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Abstract. The model cascade strategy that runs a series of deep models
sequentially for coarse-to-fine medical image segmentation is becoming
increasingly popular, as it effectively relieves the class imbalance prob-
lem. This strategy has achieved state-of-the-art performance in many
segmentation applications but results in undesired system complexity
and ignores correlation among deep models. In this paper, we propose a
light and clean deep model that conducts brain tumor segmentation in
a single-pass and solves the class imbalance problem better than model
cascade. First, we decompose brain tumor segmentation into three dif-
ferent but related tasks and propose a multi-task deep model that trains
them together to exploit their underlying correlation. Second, we design a
curriculum learning-based training strategy that trains the above multi-
task model more effectively. Third, we introduce a simple yet effective
post-processing method that can further improve the segmentation per-
formance significantly. The proposed methods are extensively evaluated
on BRATS 2017 and BRATS 2015 datasets, ranking first on the BRATS
2015 test set and showing top performance among 60+ competing teams
on the BRATS 2017 validation set.

1 Introduction

Brain tumors are one of the most fatal cancers worldwide [1]. Timely diagno-
sis of brain tumors from multimodal Magnetic Resonance Imaging (MRI) is of
critical importance for treatment planning [2]. Automatic segmentation meth-
ods are highly desired in terms of efficiency and objectivity. However, automatic
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brain tumor segmentation is still a challenging task due to large diversity of
tumor shape, size, and location. Besides, there are four intra-tumoral classes,
i.e., edema, necrosis, non-enhancing, and enhancing tumor. They are grouped
into three overlapped regions which are required to be segmented for quantita-
tive evaluation, i.e., complete tumor (all four classes), tumor core (all four classes
except edema), and enhancing tumor (the enhancing tumor class only).

In recent years, Convolutional Neural Networks (CNNs) have been widely
adopted for MRI-based brain tumor segmentation. CNN model architectures [3—
6] have rapidly evolved from single-label prediction (predicting the label of a
single voxel of the input patch) to dense-prediction (making predictions for vox-
els within the input patch simultaneously). To relieve the class imbalance prob-
lem, many recent works adopt the Model Cascade (MC) strategy for medical
image segmentation [7,8]. For example, Wang et al. [8] decomposed multi-class
brain tumor segmentation into a sequence of three successive binary segmen-
tation tasks, each of which is solved by an independent network. MC relieves
the class imbalance problem effectively by coarse-to-fine segmentation; there-
fore, its results are very encouraging. However, it comes with a price of system
complexity and ignores the correlation among tasks.

Here we approach the above problems of MC via multi-task learning. We
observe that multi-class brain tumor segmentation can be decomposed into three
different but related tasks. Instead of training them individually like MC, we pro-
pose a One-pass Multi-task Network (OM-Net) that integrates the three tasks
in a single model, which not only exploits their correlation in training but also
simplifies the inference process by one-pass computation. Moreover, we design
an effective training scheme based on curriculum learning, which is helpful to
improve the convergence quality of OM-Net. Besides, to further improve perfor-
mance, we propose a simple yet effective post-processing method to refine the
segmentation results of OM-Net. Finally, the proposed approach obtains the first
position on BRATS 2015 test set and achieves very competitive performance on
BRATS 2017 validation set, respectively.

2 Methods

2.1 Model Cascade: A Strong Baseline

In this section, we first present an MC-based segmentation framework, as a
strong baseline for OM-Net. We split multi-class brain tumor segmentation into
three different but related tasks and each of them is implemented by an inde-
pendent network. The three tasks are described as follows.

(1) Coarse segmentation to detect complete tumor. A network is trained to
locate the complete tumor as a Region of Interest (ROI). Training patches are
sampled randomly within the brain. To reduce overfitting, we train the net-
work as a more difficult five-class segmentation problem. In testing, we still
employ it as a binary segmentation task by merging the probability of four
intra-tumoral classes. (2) Refined segmentation for complete tumor and its intra-
tumoral classes. The coarse tumor mask obtained above is dilated by 5 voxels
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Fig. 1. Network architecture used in each task. The building blocks are represented by
colored cubes with numbers below being the number of feature maps. C equals to 5, 5,
and 2 for the first, second, and third task, respectively. (Best viewed in color)

to reduce false negatives. Then, the second network predicts labels of all vox-
els within the dilated region. Training patches are sampled randomly within
the dilated ground-truth area of complete tumor. (3) Precise segmentation for
enhancing tumor. Enhancing tumor is hard to segment due to the very unbal-
anced training data. We train the third network specially to segment enhanc-
ing tumor. Training patches for this network are sampled randomly within the
ground-truth area of tumor core which covers all enhancing tumor voxels.

