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Abstract. With the single-robot visual SLAM method reaching matu-
rity, the issue of collaboratively exploring unknown environments by
multiple robots attracts increasing attention. In this paper, we present
CORB-SLAM, a novel collaborative multi-robot visual SLAM system
providing map fusing and map sharing capabilities. Experimental results
on popular public datasets demonstrate the performance of the CORB-
SLAM. Furthermore, we make the source code of CORB-SLAM to be
publicly available (https://github.com/lifunudt/CORB-SLAM.git).
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1 Introduction

Simultaneous localization and mapping (SLAM) is originally proposed to locate
a robot while simultaneously building a consistent map of an unknown environ-
ment. It has been a fundamental technology for autonomous navigation of robots
in the past decades. Researchers have proposed a number of SLAM methods
using different types of sensors, e.g. cameras or 2D/3D laser scanners. Specifi-
cally, the visual SLAM systems that utilize cameras to obtain sensor-data have
become an attractive research focus in robotics.

Some milestone visual SLAM systems have been proposed, such as PTAM [1],
and ORB-SLAM2 [2]. Most of these visual SLAM methods focus on the single-
robot applications. However, because of the increasing demands for robotic appli-
cations in large-scale environments, multi-robot systems are expected to work
collaboratively to resolve complex tasks that cannot be handled by a single robot.
For instance, some emergency situations, e.g. earthquakes and conflagrations,
would require a team of rescue robots to work in a cooperative way to efficiently
and robustly explore damaged scenes. In those cases, collaborative visual SLAM
can significantly improve the capability of multi-robot explorations.
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Existing works on collaborative visual SLAM methods for multi-robots have
generally fallen into the centralized and decentralized types. The centralized
method tries to process and fuse all the local maps from the individual robots in
a central server. For example, [3] proposes the visual C2SLAM framework that
provides the services of map optimization and storage in the cloud infrastructure.
However, the clients cannot process the essential tasks of environmental mapping
and highly rely on the central server. [4] proposes the Team SLAM method that
aggregates local pose graphs from multiple robots into a global pose graph and
feeds it back to the robots. However, it lacks global map optimization and may
cause larger drifting errors. [5] proposes a monocular SLAM system employed on
multiple unmanned aerial vehicles (UAVs). Its server manages the maps of all
UAVs, and handles map fusing. The monocular cameras utilized in the system
may cause larger errors due to the lack of scale information. On the other hand,
decentralized methods reach global map consensus by sharing the local map of
each individual robot via communication. [6] proposes the D-RPGO algorithm
(distributed riemannian pose graph optimization) to perform collaborative local-
ization by fusing the inter-time and inter-robot relative measurements to obtain
an estimate of the absolute pose of each robot. [7] presents DDF-SAM, a decen-
tralized data fusing approach for multi-robot SLAM by performing local SLAM
and sharing a subset of map variables with neighbors in the form of summa-
rized maps. [8] presents a frontier-based approach that uses a utility function
to guide explorations, which takes the information gain and the distance costs
of the robots into consideration. [9,10] use a distributed Gauss-Seidel (DGS)
algorithm to reduce the information exchange among robots without a reliable
communication infrastructure. Comparing to decentralized methods, centralized
methods can support more complex operation in the central server.

In this paper, we present CORB-SLAM (collaborative ORB-SLAM), a cen-
tralized multi-robot visual SLAM system based on ORB-SLAM2 [2]. The ORB-
SLAM2 is a versatile visual SLAM method that has been popularly applied
in single-robot applications. However, this method cannot provide support to
multi-robot cooperation in environmental mapping. The CORB-SLAM system
consists of multiple ORB-SLAM2 clients for local mapping and a central server
for global map fusing. Specifically, we extend each of the ORB-SLAM2 clients
with a memory management module that organizes the local map and commu-
nicates with the central server. In the central server, we detect the overlaps of
multiple local maps by the DBoW method [11], and fuse these maps by utiliz-
ing the Perspective-n-Point (PnP) [12] method and global optimization through
bundle adjustment. We have evaluated the performance of the CORB-SLAM
system with several systematic experiments on a public dataset KITTI [13].

2 The CORB-SLAM System

Considering scenarios of multiple robots collaboratively exploring an unknown
environment, each robot agent in the CORB-SLAM system is designated to
explore parts of the environment and build the local map.
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Fig. 1. The framework of CORB-SLAM system.

