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Abstract. Template-based atlas propagation can reduce registration
cost in multi-atlas segmentation. In this method, atlases and testing
images are registered to a common template. We show that using a com-
mon template may be suboptimal for reducing atlas propagation errors.
Instead, we propose to apply a custom selected template for each testing
image by employing a large template library and a fast template selection
technique. The proposed method significantly outperforms common tem-
plate based atlas propagation. Using a template library with 50 images,
our method produced comparable results to standard direct registration-
based multi-atlas segmentation with a small fraction of registration cost.

1 Introduction

Multi-atlas label fusion (MALF) is a powerful technique for anatomy segmen-
tation. This method relies on image registration to propagate anatomical labels
from pre-labeled training images, i.e. atlases, to a target image and applies label
fusion to reduce atlas propagation errors.

Template-based atlas propagation [8] has been applied for reducing regis-
tration cost in MALF. Using this approach, instead of directly registering each
atlas to a target image, the pairwise registration is achieved through registering
each image to one common template. Since registrations between atlases and the
template can be calculated off-line, only one registration between the template
and the target image needs to be calculated online.

One commonly applied criterion for choosing the propagation template is to
reduce the overall atlas propagation error from atlases to the template [4,8].
We show that a more effective criterion should aim to reduce the propagation
error from the template to the target image. Hence, instead of employing a
common propagation template, a custom selected template should be used for
each individual target image. We propose to employ a sizable template library.
Given a target image, the template producing the least registration error to the
target image is selected for optimal atlas propagation.

In an application of cardiac CT segmentation, we demonstrate that our
method significantly outperforms standard common template based atlas prop-
agation. Using a small fraction of computation cost, our method produces com-
parable results to standard MALF that uses pairwise deformable registrations.
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1.1 Related Work

Faster atlas propagation can be achieved by: (1) using cheaper but less accurate
registrations to replace deformable registration [5]; (2) reducing the number of
online registrations. Employing less accurate registrations often substantially
sacrifices accuracy. For instance, a recent work along this line [2] affinely warps
images to common templates and applies learning-based refinement, which still
underperforms deformable registration based multi-atlas segmentation.

Reducing online registrations can be achieved by atlas selection [1,10] and/or
template-based propagation [8]. Atlas selection aims to select a subset of atlases
that are likely to produce accurate label propagation for a target image. However,
it has limited effects on reducing registration cost. The performance of multi-
atlas segmentation usually increases as poorly registered atlases are excluded
from label fusion. However, the performance may start decreasing after removing
well registered atlases. Typically, a good number of atlases are still required for
label fusion to prevent performance drop.

Template-based atlas propagation is indirect propagation, which is based on
composing registrations along a registration path through intermediate image(s).
Indirect propagation has been applied for improving atlas propagation accuracy.
For example, each atlas is propagated through multiple registration paths to
improve the chance that atlas information is accurately propagated at least
once [9,12,14]. With manifold learning, instead of the brutal force approach,
efficiency can be improved by decomposing a difficult-to-estimate large defor-
mation between two images into a series of easier-to-estimate smaller deforma-
tions represented by intermediate propagation images/templates [6,13]. When
applied for reducing registration cost, the indirect registration scheme is only
applied through common template(s) based atlas propagation. Our contribution
is a new strategy for optimal template-based propagation.

2 Method

2.1 Modeling Atlas Propagation Error

Let φI→K be a transformation that aligns image I to image K. Let f (φI→K , x)
be registration error at location x in K, i.e. the absolute spatial displacement
between true and estimated correspondences. Let φI→T→K = φI→T ◦ φT→K be
the composed transformation for propagating I through a template T . We have:

f (φI→T→K , x) ≤ f (φI→T , xT ) + f (φT→K , x) (1)

where xT is the correspondence of x in T , as defined by φT→K . Let F (I,K) =∑
x∈K [f (φI→K , x)] and F (I, T,K) =

∑
x∈K [f (φI→T→K , x)] be the overall reg-

istration error in φI→K and φI→T→K , respectively. We have:

F (I, T,K) ≤ F (I, T ) + F (T,K) (2)

For indirect propagation, the overall registration error is upper bounded by the
total registration errors in the two registrations on the registration path.
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Fig. 1. Atlas propagation through a single selected template.

2.2 Biased Template Selection

Let A = {A1, ..., An} be an atlas set with n atlases. The total propagation error
from an atlas set to a target image through a single template is bounded by:

n∑

i=1

F (Ai, T,K) ≤
n∑

i=1

F (Ai, T ) + nF (T,K) (3)

Our goal is to find a template T such that the total atlas propagation error
is minimized, which can be achieved by choosing the template minimizing the
upper bound. Based on (3), two competing schemes may minimize the upper
bound: (1) unbiased template creation/selection that minimizes the aver-
age registration error from all atlases to a common template, i.e. minimizing∑n

i=1 F (Ai, T ); (2) biased template selection that selects the template min-
imizing registration error to the target image, i.e. minimizing nF (T,K).

