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Abstract. The training of medical image analysis systems using
machine learning approaches follows a common script: collect and anno-
tate a large dataset, train the classifier on the training set, and test it
on a hold-out test set. This process bears no direct resemblance with
radiologist training, which is based on solving a series of tasks of increas-
ing difficulty, where each task involves the use of significantly smaller
datasets than those used in machine learning. In this paper, we propose
a novel training approach inspired by how radiologists are trained. In
particular, we explore the use of meta-training that models a classifier
based on a series of tasks. Tasks are selected using teacher-student cur-
riculum learning, where each task consists of simple classification prob-
lems containing small training sets. We hypothesize that our proposed
meta-training approach can be used to pre-train medical image analy-
sis models. This hypothesis is tested on the automatic breast screening
classification from DCE-MRI trained with weakly labeled datasets. The
classification performance achieved by our approach is shown to be the
best in the field for that application, compared to state of art base-
line approaches: DenseNet, multiple instance learning and multi-task
learning.
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1 Introduction

Radiologists are exceptionally trained specialists who play a crucial role inter-
preting and assisting other doctors and specialists in diagnosing and treating
diseases. Their training program typically requires the trainee to solve tasks
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of increasing difficulty [1], where each task contains a relatively small number
of “training images”. Such a program bears little resemblance to the training
of medical image analysis systems based on machine learning that are mod-
eled to solve narrowly defined, but complex classification problems [2], requiring
large training sets. Once trained, these models cannot be easily adapted to new
problems – they must be re-trained with new large training sets. The use of
pre-trained models [3] as a way of initializing a model is the first step towards
a more similar approach to the training program of radiologists. However, pre-
training does not train a model to be able to learn new tasks – instead it is a
“trick” to improve convergence and generalization. Meanwhile, machine learn-
ing researchers have developed more effective learning to learn approaches [4]
– such approaches are motivated by the ability of humans to learn new tasks
quickly and with limited “training sets”. The optimization in such approaches
penalizes classification loss and inefficient learning on new tasks (i.e., classifica-
tion problems) by using a training scheme that continuously samples new tasks,
mimicking the human training process. Our hypothesis is that medical machine
learning methods could benefit from such an radiologist’s style training process.

In this paper, we introduce an improved model agnostic meta-learning [4]
(MAML) as a way of pre-training a classifier. The training process maximizes
the ability of the classifier to adapt to new tasks using relatively small training
sets. We also propose a technical innovation for MAML [4], by replacing the
random task selection with teacher-student curriculum learning as an improved
way for selecting tasks [5]. This task selection process is based on the model’s
performance on the tasks, trying to mimic radiologists’ training. Our improved
MAML is tested on weakly-supervised breast screening from DCE-MRI, where
samples are globally annotated with classes (i.e. volume-level labels): no find-
ings, benign lesions and malignant lesions, but these samples do not have lesion
delineations. Note that the use of weakly-labeled datasets is becoming increas-
ingly important for medical image analysis as this is the data available in clinical
practice [2].

We test our proposed approach on a dataset of dynamic contrast enhanced
MRI for the breast screening classification. Results show that our proposed app-
roach improves the area under the ROC curve (AUC), outperforming baselines
such as DenseNet [6], which holds the state-of-the-art (SOTA) for many classi-
fication problems; multiple-instance learning [7], which holds SOTA for breast
screening in mammography; and multi-task learning [8]. Our learning approach
produces an AUC of 0.90, which is better than the best result from the baseline
methods that achieves an AUC of 0.85.

2 Literature Review

Breast screening from DCE-MRI aims at early detection of breast cancer in
women at high-risk [9]. Currently, this screening process is mostly done manu-
ally, where its success depends on the radiologist’s abilities [10]. An automated
breast screening system working as a second reader can help radiologists reduce
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variability and increase the sensitivity and specificity of their readings. Tradi-
tionally, such systems rely on classifiers trained with large-scale strongly labeled
datasets (i.e., containing lesion delineation and global classification) [11–15]. The
non-scalability of this process (due to costs related to the annotation process)
motivated the development of learning methods that can use weakly-labeled
training sets [7] (i.e., samples contain only global classification). However, these
methods still follow traditional machine learning approaches, which means that
they still need large-scale training sets, even when the model has been pre-trained
from other classification problems [3].

