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Abstract. The cardiothoracic ratio (CTR), a clinical metric of heart
size in chest X-rays (CXRs), is a key indicator of cardiomegaly. Manual
measurement of CTR is time-consuming and can be affected by human
subjectivity, making it desirable to design computer-aided systems that
assist clinicians in the diagnosis process. Automatic CTR estimation
through chest organ segmentation, however, requires large amounts of
pixel-level annotated data, which is often unavailable. To alleviate this
problem, we propose an unsupervised domain adaptation framework
based on adversarial networks. The framework learns domain invariant
feature representations from openly available data sources to produce
accurate chest organ segmentation for unlabeled datasets. Specifically, we
propose a model that enforces our intuition that prediction masks should
be domain independent. Hence, we introduce a discriminator that dis-
tinguishes segmentation predictions from ground truth masks. We eval-
uate our system’s prediction based on the assessment of radiologists and
demonstrate the clinical practicability for the diagnosis of cardiomegaly.
We finally illustrate on the JSRT dataset that the semi-supervised per-
formance of our model is also very promising.

1 Introduction

Cardiomegaly, also referred to as heart enlargement, is ranked as the most
frequent disease code among a public collection of radiology reports from the
National Library of Medicine (NLM) according to a National Institutes of Health
(NIH) study on medical information retrieval [4]. Cardiomegaly can result from
other diseases or medical conditions, such as coronary artery disease and hyper-
tension. It is suggested that cardiomegaly is associated with a high risk of sudden
cardiac death [13]. The prevention of cardiomegaly starts from early detection
and CTR measured from posterior-anterior (PA) CXR is an important indicator
for cardiomegaly [5]. CTR is calculated as the ratio of maximal horizontal car-
diac diameter to maximal horizontal thoracic diameter, and CTR greater than
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0.5 is commonly considered as cardiomegaly [3,5]. Manual measurement of CTR
requires domain knowledge in radiology and extensive human labor in annotating
CXRs, with results being error-prone due to observational error. This motivates
the automation of CTR calculation and cardiomegaly detection. One common
approach to estimating CTR is lung field segmentation [2].

Recent advances in Convolutional Neural Networks (CNNs) have brought
breakthroughs in the field of semantic segmentation, achieving state-of-the-art
performance [1,9]. Compared to traditional semantic segmentation, the anno-
tated data for medical image segmentation is more difficult to be acquired,
because of the limited available data and the tremendous cost of collecting and
labeling it. Transfer learning is a common approach to solve tasks with data
scarcity, utilizing the fact that CNNs generally learn feature representations that
are robust across a variety of tasks [14]. However, as segmentation predictions
based on these representations do not generalize very well to different datasets
because of the dataset shift phenomena [7], it is commonly required to fine-
tune the network based on a set of labels for the target domain. In particular,
CXRs from different hospitals are often taken with different imaging protocols
and commonly exhibit differences in noise levels, contrast and resolution. So it
is impractical to directly use transfer learning techniques. See Figs. 1 and 3 for
the differences between CXRs obtained at different hospitals.

Fig. 1. Illustration of the architecture. In our proposed adversarial training proce-
dure, the segmentor produces segmentations for the input images and the discrim-
inator attempts to distinguish these predictions from ground truth annotations. A
post-processing step (bottom part of figure) is used to predict cardiomegaly based on
the predicted lung segmentation masks.

In this paper, we propose an unsupervised domain adaptation (UDA) frame-
work based on adversarial networks, which allows us to learn domain invariant
feature representations from openly available data sources in order to produce
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accurate chest organ segmentation for unlabeled datasets. Domain adaptation
methods aim to reduce the problems of dataset shift, commonly, by aligning
the learned source and target representation in a joint embedding space [12,14].
Adversarial networks have become a popular choice to achieve this alignment, by
introducing a discriminator that is trained to distinguish between the source and
the target domain and by forcing the model to learn representations that can
fool the discriminator. We propose an alternative training scheme where we uti-
lize a discriminator that enforces our intuition that prediction masks should be
domain independent by discriminating segmentation predictions from ground
truth masks. We evaluate our system’s performance based on the assessment
of radiologists on a CTR estimation dataset. Our approach outperforms the
state-of-the-art UDA and shows the clinical practicability for the diagnosis of
cardiomegaly. We finally illustrate that our approach can also be used for semi-
supervised chest organ segmentation of the JSRT benchmark dataset.

