resection, and following tumor removal.
The main contributions of our work are: (1) a feature based registration frame-
work that enables the use of 3D digital subtraction angiography (DSA) images
and 3D CBCT acquired using C-arm CT, for brain shift compensation; (2) the
formulation of a probabilistic non-rigid registration approach, using a hybrid
mixture model (HdMM) that combines Student’s t-distributions (S, for auto-
matic robustness to outliers) to model spatial positions, and Watson distribu-
tions (W) to model the orientation of vessel centerlines; and (3) to the best
of our knowledge, this is the first paper exploring the use of pre-, intra-, and
post-surgery 3D DSA for brain shift compensation in a real patient.

2 Materials and Methods

This study investigates the use of C-Arm CT, which captures 3D cerebral vascu-
lature, as pre- and intraoperative image modalities for brain shift compensation
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during surgical tumor resection. Vessel centerlines were extracted from pre- and
intraoperative images automatically using Frangi’s vesselness filter [4] and a
homotopic thinning algorithm proposed in [6]. The registration pipeline we fol-
lowed is: (1) rigid and non-rigid registration, (2) an optional resection detection
and registration refinement step, and (3) B-Spline image warping.

Hybrid Mixture Model-Based Registration: The extracted centerlines are
represented as 6D hybrid point sets, comprising spatial positions and their asso-
ciated undirected unit vectors representing the local orientation of vessels. Pre-
operative centerlines are registered to their intraoperative counterparts using a
pair-wise, hybrid mixture model-based rigid and non-rigid registration approach.
Rigid registration is used to initialize the subsequent non-rigid step, in all exper-
iments conducted. Recently, [10] proposed a similar approach for group-wise
shape registration. Here, hybrid shape representations which combined spatial
positions and their associated (consistently oriented) surface normal vectors are
employed to improve registration accuracy for complex geometries. However,
their approach is designed to model directional data using Von-Mises-Fisher
(vmF) distributions and correspondingly required the surface normal vectors to
be consistently oriented. vmF distributions lack antipodal symmetry and con-
sequently are not suitable to model axial data such as vessel centerlines. We
propose a variant of this registration approach that incorporates Watson distri-
butions (whose probability density is the same in either direction along its mean
axis) in place of vmFs, to address this limitation.

Registration of the preoperative (Source) and intraoperative (Target) ves-
sel centerlines is formulated as a probability density estimation problem. Hybrid
points defining the Source are regarded as the centroids of a HdMM, which is
fit to those defining the Target, regarded as its data points. This is achieved
by maximizing the log-likelihood (llh) function, using expectation-maximization
(EM). The desired rigid and non-rigid transformations are estimated during
the maximization (M)-step of the algorithm. By assuming the spatial position
(xi) and centerline orientation (ni) components of each hybrid point in the
Target set to be conditionally independent, their joint probability density func-
tion (PDF) can be approximated as a product of the individual conditional
densities. The PDF of an undirected 3D unit vector ni sampled from the jth

component’s Watson distribution in a HdMM, with a mean mj , is expressed as:
p(±ni|mj , κj) = M( 12 , D
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Assuming all i = 1...N hybrid points in the Target (T) to be independent and
identically distributed, and as data points generated by an j = 1...M -component
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mixture model (defining the Source), the llh is expressed as shown in Eq. 1a.
Here, μμμj and πj represent the spatial position and mixture coefficient of the
jth component in the HdMM. In the first stage, rigid transformation (T ) and
model parameters associated with the Student’s t-distributions in the mixture
(Θp = {νj , σ

2}), namely, translation, rotation, scaling, and degrees of freedom
(νj), variance (σ2), respectively, are updated in the M-step similarly to [9]. In
the second stage, the desired non-rigid transformation (T ) is expressed as a
linear combination of radial basis functions, and the associated parameters are
estimated as described in [8]. Tikhonov regularization is employed to ensure
that the estimated deformation field is smooth. The resulting cost function that
is maximized to estimate the desired non-rigid transformation is expressed as
shown in Eq. 1b. Here, Q represents the expected llh, t represents the current
EM-iteration, P � represents the corrected posterior probabilities estimated in
the expectation (E)-step (as described in [9]), v is the displacement function
mapping the Source to the Target, λ controls the smoothness enforced on the
deformation field and W and G represent the weights associated with the radial
basis functions and the Gaussian kernel, respectively. During both rigid and non-
rigid registration, parameters associated with the Watson distributions (Θd =
{κj}) are estimated as described in [2].

