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Abstract. Modern resting-state functional magnetic resonance imaging
(rs-fMRI) provides a wealth of information about the inherent functional
connectivity of the human brain. However, understanding the role of neg-
ative correlations and the nonlinear topology of rs-fMRI remains a chal-
lenge. To address these challenges, we propose a novel graph embedding
technique, phase angle spatial embedding (PhASE), to study the
“intrinsic geometry” of the functional connectome. PhASE both incorpo-
rates negative correlations as well as reformulates the connectome mod-
ularity problem as a kernel two-sample test, using a kernel method that
induces a maximum mean discrepancy (MMD) in a reproducing kernel
Hilbert space (RKHS). By solving a graph partition that maximizes this
MMD, PhASE identifies the most functionally distinct brain modules. As
a test case, we analyzed a public rs-fMRI dataset to compare male and
female connectomes using PhASE and minimum spanning tree inferential
statistics. These results show statistically significant differences between
male and female resting-state brain networks, demonstrating PhASE to
be a robust tool for connectome analysis.

1 Introduction

Human connectomics has progressed rapidly in the last decade in part due to
advances in the application of graph theory and complex network analysis to
brain imaging data [2,11]. For example, graph theoretical analysis of resting-
state (i.e. task-negative) fMRI has been increasingly used to study the inherent
functional connectivity of the brain in both healthy subjects and those with psy-
chiatric or neurodegenerative conditions [8]. Thus, better understanding resting-
state connectomes can elucidate how brain networks are organized differently.

In functional connectome analysis, graph theory is used to organize the pair-
wise correlations for all brain regions of interest (ROIs) into an adjacency matrix
with signed edges [2]. However, there are some limitations with this approach.
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One issue complicating traditional rs-fMRI graph analysis is how to properly
model negative correlations between ROIs [9,14]. While applying thresholds or
similar approaches to focus on positive correlations alone can simplify down-
stream analyses, this potentially removes biologically-relevant connectivity infor-
mation [11]. Another issue is that while graph metrics can reveal important infor-
mation regarding global/nodal characteristics of connectivity data, topological
features are largely inaccessible to this analysis [13]. Thus, these limitations
highlight the need for a way to represent functional connectomes in their native
space.

The main contribution of this paper is the development of a kernel method
approach for studying the topology of the functional connectome. To this end,
we proposed phase angle spatial embedding (PhASE), by modeling the
functional coupling between two ROIs as a phase angle (from 0 to π/2, corre-
sponding to full co-activation vs. anti-activation, respectively). With PhASE,
topological features of resting-state connectivity can be intuitively understood
by encoding each ROI using all phase angles that relate this ROI to the rest of
the brain. This offers a mathematically robust method for working with positive
and negative edges, as the full range of correlative information is preserved. Fur-
ther, we equipped phase with a kernel, allowing us to conceptualize connectome
modularity as a kernel two-sample problem, via the maximization of the cor-
responding maximum mean discrepancy (MMD) metric [4,5] in a reproducing
kernel Hilbert space (RKHS). Last, we outlined a statistical inference procedure
to compare the connectome topology between two groups (e.g., male vs. female)
via the corresponding minimum spanning trees (MSTs) induced by the manifold
geodesic distances in PhASE [7]. Thus, the functional connectome can be trans-
formed into a new space representative of its “intrinsic geometry”, and can be
used for state-of-the-art topological data analysis techniques [3].

2 Methods

Rationale of PhASE. The core procedure of PhASE is to encode the probability
of two brain regions (i and j) exhibiting a coupling relationship of co- (p+ij) vs.
anti- (p−

ij) activation using a phase angle between 0 and π/2 (Fig. 1). One (sim-
ple) way of defining probability can be done using individual correlation matrices.
In a dataset with Z subjects, if we treat the correlation between brain regions i
and j as an edge (eij), then we can define the probability of there being a nega-
tive edge between i and j (p−

ij) as the average occurrence of observing a negative
correlation between i and j across all Z subjects, i.e. p−

ij =
∑Z

z=1 I
[
ez
ij < 0

]
/Z,

where ez
ij is the edge for the z-the subject. Computing this probability for all

ROIs then forms a negative probability matrix (NPM). By taking advantage of
the simple relationship that p−

ij + p+ij = 1, the phase angle between and i and j
can be defined as

θij = arctan

(
p−

ij

p+ij

)1/2

. (1)
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Furthermore, by fixing i and considering all possible j, the PhASE proce-
dure encodes the i-th ROI in an N -dimensional Euclidean space (where N is the
number of ROIs), such that the phase angle vector θi = [θi1, θi2, . . . , θiN ]� ∈
[0, π/2]N . (A phase angle of 0 represents fully co-activating ROIs and π/2 fully
anti-activating ROIs). Given a PhASE matrix, state-of-the-art nonlinear dimen-
sionality reduction techniques or topological analysis via the geodesic distance
(in the N -dimensional PhASE embedding space) induced minimum spanning
tree (MST) can then be used to recover the intrinsic geometry of the functional
connectome.

