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Abstract. Automatically recognizing cancers from multi-gigapixel
whole slide histopathology images is one of the challenges facing machine
and deep learning based solutions for digital pathology. Currently, most
automatic systems for histopathology are not scalable to large images
and hence require a patch-based representation; a sub-optimal solu-
tion as it results in important additional computational costs but more
importantly in the loss of contextual information. We present a novel
attention-based model for predicting cancer from histopathology whole
slide images. The proposed model is capable of attending to the most dis-
criminative regions of an image by adaptively selecting a limited sequence
of locations and only processing the selected areas of tissues. We demon-
strate the utility of the proposed model on the slide-based prediction of
macro and micro metastases in sentinel lymph nodes of breast cancer
patients. We achieve competitive results with state-of-the-art convolu-
tional networks while automatically identifying discriminative areas of
tissues.

1 Introduction

Cancers are primarily diagnosed from the visual analysis of digitized or physical
histology slides of tumor biopsies [4]. Growing access to large datasets of digi-
tized histopathology images has led to the emergence of computational models
where the aim is to reduce experts workload and improve cancer treatment proce-
dures [6]. Recently, convolutional neural networks (CNN) have become the state-
of-the-art for many histopathology image classification tasks. However, CNNs
are not the best suited for large scale (i.e. millions of pixels) multi-resolution
histopathology whole slide images (WSI). Finding adequate and computation-
ally efficient solutions to automatically analyze WSI remains an open challenge.

A standard approach for analyzing WSI consists of sampling patches from
areas of interest and training a supervised model to predict a desired output
(e.g., a class label) for each patch independently [6]. The trained model can then
be applied to patches densely extracted from an unseen WSI where the final
slide prediction is the result of an aggregation of all patch predictions. Such
patch based representation comes with different shortcomings: (i) processing
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all patches of a WSI is computationally inefficient (as most tissue areas are
diagnostically irrelevant) and almost always unfeasible; (ii) randomly sampled
patches can result in the loss of relevant information and often involve using
finer-level annotations (i.e. segmentation masks) to guide the patch extraction;
and (iii) using independently analyzed patches implies a loss of context.

Different works were proposed to improve patch-based representations.
Mainly, these works present different aggregation strategies and encode global
context. For instance, weakly-supervised models based on multiple instance
learning [7] or structured latent representations [3] have been proposed to show
the importance of identifying discriminative regions when training a prediction
model. To capture context (without increasing patch size), pyramid representa-
tions where patches are extracted at different magnifications can be leveraged.
For instance, Bejnardi et al. [2] proposed a patch-based model consisting of a
cascaded CNN architecture where features from patches extracted at increasing
scales are aggregated to classify breast cancer tissue slides. Another strategy for
capturing spatial context from patch-based representations is to use recurrent
networks. Agarwalla et al. [1] used 2D LSTMs to aggregate features from neigh-
bouring patches in a WSI. While these works indirectly impose more context in
the training of a patch-based prediction model, they rely on an initial random
selection of patches that does not prevent from an eventual loss of informa-
tion and most importantly requires processing all patches independently. In this
work, we attempt to leverage spatial context while selecting discriminative areas.
Studies on experts visual diagnostic procedure [4] showed that over time, experts
make fewer fixations and perform less examinations of non-diagnostic areas. We
hypothesize that patch-based analysis of tissue slides should be a sequential pro-
cess in which a prediction model identifies where to focus given the context of
the entire tissue and the history of previously seen regions without other forms
of annotation than the slide level class.

To design such system, we take inspiration from visual attention models
[8]. A number of recent studies have demonstrated that visual content can be
captured through a sequence of spatial ‘glimpses’ [9] describing parts of an image.
Focusing computational resources on parts of a scene has the interesting property
of substantially reducing the task complexity as objects of interest can be placed
in the center of the glimpse. Existing visual attention systems were introduced
for analyzing natural scene images [9] but their utility for large scale images has
not been demonstrated yet.

We propose a system to analyze whole slide histopathology images and pre-
dict the presence of cancer while automatically learning to focus on discrimi-
native areas (Fig. 1). We assume the system should be able to predict normal
vs abnormal slides from a limited set of observations or glimpses. Locations
and scales at which glimpses are extracted should be automatically inferred.
Decisions about the central locations of glimpses should be based on the global
context of a given tissue slide as well as the memory of all previously observed
glimpses. The slide level class prediction should be based on information inte-
grated from all observed glimpses as well as the global context. Finally, through
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time, the system should learn to make decisions about the class of a tissue slide
using a limited set of glimpses.

