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Abstract. Existing studies have demonstrated that combining genomic
data and histopathological images can better stratify cancer patients
with distinct prognosis than using single biomarker, for different
biomarkers may provide complementary information. However, these
multi-modal data, most high-dimensional, may contain redundant fea-
tures that will deteriorate the performance of the prognosis model, and
therefore it has become a challenging problem to select the informative
features for survival analysis from the redundant and heterogeneous fea-
ture groups. Existing feature selection methods assume that the survival
information of one patient is independent to another, and thus miss the
ordinal relationship among the survival time of different patients. To
solve this issue, we make use of the important ordinal survival informa-
tion among different patients and propose an ordinal sparse canonical
correlation analysis (i.e., OSCCA) framework to simultaneously identify
important image features and eigengenes for survival analysis. Specifi-
cally, we formulate our framework basing on sparse canonical correlation
analysis model, which aims at finding the best linear projections so that
the highest correlation between the selected image features and eigen-
genes can be achieved. In addition, we also add constrains to ensure that
the ordinal survival information of different patients is preserved after
projection. We evaluate the effectiveness of our method on an early-
stage renal cell carcinoma dataset. Experimental results demonstrate
that the selected features correlated strongly with survival, by which we
can achieve better patient stratification than the comparing methods.
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1 Introduction

Cancer is the most common form of diseases worldwide. It is reported that the
number of affected people in developing country will reach 20 million annually as
early as 2025 [1]. Effective and accurate prognosis prediction of human cancer,
especially at its early stage has attracted much attention recently. So far, many
biomarkers have been shown to be associated with the prognosis of cancers,
including the histopathological images, genomic signatures, proteomics makers
and demographical information.

Fig. 1. The flowchart of the proposed method.

Early studies on the prognosis of cancer often focus on using single-modality
biomarker (e.g., imaging or genomic data). However, in these studies, some use-
ful complementary information across different modalities of data is ignored.
Recently, some studies explored to combine both imaging and genomic biomark-
ers for survival analysis [2–4]. For instance, Cheng et al. [2] constructed a novel
framework that can predict the survival outcomes of patients with renal cell car-
cinoma by using a combination of quantitative image features and gene expres-
sion feature. Yuan [3] et al. integrated both image data and genomic data to
improve the survival prognosis for breast cancer patients. These existing studies
have suggested that different modalities of data complement with each other and
provide better patient stratification when used together.

Although integrating imaging and genomic features can better predict the
clinical outcome for cancer patients, simply combing these features may bring
redundant features that will deteriorate the prediction performance, and thus
feature selection is a key step for multi-modal feature fusion. In the existing
studies [2,3], the authors usually simply concatenate multi-modal data together
at first, and then apply traditional feature selection methods (e.g., LASSO) to
select components that are related to cancer prognosis. However, these feature
selection methods assume that the survival time of one patient is independent
to another, and thus missing the strong ordinal relationship among the survival
time of different patients, e.g., the survival time of patient A is longer than that
of patient B. In addition, most of the studies [2,3] directly combine morpholog-
ical and genomic data together for survival analysis, which neglects correlation



650 W. Shao et al.

among the multi-modal data. As a matter of fact, the exploitation of multi-modal
association has been widely accepted as a key component of the state-of-the-art
multi-modality based machine learning approaches [5].

Based on the above consideration, in this paper, we take advantage of the
ordinal survival information among different cancer patients, and propose an
ordinal sparse canonical correlation analysis (OSCCA) framework that can select
features from multi-modal data for survival analysis. Specifically, we formulate
our framework based on sparse canonical correlation analysis (i.e., SCCA), which
is a powerful association method that can identify linear projections to achieve
the highest correlation between the selected imaging and genomic components.
In addition, we add constrains to ensure that the ordinal information of differ-
ent groups of patients is preserved, i.e., the average projection of the patients
from the long-term survival groups should be larger than that of short-term sur-
vival groups. The experimental results on a public available early-stage clear cell
renal cell carcinoma (ccRCC) dataset demonstrate that the proposed method
outperforms comparing methods in terms of patient stratification.

Table 1. Demographics and clinical characteristics

Characteristics Summary Characteristics Summary

Patients Stage

Censored 188 Stage I 201

Non-censored 55 Stage II 42

Age (Y): 59.1 ± 12.2 Follow-up (M): 43.2 ± 25.2

2 Method

Figure 1 shows the flowchart of our framework, which includes three major steps,
i.e., feature extraction, ordinal sparse canonical correlation analysis based fea-
ture selection (OSCCA), and prognostic prediction. Before giving the detailed
descriptions of these steps, we will firstly introduce the dataset used in this study.

