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Abstract. In computed tomography, image reconstruction from an
insufficient angular range of projection data is called limited angle tomog-
raphy. Due to missing data, reconstructed images suffer from artifacts,
which cause boundary distortion, edge blurring, and intensity biases.
Recently, deep learning methods have been applied very successfully to
this problem in simulation studies. However, the robustness of neural net-
works for clinical applications is still a concern. It is reported that most
neural networks are vulnerable to adversarial examples. In this paper,
we aim to investigate whether some perturbations or noise will mislead
a neural network to fail to detect an existing lesion. Our experiments
demonstrate that the trained neural network, specifically the U-Net, is
sensitive to Poisson noise. While the observed images appear artifact-
free, anatomical structures may be located at wrong positions, e.g. the
skin shifted by up to 1 cm. This kind of behavior can be reduced by
retraining on data with simulated Poisson noise. However, we demon-
strate that the retrained U-Net model is still susceptible to adversarial
examples. We conclude the paper with suggestions towards robust deep-
learning-based reconstruction.
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1 Introduction

In practical applications of computed tomography (CT), the gantry rotation of
a CT system, particularly an angiographic C-arm device, might be restricted by
other system parts or external obstacles. In this case, only limited angle data are
acquired. Image reconstruction from an insufficient angular range of data is called
limited angle tomography. Due to missing data, artifacts will occur, including
distorted boundaries, blurred edges, and biased intensities. These artifacts may
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lead to misinterpretation of the images. Therefore, artifact reduction in limited
angle tomography has important clinical value.

Many approaches have been investigated to reduce artifacts in limited angle
tomography. One approach is to restore missing data using extrapolation/inter-
polation methods based on the band-limitation property [10] or data consistency
conditions [6]. These methods can improve the image quality of simple data,
but are not suited for clinical data consisting of complex structures. Another
popular approach is iterative reconstruction with total variation [1,13]. Iterative
algorithms can reduce artifacts effectively, but are computationally expensive.

Fig. 1. The fake organ-like struc-
tures created by the U-Net, win-
dow: [−1000, −760] HU.

Fig. 2. The modified U-Net architecture for arti-
fact reduction in limited angle tomography with
an example of 256 × 256 input images (modified
from [12]).

Recently, deep learning has achieved impressive success in various fields
including limited angle tomography [4,5,15]. Würfl et al. [15] propose a neu-
ral network to learn the compensation weights for limited angle data based on
[11]. Hammernik et al. further add a variational network to eliminate coherent
streak artifacts [5]. Gu and Ye adapt the U-Net architecture [12] to learn artifacts
from streaky images in the multi-scale wavelet domain [4]. Their work shows a
promising prospect of the clinical application of deep learning into limited angle
tomography in the near future.

However, the robustness of neural networks in practice is still a concern.
It is reported that most neural networks are vulnerable to adversarial examples
[16], which are typically generated by adding small perturbations [7,14]. In some
cases, the perturbations are too small to be noticed by human eyes. Nevertheless,
they will cause a neural network to predict entirely wrong labels. For example,
robust physical adversarial examples can be generated to attack an autonomous
driving system such that it misclassifies a stop sign as a speed limited sign [2].

Like autonomous driving, clinical applications of deep learning also require
a high level of safety and security. In our preliminary experiments on fan-beam
limited angle tomography, we observed that the U-Net occasionally creates fake
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organ-like structures in the background without any attacker model (Fig. 1). This
motivates us to look into the robustness of deep learning. In this paper, we aim
to investigate whether a trained neural network for limited angle tomography
is vulnerable to perturbations. Particularly, the influence of projection-domain
Poisson noise, the most common noise existing in real CT data, is investigated.
Taking this a step further, we look into trained adversarial examples. We con-
clude the paper by giving recommendations on how to benchmark deep learning-
based approaches.

2 Materials and Methods

2.1 U-Net Architecture

Based on [4,12], we adapt the popular U-Net architecture for artifact reduction
in limited angle tomography, as displayed in Fig. 2. The left part is a contraction
path which follows the typical architecture of a convolutional network. Each blue
arrow represents a 3 × 3 zero-padded convolution operation, a ReLU operation,
and a batch normalization operation. The right side is an expansion path. The
green arrow represents an up-sampling operation where we replace the original
deconvolution operation by a resize-convolution to avoid checkerboard artifacts
[9]. The copy (grey arrow) operation concatenates the up-sampled features with
the corresponding features from the contraction path. The last 1×1 convolution
operation maps the 64-channel features to a desired output image.