Resection Detection and Registration Refinement: While the Student’s
t-distributions in the proposed framework provide automatic robustness to out-
liers, it is difficult to cope with large amounts of missing data in the Target
relative to the Source, as is the case during and following tumor resection. Con-
sequently, we formulated a mechanism for refining the correspondences, in order
to accommodate for the missing data during registration. This was achieved by
detecting and excluding points in the Source that lie within the resected region
in the Target, following both rigid and non-rigid registration. The refined corre-
spondences in the Source were subsequently non-rigidly registered (henceforth
referred to as HdMM+) to the Target, to accommodate for the missing data
and improve the overall registration accuracy. Points within the resected region
were identified by first building a 2D feature space for each point in the Source.
The selected features comprised: the minimum euclidean distance between each
Source point and the points in the Target; and the number of points in the
Target which had been assigned posterior probabilities greater than 1e−5, for
each point in the Source. Subsequently, PCA was used to reduce the dimen-
sionality of this feature space and extract the first principal component. Finally,
automatic histogram clipping using Otsu-thresholding was performed on the first
principal component, to identify and exclude points within the resected region.

3 Experiments and Results

Data Acquisition: A deformable anthropomorphic brain phantom Fig. 1,
(manufactured by True Phantom Solutions Inc., Windsor, Canada) is used to
acquire CBCT images and conduct synthetic experiments. It comprises multiple
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structures mimicking real anatomy, namely, skin, skull, brain parenchyma, ven-
tricular system, cerebral vasculature and an inflatable tumor. A removable plug
is embedded in the skull to emulate a craniotomy. Brain tissue and blood vessels
are made from polyurethane, a soft tissue simulant. In order to simulate mul-
tiple stages of tumor resection surgery, 40 ml distilled water was injected into
the inflatable tumor initially. The tumor was subsequently deflated to 25 ml,
15 ml, 5 ml and 0 ml. At each stage, a 10s 3D CBCT image was acquired using
the Ultravist 370 contrast agent to enhance the blood vessels. The acquisitions
were reconstructed on a 512 × 512 × 398 grid at a voxel resolution of 0.48mm3.
The experimental setup and a typical acquisition of the phantom are shown in
Fig. 1. A detailed description and visualization of the phantom is included in the
supplementary material.

The clinical data used in this study was provided by our clinical partner. It
comprised 3D DSA images acquired during tumor resection surgery of a glioma
patient. The images were acquired preoperatively, following craniotomy, during
resection, and postoperatively, to monitor blood flow within the brain during
and after surgery. The surgery was performed in a hybrid operating room with
Siemens Artis zeego system (Forchheim, Germany) and as with the phantom
experiments, the acquisitions were reconstructed on a 512 × 512 × 398 grid
with voxel resolution of 0.48 mm3. We evaluated the proposed approach using
the phantom and clinical data sets. The former involved four independent reg-
istration experiments. The image acquired with the tumor in its deflated state
(with 0 ml of water) was considered to be the Source, while, those acquired
at each inflated state of the tumor were considered as Targets. The latter
involved three independent experiments, namely, registration of the preopera-
tive image to images acquired following craniotomy, during tumor resection, and
postoperatively.

Fig. 1. The CAD model of the phantom, the experiment setting and an example slice
of CBCT acquisition of the phantom are shown from left to right.

Results: We compared the performance of our registration method with CPD,
using the phantom and clinical data sets. For fair comparison, we fixed the
parameters associated with the non-rigid transformation, namely, the smooth-
ing factor associated with the Tikhonov regularization and the width of the
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Gaussian kernel, to 1, for both HdMM and CPD. Following preliminary inves-
tigations, we identified 0.5 to be a suitable value for the uniform distribution
component weight in CPD, which remained fixed for all experiments. The max-
imum number of EM-iterations was set to 100 for all experiments, using both
methods. The mean surface distance metric (MSD) is used to evaluate registra-
tion accuracy in all experiments conducted. As the phantom data set lacks any
tumor resection/missing data, these samples are registered using just CPD and
HdMM. In contrast, the clinical data set is registered using CPD, HdMM and
HdMM+, to evaluate the gain in registration accuracy provided by the corre-
spondence refinement step (in HdMM+), when dealing with missing data. We
assess registration accuracy for both data sets in two ways: (1) by evaluating
the MSD between the registered Source and Target sets (henceforth referred
to as Error1); and (2) by evaluating the MSD between the vessel centerlines,
extracted from the warped preoperative image, and each corresponding intraop-
erative image (henceforth referred to as Error2). Additionally, for the clinical
data set, in order to evaluate the degree of overlap between the cerebral vas-
culature following registration of the preoperative to each intraoperative image,
we also compute the Dice and Jaccard scores between their respective vessel
segmentations.