2 Methodology

The complete pipeline is shown in Fig. 1. The adversarial neural network con-
sists of a discriminator and a segmentor. To demonstrate the generalization and
simplicity of the methodology, we use ResNet18 as a backbone architecture [8].
The discriminator is a standard ResNet classifier and the segmentor is inspired
by the Fully Convolutional Network (FCN) [9], but uses an output stride of 16,
following the example of [1]. Provided the predicted labels for the two lungs, the
CTR is calculated in a post-processing step.

2.1 Adversarial Training for Supervised Semantic Segmentation

Adversarial learning was first introduced in the Generative Adversarial Network
(GAN) [6] as a two-model zero-sum game, in which one model generates candi-
dates for the other network to evaluate. Inspired by [10], who used adversarial
learning to improve semantic segmentation results, we let S be the segmentor
and D be the discriminator. S is trained to produce realistic prediction masks
in order to fool D, which in turn is attempting to discriminate these predic-
tions from ground truth images in a binary classification. D is encouraged to
learn a complex loss between the higher-order label statistics, which in practice
cannot be explicitly formulated. Medical domain knowledge is being implicitly
incorporated into this formulation as part of the annotated ground truth data.

An alternative training scheme is applied to train the segmentor and discrim-
inator. Given D, the loss to be minimized for S is a multi-class cross-entropy
loss for semantic segmentation, in addition to the binary cross-entropy loss for
segmentation prediction S(x) being classified as ground truth by D [10].

Jseg(S(x),y) = − 1
BS

∑

s

1
HW

∑

i

∑

c

ys,i,c log S(xs,i,c) (1)
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JS(S(x),y) = Jseg(S(x),y) − λadv
1

BS

∑

s

log D(S(xs)) (2)

We use xs and ys to denote the input image and the ground truth, respectively,
where xs is of shape [H,W, 1] and ys is of shape [H,W,C] for C-class one-
hot encoded labels. BS denotes the batch size for the segmentor training and i
ranges over all the spatial positions. Given S, D is optimized to maximize the
probability of correctly distinguishing S(x) from y as

JD(S(x),y) = − 1
BD

∑

s

[log(D(ys)) + log(1 − D(S(xs)))] , (3)

where BD is the batch size for the discriminator training.

2.2 Unsupervised Domain Adaption

Our approach to unsupervised domain adaptation is illustrated in Fig. 1 and is
based on the idea that prediction masks, unlike input images and intermediate
feature representations, can be considered domain independent. Unlike in [10],
we do not only make use of a discriminator to judge the quality of the seg-
mentation mask, but also use it to align both source and target segmentation
results with the domain-independent prediction mask. We propose an alterna-
tive training scheme, where we present the discriminator with real ground truth
images from our source domain, ys, and with segmentation mask predictions
from both the source and the target domain, xs and xt, respectively. In order to
learn domain invariant feature representations, we exploit the fact that we can
train the segmentor using both the segmentation and the discriminator loss in
the source domain to produce accurate segmentation prediction masks. However,
simultaneously we enforce the fact that the segmentation masks for the target
domain need to be of high quality. The updated losses are

JS−DA(S(x),y) = JS(S(x),y) − λadv
1

BS

∑

t

log D(S(xt)), (4)

JD−DA(S(x),y) = JD(S(x),y) − 1
BD

∑

t

log(1 − D(S(xt))). (5)