Contrasting with traditional machine learning algorithms, humans excel at
learning new skills and new “classification” problems, where new learning tasks
often require fewer training samples than the ones before. This learning to learn
ability has inspired the development of a new generation of machine learning
algorithms. For example, multi-task learning uses an optimization function that
is trained to simultaneously minimize the loss of several different, but related
classification problems [8], helping the regularization of the training procedure.
Nevertheless, multi-task learning does not address the issue of making a model
effective at learning new classification problems with small datasets. This issue
is addressed by meta-learning [4], which has been designed to solve the few-shot
learning problem, where the classifier is trained to train for new classification
problems with previously unseen classes containing a small number of images.
In meta-learning for few-shot classification, the model is meta-trained to solve
classification problems for many randomly sampled tasks (i.e., the tasks are not
fixed as in multi-task learning). Then the model is meta-tested by classifying
unseen classes after being able to adapt using few training images of such unseen
classes.

We explore the potential to improve the meta-learning process using a more
useful (i.e., non random) task sampling procedure. For example, formulating
the task sampling as a multi-armed bandit problem has been shown to produce
faster convergence and better generalization [16]. Similarly, Matiisen et al. [5]
proposed a new form of curriculum learning [17] that selects new tasks based not
on their performance but on their performance improvement. However, these task
sampling approaches have been applied in traditional machine learning problems,
such as supervised and reinforcement learning problems, which means that our
proposed application of curriculum learning for task selection in meta-learning
is novel, to the best of our knowledge1.

3 Methodology

Our methodology consists of three stages (see Fig. 1). We first meta-train the
model using different tasks (each containing relatively small training sets) to find
1 While writing the final draft of this paper, we noticed a recent approach by Sharma

et al. [18]. However, they sample tasks for the problem of multi-task learning. In
addition, sampling tasks is not based on the improvement of performance, but tasks
where the performance is worse.
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Fig. 1. The model is first meta-trained using several tasks containing relatively small
training sets. The meta-trained model is then used to initialize the usual training
process for breast screening (i.e., healthy and benign versus malignant). The probability
of malignancy is estimated from a forward pass during the inference process.

a good initialization that is then used to train the model for the breast screening
task (i.e., the healthy and benign versus malignant task). The inference is
performed using previously unseen test data. Below, we define the dataset and
describe each stage.

3.1 Dataset

Let the dataset be represented by D = {(vi, ti, bi, di, yi)}|D|
i=1 where v : Ω → R is

the first subtraction DCE-MRI volume (Ω denotes the volume lattice), t : Ω → R

is the T1-weighted volume, b ∈ {left, right} indicates if this is the left or right
breast of the patient, di ∈ N denotes patient identification, and y ∈ Y = {0, 1, 2}
is the volume label (yi = 2: breast contains a malignant lesion, yi = 1 : breast
contains at least one benign and no malignant findings, and yi = 0 : no findings).
We divide D using the patient identification into the training set T , validation
set V and testing set S, with no overlap between these sets.

For the meta-training phase, we use the meta-training set defined by {Dj}5j=1

where each meta-set Dj ⊆ T contains the relevant volumes for the classification
task Kj , defined as follows: (1) K1 classifies volumes that contain any findings
(benign or malignant); (2) K2 discriminates between volumes with no findings
and malignant findings; (3) K3 discriminates between volumes with no findings
and benign findings; (4) K4 discriminates volumes with benign findings against
malignant findings; and (5) K5 addresses breast screening, i.e. finding volumes
that contain malignant findings.

3.2 Model

We meta-train a model across a number of tasks so that it can be quickly
trained to new unseen tasks from few images, or fine-tuned to become more
effective at one of the tasks used in the meta-training phase. See algorithm 1 for
an overview of the methodology.