Dataset: The Cancer Genome Atlas (TCGA) project has generated multimodal
genomic and imaging data for different types of cancer. Renal cell carcinoma is
the most common type of cancer arising from kidney. In this study, we test our
method on an early-stage (i.e., stage I and stage II) ccRCC dataset [2] derived
from TCGA. Specifically, this dataset contains pathological imaging, genomic,
and clinical data for 243 early-stage renal cell carcinoma patients. Of the 243
samples, 188 patients are censored, which means that the death events of them
were not observed during the follow-up period, and their exact survival times
are longer than the recorded data. The remaining 55 samples are non-censored
patients, and their recorded survival times are the exact time from initial diag-
nosis to death. Table 1 summarizes the demographics of all the samples.
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Feature Extraction: For each image, we firstly apply the method in [6] to seg-
ment the nucleus in the whole-slide image, and then for each segmented nucleus,
we extract ten different features [2], i.e., nuclear area (denoted as area), lengths
of the major and minor axes of cell nucleus, and the ratio of major axis length to
minor axis length (major, minor, and ratio), mean pixel values of nucleus in RGB
channels respectively (rMean, gMean, and bMean), and mean, maximum, and
minimum distances (distMean, distMax, and distMin) to its neighboring nuclei.
Next, for each type of feature, a 10-bin histogram and five statistic measurements
(i.e., mean, SD, skewness, kurtosis, and entropy) are used to aggregate the cell-
level features into patient-level features, and thus a 150-dimensional imaging
feature for each patient can be obtained. Here, we use area bin1 to represent
the percentage of very small nuclei while area bin10 indicates the percentage of
very large nuclei in the patient sample. As to gene expression data, we firstly
use co-expression network analysis algorithms to cluster genes into co-expressed
modules, and then summarize each module as an eigengene (gene modules are
shown in Supplementary Materials). This algorithm yields 15 coexpressed gene
modules. More details about the genomic feature extraction can be found in [2].

Sparse Canonical Correlation Analysis: For the derived imaging and eigen-
gene features, we implement our feature selection model under SCCA frame-
work. Specifically, let XH ∈ RN×p be the histopathological imaging data, and
XG ∈ RN×q be the extracted eigengenes data, where N is the number of the
patients, and p and q are the feature number of imaging data and eigengene
data, respectively. The objective function of SCCA is:

min
ωH ,ωG

− (ωH)T (XH)T XGωG + r1‖ωH‖1 + r2‖ωG‖1
s.t. ‖XGωG‖22 ≤ 1; ‖XHωH‖22 ≤ 1

(1)

where the first term in Eq. (1) seeks linear transformations (i.e., ωH ,ωG) to
achieve the maximal correlation between imaging and eigengene data, the second
and third L1-norm regularized terms are used to select a small number of feature
that can maximize the association between the multi-modal data.

Ordinal Sparse Canonical Correlation Analysis: In the SCCA model,
we only consider the mutual dependency between imaging and genomic data,
and thus ignore the survival information of patients. Although the study in
[2] used the survival information for feature selection, they assume that the
survival information of one patient is independent to another, and thus miss
the strong ordinal relationship among the survival time of different patients.
To address this problem, we propose an ordinal sparse canonical correlation
analysis (OSCCA) method to simultaneously identify important features from
the multi-modal data. Specifically, we divide X = [XH ,XG] ∈ RN×(p+q) into
XC and XNC , where XC ∈ Rk×(p+q) and XNC ∈ R(N−k)×(p+q) correspond
to the multi-modal features for censored and non-censored patients,respectively,
and k denotes the number of censored patients. We also define Y = [Y C ,Y NC ],



652 W. Shao et al.

where Y C ∈ Rk and Y NC ∈ R(N−k) indicate the recorded survival time for
censored and non-censored patients, respectively. In order to reduce the chance
that all patients in one group are censored, we divide all the patients (include
both censored and non-censored patients) into four groups with equal size based
on the quartiles of their recorded survival time, where each patient in group
i(i = 1, 2, 3, 4) has longer survival time than that in group j if i > j. We
denote the mean imaging and eigengene feature for censored patients in group
i as ui