2.3 Estimation of CTR

CTR is the ratio of maximal horizontal cardiac diameter to maximal horizon-
tal thoracic diameter, as formulated in the Danzer Method [3]. The diameters
are the horizontal distance between horizontal coordinates of corresponding key
points on the lung contours. As shown in Fig. 2, the maximal horizontal car-
diac diameter and maximal horizontal thoracic diameter can only be achieved
by points above cardiodiaphragmatic angles and costophrenic angles, which can
be retrieved by the use of a convex hull algorithm. With a hypothetical central
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line, the Danzer Method could be reinterpreted as A+B
C+D , while line segments A,

B, C, D are all maximized independently. The constraints of maximizing A + B
are that the points of intersection between lung contours and A and B must be
above cardiodiaphragmatic angles. The points of intersection between the lung
contours and the maximized A, B, C, and D are the key points. Provided the
estimated CTR, cardiomegaly can be predicted under different thresholds for
different age groups. Following [2], the threshold, T , is chosen to be 0.5.

2.4 Semi-Supervised Semantic Segmentation

We further illustrate our model’s ability for the task of semi-supervised learn-
ing. As the annotated data are limited, it is common in medical image segmen-
tation to have only a subset of training data labeled. Provided with a set of
labeled and unlabeled datapoints {{(x1, y1),...,(xl,yl)},{x̃1,...,x̃u}}, the task of
semi-supervised learning aims to exploit the underlying data properties of the
unlabeled data in addition to the labeled data. l and u correspond to the num-
ber of labeled and unlabeled examples, respectively. Similar to our unsupervised
domain adaptation, we adopt an alternating training strategy, where the model
is presented with both labeled and unlabeled data. We optimize S and D using
Eqs. 4 and 5 and treat the labeled data as the source domain and the unlabeled
data as the target domain. This lets us leverage the unlabeled data to align the
distribution of segmentation predictions with the distribution of ground truth
labels, effectively regularizing the model and improving overall performance.

Fig. 2. Contour landmarks for lower lungs: cardiodiaphragmatic angles (1) and
costophrenic angles (2).
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Fig. 3. Example images of the two datasets. The three images in the top row correspond
to examples of the JSRT dataset, overlaid with the segmentation annotation. The three
images in the second row originate from the Wingspan dataset overlaid with the key
points for the CTR calculation.

3 Experimental Results

The JSRT dataset is released by the Japanese Society of Radiological Technol-
ogy (JSRT) [11] and is a benchmark dataset for lung and heart segmentation.
JSRT contains 247 grayscale CXRs with annotated lung and heart pixel-wise
labels, where 154 have lung nodules and 93 don’t have lung nodules. Each CXR
has a size of 2048× 2048 and the pixel spacing is 0.175 mm. In this paper, JSRT
is used as the source domain for the unsupervised domain adaption. See Fig. 3
for examples from the dataset overlaid with the ground truth annotation.

The Wingspan dataset is provided by a private research institute, Wingspan
Technology. The dataset contains 221 grayscale CXRs for adult patients with
annotated key points for calculation of CTR. Each image was annotated by two
licensed radiologists independently, and the annotations were accepted by both
annotators and an independent reviewer. The de-identified data were collected
from 6 hospitals, which have different imaging protocols. The image sizes, pixel
spacing and clinical setup vary for each CXR. See Fig. 3 for examples from the
dataset with key point annotations and the differences to the JSRT dataset and
Fig. 4 for the large variety in the data modalities, which is not present in the
available public benchmark datasets.

In our work, we use the Wingspan dataset as the target domain. We inves-
tigate the potential of our proposed approach for unsupervised domain adapta-
tion for the task of CTR estimation. For this, we utilize the segmentation masks
of the source domain (JSRT) to perform segmentation on our target domain
(Wingspan) and use the predicted segmentation result to compute the CTR. We
then show how our method can be easily adapted to semi-supervised semantic
segmentation. We evaluate our approach on JSRT and illustrate that we can use
the information encoded in our unlabeled data. The adversarial networks are
trained using the Adam optimizer with a learning rate of 10−3. The discrimi-
nator is updated twice before the segmentor is updated, and λadv is 10−4. We
use BS = BD = 8. JSRT is randomly split into 80% for training and 20% for
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testing. For all the experiments in this paper, no data augmentation is used,
which further shows the robustness of our approach.

