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Abstract. As shown in computer vision, the power of deep learning lies
in automatically learning relevant and powerful features for any perdi-
tion task, which is made possible through end-to-end architectures. How-
ever, deep learning approaches applied for classifying medical images do
not adhere to this architecture as they rely on several pre- and post-
processing steps. This shortcoming can be explained by the relatively
small number of available labeled subjects, the high dimensionality of
neuroimaging data, and difficulties in interpreting the results of deep
learning methods. In this paper, we propose a simple 3D Convolutional
Neural Networks and exploit its model parameters to tailor the end-
to-end architecture for the diagnosis of Alzheimer’s disease (AD). Our
model can diagnose AD with an accuracy of 94.1% on the popular ADNI
dataset using only MRI data, which outperforms the previous state-of-
the-art. Based on the learned model, we identify the disease biomarkers,
the results of which were in accordance with the literature. We further
transfer the learned model to diagnose mild cognitive impairment (MCI),
the prodromal stage of AD, which yield better results compared to other
methods.

1 Introduction

Alzheimer’s disease is one of the most growing health issues, which devastated
many lives, and the number of people with Alzheimer’s dementia is predicted to
be doubled within the next 20 years in the United States [2]. However, the basic
understanding of the causes and mechanisms of the disease are yet to be explored.
Currently, diagnosis is mainly performed by studying the individual’s behavioral
observations and medical history. Magnetic Resonance Imaging (MRI) is also
used to analyze the brain morphometric patterns for identifying disease-specific
imaging biomarkers.
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In recent years, numerous methods are introduced exploiting MRI data for
distinguishing Alzheimer’s Disease (AD) and its prodromal dementia stage, Mild
Cognitive Impairment (MCI), from normal controls (NC). These approaches
can be categorized in four main categories: Voxel-based methods [10], meth-
ods based on Regions-of-Interest (ROI) [6,7], patch-based methods [9], and
approaches that leverage features from whole-image-levels (i.e., without con-
sidering local structures within the MRIs) [13]. The voxel-based approaches are
prone to overfitting [8] (due to high dimensionality input image) while ROI-
based methods are confined to a coarse-scale limited number of ROIs [8] that
may neglect crucial fine-scaled information secluded within or across different
regions of the brain. Patch-based approaches often ignore global brain repre-
sentations and focus solely on fixed-size rectangular (or cubic) image patches.
In contrast, whole-image approaches cannot identify the subtle changes in fine
brain structures. Leveraging a trade-off between the global and local represen-
tation of the brain can, therefore, contribute to a better understanding of the
disease, while not overemphasizing on only one aspect.

With the recent developments of deep learning and Convolutional Neural
Network (CNN) algorithms in computer vision studies, many such methods are
developed for medical imaging applications. However, the majority of such pre-
vious works mainly focused on segmentation, registration, landmark or lesion
detection [8]. For disease diagnosis, researchers have tried two-dimensional (2D)
or three-dimensional (3D) patch-based models to train deep networks that diag-
nose diseases to a patch-level rather than subject-level. Only a few end-to-end
deep learning methods (leveraging local and global MRI cues) are developed for
the classification of neuroimages into different diagnostic groups [8,9], despite
the power of deep learning owes to automatic feature learning made possible
through end-to-end models. Not developing end-to-end models were mainly due
to several limitations including: (1) not having enough labeled subjects in the
datasets to train fully end-to-end models; (2) brain MRIs are 3D structures with
high dimensionalities, which cause large computational costs; and (3) difficul-
ties in interpretability of the results of end-to-end deep learning techniques from
a neuroscience point-of-view. To resolve these challenges, instead of replicating
standard deep learning architectures used in the computer vision domain, one
requires explicit considerations and architectural designs. We conduct several
experiments and tailor our architecture (through exploiting its numerous hyper-
parameters and architectural considerations) for classification of 3D MR images.

In this paper, we build a 3D Convolutional Neural Network (3D-CNN) and
provide a simple method to interpret different regions of the brain and their asso-
ciation with the disease to identify AD biomarkers. Our method uses minimal
preprocessing of MRIs (imposing minimum preprocessing artifacts) and utilizes a
simple data augmentation strategy of downsampled MR images for training pur-
poses. Unlike the vast majority of previous works, the proposed framework, thus,
uses a voxel-based 3D-CNN to account for all voxels in the brain and capture
the subtle local brain details in addition to better pronounced global specifics
of MRIs. Using this detailed voxel-based representation of MRIs, we eliminate
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any a priori judgments for choosing ROIs or patches and take into account the
whole brain. To avoid overfitting potentially caused by the large dimension of
images, we carefully design our training model’s architecture in a systematic
way (not using standard computer vision architectures). We, then, propose a
simple method to identify the MRI biomarkers of the disease by observing how
confidently different regions of the brain contribute to the correct classification
of the subjects. Finally, we propose a learning transfer strategy for MCI classifi-
cation alongside the other two classes, in a three-class classification setting (AD,
MCI, NC). Experiments on ADNI-1 dataset show superior results of our model
compared to several baseline and prior works.