For limited angle tomography, the input images are reconstructed from
limited angle data while the output images are the artifact-free images. The
Hounsfield scaled images (input and target) are normalized to ensure stable
training. An L2 loss function is used.

2.2 Adversarial Examples

Given a neural network classifier C, an input image f , and its true label l, an
adversarial example can be described as the following,

find f ′ s. t. ||f ′ − f || < ε such that C(f ′) = l′ and l′ �= l,

where f ′ is the adversarial example of f , l′ is the label of f ′ which is different
from l, and ε is a parameter to control the difference between f and f ′. The
perturbation is denoted by e where e = f ′−f . When the new label l′ is specified,
it is a targeted attack. Otherwise, it is a non-targeted attack.

To the best of our knowledge, adversarial examples have exclusively been
reported for classification and segmentation tasks. We intend to investigate the
robustness of the U-Net for limited angle tomography, which is a regression
neural network. Since no discrete category labels are assigned to the outputs,
the influence of a perturbation is evaluated by checking whether the U-Net is
able to solve a specific task. In our case, we aim to reconstruct an existing lesion.
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We pick a reference image, denoted by f ref. An image reconstructed from
its limited angle projection data is denoted by f limited. The U-Net predicts an
estimation of f ref from f limited. The predicted image is denoted by f est. To check
the robustness of the U-Net to perturbations, a simulated lesion is added to the
reference image. The new reference image is denoted by f ref,L where L is short
for “lesion”. Its limited angle reconstruction image and the predicted image by
the U-Net are denoted by f limited,L and f est,L, respectively.

Non-targeted Attack: For non-targeted attacks, the fast gradient sign (FGS)
method [7] is the most popular method to generate adversarial examples. How-
ever, the perturbations found by the FGS are like “salt-and-pepper” noise, which
we do not expect to appear in real CT data. Instead, the most common noise in
CT is Poisson noise. Therefore, it is worthwhile to investigate the influence of
Poisson noise as the perturbation.

Targeted Attack: For a targeted attack, we try to find a certain perturbation
that misleads the U-Net to predict a target image where the lesion is missing. As
the target, we use the estimated image without the lesion f est. The perturbation
can be generated by the following optimization problem,

arg min
e

J(e) = arg min
e

||w1 · (U(f limited, L + e) − f est

) ||22 + λ||w2 · e||22, (1)

where J(e) is the objective function to minimize, U is the trained U-Net model,
w1 and w2 are weight vectors which have large weight elements at the lesion
area, and λ is a relaxation parameter for the L2 regularizer. The purpose of
w1 is to penalize the error at the lesion area more than other areas. w2 further
constrains the magnitude of e at the lesion area, otherwise the optimization may
result in removing the lesion in the input image. The iterative least-likely class
method in [7] is adapted to solve the above optimization problem:

e0 = 0, ei+1 = ei − α∇eJ(ei), (2)

where ei is an approximation of e at the i-th iteration, ∇eJ(ei) is the gradient
of J(ei) w. r. t. the perturbation e and is obtained by back-propagation, and α
is the step size for the update.

2.3 Experimental Setup

Experiment (Exp.) 1: In the first experiment, we evaluate the U-Net on lesion
detection in cone-beam limited angle tomography without any perturbation as
commonly performed in deep learning CT papers. We pick 17 patients from the
AAPM Low-Dose CT Grand Challenge data for training and one patient for
testing. The limited angle projections are simulated in a 120◦ angular range
scan with an angular step of 1◦. The source-to-isocenter distance is 600 mm and
the source-to-detector distance is 1200 mm. The detector size is 620 × 480 with
an isotropic element size 1.0 mm. Images are reconstructed using FDK with the
Ram-Lak kernel from the limited angle projections. The size of the reconstructed
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images is 256 × 256 × 256 with a pixel size of 1.25 mm, 1.25 mm, and 1 mm in
the X, Y, and Z direction, respectively. For each patient we pick 13 slices from
its reconstructed volume. As a result, 221 slices are used as training set. The
slices have a distance of 2 cm in depth between neighbouring slices. Although
different slices have different cone angles, the artifacts are mainly caused by the
limitation in the scan angle. Therefore, we train on slices instead of volumes.