The average MSD errors, Dice, and Jaccard scores for all experiments are
summarized by the box plots depicted in Fig. 2. These plots indicate that,
HdMM consistently outperforms CPD in all experiments conducted, and in terms
of all measures used to assess registration accuracy. The initial average MSD
is 5.42± 1.07 mm and 6.06± 0.68 mm for phantom and clinical data, respec-
tively. Applying the registration pipeline, the average Error1 for the phantom
data set (averaged across all four registration experiments), is 0.89± 0.36 mm
and 0.50± 0.05 mm, using CPD and HdMM respectively. While, the average
Error2 is 1.88± 0.52 mm and 1.54± 0.15 mm for CPD and HdMM, respec-
tively. For the clinical data set, the average Error1 is 2.44± 0.28 mm and
1.15± 0.36 mm and average Error2 is 3.72± 0.46 mm and 2.24± 0.55 m, for
CPD and HdMM, respectively. Further improvement in registration accuracy
is achieved using HdMM+, which achieved average Error1 and Error2 of
0.78± 0.12 mm and 1.55± 0.22 mm, respectively. The mean Dice and Jaccard
scores (refer to Fig. 2(c)) evaluated using vessels segmented from the warped
preoperative image and each corresponding intraoperative image indicate that,
similar to the MSD errors, HdMM+ outperformed both CPD and HdMM. To
qualitatively assess the registration accuracy of our approach, vessels extracted
from the warped preoperative image, are overlaid on its intraoperative counter-
part (acquired following craniotomoy and tumor resection), as shown in Fig. 3.
Figure 3(a) and (c) depicts the registration result of CPD, while, Fig. 3(b) and
(d) depicts that of HdMM. These images summarize the superior registration
accuracy of the proposed approach, relative to CPD.
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Fig. 2. MSD errors evaluated following registration of the phantom and clinical data
sets are presented in (a) and (b) respectively. Average Dice and Jaccard scores evalu-
ating the overlap between vessels segmented in the registered preoperative and corre-
sponding intraoperative images are depicted in (c).

Fig. 3. Overlay of 3D cerebral vasculature segmented from the registered preoperative
(yellow) DSA image and the target intraoperative image (green). Using CPD (a) and
HdMM (b) prior to resection, using CPD (c) and HdMM (d) post resection.

4 Discussion and Conclusion

The presented results (refer to Figs. 2 and 3) for the phantom and clinical data
experiments indicate that the proposed approach is able to preserve fine struc-
tural details, and consistently outperforms CPD in terms of registration accu-
racy. This is attributed to the higher discriminative capacity afforded by the
hybrid representation of vessel centerlines used by HdMM, enabling it to estab-
lish correspondences with greater anatomical validity than CPD. Complex struc-
tures such as vessel bifurcations require more descriptive features for accurate
registration, than afforded by spatial positions alone. Consequently, a registra-
tion framework such as HdMM that jointly models the PDF of spatial positions
and centerline orientations, is better equipped for registering complex geometries
such as cerebral vasculature than point matching methods that rely on spatial
positions alone (such as CPD).



Intraoperative Brain Shift Compensation Using a Hybrid Mixture Model 123

An additional advantage of the proposed approach is its inherent and auto-
matic robustness to outliers that may be present in the data. This is attributed
to the heavy-tailed nature of the constituent Student’s t-distributions in the
HdMM, and the estimation of different values for the degrees of freedom asso-
ciated with each component in the HdMM. This is a significant advantage
over CPD, as the latter requires manual tuning of a weight associated with
the uniform distribution component in the mixture model, which regulates its
robustness to outliers during registration. These advantages and the significant
improvement in registration accuracy afforded by HdMM indicate that it is
well-suited to applications involving registration of vascular structures. This
is encouraging for its future use in intraoperative guidance applications, and
specifically, for vessel-guided brain shift compensation.

Evaluation on a single clinical data set is a limitation of the current study.
However, the proposed work-flow is not standard clinical practice, as there is
a limited number of hybrid installations, equipped with CBCT capable devices
in upright sitting position. Furthermore, the protocol induces a slight amount
of additional X-ray and contrast agent dose which is typically not a problem
for the patient population under consideration. However, prior to this study,
there was no indication whether vessel-based brain shift compensation can be
performed successfully at all, given 3D DSA images. Thus, getting a single data
set posed a significant challenge. The potential of the proposed workflow to
ensure high precision in surgical guidance, in the vicinity of cerebral vasculature,
is particularly compelling for neurosurgery.

Disclaimer: The methods and information presented in this work are based on
research and are not commercially available.
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