Network architecture for each task is identical except for the final convolu-
tional classification layer. We use a 3D variant of the FusionNet [9], as illustrated
in Fig. 1. Size of input patches for the network is 32 x 32 x 16 x 4, where the
number 4 indicates the four MRI modalities. In testing, MC needs to run the
three networks successively because the ROI of one network is determined by
all its preceding networks. More specifically, the first network produces a coarse
mask for complete tumor. The second network classifies all voxels in the dilated
mask and obtains the precise region of complete tumor. Finally, we determine
the precise enhancing tumor region by scanning all voxels in the complete tumor
region using the third network. The tumor core region is meanwhile determined
by merging results of the last two networks. Therefore, the entire inference pro-
cess of MC requires alternate GPU-CPU computations for three times.

2.2 One-Pass Multi-task Network (OM-Net)

The above MC baseline can already achieve promising performance. However, it
suffers from system complexity and ignores the correlation among the three tasks.
We observe that the networks used for the three tasks are almost identical and
their essential difference lies in training data. Inspired by this fact, we propose to
transform the MC baseline into a single multi-task learning model. This model
includes three tasks with their respective training data being the same as those
in MC. Each task owns an independent convolutional layer, one classification
layer, and one loss layer. All the other model parameters are shared to utilize
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the underlying correlation among the tasks. In this model, predictions of the
three classifiers can be obtained simultaneously in a single-pass. Therefore, we
name the proposed model as One-pass Multi-task Network (OM-Net).

Observing that the three tasks are of increasing difficulty level, we propose
to train OM-Net more effectively based on curriculum learning, which is realized
by gradually increasing the difficulty of training tasks and is proved to improve
the convergence quality of deep models [10]. Model architecture and training
strategy of OM-Net are illustrated in Fig. 2. First, we train OM-Net with the
first task only until the loss curve tends to flatten, which enables OM-Net to
learn the basic knowledge of differentiating tumor and normal tissues.
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Fig. 2. Architecture of OM-Net. Data-i, Feature-i, and Output-i denote training data,
feature, and classification layer for the i-th task, respectively. The shared backbone
model refers to the network layers outlined by the yellow dashed line in Fig. 1.

Then, we add the second task to OM-Net. As shown in Fig.2, Data-1 and
Data-2 are concatenated along the batch dimension as the input for OM-Net.
Features produced by the shared backbone model are sliced at the same position
on the batch dimension to obtain task-specific features and are then used to train
task-specific parameters. Moreover, we argue that not only knowledge (model
parameters) but also learning material (training data), can be transferred from
the easier course (task) to the more difficult course (task) in curriculum learning.
Therefore, training patches in Data-1 that conform to the following sampling
strategy can be reused in the second task:

ZZL:I 1 {lz S Ccomplete}
n

> 0.4, (1)

where [; is the label of the i-th voxel in the patch, n is the total number of
voxels in the patch, and Ceompiete refers to the all tumor classes. We concatenate
the features of patches in Data-1 that satisfy the above sampling condition to
Feature-2 and then calculate the loss for the second task. Training process in
this step continues until the loss curve of the second task tends to flatten.
Finally, we introduce the third task and its training data to OM-Net. The
concatenation and slicing operations are similar to those in the second step.
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Training patches from Data-1 and Data-2 that conform to the following sampling
strategy can be reused in the third task:

Z?:l 1 {li € Ccore}

n

> 0.5, (2)

where C,,. refers to the tumor classes that belong to tumor core. The three
tasks in OM-Net are trained together until convergence.

During inference, OM-Net obtains the predictions of the three tasks simul-
taneously. The way that OM-Net utilizes these results for final segmentation
is exactly the same as that in MC. It is worth noting that OM-Net is essen-
tially different from one existing multi-task model for brain tumor segmentation
[11]. The model in [11] aims to provide more diverse supervision signals for the
same training data. In comparison, OM-Net integrates tasks that have respec-
tive training data and aims to accomplish coarse-to-fine segmentation by a single
model.