Fig. 1. Computing PhASE from rs-fMRI data. Connectivity data is acquired from
multiple subjects, and the frequency of edge negativity is computed for each ROI to
form a negative probability matrix (NPM). Then, the phase angle (θ) is computed for
each ROI, which encodes each ROI’s “phase” with every other ROI in the network.

PhASE-Induced Modularity: PhASE as a Kernel Two-Sample Test. We further
show that PhASE reformulates the connectome modularity problem as a kernel
two-sample problem. In its simplest form, the connectome modularity problem
seeks to decompose a graph into M modules, or “communities”, and is often
computed by maximizing the Q modularity metric using Louvain’s method [10,
11]. Here, we illustrate how PhASE tackles this problem from a machine-learning
perspective using the case M = 2 as an example of finding two communities.

Following the formulation detailed in Gretton et al. [4], consider the random
variables x and y defined on a metric space X equipped with the metric d,
with the corresponding Borel probabilities p and q (i.e. x ∼ p and y ∼ q).
Given observations X := {x1, . . . , xm} and Y := {y1, . . . , yn} drawn from the
probability distributions p and q, p = q if and only if Ex(f(x)) = Ey(f(y)) ∀ f ∈
C(X ), where C(X ) is the space of bounded continuous functions on X .

Given this setup, and a class of functions F such that f : X → R, the
maximum mean discrepancy (MMD) between p and q with respect to F is defined
as

MMD[F , p, q] := sup
f∈F

(Ex[f(x)] − Ey[f(y)]) . (2)

In PhASE modularity, using the same definitions for x, y, p, q,X,and Y , each
ROI is assigned to two possible classes of distribution (p and q) such that the
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MMD is maximized. Given observations X and Y , an empirical estimate of the
MMD can therefore be defined as

MMD[F ,X, Y ] := sup
f∈F

(
1
m

m∑

i=1

f(xi) − 1
n

n∑

i=1

f(yi)

)

. (3)

However, with RKHS it is possible to evaluate the squared MMD using kernel
values alone such that

MMD2[F ,X, Y ] =
1

m(m − 1)

m∑

i=1

m∑

j �=i

k(xi, xj) +
1

n(n − 1)

n∑

i=1

n∑

j �=i

k(yi, yj) (4)

− 2
mn

m∑

i=1

n∑

j=1

k(xi, yj).

A standard choice of kernel defined between two ROIs, each encoded using
its PhASE phase angle vector θi, is the Radial Basis Function (RBF)

k(i, j) = exp

{

−σ
N∑

�=1

|θi� − θj�|2
}

. (5)

Another kernel choice, which may be more “natural” for phase angle vectors
is

k(i, j) =
1
N

N∑

�=1

cos (θi� − θj�) , (6)

where N is the number of ROIs. Thus, this kernel represents each ROI’s phase
angle vector similarity in relation to all other ROIs in the network. While these
two choices appear quite different, a quick check on their Taylor expansions make
it clear that they have very similar leading terms.

This kernel-based approach for representing functional brain connectivity
and modularity in a native way can be used in conjunction with topological
data analysis on minimum spanning trees, as described in the following section.
As a result, these techniques can be complemented together to offer a robust
framework for studying differences across group networks.

Inference on Minimum Spanning Trees. Most statistical inference methods on
MST rely on existing univariate statistical test procedures on scalar graph theory
features such as the average path length [12]. Since the probability distribution
of such features are often not known, resampling techniques such as the permu-
tation test are frequently used. The permutation test is known as the exact test
procedure in statistics. However, it is not exact in practice and only an approx-
imate method due to the computational bottleneck of generating every possible
permutation, which can be astronomically large. Thus, the statistical signifi-
cance is computed using the small subset of all possible permutations, which



Phase Angle Spatial Embedding (PhASE) 371

gives approximate p-values. Here, we present a new method for the permutation
test, where every possible permutation is enumerated combinatorially.

Let M1 and M2 be the minimum spanning trees (MST) corresponding to
N × N PhASE-derived adjacency matrices C1 and C2. We are interested in
testing hypotheses

H0 : M1 = M2 vs. H1 : M1 �= M2. (7)

The statistic for testing H0 is constructed using Kruskal’s algorithm [6]. Kruskal’s
algorithm is a greedy algorithm with runtime O(N log N). The algorithm starts
with an edge with the smallest weight. Then add an edge with the next smallest
weight. This sequential process continues while avoiding a loop and generates a
spanning tree with the smallest total edge weights. Thus, the edge weights in
MST correspond to the order in which the edges are added in the construction
of MST. For a graph with N nodes, MST has N − 1 edges.

