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Abstract. We introduce inherent measures for effective quality control
of brain segmentation based on a Bayesian fully convolutional neural net-
work, using model uncertainty. Monte Carlo samples from the posterior
distribution are efficiently generated using dropout at test time. Based
on these samples, we introduce next to a voxel-wise uncertainty map also
three metrics for structure-wise uncertainty. We then incorporate these
structure-wise uncertainty in group analyses as a measure of confidence
in the observation. Our results show that the metrics are highly corre-
lated to segmentation accuracy and therefore present an inherent mea-
sure of segmentation quality. Furthermore, group analysis with uncer-
tainty results in effect sizes closer to that of manual annotations. The
introduced uncertainty metrics can not only be very useful in translation
to clinical practice but also provide automated quality control and group
analyses in processing large data repositories.

1 Introduction

Magnetic resonance imaging (MRI) delivers high-quality, in-vivo information
about the brain. Whole-brain segmentation [1,2] provides imaging biomarkers
of neuroanatomy, which form the basis for tracking structural brain changes
associated with aging and disease. Despite efforts to deliver robust segmenta-
tion results across scans from different age groups, diseases, field strengths, and
manufacturers, inaccuracies in the segmentation outcome are inevitable [3]. A
manual quality assessment is therefore recommended before continuing with the
analysis. However, the manual assessment is not only time consuming, but also
subject to inter- and intra-rater variability.

The underlying problem is that most segmentation algorithms provide results
without a measure of confidence or quality. Bayesian approaches are an alterna-
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tive, because they do not only provide the mode (i.e., the most likely segmenta-
tion) but also the posterior distribution. However, most Bayesian approaches use
point estimates in the inference, whereas marginalization over parameters has
only been proposed in combination with Markov Chain Monte Carlo sampling [4]
or the Laplace approximation [5]. While sampling-based approaches incorporate
fewer assumptions, they are computationally intense and have so far only been
used for the segmentation of substructures but not the whole-brain [4].

Recent advances in Bayesian deep learning enabled approximating the poste-
rior distribution by dropping out neurons at test time [6]. This does not require
any additional parameters and is achieved by sampling from the Bernoulli distri-
bution across the network weights. In addition, this approach enables to repre-
sent uncertainty in deep learning without sacrificing accuracy or computational
complexity, allowing for fast Monte Carlo sampling. This concept of uncertainty
was later extended for semantic segmentation within fully convolutional neu-
ral networks (F-CNN) [7] providing a pixel-wise uncertainty estimation. At the
same time, F-CNNs started to achieve state-of-the-art performance for whole-
brain segmentation, while requiring only seconds for a 3D volume [8,9].

In this work, we propose inherent measures of segmentation quality based
on a Bayesian F-CNN for whole-brain segmentation. To this end, we extend the
F-CNN architecture [8] with dropout layers, which allows for highly efficient
Monte Carlo sampling. From the samples, we compute the voxel-wise segmen-
tation uncertainty and introduce three metrics for quantifying uncertainty per
brain structure. We show that these metrics are highly correlated with the seg-
mentation accuracy and can therefore be used to predict segmentation accuracy
in absence of ground truth. Finally, we propose to effectively use the uncertainty
estimates as quality control measures in large-scale group analysis to estimate
reliable effect sizes. We believe that uncertainty measures are not only essential
for the translation of quantitative measures to clinical practice but also provide
automated quality control and group analyses in large data repositories.

Prior Art: Evaluating segmentation performance without ground truth has
been studied in medical imaging before. In early work, the common agreement
strategy (STAPLE) was used to evaluate classifier performance for segmenting
brain scans into WM, GM and CSF [10]. In another approach, features cor-
responding to a segmentation map were used to learn a separate regressor for
predicting the Dice score [11]. Recently, the reverse classification accuracy was
proposed, which involves training a separate classifier on the segmentation out-
come of the method to evaluate, serving as pseudo ground truth [12]. In contrast
to these previous approaches, we provide a quality measure that is inherently
computed within the segmentation framework, derived from model uncertainty
and does therefore not require training a second, independent classifier for eval-
uation, which itself may be subject to prediction errors.
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Fig. 1. A single input scan results in different Monte Carlo (MC) segmentations
(S1, S2, S3) based on different dropouts in the fully ConvNet. The samples are used
to estimate three variants of structure-wise uncertainty. The final segmentation is the
average of the MC samples, used in the third variant.