Table 1. ADNI-1 subjects demo-
graphic information.
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Age

mean ± std min 25% 50% 75% max

AD M 97 75.0 ± 7.9 55.2 70.8 75.3 80.4 91.0

F 103 76.1 ± 7.4 56.5 71.1 77.0 82.3 87.9

MCI M 265 75.4 ± 7.3 54.6 71.0 75.4 80.7 89.8

F 146 73.6 ± 7.5 55.2 69.1 74.3 79.7 86.2

NC M 112 76.1 ± 4.7 62.2 72.5 75.8 78.5 89.7

F 118 75.8 ± 5.2 60.0 72.1 75.6 79.1 87.7

Fig. 1. Age distributions across
groups.

2 Dataset and Preprocessing

In this study, the public Alzheimer’s Disease Neuroimaging Initiative-1 (ADNI-1)
[4] dataset is used, with all subjects having baseline brain T1-weighted structural
MRI scans. The demographic information of the studied subjects is reported in
Table 1. According to clinical criteria, such as Mini-Mental State Examination
(MMSE) scores and Clinical Dementia Rating (CDR) (see http://adni.loni.usc.
edu), subjects were diagnosed with AD or MCI conditions. There is a total of
841 subjects with baseline scans in the dataset, including 200 AD, 230 NC, and
411 MCI. Figure 1 shows the age distribution of different classes. Almost half of
the subjects in each male/female category are in the MCI stage. Note that this
stage is quite difficult to classify (from NC or AD) as it is a transition state and
has similarities with both other classes. As can be seen, subjects are distributed
proportionally similar across the three classes with respect to their age. Besides,
both male and female groups have approximately similar portions of patients in
each of the classes. Although the three classes are similar with respect to both
age and gender distributions, we consider these two factors as input features to
the model, as they can be confounding factors in MRI studies [1].

As a simple preprocessing step, the MR images of all subjects are skull-
stripped, which includes removal of non-cerebral tissues like skull, scalp, and
dura from brain images. To this end, we use the Brain Extraction Technique
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(BET) proposed in [11]. This step reduces the size of images by a factor of
two and hence slashes the amount of computational time spent for training the
model.

Fig. 2. 3D-CNN architecture used in this paper. The blue cubes (L1, L2, L4, L5, L7,
and L8) are convolutional layers; Orange cubes (L3, L6, and L9) are max-pooling layers;
and the last two layers are fully connected (FC) layers.

3 3D-CNN Training and Evaluation

Architecture: For our end-to-end classification task, we build a three-
dimensional Convolutional Neural Network (3D-CNN) using the TensorFlow
framework. To evaluate the performance and to avoid overfitting, we consider
two architectures: a complex architecture, as shown in Fig. 2, and a simplified
version (with less number of filters, one less FC layer, and removing one Convolu-
tion (Conv.) layer at each stage). The complex architecture has O(105) trainable
parameters, and the simple one has O(104) parameters. The fewer number of
parameters helps the network avoid overfitting on a limited number of subjects.

The input MR images are re-sized to 116 × 130 × 83 voxels. The first batch
of Conv. layers (L1,2) have 33 × 32 filter and the second (L4,5) and the third
(L7,8) 33 × 64 and 33 × 128, respectively. The max-pooling layers (L3, L6, and
L9) are with sizes 23, 33, and 43, respectively. The fully connected (FC) layers
have 512 (for L10) and 256 (for L11) nodes. The demographic variables of the
subjects (age and gender) are added as two additional features in the first FC
layer. We use a rectified linear unit (ReLU) as the activation function, and a
cross-entropy cost function as the loss, which is minimized with the Adam opti-
mizer. To optimize the architecture parameters and improve the trained model,
we experiment by adding drop-out (D/O) and �2-regularization (Reg). There-
fore, several hyperparameters are introduced to experiment on, including the
β coefficient of the �2-regularization, the drop-out probability, and the size of
input training batches, in addition to the learning rate, number of filters in the
convolutional layers, and the number of neurons in the FC layers.