Figure 1 presents the framework of the CORB-SLAM system which con-
sists of multiple ORB-SLAM2 clients and a server. Each robot is deployed with
one SLAM client instance that builds a local map independently as the robot
explores. The ORB-SLAM2 client is performs pose tracking, local mapping, and
loop closing. We extend the original ORB-SLAM2 system by incorporating a
novel memory management module for local map organization. All the modules
in the SLAM client run in separate threads.

The central server receives the local maps from multiple clients and put
them into the local-map pool. Global map fusing is achieved by three steps in
a separate thread. Firstly, overlaps between two local maps are detected by the
DBoW method to establish the spatial connections of all the local maps, when
overlaps become available. Secondly, the local maps are merged into a global
map through PnP and global BA. After the map fusing, the global map can be
shared to each individual robot for further explorations.

2.1 The Robot-End SLAM Client

The robot-end SLAM client extends the ORB-SLAM2 to independently build
the map of the environment around the robot, and thus, to facilitate autonomous
exploration of the robot.

Tracking: The tracking module processes each raw image frame for pose track-
ing, and decides which frame should be inserted into the local map as a keyframe.
ORB features [16] in raw images are used to match to existing map points to
achieve pose tracking. When a new keyframe should be added, it will be trans-
ferred to the memory management module which schedules all map data.

Local Mapping: The local mapping module triangulates new map points from
ORB features in keyframes. Moreover, it refines keyframe and map points in the
local map, which is a sub-map of the client global map that affects current pose
tracking and mapping, by using local bundle adjustment (BA).

Loop Closing: The loop closing module detects loop closures among keyframes,
and refines the client global map using BA whenever a loop closure is found.
All keyframes sharing similar ORB features with the new keyframe are used
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to compute similarity scores to the new keyframe. Several keyframes with the
highest scores are selected as loop candidates. The candidates whose similarity
transformations are supported by enough inliers will be accepted as loop closures.

Memory Management: The memory management module stores local map
and transfers the map data between the SLAM clients and the server in a bi-
direction way. Specifically, when new keyframes and map points are created,
this module transfers the new map data to the local-map pool within the server.
When the poses in the local map are updated, all updated pose data will be
transferred to the server in the forms of light keyframe and light map point, which
only store the pose and identity data to reduce the communication bandwidth.
The memory management module also receives the global map data that shared
by the server. The global map is built in the server-end as will be described in
Sect. 2.2. The SLAM client can use these map data to better facilitate exploring
unknown environments, but is not allowed to update them in case of causing
data inconsistency in other clients.

2.2 Map fusing in the server end

In the server, the map fusing module fuses local maps received from the SLAM
clients, achieving an optimized global map. The map fusing algorithm is shown
in the Fig. 2. It includes two main parts: map overlap detection and local-map
fusion.

Initializing Global Map. Initially, the global map is set empty as the server
system starts. The SLAM clients build the local maps independently without
any initial information from other clients and the server. The local maps from
different clients have the different reference coordinate system. When the server
receives local maps from the SLAM clients, the first local map will be directly
inserted into the global map, and thus, the global reference coordinate system
can be decided.

Fig. 2. The flowchart of Map Fusing module.



484 F. Li et al.

Map Overlap Detection. To determine the spatial connections among local
maps in the server, we detect the overlaps among the local maps and further
calculate the transform matrices using PnP method.

Fig. 3. In (a), the server detects the overlap between the local map α and the
global map. (b) shows the transform relationships among the keyframe pose, the orig-
inal and new world coordinate systems.

This module employs a bags of binary words (DBoW) approach [11] for map
overlaps detection. The vocabulary is created offline with the ORB descriptors
extracted from a large set of images and is loaded while system initializing [18].
The server incrementally builds a keyframe database for each local map and the
global map. The keyframe database contains an invert index, which stores the
ID of the keyframe in which each visual word in the vocabulary has been seen.
Thus, querying the keyframe database can be done very efficiently. The keyframe
database is updated when a keyframe is inserted or deleted from the map.

This module detects overlaps between local maps and the global map. It
obtains a list of keyframes from the keyframe database of the global map accord-
ing to the ORB features of the traversed keyframe in the operated local map. The
keyframes in the list which have enough ORB feature matches will be accepted
as rough candidates, as shown in the Fig. 3(a).

