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Abstract. Non-rigid inter-modality registration can facilitate accurate infor-
mation fusion from different modalities, but it is challenging due to the very
different image appearances across modalities. In this paper, we propose to train
a non-rigid inter-modality image registration network, which can directly predict
the transformation field from the input multimodal images, such as CT and MRI.
In particular, the training of our inter-modality registration network is supervised
by intra-modality similarity metric based on the available paired data, which is
derived from a pre-aligned CT and MRI dataset. Specifically, in the training
stage, to register the input CT and MR images, their similarity is evaluated on
the warped MR image and the MR image that is paired with the input CT. So
that, the intra-modality similarity metric can be directly applied to measure
whether the input CT and MR images are well registered. Moreover, we use the
idea of dual-modality fashion, in which we measure the similarity on both CT
modality and MR modality. In this way, the complementary anatomies in both
modalities can be jointly considered to more accurately train the inter-modality
registration network. In the testing stage, the trained inter-modality registration
network can be directly applied to register the new multimodal images without
any paired data. Experimental results have shown that, the proposed method can
achieve promising accuracy and efficiency for the challenging non-rigid inter-
modality registration task and also outperforms the state-of-the-art approaches.

1 Introduction

Non-rigid inter-modality image registration is an active topic in medical image anal-
ysis, as it allows for the use of the complementary multimodal information provided by
different imaging protocols. The technique is of great importance in many clinical
applications such as image-guided intervention, disease diagnosis and treatment
planning. For example, in prostate cancer radiation therapy, Computed Tomography
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(CT) is necessary for dose planning since it provides precise tissue density information.
While Magnetic Resonance (MR) imaging has high soft-tissue contrast, which is more
convenient to accurately delineate pelvic organs, i.e., the bladder, prostate and rectum,
as shown in Fig. 1. In this case, the registration of pelvic CT and MRI is necessary to
effectively fuse the information from two modalities. Additionally, since CT and MRI
cannot be scanned simultaneously in practice, due to inevitable physiological phe-
nomenon, such as bladder filling/emptying and irregular rectal movement, local
deformations of main pelvic organs cannot be well compensated when only performing
linear registration. Thus, this poses a typical non-rigid inter-modality image registration
problem.

As shown in Fig. 1, CT and MR image have very different image appearances and
deformed anatomies. Thus, the inter-modality registration is naturally a more chal-
lenging task compared with intra-modality registration, since it is hard to define an
effective similarity metric to guide local matching across modalities [1]. Traditionally,
mutual information (MI), along with its variants [2], is a popular way to tackle the
inter-modality registration problem. However, MI is a good global similarity metric,
which has limited power to accurately conduct local matching, since the insufficient
voxel number in local regions makes the intensity distribution less robust when cal-
culating MI.

For the task of non-rigid registration, compared with the traditional optimization-
based registration algorithms, deep-learning-based registration methods have drawn
much more attention recently. Generally, two kinds of guidance can be applied to train
the non-rigid registration network: (1) using the “ground-truth” transformation fields
[3], or (2) guided by image similarity metrics [4]. However, as the “ground-truth”
transformation fields cannot be manually produced in practice, this guidance is often
derived from existing registration algorithms, hence affecting the effective modeling of
the registration task and eventually affecting its performance.

Instead, image similarity metric is attractive to supervise the training of the reg-
istration networks [4]. Since this metric relieves the need of “ground-truth” transfor-
mation fields, some works regard it as “unsupervised/self-supervised” learning based
registration. Specifically, the network can be trained by maximizing the image simi-
larity (or minimizing the image dissimilarity). In this way, the network can learn to
register the images automatically. However, these methods are mainly proposed for
intra-modality registration, as many effective similarity metrics can be applied, such as
cross-correlation (CC), sum of square distance (SSD), etc. While the inter-modality
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Fig. 1. An example of the multimodal images: pelvic CT and MR images from the same subject
after affine registration. Local deformations are obvious in bladder, prostate and rectum
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registration cannot be well tackled due to the lack of effective similarity metrics, which
can robustly and accurately measure local matching across different modalities.