Fig. 1. Proposed recurrent visual attention model for classifying histopathology images.
Grey dashed lines represent temporal connections while solid black lines describe the
information flow between components within one time-step. The model includes three
primary components composed of dense (rectangular boxes) or convolutional (trape-
zoid) layers. X is an input whole slide image, {x0, . . . , xP } is the sequence of glimpses
with their corresponding location parameters {l0, . . . , lp}. The system contains three
main components parameterized by θx, θl and θa. � represents the Hadamard product
and

⊗
is a matrix multiplication. The model sequentially predicts a class label ŷ for

the tissue slide given the sequence of glimpses.

2 Method

Given a whole slide histopathology image X, our goal is to identify a set of
locations {l0, l1, . . . , lP } from which to extract glimpses {x0, x1, . . . , xP } that are
discriminative of a given class Y (e.g. presence or absence of metastatic cancer).
To this end, we propose a sequential system structured around a recurrent neural
network equipped with an attention memory and an appearance description of
the tissue at different locations.

At each time step, the system receives a location lp that defines the extrac-
tion of a corresponding glimpse xp. A location network θl forms a feature
representation of a given location and an appearance network θx generates a
feature representation for a given glimpse. These feature representations are
aggregated to form part of the input to the attention network θa. Given a
sequence {x0, x1, . . . , xP } of P extracted glimpses, the system parameterized
by θ = {θl, θx, θa} predicts a probability score Q(Y |{x0, x1, . . . , xP }; θ) for the
slide-level label Y . The attention network is the recurrent component of the
model and uses information from the glimpses and their corresponding location
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parameters to update its internal representation of the input and outputs the
next location parameters. Figure 1 is a graphical representation of this sequential
procedure.

Spatial Attention: The spatial attention mechanism consists of extracting a
glimpse xp from a tissue slide and is a modification of the read mechanism intro-
duced in [8]. Given an input tissue slide X ∈ RH×W×3 of size H × W , we
apply two grids (one for each axis of the image) of two-dimensional Gaussian
filters, where each filter response corresponds to a pixel in the resulting glimpse
xp ∈ Rh×w×3 of size h × w. The attention mechanism is represented by param-
eters l = {μw, μh, σ2

w, σ2
h, δw, δh} that describe the centers of the Gaussians (i.e.

the grid center coordinates), their variances (i.e. amount of blurring to apply),
and strides between the Gaussian centers (i.e. the scale of the glimpse). Parame-
ters l are dynamically computed as an affine transformation of the output of the
recurrent network θa. Formally, the glimpse is defined by xp = Ax

pXAy
p
T , where

Ax
p and Ay

p are the Gaussian grid matrices applied on each axis of the original
image X. To integrate the entire context of a given tissue slide, we initialize the
first location parameters l0 such that the resulting glimpse x0 corresponds to a
coarse representation of the tissue slide (i.e. lowest magnification) re-sized to the
desired glimpse size h × w.

Combining Appearance and Spatial Information: Given a glimpse xp and
its corresponding location parameters lp, we construct a fixed-dimensional fea-
ture vector comprising appearance and spatial information about the current
glimpse. We denote the appearance-based features obtained for a given glimpse
by fx(xp; θx) and the features computed for the corresponding location parame-
ters by fl(lp; θl). We used a CNN to represent fx and a fully connected layer for
fl. The outputs of both networks are fused to obtain a joint representation that
captures spatial and appearance features using gp = σ(fl(lp; θl) � fx(xp; θx)),
where gp is the output joint feature vector, σ corresponds to the logistic sigmoid
function, and � is the Hadamard product. By combining appearance and spatial
features, the system integrates features related to “where” and“what” patterns
to seek for when predicting the next glimpse location parameters.

Recurrent Attention: The recurrent component of the system aggregates
information extracted from all individual glimpses and their corresponding loca-
tions. It receives as input the joint spatial and appearance representation (i.e.
gp) and maintains an internal state summarizing information extracted from
the sequence of past glimpses. At each step p, the recurrent attention network
updates its internal state (formed by the hidden units of the network) based
on the incoming feature representation gp and outputs a prediction for the next
location lp+1 to focus on at time step p + 1. The spatial attention parameters lp
are formed as a linear function of the internal state of the network.

Objective Function: The system is trained by minimizing a loss function com-
prised of a classification loss term and auxiliary regularization terms that guide
the attention mechanism. The total loss L(.) is given by:

L(D; θ) = Lc(D; θ) + Lp(D; θ) + La(D; θ) + Ll(D; θ) (1)
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where D = {(X(i), Y (i))}Ni=1 is a training set of N tissue slides X(i) and their
corresponding labels Y (i) and θ = {θa, θx, θl} represent the system’s parameters.