Minimizing registration errors from all atlases to a common template is the
goal for unbiased template building [4,7] and groupwise registration. However,
its effect on reducing overall registration errors is limited by how tightly clustered
the atlases are. The key advantage of MALF is to use diverse atlases to capture
population variation for robust label propagation. Hence, it is common to have
highly dissimilar images included in one atlas set, making it difficult to reduce
the overall registration error from all atlases to a common template.

In contrast, the template-target registration error can be more easily mini-
mized by choosing a template similar to the target image (see Fig. 1). Further-
more, since the template-target registration error has the highest weight in (3),
the template minimizing the upper bound is also biased to reduce registration
error to the target image. In fact, when T = K, the template-based atlas propa-
gation becomes direct registration based propagation. Although it is intractable
to consider every image as a potential template, we hypothesize that it is highly
possible to find a similar template from a modestly sized and representative tem-
plate library for any target image to keep the total atlas propagation error stay
close to the total error produced by direct registration based atlas propagation.
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2.3 Multi-template Atlas Propagation

Atlas propagation through a single template is expected to approach the per-
formance of direct registration based atlas propagation as the template library
grows. Using a finite template library, single template atlas propagation is still
expected to under perform direct registration based atlas propagation. Since reg-
istrations between templates and a target image are independently calculated,
the additional propagation error caused by registration composition using differ-
ent templates are independent from each other, which can be effectively reduced
by label fusion. Hence, employing a few templates that are similar to the tar-
get image for atlas propagation may completely remove the performance gap
between template-based propagation and direct registration based propagation.

2.4 Downsampling-Based Fast Template Selection

Template selection aims to select a template from a template library that has the
smallest registration error to a target image. Comparing to atlas selection [1,10],
template selection has the following challenges: (1) to ensure small registration
error from at least one template to any target image, a template set may contain
more images than a typical atlas set; and (2) template selection needs to have
low computational cost to achieve the goal of reducing overall computational
cost.

To this end, each template is registered to the target image in a downsampled
space. After registration, image similarity measures such as normalized mutual
information (NMI) and sum squared distance (SSD) are employed for template
ranking. Note that both global and region of interest based image similarity can
be employed. In our experiments, both templates and target images are down-
sampled into a coarse resolution such that deformable registration can be finished
within a few seconds, keeping the total computational cost for template selection
negligible comparing to a regular registration. Registrations to the target image
in the original space are only computed for selected templates.

3 Experiments

We conducted anatomy segmentation experiments using cardiac CT scans. Six-
teen anatomical structures were manually traced by a clinician for 42 cases,
namely, sternum, aorta (ascending/descending/arch/root), pulmonary artery
(left/right/trunk), vertebrae, left/right atrium, left/right ventricle, left ventric-
ular myocardium, superior/inferior vena cava. All images were resampled to
have a 2 mm3 isotropic resolution. See Fig. 2(a) for one image with manual
annotations.
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Fig. 2. (a) Axial (left) and coronal (right) views of one CT image with manual anno-
tations. (b) One template image at 2, 10, and 15 mm3 resolutions, respectively.

3.1 Experiment Setup

We conducted leave-one-out cross validation using the 42 labeled scans.

Image Registration. Image registration was computed using ANTS [3] by
sequentially optimizing affine and deformable transform (Syn), using Mattes
mutual information. Registering an image pair at 2 mm3 resolution took ∼50
min on a 2 G HZ CPU.

Performance of Direct/Indirect Registration. To compare atlas propaga-
tion accuracy produced by direct registration and indirect registration compo-
sition, we calculated pairwise deformable registrations for each pair of the 42
images with manual segmentation. The indirect registrations were produced for
each image pair by taking each of the remaining images as the propagation tem-
plate. The performance of direct/indirect registrations is measured by how well
anatomical structures are aligned in Dice similarity coefficient (DSC).

Label Fusion. We applied joint label fusion [11] with default parameters. Note
that for our method, all atlases are propagated through the selected template(s)
and are used for label fusion.

Template Library. The template library was created by randomly selecting
cases without manual segmentation. To investigate how the size of template
library affects the performance of atlas propagation, we created four template
libraries with varying sizes of 10, 20, 50, and 100, respectively.

Downsampling Space for Template Selection. To study the effect of how
downsampling may affect template selection, we tested two downsampling res-
olutions: 10 mm3 and 15 mm3. Figure 2(b) shows one example template. Images
in 10 mm3 and 15 mm3 resolutions only contain global structures, which are
sufficient for a global alignment. Registration at 10 mm3 and 15 mm3 can be
calculated within 5 s and 1 s, respectively.

Template Selection Metric. Following [8], we applied NMI and SSD for
atlas/template selection. To test multi-template atlas propagation, we varied
the number of selected propagation templates from 1 to 5.