In this paper, we propose to train a non-rigid inter-modality registration network by
using the intra-modality similarity guidance, which can directly predict the transfor-
mation field from the input CT and MRI in the testing stage. Particularly, we take
advantages of the pre-aligned CT and MRI dataset, in which each pair of CT and MRI
are carefully registered as paired data. Under the help of these paired data, the
effective intra-modality similarity metric can be elegantly transferred to train our inter-
modality registration network. Specifically, the input CT and MR images (which are
not aligned) have their respective counterpart images, i.e., the input CT has a paired-
MR image and the input MR image has a paired-CT image. Then, in order to register
the input MRI to the input CT, our inter-modality registration network can be trained
by the similarity guidance calculated on the warped input MRI and the paired-MRI of
the input CT. So that we can directly employ any effective intra-modality similarity
metric, while it definitely measures whether the input CT and MRI are well registered.
Generally, this framework is straightforward and can be extended to any inter-modality
registration tasks. The main contributions can be summarized as follows.

(1) Instead of directly defining the similarity across modalities, we elegantly use the
intra-modality similarity metric to effectively train an inter-modality registration
network, by taking advantages from the pre-aligned CT and MRI dataset. In
testing stage, this network can be flexibly used to predict the transformation field
for any to-be-registered CT and MRI, without the need of the paired data.

(2) In order to accurately and robustly train the non-rigid inter-modality registration
network, we deploy the similarity guidance on dual manner, where the similarity
guidance is derived from not only the MR modality, but also the CT modality. In
this way, the complementary anatomies can be jointly considered to effectively
train this network. Additionally, the smoothness constraints are also introduced
during training, in order to produce the topology-preserving transformation field.

(3) Compared with the traditional optimization-based algorithms, we provide a
flexible and applicable solution for the challenging non-rigid inter-modality reg-
istration problem, particularly without iterative optimization and parameter tuning
in the testing stage, which has high potential to be applied in real applications.

2 Method

In this paper, we propose to train a deep regression network to model the non-rigid
inter-modality registration ℳ : ICT ; IMRð Þ ) / in a patch-wise manner. The input 3D
patches ICT ; IMRð Þ are extracted from the to-be-registered CT and MR images, which
have been already registered using affine transformation in preprocessing. The output is
the transformation field / that has the same center with the input patches. As illustrated
by Fig. 2, we deploy a 3D spatial transformation layer T in the network to warp the
moving image by /, while the registration network ℳ aims to maximize the similarity
(i.e., minimize the dissimilarity) between the fixed and the warped moving images.
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Fig. 2. The flowchart of our proposed deep learning based non-rigid inter-modality registration
method. Note that, in the testing stage, only the red paths are invoked, and the input CT and MR
images can be directly registered without the need of their paired data

Concerning the difficulty to define image similarity between modalities, we here
propose a novel method to adopt the intra-modality similarity based on the paired data
available in the training stage. That is, the input CT image ðICTÞ has a paired-MR image
ðIpMRÞ for training, and similarly the input MR image ðIMRÞ has a paired-CT image
ðIpCTÞ. The preparation for the paired training data will be detailed in Sect. 3. When
registering the input CT and MR images, instead of measuring the similarity between
ICT and the warped MR image I

0
MR, we train the deep network under the supervision of

the similarity between IpMR and I
0
MR, as well as between ICT and Ip

0

CT .
After the network is trained, we can apply it in the testing stage. In particular, by

inputting the new CT and MR images, the transformation field between them can be
directly obtained through the registration network ℳ, without the need of any paired
data. Note that, in Fig. 2, only the red paths are needed in the testing stage.

2.1 Loss Function Based on Intra-modality Similarity

Intuitively, the deep network is trained by minimizing the loss function. For the reg-
istration task, we aim to minimize the image dissimilarity (or to maximize the image
similarity). To train the inter-modality registration network, the loss can be defined as:

L ¼ LD ICT ; T /; IMRð Þð Þþ LRð/Þ; ð1Þ

where LD measures the image dissimilarity between the fixed CT image ICT and the
warped MR image I 0MR ¼ T /; IMRð Þ. Here, T represents the operator of the 3D spatial
transformation. LR favors the smoothness of the estimated transformation field. Since it is
difficult to define LD based on the inter-modality images, we propose to define the intra-
modality metric LD on the paired data. Thus, the loss function can be re-defined as:
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L ¼ 1
2
LCTD ICT ; T /; IpCT

� �� �
þ 1

2
LMR
D IpMR; T /; IMRð Þð Þþ LRð/Þ: ð2Þ

Here, the loss terms LCTD and LMR
D provide the supervision in the dual manner to jointly

guide the training of the registration network. The complementary anatomical details
from the two modalities can be fused for better training.