2 Method

Bayesian Inference: We employ dropout [13] to create a probabilistic encoder-
decoder network, which approximates probabilistic neuron connectivity similar
to a Bayesian neural network (BNN) [6]. Dropout is commonly used in training
and then turned-off at testing time. By using dropout also at testing, we can
sample from the posterior distribution of the model. We modify the architecture
in [8] by inserting dropout layers after every encoder and decoder block with a
dropout rate of q.

A given input I is feed-forwarded N times with different dropped out neurons,
generating N different Monte Carlo (MC) samples of segmentation {S1, · · ·SN}.
This inference strategy is similar to variational inference in BNNs, assuming a
Bernoulli distribution over the weights [6]. The final probability map is given
by computing the average over MC probability maps. We set the dropout rate
to q = 0.2 and produce N = 15 MC samples (<2 min), after which perfor-
mance saturates. We pre-train the network on 581 volumes of the IXI dataset1

with FreeSurfer [2] segmentations and subsequently fine-tune on 15 of the 30
manually annotated volumes from the Multi-Atlas Labelling Challenge (MALC)
dataset [14]. This trained model is used for all our experiments. In this work, we
segment 33 cortical and sub-cortical structures.

1 http://brain-development.org/ixi-dataset/.

http://brain-development.org/ixi-dataset/
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2.1 Uncertainty Measures

1. Voxel-wise Uncertainty: The model uncertainty Us for a given voxel x, for
a specific structure s is estimated as entropy over all N MC probability maps ps

Us(x) = −
N∑

i=1

pi
s(x) log(pi

s(x)). (1)

The voxel-wise uncertainty is the sum over all structures, U =
∑

s Us. Voxels
where uncertainty is low (i.e. entropy is low) receive the same predictions, in
spite of different neurons being dropped out.

2. Structure-wise Uncertainty: For many applications, it is helpful to have
an uncertainty measure per brain structure. We propose three different strategies
for computing structure-wise uncertainty from MC segmentations, illustrated in
Fig. 1 for N = 3 MC samples.

Type-1: We measure the variation of the volume across the MC samples. We
compute the coefficient of variation CVs = σs

μs
for a structure s, with mean μs

and standard deviation σs of MC volume estimates. Note that this estimate is
agnostic to the size of the structure.

Type-2: We use the overlap between samples as a measure of uncertainty. To
this end, we compute the average Dice score over all pairs of MC samples

dMC
s = E [{Dice((Si == s), (Sj == s))}i�=j ] . (2)

Type-3: We define the uncertainty for a structure s as mean voxel-wise uncer-
tainty over the voxels which were labeled as s, Us = E

[{U(x)}x∈{S==s}
]
.

Note that dMC
s is directly related to segmentation accuracy, while Us and

CVs are inversely related to accuracy.

2.2 Segmentation Uncertainty in Group Analysis

We propose to integrate the structure-wise uncertainty in group analysis. To this
end, we solve a weighted linear regression model with weight wi for subject i

β̂ = arg min
∑

i

ωi(Vi −Xiβ
�)2 (3)

with design matrix X, vector of coefficients β, and brain structure volume Vi.
We use the first two types of structure-wise uncertainty and set the weight ωi

to 1
CVs

or 1
1−dMC

s
. Including weights in linear regression increases its robustness

as scans with reliable segmentation are emphasized. Setting all weights to a
constant results in standard regression. In our experiments, we set