550 G. Maicas et al.

Algorithm 1 Overview of the meta-training procedure
1: procedure Meta-train({K1 . . . K5}, {D1 . . . D5}, model fθ)
2: Initialise model parameters θ
3: for m = 1 to M do � Meta-update Loop
4: Create meta-batch Km by sampling |Km| tasks from {K1 . . . K5}
5: for each task Kj ∈ Km do
6: Adapt model with (1) using samples from Dj � Adaptation

7: Update model parameters with (2) � Meta-update

Let fθ be the model parameterized by θ. For each meta update, the model
adapts to the multiple tasks using the meta-batch set Km. The tasks included
in Km are sampled according to one of the methods described below in Sect. 3.3.
For each task Kj ∈ Km, we sample from Dj a training set Dtr

j and a valida-
tion set Dval

j with N tr and Nval volumes, respectively. The model parameter θ
adaptation is performed with the following gradient descent at time step t:

θ
′(t)
j = θ(t) − α

∂LKj

(
fθ(t)

(
Dtr

j

))

∂θ
, (1)

where α denotes the adaptation learning rate, and LKj

(
fθ

(
Dtr

j

))
is the cross-

entropy loss to train for the classification task Kj . Finally, given the adapted
models f

θ
′(t)
j

for each task Kj ∈ Km, the model parameter θ is meta-updated

from the error on the validation volumes Dval
j of the task w.r.t. the initial

parameters θ(t):

θ(t+1) = θ(t) − β
∑

Kj∈Km

∂LKj

(
f

θ
′(t)
j

(
Dval

j

))

∂θ
, (2)

where β denotes the meta-learning rate. In summary, the meta-training phase
consists of updating the parameters of the model based on the error in validation
images after being adapted to a task using few images. This is equivalent to the
following optimization:

min
θ

∑

Kj∈Km

LKj
f

θ
′(t)
j

(Dval
j ) = min

θ

∑

Kj∈Km

LKj

(

f
θ(t)−α

∂LKj (f
θ(t)(Dtr

j ))
∂θ

(Dval
j )

)

(3)
The resulting model fθ obtained after the completion of the meta-training

process is then fine-tuned using the cross entropy loss for the breast screening
binary classification problem. This process consists of the training phase, where
we use the training set T for training and validation set V for model selection.
The final model is tested during the inference phase by feeding testing volumes
from S through the network to estimate their probability of malignancy.
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3.3 Task Sampling

The sampling process to select |K| tasks from
⋃5

j=1 Kj (step 4 of Algoritjm 1) is
currently based on random sampling [4]. However, we consider this to be a cru-
cial step in that algorithm, and therefore propose four sampling methods for step
4 of Algorithm 1. In particular, we study the following sampling methods: (1)
Random: randomly sample all tasks with replacement [4]; (2) All-task: sample
all |K| = 5 tasks exactly once; (3) Teacher-Student Curriculum Learning
(CL) [5]: sample tasks that can achieve a higher improvement on their per-
formance. This is formalized by a partially observable Markov decision process
(POMDP) parametrized by the state, which is the current parameter vector
θ(t); the next action to perform, which is the task Kj to train on; the obser-
vation OKj

, consisting of the AUC improvement after adapting the parameters
from θ(t) to θ′(t) for task Kj ; and the reward RKj

, which is computed from the
AUC improvement of the current observation OKj

minus the AUC improvement
obtained from the last time the task Kj was sampled. The goal of the sam-
pling algorithm is to maximize the score of all tasks, which is solved based on
reinforcement learning using Thompson sampling. More specifically, a buffer Bj

stores the last B rewards for task Kj , and at sampling time, a recent reward is
randomly chosen from each of the buffers Bj . The next task for the meta-training
is the one associated with the buffer that produced the highest absolute valued
recent reward. This procedure chooses to lean a task until its improvement stabi-
lizes, and then different tasks will be sampled and so on. Note that by sampling
according to the absolute value, tasks where the performance is decreasing will
tend to be sampled again; and (4) Multi-armed bandit (MAB) [16]: sample
in the same way as the CL approach above, but the observation OKj

is stored
in the buffer instead of the reward RKj

. Also, the next task is selected based on
the highest valued recent observation (not its absolute value).

4 Experiments and Results

We assess our methodology on a breast DCE-MRI dataset containing 117
patients, divided into a training set with 45 patients, a validation with 13 and
a test set with 59 patients [15,19]. Each sample for each patient in this dataset
contains T1-weighted and dynamically-contrast enhanced MRI volumes. Given
the current interest in decreasing the number of scans [12,15], only the first
subtraction volume is used. Although all patients contain at least one lesion
(benign or malignant, confirmed by biopsy), not all breasts contain lesions. The
T1-weighted volume is only used to automatically segment and extract the left
and right breasts into volumes of size 100 × 100 × 50 [15] and assign separate
labels to them, where the label of a breast can be “no-finding”,“malignant” (if
it contains at least one malignant lesion), or “benign” (if all lesions are benign).
All evaluations below are based on the area under the ROC curve (AUC).