Following Eq. (2), we can calculate the dissimilarity between the images of the
same modality, which is much more reliable than the inter-modality metric. Specifi-
cally, we use the normalized cross-correlation (NCC) to define LD:

LD ¼ 1� NCC I; I 0ð Þ ¼ 1� I � �I
I � �Ik k2

;
I 0 � �I 0

I 0 � �I 0k k2

� �
; ð3Þ

where, I and I
0
are the fixed and the warped moving images of the same modality. �k k2

is the L2-norm and �; �h i is the inner product.
We here adopt NCC for two reasons. (1) It is a robust measure when dealing with

the intra-modality images that may potentially have some noises and intensity incon-
sistency. (2) It can be implemented as a simple convolution operation, which is flexible
to be embedded into the convolutional neural network (CNN) for effective forward and
backward propagations during training. Notice that other differentiable similarity
metrics can also be applied.

Additionally, the smoothness of / is also important to obtain a topology-preserving
transformation field. Thus, the regularization term LRð/Þ is also introduced into the loss
function to train the network. Specifically, the regularization is defined as:

LR /ð Þ ¼ k1r2/2 þ k2/
2

�� ��; ð4Þ

where r2 is the Laplacian operator. The two scalars are empirically set (k1 ¼ 0:5 and
k2 ¼ 0:01) to attain the smoothness constraint for the transformation field.

2.2 Inter-modality Registration Network

Figure 3 shows the detailed architecture of our non-rigid inter-modality registration
network ℳ. The input are two patches extracted from CT and MR images of the size
68 � 68 � 68, and the output is the 3D patch of the transformation field of the size
28 � 28 � 28, which has the same center with the input patches. The size of the
output patch is smaller than that of the input in order to enclose sufficient neighborhood
information and also provide a sufficient receptive field for the local matching.
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Fig. 3. Detailed architecture of M: the non-rigid inter-modality registration network
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The architecture of the registration network is based on U-net [5]. The encoding
path includes two times down-sampling, and the decoding path contains two times up-
sampling. We use 3 � 3 � 3 kernels in the convolutional layer without padding,
followed by batch normalization (BN) and ReLU. The final convolutional layer applies
1 � 1 � 1 kernels without any additional operation, since the output transformation
field includes both positive and negative values. Skip connections are also applied.

2.3 Spatial Transformation Layer

The spatial transformation layer [6] needs to be applied to warp the moving image by
/, such that the loss LD can be evaluated. Mathematically, the 3D spatial transfor-
mation operation T with tri-linear interpolation can be defined as

I
0
xð Þ ¼ T /ðxÞ; Ið Þ ¼

X

y2Nðxþ/ðxÞÞ
IðyÞ

Y

d2fi;j;kg
ð1� xd þ/ xdð Þ � ydj jÞ; ð5Þ

where I 0 is warped from I by /, x represents the voxel location, Nðxþ/ðxÞÞ is the
8-voxel cubic neighborhood around the location xþ/ðxÞ. d indicates three directions
in 3D image space. Similar to [6], the gradient of T with respect to the location x can
be obtained by the partial derivatives of Eq. (5). Notice that, different from [6], T here
is only used to smoothly propagate the gradient from LD to the network ℳ. No
parameters will be updated in T .

3 Experimental Results

The experimental dataset was collected from 15 prostate cancer patients, each with a
CT image and a MR image. To evaluate the registration performance, the prostate,
bladder and rectum in both CT and MRI are manually labeled by physicians. In
preprocessing, intra-subject linear registration of CT and MRI was performed. Then,
inter-subject linear registration was applied to roughly align all the images to a com-
mon space. Next, all the images were cropped to the same size (218 � 196 � 100)
with the same resolution (1 � 1 � 1 mm3). Finally, we flipped all the subjects along
the x-axis to augment the dataset. Note that, the image was cropped for effectively
conducting the experiments, and the three main pelvic organs were well included after
cropping.

In the training stage, we prepared the paired data by fine-tuning the roughly
aligned CT and MRI of the same subject. Particularly, we used the manual ground-truth
labels of the three pelvic organs for highly accurate registration. We first performed
non-rigid registration by using SyN [7]. Then, we employed Demons [8] to further
register the manual labels of prostate, bladder and rectum. After that, the boundaries of
the anatomical structures are well aligned. Notice that, the paired data was only used in
the training stage. They were blind to the testing stage, since we cannot get accurate
organ labels in practice then.