Data Augmentation: To train the model, we augment the data by flipping all
subjects such that left and right hemispheres are swapped. This is a common
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strategy for data augmentation in the medical imaging as the neuroscientific
studies suggest that the neurodegenerative disease (such as AD) impair the brain
bilaterally [2].

Training Strategy: As can be seen in Fig. 2, the output layer defines c different
classes. To better model the disease and identify its biomarkers, we first train
the model on two classes (c = 2), i.e., AD and NC. After training the classifier
with two classes, we add a third class (i.e., MCI) and fine-tune the weights to
now classify the input into three categories. This is simply possible as we use a
cross-entropy loss in the last layer of the network, which can be easily extended
for multi-class cases. This fine-tuning strategy is actually conducting a transfer
learning from the domain of the two-class learned model to the three-class case.
We show in our experiments that, in the presence of limited sets of training
data such as medical imaging applications, this transfer learning strategy leads
to better results compared to training the three-class model from scratch. It
is important to note that MCI is the intermediate stage between the cognitive
decline of normal aging and the more pronounced decline of dementia (to some
extent between AD and NC), and hence, first learning to separate AD from
NC identifies the differences between the two classes. Then, adding the third
class and fine-tuning the network transfers the learned knowledge to classify the
middle condition, not jeopardizing the performance of AD Diagnosis.

Evaluation: We use the classification accuracy (Acc), F2-score, precision (Pre)
and recall (Rec) for evaluating the models. Having true positive, true negative,
false positive, and false negative denoted by TP , TN , FP , and FN , respectively,
precision and recall are computed as Pre = TP/(TP + FP ), Rec = TP/(TP + FN).
and then the F2-score is defined by weighing recall higher than precision (i.e.,
placing more emphasis on false negatives, which is important for disease diag-
nosis): F2 = (5 × Pre × Rec)/(4 × Pre + Rec).

4 Experiment Results

To evaluate the model, at each iteration of 10-fold cross-validation, we randomly
split the dataset into three sets of training (80%), validation (10%), and testing
(10%). Starting from the training model shown in Fig. 2 (the complex architec-
ture), we simplified the network, as described before, to avoid early overfitting.
Besides, we investigated the effect of �2-regularization of kernels and biases in
the Conv. layers, as well as the FC layers with the regularization hyperparam-
eter searched in the set {0.01, 0.05, 0.1, 0.5, 1.0}. Regularization coefficient 0.5
for the kernels and 1.0 for the biases are found to result in the best validation
F2-score. We also tested the drop-out strategy in the last two FC layers in the
training process, controlling the drop-out extent by the value of keep-rate. We
tested regularized simple and complex model architectures with different keep-
rate values for the FC layers ranging from 0.15 to 0.85 and found that keep-rates
of 0.15 and 0.25 for the first and second FC layers lead to the best validation-set
accuracy in the complex model and keep-rate of 0.4 gives the best validation-set
accuracy in the simple model.
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Table 2. Ablation tests: testing performance comparison of different models (last
row is our model). The comparison includes the Accuracy (Acc), F2 score, Precision
(Pre), and Recall (Rec) of all methods (Reg: Regularization, D/O: Drop-Out, Aug:
Augmentation).

Model Simple Complex

Acc% F2 Pre Rec Acc% F2 Pre Rec

3D-CNN 68.7 0.71 0.68 0.72 66.5 0.69 0.67 0.70

3D-CNN+Reg 77.6 0.77 0.74 0.78 77.4 0.75 0.72 0.76

3D-CNN+Reg+D/O 83.1 0.811 0.78 0.82 79.7 0.82 0.79 0.84

3D-CNN+Reg+D/O+Aug (Ours) 94.1 0.93 0.92 0.94 88.3 0.89 0.88 0.91

Table 3. Comparisons with prior
works for AD diagnosis.

Method Modalities Acc% Sen Spe

[12] MRI+PET 85.7 0.99 0.54

[3] MRI 90.8 N/A N/A

[10] MRI 91.1 0.88 0.93

[5] MRI 93.9 0.94 0.93

Ours MRI 94.1 0.94 0.91

Fig. 3. (Left) training loss and (Right)
training-validation accuracies with respect
to the number of epochs for our 3D-CNN.

AD vs NC Classification Results (Two-Class Case): Table 2 shows the
results of our model on the testing set in comparison with respect to ablation
tests (removing components from the model and monitor how the performance
changes). To test the significance of the classification results, we test our models
using a Fisher exact test, in which our simple and complex models led to a
p-value of less than 0.001. This indicates that the classifiers are significantly
better than chance. As it can be seen, augmenting the size of the dataset led
to improvement in the testing F2 score, increasing it by 12.2% from its value of
81.1% in the non-augmented case. Another interesting observation is that the
simple network outperforms the complex one, as it is less prone to overfitting.