H and ui
G, and those for non-censored patients in group i as vi

H and vi
G,

respectively. We show the objective function of the OSCCA model as:

min
ωH ,ωG

− (ωH)T (XH)T XGωG + r1‖ωH‖1 + r2‖ωG‖1 + r3

∥
∥
∥XNCω − Y NC

∥
∥
∥

2

2
(2)

s.t. (vi+1
G − vi

G)ωG > 0, (vi+1
H − vi

H)ωH > 0 (3)

(ui+1
G − vi

G)ωG > 0, (ui+1
H − vi

H)ωH > 0 (4)

where the first three terms in Eq. (2) are as same as they are stated in the
SCCA model, the forth part is a regression term, where ω = [ωH ,ωG] ∈ Rp+q.
We use this term to estimate the relationship between the multi-modal data and
the survival time for non-censored patients, since their survival information are
accurate. We add two linear inequalities in (3) to ensure that the ordinal survival
information of different groups of non-censored patients is preserved after the
projections are adopted on both imaging and eigengenes data. In addition, since
the genuine survival time for censored patients are longer than the recorded data,
it is easy to infer that the average projection for the censored patients in groups
i+1 should be larger than that for non-censored patients in group i, and we also
add this ordinal relationship for both eigengene and imaging data by adding two
inequality constrains shown in (4).

Optimization: We adopt an alternating strategy to optimize ωH and ωG in
the proposed OSCCA model. Specifically, given the fixed ωH , the optimization
problem for ωG can be reformulated as:

min
ωG

1
2
(ωG)T AωG + (ωG)T B + r2‖ωG‖1

s.t. CωG > 0
(5)

where B = −(XG)T XHωH + 2r3(XNC
G )T (XNC

H ωH − Y NC), in which XNC
G ∈

R(N−k)×p and XNC
H ∈ R(N−k)×q correspond to the imaging and eigengene

data for non-censored patients, respectively. Also, A = 2r3(XNC
G )T XNC

G ,and
C = [v4

G − v3
G;v3

G − v2
G;v2

G − v1
G;u4

G − v3
G;u3

G − v2
G;u2

G − v1
G] ∈ R6×q. For the

optimization problem in (5), we adopt the alternating direction method of mul-
tipliers (i.e., ADMM) algorithm to solve it. To change the problem in (5) into
ADMM form, we introduce variables J ∈ Rq and non-negative vector θ ∈ R6,
which is used to transform the inequality constraints CωG > 0 into equality
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constrains CωG − θ = 0, Eq. (5) can be reformulated as:

min
ωG

1
2
(ωG)T AωG + (ωG)T B + r2‖J‖1

s.t. J = ωG , CωG − θ = 0
(6)

Then, the augmented Lagrangian form of Eq. (6) can be written as:

L(ωG,J ,θ,Q,R) =
1
2
(ωG)T AωG + (ωG)T B + r2‖J‖1 + <Q,ωG − J>

+
ρ1
2

‖ωG − J‖22 +<R,CωG − θ>+
ρ2
2

‖CωG − θ‖22
(7)

where Q and R are Lagrange multipliers. A general ADMM scheme
for Eq. (7) repeats the following 5 steps until convergence: (1) ωG ←
arg minωG

L(ωG,J ,θ,Q,R): It is a convex problem with respect to ωG and we
can solve it via gradient descent method. (2) J ← arg minJ L(ωG,J ,θ,Q,R):
This optimization problem can be formulated as: minJ

ρ1
2 ‖ωG − J‖22 +r2‖J‖1 −

(Q)T J . Since the L1-norm is non-differentiable at zero, a smooth approxima-
tion has been estimated for L1 term by including an extremely small value.
Then, by taking the derivative regarding to J and let it to be zero, we can
obtain J = (r2D + ρ1I)−1(Q + ρ1ωG), where D is a diagonal matrix with
the k-th element as 1/‖Jk‖1. Here, Jk denotes the k-th element in J . (3) θ ←
arg minθL(ωG,J ,θ,Q,R): It has a close form solution with the k-th element
θk = max(0, Tk), where Tk corresponds to the k-th element in T = CωG + 1

ρ2
R.

(4) Q = Q + ρ1(ωG − J). (5) R = R + ρ2(CωG − θ). After ωG is determined,
we use similar method to optimize ωH .