Baseline Methods. MALF with direct registration atlas propagation and atlas
selection was applied to set the baseline performance. We also compared with
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unbiased template building based atlas propagation. We iteratively applied the
unbiased template building method [7] and k-means clustering to create common
template(s) for the 42 testing images. For example, when k templates are created,
the images are grouped into k clusters based on image similarity. One template
is created from each cluster. We varied the number of common templates from
1, 2, 3, and 4. For common template(s) based propagation, we applied two label
fusion schemes: (1) each training image was propagated to a target image once
through its nearest neighbor template; (2) each training image was propagated
through all templates and all warped atlases were applied for label fusion.

3.2 Results

Direct/Indirect Registration. Indirect registration produces more registra-
tion errors than direct registration. The average DSC scores over all anatomical
structures produced by direct/indirect registrations are 0.525 and 0.456, respec-
tively.

Baseline MALF. Figure 3(a) summarizes the performance when various num-
ber of atlases were selected for label fusion. NMI consistently outperformed SSD.
Meanwhile, using fewer atlases did not produce more accurate label fusion results
than using all atlases when locally weighted voting fusion was applied.

Fig. 3. (a) Segmentation performance using direct atlas propagation with atlas selec-
tion; (b) Performance using atlas propagation via common templates and tem-
plates selected from a library with 100 images. The performance of Bench-MALF,
which applied 41 atlases with direct atlas-target registrations, is shown for direct
comparison.

Common Template Atlas Propagation. Figure 4 shows an example when
three common templates are built. The created templates capture the fact that
the images may cover different body regions.
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Fig. 4. Coronal views of three templates created from unbiased template building.

Figure 3(b) shows the label fusion performance when various number of com-
mon templates were created for atlas propagation. When each atlas was prop-
agated through multiple templates, the result is slightly better than that pro-
duced by propagating each atlas only through its nearest neighbor template. As
more templates were created, the registration error from each atlas to its nearest
neighbor template is reduced, which results in more accurate label fusion results.
Overall, common template(s) based atlas propagation underperformed standard
MALF using direct atlas propagation, even when four common templates were
used. The difference is significant, with p < 0.01 on the paired Students t-test.

Biased Template Selection Atlas Propagation. Table 1 summarizes the
performance for biased template selection based atlas propagation. Again, NMI
consistently outperformed SSD for template selection. Overall, using larger size
template libraries produced more accurate results. The performance gain due
to enlarged template library is more prominent when a single template was
applied for atlas propagation. However, the performance gain diminishes as the
performance approaches the accuracy level produced by standard MALF with
direct registration. With NMI template selection, using a template library of size
50 or greater consistently and significantly (p < 0.01) outperformed common
template atlas propagation (also see Fig. 3).

Table 1. Label fusion performance produced by template selection based atlas propa-
gation. ∗indicates the difference from the standard MALF with direct atlas propagation
is statistically significant, with p < 0.01 on the paired Students t-test.

Selection space 10mm3 15mm3

Size of

template set

1 2 3 4 5 1 2 3 4 5

SSD 10 0.772∗ 0.792∗ 0.797∗ 0.800∗ 0.801∗ 0.773∗ 0.789∗ 0.796∗ 0.800∗ 0.802∗

20 0.776∗ 0.797∗ 0.800∗ 0.804 0.804 0.780∗ 0.797∗ 0.800∗ 0.803 0.804

50 0.794∗ 0.805 0.807 0.807 0.807 0.775∗ 0.802∗ 0.805 0.807 0.807

100 0.789∗ 0.802∗ 0.806 0.806 0.806 0.781∗ 0.799∗ 0.804 0.806 0.807

NMI 10 0.777∗ 0.795∗ 0.800∗ 0.802 0.804 0.781∗ 0.795∗ 0.803∗ 0.803 0.804

20 0.785∗ 0.803 0.804 0.806 0.806 0.789∗ 0.800∗ 0.804 0.805 0.806

50 0.796∗ 0.806 0.807 0.808 0.808 0.799∗ 0.803∗ 0.806 0.808 0.808

100 0.799∗ 0.806 0.806 0.808 0.809∗ 0.796∗ 0.805 0.807 0.808 0.809

With a single propagation template, the best accuracy is 0.799 mean DSC
produced by NMI selection in 10 mm3 space with a template library of 100



718 H. Wang and R. Zhang

images. When two templates were applied for atlas propagation, the perfor-
mance gap between direct-registration based MALF is completely removed with
a template library of size 50. Template selection using a library of size 50 takes
less than 5 minutes and 1 min in 10 mm3 and 15 mm3 space, respectively. Using 2
deformable registrations + template selection for atlas propagation, our method
reached the performance of standard MALF, which requires 41 deformable reg-
istrations for 41 atlases. Hence, in our experiments the atlas propagation cost of
our method is about 5% of standard MALF.

4 Conclusions

We provide a justification for employing a sizable template library and biased
template selection to improve the performance of template-based atlas propa-
gation. In a cardiac CT anatomy segmentation application, our method consis-
tently outperformed common unbiased template based atlas propagation. Using
5% registration cost, our method produced comparable performance to standard
direct registration based MALF.
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