Figure 3 shows the training and validations accuracy and loss function values
with respect to the number of epochs for the best model (i.e., the one with
validation-set F2 score of 0.933). The learning process is terminated when the
accuracy of the training set reaches near 1.0. Furthermore, the drop in the loss
function curve after a middle stage plateau, where it reaches a saddle point,
can be attributed to the hyperparameter tuning inherent to the Adam optimizer
during the training process. The model converges to a steady optimum without
overfitting to the training data and hence yields reliable testing accuracies.

Comparisons with Prior Works: Table 3 compares the results of our AD
vs. NC classification with prior works in terms of accuracy, sensitivity (Sen), and
Specificity (Spe) as reported in the respective references. Although the experi-
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mental setup in these references is slightly different, this table shows that our
end-to-end classification model can classify the subjects more accurately. The
improved accuracy can be attributed to the end-to-end manner of classifying
the data, which helps to learn better features for the specific task of AD diag-
nosis and hence yield better results compared to other works.

Identification of AD Biomarkers: To identify the regions of the brain that
cause AD, we simply perform an image occlusion analysis on our best model
(i.e., 3D-CNN+Reg+D/O+Aug) by sliding a box of 1×1×1 zero-valued voxels
along the whole MR image of AD patients that were correctly labeled as AD by
our trained model. The importance of each voxel, hence, can be characterized as
the relative confidence of the samples being classified as AD. The resulting heat
map is shown in Fig. 4, in which the color map indicates the relative importance
of each voxel. The red areas decrease the confidence of the model, suggesting that
they are areas that are of critical importance in diagnosing AD. The red regions
in Fig. 4 coincides with the hippocampus, amygdala, thalamus, and ventricles of
the brain, which have been reported to be responsible for short-term memory
and early stages of AD [2,3,7,10].

Fig. 4. Relative importance of different voxels associated with AD diagnosis.

Table 4. Testing performance for three-class Alzheimer classification.

Method Simple Complex

Acc% F2 Pre Rec Acc% F2 Pre Rec

3D-CNN+D/O+Reg+with
learning transfer

61.1 0.62 0.59 0.63 57.2 0.59 0.55 0.61

3D-CNN+D/O+Reg+w/o
learning transfer

0.54 53.4 0.49 0.55 48.3 0.50 0.45 0.52

Learning Transfer (Three-Class Classification): We use the best model
for the binary classification of AD vs. NC in Table 2 and fine-tune it to develop
a learning transfer strategy for classification MCI subjects. Doing so, we build a
three-class classifier to classify NC vs. MCI vs. AD. To this end, the output layer
of our model changes to c = 3 instead of the previous c = 2 classes. We keep the
previously learned weights in the network and fine-tune the network by exposing
it to the sample from the MCI class. Table 4 shows the results of training with
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learning transfer strategy, in comparison with the method that trains based on
three classes from scratch. As it can be seen, our model results in 61.1% accuracy,
while if we train the model from scratch with all three classes, the model results
in worse accuracies. This is due to the difficulty of the MCI class to distinguish
from AD or NC. When training based on all three classes at once, the model
gets stuck in local optima easier and overfit to the training data. On the other
hand, the learning transfer strategy helps first learning the easy problem (i.e.,
AD vs. NC) and then transfer the knowledge to the domain of the harder class
(i.e., MCI). Interestingly, our three-class classification results are better than
the results of other works for the three-class AD, MCI, and NC classification.
For instance, Liu et al. [10] obtained a 51.8% accuracy, compared to which, our
results are better by a large margin (i.e., 9.3%). Again, this improvement can
be attributed to the end-to-end design of our model and the learning transfer
strategy.

5 Conclusion

In this paper, we developed a 3D-CNN model to diagnose Alzheimer’s disease
and its prodromal stage, MCI, using MR images. Our end-to-end model not only
led to the best classification performance compared to other methods but also
contributed to identifying relevant disease biomarkers. We found the hippocam-
pus region of the brain is critical in the diagnosis of AD. With an extensive
hyperparameter tuning and exploiting the best model architecture for binary
classification, we fine-tuned the resulting model for MCI diagnosis as well. An
interesting finding of this work was that the simple architecture led to better
testing results, compared to the other more complex architecture, as it is less
prone to overfitting to the training data.
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