Prognostic Prediction: We build Cox proportional hazards model [2] for sur-
vival analysis. Specifically, we firstly divide all patients into 10 folds, with 9
folds used for training the proposed OSCCA model and the remaining for test-
ing, then the Cox proportional hazards model is built on the selected features
in the training set. After that, the median risk score predicted by the cox pro-
portional hazards model is used as a threshold to split patients into low-risk
and high-risk groups. Finally, we test if these two groups has distinct survival
outcome using Kaplan-Meier estimator and log-rank test [2].

3 Experimental Results

Experimental Settings: The parameters r1, r2, r3 in the OSCCA model are
tuned from {2−4, 2−5}, {2−5, 2−6} and {2−5, 2−6}, respectively, ρ1 and ρ2 in
Eq. (7) are fixed as 2−3. All the algorithms are implemented using MATLAB
2017.
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Fig. 2. Comparisons of the survival curves by applying different feature methods.

Results and Discussion: We compare the prognostic power of our proposed
OSCCA method with several other methods, including LASSO [2] and RSCCA,
as well as tumor staging. Compared to the proposed OSCCA model, RSCCA
method has the same objective function (shown in Eq. (2)), but neglect to take
the ordinal survival information (shown in the inequalities in (3) and (4)) into
consideration We show the survival curves of these four methods in Fig. 2. It
is observed that on one hand, the Kaplan-Meier curves for tumor Stage I and
Stage II are intertwined (log-rank test P = 0.962), which demonstrates that
the stratification of the early-stage renal cell carcinoma patients is a challeng-
ing task, on the other hand, OSCCA could achieve significantly better patient
stratification (log-rank test P = 7.2e − 3) than the comparing methods, which
shows the advantage of using ordinal survival information for feature selection.
In addition, it is worth noting that the proposed RSCCA could provide better
prognostic prediction than the LASSO method, this is because RSCCA considers
the correlation among different modalities for feature selection, which is better
than the direct combination strategy.

Next, in order to investigate the association between the selected imaging
feature and eigengenes, the spearman coefficients between XHωH and XGωG

on 10-fold testing data are shown in Fig. 3. Obviously, OSCCA generally outper-
forms the comparing methods in term of identifying high correlation between
imaging data and genomic data, and the better exploration of the inherent
correlation within multi-modal data may be the reason for the better patient
stratification performance of the proposed OSCCA method.

Lastly, we compare the features selected by OSCCA with those selected by
[2] in Table 2. We find that our method can identify new types of image features
(i.e., area bin10) that are related to large nuclei. It has been demonstrated that
the ccRCC patients with large values of nuclei size have worse prognosis [7] than
other patients. As to genomic features, two novel eigengenes (i.e., eigengene 9,
eigengene 14) are identified. The enrichment analysis on eigengene 9 shows that
it is related to mitotic cell cycle process and genome stability, and genes in this
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Table 2. Comparisons of the selected features by the method in [2] and OSCCA.

Image feature Eigengenes

LASSO [2] rMean bin8, rMean mean,
distMean bin10, rMean mean

Eigengene3, Eigengene13

OSCCA rMean bin9, major kurtosis,
area bin10, distMin bin1,
bMean bin8

Eigengene3, Eigengene9,
Eigengene14

module are frequently observed to co-express in multiple types of cancers [8]. In
addition, eigengene 14 is enriched with genes that are associated with immune
response, and it is reported that the deregulation of the immune response genes
are associated with the initiation and progression of cancers [9], and our discovery
can potentially shed light on the emerging immunotherapies. These results fur-
ther shows the promise of OSCCA to identify biologically meaningful biomarkers
for the prognosis of early-stage renal cancer patients.

Fig. 3. The spearman coefficients between XHωH and XGωG on 10-fold testing data.

4 Conclusion

In this paper, we develop OSCCA which is an effective multimodal feature selec-
tion method for patient stratification aiming at identifying subgroups of cancer
patients with distinct prognosis. The strength of our approach is its capability
of utilizing the ordinal survival information among different patients to identify
features that are associated with patient survival time. Experimental results on
an early-stage multi-modal renal cell carcinoma dataset have demonstrated that
the proposed OSCCA can identify new types of image features and gene modules
that are associated with patient survival, by which we can achieve significantly
better patients stratification than the comparing methods. Such prediction is
particularly important for early stage patients when the prediction is important
yet staging information from pathologists is not sufficient to meet the needs.
OSCCA is a general framework and can be used to find multi-modal biomarkers
for other cancers or predict response of specific treatment, which allow for better
patients management and cancer care in precision medicine.
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