Xi = [1, Ai, Si,Di] β = [β0, βA, βS , βD] (4)

with age Ai, sex Si and diagnosis Di for subject i. Of particular interest is the
regression coefficient βD, which estimates the effect of diagnosis on the volume
of a brain structure V .
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3 Experimental Results

Datasets: We test on the 15 volumes of the MALC dataset [14] that were not
used for training. Further, we deployed the model on un-seen scans across 3 dif-
ferent datasets not used for training: (i) ADNI-29: The dataset consists of 29
scans from ADNI dataset [15], with a balanced distribution of Alzheimer’s Dis-
ease (AD) and control subjects, and scans acquired with 1.5T and 3T scanners.
The objective is to observe uncertainty changes due to variability in scanner and
pathologies. (ii) CANDI-13: The dataset consists of 13 brain scans of children
(age 5–15) with psychiatric disorders, part of the CANDI dataset [16]. The objec-
tive is to observe changes in uncertainty for data with age range not included
in training. (iii) IBSR-18: The dataset consist of 18 scans publicly available
at https://www.nitrc.org/projects/ibsr. The objective is to see the sensitivity of
uncertainty with low resolution and poor contrast scans. Note that the train-
ing set (MALC) did not contain scans with AD or scans from children. Manual
segmentations for MALC, ADNI-29, and CANDI-13 were provided by Neuro-
morphometrics, Inc.2

Table 1. Results on 4 different datasets with global Dice scores and correlation of Dice
scores with 3 types of uncertainty.

Datasets Mean dice score (DS) Mean Corr(·, DS)

CVs Us CVs dMC
s

MALC-15 0.88± 0.02 0.38 −0.85 −0.81 0.86

ADNI-29 0.83 ± 0.02 0.46 −0.72 −0.71 0.78

CANDI-13 0.81 ± 0.03 0.54 −0.84 −0.86 0.90

IBSR-18 0.81 ± 0.02 0.57 −0.76 −0.76 0.80

Quantitative Analysis: To quantify the performance of the uncertainty in
predicting the segmentation accuracy, we compute the correlation coefficient
between the Dice scores and the three types of structure-wise uncertainty. Table 1
reports the correlations for all 4 test datasets, together with the Dice score of
the inferred segmentation. Firstly, we observe that the segmentation accuracy
is highest on MALC and that the accuracy drops (5–7%) for other datasets
(ADNI, CANDI, IBSR). This decrease in performance is to be expected when
transferring the model to other datasets and is also reflected in the uncertainty
estimate (Mean CVs). Secondly, for the three measures of structure-wise uncer-
tainty, the Dice agreement in MC samples dMC

s shows highest correlations across
all datasets. The overall high correlation for dMC

s indicates that it is a suitable
proxy for measuring segmentation accuracy without the presence of ground truth
annotations. Figure 2 shows scatter plots for the three uncertainty variants with
respect to actual Dice score on CANDI-13.
2 http://Neuromorphometrics.com/.

https://www.nitrc.org/projects/ibsr
http://Neuromorphometrics.com/
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Fig. 2. Scatter plot of three types of uncertainty and Dice scores on CANDI-13 dataset
(one dot per scan and structure), with their corresponding correlation coefficient (r).
For clarity, structures only on the left hemisphere are shown.

Fig. 3. Results of 4 different cases, one from each dataset, corresponding to the worst
Dice score. The MRI scan, segmentation, voxel-wise uncertainty and structure-wise
uncertainty (dMC

s ) are presented. Red in the heat map indicates high reliability in
segmentation, while blue indicates poor segmentation.
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Qualitative Analysis: Figure 3 illustrates qualitative results with MRI scan,
segmentation, voxel-wise uncertainty map and structure-wise uncertainty (dMC)
heat map. In the heat map, red indicates higher reliability in segmentation.
The first row shows results on a test sample from the MALC dataset, where
segmentation is good with high reliability in prediction. The second row presents
the scan with worst performance on IBSR-18 dataset, consisting of poor contrast
with prominent ringing artifacts. Its voxel-wise and structure-wise uncertainty
maps shows less reliability in comparison to MALC. The third row presents the
scan with worst performance in ADNI-29, a subject of age 95 with severe AD.
Prominent atrophy in cortex along with enlarged ventricles are visible in the
MRI scan, with ringing artifacts at the top. Its dMC