The U-Net is trained on the above noise-free data using the Adam optimizer.
The learning rate is 10−3 for the first 100 epochs, 10−4 for the 101−130th epochs,
and 10−5 for the 131 − 150th epochs. The L2-norm is applied to regularize the
network weights. The regularization parameter is 10−4.

A simulated lesion cylinder is added to the ground truth testing volume.
The lesion has a radius of 3 mm and a contrast of 200 HU. The volume with
the lesion is forward projected and reconstructed from its limited angle data.
For our lesion attack, we investigate a slice which is 13 cm away from the center
plane for evaluation.

Exp. 2: For the non-targeted attack, Poisson noise is simulated considering an
initial exposure of 105 photons at each detector pixel before attenuation. A linear
attenuation coefficient of 0.02/mm is chosen as 0 HU. Poisson noise is added to
the testing volume. The U-Net trained either without or with Poisson noise is
evaluated on the selected noisy testing slice.

Exp. 3: For the targeted attack, the weight vectors are set w1 = w2 in Eq. (1)
with a value of 100 at a 15× 15 patch (cf. Fig. 5) covering the lesion and a value
of 1 for other areas. The L2 regularizer parameter λ is set to 10. The step size
α in Eq. (2) is set to 10−3. 32 iterations are used for the perturbation.

(a) f ref,L (b) f limited,L (c) f est,L (d) f est,L

Fig. 3. The result of lesion detection from 120◦ cone-beam limited angle reconstruction,
perturbation/noise-free, window: [−1000, 1000] HU. The lesion position is marked by
the red arrow and the mispredicted cavity is marked by the blue arrow. A region-of-
interest (ROI) at the lesion area is shown at the right bottom corner with a window
width of 1000 HU. f est,L in (c) is re-displayed at a narrow window [−1000, −760] HU
in (d).
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3 Results and Discussion

Exp. 1: The results of the lesion detection in the perturbation free case are dis-
played in Fig. 3. Figure 3(b) shows that the limited angle reconstruction f limited,L

suffers from severe artifacts. The body outline is highly distorted at the top and
bottom parts. The heart is obscured by streak artifacts. Many vessels in the
lung are missing. The lesion (marked by the red arrow) is located at a position
where many artifacts appear. f est,L, the estimation of f ref,L predicted by the
U-Net trained from the noise-free data, is shown in Fig. 3(c). The body outline
is well restored. Most streaks at the heart are reduced. In addition, most vessel
structures in the lung are also recovered. Importantly, the lesion can be clearly
seen. These observations indicate a promising prospect of the clinical application
of deep learning in the near future.

In contrast to the preliminary fan-beam experiment from Fig. 1, fake organ-
like structures are not observed, as shown in Fig. 3(d). However, still not all
structures predicted by the U-Net are reliable. For example, the U-Net mispre-
dicts a cavity structure in f est,L, marked by the blue arrow in Fig. 3(c), since
this area has a low intensity in f limited,L.

(a) f limited,L,Poi (b) f est,NL,ori (c) error of f est,NL,ori (d) f est,L,retrain

Fig. 4. The influence of Poisson noise in lesion detection: (a) is the reconstruction from
the 120◦ limited angle sinogram with Poisson noise; (b) is the prediction of (a) by the
original U-Net model, where the lesion cannot be detected; (c) is the difference image
between (b) and the reference image f ref,L with a window width of 2000 HU; (d) is the
prediction of (a) by a retrained U-Net model from the data with Poisson noise, where
the lesion is detected again. The lesion position is marked by the red arrow and the
“cavity” area is marked by the blue arrow. The window for (a), (b), and (d) is [−1000,
1000] HU and the ROIs have a window width of 1000 HU.