Tissue Slide Classification: The slide-level classification loss Lc is defined as
the cross entropy between the final slide-level predicted label Ŷ and the true label
Y (i). To obtain a slide-level prediction, we combine the feature representations
of all glimpses fx(x[1:P ]; θx) using a non-linear function represented by a fully
connected layer. This layer is then fed to another linear layer that generates final
predictions Q(Y (i)|x(i)

[1:P ]; θ). The slide-level loss is computed using Lc(D; θ) =
∑N

i=1 log Q(Ŷ = Y (i)|x(i)
[1:P ]; θ).

Discriminative Attention and Selective Exploration: We observed that
adding a patch-level classification loss facilitates training by enforcing the model
to attend to discriminative tissue areas. Lp corresponds to a classification cross
entropy loss between each predicted patch-level label ŷp and the ground truth
slide label Y (i). The goal here is not to leverage other forms of annotations but to
encourage finding discriminative regions in a weakly supervised setting. Feature
representations of each attended patch fx(xp; θx) are used to compute the patch-
level loss by Lp(D; θ) =

∑N
i=1

∑P
p=1 log Q(ŷp = Y (i)|x(i)

p ; θ), where Q(ŷ(i)
p |x(i)

p ; θ)
represents the probabilities obtained from a fully-connected layer applied to the
patch-level features fx(xp; θx) with the sigmoid activation.

We also observed that after seeing the coarse image representation x0, it
becomes harder to attend to other areas as the rich contextual representation
is often enough to discriminate between simple cases (e.g. benign vs macro-
metastases). To encourage the system to explore different locations and scales,
we introduce a regularization term that serves two ends. First, we encourage
the system to gradually approach the most discriminative regions and scales
by favouring glimpses with high prediction probabilities for the ground truth
class using La. Second, we encourage exploration by enforcing large differences
between successive predicted centers μw and μh using Ll. Formally, we define:

La(D; θ) = −
N∑

i=1

P∑

p=2

Q(y(i)
p |x(i)

p ; θ) −
(

1
p − 1

p−1∑

k=1

Q(y(i)
k |x(i)

k ; θ)

)

(2)

Ll(D; θ) = γ
N∑

i=1

P∑

p=1

exp(−|lp − lp+1|), (3)

where the hyper-parameter γ enables us to control how much exploration the
system performs by being linearly annealed from one to zero during training. At
inference, given an unseen tissue slide, the model extracts a sequence of glimpses
to attend to the most discriminative regions. The final prediction score for the
slide is computed using the aggregated features fx(x(i)

[1:P ]; θx).

3 Experiments

We tested the system on the publicly available Camelyon16 dataset [5] where
the task is to predict benign from metastatic cases of lymph nodes tissue slides.
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Table 1. Evaluation of different patch-based models for WSI classification. Columns
represent: patch level (ACC-P) and WSI level (ACC-WSI) accuracy, area under ROC
curve (AUC), precision (PREC) and recall (REC).

Method ACC-P ACC-WSI AUC PREC REC

Wang et al. [10] 0.98 – 0.96 – –

LSVM [3] 0.89 ± 0.2 0.84 ± 0.2 0.75 0.87 0.69

Dense Patches 0.84 ± 0.2 0.76 ± 0.3 0.72 0.94 0.66

Proposed 1 Glimpse - Lc 0.81 ± 0.2 0.79 ± 0.2 0.68 0.60 0.48

Proposed 3 Glimpses - Lc 0.84 ± 0.1 0.80 ± 0.2 0.85 0.69 0.64

Proposed 5 Glimpses - Lc 0.81 ± 0.1 0.78 ± 0.2 0.83 0.65 0.62

Proposed 3 Glimpses - Lc + Lp 0.87 ± 0.2 0.86 ± 0.2 0.84 0.81 0.78

Proposed 3 Glimpses - Lc + Lp + La 0.97± 0.1 0.95± 0.2 0.95 0.98 0.82

The dataset contains a total of 400 WSI and we used the same dataset splits as
the ones released by the challenge organizers for training (270) and test (130).