Let w1
1 < w1

2 < · · · < w1
N−1 and w2

1 < w2
2 < · · · < w2

N−1 be the ordered edge
weights of two MSTs obtained from Kruskal’s algorithm. Let f be a monotone
function that maps the edge weights to integers such that φ(w1

j ) = ψ(w2
j ) = j.

φ, ψ can be the number of edges in the subtree generated in the j-th iteration
in Kruskal’s algorithm. Under the null hypothesis (7), the monotone functions
φ(w1

j ) and ψ(w2
j ) are interchangeable, thus satisfying the condition for the per-

mutation test. The pseudo-metric D(M1,M2) = supt

∣
∣φ(t) − ψ(t)

∣
∣ is then used

as a test statistic. Under H0, D(M1,M2) = 0. The larger the value of D is, it
is more likely to reject H0. From Theorem 2 in [3], it can be shown that the
probability distribution of D is given by

P (D ≥ d) = 1 − AN−1,N−1
(
2N−2
N−1

) , (8)

where Au,v satisfies Au,v = Au−1,v+Au,v−1 with the boundary condition A0,N =
AN,0 = 1 within band |u − v| < d. (8) is used to compute p-values in the study.

Resting-State fMRI Data Acquisition. For testing PhASE, a publicly available
rs-fMRI dataset from the F1000 Project [1] was used. For details regarding
data acquisition and processing, see http://fcon 1000.projects.nitrc.org/. The
resulting data is a 177 × 177 ROI correlation matrix for each subject (Z = 986,
males = 426, females = 560). Then, the negative probability matrix was formed
using the simple definition of probability described in (2).

3 Results and Discussion

As a test case for our phase angle spatial embedding (PhASE) method, PhASE
was applied to resting-state functional connectivity data (177 × 177 ROI) [1]
to investigate differences between male and female resting-state brain networks.
First, we investigated network modularity using MST and anatomical represen-
tations. To compare to standard modularity techniques, Louvain’s Q modularity
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method [11] (γ = 1) was used, generating three communities (Fig. 2A). After
applying the PhASE transformation and computing the MMD kernel matrix via
(6), two communities were generated (Fig. 2B). Notably, the PhASE modularity
boundaries share similar boundaries with those achieved by Q, both in MST
and anatomical space. This demonstrates that PhASE can create reproducible
results as those achieved by standard methods.

Fig. 2. (A–B) Minimum spanning trees (MSTs) and anatomical representations (MNI
coordinates) for all, male (M), and female (F) groups, with associated modularity color
using Q (γ = 1) and PhASE. (C) Exact topological inference comparing male and
female brain networks. The distance between networks was Dmax(male, female) = 33,
occurring at edge weights 0.0598 and 0.0686, and was statistically significant (p <
0.001).

While MSTs can produce informative visual differences between group net-
works, we sought to quantitatively analyze whether there are statistically sig-
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nificant differences between male and female resting-state brain networks using
MSTs. As described above, the null hypothesis (7) that the male and female
graphs are equivalent was tested using a nonparametric inference method that
does not need to rely on the permutation test. Using the male and female PhASE
matrices, MST edge weights were simply the phase angle between ROIS (1).
Exact topological inference (8) was then used to compute the distance between
male and female MSTs, and was statistically significant (Dmax(male, female) =
33, p < 0.001). Thus, the null hypothesis can be rejected, suggesting that there
are intrinsic differences in resting-state connectivity between sexes. These differ-
ences can be seen in Fig. 2C, wherein there is a consistent separation between
male and female number of connected nodes as a function of MST edge weights.
Although the curves are similar in shape, the results indicate that the female
MSTs appear to exhibit a higher number of connected nodes at similar edge
weights compared to males, suggesting that female subjects’ resting-state back-
bone networks are more “connected” than male subjects—a salient network find-
ing that merits further investigation, and importantly here demonstrates the
capability of PhASE for topological analysis.

4 Conclusions

Representing and computing the modularity of functional connectomes with neg-
ative edges is an ongoing challenge in rs-fMRI analysis. To that end, we presented
a kernel-based approach for analyzing functional connectivity using a novel graph
embedding method, phase angle spatial embedding (PhASE), that respects neg-
ative correlations and reformulates the modularity problem as a two-sample
problem. By doing so, it is possible to create a more natural representation of
functional connectivity that encodes connective phase information in its native
space and can be used with advanced topological analyses. As an initial case,
sex differences were examined using PhASE with MST inferential statistical
methods, revealing statistically significant differences between male and female
rs-fMRI networks. Taken together, these results demonstrate the versatility of
PhASE as a connectome analysis framework that can yield greater insight into
functional connectivity while preserving the intrinsic geometry of the human
connectome.
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