The model fθ, implemented in 3D, is based on the DenseNet [6], which cur-
rently holds the best classification performance in several computer vision appli-
cations. The model architecture and hyper-parameters are selected based on the
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Table 1. Baseline AUC
for classifiers trained on
breast screening.

Baseline AUC

DenseNet [6] 0.83

MIL [7] 0.85

Multi-task [8] 0.85

Table 2. AUC for our proposed models
depending on the meta-batch size and task
sampling methods and trained for breast
screening.

Model |K| AUC per sampling method

Random All-task MAB CL

BSML 3 0.86 N/A 0.88 0.90

BSML 5 0.85 0.89 0.89 0.90

BSML-NS 4 0.85 0.88 0.87 0.89

highest AUC for the breast screening problem in the validation set. The archi-
tecture is composed of five dense blocks of two dense layers each and is trained
with a learning rate of 0.01 and a batch size of 2 volumes. For our proposed
methodology (labeled as BSML), the number of meta-updates is M = 3000, the
meta-learning rate β = 0.001, the number of training and validation volumes
selected for task Kj from the meta-set Dj is N tr = Nval = 4, the number of
gradient descent updates is 5, and the adaptation learning rate α = 0.1. We
check the influence of the meta-batch size |K| ∈ {3, 5}. Also, we evaluate the
influence of all task sampling approaches listed in Sect. 3.3. Finally, we also run
experiments to check the performance of our model when the task of breast
screening is not used for meta-training (BSML-NS). This means that the train-
ing process has to learn an unseen task starting from the initialization achieved
in the meta-training step. In this case, we use |K| = 4 and test the influence of
the different task sampling approaches.

Our proposed model is compared against the following baselines: (1) a
DenseNet trained for the breast screening binary task; (2) the pre-trained
DenseNet (1) fine-tuned using a multiple-instance learning framework(MIL) [7]
– this approach holds the SOTA for the breast screening problem in mammog-
raphy; and (3) a DenseNet trained with a multi-task loss [8] using the 5 tasks
defined in Sect 3.1.

Fig. 2. Classification examples. Image (2a) shows a correct negative classification of
a volume containing a benign lesion, images (2b) and (2c) show a correct positive
classification of a volume containing a malignant lesion, and image (2d) shows an false
negative classification of a volume containing a small malignant lesion.
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Tables 1 and 2 contain the AUC for baselines and experiments detailed above.
Figure 2 shows examples of the classification produced by our methodology.

5 Discussion and Conclusion

We presented a methodology to train medical image analysis systems that tries
to mimic the process of training a radiologist. This is achieved by meta-training
the model with several tasks containing small meta-training sets, followed by a
subsequent training to solve the particular problem of interest. We established a
new SOTA for the weakly supervised breast screening problem when compared
to several baselines such as DenseNet [6], a multi-task trained DenseNet [8] and
a DenseNet fine-tunned in a MIL framework [7]. Note that the MIL setup does
not achieve a large improvement as reported in the original paper [7]. We believe
that this is due to the use of DenseNet, which tends to show better classification
results than Alexnet [7]. Also, it is worth mentioning that our proposed method
has not shown any false positive classification in the test set.

As reflected in the experiments, the sampling of the tasks to meta-train is
an important step of our proposed methodology. In particular, the CL sampling
showed more accurate classification than random sampling, which yields similar
results to the baselines. The MAB sampling improved over random selection,
but it is still not as competitive as curriculum learning. We conjecture that
sampling according to the best performance (i.e., MAB) keeps selecting more
often the tasks that produce the highest reward, while CL samples tasks with
a larger margin for improvement because they can achieve a larger slope in
the learning curve. Consequently, CL aims at improving the reward for ALL
tasks. Also, the meta-batch size does not appear to have much influence in the
results. Furthermore, the BLML-NS results in Table 2 show that our proposed
methodology can be successfully trained for breast screening even when this
task is not included in the meta-training phase. In particular, notice that the
AUC is competitive, being 1 point smaller than our best result (that includes
breast screening in meta-training), but between 4 and 6 points better than the
baselines.
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