Then, it performs RANSAC iterations with all the rough candidates to cal-
culate the 7 degrees-of-freedom transform matrix between the keyframe and the
candidate, which is done in 3D similarity space (Sim3) by the method of Horn
[14]. If we find a similar candidate, Kαi

, with enough inliers, we optimize it and
perform a guided search of more correspondences. We optimize Kαi

again and,
if it is supported by enough inliers, the overlap with Kαi

is accepted. Further-
more, the pose of the Kαi

in the global map, Twnewc, is also calculated at the
same time. As shown in the Fig. 3(b), if we know the pose of one keyframe in
the global map (i.e., Twnewc), the poses of all other keyframes in the local map
of client α can also be calculated. This transform matrix is used to merge the
local map of the client α to the global map.

Local-Map Fusing. To fuse local maps into a consistent global map, we opti-
mize the essential graph in the server, and further optimize the global map by
bundle adjustment (BA).
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The local maps are merged into the global map by applying the previously
calculated transformations to the keyframes and map points. Then, we perform
a global 7 DoF optimization using BA to reduce map errors caused by different
SLAM clients. Since global BA is time consuming, the optimization process
only optimizes essential graph in the main thread, and performs global BA in a
separate thread. Optimizing essential graph optimizes the poses of the keyframes
in the global map and adds constraints by merging the duplicate map points
in the overlapped maps. Global BA optimizes a graph by minimizing the re-
projection error for all keyframes and map points that have been taken into
account for the optimization. The implementation of the global BA uses the
Levenberg-Marquardt implementation of g2o [15].

2.3 Sharing the Globally Consistent Map

In the CORB-SLAM, the local maps built by the SLAM clients can be shared
with the server and other clients. The map data, including keyframes and map
points, will be transferred between clients and the central sever module when
new map data is inserted or old map data is updated. Each keyframe mainly
stores the camera pose, ORB features of the image frame, the IDs of all map
points it observes and IDs of its co-related keyframes in the map. Each map
point mainly stores its 3D position, its representative ORB feature, the IDs of
keyframes that able to observe this map point. When new keyframes and map
points are transferred, all the data in the keyframe and map point is packaged
and transferred to the server or other clients. Furthermore, to reduce the band-
width of updating poses in the map, we only transfer the light keyframe and
light map point data which only stores the ID of the keyframe or map point and
the pose or position of it.

When sharing map data among multiple robots, map data consistency, i.e.
data values being consistent among robots, is taken into consideration. In this
paper, we keep data consistency in all SLAM clients and the server by the
following rules: (1) The SLAM clients share the newly created and updated
data in local maps to the server in a particular rate. (2) The server share the
newly created and updated data in the global map to all SLAM clients in a
particular rate. (3) The SLAM clients can only update the map data created by
themselves and keep the map data from the server and other clients fixed.

3 Experimental Results

The CORB-SLAM system is implemented in the Robot Operating System (ROS)
[17]. The ROS provides a run-time environment that facilitates the client-server
communication. Experiments are conducted to evaluate the performance of our
CORB-SLAM system on the KITTI dataset in two different robot setup, i.e.,
two robots and three robots. The KITTI dataset contains stereo data sequences
recorded from a car in different urban environments. The computer that runs the
experiments is deployed an Ubuntu 14.04 64-bit operating system, an Intel core
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i7-4790 (8 cores @ 3.6 GHZ) CPU and 8GB RAM. Although in the experiments
of this paper all SLAM clients and the server run on one computer, each SLAM
client is free to run on an individual robot, owing to the distributed communica-
tion mechanism of ROS. On the other hand, running all those processes on one
computer can prove the real-time performance of the proposed system.

3.1 Customized Datasets

Without popular public datasets specially designed for multi-robot SLAM being
available, we build our multi-robot datasets based on the single-robot KITTI
dataset. We select the sequences 00 and 05 of the KITTI dataset and divide
them into several sub-sequences according to the number of the robots involved
in our CORB-SLAM system. Each SLAM client runs with a sub-sequence, and
each sub-sequence should have overlaps with at least one other sub-sequence to
support the map fusing algorithm.