Typically histopathology images contain billions of pixels but only a few
portion of the slide contains biological tissues. To reduce the amount of com-
putation, we remove all unnecessary background pixels using a simple threshold
on the pixel intensity values and crop all slides around the tissue. Although the
total size is reduced, in practice, performing the matrix multiplication for the
spatial attention at the highest magnification level of a slide, is computationally
unfeasible with standard resources. Instead, we opt for processing images at the
intermediate 20x magnification using tiles covering as much context as possible.
A tile size of 5000×5000 pixels (Fig. 2) was the largest we could process. To pre-
dict a class label for a slide, we apply the system on all 20x tiles and let it decide
at which scale and location to attend. We use the average of the probabilities
obtained after attention to get a final slide prediction. The total run-time was
on average less than 4s per slide.

Table 1 reports the performance of the model against different baselines.
Wang et al. [10], the winners of the challenge, used the Inception CNN architec-
ture to train a patch-based classifier on randomly sampled patches at 40x magni-
fication. To obtain slide level predictions, the output probabilities of the patch-
based CNN are used to predict a heatmap. Statistical features are extracted
from the resulting heatmap (e.g. morphology and geometry features) and used
to train a random forest classifier that outputs the final predicted slide label.
We also compared against the latent structured SVM model presented in [3].
To train this model, we extracted patches at two magnification levels (20x and
40x) and used a pre-trained Inception CNN model to extract features for each
patch. The latent structured model uses a hierarchical representation of patches
at both magnifications to identify the most discriminative patches while training
the classifier. We also trained the Inception CNN model using densely sampled
patches from each whole slide image at magnification 20x. Given the high ratio
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of positives to negatives, we leveraged the segmentation masks of tumors to
train this baseline and dynamically sampled tumor patches. Finally, we tested
the following configurations of our system: (i) different number of glimpses and
(ii) different combinations of the proposed loss terms in Eq. (1).

Fig. 2. Qualitative evaluation of the attention model. Rows represent different cases
of macro to micro metastases. Columns from left to right are the downsampled WSI,
the cyan overlay of the ground truth tumor mask with red arrows pointing at micro-
metastasis, the yellow overlay of the attended glimpses and the glimpse with highest
prediction score showing how glimpses are automatically extracted at different scales.

We tested the performance of the system using different numbers of glimpses
(i.e., 1, 3 or 5 glimpses per tile). On average, after background removal, we
obtain ∼14 tiles per tissue slide. Thus, the final performance results reported
in Table 1 correspond to an aggregation of 14 (case of 1 glimpse per tile) to 70
glimpses. In contrast, all other automatic systems were trained with thousands
of patches. We obtained best results using 3 glimpses (i.e., 85% AUC vs 68%
and 83% for 1 and 5 glimpses when training with Lc only). We also observed
that using 1 glimpse (i.e., 14 attention patches per slide) resulted in a 4% drop
in AUC only. Note that this is most likely specific to this particular dataset in
which macro-metastatic tissues contain large amounts of abnormality and are
thus easily discriminated from benign tissues. However, this also shows the utility
of identifying discriminative locations when training prediction systems.

We also tested the impact of the different loss terms in Eq. (1). In general,
the patch-level loss Lp resulted in improving the attention on positive cases
which is reflected by the improved recall scores (i.e., from 64% to 78% with 3
glimpses). Finally, adding the attention regularization terms La and Ll primarily
helped facilitate convergence (i.e. reduced the convergence time by ∼15%) and
improved the final AUC, precision and recall. Note that our final AUC is 1%
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lower than [10], however, our aim in this work is to demonstrate how attention
can be leveraged in histopathology by selectively choosing where to focus.

In Fig. 2 we show examples of glimpses. Comparing the attended areas to
the ground truth masks of metastatic tissues (columns 3 and 2 respectively)
shows that the attention mechanism is able to identify discriminative patterns
and solely focus on those regions. The last column in Fig. 2 shows glimpses
with the highest prediction score for each WSI class and demonstrates that
the system learns patterns from different scales. The last row in Fig. 2 shows
a failure example on a challenging case of micro-metastases. In this case, the
model was correctly able to identify discriminative patterns (the yellow overlay
on images of column 3 shows the attention areas used to predict the slide label)
but unable to predict the correct slide level class. Given the high ratio of negative
to positive tissue in micro-metastatic patches, this may indicate that a more
complex aggregation strategy (instead of the simple linear aggregation) for the
different attended glimpses may be necessary.

4 Conclusion

We hypothesized that enforcing a selective attention mechanism when predicting
the presence of cancer within a tissue slide would enable the prediction system to
identify discriminative patterns and integrate context. To test our hypothesis, we
proposed a prediction model that integrates a recurrent attention mechanism.
Experiments on a dataset of breast tissue images showed that the proposed
model is capable of selectively attending to discriminative regions of tissues and
accurately identifying abnormal areas with a limited sequence of visual glimpses.
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