We used 12 subjects for training, 1 subject for validation and 2 subjects for testing.
We repeated the above scheme for 5 times by randomly selecting different subjects for
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testing and validation. For each training subject, we have 2 image pairs considering the
flipped data. We extracted 9.4 K patch samples from each image pair. Totally, there
were 225 K patch samples for training. Our proposed method was implemented based
on Pytorch, and the network was trained on an Nvidia TitanX GPU. We employed the
stochastic gradient decent (SGD) strategy with the learning rate starting at 0.01 and
decreasing by 0.5 every 4 epochs. The batch size was set to 2. We stopped training
when the validation loss did not decrease significantly. In this paper, the training
took *40 h. In the testing stage, it took only 15 s to complete the registration between
new CT and MR images.

3.1 Registration Results

Dice Similarity Coefficient (DSC) and Average Surface Distance (ASD) are used to
evaluate the registration performance based on the ground-truth labels. Affine regis-
tration implemented by FLIRT [9] with the cost function of MI was used as the
baseline. Herein, we also compared with SyN [7] due to its outstanding performance on
non-rigid registration tasks, and it can also be used for inter-modality registration by
using MI in the ANTs toolbox.

To demonstrate the importance of evaluating the intra-modality similarity in the
proposed dual-manner, we also implemented our method with only one single-modality
measure: either CT modality or MR modality was used to train the inter-modality
registration network. We delete the respective loss term in Eq. (2) for single-modality
measure and remove the weight ½ in front of the remaining term. All other settings are
kept the same for fair comparison.

Table 1 shows the registration performance of our proposed method and all other
methods under comparison. We can observe that only affine registration cannot well
align the pelvic organs, as the local deformations on bladder, prostate and rectum
cannot be effectively compensated. The registration performance can be improved for
SyN. Furthermore, the results are much improved for the registration network even
trained by the single-modality loss function. This indicates that, the intra-modality

Table 1. Comparison of DSCs (%) and ASDs (mm) on three pelvic organs after performing
non-rigid registration based on SyN and the proposed deep learning based methods, where the
network was trained by using the single-modality similarity and the dual-modality similarity,
respectively. Affine registration results are used as the baseline.

Metric Organ Affine (MI) SyN (MI) Single-modality Dual-modality
CT MR Proposed

DSC (%) Bladder 85.7 ± 5.3 87.4 ± 4.9 89.8 ± 3.6 90.3 ± 4.0 90.5 ± 3.8
Prostate 81.9 ± 4.7 84.3 ± 3.5 86.1 ± 3.3 85.9 ± 4.1 87.3 ± 4.2
Rectum 79.4 ± 5.1 81.8 ± 4.7 83.6 ± 5.0 84.2 ± 4.3 85.4 ± 4.5

ASD (mm) Bladder 1.83 ± 0.71 1.69 ± 0.63 1.51 ± 0.57 1.47 ± 0.51 1.23 ± 0.43
Prostate 1.91 ± 0.55 1.75 ± 0.41 1.63 ± 0.40 1.72 ± 0.42 1.58 ± 0.36
Rectum 2.28 ± 0.68 2.06 ± 0.62 1.94 ± 0.43 1.83 ± 0.44 1.44 ± 0.40
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similarity can make the network aware of the inter-modality registration task. The best
performance was achieved by the network trained on the intra-modality similarity in
dual manner. By fusing complementary details from both modalities, the performance
of the inter-modality registration can be boosted. An example of the registration results
can be visualized in Fig. 4. In general, our proposed methods can effectively solve the
challenging non-rigid inter-modality registration problem using deep learning.

4 Conclusion

We proposed a deep learning based non-rigid inter-modality registration framework, in
which the similarity metric on intra-modality images is elegantly transferred to train an
inter-modality registration network. Moreover, in order to use the complementary
anatomies from both modalities, the dissimilarity loss is calculated in dual manner on
MR modality and CT modality, respectively, to more robustly train the network. We
conducted CT and MR registration and achieved promising performance on both
efficiency and accuracy. The proposed framework can be easily extended and applied
to other inter-modality registration tasks.
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