s heat maps shows higher
uncertainty in some subcortical structures with brighter shades. The last row
presents the MRI scan with the worst performance on CANDI-13 dataset, a
subject of age 5 with high motion artifact together with poor contrast. Its voxel-
wise uncertainty is higher in comparison to others, with dark patches prominent
in subcortical regions. The heat map shows the lowest confidence for this scan,
in comparison to other results.

Table 2. Results of group analyses on ADNI-29 and ABIDE datasets with pathologies
(Alzheimer’s and autism), with and without using uncertainty.

AD biomarkers ADNI-29

Ground truth Normal regression CVs dMC
s

βD pD βD pD βD pD βD pD

Hippocampus 1.16 0.0010 1.26 0.0002 1.21 0.0002 1.25 0.0002

Lat. Ventricle −0.15 0.6658 −0.19 0.5826 −0.15 0.6650 −0.16 0.6342

Autism biomarkers ABIDE

Normal regression Robust regression CVs dMC
s

βD pD βD pD βD pD βD pD

Amygdala −0.14 0.0140 −0.07 0.0499 −0.32 0.0001 −0.27 0.0001

Lat. Ventricles −0.01 0.8110 −0.05 0.1294 −0.38 0.0089 −0.19 0.0843

Pallidum −0.07 0.2480 −0.01 0.8727 −0.40 0.0051 −0.28 0.0165

Putamen −0.07 0.2186 −0.01 0.8125 −0.43 0.0035 −0.39 0.0057

Accumbens −0.08 0.1494 −0.03 0.4386 −0.21 0.0013 −0.17 0.0031

Uncertainty for Group Analysis: In this section, we evaluate the integration
of structure-wise uncertainty in group analyses. First, we perform group analysis
on ADNI-29 with 15 control and 14 AD subjects. We focus our analysis on most
prominent AD biomarkers, the volume of hippocampus and lateral ventricles [17].
Table 2 reports the regression coefficient and p-value for diagnosis (βD, pD). The
coefficient is computed by solving Eq. 3, where we use two types of uncertainty
(CVs, dMC

s ) and compare to normal regression. Although the dataset is small,
it comes with ground truth annotations and therefore allows for estimating the
actual βD. Comparing, we observe that both versions of weighted regression
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results in βD closer to the actual effect in comparison to normal regression. Also,
we note that CVs provides a better weighting than (1−dMC

s ). Next, we perform
group analysis on the ABIDE-I dataset [18] consisting of 1, 112 scans, with 573
normal subjects and 539 subjects with autism. The dataset is collected from 20
different sites with a high variability in scan quality. To factor out changes due
to site, we added site as a covariate in Eq. 3. We report βD with corresponding
p-values for the volume of brain structures that have recently been associated to
autism in a large ENIGMA study [19]. We compare uncertainty weighted regres-
sion to normal regression, and include robust regression with Huber norm. CVs

provides the highest effect sizes, followed by (1 − dMC
s ). Strikingly, uncertainty

weighted regression results in significant associations to autism, identical to [19],
whereas normal regression is only significant for amygdala.

4 Conclusion

We introduced a Bayesian F-CNN model for whole-brain segmentation that pro-
duces MC samples by using dropout at test time. Based on the samples, we intro-
duced metrics for quantifying structure-wise uncertainty. We show a high corre-
lation with segmentation accuracy of these metrics on 4 out-of-sample datasets,
thus providing segmentation quality. In addition, we proposed to integrate the
confidence in the observation into group analysis, yielding improved effect sizes.
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