We use the following method to produce the sub-sequences. We assume the
time period of a KITTI sequence is Seq.[0, t]. For the two-robot case, we set
Seq.[0, t

2 + δt], and Seq.[ t
2 − δt, t] as two sub-sequences. For the three-robot

case, we set Seq.[0, t
3 + δt], Seq.[ t

3 − δt, 2t
3 + δt], and Seq.[2t

3 − δt, t] as three
sub-sequences. The δt ensures the overlaps among the sub-sequences.

3.2 Experiments with Two Robots

In this experiment, the sequence 00 of the KITTI dataset is used for two-robot
collaborative visual SLAM, after being divided into two sub-sequences. Figure 4
shows the procedures of exploring the sequence 00 on two SLAM clients.

Fig. 4. The running snapshots of CORB-SLAM at different timestamp. In (a), (b),
and (c), the green lines mark the poses of keyframes built by the clients themselves,
and the blue lines mark the poses of keyframes from other clients. The black points
are the map points. (Color figure online)

Figure 4(a) shows initial map status of CORB-SLAM at t = 10s. Client α and
client β initialize their local maps independently in their own local coordinate
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Fig. 5. (a) is the global map in client β. (b) is the detailed local zoom-in of the global
map. In the street corner (the red circle area of (b)), client β builds the local map
(green lines) and detects the loop closure in the map from the server (blue lines). (c)
is the street-corner image from the camera in the red circle area of (b). (Color figure
online)

system. The server has not detected an overlap between the two local maps, and
thus, the two clients explore the environment independently.

In Fig. 4(b), the server has detected the overlap at t = 80s. client α has
built the local map α1α2α3, and client β has built β1β2β3. The server detects
the overlap α2

∼= β2, and fuses the local maps α1α2α3 and β1β2β3 to global
map α1β1α2(β2)α3β3. Then, the server shares the global map with client α and
client β. client α transforms the new map data β1β2β3 to its own reference
coordinate system and inserts β1β2β3 to its local map as shown in the blue lines
of client α, so does client β. Figure 4(c) shows the resulting map at t = 400s,
and we present the detailed global map of client β in Fig. 5 as an example.

3.3 Experiment with Three Robots

In this experiment, the sequence 05 of the KITTI dataset is used for three-robot
collaborative visual SLAM, after being divided into three sub-sequences.

The resulting maps in Fig. 6 show that, in the three SLAM clients case, each
client can build its own local map and the local maps from the three different
clients can be fused in the server and be shared back to different clients. The
experiments with different numbers of robots also prove that the CORB-SLAM
system is extendable for different scales of robot clients.

3.4 System Performance

There are some factors that can limit the scalability and the performance of the
CORB-SLAM system, such as the communication, algorithm complexity in the
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Fig. 6. The resulting maps on the KITTI sequence 05.

server end, and robot hardware resource. In this paper, we evaluate time costs
of the client-server communication and the map-fusion algorithm.

Table 1. Total time costs for clients-server communications on different datasets.

Full Keyframe Full Map Point Light Keyframe Light Map Point

Num. Time Num. Time Num. Time Num. Time

Seq. 00 937 98.15 s 499681 14.02 s 1083 2.570 s 139418 6.045 s

Seq. 05 818 89.97 s 429938 12.10 s 1375 2.889 s 156466 7.969 s

Table 2. Time costs on merging local map and global BA

Keyframes in map Merging local map Global bundle adjustment

Seq. 00 136 0.5346 s 1.955 s

Seq. 05 456 2.835 s 4.535 s

As shown in Table 1, the total time cost for transferring full keyframes is
about 35 times more than that of the light keyframes, although the number of
light keyframes is much larger than that of full keyframes. The average trans-
ferring time cost for one full keyframe is about 45 times more than that of the
light keyframe. The reason behind these is that the ORB features in the full
keyframe occupy most of the keyframe storage. We find that the average time
cost of transferring the light map point is more than that of the full map point,
which is resulted from the fact that the updating operation is more complex
than the inserting operation.

As shown in Table 2, the time cost of map fusing in the server is mainly spent
on the map merging operation and the global BA. The global BA costs much
more time than the merging operation which can be indicated from Table 2.

4 Conclusions

This paper proposes the CORB-SLAM system, a collaborative multiple-robot
visual SLAM for unknown environment explorations. Experimental results with
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public KITTI dataset demonstrate that the CORB-SLAM system can perform
SLAM collaboratively with multiple clients and a server end. The experiments
are also shown in a video online1.
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