2.3 Post-processing

We further propose a novel post-processing method to refine the segmentation
results of OM-Net. Our proposed method is mainly inspired by [6], but is more
robust and easier to use in practice. It consists of two steps. First, isolated small
clusters whose volume is less than one-tenth of the maximum 3D connected
tumor area are removed. This step is identical to step 3 in [6]. Second, it is
observed that when the volume of predicted enhancing tumor is less than five
percent of the volume of the complete tumor, non-enhancing voxels tend to be
falsely predicted as edema [6]. We find that this problem also happens in OM-
Net and propose a fully-automatic method to relieve this problem. Specifically,
we employ the K-means clustering algorithm to cluster the predicted edema
voxels into two groups according to their intensity values in MRI images. For
each group, we compute the average probability of all its voxels belonging to
the non-enhancing class, according to the prediction results of OM-Net. Labels
of voxels in the group with the higher averaged probability are converted to
non-enhancing, while those in the other group remain unchanged.

Compared with the approach in [6] that depends on manually determined
threshold, our proposed approach is automatic and flexible. In the experiment
section, we find it promotes the performance of OM-Net significantly.

3 Experiments

We evaluate the performance of the proposed methods on BRATS 2017 and
BRATS 2015 datasets, respectively. The brain of each patient is scanned with
four modalities, i.e., Flair, T1, Tlc, and T2. All the images have been skull-
striped and co-registered. For pre-processing, voxel intensities inside the brain
are normalized to have zero mean and unit variance for each modality image.
We sample around 400,000, 400,000, and 200,000 patches for the first, second,



642 C. Zhou et al.

and third task, respectively. All networks are implemented based on the C3D!
package, a modified version of Caffe[12]. We adopt SoftmaxWithLoss as the loss
function and use stochastic gradient descent to train all networks. The initial
learning rate of all networks is 0.001 and then divided by 2 after every 4 epochs.
Each network in MC is trained for 20 epochs. OM-Net is trained for 1 epoch, 1
epoch, and 18 epochs for each of its three steps, respectively.

3.1 Results on BRATS 2017 Dataset

The training set of BRATS 2017 [2,13-15] contains 285 MRI images. The valida-
tion set of BRATS 2017 contains 46 MRI images with hidden ground-truth and
evaluation on this set is conducted online. For more convenient evaluation, we
randomly divide the training set into two subsets, i.e., a training subset including
260 MRI images and a local validation subset including 25 MRI images.

We first carry out a number of experiments on the local validation subset.
Quantitative comparison results are tabulated in Table 12. Here MC1, MC2, and
MC3 indicate the one-model, two-model, and three-model cascades, respectively.
In order to justify the effectiveness of the curriculum learning-based training
strategy, we further test OM-Net? (a naive multi-task learning model without
training data transfer or step-wise training) and OM-Net? (a multi-task learning
model with training data transfer but no step-wise training). OM-Net?' and OM-
NetP denote OM-Net with the first post-processing step and both post-processing
steps, respectively. In addition, we also provide qualitative comparisons between
MC3, OM-Net, and OM-Net? in the supplementary materials.

Table 1. Performance on the local validation subset of BRATS 2017 (%)

Method Parameters | Dice Positive predictive value Sensitivity
Complete | Core | Enhancing | Complete | Core | Enhancing | Complete | Core | Enhancing

MC1 13.81 M 90.41 78.48 | 72.91 95.09 87.23 | 75.72 87.05 77.68 | 83.44
MC2 27.62 M 91.08 79.11 | 75.14 91.19 86.67 | 81.84 91.55 78.03 | 80.26
MC3 41.43 M 91.08 79.58 | 79.95 91.19 85.98 | 84.96 91.55 79.56 | 81.61
OM-Net 13.86 M 91.10 79.87 | 80.87 92.42 87.60 | 85.44 90.23 78.31 | 82.80
OM-Net? 13.86 M 90.40 79.42 | 79.96 91.25 87.57 | 82.68 90.52 76.87 | 83.91
OM-Netd 13.86 M 91.11 79.92 | 80.24 92.11 87.78 | 84.19 90.73 78.09 | 83.28
OM-Netp1 13.86 M 91.28 79.88 | 80.84 93.38 87.71 | 85.44 89.87 78.26 | 82.75
OM-NetP 13.86 M 91.28 82.50 | 80.84 93.38 83.60 | 85.44 89.87 83.60 | 82.75