Table 1. Results for the unsupervised domain adaptation of CTR estimation experi-
ments. APE denotes average percentage error, MAE denotes mean absolute error, and
RMSE denotes root mean square error.

Method APE MAE RMSE

TL-SEG 16.0% ± 16.1% 8.9% ± 9.3% 0.13

TL-ADV 11.4% ± 11.2% 5.9% ± 5.9% 0.08

ADDA 9.2% ± 9.9% 5.1% ± 5.8 0.08

DA-ADV 5.8% ± 8.5% 3.3% ± 5.1% 0.06

Unsupervised Domain Adaptation: To assess our performance for unsuper-
vised domain adaptation, we compare our approach (DA-ADV) to three alterna-
tive approaches and present the quantitative results for the CTR estimation in
Table 1. The baseline uses the segmentor trained on the source domain directly
on the target domain. This corresponds to transfer learning without fine-tuning
on the target domain (TL-SEG). The baseline segmentor can be improved by
adding a discriminator with an adversarial training scheme (TL-ADV). Finally,
we compare with one of the state-of-the-art approaches for domain adaptation,
ADDA [14], which trains a segmentation network and then utilizes an adver-
sarial loss to align the source and the target domain feature representations in
order to minimize data shift. However, ADDA’s performance is highly depen-
dent on the quality of the segmentation network, which is not robust. We observe
that our method outperforms the alternative approaches, providing considerable
improvements for CTR estimation. Qualitative results for the predicted segmen-
tation masks and the key points for images from the Wingspan dataset can be
seen in Fig. 4. Based on the threshold of 0.5, we predict cardiomegaly with our
pipeline and achieve 87.78% in accuracy, 97.72% in precision, 84.21% in sensi-
tivity and 95.57% in specificity.

Fig. 4. Visualization of the segmentation and key point results for the Wingspan
dataset for our proposed domain adaptation method.

Semi-Supervised Semantic Segmentation: As a baseline we train the model
respectively on 10%, 25% and 50% of annotated data in a supervised manner.
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Table 2. Results for the semi-supervised segmentation experiments. IoU denotes the
Intersection over Union.

Method IoU (Lungs) IoU (Heart)

Human Observer [15] 94.6% ± 1.8% 87.8% ± 5.4%

Supervised 95.5% ± 0.3% 90.2% ± 0.5%

Supervised (50%) 82.9% ± 3.5% 71.2% ± 7.6%

Supervised (25%) 75.4% ± 5.7% 62.4% ± 11.9%

Supervised (10%) 60.1% ± 9.6% 39.4% ± 14.7%

Semi-Supervised (50%) 90.4% ± 3.1% 81.2% ± 2.5%

Semi-Supervised (25%) 89.9% ± 3.3% 75.5% ± 5.4%

Semi-Supervised (10%) 81.7% ± 4.6% 69.4% ± 7.2%

As a comparison, we train the model on the whole dataset in a semi-supervised
manner, while only portions of the data used in the supervised setting are pro-
vided with the labels. Table 2 provides the results of our semi-supervised exper-
iments. Our approach clearly makes use of the unlabeled data, achieving large
performance gains. To put our results into perspective and to illustrate the per-
formance that can be achieved when all training labels are available, we also
train the model on the fully labeled training dataset.

4 Conclusions

In this paper, we present an approach to unsupervised domain adaptation for
the task of CTR estimation that is based on the intuition that prediction masks
should be domain independent. Using an adversarial training approach, we show
that we can predict cardiomegaly from a dataset without segmentation annota-
tions. We further illustrate how our approach can be adapted for semi-supervised
learning.

Acknowledgements. We thank Wingspan Technology for collecting and annotating
the data for this study.
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