Exp. 2: The influence of projection-domain Poisson noise is shown in Fig. 4.
Figure 4(a) is a reconstruction from the 120◦ limited angle sinogram with Pois-
son noise, denoted by f limited,L,Poi. Figure 4(b) is an estimation of f ref,L from
f limited,L,Poi using the original trained U-Net model, denoted by f est,NL,ori.
Because of the Poisson noise, the lesion is hardly seen at f est,NL,ori. Although
the patient top surface looks realistic, it is severely incorrect, shifting by up to
1 cm. The surface shift area is clearly indicated by the arrow at the difference
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image between f est,NL,ori and f ref,L displayed in Fig. 4(c). These observations
demonstrate that the U-Net is sensitive to Poisson noise. In order to make the
model robust to Poisson noise, we retrain the U-Net using the data with Pois-
son noise. The prediction of f limited,L,Poi using the retrained model, denoted by
f est,L,retrain, is shown in Fig. 4(d). The lesion is detected again, although it is
smoothed. Interestingly, the “cavity” area marked by the blue arrow in Fig. 4 is
predicted well by both U-Nets trained with and without Poisson noise.

(a) perturbation e (b) f limited,L + e (c) f est,ori,pert (d) f est,retrain,pert

Fig. 5. The results of the targeted attack: (a) is the found perturbation e; (b) is
the adversarial example—the 120◦ limited angle reconstruction with the perturbation;
(c) is the prediction of the adversarial example by the original U-Net model; (d) is the
prediction of the adversarial example by the retrained U-Net model with Poisson noise.
The patch covering the lesion position is marked by the red box. (a) is displayed at a
window width of 200 HU, the window for (b)–(d) is [−1000, 1000] HU, and the ROIs
have a window width of 1000 HU.

Exp. 3: The results of the targeted attack are displayed in Fig. 5. Figure 5(a) is
the found perturbation which has small magnitude at the marked patch due to
weight w2. The limited angle reconstruction with the perturbation is shown in
Fig. 5(b). We can still notice the existence of the lesion, and to some extend the
perturbation outside the patch. However, the lesion disappears at the predicted
image by the original U-Net model (denoted by f est,ori,pert in Fig. 5(c)). The
U-Net retrained with Poisson noise also fails to reconstruct the lesion at the
predicted image (denoted by f est,retrain,pert in Fig. 5(d)).

The nonlinearity and the linear behavior of high-dimensional spaces are the
potential causes of adversarial examples [3]. They allow some tiny perturbations
or noise to change the outputs of the U-Net drastically. The U-Net has a large
perceptive field due to the contraction and expansion path. Therefore, although
the perturbation has very small magnitude elements inside the lesion patch, its
elements outside the patch still have an influence on the predicted values inside
the patch through convolutional layers and make the lesion vanish.

4 Conclusion

In this paper, we investigate the application of the U-Net to limited angle
tomography. The U-Net is able to reduce most artifacts. In the predicted image,
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distorted body outlines are restored, biased intensities are corrected, and miss-
ing vessels in the lung come back. The experiments on the robustness of the
U-Net to perturbations indicate that training with projection-domain Poisson
noise is mandatory for a limited angle reconstruction neural network. However,
the retrained neural network is still vulnerable to non-local adversarial exam-
ples, despite its resistance to Poisson noise. We believe that the appearance
of such adversarial examples in real clinical applications is unlikely, yet their
non-localness has to be discussed.

Based on the presented experiments, we suggest that the following recom-
mendations on how to benchmark deep learning CT (DLCT) algorithms should
be followed. (1) DLCT algorithms need to be exposed to accurate phys-
ical modelling and evaluated on real measured data. Evaluation on syn-
thetic data only delivers overly optimistic results. (2) Due to the dependency
on training data, we believe that many DLCT algorithms will be tailored
towards specific applications and not suited for generic image reconstruc-
tion. Claims of generality cannot be based on evaluation using a finite dataset.
The inclusion of known operators can potentially remedy these problems [8]. (3)
DLCT reconstructions appear visually artifact-free. This prevents differentiation
between the true signal and image completion solely based on prior knowledge.
We demonstrate this quite drastically in our results that produce realistically
looking patient surfaces that move by up to 1 cm, simply because the necessary
data in the area was not measured. Still these reconstructions may be superior
for a specific clinical task. As such DLCT algorithms must be evaluated
task-based. (4) Additional exploration of adversarial examples might be
useful to explore limits of the trained algorithms. As long as such effects
are not sufficiently studied, deep learning-based reconstruction techniques are
not yet ready for clinical applications.

Disclaimer: The concepts and information presented in this paper are based
on research and are not commercially available.
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