First, Table 1 shows the Dice scores are steadily improved with the increase
of model number in MC, which justifies the effectiveness of each model in MC.
However, larger number of models leads to system complexity and more storage
consumption. Second, with only one-third of the parameters of MC3, OM-Net

! https://github.com/facebook/C3D.
2 Dice score is the overall evaluation index, identical to F measure. Therefore, we only
highlight the best Dice scores in bold in Tables 1 and 2.
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achieves better Dice scores consistently, especially for tumor core and enhanc-
ing tumor. Third, OM-Net outperforms both OM-Net® and OM-Net?, demon-
strating the effectiveness of the proposed training strategy. Fourth, the first
post-processing step slightly improves the Dice score for complete tumor as it
removes part of false positives. The proposed second step significantly improves
the Dice score of tumor core by as much as 2.62%. The above results justify the
effectiveness of the proposed approaches.

Additionally, we evaluate the performance of OM-Net? on BRATS 2017 val-
idation set and compare it with the other 60+ participants. OM-Net? achieves
Dice scores of 77.841%, 90.386%, and 82.792% for enhanced tumor (ET), whole
tumor (WT), and tumor core (TC), respectively, and ranks second on the online
leaderboard in terms of the averaged Dice score. The approach proposed in [8]
currently ranks first, outperforming OM-Net? by 0.74%, 0.11%, and 0.99% on
the Dice scores for ET, WT, and TC, respectively. However, the approach in
[8] is a complicated ensemble system that includes as many as 9 models. In
comparison, there is only a single model in our approach.

3.2 Results on BRATS 2015 Dataset

The BRATS 2015 dataset consists of 274 MRI images for training and 110 MRI
images for testing. We use all training data to train OM-Net and MC3. Evalua-
tion is conducted on the test set. The results are tabulated in Table 2.

Table 2. Performance on BRATS 2015 test set (%)

Method Dice Positive predictive value |Sensitivity
Complete|Core|Enhancing|Complete|Core Enhancing|Complete|Core| Enhancing

MC3 86 70 163 86 82 |60 88 67 |72
OM-Net 86 71 |64 86 83 |61 88 68 |72
OI\/I—Net’D1 87 71 |64 87 83 |61 89 68 |72
OM-Net? 87 75 |64 87 81 |61 89 75 |72
Isensee et al. [16] |85 74 |64 83 80 |63 91 73 |72
Zhao et al. [6] 84 73 162 89 76 |63 82 76 |67
Kamnitsas et al. [5]|85 67 |63 85 86 |63 88 60 |67

First, we compare the results of MC3, OM-Net, OM—Netpl, and OM-Net?.
Table2 shows that OM-Net consistently outperforms MC3, with 1% higher
Dice scores on both tumor core and enhancing tumor. Besides, the first post-
processing step improves the Dice score of OM-Net by 1% on the complete tumor
region; the proposed second post-processing step significantly improves the Dice
score of tumor core by 4%. The above results are consistent with the conclusions
on the BRATS 2017 data. Second, we compare the performance of OM-NetP
with the other leading approaches on the BRATS 2015 test set. It is observed in
Table 2 that OM-Net? beats the state-of-the-art approaches on Dice scores and
ranks first currently on the online leaderboard.
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4 Conclusion

We propose the OM-Net model trained with the curriculum learning-based strat-
egy to relieve the class imbalance problem in brain tumor segmentation. Unlike
the popular MC framework, OM-Net integrates multiple networks in MC into
a single deep model and conducts coarse-to-fine segmentation in a single pass.
Therefore, it substantially saves model parameters and reduces system complex-
ity. OM-Net is also advantageous as it effectively utilizes the correlation between
the tasks. With a single and light model, the proposed approach ranks first on
BRATS 2015 test set and achieves top performance on BRATS 2017 dataset.
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